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Abstract: We prove that any graph on n vertices with max degree d has at most q
(d+1

3

)
+
(r

3

)
triangles, where n = q(d+1)+r, 0≤ r≤ d. This resolves a conjecture of Gan-Loh-Sudakov.

1 Introduction

Fix positive integers d and n with d + 1 ≤ n ≤ 2d + 1. Galvin [7] conjectured that the maximum
number of cliques in an n-vertex graph with maximum degree d comes from a disjoint union Kd+1tKr

of a clique on d +1 vertices and a clique on r := n−d−1 vertices. Cutler and Radcliffe [4] proved this
conjecture. Engbers and Galvin [6] then conjectured that, for any fixed t ≥ 3, the same graph Kd+1tKr

maximizes the number of cliques of size t, over all (d +1+ r)-vertex graphs with maximum degree d.
Engbers and Galvin [6]; Alexander, Cutler, and Mink [1]; Law and McDiarmid [11]; and Alexander
and Mink [2] all made progress on this conjecture before Gan, Loh, and Sudakov [9] resolved it in the
affirmative. Gan, Loh, and Sudakov then extended the conjecture to arbitrary n≥ 1 (for any d).

Conjecture (Gan-Loh-Sudakov Conjecture). Any graph on n vertices with maximum degree d has at
most q

(d+1
3

)
+
(r

3

)
triangles, where n = q(d +1)+ r, 0≤ r ≤ d.

They showed their conjecture implies that, for any fixed t ≥ 4, any max-degree d graph on n =
q(d +1)+ r vertices has at most q

(d+1
t

)
+
(r

t

)
cliques of size t. In other words, considering triangles is

enough to resolve the general problem of cliques of any fixed size.
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The Gan-Loh-Sudakov conjecture (GLS conjecture) has attracted substantial attention. Cutler and
Radcliffe [5] proved the conjecture for d ≤ 6 and showed that a minimal counterexample, in terms of
number of vertices, must have q = O(d). Gan [8] proved the conjecture if d +1− 9

4096 d ≤ r ≤ d (there
are some errors in his proof, but they can be mended). Using fourier analysis, the author [3] proved the
conjecture for Cayley graphs with q ≥ 7. Kirsch and Radcliffe [10] investigated a variant of the GLS
conjecture in which the number of edges is fixed instead of the number of vertices (with still a maximum
degree condition).

In this paper, we fully resolve the Gan-Loh-Sudakov conjecture.

Theorem 1. For any positive integers n,d ≥ 1, any graph on n vertices with maximum degree d has at
most q

(d+1
3

)
+
(r

3

)
triangles, where n = q(d +1)+ r, 0≤ r ≤ d.

Analyzing the proof shows that qKd+1tKr is the unique extremal graph if r ≥ 3, and that qKd+1tH,
for any H on r vertices, are the extremal graphs if 0≤ r ≤ 2.

The heart of the proof is the following Lemma, of independent interest, which says that, in any graph,
we can find a closed neighborhood whose removal from the graph removes few triangles. Theorem 1 will
follow from its repeated application.

Lemma 1. In any graph G, there is a vertex v whose closed neighborhood meets at most
(d(v)+1

3

)
triangles.

As mentioned above, Theorem 1, together with the work of Gan, Loh, and Sudakov [9], yields the
general result, for cliques of any fixed size.

Theorem 2. Fix t ≥ 3. For any positive integers n,d ≥ 1, any graph on n vertices with maximum degree
d has at most q

(d+1
t

)
+
(r

t

)
cliques of size t, where n = q(d +1)+ r, 0≤ r ≤ d.

Theorem 2 gives another proof of (the generalization of) Galvin’s conjecture (to n≥ 2d +2) that a
disjoint union of cliques maximizes the total number of cliques in a graph with prescribed number of
vertices and maximum degree.

Finally, the author would like to point out a connection to a related problem, that of determining
the minimum number of triangles that a graph of fixed number of vertices n and prescribed minimum
degree δ can have. The connection stems from a relation, observed in [2] and [9], between the number of
triangles in a graph and the number of triangles in its complement:

|T (G)|+ |T (Gc)|=
(

n
3

)
− 1

2 ∑
v

d(v)[n−1−d(v)].

Lo [12] resolved this “dual" problem when δ ≤ 4n
5 . His results resolve the GLS conjecture for regular

graphs for q = 2,3, and the GLS conjecture implies his results, up to an additive factor of O(δ 2), for
q = 2,3, and yields an extension of his results for q≥ 4 — these are the optimal results asymptotically, in
the natural regime of δ

n fixed, and n→ ∞.
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2 Notation

Denote by E the edge set of G; for two vertices u,v, we write “uv ∈ E" if there is an edge between u
and v and “uv 6∈ E" otherwise — in particular, for any u, uu 6∈ E. For a vertex v, let |TN[v]| denote the
number of triangles with at least one vertex in the closed neighborhood N[v] := {u : uv ∈ E}∪{v}, and
let |T (G−N[v])| denote the number of triangles with all vertices in the graph G−N[v] (the subgraph
induced by the vertices not in N[v]). Finally, d(v) denotes the degree of v.

3 Proof of Theorem 1

For a graph G, let W (G) = {(x,u,v,w) : ux,vx,wx ∈ E,uv,uw,vw 6∈ E}.

Lemma 2. For any graph G, 6∑v |TN[v]|+ |W (G)|= ∑v d(v)3.

Proof. Let Ω= {(z,u,v,w) : uv,uw,vw∈E and [zu∈E or zv∈E or zw∈E]}, Σ= {(x,u,v,w) : ux,vx,wx∈
E}, and W = W (G). Note that repeated vertices in the 4-tuples are allowed. First observe that, since
there are 6 ways to order the vertices of a triangle, ∑v 6|TN[v]|= |Ω|. Any 4-tuple in Σ,W, or Ω gives rise
to one of the induced subgraphs shown below, since one vertex must be adjacent to all the others.

A B C D F H I

Since |Σ| = ∑v d(v)3, it thus suffices to show that for each of the induced subgraphs above, the
number of times it comes from a 4-tuple in Σ is the sum of the number of times it comes from 4-tuples
in Ω and W . Any fixed copy of A, say on vertices u and v, comes 0 times from a 4-tuple in Ω (since
it has no triangles), and 2 times from each of W and Σ ((u,v,v,v),(v,u,u,u)). Any fixed copy of B,
say on vertices u,v,w with vu,vw ∈ E, comes 0 times from Ω, and 6 times from each of W and Σ

((v,u,u,w),(v,u,w,u),(v,u,w,w),(v,w,u,u),(v,w,u,w),(v,w,w,u)). Any fixed copy of C comes 18 times
from each of Ω and Σ (3 choices for the first vertex and then 6 for the ordered triangle), and 0 times from
W . Similarly, any fixed copy of D comes 6 times from each of W and Σ, and 0 times from Ω; finally,
F,H, I come 6,12,24 times, respectively, from each of Ω and Σ, and 0 times from W .

We now prove our key lemma, previously mentioned in the introduction.

Lemma 1. In any graph G, there is a vertex v whose closed neighborhood meets at most
(d(v)+1

3

)
triangles,

i.e. |TN[v]| ≤
(d(v)+1

3

)
.

Proof. By Lemma 2, since |W (G)| ≥ |{(x,u,u,u) : ux∈ E}|=∑x d(x), we have ∑v |TN[v]| ≤∑v
1
6 [d(v)

3−
d(v)]. By the pigeonhole principle, there is some v with

|TN[v]| ≤
1
6
[d(v)3−d(v)] =

(
d(v)+1

3

)
.
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Lemma 3. For any positive integers a≥ b≥ 1, it holds that
(a

3

)
+
(b

3

)
≤
(a+1

3

)
+
(b−1

3

)
. Consequently, for

any positive integers a,b and any positive integer c with max(a,b)≤ c≤ a+b, it holds that
(a

3

)
+
(b

3

)
≤(c

3

)
+
(a+b−c

3

)
.

Proof.
(a+1

3

)
−
(a

3

)
=
(a

2

)
, and

(b
3

)
−
(b−1

3

)
=
(b−1

2

)
. Iterate to get the consequence.

We now finish the proof of Theorem 1.

Proof of Theorem 1. With a fixed d, we induct on n. For n = 1, the result is obvious. Take some
n≥ 2, and suppose the theorem holds for all smaller values of n. Let G be a max-degree d graph on n
vertices. By Lemma 1, we may take v with |TN[v]| ≤

(d(v)+1
3

)
. Write n = q(d +1)+ r for 0≤ r ≤ d. Note

|T (G)|= |T (G−N[v])|+ |TN[v]|. Since G−N[v] has maximum degree (at most) d, if d(v)+1≤ r, then
induction and Lemma 3 give

|T (G)| ≤ q
(

d +1
3

)
+

(
r− (d(v)+1)

3

)
+

(
d(v)+1

3

)
≤ q

(
d +1

3

)
+

(
r
3

)
,

and if d(v)+1 > r, then induction and Lemma 3 give

|T (G)| ≤ (q−1)
(

d +1
3

)
+

(
d +1+ r− (d(v)+1)

3

)
+

(
d(v)+1

3

)
≤ q

(
d +1

3

)
+

(
r
3

)
.

The maximum degree condition ensured d +1+ r− (d(v)+1)≥ 0 and d(v)+1≤ d +1.
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