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Abstract

We explore questions dealing with the learnability of models of choice over time. We
present a large class of preference models defined by a structural criterion for which we
are able to obtain an exponential improvement over previously known learning bounds for
more general preference models. This in particular implies that the three most important
discounted utility models of intertemporal choice — exponential, hyperbolic, and quasi-
hyperbolic discounting — are learnable in the PAC setting with VC dimension that grows
logarithmically in the number of time periods. We also examine these models in the
framework of active learning. We find that the commonly studied stream-based setting is
in general difficult to analyze for preference models, but we provide a redeeming situation
in which the learner can indeed improve upon the guarantees provided by PAC learning.
In contrast to the stream-based setting, we show that if the learner is given full power
over the data he learns from — in the form of learning via membership queries — even very
naive algorithms significantly outperform the guarantees provided by higher level active
learning algorithms.

1 Introduction

We study the learnability of economic models of choice over time. Our setting is that of an
analyst who first observes an agent’s choices between plans that specify payoffs over time, and
then attempts to learn the preference parameters guiding the choices. While such parameters
are stylized — in reality subjects are not likely to perform standardized computations according
to private parameters before making decisions — experiments have shown that they often
provide accurate descriptions of how an agent behaves. By observing enough choice data, one
can hope to learn the economic parameters that most closely describe the agent’s preferences.
Thus, learning theory provides an especially meaningful lens with which to view the theory of
choice — it allows us to answer questions regarding the volume of data required to faithfully
predict future decisions made by an observed agent. The overarching goal of this paper is
to identify structural criteria that yield strong learnability results for preferences over time
under different restrictions placed on the learner/analyst. The criteria we present captures a
large class of preference models that give the agent significant freedom in weighting decisions
against time delays. In particular, it encompasses the most popular models of time dependent
choice used by economists.
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The main economic application of our results is in understanding the learnability of models
of intertemporal choice. Intertemporal choice is what governs an agent’s decisions over several
time periods. The most important models of intertemporal choice are discounted utility
models, in which agents evaluate plans by discounting actions as they are delayed — in analogy
to how markets value the loss or gain of money over time. The first axiomatic treatment of
discounting was by Koopmans in 1960 [I8], in which he demonstrates that simple postulates
for preferences over an infinite time horizon yield “impatience.” The three most commonly
studied discounting models are exponential, hyperbolic, and quasi-hyperbolic, and all have
been studied by both economists and computer scientists (though less so by the latter) as well
as researchers from various other fields. The importance of discounted utility in economics
cannot be overstated — it is the canonical framework used by economists to study choice over
time.

Problems of learning economic parameters have received recent attention from computer
scientists; see, e.g., [1I 2 3, 16, 22]. Inspired by a general theme of demanding computational
robustness from economic models (Echenique, Golovin, and Wierman provide a nice discussion
of this topic in [11]), the tools of learning theory provide relevant and exciting perspectives
from which to view economic models that have been around for several decades. In contrast to
the usual goal of truthfully extracting the agent’s parameters adopted by classical mechanism
design, the learning problem aims to efficiently extract a truthful agent’s parameters in the
restricted message space of binary classification. Our paper contributes to the line of work that
specifically studies models of choice using the perspectives of learning theory. This confluence
of decision theory and learning theory was initiated by Basu and Echenique [2], who consider
the learning problem for models of choice under uncertainty. Our investigation in this paper
is motivated by models of how agents make choices over time. We provide learnability results
that are fine tuned to structural requirements on such models.

We now summarize our main contributions at a high level. Section 3 contains a more
detailed exposition of our results.

Summary of results and techniques

Our situation is one of an analyst trying to learn the parameters governing an agent’s pref-
erences over time. The two main learning themes we consider are (1) when the analyst has
no control over the data he sees and (2) when the analyst has some control over the data
he sees. The first theme is aptly captured by probably approximately correct (PAC) learning.
To analyze the second theme, we investigate two models of active learning: stream-based
selective sampling and membership queries.

In the first part, we study the PAC model, where the analyst is presented with pairs of al-
ternatives and a label for each pair indicating the agent’s preference between the alternatives.
The data points are drawn according to some unknown distribution, and the analyst has no
control over the data he is presented with. Our main result here is a structural criterion on
preference models that allows for a drastic improvement over the PAC learning complexity
bounds achieved in [2]. We stipulate that the agent weights time-delayed payoffs according to
polynomials, which allows for considerable freedom in how payoffs are weighted. Under this
requirement, we show that such classes of preference models admit an exponential improve-
ment in sample complexity bounds over the more general preference models considered in [2].
This is achieved via a computation of the VC dimension (which quantifies the complexity of



PAC learning). A simple application of our result shows that each of the discounted utility
models are learnable, with sample complexity that grows logarithmically in the number of
time periods 1" over which decisions are being made. The computation of the VC dimension
is due to a natural connection between pairs of choices and the signs of polynomials that arise
from the choices.

In the second part, we consider active learning models, where the analyst is given a certain
amount of control over the data that he uses to learn. The two active learning models we
study are stream-based selective sampling and learning via membership queries. In the former,
the analyst is given some control over what data he learns from: as in the PAC setting he
is presented with points drawn from an unknown distribution, but now the analyst chooses
whether or not to see the label representing the agent’s choice for each point. In the latter,
the analyst has complete control over the data he learns from: the analyst can at any time
request the label for any point. The former model seems to have been commonly adopted
in order to study the very general problem of concept learning, when there is no extra infor-
mation about the structure of the concepts. We find that the disagreement methods used to
study the stream-based setting are in general difficult to analyze in the context of preference
models — requiring quantitative information about the underlying distribution from which
points are drawn. However, we provide a redeeming situation (by examining a particular dis-
tribution) where we obtain an improvement over the PAC guarantees. Membership queries,
on the other hand, allow us to heavily exploit the structure of the preference models we con-
sider. We present a naive membership query-based algorithm that significantly outperforms
the guarantees provided in the stream-based setting. Learning via membership queries, we
conclude, seems to be the appropriate model to actively learn economic parameters. It allows
the analyst to make use of the preference relations’ structure, and also precisely captures the
situation in which the analyst and agent are participating in a real time experiment.

Related work

Discounted utility models of intertemporal choice have been studied extensively not only by
economists, but also by researchers from various other fields. We first briefly survey some of
the relevant work pertaining to the exponential, quasi-hyperbolic, and hyperbolic discount-
ing models and then survey existing work in the more general topic of learning economic
parameters.

In the exponential discounting model, the agent evaluates his utilities based on a discount
factor § € (0, 1), where a delay of ¢ time periods incurs an exponential discount in utility by &°.
Climate change policies are traditionally evaluated according to an exponential discounting
model — for example, the Stern review on the economics of climate change deals with issues
of how to choose an appropriate discount rate in evaluating such policies [21]. Chambers and
Echenique [8] present results related to the problem of aggregating discount rates proposed
by a group of experts facing disagreement. While it is the most commonly used discounting
model due to its simplicity, the exponential discounting model has been criticized due to its
inability to match empirical data recording actual human behavior. Quasi-hyperbolic and
hyperbolic discounting aim to mend such issues. The quasi-hyperbolic discounting model is
parametrized by 3,0 € (0,1), where a delay of ¢ time periods incurs a discount in utility by
B4t and was first introduced by Phelps and Pollack [20] to study preferences over generations.
They proposed that the constant 5 discount factor represents how much a given generation ¢



is affected by the utilities of other people relative to their own — and remark that 8 = 1 rep-
resents “perfect altruism,” while 8 < 1 represents “imperfect altruism.” Kleinberg and Oren
[17] study agents with quasi-hyperbolic discounting and propose a graph-theoretic model to
investigate phenomena such as procrastination and abandonment of long-range tasks. Hyper-
bolic discounting aims to capture the notion that people are more impatient in making short
term decisions (today vs. tomorrow) than long term decisions (365 days from today vs. 366
days from today, and is modeled via a discount of (1+4ta)~! at time t. Researchers in fields
such as psychology and neuroscience [4, 15] have adopted the hyperbolic discounting model
to study, for example, issues of self control and anticipation in humans and animals, and
have compared the predictions by the different discounted utility models to neurobiological
data obtained via MRI scans. Chabris et al. [7] give an exposition of the discounted utility
models of intertemporal choice and survey sociological research that examines empirical data
pertaining to how discount rates are affected by factors like age, drug use, gambling, etc.
The study of economic models has witnessed a recent influx of work from computer sci-
entists dealing with questions of robustness under various notions of complexity (learning
complexity, computational complexity, communication complexity, etc.). Kalai [16] in 2001
studied the learnability of choice functions, where the observed choices are in the form of a
given set of alternatives along with the most preferred alternative from the set. Beigman and
Vohra [3], Zadimoghaddam and Roth [22], and Balcan et al. [I] investigate the problem of
learning utility functions in the context of an expected utility maximizing agent in a demand
environment. Most recently (and most related to our work), Basu and Echenique [2] study
the learnability of preference models of choice under uncertainty, in which an agent is uncer-
tain about states of a lottery and is made to choose between acts that encode utilities over
each state. Here, the different models of choice under uncertainty arise from different ways
of representing the subjective probability held by an agent. They are also the first to study
learnability in the decision-theoretic setting where choice is modeled by preference relations
rather than by expected utility maximizing behavior in a demand setting. However, it does
not appear that the learnability of models of intertemporal choice has been previously studied.

2 Model and Preliminaries

We now formally set up the discounted utility models of intertemporal choice and state the
standard definitions from learning theory in the context of preference relations. Much of
the following material regarding learning and preference relations is taken from [2] since we
require a similar list of definitions and setup. First, we sketch our high level model.

Let X be a Euclidean space equipped with a Borel o-algebra. A preference relation on
X is a binary relation ~C X x X such that 7 is measurable with respect to the product
o-algebra on X x X. A model P of preference relations is a collection of preference relations.

An agent makes choices from pairs of alternatives (z°,y*)"_; that are drawn according to
some unknown distribution on X x X. The choices are presented as labels (a;)!" ; where a; = 1
if the agent chooses 2 and a; = 0 if the agent chooses y*. A dataset is any finite sequence of
pairs of plans and their labels (((z!,y'),a1), ..., ((z™,y™"),a,)). An analyst observes a dataset,
and attempts to guess the preference relation governing the agent’s choices. A learning rule

'In particular note that exponential discounting does not capture this issue, i.e. it is dynamically consistent,
in that preferences do not change according to shifts in time.



is any map o from datasets to preference relations. The output of the learning rule is the
analyst’s hypothesis as to what the agent’s true preference relation is, having seen some finite
dataset.

2.1 Learnability

The two notions of learnability we consider are the PAC model and the active model. We
now state the standard definitions of PAC and active learning in the context of preference
relations. Most of the following definitions for the PAC setting are taken from [2] since the
setup involving preference relations is identical. These definitions of course apply to the more
general setting of concept learning (for example, see [0]).

A collection P of preference relations is (PAC) learnable if there is a learning rule o such
that for every 0 < £,0 < 1, there is s(¢,d) € N such that for every n > s(e,d), zZ€ P, and
weAX x X),

Py, @) (T A R) > e)) <6,
where
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is the hypothesis preference relation produced by the learning ruleﬁ. The quantity s(g,0) is
called the sample complexity of the learning rule o.
The complexity of learning is commonly quantified by the Vapnik-Chervonenkis (VC)

dimension, which we now define. A set of points {(z!,y'),..., (2", y™)} from X x X is
shattered by a model of preferences P if for every vector of labels (ai,...,a,) € {0,1}",
there is a preference relation € P that realizes the labelling, i.e. for i = 1,...,n we

have that z° >~ ¢ if and only if a; = 1. In this case, P is said to rationalize the dataset
{((=Y,yY),a1),..., (", y™),a,)}. The VC dimension of P, denoted by VC(P), is the largest
integer n such that there exist n points that are shattered by P.

Blumer et al. [6] in 1989 proved that learnability is equivalent to having a finite VC
dimension.

Theorem 2.1. A model of preferences P is learnable if and only if VC(P) < oo.

The VC dimension (denoted by d for the remainder of this subsection) also plays a role
in the sample complexity of learning a model of preferences. In the same paper, Blumer et
al. [6] show that any algorithm that outputs a hypothesis consistent with the data seen is a
valid learning rule requiring sample complexity

1 1 1
N=0(=(dlog=+10g=]].
s(e,9) <€< og€+og5>>

In 2016, Hanneke [14] showed that these bounds (after a small improvement) are tight:
the optimal sample complexity of PAC learning is

s(c,6) = © <§ (d—i—log%)).

2u™ denotes the product measure induced by p on (X x X)™.
3This result requires P to satisfy a certain measurability requirement. We note in Section 4 that the models
of choice we consider all satisfy said requirement.




The other learning model we consider is the active learning framework, where the analyst
has some control over the data from which he learns. In stream-based selective sampling,
points drawn according to an unknown distribution are presented to the analyst as before,
but without the labels. The analyst can choose whether or not to query the label of a
given point, and the complexity of the learning rule is measured by label complezity, i.e. the
number of labels requested by the analyst. Disagreement based active learning refers to the
paradigm in which the learner only requests labels on points that significantly reduce the
hypothesis space. The disagreement of a preference model with respect to the underlying
distribution is quantified through the disagreement coefficient 6, which is defined in Section
5. A finite disagreement coefficient implies (for the underlying distribution) an exponential
improvement in label complexity over the sample complexity of PAC learning. For example,
the CAL algorithm [9, [10] 13], a simple disagreement based learning algorithm, yields a label

complexity of
Coar(e,6) =0 (9 log % <d10g6 +log %)) '

In the membership queries model, the analyst is allowed to request the label for any
point at any time. There appears to be a dearth of literature/results pertaining to the
complexity of membership query algorithms for learning when the hypothesis space is infinite.
One explanation for this is that improvements to the “passive” disagreement based methods
used in the stream-based setting would need specific information about the problem domain:
disagreement based methods are designed to work on a very general class of concept learning
problems without assuming anything about the learning space. In our case, we have specific
details about how the preference relations take shape. Thus, the membership query model
turns out to be an interesting and useful perspective to use in the study of learning preference
models.

For a more detailed survey of active learning, see [10].

2.2 Discounted utility

We now present the definitions for the discounted utility models of intertemporal choice. An
agent chooses between plans or vectors in X = R” that encode payoffs over T time periods.
A preference relation over plans is a binary relation =C RT x RT.

The most important model of intertemporal choice is the discounted utility model, in which
the agent’s payoffs x; for having chosen a plan 2 € R” are reduced, or discounted, as ¢ increases
from 1 to T'. In its most general form, we can characterize the preference relations that follow
time discounting as follows:

Definition 2.1 (Discounted utility model). The class of preference relations Pp that sat-
isfy the discounted utility model are those 7~ such that there exists a decreasing map D :
{1,...,T} = (0,1) where

T

T
x 7y if and only if Z D(t)x, > Z D(t)y;.
t=1 t=1

We use the following notation for the preference models arising from the three most com-
monly studied discounting functions D:



Pp denotes the set of preferences that satisfy the discounted utility model.

Psp denotes the set of preferences that satisfy the discounted utility model with ezpo-
nential discounting: D(t) = §' for § € (0,1).

e Pyp denotes the set of preferences that satisfy the discounted utility model with hyper-

bolic discounting: D(t) = H—ﬁ for a > 0.

Powp denotes the set of preferences that satisfy the discounted utility model with quasi-
hyperbolic discounting: D(t) =1ift =1, D(t) = -5~V if t > 1 for 5,5 € (0,1).

For a more thorough exposition on the various discounted utility models of intertemporal
choice, see [7].

3 Main Results

In this section we provide a formal discussion and interpretation of our results, which is split
into two themes: the first dealing with an analyst who has no control over the learning data,
the second dealing with an analyst who has some control over the learning data.

A powerless analyst

The first part of our paper investigates the situation of an analyst trying to learn the preference
relation by which an agent makes choices, but has no control over what choices he gets to
observe, and is agnostic to the process by which they are drawn. We thus adopt the PAC
learning model.

The agent chooses between plans that encode payoffs over T" periods of time and evaluates
the total payoff of a plan vector € R according to private weights w1, ..., wr that he mul-
tiplicatively applies to each state: payoff(z) = ZtT:I wyxy. This defines a model of preference
relations, which we denote by P)y, where for any —€ P)y, there exists a vector of weights
w = (wy,...,wr) € RT such that

x 7z y if and only if w.x > w.y.

In [2], it is shown that T—1 < VC(Py) < T+ 1. In the context of choice over time, however,
this model is extremely general and does not capture any of the intuitive notions of how an
agent values payoffs when they are delayed@. For example, the discounted utility models of
intertemporal choice require the weights to be of a particular functional form. Moreover,
when there is no structure to the discount function we cannot improve the bounds on Pyy:

Proposition 3.1. T—1<VC(Pp) <T +1.

This leads us to the motivating question of the first part of the paper: what structural
conditions can we impose on the weights w1, ..., wr such that this bound can be improved?
We investigate the situation where the agent computes his weights by evaluating poly-
nomials at a private parameter §. Specifically, let Q1,...,Q7 be polynomials of degree at

4In [2] the complete control over weights is used to model choice under uncertainty, which calls for such
generality since the agent’s beliefs/weights are given by an element of the probability simplex on RT.



most d, and suppose the agent evaluates total payoff of a plan vector = € RT by payoff(z) =
z;[:l Q¢(6)xy. Consequently, let Ppyy be the model of preference relations parametrized by

¢ such that
T

T
x 7y if and only if Z Q(0)xy > ZQt(cS)yt.
t=1 t=1

This class of preference models allows us to approximate preference relations where the
weights are given by any real valued functions — we choose 01, ..., Q7 to be the appropriate
Taylor polynomials. Moreover, existing models of intertemporal choice fit this characterization
— for example Pep and Pyp.

We additionally consider a slightly larger class of preference models where the agent has a
private parameter 3 (in addition to ) that in evaluating total payoff of a plan vector z € R”
allows the agent to modify the constant term Zle Q+(0)x¢ of the polynomial Zthl Q¢ (0)xy.
This model aims to more generally capture the effects of the 8 parameter in quasi-hyperbolic
discounting. For polynomials @1,...,Qr of degree at most d, let Pgpyy be the model of
preference relations parametrized by  and 0 such that x = y if and only if

1 d d 1 - -
(B - 1> S0z + Y Qu(d)z > (5 - 1> D Qe + Y Qi@
t=1 t=1 t=1 =1

Our main results show that with this additional structure on the preference model, we can
achieve an exponential improvement in the bounds for the VC dimension of Pyy obtained in

2.

Theorem 3.2. For every € > 0, there exists a d. such that for every d > d. we have
VC(Ppw), VC(Pepw) < (1+¢)logd for any T and any T polynomials Q1,...,Qr of degree
at most d.

Note that when @)1, ..., Q7 have degree at most polynomial in T', we obtain an exponential
improvement over the linear growth of VC(P)y). We show that in this case, we get a tight
(asymptotic) bound of log T™:

Theorem 3.3. Let QQ1,..., Q1 be polynomials in & of degree at most T —1 that span the space
of polynomials in & of degree at most T — 1. Then VC(Ppw), VC(Pgpw) > log(T —1).

An interesting feature of Theorems and 3.3 is that for fixed Q1,..., Q7 with degrees
at most T'— 1, VC(Ppw) and VC(Pppyy) satisfy the same asymptotic bounds, so giving
the agent an extra parameter that allows control over the constant term of the polynomial
z;[:l Q¢(6)xy does not introduce a significant amount of richness to the model.

Applying Theorems and [3:3] to the discounted utility models, we have:

Corollary 3.4. VC(Pep), VC(Pyp), VC(Ponp) ~ log(T — 1)

"We use a factor of (1/8 — 1) since it yields a clean description of quasi-hyperbolic discounting.

STt is important to note that the classes Ppyy and Pspyy are defined for a given Qi,...,Qr. That is,
the analyst knows Q1,...,Qr, and is trying to learn the parameters 8 and §. If the Q1,...,Qr are private
information only available to the agent, we are in no better shape than in the case of Pw.



Thus, Pp, Pep, Pup, and Poyp are all learnable. Pp requires a minimum sample size
that grows linearly with 7', while Pgp, Pyp, and Poyp require a minimum sample size that
grows logarithmically in 7.

The main technique in proving Theorems and [B.3]is interpreting the shattering criteria
as a statement about the sign combinations achieved by a collection of polynomials. The
upper bound on the VC dimension follows from an upper bound on the number of sign
combinations a collection of polynomials can achieve. In demonstrating the lower bound
on the VC dimension, we construct a set of points that is shattered by finding polynomials
achieving all possible sign combinations — chosen according to a Hamiltonian path in the
log(T — 1)-dimensional hypercube.

A powerful analyst

Our other results concern the active learning framework, which broadly deals with situations
in which the analyst has some control over the choices he observes and learns from. The
two models we consider are stream-based selective sampling and learning via membership
queries. A large body of active learning research is devoted to the stream-based model,
specifically focusing on disagreement based algorithms — a class of learning algorithms that
instructs the analyst only to request labels on points he sees that reduce the hypothesis
space significantly. In the most general setting of concept learning, this is a useful framework
since the error guarantees can be described using the same setup as the PAC model. Moreover
without additional information about the problem domain, it is unclear how to devise efficient
algorithms that are more specific in instructing the analyst on what questions to ask.

We find that the stream-based model is in general difficult to analyze for the preference
relations we work with. This difficulty seems to arise from the apparent need to quantify
disagreement in order to explicitly write down learning guarantees. Though in most general
situations it is unclear how to quantify disagreement for our preference relations, we present
a redeeming situation for which we are able to provide a precise analysis of the learning guar-
antees for Pep. Here, the analyst can learn Pegp with an exponential improvement in label
complexity over the guarantees provided by the PAC model. This is achieved via a computa-
tion of the disagreement coefficient (defined in Section 5) of Pgp for a specific distribution.

Theorem 3.5. There exists a distribution p on RT xRT for which the disagreement coefficient
of Pep is 0 = 2. Thus, for this distribution,

loar(e) = O <10ngog %) ,

where the O notation suppresses terms that are logarithmic in logT and log1/e.

The measure p we construct is induced by the product Lebesgue measure on (0,1)7—1,

and allows us to precisely translate statements about disagreement into statements about the
roots of polynomials arising from a given choice. Once we have defined p, the calculation of
0 follows from basic probability arguments.

Now, in our case the analyst has structural information regarding the preference relation of
the agent he is questioning. We find that allowing the analyst full control over the membership
queries he makes yields a learning algorithm that, despite its simplicity, takes advantage of



this extra structure and yields a significant improvement in complexity over the stream-based
setting. Additionally, the membership queries model naturally describes an experimental
environment in which the analyst is able to ask the agent questions in real time.

We show that when the preference model satisfies some relatively benign structural re-
quirements, even very naive algorithms outperform the guarantees provided by CAL in the
stream-based setting. The example algorithm we give, relying on a simple binary search, has
a query complexity of O(log1/¢e), which gets rid of the log T dependence in Theorem

The class of preference models is defined as follows: let g1,...,g7 : R — R be a collection
of functions satisfying the properties listed in Section B.3land consider the model of preference
relations P parametrized by § where x =~ y if and only if Zle gt(0)xy > Zthl gt(é)yﬂ. We
have

Proposition 3.6. There ezists an algorithm that takes as input € > 0 and using O(log1/¢)
membership queries outputs 6" such that |6—0"| < e, where § parametrizes the target preference
relation in P.

The remainder of the paper is devoted to proving the results discussed in this section.

4 PAC Learning

In this section we prove Theorems and B3] We first note a preliminary upper bound due
to Basu and Echenique [2]. Let Pz be the set of preference relations that satisfy the following
axioms:

Order: For all z,y either z 7 y or y =~ = (completeness). For all z,y,z, if x Z y and y 7 z,
then x 7 z (transitivity).

Independence: For all z,y,z and for any A € (0,1), =7 y if and only if Az + (1 — A\)z =
Ay + (1 — M)z

The class Pz satisfies the property that for any —€ Pz, there are finitely many vectors
q1,---,qx, with K < T, such that = = y if and only if (qp.2)E | >1 (qr-y)E |, where >,
denotes the lexicographic order [5]. Then, Ppywy, Pepw C Pw C Pr, since the aforementioned
characterization is satisfied with K = 1 and ¢; = (wy,...,wr).

This has two main consequences. First, Ppyy and Pppyy (and thus all the discounted
utility models) satisfy the measurability requirement discussed in Lemma 4 of [2] for the
equivalence result of Theorem 2] to hold. Second, the VC dimensions of Ppy, and Prpwy
are all bounded above by 7'+ 1 (and in particular 7' — 1 < VC(Py) < T + 1). This follows
due to Theorem 3.1 of [2], in which an argument similar to that required to compute the
VC dimension of the class of half-spaces is used to show that VC(Pz) = T + 1. In all cases
excluding the most general model of discounted utility, we are able to bring this down to
log(T — 1) (which we then show is tight by demonstrating the corresponding lower bound).

We begin by demonstrating that even in the discounted utility setting, without any struc-
ture we cannot do better than the learning bounds obtained for Pz.

Proposition Bl T'—1 < VC(Pp) <T + 1.

"As before, the g1, ..., gr are known to the analyst.
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Proof. That VC(Pp) < T + 1 follows from Theorem 3.1 of [2], since Pp C Pz.

Here is a simple construction that shows VC(Pp) > T—1. Fixane > 0. Let ey, ...,er be
the standard unit vectors in R”, and consider the set of points {(z',y'),..., (71, ¢y~ H},
where 2! = (1 — ¢)e; and 3 = e;41.

This set is shattered by Pp: for any (a;)7', choose D(1) arbitrarily from (0,1), and if
D(i) has been defined, inductively define D(i + 1) such that D(: + 1) < D(i)(1 —¢) if a; = 1
and D(i) > D(i+1) > (1 —¢e)D(i) if a; = 0. O

We now prove Theorems and [3.3] which are restated below for convenience.

Theorem For every € > 0, there exists a d. such that for every d > d. we have
VC(Ppw), VC(Pepw) < (1+¢)logd for any T and any T polynomials Q1,...,Qr of degree
at most d.

Proof. It suffices to establish the bound for Ppgyy.

Let (2',...,2") be a set of points in RT x R”, 2 = (2%, 5%). For each 2’ = (z,y), define
the plan f? := 2/ — 3. Then, note that (z!,...,2") is shattered by Ppgyy if and only if
((f,0),...,(f,0)) is shattered by Pppyy. Hence, we may (and do) restrict attention to
datasets of the form ((f!,0),...,(f"0)).

We have that ((f1,0),...,(f",0)) is shattered by Pppyy if and only if for all vectors
(a1,...,ay,) € {0,1}", there exists a § and 5 (which determines the preference relation) such
that

Qr()fi + -+ QO F) + (% - 1) (Qr(O)fk + -+ + Q1(0)f) > 0 whenever a; — 1,

and

1
-1
B
We first show that for all ¢ > 0, for sufficiently large d we have VC(Pppy) < (1 +
¢)log d. Note that if the n points ((f!,0),...,(f™,0)) can be shattered, there are polynomials

Py,..., P, in & (where P is the polynomial Q1(3)fi + - -+ Qr(d)f+), each of degree at most
d, such that for every labeling (aq,...,a,) € {0,1}", there exists a 6 and [ such that

QT fp+ -+ Q1(0)f]) + < ) (Qr(0)ff + -+ Q1(0)f{) < 0 whenever a; = 0.

(sgn(P1(8) + (1/8 — 1)Py(0)), ... ,sgn(Pa(8) + (1/8 — 1)Pa(0))) = (a1, ,an .

First, for any n polynomials Pi,..., P, of degree at most d, we give an upper bound on
the number of possible values (sgn(P;(9)),...,sgn(P,(d))) can realize. Each polynomial has
at most d real roots, so together Pi,..., P, have at most nd distinct real roots. Since sign

changes can only occur at the roots, there are at most nd + 1 possible values of {0,1}" that
(sgn(P1(9)),...,sgn(Py,(J))) can realize.
Now, for a fixed §, varying § shifts the collection of polynomials

P(0) + (1/6 = 1)P1(0),..., Po(6) + (1/6 = 1) P, (0)

8For notational convenience, let sgn(zx) be 1 if 2 > 0 and 0 otherwise.
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vertically, which in the worst case induces sign changes in all entries. We thus get at most an
additional n new sign combinations for every sign combination realized by (sgn(P;(9)),...,sgn(Py,(9))).
Hence, there are at most nd+ 14 n(nd+1) = (n? +n)d+n+ 1 possible values of {0,1}" that

(sgn(P1(0) + (1/8 = 1) P1(0)), ... ,sgn(Pn(d) + (1/8 — 1) Pa(0)))

can realize.
In order for all 2" elements of {0,1}" to be realized, it must be that

(n* +n)d+n+1>2"

If n > (14 ¢)logd, then for large enough d this inequality does not hold, and so any set of
n points cannot be shattered. Thus, for all ¢ > 0, n < (1 + ¢)logd for large enough d, i.e.
VC(P) < (1+¢)logd. O

We now establish the corresponding lower bound when the polynomials Q1, ..., Qr span
the space of polynomials of degree at most 7" — 1.

Theorem B.3l Let Q1,...,Qr be polynomials in ¢ of degree at most T —1 that span the space
of polynomials in & of degree at most T — 1. Then VC(Ppw), VC(Pgpw) > log(T —1).

Proof. It suffices to establish the bound for Ppyy.

Consider the graph on {0,1}" where two vertices are connected by an edge if they differ
in exactly one location. Fix a Hamiltonian path vy, v9,...,von in this graph (the existence of
which is well known). Let by ,...,bon_12n be the sequence where b; ;1 is the index of the
location at which v; and v; 41 differ. Note that if n = log(7 — 1), the graph has T — 1 vertices,
so each index in {1,...,n} can appear in the sequence (b; ;1) at most 7' — 1 times.

Now, let 7 < rg < .-+ < ron be any points in (0,1). Define n polynomials P,..., P, by
P(6) =TIl ,,,=(6 — 14), so the roots of Py are precisely the r;’s that correspond to a flip
in the entry at the kth position of a vertex in the path. Then, (sgn(P;(0)),...,sgn(FP,(9)))
realizes every element of {0,1}".

Since @1, ...,Qr span the space of polynomials of degree at most T' — 1, for each F; we
can find f{,..., f& such that

Pi(8) = Q1(0) f1 + - + Qr(6) ff,

which gives us a collection of log(7 — 1) points that is shattered. Hence log(T —1) < VC(P).
U

It is readily seen that Pep and Poyp satisfy the conditions of Theorems and B:ﬁ
We give a quick argument verifying that Pyp does as well: For 1 < ¢t < T, let Q¢(a) =
[leeqr,. g (1 + €a) (these are the polynomials obtained by clearing denominators of the
hyperbolic discount factors). We argue that {Q.(a)}_, are linearly independent over the
vector space of polynomials in « of degree at most T'—1. Indeed, if Q1 () f1+- -+ Qr(a)fr =
0, then we must have that f; = --- = fp = 0 since at o = =% we get Q(c)f; = 0. Hence,

t

9Pep is given by Ppyy with Q:(9) = 61 and Ponup is given by Pspw with Q:(9) = 5tt,
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Remark. These bounds also hold in the scenario where the agent can report indifference
in the data. More precisely, the condition for x >~ y is now a strict inequality, and we
have three possible labels for the pair (z,y): +1 indicates that = - y, —1 indicates that
y 7~ x, and 0 indicates that x ~ y. Then, using a Hamiltonian path on {—1,0,1}", we can
construct polynomials P, ..., P, such that (sgn(P;(0)),...,sgn(P,(d))) realizes all elements
of {—1,0,1}" as 0 ranges from 0 to 1 (where sgn is the true sign function).

4.1 A Remark on Efficient Learnability

While PAC learnability is a positive result, it does not take into account the computational
complexity of computing a hypothesis. Blumer et. al. [6] show that any learning rule that
outputs a hypothesis consistent with the data seen yields with high probability a hypothesis
that has very low error. However, if the problem of outputting a consistent hypothesis is
computationally intractable, PAC learnability on its own is perhaps unsatisfying. In this
section we note that the discounted utility models of intertemporal choice are efficiently
learnable. This is due to an algorithm of Grigor’ev and Vorobjov [12] for solving a system of
polynomial inequalities.

For notational convenience, it will be useful to write P = {PT}1~1, for each of the models
above, where PT is the collection of preference relations for a given 7. Moreover, suppose
acts are chosen from [—1,1]7 instead of R”. It is clear that this does not change any of the
analysis above.

Polynomial learnability, as defined by Blumer et. al. [6], stipulates that the learning rule be
computable in poly(1/e,1/6, T)-time (where € and 0 denote the error threshold and confidence
threshold respectively). Polynomial learnability is equivalent to the task of outputting a
hypothesis consistent with the given data set in polynomial time [6].

Definition 4.1. A randomized polynomial hypothesis finder (r-poly hy-fi) for P is a random-
ized polynomial time algorithm that takes as input a sample of a preference relation in P,
and for some v > 0, with probability at least «v produces a hypothesis that is consistent with
the sample.

Theorem 4.1. P is properly polynomially learnable if and only if there is an r-poly hy-fi for
P and VC(PT) grows only polynomially in T.

We have just shown that VC(PT) ~ log(T — 1). Using techniques involving algebraic
geometry, Grigor’ev and Vorobjov [12] present an algorithm to solve a system of N polynomial
inequalities with a poly(V,T') runtime. This serves as our r-poly hy-fi, and thus we obtain:

Theorem 4.2. Pgp, Pyp, and Poyp are all properly polynomially learnable.

5 Active Learning

In this section we study two models of active learning: stream-based selective sampling and
learning via membership queries. We first define a distribution for which the disagreement
coefficient of Pgp is 2, showing that disagreement methods (specifically the CAL algorithm
[9, 10, 13]) in the stream-based model can yield an exponential improvement over the sample
complexity of PAC learning (thus proving Theorem [3.5]).

13



We then consider learning via membership queries and show that in this setting even very
naive algorithms outperform the disagreement methods in the stream-based model (that is,
the analyst needs to ask fewer questions to the agent in order to learn his preference than the
number of label requests he would need to make using disagreement methods).

5.1 Preliminaries

For notational convenience, 75 will to refer to the preference relation in Pgp with discounting
factor 6.

Let u be a distribution on RT xR 1 induces a metric on Pep by d(Zs, 72y) = (225 A 754),
and thus we can define the closed ball of radius R centered at —5 by

B(Zs: R) = {Z4: d(Zs, ) < R}
For V' C Pgy, the disagreement region of V', Dis(V) is defined by
Dis(V) = {(z,y) € RT x RT : 35, 0,€ Vst (my) € A= |J (ZsLzy)
Zs.yEV

Intuitively, Dis(V') is the collection of points (x,y) such that we can find two hypothesis
relations in the current version space that rank x and y differently.

If s is the target preference relation, the disagreement coefficient of 7—s with respect to
w1 is the quantity

; -
0 — sup p(Dis(B(Zs, R))
R>0 R

5.2 Disagreement based active learning

In this subsection, we define a distribution x on R” x R” and show that the disagreement
coefficient of Pep with respect to p is 2.

Choosing a measure

The main challenge here is that § depends on the underlying distribution over R” x R”. Since
preferences are polynomial inequalities, the disagreement coefficient seems to lend itself to a
characterization involving polynomials and their roots, which is the motivation for our choice
of distribution. For a general distribution p over RT x R”', it is not clear how to compute the
disagreement coefficient.

We show that 6 = 2 for a suitably chosen distribution on R? x R”, which is induced by
the Lebesgue measure on (0,1)7~!. This allows us to work with a measure on sets of roots of
polynomials that arise from the definition of the preference relations.

Let p** be a measure on (0,1)7~'. We interchangeably represent elements of R” as
polynomials P of degree at most T — 1 or as T' — 1-tuples of coefficients. Let ~ be the
equivalence relation on R” defined by P ~ Q <= P = cQ for some constant ¢, and let R/ ~
be the resulting quotient space. Let g : (0,1)7~! — R”/ ~ be the map taking a tuple of roots
to the equivalence class of the polynomials with those roots, and let h : RT x RT — RT / ~
be the map h(z,y) = [z — y].

We define the following measures x* and z on g((0,1)7=1) ¢ RT/ ~and h=(g((0,1)T1)) c
RT x RT respectively.

14



e Define p* on all sets S C ¢((0,1)71) such that
{(ri(P),...,rr—1(P)) € (0,1)"" ' : P S}
(where r1(P),...rp_1(P) denote the roots of P) is p**-measurable, for which we set
1H(S) = 1 ({(r (P e (P)) € (0,1)7) - P e S).
e Define y on all sets S C h~1(g((0,1)7~1)) such that
{[2] € g((0, )1 : I(2,y) € Sst. 2 ~ 2 —y}
is p*-measurable, for which we set

w(8) = ({lz] € g((0,1)"1) : 3(z,y) € S5tz ~ x —y}).

Intuitively, p* is defined only on those polynomials that have all their roots in (0,1). When
T = 2, this is a desirable property since the analyst is only presented with polynomials that
have some disagreement in (0,1). He is not presented with meaningless polynomials that are,
for example, always positive on (0, 1) (the analyst has nothing to learn from such polynomials
since such a polynomial will be preferred to 0 for all 6 € (0,1)). For T' > 3, this is a more
restrictive property since the analyst is only presented with polynomials that have all T — 1
roots in (0, 1).

Let p** be the product Lebesgue measure on (0,1)7~!. Choosing x** in this fashion allows
us to neatly characterize B(ZZs, R).

Let X1,...,X7_1 be uniform i.i.d. random variables on (0, 1), and let Y5 be the random
variable Y5, = |[{i : X; is between 0 and v}|. Let ngf/d denote the event that Y. is odd, let

Ef_ denote the event Y5, =k, and let E5" denote the event Y;, > k.

Lemma 5.1. € B(Zs, R) if and only if ]P’[ngyd] <R.

Proof. Given (z,y) € RT x RT, let P,_,(X) =S, X'=1. (; — y;). Then,

Zr€ B(Zs, R) = u({(z,y) € b7 (9((0,1)"71)) : sgn(Po—y (9)) # sgn(Po—y(1)))}) < R
= p*({[P] € 9((0,1)771) :sgn(P(9)) # sgn(P(7))}) < R
= {(r-rron) € (0,177 ssgn([1(8 — 7)) # sgn(I1(v — 7)) < R

But sgn(J[(6 — r;)) # sgn([[(y — 7)) occurs exactly when an odd number of roots lie
between v and § (modulo a set of measure 0 since the probability that we have a root of
multiplicity greater than 1 is 0). O

While it seems difficult to write down a general characterization of u, Propositions
and [5.3] give some basic observations regarding the o-algebras on which p* and p are defined.
We defer their proofs (along with a description of p* in the case T' = 2) to the appendix:

Proposition 5.2. The o-algebra on g((0,1)7=1) is the Borel o-algebra.

The o-algebra induced on A~1(g((0,1)7=1)) does not appear to yield a clean characteri-

zation, but we can show the weaker statement that u is a Borel measure, i.e. it is defined on
all open sets of h=1(g((0,1)T—1)).

Proposition 5.3. p is a Borel measure on h=1(g((0,1)T~1)).
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Computing 6

We now show 6 = 2 for the distribution p as chosen above. We use the notation d = ds,, :=
|0 — 7| to denote the distance between § and v. Let 75 be the target preference relation.
First, note that since Y; , is distributed according to Bin(T'—1, d), P[Egﬁlyd] = %.
We us this fact to derive an explicit description of the preference relations 7, contained in
the ball B(7Zs, R) in terms of d. We break the analysis up into a few cases.
First, when R > %, we have SUpp. 1 w =2 Let R< % By Lemma 511

1—(1—2a)T!
2

7€ B(Zs, R) <= PE§Y) = <R (1)

8y
Suppose d < % Then 1 — 2d and 1 — 2R are both non-negative, so rearranging Equation ()
yields

_ (1 — 2R)/(T-1)
g 1= 22R) ' )

Suppose d > %, so 1 —2d < 0. Rearranging Equation (), we get 1 — 2R < (1 —2d)T~1. If
T —1is odd, (1—2d)T~! is negative, so 1 —2R < (1—2d)T~! does not hold. Thus, when T'— 1
is odd the ball consists of -, such that d satisfies condition ). If T — 1 is even, (1 —2d)T~?
is positive, so we get

1/(T-1
21+(1—2R)/< >' 3)
2
Thus, when 7" — 1 is even the ball consists of 77, such that d satisfies conditions (2] or (3.
Now, the disagreement region of B(7Zs, R) consists of all points (x,y) such that the polyno-
mial P,_, (as defined in Lemma [5.]) has a root ~ such that Z,€ B(Zs, R) (since we can find

two hypotheses that disagree on (z,y) by taking a point slightly below v and a point slightly
1-(1-2R)V/(T-1
2

d

above 7 such that P,_, has no sign changes in between). Hence, with R; =

and Ry = w, we have that
, PIES 5, 5] if T—1is odd
n(Dis(B(Zs, R))) = PIEZ ' >1 >1 i .
[E6—R1,5+R1 UEO’(;_R2 U E5+R271] if T'—1is even
We have
>1 _
PIES R sip) =1—(1—2R)""" =2R,
and

>1 >1 >1 T-1 T—1
PlES g sor Y E Ry Y Esip, 1] =1— 2Ry — R1))" — =1-2"""(1-2R).

M}W =2 and when T' — 1 is even

Therefore, when 7' — 1 is odd supg«g<1/2

: — _oT-1 o
sup u(Dis(B(zs, R))) . 1-2"""(1-2R)
0<R<1/2 R 0<R<1/2 R

=2,

0 his is due to the general fact that if X is a random variable distributed according to Bin(n,p), the
probability that X is odd is %,
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—_ T71 —_ . . .
which is achieved at R = 1/2 since 127}2(12}2) is increasing on 0 < R <

. Dis(B(zs,R
Finally, 6 = supp~q w = 2.
We have thus established Theorem

D=

Theorem B.5. There exists a distribution i on RT xRT for which the disagreement coefficient
of Pep is 0 = 2. Thus, for this distribution,

~ 1
loar(e) =0 <10ngog E) ,
where the O notation suppresses terms that are logarithmic in logT and log1/e.

5.3 Learning via membership queries

In this subsection, we present a simple membership queries algorithm that outperforms the
guarantees provided by the disagreement based CAL algorithm. For simplicity, we restrict
attention to preference models that are parametrized by a single parameter (e.g. Pep and
Pup).

Let g1,...,97 : R — R be a collection of functions such that there exist 1 < ty,t5 < T
satisfying

1. M := sup; zzlgg is finite, and
2

2. The map 6 — zzlgg satisfies an inverse Lipschitz condition with constant C :
2

9t (5) _ 9t (5,)
Gt, (5) Gt, (5/) ‘

5-4§|<C

Consider the model of preference relations P parametrized by § such that

T T
x =y if and only if th(d)xt > th(é)yt.
t=1 t=1

Proposition There exists an algorithm that takes as input € > 0 and using O(log 1/¢)
membership queries outputs 6" such that |6—0"| < e, where § parametrizes the target preference
relation in P.

Proof. Fix a p > 0 and an n-cover of [0, Mp|, where 0 < n < %5. Let b, be the quantity such
that the agent is indifferent between receiving a payoff of p at time t; or receiving a payoff of
b, at time g, i.e. b, solves
9t2(9)bp = g1, (0)p-
By running a binary search over the n-cover of [p, M p|, the analyst can find an approximation
bg to the indifference point for which |b, — bﬁ] < 1 (the binary search is performed on the
parameter b}p‘ by requesting labels for pairs of the form (pey, , b}p‘eh)). The analyst then outputs
the 8" that solves gtz(éh)bﬁ = g, (M) p.
We have

9u.(8) g1, (8")
9:(0)  g1,(6")

h
be %

PP

< On
p

|6 -6 <C =C

S e,
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as desired. 5
Since M := sup; zzl E 63 is finite, b, < Mp, so the binary search over the n-cover of [0, Mp]
2

terminates. O

Remark. Outputting a hypothesis parameter 6" that is e-close to ¢ is a reasonable measure-
ment for the error of learning via membership queries since there is no underlying distribution
providing points to the analyst. However, note that for a distribution on R” x R”, a hypoth-
esis close to the target parameter implies the set of misclassified points is assigned a small
measure, due to continuity of measure.

The main feature of this algorithm is that its query complexity has no dependence on the
number of time periods T'. Both Pgp and Pyp fit the conditions of Proposition 3.6 and thus
we obtain a large improvement over the guarantees provided by disagreement methods in the
stream-based model. Such methods assume no extra knowledge about the problem domain
and are written to fit a wide class of learning problems. When we are learning economic
parameters, membership queries allow us to take advantage of the extra structure present in
preference models.
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A Properties of 1 and u*

Proof of Proposition [7.2. Let B denote the Borel o-algebra on (0,1)7~!.

Let X = R”T/ ~ endowed with the quotient topology, and ¢* : [0,1]7~! — X be the
map ¢*(r1,...,r7—1) = [[[(z — r;)]. Explicitly, the terms of ¢g*(r1,...,r7—1) are given by
symmetric sums:

g (ri,...,rr—1) = c,—cZn,canj,...,(—1)T_lcr1---TT_l ,
i i

where c is the appropriate constant for the representative of the equivalence class. Each sym-
metric sum is a continuous function of T'—1 variables, so g* is continuous. Moreover, note that
g* is injective. Then, with Y = ¢*([0,1]7~1), we have that ¢g* : [0,1]7~! — Y is a continuous
bijection from a compact set into a Hausdorff space. Hence, g* is a homeomorphism. Then g,
which is the restriction of g* to (0,1)7~! is a homeomorphism onto Z := ¢((0,1)7~!). Thus,
the o-algebra g(B) that we obtain on Z is the Borel o-algebra. O

When T' = 2, we can give an explicit description of y*. Identify R?/ ~ with the unit
circle. Then, a degree 1 polynomial P is identified with the point (cosf,sin @), where P(x) =
(cos@)z +sinf. Z := g((0,1)7~1) consists of the boundary of the unit circle for which the
argument 6 satisfies —tané € (0,1). This is satisfied precisely for 6 € (37/4,7) U (7w /4,2m).
Hence, if U is a basic open subset of {(cos#,sinf) : 6 € (3n/4,7) U (7r/4,27)}, we can write
U = {(cosf,sinf) : 01 < 0 < 02} with 01,65 both in the same segment of the unit circle and

P (U) =p™({—tanb : 01 < 0 < 02}) = |tanf; — tan fs|.

Proof of Proposition[5.3. Let h : RT x RT — RT/ ~ be the map h(z,y) = [v — y]. Let
V C h=(g((0,1)T=1)) be open. We show that

h(V) ={lz]: Iz,y) e V(z =2 —y)}

is open. Indeed, let z = z — y for (z,y) € V and choose £ small enough such that the square
with vertices {(z + e,y +¢),(x + e,y —¢),(x — e,y +€),(x — e,y — &)} is contained in V.
Then, for any A < ¢, [z+ A = [(z + A) —y] with (x + \,y) € V and [z — \] = [z — (y + V)]
with (z,y + A) € V, so in particular the open ball with radius A\ centered at [z] is contained
in h(V). O
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