A NEW UPPER BOUND FOR SEPARATING WORDS
ZACHARY CHASE

ABSTRACT. We prove that for any distinct x,y € {0,1}", there is a deterministic
finite automaton with O(nl/ 3) states that accepts x but not y. This improves
Robson’s 1989 upper bound of O(n?/%).

1. INTRODUCTION

Given a positive integer n and two distinet 0-1 strings x,y € {0,1}", let f.(x,y)
denote the smallest positive integer m such that there exists a deterministic finite
automaton with m states that accepts z but not y (of course, f,.(x,y) = f.(y,z)).
Define f(n) := max4ycfo,13» fn(®,y). The “separating words problem” is to deter-
mine the asymptotic behavior of f(n). An easy example [3] shows f(n) = Q(logn),
which is the best lower bound known to date. Goralcik and Koubek [3] in 1986
proved an upper bound of f(n) = o(n), and Robson [4] in 1989 proved an upper
bound of f(n) = O(n**1og*® n). Despite much attempt, there has been no further
improvement to the upper bound to date.

In this paper, we improve the upper bound on the separating words problem to

f(n) = O(n'3).

Theorem 1. For any distinct x,y € {0,1}", there is a deterministic finite automa-
ton with O(n'/*log” n) states that accepts x but not y.

We made no effort to optimize the (power of the) logarithmic term log” n.

2. DEFINITIONS AND NOTATION

A deterministic finite automaton (DFA) M is a 4-tuple (Q, d, ¢1, F') consisting of a
finite set @), a function 6 : @ x {0, 1} — @, an element ¢; € @, and a subset F' C Q).
We call elements g € () “states”. We call ¢; the “initial state” and the elements of
F the “accept states”. We say M accepts a string x = x1,...,x, € {0,1}" if (and
only if) the sequence defined by 1 = ¢q, 7341 = (7, x;) for 1 <i < n, hasr,;1 € F.

For a positive integer n, we write [n] for {1,...,n}. We write ~ as shorthand for
= (1 + o(1)). In our inequalities, C' and ¢ refer to (large and small, respectively)
absolute constants that sometimes change from line to line. For functions f and g,
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we say f = O(g) if | f| < Clg|log® |g| for some constant C. We say a set A C [n] is
d-separated if a,a’ € A,a # o implies |a — a’| > d. For a set A C [n], a prime p,
and a residue i € [plo :={0,...,p—1},let A;, ={a € A:a=1i (mod p)}.

For a string © = x1,..., 7, € {0,1}" and a (sub)string w = wy, ..., w; € {0,1},
let pos,(z) ={j e {l,...,n =1+ 1} : x;441 = wg for all 1 <k <[} denote the
set of all (starting) positions at which w occurs as a (contiguous) substring in z.

3. AN EASY O(n'/?) BOUND, AND MOTIVATION OF OUR ARGUMENT

In this section, we sketch an argument of an 6(n1/ 2) upper bound for the sepa-
rating words problem, and then how to generalize that argument to obtain O(n'/3).

For any two distinct strings =,y € {0,1}", the sets pos,(z) and pos,(y) are of
course different. A natural way, therefore, to try to separate different strings x,y is
to find a small prime p and a residue i € [p|y so that |pos;(x);,| # [pos; (y)i,l; if we
can find such a p and 4, then since! there will be a prime ¢ of size ¢ = O(logn) with
|posy ()i, # |pos;(v)ip| (mod q), there will be a deterministic finite automaton
with 2pg = O(plogn) states that accepts one string but not the other (see Lemma
4.1). We are thus led to the following (purely number-theoretic) problem.

Problem 3.1. For given n, determine the minimum k& such that for any distinct
A, B C [n], there is some prime p < k and some i € [p]o for which |A; | # |B;,|.

Problem 3.1 has been considered in [5], [6], and [7]? (and possibly other places)
and was essentially solved in each. We present a simple solution, also discovered in
[7].

Claim 3.2. For any distinct A, B C [n], there is some prime p = O(y/nlogn) and
some i € [plo for which |A;,| # | Bip|.

Proof. (Sketch) Fix distinct A, B C [n]. Suppose k is such that |A; ,| = |B;,| for all
primes p < k and all i € [p]o. For a prime p, let ®,(z) denote the p cyclotomic

polynomial, of degree p — 1. Then since > 7, 1A(j)62m%j =i 13(j)€2m% for
all p < k and all a € [plo, the polynomials ®,(x), for p < k, divide 3°7 | (14(j) —

15(j))2) =: f(x). Therefore, [[ o, ®,(x) divides f(z). Since A # B, f is not

identically 0 and thus must have degree at least > _,(p — 1) ~ %% Since the
degree of f is trivially at most n, we must have (1 4+ 0(1))%Ifg2k <n. O

By a standard pigeonhole argument (see Section 7), the bound O(y/n) is sharp.

A natural idea to improve this 5(\/5) bound for the separating words problem is
to consider the sets pos,(x) and pos, (y) for longer w. The length of w is actually

I'We make use of the fact that q | a — b for all primes ¢ in a set Q implies [l,coq | a—0, along
with standard estimates on [[ .o g for @ = {¢ < k : ¢ prime}.
2In the last reference, they look for an integer m < k and some i € [m]o for which |A; | # | Biml,
which is of course more economical. We decided to restrict to primes for aesthetic reasons.
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not important in terms of its “cost” to the number of states needed, just as long
as it is at most p, where we will be considering |pos,(z);,| and |pos,(y):,| (see
Lemma 4.1). One immediate benefit of considering longer w is that the sets pos,,(z)
and pos,(y) are smaller than pos,(x) and pos,(y); indeed, for example, it can be
shown without much difficulty that for any distinct =,y € {0,1}", there is some w
of length n'/3 such that pos,(z) and pos,(y) are distinct sets of size at most n??.
Thus, to get a bound of O(n'/3) on the separating words problem, it suffices to show
the following.

Problem 3.3. For any distinct A, B C [n] of sizes |A|, |B| < n%?, there is some prime
p = O(n'/3) and some i € [p]y so that |A;,| # |Bi,|.

As in the proof sketch above, this problem is equivalent to a statement about
a product of cyclotomic polynomials dividing a sparse polynomial of small degree
(see the last page of [7]). We were not able to solve Problem 3.3. However, we
make the additional observation that we can take w so that pos,(z) and pos,(y)
are well-separated sets. Indeed, if w has length 2n'/? and has no period of length
at most n'/3, then pos,(x) and pos,(y) are n'/3-separated sets. As we’ll use later,
Lemmas 1 and 2 of [4] show that such w are common enough to ensure there is a
choice with pos, (z) # pos,(y). Our main technical theorem is thus the following®.

Theorem 2. Let A, B be distinct subsets of [n] that are each n'/*-separated. Then
there is some prime p = O(n'/3) and some i € [ply so that |A;,| # |Biyl.

Although Theorem 2 is also equivalent to a question about a product of cyclotomic
polynomials dividing a certain type of polynomial, we were not able to make progress
through number theoretic arguments. Rather, we reverse the argument of Scott [6],
by noting that if there is some small m so that the m'-moments of A and B differ,
e D ,ea@™ # D opepb™, then there is some small p and some i € [p]y so that
|A; p| # |Bip| mod p (and thus |A,,| # | Bi,|).*

The benefit of considering the “moments” problem is that it is more susceptible
to complex analytic techniques. Borwein, Erdélyi, and Kos [1] use complex analytic
techniques to show that for any distinct A, B C [n], there is some m < C'y/n with
Yoaca @™ F Y e b™. One proof of theirs was to show that any polynomial p of
degree n with |p(0)| = 1 and coefficients bounded by 1 in absolute value must be at
least exp(—C'y/n) at some point close to 1. We were able to adapt this proof to find a
small(er) m such that > _,a™ # >, 5 0™ in the case that A, B are well-separated
sets, and thus prove Theorem 2.

The adaptations we make are quite significant. See Lemma 6.3 and Lemma 6.4.

3See page 4 for a more specific formulation.
4The implication just written is actually quite obvious (see the deduction of Theorem 2 from
Proposition 5.3); the implication of Scott, however, that some small p and some i € [p|op with
|Aip| # |Bip| (mod p) implies the existence of some small m with 7 ., a™ # >, 5 b™ is less
trivial, though basically just follows from the fact that 1,=; (mod p) =1 — (z — i)~ (mod p).
3



4. PROOF OF THEOREM 1

In this section, we quickly deduce Theorem 1 from our main number-theoretic
theorem which we prove in Section 5. Recall we say A C [n] is d-separated if
la — a'| > d for any distinct a,a’ € A.

Theorem 2. Let A, B be distinct subsets of [n| that are each n'/3-separated. Then
there is some prime p € [C'n/31log®n,C'n'/3log’ n] and some i € [ply so that
|A; p| # |Bip|. Here, C' >0 is an absolute constant.

Recall that, for a string x = x1,..., 2z, € {0,1}" and a (sub)string w = wy, ..., w; €
{0, 1}, we defined pos,,(z) == {j € {1,...,n—l+1} : xj 1 = wy for all 1 < k <1},

Lemma 4.1. Let m,n be positive integers, i € [m]y a residue mod m, q a prime
number, a € [qlo a residue mod q, and w € {0,1} a string of length | < m.
Then there is a determinsitic finite automaton with 2mq states that, for any string
x € {0,1}", accepts x if and only if |{j € pos,(x): 7 =1 (mod m)}| =a (mod q).

Proof. Write w = wy, ..., w;. We assume [ > 1; a minor modification to the following
yields the result for [ = 1. We interpret indices of w mod m, which we may,
since [ < m. Let the states of the DFA be Z,, x {0,1} x Z,. The initial state is
(1,0,0). If j # 4 (mod m) and € € {0,1}, set 6((4,0,s),¢) = (7 +1,0,s). If j =i
(mod m), set 6((4,0,s),w;) = (5 + 1,1,s) and 6((4,0,5),1 —wy) = (j + 1,0,s). If
J #1+l—1 (mod m),set 0((J,1,s), wj_iy1) = (j+1,1,5) and 6((4, 1, s), l—wj_;41) =
(7+1,0,s). Finally, if j =i+1—1 (mod m), set ((j,1,s),w;) = (j+1,0,s+1) and
5((j,1,8),1 —w;) = (j + 1,0,s). The set of accept states is Z,, x {0,1} x {a}. O

Theorem 1. For any distinct x,y € {0,1}", there is a deterministic finite automa-
ton with O(n'/?log” n) states that accepts x but not y.

Proof. Let xy,...,x, and y1, ..., y, be two distinct strings in {0, 1}". If 2} # y for
some k < 2n'/3, then we are done®, so we may suppose otherwise. Let k > 2n'/3 be
the first index with x), # yi. Let w' = x4 _5,1/3,1, ..., 2,—1 be a (common sub)string
of  and y of length 2n'/? —1. By Lemma 1 and Lemma 2 of [4], there is some choice
w € {w'0,w'1} for which A := pos,(z) is n'/*-separated and B := pos,,(y) is n'/>-
separated. By the choice of k, we have A # B, so Theorem 2 implies there is some
prime p € [2C'n1/31og® n, C'n'/?1log® n] and some i € [py for which |4, ,| # |Bi,|-
Since |A;,| and |B;,| are at most n, there is some prime ¢ = O(logn) for which
|A;,| # | Bip| (mod g). Since |w| = 2n'/3 < p, by Lemma 4.1 there is a deterministic
finite automaton with 2pg = O(n'/3log” n) states that accepts  but not . O

5Simply use a DFA on 2n'/3 states that accepts exactly those strings starting with z1, . . ., Top1/3.



5. PROOF OF THEOREM 2

In this section, we deduce Theorem 2 from the following complex analytic theorem,
which we prove in Section 6.

Let P, denote the collection of all polynomials p(z) = 1 — oz + > s 4 €
C[z] such that 1 < d < n'/? o € {0,1}, and |a;| < 1 for each j.

Theorem 3. There is some absolute constant C; > 0 so that for all n > 2 and all
p € Pa, it holds that max,c;y 22 1 [p(2)] > exp(—Cin'/3 log” n).

The deduction of Theorem 2 from Theorem 3 follows from first showing the poly-
nomial p(z) := Y ., 2" — > 52" cannot be divisible by a large power of z — 1.
We will use part of Lemma 5.4 of [1], stated below.

Lemma 5.1. Suppose the polynomial f(x) = Y 7 ja;a? € Cla] has |a;| < 1 for
each j. If (x — 1)* divides f(x), then Max;_ s <, |f(@)] < (n+1)(§)".

Proposition 5.2. There exists an absolute ctonstant C > 0 so that for alln > 1
and all p(x) € Py, the polynomial (x — 1)L07" 181l does not divide p(x).

Proof. Take C' > 0 large. Take p(x) € P,. Suppose for the sake of contradiction
that (z — 1)°7/*16”n divided p(z). Then, by Lemma 5.1 and Theorem 3,

(DT max ()

xe[l—%n*2/3 log® n,1

> max x
T oze[l-n—2/31) ’p< >’

—Cynl/3 1085
Z e in og n’
which is a contradiction if C' is large enough. U

We now exploit the (well-known) equivalence between common moments and a
large vanishing of the associated polynomial at = = 1.

Proposition 5.3. Let A, B be distinct subsets of [n] that are each n'/>-separated.
Then there is some non-negative integer m = O(n'/?log® n) such that Y oaen @™ F#

ZbeB b
Proof. Let f(x) = >"_j¢;a7, where ¢; := 14(j) — 15(j). Let f(z) =L where r is

maximal with respect to €y, ..., 6,1 = 0. We may assume without los:éC of generality
that f(0) = 1. Then the fact that A, B are n'/*-separated implies f(z) € P,. By
Proposition 5.2, (z — 1)¢m"*16”n does not divide f(z) and thus does not divide
f(z). This means that there is some non-negative integer k < Cn'?log’n — 1 so
that f(*)(1) # 0. Take a minimal such k. If k = 0, we're of course done. Otherwise,
since f™ (1) =37 (7(j—1)...(j —m+1)e; for m > 1, it’s easy to inductively see
that > ., J™ =2 ;cpi™ forall 0 <m <k —1 and then ZjeAj’“ + Zjijk. O
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We can now deduce Theorem 2.

Theorem 2. Let A, B be distinct subsets of [n] that are each n'/3-separated. Then
there is some prime p € [$C'n'/?1log®n,C'n'/3log’ n] and some i € [p]o so that
|A; p| # |Bip|. Here, C" >0 is an absolute constant.
Proof. By Proposition 5.3, take m = O(n'/®log’ n) such that >, a™ # >, 5 0™
Since | cqa™ — Y pepb™| < nn™ < exp(O(n'/3log®n)), there is some prime
€ [LC'n'1og® n, C'n'/?1log® n] such that >, ,a™ # >, pb™ (mod p). Noting
that Y., a™ = 3P |4;,[i™ (mod p) and Y-, 5 b™ = 307 |Bi,[i™ (mod p), we
see that there is some i € [p|y for which |A;,| # |B;,| (mod p). O

6. PROOF OF THEOREM 3

In this section, we finish off the proof of Theorem 1 by proving the needed theorem
about sparse Littlewood polynomials being “large” somewhere near 1.

Recall that P,, denotes the collection of all polynomials p(x) = l—aatd—i—Z?:nl /3 Q17
in C[z] such that 1 < d < n'/3 o € {0,1}, and |a,| < 1 for each j.

Theorem 3. There is some absolute constant C; > 0 so that for all n > 2 and all
p € P, it holds that max,c, -2 1) |p(x)] > exp(—Cin'/?log’ n).

For a > 0, define E, to be the ellipse with foci at 1 —a and 1 — a + ia and with

major axis [1 —a — 35,1 —a+ 3%]. We borrow® Corollary 5.3 from [1]:

Lemma 6.1. For everyn > 1, p € P,, and a > 0, we have (maxzegu |p(z)])2 <
300 MAXee(1—0,1) [P(2)].

By Lemma 6.1, in order to prove Theorem 3 it suffices to show:

Proposition 6.2. There is an absolute constant C' > 0 so that for every n > 1 and

2
every p € Py, it holds that (maXZEE Cass |p(z)|> > exp(—Cn'/3log’ n).

While [1] certainly uses that E, is an ellipse, all we will use is about E, (besides
using Lemma 6.1 as a black box) is that the interior of E,, denoted E° contains a
ball of radius 13 centered at 1 —a. We begin with two lemmas

In the proof of Theorem 5.1 of [1], the authors use the function h(z) = (1 —

a)# for a maximum modulus principle argument to lower bound the quantity

(max, g, |P(Z)|)2. For z = e*™ for small ¢, the magnitude |h(e*™)| is quadratically

in ¢ less than 1. For our purposes, we need a linear deviation of |h(e?™)| from 1.
This motivates the following lemma.

6They state Lemma 6.1 for p € S, where they define S to be the set of all analytic functions f
on the (open) unit disk such that |f(z)| < = ‘  for each z € D. It is clear P, C S for each n.
6



Lemma 6.3. There are absolute constants cy,c5,Cs > 0 such that the following
holds for a >0 small enough. Let h(z) =37_, d;z7 for
Ag

" 7 log(j+3)
and r = a~', where A\, € (1,2) is such that 37 d; = 1. Let h(z) = (1 — a)h(z).
Then h(0) = 0, |h(e*™)| <1 —a for each t, h(e*™) € ES fort € [—caa, csal, and
i t
|h(e*™)] <1 — cslmg2|(+1)
forte[-1 3 2] \ [-Csa, Csal.

Proof. Clearly h(0) = 0 and |h(e*)| < 1 — a for each t. Now, for any ¢ € R,

Z d;(e*™ —1)| < Z d;2mtj = 2t Z < Oyt

< J log J+3)
for C'y absolute. Thus,
|h(e¥™) — (1 — a)| = (1 — a)|h(e*™) — 1] < Cyt.
If || < csa for ¢4 > 0 sufficiently small, we conclude h(e?) € E°.

’h 27rzt

We now go on to showing the last inequality in the statement of Lemma 6.3.

By summation by parts, for any z € C, we have

r

(1) Z i B Aa Z;:1 2 Lo, /T (ngx 27) (log(a: +3) + q;_+3) de.

= j2log?(j+3)  r2log(r +3) 23 log®(x + 3)

Quickly note that, for z =1, (1) gives

A\, x| (log(z +3) + 2=
rlog®(r + 3) 1 x3log”(x + 3)
Trivially, for any z € dD, we have
(3) o 2 i
r2log*(r +3)| ~ rlog*(r +3)
Note that, for any x > 1,
1 — zlo

4 = <t !
(4) 2.7 1—2z | 1—2 =

1<z

for all z = e*™ with t € (0, 3]. Take Cs > 3 to be chosen later. Note ¢ € (Cea, 5]
implies 3t~! < r. For z = ™ with Csa < t < 3, (4) and (2) imply

r (ngm 27) (1og(:v +3)+ x—+3)
2% /1 23 log®(x + 3)
7

dx

<




370 2] (log(x + 3) + =% m 7! (log(z + 3) + =%
1 3

3 logg(x +3) 1 3 log3(x +3)
r (lx] =t - (log(z + 3) + %=
o =i [ (oste + )+ 59) A
341 x3log”(z + 3) rlog”(r + 3)
Observe |z] — ¢! > fx for > 3t~'. Therefore,
(x| —t7Y) - (log(z + 3) + == r 1
%/ (L) —¢7) (3g( ) Hg)dIZAa/ N
31 x3log”(z + 3) 31 22 1log”(z + 3)

Aa "o
Z / —dz
log“(r +3) Jy—1 @
Aot Aa
Q D VU
3log®(r +3) rlog”(r+ 3)
Combining (1), (3), (5), and (6), we conclude that, for any ¢ € (Csa, 1],

A, e2miit At A,
Z'212'z),§1_:a12 3 rlo(r 1 3)
— j*log’(j +3) og”(r+3)  rlog*(r+3)

M |ae)| =

Taking Cg to be much larger than 3, (7) gives the bound
t

il 2mit < 1 _
| (6 )| — 0510g2<a_1)

for t € (Csa, %], for suitable c; > 0. By symmetry, the proof is complete. 0

We from now on fix some n > 1 and some p € P,, (defined at the beginning of the
section). Let j be the truncation of p to terms of degree less than n'/?; either p = 1
or p=1—z%for some 1 < d < n'/3. Take a = n~%/3, and let h be as in Lemma 6.3.

Let m = ¢;'n?3. Let J; = c5 'n""*mlog' n and J, = m — J,.
In the proof below of Proposition 6.2, we will need to upper bound the product
177" 15(h(e2™))| by exp(O(n*/3)). We must be careful in doing so, as the trivial

J=J1
2/3 terms. However,

upper bound on each term is 2 and there are approximately n
we expect the argument of h(e*™w) to behave as if it were random, and thus we
expect |p(h(e*™))| to sometimes be smaller than 1. The fact that the cancellation
between terms smaller than 1 and terms greater than 1 is nearly perfect comes from

the fact that log|p(h(w))| is harmonic, which we make crucial use of below.

Lemma 6.4. For any t € [0,1], we have [p(h(e*™™))| > tn=2/3. For any § € [0,1),
we have Hfz}i IB(h(eX™*50))| < exp(Cn'/3log® n) for some absolute C' > 0.



Proof. Clearly both inequalities hold if p = 1, so suppose p(z) = 1 — z? for some
1 < d < n'/3. For the first inequality, we use

_ . . 1 1
[B(A(e™))] = 1 = h(e™)] > 1= [P(e*™)|* > 1= (1 = a)* > Jad > Sn =%,

\)

We now move on to the second inequality. Define g(t) = 2log |p(h(62’”'(t+%)))|.
For notational ease, we assume 6 = 0; the argument about to come works for all
§ € [0,1). The first inequality implies g is C', so by the mean value theorem,

Jo—1 . Jo/m =1 L(j+1)/m .
1 J J
—> g (—) - / g(tydt| = > / (g(t) —g (—)) dt
m “ m I/m — Jiim m
Jj=h 7=

Jo—1

- (G+1)/m ) 1
< _
< Z/jm e ')l | —dt

Jj=Jh

1 Jo—1

< = /
(8) S 2, e, 19'(y)]-
Jj=Jy m=7=

Since w +— log [p(h(w))| is harmonic and log |p(h(0))| = log|p(0)| = 0, we have

[ ot =2 " log [5(A(e™)dt = 0,

J2/m J1/m 1
/ g(t)dt| < / g(t)dt| + / g(t)dt‘.
Ji/m 0 J2/m

1 .
§n—2/3 < ’ﬁ(h(e%n)ﬂ <1

for each t, we have
Ji/m ! J Jo log® n
t)dt Hdt] <2 2+ (1 —2)) logn < C——.

/0 g(t)dt| + fjg/mg() '_ (m ( m)) ogn 7

By (8), (9), and (10), we have

and therefore

(9)

Since

(10)

12 log®n 1 2=
- < — ()]
mj;f’(m) O T e 20 19/(t)]

Multiplying through by m, changing C' slightly, and exponentiating, we obtain

Jo—1 » 9 1 Jo—1
an I ga(h(ei'm#))\ <exp | CnPlog’n+ — max |g'(8)] | .
Jj=J1 mj J1 7<t<7+1



Note

We first show

for each ty € [0,1]. We start by noting

Let

Then,

AU = (L= a)d |32 dye
j=1

s =

alipten)e]|

[p(h(e?mt0))?

g'(to) =

Since > 7, d; = 1, we therefore have

Now, let

and note

A =5

[_2(1 —a) > djy . dj, cos(2mt(ji + - + ja)

a ~ T 1
57 P )P]| _, < 100d
2\ ¢ . d
(1-— a)? Z d; e2miti —2Re ((1 —a) Z djezmj)
=1
d
fi(t) = (1 —a)? Z d; 627”“
N ) )
g Zdj627ritj
ot g
) o\ d-1
1 —a)*d Zdje%”j Z dj,d;,2mi(j1 — jo)e*milin—a2t,
= 1<_71 ]2<7‘
Aol <2md Y X TRRL

“j25310g”(j1 + 3) log”(j2 + 3)

1<j1,j2<r

r /\a . )\“
it (3 ) (3 et )

< 50d.

J1=1

fa(t) = —2Re ((1 — a) Zdj€27ritj>

1<j1,ega<r

=dr(l—a)" Y dj..di, (e a) sin@at( 4+ da)),

1<g1,-,Ja<r
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yielding

it +Ja
) <dm Y Ao— : :
2 1Sj17-~~7jd§7' j]?jg 10g2<]1 +3)10g2(]d+3>

d—1
r )\a r )\a
= 4nd - e
(Z Jilog2i + 3)) (Z Plog?(j + 3))

Ji1=1

< 50d.

We have thus shown

9 (1Bt

< 100d

t=to

for each to € [0, 1].

Recall A ' '
B(h(e¥™))| = |1 — h(e™)?| > 1 — |h(e™)|".

For j € [Jy, Jo] C [Ceam, (1 — Cga)m], we use

W min 1-—
(e < 1 g i = )
log®n
to obtain
| Pl / 1 ! 100d
E ; ma}j(ﬂ |g (t)| < E min(L,1-L).d 2"
J=J1 i A j=J1 <1 — (1 — C5W) >

Up to a factor of 2, we may deal only with j € [Ji,%]. Let J, = 05_1d*1m10g2 n.
~>d~'. Thus,

Note that 7 < J, implies c5 1 — < d=' and j > J, implies c; 1

using (1 —2)¢4 <1 — %xd for x § =, we have

min(Jx, g )

in(J:,3)
1 100d 100d Z 1

moT7 (1 —(1 —c5m10;g -) >

400m log* n i 1
- 24 Z 2
5

400mlog*n 2
- C%d Jl
(12) < Cn'/3.
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Finally, since there is some ¢ > 0 such that (1 — z)! < 1 —c for all | € N and
z € [I7,1], using the notation 320_ z; = 0 if a > b, we see

m/2 m/2

1 100d 100d
S LS
m j d m
g=min(J.,5)+1 <1 - (1= C5mgn) ) j=min(J., 2)+1
<Cd
(13) < Cn'/3.
Combining (12) and (13), we obtain
1 Jo—1
- / 1/3
— 2 max [g'()] < Cn'/"
j:Jl m—= m
Plugging this upper bound into (11) yields the desired result. O

Proof of Proposition 6.2. Define g(z) = H;.':Ol p(h(ezm%z)). Fix z € dD; say z =
2™+ for some jo € {0,...,m — 1} and § € [0, 2). For ease of notation, we

assume jo = 0; the argument about to come is to any jo. Then, 2™ 2 is in
{e*™ . —cpa <t < cqa} if j € {0,m — 1}. Therefore, Lemma 6.4 followed by the
maximum modulus principle (p is analytic) imply

|g<z>|s(ma~x|p<w>|> [T  Ip(he2))

(e}
wek jg{0,m—1}

(14) < (m |p<w>|) T Ie(h(ei2).

€E, .
v j¢{0,m—1}

Let I = [Jy, Jo —1]NZ. For j & I, using the bound |p(w)| < 1_1‘10‘ for each w € ID,
we see

- 1 1 )
p(h(e*™m2))| < —— < =n??,
Ip({ | 1—|h(emz) ~ 1—(1—a)

thereby obtaining
(15)
27”% 2/3\(J1—1)+(m—J2+1) 2/3\Cn'/3 log*n Ccnl/3log®n
[p(h(e™™ 7 2))] < (n*”) < (n*?) <e :
FEI0{0,m—1}
Now, for j € I, since
min (L +6,1— (L +6))

[h(e* 5 2)] < 1= s .
log”n

<1—cn"Y31og?n,

we have _ |
) A o )
)p<h(€2miz)> —]5<h<62m%2)>‘ < ne© log® n < e—clog n
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Therefore,

(16) [T ipte 2] < TT (It 2))] + e

jel jel

By both parts of Lemma 6.4, we obtain

H <’ﬁ(h(62m#2)>’ + e—c10g2 n) _ Z H ‘p 27rz )| B_C(lOg2 n)|I'|

Jjel I'cl \jel\I'
—1
— Z H |ﬁ(h(e2” H |p 27rzmz e—c(log2 n)|I'|
I'cr \jer jer
1/3 5 A 2 ’
< 6C’n log® n E (2n2/3)\1 ‘6 c(log®n)|I'|
I'Crl
1/3 5 A 2 /
< eCn log® n E e < (log®n)|I’|
I'cl
1/3 1455 . 2
S eCn log n§ e cklog®n
k
k=0
1/3 5
(17) < 2€C’n /3 log n

Combining (14), (15), (16), and (17), we've shown

2
M@Nstﬂmaoe““@%.

z€E,

As this holds for all z € 0D, we have

2
mmmns@mwm)£WmW

68]]) ZeEa
To finish, note that |g(0)] = [p(h(0))|™ = |p(0)|™ = 1, so, as g is clearly analytic,
the maximum modulus principle implies max,cgp |g(2)| > O

7. TIGHTNESS OF OUR METHODS

In this section, we prove the following, showing that our methods cannot be
pushed further in some sense. We denote {0,1}=7 := U}_ {0, 1}/.

Proposition 7.1. For all n large, there are distinct strings x,y € {0,1}" such that
forallp < 1—10711/3, i € [plo, and w € {0,1}=P, it holds that |pos,,(x);,| = [pos, (¥)ip|-

We begin by showing Theorem 2 is tight, via a standard pigeonhole argument
that has been used in a variety of other papers.

Proposition 7.2. For all n large, there are distinct n'/?-separated subsets A, B of
[n] such that |A;p| = |Bip| for all p < en'/®log!*n and all i € [plo.

13



Proof. Let ¥ denote the collection of subsets A C [n] that have at most one
number from each of the intervals [1,n'/3], [2n'/3 3n/3] [4n'/3 5n'/3],.... Note
%] > (n!/3)3n** = ¢an**lesn  On the other hand, for any A C [n], the number of

2
possible tuples (|A4;,]) p<x is at most [, n? < elst 5" Taking k = en'/3 log/2n
i€[plo -

yields ; f;k logn < in*?logn, meaning there are distinct A, B € ¥ with the same
tuple, i.e. |A;,| = |Bi,| for all p < k and i € [ply. As A, B are n'/3-separated, the
proof is complete. 0

Proof of Proposition 7.1. For a large n, let A, B C [n/2] be the sets guaranteed
by Proposition 7.2. Let x = (14(j — §))j=1,v = (1(J — §))j=1 € {0,1}" be
the strings with 1s at indices in A and B then padded at the beginning and end
by 0s. Fix p < %nl/:s and ¢ € [plp. Since A, B are lionl/?’-separated, we have
Ipos,, ()ip| = [P0S,(y)ip| = 0 for all w € {0,1}=P with at least two 1s. Since

posg () = [n — 1 + 1]\ U'Zhposgs gi-1-s (2),
it suffices to show |pos, ()i, = |pos, (y)i,| for all w € {0,1}=P with exactly one
1. Fix such a w; say w = 010717 for some [ < p and s € {0,...,1 — 1}. Then,
due to the padding preventing boundary issues, pos,(z) = {j : zj4s = 1} = {j :
la(j+s—%) =1} = A—s+ 7 and thus |pos,(2)ip| = [Aiys—n,|. Similarly,
P08, (1)ipl = |Biys—z p|. Since p < ¢(n/2)"/? log'/%(n/2), the proof is complete. [
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