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Abstract: Wedevelop anewapproach andemploy it to establish theglobal existence and
nonlinear structural stability of attached weak transonic shocks in steady potential flow
past three-dimensional wedges; in particular, the restriction that the perturbations are
away from the wedge edge in the previous results is removed. One of the key ingredients
is to identify a good direction of the boundary operator of a boundary condition of the
shock along the wedge edge, based on the non-obliqueness of the boundary condition
for the weak shock on the edge. With the identification of this direction, an additional
boundary condition on the wedge edge can be assigned to make sure that the shock
is attached on the edge and linearly stable under small perturbations. Based on the
linear stability, we introduce an iteration scheme and prove that there exists a unique
fixed point of the iteration scheme, which leads to the global existence and nonlinear
structural stability of the attached weak transonic shock. This approach is based on
neither the hodograph transformation nor the spectrum analysis, and should be useful
for other problems with similar difficulties.

1. Introduction

We are concerned with the stability of attached transonic shocks in steady flow past
three-dimensional wedges with non-flat surfaces. This is a longstanding problem at least
dating back to Prandtl [34] in 1936, in which it was first conjectured that the weak shock
solution is stable. In this paper, we develop a new approach and employ it to establish
the global existence and nonlinear structural stability of attached weak transonic shocks
in steady flow past three-dimensional wedges with non-flat surfaces, governed by the
three-dimensional Euler equations for potential flow. The perturbations of the wedge
and the incoming flow are allowed up to the wedge edge, which removes the assumption
in [6] that the perturbations are away from the wedge edge.

As indicated in [21], when a uniform supersonic flow passes a symmetric wedge
with flat surface whose (half) wedge-angle is less than the critical angle, an attached
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plane shock is expected to be generated. There are two solutions satisfying the physical
entropy condition. The solution with smaller density of the constant downstream flow
is called a weak shock solution, while the other is called a strong shock solution. The
downstream state of the strong shock solution is always subsonic, but the downstream
state of the weak shock solution can be either subsonic or supersonic, depending on the
wedge-angle. Thus, a natural question is which one, or both, could be actually physical.
There has been a long debate about whether the strong shock or the weak shock, or both,
would be stable starting 1930s (see Prandtl [34], Courant-Friedrichs [21, Section 123],
and von Neumann [38]; also see [33,37]); this is partly because it is a basic principle in
physics that a physical shock solution should be stable under small perturbations in an
appropriate sense. Therefore, it is important to study the stability or instability of such
plane shock solutions to single out the physical ones.

Some satisfactory results for the two-dimensional case have been obtained. In partic-
ular, the existence, uniqueness, stability, and asymptotic behavior of solutions under a
small perturbation for both the strong and weak shocks have been established. We refer
the reader to [4,5,11–16,24,25,28,36,40–42] for more details; also see Chen-Feldman
[8]. On the other hand, the three-dimensional case is completely different. For the po-
tential flow, Li-Xu-Yin [30] showed that the three-dimensional attached strong shock
past a sharp wedge is not stable with respect to a periodic perturbation, while Chen-Fang
[6] proved that the three-dimensional weak shock is stable if the perturbations are away
from the wedge edge.

In this paper, we remove the restriction in [6] and prove that the three-dimensional
weak shock is stable even if both perturbations of the wedge edge and the incoming
flow up to the wedge edge are allowed. This provides an answer to the issue that has
been debated since Courant-Friedrichs [21] and von Neumann [38] for the stability of
the attached transonic shock governed by the potential flow equation.

To achieve this, we first formulate the shock problem as a free boundary problem and
then develop a different approach to handle the free boundary problem from the ones
used in [6,30] by identifying a good direction of the boundary operator of a boundary
condition on the shock along the wedge edge, based on the non-obliqueness of the
boundary condition for the weak shock on the edge. The identification of this good
direction allows us to assign an additional boundary condition on the wedge edge to
make sure that the shock is attached on the edge under the small perturbations. Based
on this observation, we design a barrier function of the solutions near the wedge edge,
which allows us to show the C1,α–regularity of solutions near the edge. Then we can
establish the linear stability by constructing a solution of the linearized problem via
cutting off the wedge edge and passing to the limit. Based on the linear stability, we
adapt an iteration scheme and prove that there exists a unique fixed point of the iteration
scheme, which leads to the global existence and nonlinear structural stability of the
attached weak transonic shock. This approach is based on neither the partial hodograph
transformation nor the spectrum analysis, and should be useful for other problems with
similar difficulties.

There are other related references on various free boundaries for the Euler equations,
such as [1–3,7–9,17,23] for the global self-similar shock solutions past wedges and
[10,18–20,29,35,39] for the Euler flows without shocks of strong strength.

The rest of the paper is organized as follows: In Sect. 2, we formulate the shock
problem as a free boundary problem (Problem 2.1) and then state the main theorem
of the paper (Theorem 2.1). In Sect. 3, we reformulate the free boundary problem into
a nonlinear fixed boundary problem by introducing the coordinate transformation and
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then introduce the iteration scheme in the new coordinates. In Sect. 4, we show that the
iteration scheme is well-defined by proving that the linearized problem introduced in
Sect. 3 can be uniquely solved. Finally, we establish the main theorem (Theorem 2.1) in
Sect. 5 by applying the Banach fixed-point theorem.

2. Mathematical Formulation and Main Theorem – Theorem 2.1

In this section, we formulate the shock problem as a free boundary problem and then
state the main theorem of this paper, Theorem 2.1.

2.1. Wedge surfaces and the Euler equations for potential flow. Define the wedge
surface by

W = {
x ∈ R

3 : (x1, x3) ∈ De1, x2 = w(x1, x3)
}
, (2.1)

where

De1 = {
(x1, x3) ∈ R

2 : x1 > e1(x3)
}
. (2.2)

Set

e2(x3) = w(e1(x3), x3).

Then

E = {
x = (x1, x2, x3) ∈ R

3 : x1 = e1(x3), x2 = e2(x3), x3 ∈ R
}

(2.3)

is the wedge edge.
In this paper, we focus on the compressible flows past over the wedge surface W

governed by the Euler equations for potential flow:

div
(
ρ(|Dϕ|2)Dϕ

) = 0, x ∈ R
3, (2.4)

where ϕ = ϕ(x) is the velocity potential so that u = Dϕ, q = |Dϕ| = |u| is the speed,
and ρ is the density with

ρ(q2) = (
1 − γ − 1

2
q2

) 1
γ−1 (2.5)

by scaling from the Bernoulli law for polytropic gases with adiabatic exponent γ > 1,
and the gradient D := (∂x1, ∂x2 , ∂x3).

The sonic speed is

c(q2) = (
1 − γ − 1

2
q2

) 1
2 .

The flow is called supersonic if

|Dϕ| > c(|Dϕ|2) (2.6)

and called subsonic if

|Dϕ| < c(|Dϕ|2). (2.7)
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By the definition of ρ in (2.5), supersonicity (2.6) is equivalent to

|Dϕ| > c∗,

and subsonicity (2.7) is equivalent to

|Dϕ| < c∗,

where c∗ = 1√
γ+1

.
Moreover, the potential flow Eq. (2.4) can be written in the following non-divergence

form:

3∑

i, j=1

ai j (Dϕ)∂xi x j ϕ = 0, (2.8)

where

ai j (Dϕ) = c2(|Dϕ|2)δi j − ∂xi ϕ∂x j ϕ (2.9)

and δi j = 1 if i = j and 0 if i �= j .

2.2. Shock solutions. Let S be a C1–surface separating an open domain Ω into Ω−
and Ω+. Let ϕ be both a C1–function in each subdomain of Ω± and a weak solution in
W 1,∞(Ω) of (2.4) in the distributional sense in Ω . Denote

ϕ+ := ϕ|Ω+ , ϕ− := ϕ|
Ω− .

Then ϕ+ and ϕ− are classic solutions of (2.4) in Ω+ and Ω−, respectively. We can see
from integration by parts that ϕ must satisfy the following Rankine-Hugoniot conditions
on S:

ϕ+ = ϕ−, (2.10)
[
ρ(|Dϕ|2)Dϕ

] · ν = 0, (2.11)

where ν is the unit normal on S, and the bracket of a function denotes the difference
between the limiting values (i.e., traces) of the function from both sides on S. Differen-
tiating (2.10) along the tangential direction τ on S leads to

Dϕ+ · τ = Dϕ− · τ on S. (2.12)

Therefore,

[Dϕ] is parallel to the normal ν on S. (2.13)

Furthermore, surface S is called a shock provided that ϕ satisfies the additional
physical entropy condition on S:

ρ(
∣∣Dϕ−∣∣2) < ρ(

∣∣Dϕ+
∣∣2), (2.14)

if the flow direction is from Ω− to Ω+. In this case, the corresponding piecewise C1–
function ϕ is called a shock solution in Ω; also see [8,21,22].
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Set

H(u, v) := (
ρ(|u|2)u − ρ(|v|2)v) · (u − v) for u, v ∈ R

3. (2.15)

It is direct to see that, by (2.13), condition (2.11) is equivalent to

H(Dϕ−, Dϕ+) = 0 on S. (2.16)

To study the stability of the attached planar shock, we regard the planar shock as a
background solution.

Definition 2.1. (Background Solutions). A piecewise constant function ϕ defined in Ω

is called a background solution if ϕ satisfies the following conditions:

(i) The plane shock S divides Ω into Ω− and Ω+;
(ii) In both subdomains Ω− and Ω+, Dϕ− and Dϕ+ are constant vectors respectively;
(iii) ϕ− is supersonic and ϕ+ is subsonic;
(iv) ϕ− and ϕ+ satisfy the Rankine-Hugoniot conditions (2.10)–(2.11) and the entropy

condition (2.14).

In this paper, we are concerned with the stability of the weak transonic shock back-
ground solution generated by a constant supersonic flow onto a flat wedge with (half)
wedge-angle θw. It is direct from conditions (2.12)–(2.16) to find a piecewise constant
transonic flow in the following way: Define

Dϕ− := U− = (u−
1 , u−

2 , u−
3 ), Dϕ+ := U+ = (u+1, u

+
2 , u

+
3).

The three-dimensional space for the phase states (u1, u2, u3) is our phase space. Let

U−
0 = (q0, 0, 0), q0 > c∗.

Let θi be the angle between U
−
0 and the wedge edge. In the x–coordinate system, if the

flat wedge is symmetric with respect to the (x1, x3)–plane and the wedge edge passes
the origin, then the plane wedge function is

w(x1, x3) = (x1 sin θi − x3 cos θi) tan θw defined on {x1 > x3 cot θi};
that is, e1(x3) = x3 cot θi.

In the phase space, all the possible downstream velocity states U = (u1, u2, u3) of
piecewise constant transonic flows that connect withU−

0 by plane shocks together form
a balloon.

For the convenience of computation of the shock wave, we rotate the coordinate
system with a proper angle such that the plane wedge surface is the (x1, x3)–plane (i.e.,
the downstream subsonic flow is parallel to the (x1, x3)–plane), and the x3–axis lies in
the shock plane (see Fig. 1). Now, in the new coordinates, e1(x3) = 0 andw(x1, x3) = 0.

Without loss of the generality, we analyze the free boundary problem in the new
coordinates, which are still denoted by (x1, x2, x3). Then, in the coordinates, we know
that u+2 = 0 and, by condition (2.12), u+3 = u−

3 . Then we have

U−
0 = (q0 sin θi cos θw,−q0 sin θi sin θw, q0 cos θi), (2.17)

U+
0 = (u0, 0, q0 cos θi). (2.18)

Notice that the wedge-angle θw and the angle θi betweenU
−
0 and the wedge edge are

independent of the change of the coordinates.
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Fig. 1. The new coordinates after the rotation

For the given weak transonic shock solution (U−
0 ,U+

0 ) defined in (2.17)–(2.18), the
shock surface is

S0 = {x ∈ R
3 : x2 = σ x1, x1 ≥ 0}

with

σ = q0 sin θi cos θw − u0
q0 sin θi sin θw

. (2.19)

Set

ϕ−
0 (x) = q0 sin θi cos θwx1 − q0 sin θi sin θwx2 + q0 cos θix3, (2.20)

ϕ+
0 (x) = u0x1 + q0 cos θix3. (2.21)

Then

ϕ0(x) =
{

ϕ−
0 (x) for x2 > σ x1,

ϕ+
0 (x) for x2 < σ x1

(2.22)

is a piecewise constant transonic flow, which is used as our background solution for the
shock problem.

2.3. Free boundary problem and the main theorem. Given the piecewise constant back-
ground solution with planar transonic shock, we formulate the shock problem as the
following free boundary problem:

Problem 2.1. (Free Boundary Problem). Let a background solution (ϕ−
0 , ϕ+

0 ) with a
plane shock S0 be given by (2.22). Suppose that the incoming flow ϕ− defined in the
domain:

Ω−
e =

{
x ∈ R

3 : σ

2
(x1 − e1(x3)) < x2 − e2(x3) < 2σ(x1 − e1(x3))

}
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is a small perturbation of ϕ−
0 and satisfies Eq. (2.8). Suppose that W defined by (2.1)

in domain (2.2) is a small perturbation of the half (x1, x3)–plane with positive x1-axis.
Let

Fe2 :=
{
(x2, x3) ∈ R

2 : x2 > e2(x3)
}

.

Find a subsonic solution ϕ+ and a shock surface (as a free boundary):

S := {
x ∈ R

3 : (x2, x3) ∈ Fe2 , x1 = s(x2, x3)
}

with e1(x3) = s(e2(x3), x3),
(2.23)

which are also small perturbations of both the background solution ϕ+
0 and the plane

shock S0, such that

(i) The Rankine-Hugoniot conditions (2.10)–(2.11) as free boundary conditions hold on
the shock surface S.

(ii) ϕ+ satisfies Eq. (2.8) in the subsonic domain:

Ωs := {
x ∈ R

3 : (x1, x3) ∈ De1, w(x1, x3) < x2, s(x2, x3) < x1
}
. (2.24)

(iii) The slip boundary condition holds on the wedge surface W:

Dϕ+ · n|W = 0, (2.25)

where n = (−wx1, 1,−wx3) is a normal direction on W .

In order to measure the perturbations described in Problem 2.1 precisely, we first
introduce the following weighted Hölder norms: Let Ω be an open domain in R

3 with
edge E ⊂ ∂Ω . For any x, x′ in Ω , define

δx := min(dist(x, E), 1), δx,x′ := min(δx, δx′),

Δx :=
√
x21 + x22 + 1, Δx,x′ := min(Δx,Δx′). (2.26)

Let α ∈ (0, 1), τ, l ∈ R, and k be a nonnegative integer. Let k = (k1, k2, k3) be an
integer-valued vector with k1, k2, k3 ≥ 0 and |k| = k1 +k2 +k3, and let Dk = ∂

k1
x1 ∂

k2
x2 ∂

k2
x2 .

We define

[ f ](τ )
k,0;(l);Ω = sup

x∈Ω|k|=k

(
(δx)

max(k+τ,0)Δl+k
x |Dk f (x)|), (2.27)

[ f ](τ )
k,α;(l);Ω = sup

x,x′∈Ω,x �=x′
|k|=k

(
(δx,x′)max(k+α+τ,0)Δl+k+α

x,x′
|Dk f (x)−Dk f (x′)|

|x−x′|α
)
, (2.28)

‖ f ‖(τ )
k,α;(l);Ω =

k∑

i=0

[ f ](τ )
k,0;(l);Ω + [ f ](τ )

k,α;(l);Ω. (2.29)

Similarly, for a domainΩ in the (x1, x3)–plane with boundary E close to the x3–axis,
we modify the definition of Δx to

Δx := |x1| + 1 for x = (x1, x3) ∈ Ω,
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and the definition of norms (2.27)–(2.29) above applies to the functions defined on Ω

in the (x1, x3)–plane.
Finally, for either the R3 case or the (x1, x3)–plane case, denote the function space:

Ck,α;(l)
(τ ) (Ω) = { f : ‖ f ‖(τ )

k,α;(l);Ω < ∞}. (2.30)

Then the main theorem of the paper is stated as

Theorem 2.1. (Main Theorem). There are α ∈ (0, 1), β ∈ (0, 1),C0 > 0, and ε > 0
depending only on the background state (ϕ−

0 , ϕ+
0 ) such that, if

‖ϕ− − ϕ−
0 ‖(−2−α)

3,α;(−β);Ω−
e
+ ‖e1‖2,α;R + ‖w‖(−2−α)

3,α;(−β);De1
≤ ε, (2.31)

then there exist an attached weak transonic shock S and a subsonic solution ϕ+ for
Problem 2.1 satisfying the following estimate:

‖ϕ+ − ϕ+
0‖(−1−α)

2,α;(−β);Ωs
+ ‖s − s0‖(−1−α)

2,α;(−β);Fe2

≤ C0

(
‖ϕ− − ϕ−

0 ‖(−1−α)

2,α;(−β);Ω−
e
+ ‖e1‖1,α;R + ‖w‖(−1−α)

2,α;(−β);De1

)
,

(2.32)

wherew(x1, x3) and e1(x3) are defined in (2.1)–(2.2), and s0(x2) = σ−1x2. The solution
satisfying estimate (2.32) is unique. In addition, if |ϕ−−ϕ−

0 |+|Dϕ−−Dϕ−
0 |+|e1|+|w| →

0 as x3 → ±∞ (or as x3 → −∞) pointwise, then |ϕ+−ϕ+
0 |+|Dϕ+−Dϕ+

0 |+|s−s0| → 0
as x3 → ±∞ (or as x3 → −∞) pointwise correspondingly.

Remark 2.1. More precisely, in Theorem 2.1, the pointwise convergence means that, if

lim
x3→±∞ e1(x3) = 0, lim

x3→±∞,x1>0
w(x1, x3) = 0,

lim
x1>0, σ

2 x1<x2<2σ x1
x3→±∞

(|(ϕ− − ϕ−
0 )(x)| + |(Dϕ− − Dϕ−

0 )(x)|) = 0,

then, correspondingly,

lim
x3→±∞,x2>0

|(s − s0)(x2, x3)| = 0,

lim
x2>0,±(x1−s0(x2))>0

x3→±∞

(|(ϕ+ − ϕ+
0 )(x)| + |(Dϕ+ − Dϕ+

0 )(x)|) = 0.

Remark 2.2. In order to use the Banach fixed-point theorem, we assume the higher regu-
larity with the norms in (2.31) than those in (2.32), due to the coordinate transformation
introduced in Sect. 3.2 to flatten the wedge surface. The main reason is that, after the
coordinate transformation, the coefficients in the equations and the boundary conditions
depend on the derivatives of the wedge surface. We face the same situation when ap-
plying the partial hodograph transformation if the wedge surface is not flat, since the
coefficients of the lower order terms depend also on the derivatives of the wedge surface.
Therefore, the higher regularity in (2.31) for w(x1, x3) and e1(x3) is essential in order
to employ the contraction mapping theorem.
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Remark 2.3. In [6], the stability of the piecewise constantweak transonic flow is obtained
in the sense that the perturbations are away from thewedge edge. In this paper,wedevelop
a different approach to remove the restriction such that the structure is stable with respect
to arbitrary small perturbations of the wedge edge and the incoming flow up to the wedge
edge.

Remark 2.4. From Theorem 2.1, we can obtain the asymptotic behavior of the weak
shock S and the subsonic solution ϕ+ of Problem 2.1. In fact, based on the definition
of the weighted norm in (2.26)–(2.29), it follows from (2.32) that Dϕ+ converges to
Dϕ+

0 in Ωs with the decay rate Δ
β−1
x as Δx → ∞, and the slope of the shock surface S

converges to the slope of S0 with the same decay rate as Δx → ∞.

Remark 2.5. We establish the existence of solutions ϕ+ that are uniformly bounded in
the x3–direction and sublinearly grow in the (x1, x2)–directions. This observation allows
us to construct a barrier function first to show the uniqueness of solutions of the linear
problem (see the proof of Theorem 3.1 below), and then to show the uniqueness of
solutions of the nonlinear problem by the contraction mapping theorem.

3. Mathematical Reformulation

In this section, we reformulate the free boundary problem, Problem 2.1, by introducing
the coordinate transformation to fix the domain, and then introduce an iteration scheme
in the new coordinates. In other words, to solve Problem 2.1, we follow the procedure
as described below.

3.1. Background solutions: piecewise constant transonic flow. For (U−
0 ,U+

0 ) defined
in (2.17)–(2.18), condition (2.16) gives rise to

ρ(q20 )q20 sin
2 θi − q0u0

(
ρ(q20 ) + ρ(u20 + q20 sin

2 θi)
)
sin θi cos θw + ρ(u20 + q20 sin

2 θi)u
2
0 = 0. (3.1)

This implies as in [6, §2] that, for a fixed incoming flow U−
0 , the possible downstream

states U+
0 connecting by a shock form a balloon. Next, for a fixed wedge edge (i.e.,

the x3–axis), the possible downstream velocity states together form a curve that is the
intersection between the balloon and the plane orthogonal to the wedge edge (see Fig.
2: all the red lines and curve lie in a plane orthogonal to the edge with the plane also in
red). The properties of the curve are similar to the corresponding shock polar in the two-
dimensional case. Moreover, on the curve, Ps is the sonic point and Pt is the detached
point. The detached point Pt divides the two-dimensional shock polar curve into two
subarches. Let θ∗

w be the dihedral wedge-angle such that the corresponding wedge plane
intersects the curve at Pt . Clearly, when θw > θ∗

w, there is no intersection point between
the wedge plane and the curve, which means that there is no attached plane shock for
this case.

When θw < θ∗
w, the wedge plane intersects with the curve at two points: One of them

corresponding to the higher speed is the weak shock solution, and the other is the strong
shock solution. Let U+

0 be the intersection point lying in the subarch corresponding to
the weak shock solution. Next, let θ∗

s > 0 be the sonic angle such that U+
0 = Ps when

θ = θ∗
s . By [6, in Sect. 2], such θ∗

s exists with θ∗
s ∈ (0, θ∗

w). We know that the weak
shock solution is transonic if θw ∈ (θ∗

s , θ∗
w) and is supersonic if θw ∈ (0, θ∗

s ). Therefore,
the shock solution (U−

0 ,U+
0 ) is a weak transonic solution if θw ∈ (θ∗

s , θ∗
w).
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Fig. 2. Shock polar for the three-dimensional case

3.2. Coordinate transformation. Given a function s(x2, x3) close to s0(x2) = σ−1x2,
we first define the shock surface S as a free boundary x1 = s(x2, x3), and then define
Ωs by (2.24). Moreover, (2.10) holds on the shock surface, where ϕ+ is replaced by ϕ:

ϕ(s(x2, x3), x2, x3) = ϕ−(s(x2, x3), x2, x3).

Notice that, for each different function s(x2, x3), the shock surface is different, so
that the boundary condition (2.11) is on the different surface. Therefore, we need to
further introduce the coordinate transformation to fix the shock surface.

Let

W0 := {y : y1 > 0, y2 = 0, y3 ∈ R}, E0 := {y : y1 = y2 = 0, y3 ∈ R}.
For our convenience, we first define a coordinate transformation to flatten the boundary
of Ωs and map Ωs into the domain:

Π := {y : 0 < y2 < σ y1, y3 ∈ R} (3.2)

bounded by the plane shock S0 and the straight wedge W0 with edge E0.
Given the wedge function w and the shock S, define the new coordinates in the

following way: First, let

y2 = x2 − w(x1, x3), y3 = x3, (3.3)

where x2 = w(x1, x3) is the wedge surface, and (e1(x3), w(e1(x3), x3), x3) is the wedge
edge. Then the shock surface becomes

x1 = s(y2 + w(x1, y3), y3).

Solving for x1 gives

x1 = ŝ(y2, y3).



Stability of Attached Transonic Shocks 121

Let

δŝ(y2, y3) := ŝ(y2, y3) − s0(y2) = ŝ(y2, y3) − σ−1y2.

Then we extend δŝ(y2, y3) to be a function of y = (y1, y2, y3) by defining

δs̄(y) := η(σ y1 − y2)
∫

R

δŝ(y2, y3 + t (σ y1 − y2))ξ(t) dt, (3.4)

where ξ(t) is a smooth mollifier satisfying

ξ(t) ≥ 0, supp ξ(t) ⊂ [−1, 1],
∫

R

ξ(t) dt = 1,

and η ∈ C∞
c (R) is a cutoff function with the following properties:

⎧
⎪⎨

⎪⎩

0 ≤ η(t) ≤ 1 for t ∈ R,

η(t) = 1 for t ∈ [−1, 1],
η(t) = 0 for t ∈ (−∞,−2] ∪ [2,∞).

Let

Q = {y : y1 > 0, y2 > 0}, F0 = {(y2, y3) : y2 > 0}.
By Definition (3.4), we have

δs̄|S0 = δŝ, supp(δs̄) ⊂ {y : −1 ≤ σ y1 − y2 ≤ 1}, (3.5)

‖δs̄‖(−1−α)

2,α;(−β);Q ≤ C‖δŝ‖(−1−α)

2,α;(−β);F0
, (3.6)

where the norm in (3.6) is defined in (2.29) via replacing E by edge E0 = {(y1, y2, y3) :
y1 = y2 = 0} in R3, or by edge E0 = {(y2, y3) : y2 = 0} in R2. See Lemma 2.3 in [26]
for the details of the proof of (3.6).

Define y1 implicitly by

x1 = y1 + δs̄(y) = y1 + δs̄(y1, x2 − w(x1, x3), x3). (3.7)

Then we have

Lemma 3.1. If Dw and D(δŝ) are sufficiently small in the C0–norm, then the coordinate
transformation (3.3) and (3.7) is invertible. Moreover, Ωs in the x–coordinates defined
by (2.24) is mapped into domain Π in the new y–coordinates defined by (3.2).

Proof. First,whenw = 0 and δŝ = 0,we know that the Jacobianmatrix of the coordinate
transformation Jxy is the identity matrix I3. Thus, the coordinate transformation is
invertible when Dw and D(δŝ) are small.

Next, it is direct fromDefinition (3.3) that y2 ≥ 0. Since it is easy to see that y2 ≤ σ y1,
it suffices to show that y2 = σ y1 on the shock. By the definition, we know that, on the
shock,

δŝ + σ−1y2 = ŝ = x1 = y1 + δs̄.

The identity holds if and only if y2 = σ y1, thanks to the implicit function theorem and
the fact that D(δŝ) is sufficiently small in the C0–norm. This completes the proof. ��
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3.3. Iteration scheme in the new coordinates. Based on Lemma 3.1, it suffices to con-
sider the problem in the fixed domain Π . In the new y-coordinates, we define

Π− := {
y : y1 ≥ 0,

2σ

3
y1 ≤ y2 ≤ 3σ

2
y1, y3 ∈ R

}
.

Denote

ϕ−
ŝ (y) = ϕ−(x(y)), δϕ−

ŝ (y) = ϕ−
ŝ (y) − ϕ−

0 (x(y)) for y ∈ Π−, (3.8)

ϕ(y) = ϕ(x(y)), δϕ(y) = ϕ(y) − ϕ+
0 (x(y)) for y ∈ Π. (3.9)

Define the iteration set K = K1 × K2 by

K1 :=
{
δŝ ∈ C2,α;(−β)

(−1−α) (F0) : δŝ(0, y3) = e1(y3), ‖δŝ‖(−1−α)

2,α;(−β);F0
≤ C0ε

}
, (3.10)

K2 :=
{
δϕ ∈ C2,α;(−β)

(−1−α) (Π) : ‖δϕ‖(−1−α)
2,α;(−β);Π ≤ C0ε

}
. (3.11)

The estimate in (3.10) for δŝ guarantees that the shock surface in the y–coordinates stays
in Π− if ε is sufficiently small.

In the y–coordinates, (2.8) becomes

3∑

i, j=1

ãŝi j (y, Dy(δϕ))∂yi y j (δϕ) +
3∑

i=1

b̃ŝi (y, Dy(δϕ))∂yi (δϕ) = 0,

where

ãŝi j (y, Dy(δϕ)) =
3∑

k,m=1

akm(Dx(δϕ) +U+
0 )

∂yi
∂xk

∂y j
∂xm

, (3.12)

b̃ŝi (y, Dy(δϕ)) =
3∑

k,m=1

akm(Dx(δϕ) +U+
0 )

∂2yi
∂xk∂xm

, (3.13)

∂xi (δϕ) =
3∑

j=1

∂y j (δϕ)
∂y j
∂xi

, U+
0 = Dx(ϕ

+
0 (x)). (3.14)

Hereafter, we write operator D for Dy in the y–coordinates when no confusion arises.
To solve the fixed boundary value problem above, we linearize the equation and the

boundary conditions, and then make careful uniform estimates required in order to apply
the Banach fixed point theorem. More precisely, for any given function (δŝ, δϕ) ∈ K,
we solve the following linear equation:

3∑

i, j=1

ai j (U
+
0 )(δϕ̃)yi y j = f ŝ(D(δϕ), D2(δϕ)), (3.15)

where

f ŝ(y, D(δϕ), D2(δϕ)) =
3∑

i, j=1

(
ai j (U

+
0 ) − ãŝi j

)
(δϕ)yi y j −

3∑

i=1

b̃ŝi (δϕ)yi . (3.16)
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Condition (2.25) on boundary W can be rewritten as

Dx(δϕ) · n|W = −U+
0 · n = u0wx1 + q0 cos θiwx3,

or

Dy(δϕ)Jxy · n|W0 = −U+
0 · n in the y−coordinates.

Set the condition on W0 for Eq. (3.15) as follows:

(δϕ̃)y2 |W0 = gŝw(y, D(δϕ))|W0 , (3.17)

where

gŝw(y, D(δϕ)) = (δϕ)y2 − (Dy(δϕ)Jxy +U+
0 ) · n (3.18)

with n = (wx1,−1, wx3) and

wxi |W0 = Dyw(y1 + δs̄(y1, 0, y3), y3)Jxy for i = 1, 3.

Finally, we rewrite condition (2.16) on the shock surface S in the x–coordinates into

Dx(δϕ) · μ|S = g̃s(x, Dx(δϕ))|S (3.19)

with

g̃s(x, Dx(δϕ)) = Dx(δϕ) · μ − H(Dxϕ
−, Dx(δϕ) +U+

0 ), (3.20)

μ = (μ1, μ2, μ3) = Hv(Dxϕ
−
0 (x), Dxϕ

+
0 (x)). (3.21)

We write condition (3.19) in the y–coordinates as

Dy(δϕ)Jxy · μ|S0 = g̃s(x(y), Dy(δϕ)Jxy)|S0 . (3.22)

Thus, we impose the following oblique derivative boundary condition:

Dy(δϕ̃) · μ|S0 = gŝs (y, Dy(δϕ))|S0 , (3.23)

where

gŝs (y, Dy(δϕ)) = Dy(δϕ)(I − Jxy) · μ + g̃s(x(y), Dy(δϕ)Jxy). (3.24)

In order to keep the shock surface attached to edge E , one of the main ingredients in
our new approach is to impose an extra condition on E :

(ϕ̃ − ϕ−)|E = 0, (3.25)

which can be written as

δϕ̃|E0 = gŝe (3.26)

in the y–coordinates, where

gŝe(y3) = (
ϕ−(x(y)) − ϕ+

0 (x(y))
)
(0, 0, y3). (3.27)

Denote

a0i j = ai j (U
+
0 ).

We first solve the following linear problem:
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Problem 3.1. (Linearized Fixed Boundary Problem). Given functions f1 defined in Π ,
g1 in D0, g2 in F0, and g3 in R, solve the equation:

3∑

i, j=1

a0i jvyi y j = f1 in Π (3.28)

with the boundary conditions:

vy2 |W0 = g1, (3.29)

Dv · μ|S0 = g2, (3.30)

v|E0 = g3. (3.31)

We solve Problem 3.1 by proving the following theorem in Sect. 4:

Theorem 3.1. Assume Eq. (3.28) is uniformly elliptic,μ1 > 0,μ2 > 0, andμ ·nsh > 0,
wherensh is the outer unit normal of the shock surfaceS0. Suppose that the angle between
W0 andS0 isω ∈ (0, π

2 ). Then there areα, β ∈ (0, 1)depending on (a0i j ,μ, ω) such that,

if f1 ∈ C0,α;(2−β)

(1−α) (Π), g1 ∈ C1,α;(1−β)

(−α) (D0), g2 ∈ C1,α;(1−β)

(−α) (F0), and g3 ∈ C1,α(R),

there exists a unique solution v ∈ C2,α;(−β)

(−1−α) (Π) of Problem 3.1 with the following
estimate:

‖v‖(−1−α)
2,α;(−β);Π ≤ C

(
‖ f1‖(1−α)

0,α;(2−β);Π + ‖g1‖(−α)

1,α;(1−β);D0
+ ‖g2‖(−α)

1,α;(1−β);F0
+ ‖g3‖1,α;R

)
,

(3.32)

where C > 0 is a constant depending on (a0i j ,μ, ω, α, β).

Remark 3.1. Propositions 5.1– 5.2 later will guarantee the assumptions in Theorem 3.1
for the weak transonic shock. In fact, the non-obliqueness assumption, i.e., μ1 > 0
and μ2 > 0 in Theorem 3.1, allows us to assign the boundary condition (3.31) on the
wedge edge, which means that the shock is an attached shock. It is the key difference
from the strong transonic shock, where the non-obliqueness assumption fails. That is the
mathematical reasonwhywe expect theweak transonic shock is stable [6], but the strong
transonic shock is unstable [30], for the attached plane shock over a three-dimensional
flat wedge with respect to the three-dimensional perturbations.

Remark 3.2. Problem 3.1 is for the linear stability of Problem 2.1. Thus, if Theorem
3.1 is proved, then we conclude that Problem 2.1 is linearly stable.

It follows from Theorem 3.1 that, given (δŝ, δϕ) ∈ K, we solve Problem 3.1 with
v = δϕ̃, f1 = f ŝ , g1 = gŝw, g2 = gŝs , and g3 = gŝe .

Now, we use condition (2.10) to update the shock function in the following way:
Solve the equation for x1:

(ϕ− − ϕ+
0 )(x1, y2 + w(x1, y3), y3) = δϕ̃(σ−1y2, y2, y3) (3.33)

by the implicit function theorem to obtain x1 = s̃(y2, y3). Set δs̃ := s̃ − s0. Define a
map T on K by

T (δŝ, δϕ) = (δs̃, δϕ̃). (3.34)

We will show that the assumptions in Theorem 3.1 hold and establish the required
uniform estimates for applying the Banach fixed-point theorem to ensure the existence
of a fixed point of map T in Sect. 5 to conclude the proof of Theorem 2.1.
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4. Linear Stability: Proof of Theorem 3.1

Without loss of generality, in Problem 3.1, we may assume

g1(0, y3) = g2(0, y3) = g3(y3) ≡ 0, (4.1)

where g1, g2, and g3 are in the boundary conditions (3.29)–(3.31).
Indeed, we can extend g3 from domain E0 to Π (cf. Lemma 2.5 in [26]). Denote the

extended function by g̃3 so that

supp g̃3 ⊂ {
y ∈ Π : y21 + y22 ≤ 1

}
, (g̃3)y2 |E0 = g1|E0 , Dg̃3 · μ|E0 = g2|E0 ,

‖g̃3‖(−1−α)
2,α;(−β);Π ≤ C

(
‖g1‖(−α)

1,α;(1−β);D0
+ ‖g2‖(−α)

1,α;(1−β);F0
+ ‖g3‖1,α;R

)
.

Then assumption (4.1) is satisfied if Problem 3.1 is solved for ṽ = v − g̃3.
To solve Problem 3.1, we truncate domain Π by a ball BR(O), centered at O with

radius R, so that we can work on a finite domain. Furthermore, since μ1 > 0 and
μ2 > 0, conditions (3.29)–(3.30) are not oblique at the wedge edge E0 (cf. [32]). In
order to resolve this difficulty, we also truncate the wedge edge. It is convenient to use
the cylindrical coordinates (r, θ, y3) for the truncation and the estimates later. More
precisely, the truncation is given as follows:

Π R = {
y ∈ Π ∩ BR(O) : r > R−1}, W R = {

y ∈ W0 ∩ BR(O) : r > R−1},

SR = {
y ∈ S0 ∩ BR(O) : r > R−1}, T R = ∂Π R\(W R ∪ SR)

,

where R > 4.
Now we first solve the following problem in the truncated domain Π R :

Problem 4.1. (Problem in Truncated Domains). Given f1, g1, and g2 as in Problem 3.1
with assumption (4.1), solve the boundary value problem:

3∑

i, j=1

a0i jvxi x j = f1 in Π R (4.2)

with boundary conditions:

vx2 |W R = g1, (4.3)

Dv · μ|SR = g2, (4.4)

v|T R = 0. (4.5)

For Problem 4.1, we have the following lemma.

Lemma 4.1. Under the same assumptions for a0i j , μ, and ω as in Theorem 3.1, there are

α, β ∈ (0, 1) depending on (a0i j ,μ, ω) such that, for the same functions ( f1, g1, g2) as

in Theorem 3.1 with assumption (4.1), there exists a unique solution v ∈ C2,α(Π R) ∩
C0(Π R) for Problem 4.1 satisfying the following estimate:

‖v‖(−1−α)

2,α;(−β);Π R
2

≤ C
(
‖ f1‖(1−α)

0,α;(2−β);Π + ‖g1‖(−α)

1,α;(1−β);D0
+ ‖g2‖(−α)

1,α;(1−β);F0

)
, (4.6)

where C > 0 is a constant depending on (a0i j ,μ, ω, α, β), but independent of R, and
the weights for the superscripts in (3.32) are to the wedge edge E0.
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Proof. We divide the proof into three steps.
1. Let

C∗(Π R) := C0(Π R) ∩ C2(Π R ∪ W R ∪ SR).

By Theorem 1 in [31], there is a unique solution vR ∈ C∗(Π R) for Problem 4.1. Then,
to prove Lemma 4.1, it suffices to obtain the uniform estimate (4.6).

2. Let

M := ‖ f1‖(1−α)
0,α;(2−β);Π + ‖g1‖(−α)

1,α;(1−β);D0
+ ‖g2‖(−α)

1,α;(1−β);F0
. (4.7)

Then we need the following estimate, independent of R:

|vR(y)| ≤ CM min(r1+α, rβ) for y ∈ Π R . (4.8)

To achieve estimate (4.8), we scale (y1, y2) into the following coordinates (ȳ1, ȳ2):

(ȳ1, ȳ2) = (d1y1, d2y2) with (r̄ , θ̄ ) = ((ȳ21 + ȳ22 )
1
2 , arctan(

ȳ2
ȳ1

)), (4.9)

where (d1, d2) = ((a011)
− 1

2 , (a022)
− 1

2 ).
Set the comparison function in the following form:

v∗ = r̄ l sin(t θ̄ + θ0), (4.10)

where l, t , and θ0 > 0 will be determined later such that v∗ is a barrier function.
A direct calculation shows
3∑

i, j=1

a0i jv
∗
yi y j = (∂2ȳ1 + ∂2ȳ2 )v

∗ = (l2 − t2)r̄ l−2 sin(t θ̄ + θ0),

v∗
y2 |W0 = r̄ l−1d2t cos θ0,

Dv∗ · μ|S0 = r̄ l−1μ1d1
(
l cos ω̄ sin(tω̄ + θ0) − t sin ω̄ cos(tω̄ + θ0)

)

+ r̄ l−1μ2d2
(
l sin ω̄ sin(tω̄ + θ0) + t cos ω̄ cos(tω̄ + θ0)

)

= r̄ l−1
√

μ2
1d

2
1 + μ2

2d
2
2

(
(l − t) cos(ω̄ − Φ) sin(tω̄ + θ0) + t sin((t − 1)ω̄ + θ0 + Φ)

)
,

where

ω̄ = arctan(
d2
d1

tanω), Φ = arctan(
μ2d2
μ1d1

).

First, for a fixed β ∈ (0, 1), choose l = β, t = β + τ0, and θ0 = π
2 + τ0 in (4.10), and

set

v1 = CMv∗ = CMr̄β sin((β + τ0)θ̄ +
π

2
+ τ0),

where τ0 > 0 is suitably small and C sufficiently large, depending on (a0i j ,μ, ω, β).
Since ω̄ ∈ (0, π

2 ), which follows from tanω > 0 and the fact that d1 and d2 are
positive, we can find τ0 > 0 and β > 0 sufficiently small such that (β + τ0)θ̄ + π

2 + τ0 ∈
(π
2 + τ0, π − τ0) in Π R . Thus, following the computation above, we have

3∑

i, j=1

a0i j (v1)yi y j ≤ − CMr̄β−2τ 20 sin τ0 ≤ f1 =
3∑

i, j=1

a0i j (vR)yi y j in Π R, (4.11)
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(v1)y2 |W0 ≤ − CMr̄β−1d2β sin τ0 ≤ g1 = (vR)y2 |W0 , (4.12)

Dv1 · μ|S0 ≥ CMr̄β−1β sin(min(Φ,
π

2
− Φ)) ≥ g2 = DvR · μ|S0 , (4.13)

v1|T R ≥ 0 = vR |T R . (4.14)

Therefore, by the comparison principle, we conclude

|vR(y)| ≤ CMrβ for any y ∈ Π R . (4.15)

Second, we now show the estimate of solution vR(y) related to the C1,α–regularity
up to the wedge edge, thanks to the assumptions that μ1 > 0 and μ2 > 0. Choose
l = 1+α, t = 1+α+τ1 , and θ0 = π

2 +τ1 in (4.10), where α and τ1 are sufficiently small
and positive constants depending on (a0i j ,μ, ω). Define the following barrier function:

v2 = CMv∗ = CMr̄1+α sin((1 + α + τ1)θ̄ +
π

2
+ τ1).

Following the computation argument from (4.10) to (4.11), we have

3∑

i, j=1

a0i j (v2)yi y j ≤ − CMr̄α−1τ 21 sin τ1 ≤ f1 =
3∑

i, j=1

a0i j (vR)yi y j in Π R, (4.16)

(v2)y2 |W0 ≤ − CMr̄αd2α sin τ0 ≤ g1 = (vR)y2 |W0 , (4.17)

Dv2 · μ|S0 ≥ CMr̄αα sin(min(Φ,
π

2
− Φ)) ≥ g2 = DvR · μ|S0 , (4.18)

v2|T R ≥ 0 = vR |T R . (4.19)

Thus, v2 meets the conditions for the comparison principle so that

|vR(y)| ≤ CMr1+α for any y ∈ Π R . (4.20)

Combining (4.15) with (4.20) leads to estimate (4.8).
We remark that, for estimate (4.18), we use the assumptions that μ1 and μ2 are

positive such that Φ ∈ (0, π
2 ). Since the assumptions are not correct for the strong

transonic shock, we cannot expect (4.20) and then cannot expect the C1,α–regularity of
solutions of the strong transonic shock near the edge generally.

3. Based on estimate (4.8), the standard Schauder estimates, and the scaling argument
lead to (4.6). We now sketch the proof for the self-containedness.

Let E be a bounded domain, and let u be a function defined on E . Define the following
norms:

‖u‖′
k;E =

k∑

j=0

d j [u] j,0;E , ‖u‖′
k,α;E = ‖u‖′

k;E + dk+α[u]k,α;E ,

where d = diam E .
For any point y0 ∈ Π R/2 with cylindrical coordinates (r0, θ0, y3), it falls into one of

the following three cases:

Case 1.
ω

4
≤ θ0 ≤ 3ω

4
,
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Case 2.
3ω

4
< θ0 < ω0,

Case 3. 0 < θ0 <
ω0

4
.

For Case 1, let

r̂ = r0
4
sin

ω

4
, B1 = Br̂ (y

0), B2 = B2r̂ (y
0).

By the definition, it is easy to see that B1 ⊂ B2 ⊂ Π R . By the Schauder interior estimate
(cf. Theorem 4.6 in [27]), for solution v ∈ C2,α(Π R) ∩ C0(Π R) of Problem 4.1, we
have

‖v‖′
2,α;B1 ≤ C

(‖v‖0,0;B2 + r̂2‖ f1‖′
0,α;B2

)
. (4.21)

The definition of M (see (4.7)) and assumption (4.1) imply

‖ f1‖′
0,α;B2 ≤ CM min(rα−1

0 , rβ−2
0 ), (4.22)

‖g1‖′
1,α;B2 + ‖g2‖′

1,α;B2 ≤ CM min(rα
0 , rβ−1

0 ). (4.23)

Estimates (4.21)–(4.22) and (4.8) give rise to

‖v‖′
2,α;B1 ≤ CM min(r1+α

0 , rβ
0 ). (4.24)

For Case 2 and Case 3, we use the Schauder boundary estimates. Let

r̂ = sin
ω

4
, B+

1 = Br̂ (y
0) ∩ Π R, B+

2 = B2r̂ (y
0) ∩ Π R, T = B2r̂ (y

0) ∩ ∂Π R .

Similar to the arguments in Case 1, the Schauder boundary estimates (cf. Theorem 6.26
in [27]), together with (4.8) and (4.22)–(4.23), lead to

‖v‖′
2,α;B+

1
≤ C

(
‖v‖0,0;B+

2
+ r̂

∑

i=1,2

‖gi‖′
1,α;T + r̂2‖ f1‖′

0,α;B+
2

)
≤ CM min(rα

0 , rβ−1
0 ).

(4.25)

Note that, by the standard scaling argument,

‖v‖(−1−α)
2,α;(−β);B1 ≤ 1

min(rα
0 , rβ−1

0 )
‖v‖′

2,α;B1 ,

or

‖v‖(−1−α)

2,α;(−β);B+
1

≤ 1

min(rα
0 , rβ−1

0 )
‖v‖′

2,α;B+
1
.

Therefore, estimate (4.6) follows by combining the interior estimates (4.24) for Case 1
with the boundary estimates (4.25) for Cases 2–3. This completes the proof. ��

Now we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1. For each R > 4, by Lemma 4.1, there exists a unique solution vR
for Problem 4.1 satisfying estimate (4.6). Therefore, by the Ascoli-Azela theorem, we
can choose a sequence Rk → ∞ such that the corresponding sequence of solutions {vRk }
converges to a function v in eachC2,α′;(−β)

(−1−α′) (Π
Rk
2 ) for 0 < α′ < α. Hence, estimate (4.6)

indicates that v ∈ C2,α;(−β)

(−1−α) (Π) and satisfies estimate (3.32). Clearly, v is a solution of
Problem 3.1 in Π .

To show the uniqueness of solutions of Problem 3.1, we need to prove that, if v ∈
C2,α;(−β)

(−1−α) (Π) and solves

3∑

i, j=1

a0i jvxi x j = 0 in Π

with boundary conditions:

vx2 |W0 = 0, Dv · μ|S0 = 0, v|E0 = 0,

then v = 0. We now construct a barrier function and use the comparison principle to
achieve this. It is based on the observation that the solution is uniformly bounded in the
x3–direction and sublinearly grows in the (x1, x2)–directions.

For β ′ ∈ (β, 1), set

v3 = r̄β ′
sin((β ′ + τ2)θ̄ +

π

2
+ τ2),

where τ2 > 0 is suitably small. From estimates (4.16)–(4.18), we have

3∑

i, j=1

a0i j (v3)yi y j ≤ − c1r
β ′−2 in Π, (4.26)

(v3)y2 |W0 ≤ − c2r
β ′−1, (4.27)

Dv3 · μ|S0 ≥ c3r
β ′−1. (4.28)

Let v4 = |y|β ′
. It is easy to see the following estimates:

|Dyi v4| ≤ C |y|β ′−1, |D2
yi y j v4| ≤ C |y|β ′−2. (4.29)

Given any τ > 0, define

v5 = τ(C1v3 + v4).

With estimates (4.26)–(4.29) and the fact that r ≤ |y|, we know that v5 satisfies the
following properties:

3∑

i, j=1

a0i j (v5)xi x j ≤ 0 in Π,

(v5)x2 |W0 ≤ 0, Dv5 · μ|S0 ≥ 0, v5|E0 ≥ 0,
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provided that C1 is suitably large. We know

v5(y) ≥ τv4 ≥ τ |y|β ′−βrβ,

so that v ∈ C2,α;(−β)

(−1−α) (Π) implies that there exists C2 > 0 such that

|v(y)| ≤ C2r
β.

Since β ′ > β, there exists R0 > 0 depending on (τ,C2) such that, when R > R0,

v5(y) > |v(y)| for |y| = R.

Thus, by the comparison principle, we have

|v(y)| ≤ v5(y) for y ∈ Π ∩ BR(O).

Since R can be arbitrarily large, the above inequality holds for all y ∈ Π . Letting τ → 0,
we conclude that v ≡ 0, since v5 → 0 everywhere in Π as τ → 0. This completes the
proof. ��

5. Fixed Point of the Iteration Map: Proof of Theorem 2.1

In order to apply Theorem 3.1, we need to verify the assumptions in Theorem 3.1 for
the weak transonic shock problem. First, we verify the uniform ellipticity of Eq. (3.15),
which is summarized in the following proposition:

Proposition 5.1. If ϕ+
0 is a uniform subsonic solution, then there exists λ > 0 depending

on ϕ+
0 such that

λ|ξ |2 ≤
3∑

i, j=1

a0i jξiξ j ≤ 1

λ
|ξ |2 for any ξ ∈ R

3, (5.1)

that is, Eq. (3.28) is uniformly elliptic.

Proof. Since ϕ+
0 is a weak transonic solution, ϕ+

0 is a uniform subsonic solution. By the
definition, a0i j = ai j (U+

0 ) = c2(|Dϕ+
0 |2)δi j − ∂xi ϕ

+
0 ∂x j ϕ

+
0 . Hence, claim (5.1) follows

immediately from the fact that the background solutionϕ+
0 is a uniform subsonic solution.

��
Next, we verify the obliqueness of the boundary condition on the shock and the non-

obliqueness of the boundary condition at thewedge edge.More precisely, for a piecewise
constant weak transonic flow (ϕ−

0 , ϕ+
0 ), we need to check the direction of μ defined by

(3.21), which is described as follows:

Proposition 5.2. If (ϕ−
0 , ϕ+

0 ) is a weak transonic shock solution, then

μ1 > 0, μ2 > 0, μ · nsh > 0,

where nsh is the outer unit normal of the shock surface S0.
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Proof. In Eq. (2.15), we fix the incoming flow u = U−
0 given as in (2.18). By the

Rankine-Hugoniot condition (2.12) and the fact that the x3–axis is the wedge edge
(i.e., the x3–axis lies in the shock plane), we see that v3 = q0 cos θi. Then v2 can be
considered as a smooth function of v1 by solving (2.15) for v2. There are two solutions
of equation v2(v1) = 0 (owing to the choice of the coordinates such that the downstream
subsonic flow is parallel to the (x1, x3)–plane in Sect. 3.1); also see Fig. 2. We denote
the two solutions by vs and vw, which correspond to the strong and weak transonic shock
solutions, respectively. Using the convexity of the two-dimensional shock polar for the
potential flow (see e.g. [8, Lemma 7.3.2, page 249]), we have the following properties:

vs < vw, v′
2(vs) > 0, v′

2(vw) < 0,

v2(v1) > 0 for any v2 ∈ (vs, vw).

Take the weak transonic flow by letting v0 = vw. Then we have the downstream flow
U+
0 = (v0, 0, q0 cos θi) in (2.18). Differentiating

H(U−
0 , v1, v2(v1), q0 cos θi) = 0

with respect to v1 and letting v1 = vw imply
(
Hv1 + Hv2v

′
2

)
(U−

0 ,U+
0 ) = 0.

By the definition that μ = Hv(U
−
0 ,U+

0 ), v′
2(vw) < 0 implies μ1μ2 > 0. A direct

computation shows

μ2 = q0 sin θi sin θw
(
ρ(|U−

0 |2) + ρ(|U+
0 |2)) > 0,

which yields that μ1 > 0.
Next, we show that μ · nsh > 0. Notice that

nsh = 1√
1 + σ 2

(−σ, 1, 0),

where σ is the slope given by (2.19). Thus, it suffices to prove

−μ1σ + μ2 > 0.

To simplify the notation, denote

U−
0 = (u1, u2, u3), U+

0 = (v1, 0, u3),

ρ− = ρ(|U−
0 |2), ρ+ = ρ(|U+

0 |2), c+ = c(|U+
0 |2).

Then we have

σ = −u1 − v1

u2
,

μ1 = ρ+
( v21

(c+)2
− 1

)
(u1 − v1) − ρ−u1 + ρ+v1,

μ2 = −u2(ρ
− + ρ+),

so that

−μ1σ + μ2 = −ρ+

u2

((
1 − v21

(c+)2
)
(u1 − v1)

2 + u22

)
.

By the subsonicity of U+
0 , we see that v21 < (c+)2. Together with the fact that u2 < 0,

we conclude that −μ1σ + μ2 > 0. ��
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Therefore, basedonPropositions 5.1–5.2, the assumptions inTheorem3.1 hold for the
solutions that are small perturbations of the weak transonic plane shock. Using Theorem
3.1 and following the iteration scheme introduced in Sect. 3, given (δŝ, δϕ) ∈ K, we
solve Problem 3.1 uniquely with v = δϕ̃, f1 = f ŝ , g1 = gŝw, g2 = gŝs , and g3 = gŝe ,
whereK is defined by (3.10)–(3.11), and the expressions of f ŝ0 , g

ŝ
w, g

ŝ
s , and g

ŝ
e are given

by (3.16), (3.18), (3.24), and (3.27), respectively. Then we are going to show Theorem
2.1 by establishing the contraction of T defined by (3.34), where δs̃ is given by (3.33).

Proof of Theorem 2.1 (Main Theorem). The proof is divided into four steps.
1. We first show that the map is well-defined: T is a map from K to itself.
Based on Propositions 5.1–5.2, the conditions in Theorem 3.1 are satisfied so that we

can uniquely solve δϕ̃ = v with the following estimate:

‖δϕ̃‖(−1−α)
2,α;(−β);Π

≤ C
(
‖ f ŝ‖(1−α)

0,α;(2−β);Π + ‖gŝw‖(−α)

1,α;(1−β);D0
+ ‖gŝs‖(−α)

1,α;(1−β);F0
+ ‖gŝe‖1,α;R

)
. (5.2)

First,we need to estimate the right-hand side of (5.2) carefully. Based on the definition
of the coordinate transformation (3.3) and (3.7), a straightforward calculation gives

∂y
∂x1

= (
1 + (δs̄)y2wx1

1 + (δs̄)y1
,−wx1 , 0), (5.3)

∂y
∂x2

= (− (δs̄)y2
1 + (δs̄)y1

, 1, 0), (5.4)

∂y
∂x3

= (
(δs̄)y2wx3 − (δs̄)y3

1 + (δs̄)y1
,−wx3 , 1). (5.5)

Thus, we have the following estimate:

‖ ∂yi
∂x j

− δi j‖(−α)
1,α;(1−β);Π + ‖ ∂2yi

∂xk∂xm
‖(1−α)
0,α;(2−β),Π

≤ C
(
‖w‖(−1−α)

2,α;(−β);De1
+ ‖δŝ‖(−1−α)

2,α;(−β);F0

)

for any i, j, k,m = 1, 2, 3.
Then, by the definition of f ŝ (see (3.12)–(3.13) and (3.16)), we have

‖ f ŝ‖(1−α)
0,α;(2−β);Π

≤ ‖δϕ‖(−1−α)
2,α;(−β);Π

( 3∑

i, j=1

‖a0i j − ãŝi j‖(−α)
1,α;(1−β);Π +

3∑

i=1

‖b̃ŝi ‖(1−α)
0,α;(2−β),Π

)

≤ C‖δϕ‖(−1−α)
2,α;(−β);Π

(
‖w‖(−1−α)

2,α;(−β);De1
+ ‖δŝ‖(−1−α)

2,α;(−β);D0
+ ‖δϕ‖(−1−α)

2,α;(−β);Π
)

≤ CC2
0ε

2,

provided that C0ε < λ0, where λ0 > 0 is a fixed constant depending on ϕ+
0 , and C

depends on λ0. Similarly, by definitions (3.18), (3.20), (3.24), and (3.27), we have the
following estimates:
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∥∥gŝw|W0

∥∥(−α)

1,α;(1−β);D0
≤ C‖w‖(−1−α)

2,α;(−β);De1
≤ Cε,

∥∥g̃ŝs |S0

∥∥(−α)

1,α;(1−β);F0
≤ C

(
‖δϕ−

ŝ ‖(−1−α)

2,α;(−β);Π− + (‖δϕ‖(−1−α)
2,α;(−β);Π)2

)
,

∥∥gŝs |S0

∥∥(−α)

1,α;(1−β);F0
≤ C‖δϕ‖(−1−α)

2,α;(−β);Π‖I − Jxy‖(−α)
1,α;(1−β);Π

+
∥∥g̃ŝs |S0

∥∥(−α)

1,α;(1−β);F0

≤ C(ε + C2
0ε

2),
∥∥gŝe

∥∥
1,α;R ≤ C

(
‖δϕ−

ŝ ‖(−1−α)

2,α;(−β);Π− + ‖w‖(−1−α)

2,α;(−β);De1
+ ‖e1‖1,α;R

)
≤ Cε.

Therefore, we obtain

‖δϕ̃‖(−1−α)
2,α;(−β);Π ≤ Cε

(
1 + C2

0ε
) ≤ C0ε, (5.6)

by choosing C0 > 2C and ε < 1
C2
0
.

Next, we consider the estimate for δs̃ obtained via (3.33). Rewrite (3.33) into
(
(ϕ− − ϕ−

0 ) + (ϕ−
0 − ϕ+

0 )
)
(s0 + δs̃, y2 + w(s0 + δs̃, y3), y3) = δϕ̃(

y2
σ

, y2, y3).

Since
(
ϕ−
0 − ϕ+

0

)|S0 = 0, the equality above gives

δs̃(y2, y3) = 1

σ
w(s0 + δs̃, y3)

+
δϕ̃( 1

σ
y2, y2, y3) − (

ϕ− − ϕ−
0

)
(s0 + δs̃, y2 + w(s0 + δs̃, y3), y3)

q0 sin θi cos θw − u0
,

(5.7)

which leads to the following estimate:

‖δs̃‖(−1−α)

2,α;(−β);F0

≤ C
(
‖δϕ̃‖(−1−α)

2,α;(−β);Π + ‖ϕ− − ϕ−
0 ‖(−1−α)

2,α;(−β);Ω−
e
+ ‖w‖(−1−α)

2,α;(−β);De1

)
≤ C0ε. (5.8)

Therefore, we have shown that T is a map from K to itself. Finally, we remark that
estimate (5.8) for δs̃ also guarantees that the updated shock surface in the y–coordinates
stays in Π−.

2. In this step, we show the contraction of T .
Given two pairs (δŝ(i), δϕ(i)) ∈ K, let (δs̃(i), δϕ̃(i)) = T (δŝ(i), δϕ(i)) for i = 1, 2.

By the definition of T , we know that v = δϕ̃(1) − δϕ̃(2) solves Problem 3.1 with

f1 = f ŝ
(1)

(y, D(δϕ(1)), D2(δϕ(1))) − f ŝ
(2)

(y, D(δϕ(2)), D2(δϕ(2))), (5.9)

g1 = gŝ
(1)

w (y, D(δϕ(1))) − gŝ
(2)

w (y, D(δϕ(2))), (5.10)

g2 = gŝ
(1)

s (y, D(δϕ(1))) − gŝ
(2)

s (y, D(δϕ(2))),

g3 = gŝ
(1)

e − gŝ
(2)

e . (5.11)

Since

gŝ
(i)

e = (
ϕ− − ϕ+

0

)
(δŝ(i)(0, y3), w(δŝ(i)(0, y3)), y3) = (

ϕ− − ϕ+
0

)
(e1(y3), e2(y3), y3),
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we have

g3 = gŝ
(1)

e − gŝ
(2)

e = 0. (5.12)

Denote the coordinate transformation related to δŝ(i) by y(i)(x), and set

w̄(i)(y) := w(y1 + δs̄(i)(y), y3), w̄(i)
x j (y) := wx j (y1 + δs̄(i)(y), y3).

It is direct to see

w̄(1) − w̄(2) =
∫ 1

0
wx1(y1 + τδs̄(1)(y) + (1 − τ)δs̄(2)(y))dτ (δs̄(1) − δs̄(2)), (5.13)

w̄(1)
x j − w̄(2)

x j =
∫ 1

0
wx1x j (y1 + τδs̄(1)(y) + (1 − τ)δs̄(2)(y))dτ (δs̄(1) − δs̄(2)). (5.14)

Thus, with assumption (2.31), we have

‖w̄(1) − w̄(2)‖(−1−α)

2,α;(−β);D0
+

3∑

j=1

‖w̄(1)
x j − w̄(2)

x j ‖(−α)

1,α;(1−β);D0

≤ C‖wx1‖(−1−α)

2,α;(−β);De1
‖δŝ(1) − δŝ(2)‖(−1−α)

2,α;(−β);F0

≤ Cε‖δŝ(1) − δŝ(2)‖(−1−α)

2,α;(−β);F0
. (5.15)

Then expressions (5.3)–(5.5) and estimate (5.15) lead to

∥∥∂y(1)
i

∂x j
− ∂y(2)

i

∂x j

∥∥(−α)

1,α;(1−β);Π ≤ Cε‖δŝ(1) − δŝ(2)‖(−1−α)

2,α;(−β);F0
, (5.16)

∥∥ ∂2y(1)
i

∂x j∂xm
− ∂2y(2)

i

∂x j∂xm

∥∥(1−α)

0,α;(2−β);Π ≤ Cε‖δŝ(1) − δŝ(2)‖(−1−α)

2,α;(−β);F0
. (5.17)

Since the definition of f1 in (5.9) involves (3.12)–(3.13) and (3.16), estimates (5.15)–
(5.17) imply

‖ f1‖(1−α)
0,α;(2−β);Π ≤ Cε

(
‖δŝ(1) − δŝ(2)‖(−1−α)

2,α;(−β);F0
+ ‖δϕ(1) − δϕ(2)‖(−1−α)

2,α;(−β);Π
)
.

(5.18)

In the same manner, we can obtain the following estimates for g1 in (5.10) and g2 in
(5.11):

∥∥g1|W0

∥∥(−α)

1,α;(1−β);D0
+

∥∥g2|S0

∥∥(−α)

1,α;(1−β);F0
(5.19)

≤ Cε
(
‖δŝ(1) − δŝ(2)‖(−1−α)

2,α;(−β);F0
+ ‖δϕ(1) − δϕ(2)‖(−1−α)

2,α;(−β);Π
)
. (5.20)

Therefore, by Theorem 3.1, estimates (5.12), (5.18), and (5.20) imply

‖δϕ̃(1) − δϕ̃(2)‖(−1−α)
2,α;(−β);Π ≤ Cε

(
‖δŝ(1) − δŝ(2)‖(−1−α)

2,α;(−β);F0
+ ‖δϕ(1) − δϕ(2)‖(−1−α)

2,α;(−β);Π
)
.

(5.21)
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We now estimate the difference between the two updated shocks. By identity (5.7),
we have

δs̃(1) − δs̃(2)

= 1

σ
w(s0 + δs̃(1), y3) − 1

σ
w(s0 + δs̃(2), y3)

+
1

q0 sin θi cos θw − u0

×
(
δϕ̃(1)(

1

σ
y2, y2, y3) − δϕ̃(2)(

1

σ
y2, y2, y3)

− (
ϕ− − ϕ−

0

)
(s0 + δs̃(1), y2 + w(s0 + δs̃(1), y3), y3)

+
(
ϕ− − ϕ−

0

)
(s0 + δs̃(2), y2 + w(s0 + δs̃(2), y3), y3)

)
.

Following the same approach from (5.13) to (5.15), we can write δs̃(1) − δs̃(2) in an
integral form and use assumption (2.31) to obtain the following estimate:

‖δs̃(1) − δs̃(2)‖(−1−α)

2,α;(−β);F0

≤ C
(
‖wx1‖(−1−α)

2,α;(−β);De1
+ ‖ϕ− − ϕ−

0 ‖(−2−α)

3,α;(−β);Ω−
e

)
‖δs̃(1) − δs̃(2)‖(−1−α)

2,α;(−β);F0

+ C‖δϕ̃(1) − δϕ̃(2)‖(−1−α)
2,α;(−β);Π

≤ Cε‖δs̃(1) − δs̃(2)‖(−1−α)

2,α;(−β);F0
+ C‖δϕ̃(1) − δϕ̃(2)‖(−1−α)

2,α;(−β);Π.

Choosing ε sufficiently small so that Cε < 1
2 , we conclude

‖δs̃(1) − δs̃(2)‖(−1−α)

2,α;(−β);F0
≤ C‖δϕ̃(1) − δϕ̃(2)‖(−1−α)

2,α;(−β);Π. (5.22)

This, together with (5.18), gives rise to

‖δs̃(1) − δs̃(2)‖(−1−α)

2,α;(−β);F0

≤ Cε
(
‖δŝ(1) − δŝ(2)‖(−1−α)

2,α;(−β);F0
+ ‖δϕ(1) − δϕ(2)‖(−1−α)

2,α;(−β);Π
)
. (5.23)

Estimates (5.21) and (5.23) imply

‖δs̃(1) − δs̃(2)‖(−1−α)

2,α;(−β);F0
+ ‖δϕ̃(1) − δϕ̃(2)‖(−1−α)

2,α;(−β);Π
≤ Cε

(
‖δŝ(1) − δŝ(2)‖(−1−α)

2,α;(−β);F0
+ ‖δϕ(1) − δϕ(2)‖(−1−α)

2,α;(−β);Π
)
, (5.24)

which leads to the contraction of T , provided that ε is sufficiently small.
3. Based on (5.24), by the Banach fixed-point theorem, there exists a unique fixed

point (δs∗, δϕ∗)ofT inK. It follows from the definition of the coordinate transformation
(3.3)–(3.7) that δs∗ uniquely determines transformation y(x). Thus, by (3.9), we set
ϕ+(x) := ϕ∗(y(x)), which is the unique solution of Problem 2.1.

To show estimate (2.32), we set

ε′ := ‖ϕ− − ϕ−
0 ‖(−1−α)

2,α;(−β);Ω−
e
+ ‖e1‖1,α;R + ‖w‖(−1−α)

2,α;(−β);De1
.
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By estimates (5.6) and (5.8), we obtain

‖δs∗‖(−1−α)

2,α;(−β);F0
+ ‖δϕ∗‖(−1−α)

2,α;(−β);Π ≤ Cε′, (5.25)

which is equivalent to (2.32) in the x-coordinates when transforming the variables back.
Moreover, the uniqueness follows directly from the contraction of mapping T .
4. If |ϕ− − ϕ−

0 | + |Dϕ− − Dϕ−
0 | + |e1| + |w| → 0 as x3 → ∞ (or as x3 → −∞)

pointwise, then, in the fixed domain Π , for any fixed (y1, y2), |ϕ− − ϕ−
0 | + |Dϕ− −

Dϕ−
0 | → 0 as y3 → ∞ (or as y3 → −∞). Without loss of the generality, it suffices

to consider the case that y3 → ∞, since the same argument works for the case that
y3 → −∞ if replacing y3 + rn by y3 − rn in the argument below for any sequence
rn → ∞ as n → ∞.

Let ϕn(y1, y2, y3) = ϕ(y1, y2, y3 + rn) on Π , and sn(y2, y3) = s(y2, y3 + rn) on
F0. Let ϕ−

n (x1, x2, x3) = ϕ(x1, x2, x3 + rn) on Ω−
e , e(n)

1 (x3) = e1(x3 + rn) on R, and
wn(x1, x3) = w(x1, x3 + rn) on De1 . Then it follows from (5.25) that

‖sn − s0‖(−1−α)

2,α;(−β);F0
+ ‖ϕn − ϕ+

0‖(−1−α)
2,α;(−β);Π ≤ Cε′,

where

ε′ := ‖ϕ−
n − ϕ−

0 ‖(−1−α)

2,α;(−β);Ω−
e
+ ‖e(n)

1 ‖1,α;R + ‖wn‖(−1−α)

2,α;(−β);De1
,

which is independent of n, by the definition of (ϕn, e(n)
1 , wn) and the Hölder norms in

(2.26)–(2.29). Thus, by the compact embedding for the boundedweightedHölder norms,
there exist subsequences (still denoted as) (sn, ϕn) and functions (s̄, ϕ̄) such that, for
0 < α′ < α,

‖ϕn − ϕ̄‖(−1−α′)
2,α′;(−β);Π + ‖sn − s̄‖(−1−α′)

2,α′;(−β);F0
→ 0 as n → ∞.

Moreover, because ϕ−
n → ϕ−

0 , e
(n)
1 → 0, and wn → 0 pointwise, going back to the

original x–coordinates, it is direct to see that the subsonic solution ϕ̄ with the shock
surface x1 = s̄(x2, x3) is a solution of Problem 2.1 with the incoming flow ϕ−

0 , the
wedge surface x2 = 0, and the wedge edge (x1, x2) = (0, 0). In addition, s̄ and ϕ̄ satisfy

‖ϕ̄ − ϕ+
0‖(−1−α)

2,α;(−β);Ωs
+ ‖s̄ − s0‖(−1−α)

2,α;(−β);Fe2
≤ Cε′. (5.26)

Note that ϕ+
0 with the shock surface x1 = s0(x2, x3) is another subsonic solution of

Problem 2.1 with the incoming flow ϕ−
0 , the wedge surface x2 = 0, and the wedge edge

(x1, x2) = (0, 0), and satisfying estimate (5.26). By the uniqueness of such solutions,
we obtain that s̄ = s0 and ϕ̄ = ϕ+

0 . Since all the limits of converging subsequences of
ϕn and sn tend to the same functions ϕ+ and s as n → ∞, we have

|ϕ+ − ϕ+
0 | + |Dϕ+ − Dϕ+

0 | + |s − s0| → 0

as x3 → ∞ pointwise.
This completes the proof of Theorem 2.1. ��
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