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STABILITY OF CONICAL SHOCKS IN THE THREE-DIMENSIONAL
STEADY SUPERSONIC ISOTHERMAL FLOWS PAST LIPSCHITZ

PERTURBED CONES\ast 

GUI-QIANG G. CHEN\dagger , JIE KUANG\ddagger , AND YONGQIAN ZHANG\S 

Abstract. We are concerned with the structural stability of conical shocks in the three-
dimensional steady supersonic flows past Lipschitz perturbed cones whose vertex angles are less
than the critical angle. The flows under consideration are governed by the steady isothermal Euler
equations for potential flow with axisymmetry so that the equations contain a singular geometric
source term. We first formulate the shock stability problem as an initial boundary value problem
with the leading conical shock-front as a free boundary, and then establish the existence and struc-
tural/asymptotic stability of global entropy solutions of bounded variation (BV) of the problem. To
achieve this, we first develop a modified Glimm scheme to construct approximate solutions via self-
similar solutions as building blocks in order to incorporate with the geometric source term. Then we
introduce the Glimm-type functional, based on the local interaction estimates between weak waves,
the strong leading conical shock, and self-similar solutions, as well as the estimates of the center
changes of the self-similar solutions. To make sure of the decrease of the Glimm-type functional, we
choose appropriate weights by careful asymptotic analysis of the reflection coefficients in the interac-
tion estimates, when the Mach number of the incoming flow is sufficiently large. Finally, we establish
the existence of global entropy solutions involving a strong leading conical shock-front, besides weak
waves, under the conditions that the Mach number of the incoming flow is sufficiently large and the
weighted total variation of the slopes of the generating curve of the Lipschitz perturbed cone is suffi-
ciently small. Furthermore, the entropy solution is shown to approach asymptotically the self-similar
solution that is determined by the incoming flow and the asymptotic tangent of the cone boundary
at infinity.
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totic behavior

AMS subject classifications. 35B07, 35B20, 35D30, 76J20, 76L99, 76N10

DOI. 10.1137/20M1357962

1. Introduction. We are concerned with the structural stability of conical
shocks in the three-dimensional (3-D) steady supersonic flows past Lipschitz per-
turbed cones whose vertex angles are less than the critical angle. The shock stability
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Incoming flow

Shock

Cone

Fig. 1.1. The strong straight-sided conical shock in the supersonic flow past a straight-sided cone.

problem of steady supersonic flows past Lipschitz cones is fundamental for the math-
ematical theory of multidimensional (M-D) hyperbolic systems of conservation laws,
since its solutions are time-asymptotic states and global attractors of general entropy
solutions of time-dependent initial boundary value problems (IBVPs) with rich non-
linear phenomena, besides its importance to many areas of applications including
aerodynamics; see [1, 5, 12, 15] and the references cited therein. As indicated in [12],
when a uniform supersonic flow with constant speed from the far field (minus infinity)
hits a straight-sided symmetric cone whose vertex angle is less than the critical angle,
there is a supersonic straight-sided conical shock attached to the vertex of the cone,
and the state between the conical shock-front and the cone can be obtained by the
shooting method, which is a self-similar solution (see Figure 1.1). In this paper, we
focus our analysis on the stability of the supersonic conical shock-front, along with
the background self-similar solution, in the steady supersonic Euler flows that are iso-
thermal and symmetric with respect to the x-axis under the Lipschitz perturbation
of the cones whose boundary surfaces in \BbbR 3 are formed by the rotation of generating
curves: y = b(x) for x > 0 around the x-axis (see Figure 1.2).

More precisely, the governing 3-D Euler equations for steady isothermal potential
conical flows are of the form

(1.1)

\Biggl\{ 
\partial x(\rho u) + \partial y(\rho v) =  - \rho v

y ,

\partial xv  - \partial yu = 0,

together with the Bernoulli law

u2 + v2

2
+ c2 ln \rho =

u2\infty 
2

+ c2 ln \rho \infty ,(1.2)

where (u, v) is the velocity in the (x, y)-coordinates, \rho is the flow density, and U\infty =
(u\infty , 0)

\top and \rho \infty are the velocity and the density of the incoming flow, respectively.
The Bernoulli law (1.2) is derived from the constitutive relation for the isothermal
gas between pressure p and density \rho :

p = c2\rho ,(1.3)

where constant c > 0 is the sound speed.
Without loss of generality, we may set \rho \infty = 1; otherwise, we can simply scale:

\rho \rightarrow \rho 
\rho \infty 
, in system (1.1)--(1.2) which is invariant in terms of the form. For fixed sound

speed c > 0, the Mach number,

M\infty =
u\infty 
c
,
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x

y

O
U\infty 

U(x, y)
y = b(x)

y = \chi (x)

Fig. 1.2. The strong conical shock y = \chi (x) in the steady supersonic flow past a Lipschitz cone.

is equivalent to u\infty ; in particular, the condition that the Mach number M\infty is suffi-
ciently large is equivalent to that the incoming velocity u\infty is sufficiently large.

System (1.1) can be written in the form:

\partial xW (U) + \partial yH(U) = G(U, y)(1.4)

with U = (u, v)\top , where

W (U) = (\rho u, v)\top , H(U) = (\rho v, - u)\top , G(U, y) = ( - \rho v
y
, 0)\top ,

and \rho is a function of U through the Bernoulli law (1.2).
When \rho > 0 and u > c, U can also be represented by W = (\rho u, v)\top , i.e., U =

U(W ), by the implicit function theorem, since the Jacobian

det(\nabla UW (U)) =  - \rho 

c2
(u2  - c2) < 0.

Regarding x as the time variable, (1.4) can be written as

\partial xW + \partial yH(U(W )) = G(U(W ), y).(1.5)

Therefore, system (1.1) becomes a hyperbolic system of conservation laws with source
terms of form (1.5). Such nonhomogeneous hyperbolic systems of conservation laws
also arise naturally in other problems from many important applications, which ex-
hibit rich phenomena; for example, see [5, 6, 7, 8, 12, 15] and the references cited
therein.

Throughout this paper, the following conditions are assumed:
(H1) The Lipschitz generating curve of the cone, y = b(x) < 0 for x > 0, is a small

perturbation of line y = b0x for some constant b0 < 0, and satisfies

b(x) = b0x for x \in [0, x0]

with some x0 > 0, and

\| b\prime +(\cdot ) - b0\| BV (\BbbR +) \leq \varepsilon for some \varepsilon > 0,

where b\prime +(x) = limy\rightarrow x+0
b(y) - b(x)

y - x \in BV ([0,\infty )).
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2814 GUI-QIANG G. CHEN, JIE KUANG, AND YONGQIAN ZHANG

(H2) The incoming flow velocity U\infty = (u\infty , 0)
\top is supersonic:

M\infty > 1.

Given a perturbed generating curve y = b(x) < 0 of the cone, the problem is
symmetric with respect to the x-axis. Thus, it suffices to consider the problem in the
following domain \Omega in the half-space y \leq 0 outside the half-cone

\Omega =
\bigl\{ 
(x, y) : x \geq 0, y < b(x)

\bigr\} 
with its boundary:

\partial \Omega =
\bigl\{ 
(x, y) : x \geq 0, y = b(x)

\bigr\} 
and the corresponding outer normal vector to \partial \Omega at a differentiable point x \in \partial \Omega :

n = n(x, b(x)) =
( - b\prime (x), 1)\top \sqrt{} 
1 + (b\prime (x))

2
.

With this setup, the shock stability problem can be formulated into the following
IBVP for system (1.4):

Cauchy condition:

(1.6) U | x=0 = U\infty := (u\infty , 0)
\top ,

Boundary condition:

(1.7) U \cdot n | \partial \Omega = 0.

We first introduce the notion of entropy solutions for problem (1.4)--(1.7).

Definition 1.1. Consider IBVP (1.4)--(1.7) in \Omega . A vector function U(x, y) \in 
(BVloc \cap L\infty )(\Omega ) is an entropy solution of (1.4)--(1.7) if the following conditions are
satisfied:

(i) For any test function \phi \in C\infty 
0 (\BbbR 2),

(1.8)

\int 
\Omega 

\bigl\{ 
W (U)\phi x +H(U(W )

\bigr) 
\phi y +G(U, y)\phi 

\bigr\} 
dxdy +

\int \infty 

0

W (U\infty )\phi (0, y) dy = 0.

(ii) For any convex entropy pair (\scrE ,\scrQ ) with respect toW of (1.5), i.e., \nabla 2\scrE (W ) \geq 
0 and \nabla \scrQ (W ) = \nabla \scrE (W )\nabla H(U(W )),\int 

\Omega 

\bigl\{ 
\scrE (W (U))\psi x +\scrQ (W (U))\psi y +\nabla W\scrE (W (U))G(U)\psi 

\bigr\} 
dxdy(1.9)

+

\int \infty 

0

\scrE (W (U\infty ))\psi (0, y) dy \geq 0 for any \psi \in C\infty 
0 (\BbbR 2) with \psi \geq 0.

We now state the main results of this paper.

Theorem 1.2 (main theorem). Let conditions (H1)--(H2) hold. Assume that\int \infty 

0

\bigl( 
1 + | b(x)| 

\bigr) 
d\mu (x) < \varepsilon ,(1.10)

where \mu (x) = T.V.\{ b\prime +(\tau ) : \tau \in [0, x)\} . Then the following statements hold:
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STABILITY OF CONICAL SHOCKS IN SUPERSONIC FLOWS 2815

(i) (global existence). If M\infty is sufficiently large and \varepsilon is sufficiently small, IBVP
(1.4)--(1.7) admits a global entropy solution U(x, y) with bounded total variation (TV)

sup
x>0

T.V.
\bigl\{ 
U(x, y) :  - \infty < y < b(x)

\bigr\} 
<\infty (1.11)

in the sense of Definition 1.1. The entropy solution U(x, y) contains a strong leading
shock-front y = \chi (x) =

\int x

0
s(\tau ) d\tau with s(x) \in BV (R+), which is a small perturbation

of the strong straight-sided conical shock-front y = s0x, and U(x, y) between the leading
shock-front and the cone surface is a small perturbation of the background self-similar
solution of the straight-sided cone case, where s0 denotes the slope of the corresponding
straight-sided shock-front when the straight-sided cone is given by y = b0x.

(ii) (asymptotic behavior). For the entropy solution U(x, y) constructed in (i),

lim
x\rightarrow \infty 

sup
\bigl\{ 
| U(x, y) - \varpi (\sigma \infty ;O\infty )| : \chi (x) < y < b(x)

\bigr\} 
= 0(1.12)

with \varpi (\sigma \infty ;O\infty ) satisfying

\varpi (s\infty ;O\infty ) = \Theta (s\infty ), \varpi (b\prime \infty ;O\infty ) \cdot ( - b\prime \infty , 1) = 0,(1.13)

where

s\infty = lim
x\rightarrow \infty 

s(x), b\prime \infty = lim
x\rightarrow \infty 

b\prime +(x),(1.14)

\varpi (\sigma \infty ;O\infty ) is the state of the self-similar solution with \sigma \infty = y
x - X\ast 

\infty 
and O\infty =

(X\ast 
\infty , 0) as its self-similar variable and center, respectively, for some X\ast determined

by the asymptotic limit of b\prime +(x) as x \rightarrow \infty , and \Theta (s) denotes the state connected to
state U\infty by the strong leading shock-front of speed s.

Some efforts have been made on the shock stability problem for the perturbed
cones that are small perturbations of the straight-sided cone during the last three
decades. The local piecewise smooth solutions for polytropic potential flow near the
cone vertex were given in [10, 11] for both a symmetrically perturbed cone and pointed
body, respectively. The global existence of weak solutions was first analyzed via a
modified Glimm scheme by Lien and Liu [21] for the uniform supersonic isentropic
Euler flow past a piecewise straight-sided cone, provided that the cone has a small
opening angle, the initial strength of the shock-front is sufficiently weak, and the Mach
number of the incoming flow is sufficiently large. It is further considered in Wang
and Zhang [25] for supersonic potential flow for the adiabatic exponent \gamma \in (1, 3)
over a symmetric Lipschitz cone with arbitrary opening angle that is less than the
critical angle, so that a global weak solution could be constructed, which is a small
perturbation of the self-similar solution under the conditions that the total variation
of the slopes of the perturbed generating curves of the cone is small and the Mach
number of the incoming flow is sufficiently large.

Another concern is whether global piecewise smooth solutions could be construc-
ted when the surface of the perturbed cone is smooth. Using the weighted energy
methods, the global existence of piecewise smooth solutions was established in Chen,
Xin, and Yin [23] for the 3-D axisymmetric potential flow past a symmetrically per-
turbed cone under the assumptions that the attached angle is sufficiently small and the
Mach number of the incoming flow is sufficiently large. This result was also extended
to the M-D potential flow case (see [20] for more details). In [26], the global existence
of the M-D conical shock solutions was established when the uniform supersonic in-
coming flow with large Mach number passes through a generally curved sharp cone
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under a certain boundary condition on the cone surface. On the other hand, by using
the delicate expansion of the background solution, the global existence and stability of
a steady conical shock wave was established in Cui and Yin [13, 14] for the symmetri-
cally perturbed supersonic flow past an infinitely long conic body, when the the vertex
angle is less than the critical angle. More recently, by constructing new background
solutions that allow the incoming flows to tend to the speed limit, the global existence
of steady symmetrically conical shock solutions was established in Hu and Zhang [18]
when a supersonic incoming potential flow hits a symmetrically perturbed cone with
the opening angle less than the critical angle. We also remark that some important
results have been obtained on the stability of M-D transonic shocks under symmetric
perturbations of the straight-sided cones or the straight-sided wedges, as well as on
Radon measure solutions for steady compressible Euler equations of hypersonic-limit
conical flows; see [2, 3, 4, 22, 27] and the references cited therein.

In this paper, we establish the global existence and structural/asymptotic stabil-
ity of conical shock-front solutions in BV in the flow direction when the isothermal
flows (i.e., \gamma = 1) past Lipschitz perturbed cones that are small perturbations of the
straight-sided one. Mathematically, our problem can be formulated as a free boundary
problem governed by two-dimensional steady isentropic irrotational Euler flows with
geometric structure. There are two difficulties for solving this problem: One is the
singularity generated by the geometric source term, and the other is that, for our case
\gamma = 1, the two genuinely nonlinear characteristics are superposed into a degenerate
one when the Mach number of the incoming flow tends to infinity, which is delicate
to handle in the construction of approximate solutions.

To overcome these obstacles and make sure of the nonincreasing of the ongo-
ing designed Glimm-type functional, we first develop a modified Glimm scheme to
construct approximate solutions U\Delta x,\vargamma (x, y) via the self-similar solutions as building
blocks in order to incorporate them with the geometric source term. To achieve this,
we make careful asymptotic expansions of the self-similar solutions up to second order
with respect to M - 1

\infty . In addition to the shock waves and rarefaction waves generated
by solving the Riemann problem, there is another new type of discontinuity gener-
ated by the center changes and the corresponding updated self-similar variables of
the self-similar solutions, owing to the Lipschitz perturbation of the cone. In order

to deal with this new discontinuity, we introduce new functionals Lc, Q
(1)
wc , Q

(2)
wc , and

Qce (see Definitions 7.2--7.3) in the construction of the Glimm-type functional to con-
trol the center changes. Finally, in order to ensure the decrease of the Glimm-type
functional, we make a more precise asymptotic expansion analysis of the background
solutions with respect to the Mach number M\infty of the incoming flow, obtain their ex-
pansion formulas when M\infty sufficiently large, and then make full use of the reflection
coefficients Kr,Kw,Ks, and \mu w of the weak waves reflected from both the boundary
and the strong leading shock, and the self-similar solutions reflected from the strong
leading shock to derive that

| Kr| 
\bigl( 
| Kw| + | Ks| | \mu w| 

\bigr) 
= 1 - (8b40 + 2b20 + 1)m - 1

0 M - 1
\infty +O(M - 2

\infty ) +O(e - m0M
2
\infty ),

which is strictly less than 1 when M\infty is sufficiently large, where m0 =
b20

2(1+b20)
> 0.

We do this expansion with respect to sufficiently large M\infty in order to overcome the
superposed singularity caused for the case that \gamma = 1. Based on this, we can choose
some appropriate weights, independent ofM\infty , in the construction of the Glimm-type
functional and then show that the functional is monotonically decreasing. With these,
the convergence of the approximate solutions and the existence of an entropy solution
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are followed by the standard approach for the Glimm-type scheme as in [16, 19]; see
also [9, 15, 24].

For the asymptotic behavior of the entropy solution, we need further estimates
on the approximation solutions U\Delta x,\vargamma (x, y). The key point here is that a new term
\scrC \Delta x,\vargamma (x) is introduced to measure the total variation for the changes of centers X\ast 

\Delta x,\vargamma 

in U\Delta x,\vargamma (x, y) and show that this term eventually approaches zero by further estimates
of the approximate solutions, so that X\ast 

\Delta x,\vargamma tends to a constant X\ast 
\vargamma for \Delta x\rightarrow 0. This

is different from the wedge case that has been handled in [9, 29]. In addition, we
prove that the total variation of the weak waves approaches zero as x \rightarrow \infty . Then,
by employing the Glimm--Lax theory [17], we obtain the asymptotic behavior of the
entropy solution that tends to a self-similar solution with X\ast 

\infty = limx\rightarrow \infty X\ast 
\vargamma (x, b(x))

as its center.
The rest of this paper is organized as follows: In section 2, we recall some basic

facts for the homogeneous system of (1.1), which are required for subsequent develop-
ments. In section 3, we analyze the background solutions for steady supersonic flows
past the unperturbed straight-sided cones and obtain some detailed asymptotic esti-
mates for the self-similar solutions as M\infty \rightarrow \infty . In section 4, we solve two types of
Riemann problems, while a modified Glimm scheme is developed for the construction
of approximate solutions in section 5. The local wave interaction estimates are given
in section 6 for large M\infty . In section 7, we construct the Glimm-type functional and
prove its monotonicity that leads to the existence theory by following the standard
procedure of [16, 19]; see also [9, 15, 24]. In section 8, we analyze the asymptotic
behavior of the entropy solutions. Finally, in Appendix A, we give a detailed proof of
Lemma 2.1.

2. Homogeneous system. In this section, we present some basic properties of
the homogeneous system of (1.1), i.e., G(U, y) \equiv 0. For this case, system (1.4) can be
reduced to the following conservation form:

\partial xW (U) + \partial yH(U) = 0.(2.1)

For u > c, system (2.1) is strictly hyperbolic and has two distinct eigenvalues,

\lambda j(U) =
uv + ( - 1)jc

\surd 
u2 + v2  - c2

u2  - c2
for j = 1, 2,

and the corresponding two right eigenvectors,

rj(U) = ej(U)( - \lambda j(U), 1)\top for j = 1, 2,

where ej(U) > 0 can be chosen so that rj(U) \cdot \nabla U\lambda j(U) \equiv 1 for j = 1, 2.
The fact that ej(U) > 0, j = 1, 2, is a consequence of the following lemma whose

proof is given in Appendix A.

Lemma 2.1. If \lambda j(U) is the jth eigenvalue of (2.1) and rj(U) is the corresponding
eigenvector satisfying rj(U) \cdot \nabla U\lambda j(U) \equiv 1 for u > c for j = 1, 2, then

ej(U) =

\surd 
M2  - 1

c2M6

\bigl( 
u
\sqrt{} 
M2  - 1 + ( - 1)j+1v

\bigr) 3
> 0 for j = 1, 2,(2.2)

where M = q
c is the Mach number and q =

\surd 
u2 + v2 is the fluid speed.
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x

y

O
U\infty 

U(\sigma )
y = b0x

y = s0x

Fig. 3.1. Steady supersonic flow past an unperturbed straight-sided cone.

3. Properties of the background solutions. In this section, we study the
conical flow past a straight-sided cone, i.e., b(x) = b0x for x \geq 0. According to [12],
problem (1.4)--(1.7) admits a self-similar solution (u(\sigma ), v(\sigma ), \rho (\sigma )) with \sigma = y

x as its
self-similar variable for this case. Then it can be reduced to a boundary value problem
of an ordinary differential equation, whose solution consists of a straight-sided conical
shock-front issuing from the cone vortex, when | b0| is less than the critical angle (see
Figure 3.1).

Let y = s0x be the location of the shock-front. Then problem (1.1)--(1.6) (with
\rho \infty = 1 by scaling) becomes

(3.1)

\left\{                       

(\sigma u - v)\rho \sigma + \sigma \rho u\sigma  - \rho v\sigma = \rho v
\sigma , s0 < \sigma < b0,

u\sigma + \sigma v\sigma = 0, s0 < \sigma < b0,

c
\rho \rho \sigma + uu\sigma + vv\sigma = 0, s0 < \sigma < b0,

\rho (us0  - v) = u\infty s0, \sigma = s0,

u+ vs0 = u\infty , \sigma = s0,

v  - ub0 = 0, \sigma = b0,

and

(u(\sigma ), v(\sigma )) = (u\infty , 0), \sigma < s0.(3.2)

System (3.1)1--(3.1)3 can also be rewritten in an equivalent form as

(3.3)

\left\{               

u\sigma =
c2v

(1 + \sigma 2)c2  - (v  - \sigma u)2
,

v\sigma =  - c2v

\sigma ((1 + \sigma 2)c2  - (v  - \sigma u)2)
,

\rho \sigma =
\rho v(v  - \sigma u)

\sigma ((1 + \sigma 2)c2  - (v  - \sigma u)2)
.

To study the self-similar solution, we need some properties of the shock polar.

Lemma 3.1. Let b+ < 0. Then there exist constants K \prime > 0 and K \prime \prime \in (0,K \prime )
independent of M\infty such that, for M\infty sufficiently large, the following system of equa-
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tions,

\rho +(u+s+  - v+) = u\infty s+,(3.4)

u+ + v+s+ = u\infty ,(3.5)

u+b+  - v+ = 0,(3.6)

u2+ + v2+
2

+ c2 ln \rho + =
u2\infty 
2
,(3.7)

has a unique solution (u+, v+, \rho +, s+) with

(3.8) s+ \in 
\bigl( 
b+  - K \prime e - m+M2

\infty , b+  - K \prime \prime e - m+M2
\infty 
\bigr) 

for m+ :=
b2+

2(1+b2+)
.

In addition,

u+ =

\biggl( 
1

1 + b2+
+O(1)e - m+M2

\infty 

\biggr) 
u\infty ,(3.9)

v+ =

\biggl( 
b+

1 + b2+
+O(1)e - m+M2

\infty 

\biggr) 
u\infty ,(3.10)

\rho + = exp
\bigl\{ 
m+M

2
\infty 
\bigl( 
1 +O(1)e - m+M2

\infty 
\bigr) \bigr\} 
,(3.11)

where O(1) is independent of M\infty .

Proof. We divide the proof into three steps.
1. Equations (3.5)--(3.6) yield

(3.12) u+ =
u\infty 

1 + b+s+
, v+ =

b+u\infty 
1 + b+s+

,

which implies that u+ > c for sufficiently large M\infty . Using (3.4), we have

\rho + =
s+(1 + s+b+)

s+  - b+
.(3.13)

Then substituting (3.12)--(3.13) into (3.7) leads to

1

2

\biggl( 
1 + b2+

(1 + b+s+)2
 - 1

\biggr) 
+ ln(

s+(1 + b+s+)

s+  - b+
)M - 2

\infty = 0.(3.14)

2. In order to solve (3.14), we define

\varphi (s) :=
1

2

\biggl( 
1 + b2+

(1 + b+s)2
 - 1

\biggr) 
+ ln(

s(1 + b+s)

s - b+
)M - 2

\infty for s < b+.(3.15)

Since b+ < 0, it is direct to verify that

lim
s\rightarrow b+ - 

\varphi (s) = lim
s\rightarrow  - \infty 

\varphi (s) = \infty .(3.16)

In addition, for K > 0,

\varphi (b+  - Ke - m+M2
\infty ) = h(K,M\infty ),(3.17)
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2820 GUI-QIANG G. CHEN, JIE KUANG, AND YONGQIAN ZHANG

where
(3.18)

h(K,M\infty ) =
1

2

\biggl( 
1 + b2+

(1 + b2+  - b+Ke - m+M2
\infty )2

 - 1

\biggr) 
+

b2+
2(1 + b2+)

+
\bigl( 
ln | b+  - Ke - m+M2

\infty | + ln(1 + b2+  - b+Ke
 - m+M2

\infty ) - lnK
\bigr) 
M - 2

\infty .

Note that, for K > 0,

h(K,M\infty ) <
\bigl( 
ln | b+  - Ke - m+M2

\infty | + ln
\bigl( 
1 + b2+  - b+Ke

 - m+M2
\infty 
\bigr) 
 - lnK

\bigr) 
M - 2

\infty .

Then, for M\infty >

\sqrt{} \bigm| \bigm| ln(1+2b2+ - 2
\surd 

b2+(b2++1) )
\bigm| \bigm| 

\surd 
m+

, we can choose appropriate K \prime > 0 such

that

h(K \prime ,M\infty ) <  - m+

ln(1 + 2b2+  - 2
\sqrt{} 
b2+(b

2
+ + 1) )

\times 
\Bigl\{ 
ln
\bigl( 
(1 + 2b2+  - 2

\sqrt{} 
b2+(b

2
+ + 1) )K \prime  - b+

\bigr) 
+ ln

\bigl( 
1 + b2+  - (1 + 2b2+  - 2

\sqrt{} 
b2+(b

2
+ + 1) )b+K

\prime \bigr)  - lnK \prime 
\Bigr\} 
< 0.

On the other hand, since

lim
K\rightarrow 0+

lnK =  - \infty ,

then, for M\infty sufficiently large, we can also choose another constant K \prime \prime \in (0,K \prime ) so
that

h(K \prime \prime ,M\infty ) > 0.

These lead to

\varphi (b+  - K \prime e - m+M2
\infty ) < 0, \varphi (b+  - K \prime \prime e - m+M2

\infty ) > 0,

which implies that \varphi (s) = 0 has two solutions that lie in ( - \infty , b+ - K \prime e - m+M2
\infty ) and

(b+  - K \prime e - m+M2
\infty , b+  - K \prime \prime e - m+M2

\infty ), respectively.
3. The properties of the shock polar indicate that \varphi (s) = 0 has at most two

solutions in ( - \infty , b+). Therefore, \varphi (s) = 0 has a unique solution in (b+ - K \prime e - m+M2
\infty ,

b+  - K \prime \prime e - m+M2
\infty ), which gives the uniqueness of (u+, v+, \rho +, s+) and

s+ \in (b+  - K \prime e - m+M2
\infty , b+  - K \prime \prime e - m+M2

\infty ).

Then, by (3.12)--(3.13), we obtain the desire estimates (3.10)--(3.11).

Denote

\varphi (s, b) :=
1

2

\biggl( 
1 + b2

(1 + bs)2
 - 1

\biggr) 
+ ln(

s(1 + bs)

s - b
)M - 2

\infty .

Lemma 3.2. For M\infty sufficiently large and s \in [5b0, b0], \varphi (s, b) = 0 has a unique
solution b = b(s) with b(s) \in (s, 0). Moreover,

b(s) = s+O(1)e - m0M
2
\infty ,

where m0 =
b20

2(1+b20)
, and O(1) depends only on b0 < 0 but is independent of M\infty .
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Proof. We differentiate \varphi (s, b) with respect to b to obtain

\partial \varphi (s, b)

\partial b
=

(b - s)2 + (1 + s2)(1 + bs)2M - 2
\infty 

(b - s)(1 + bs)3
.

To estimate the zero points of \partial \varphi (s,b)
\partial b in b, let

\varphi 1 := (b - s)2 + (1 + s2)(1 + bs)2M - 2
\infty .

Then

\partial \varphi 1

\partial b
= 2
\bigl( 
b - s+ (1 + s2)(1 + bs)sM - 2

\infty 
\bigr) 
.

For sufficiently large M\infty , \partial \varphi 1

\partial b > 0. Thus, \varphi 1 = 0 has at most one solution in (s, 0),

which implies that \partial \varphi (s,b)
\partial b = 0 has at most one zero point in (s, 0). On the other hand,

by a direct computation, we have

lim
b\rightarrow s+

\varphi (s, b) = \infty ,

and

\varphi (s, s+Ke - m0M
2
\infty ) =

1

2

\biggl( 
1 + (s+Ke - m0M

2
\infty )2

(1 + s2 + sKe - m0M2
\infty )2

 - 1

\biggr) 
+

b20
2(1 + b20)

+
\bigl( 
ln | s| + ln(1 + s2 + sKe - m0M

2
\infty ) - lnK

\bigr) 
M - 2

\infty 

<
b20

2(1 + b20)
 - s2

2(1 + s2)
+
\bigl( 
ln | s| + ln(1 + s2) - lnK

\bigr) 
M - 2

\infty < 0

for appropriateK > 0 and sufficiently largeM\infty , which imply the existence of b(s).

Lemma 3.3. Let (u(s0), v(s0), \rho (s0)) be a state on the shock polar passing through
(u\infty , 0, \rho \infty ) with speed s0. Then the following two statements are equivalent:

(i) The density increases across the shock in the flow direction:

\rho (s0) > 1 = \rho \infty .(3.19)

(ii) The shock speed s0 must be between \lambda 1(s0) and \lambda 1(U\infty ):

\lambda 1(s0) < s0 < \lambda 2(s0), s0 < \lambda 1(U\infty ),(3.20)

where

\lambda j(s0) =
u(s0)v(s0) + ( - 1)jc

\sqrt{} 
u2(s0) + v2(s0) - c2

u2(s0) - c2
for j = 1, 2.

Proof. We divide the proof into two steps.
1. Case (i) \Rightarrow (ii). By the Bernoulli law and the Rankine and Hugoniot relation

in (3.1), we have

\alpha 2

\alpha 2  - 1
ln\alpha =

s20
2(1 + s20)

M2
\infty ,

ln\alpha 

\alpha 2  - 1
=

\bigl( 
v(s0) - s0u(s0)

\bigr) 2
2c2(1 + s20)

for \alpha := \rho (s0).
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Denote

f(\alpha ) :=
\alpha 2

\alpha 2  - 1
ln\alpha for \alpha > 1.

Then

f \prime (\alpha ) =
\alpha g(\alpha )

(\alpha 2  - 1)2
for \alpha > 1,

where g(\alpha ) = \alpha 2  - 2 ln\alpha  - 1. Since g\prime (\alpha )| \{ \alpha >1\} > 0, then g(\alpha ) > g(1) = 0 for any
\alpha > 1, which implies that

f \prime (\alpha )
\bigm| \bigm| 
\{ \alpha >1\} > 0.

Then

s20
2(1 + s20)

M2
\infty = f(\alpha ) > lim

\alpha \rightarrow 1+
f(\alpha ).

Applying L'H\^opital's rule gives that lim\alpha \rightarrow 1+ f(\alpha ) =
1
2 . Therefore, we have

s20
2(1 + s20)

M2
\infty >

1

2
,

which yields that

s0 <  - 1\sqrt{} 
M2

\infty  - 1
= \lambda 1(U\infty ).

In the same way, we can show that, for \alpha = \rho (s0) > 1,

ln\alpha 

\alpha 2  - 1
=

\bigl( 
v(s0) - s0u(s0)

\bigr) 2
2c2(1 + s20)

<
1

2
,

which implies that s0 \in (\lambda 1(s0), \lambda 2(s0)).
2. Case (ii) \Rightarrow (i). On the contrary, assume that \rho (s0) \leq 1 = \rho \infty . Then

f \prime (\alpha )
\bigm| \bigm| 
\{ 0<\alpha \leq 1\} \leq 0,

so that f(\alpha ) \leq lim\alpha \rightarrow 1 - f(\alpha ) for \alpha \in (0, 1). It follows that

s20
2(1 + s20)

M2
\infty <

1

2
,

that is,

s0 >  - 1\sqrt{} 
M2

\infty  - 1
,

which contradicts (3.20). The proof is complete.

Let \Theta (s) = (\~u(s), \~v(s)) be the states on the parameterized shock polar of S - 
1 (U\infty )

as defined in section 4.2. Then we have the following lemma.
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Fig. 3.2. The apple curve and the shock polar for the self-similar solutions.

Lemma 3.4. For s < \lambda 1(U\infty ), \~v(s)
\~u(s) is a strictly monotone increasing function with

respect to s.

Proof. From Lemma 3.1, we know that there is only one intersection point be-
tween the straight line v = bu with b < 0 and the shock polar S - 

1 (U\infty ) in the super-

sonic region. This implies that the flow angle \theta (s) = arctan( \~v(s)
\~u(s) ) is a strictly mono-

tone function of s. Furthermore, from the properties of the shock polar S - 
1 (U\infty ) (or see

[12, 29] for more details), we also see that \theta (s) < 0 = \theta (\lambda 1(U\infty )) for s < \lambda 1(U\infty ).

Now we consider the conical flows. We recall some properties of the apple curves
in [12]. Given a constant state (u01, v

0
1) on the shock polar through state (u\infty , 0) (see

Figure 3.2), let (u1(\sigma ), v1(\sigma )) be the solution of (3.3)1--(3.3)2 with initial data

(u1, v1)
\bigm| \bigm| 
\sigma =\sigma 0

= (u01, v
0
1) with \sigma 0 =

u\infty  - u0
1

v0
1

.

Then we can continue the solution, (u1(\sigma ), v1(\sigma )), till endpoint (u1(\sigma e), v1(\sigma e)) so

that v1(\sigma e)
u(\sigma e)

= \sigma e. The collection of the end states forms an apple curve through

(u\infty , 0). The solution, (u(\sigma ), v(\sigma )), of (3.3)1--(3.3)2 can be found by the shooting
method (see [12] for more details). Therefore, we see that

v(b0) - u(b0)b0 = 0, (v(\sigma ) - \sigma u(\sigma ))
\bigm| \bigm| 
\{ s0<\sigma <b0\} 

\not = 0.(3.21)

Indeed, we have the following lemma.

Lemma 3.5. For state (u(s0), v(s0), \rho (s0)) on the shock polar through (u\infty , 0, \rho \infty )
with speed s0,

u(s0) > 0, v(s0) < 0, v(s0) - s0u(s0) > 0,(3.22)

so that

v(\sigma ) - \sigma u(\sigma ) > 0 for s0 < \sigma < b0.(3.23)
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Proof. Using the Rankine--Hugoniot relations for (3.1) and Lemma 3.2 and noting
that s0 < 0, we have

u(s0) =
1

1 + s20

\biggl( 
1 +

s20
\rho (s0)

\biggr) 
u\infty > 0,

v(s0) =
s0

1 + s20

\biggl( 
1 - 1

\rho (s0)

\biggr) 
u\infty < 0,

v(s0) - s0u(s0) =  - s0u\infty 
\rho (s0)

> 0.

Hence, by (3.21), we obtain (3.23) for s0 < \sigma < b0.

Now we state some properties about the self-similar solutions of problem (3.1)--
(3.2).

Lemma 3.6. For \sigma \in (s0, b0), the free boundary problem (3.1)--(3.2) admits a
unique solution (u(\sigma ), v(\sigma ), \rho (\sigma )) that satisfies the following properties:

c2(1 + \sigma 2) - 
\bigl( 
v(\sigma ) - \sigma u(\sigma )

\bigr) 2
> 0,(3.24)

v(\sigma ) < 0, \rho (\sigma ) > 0,(3.25)

u\sigma (\sigma ) < 0, v\sigma (\sigma ) < 0, \rho \sigma (\sigma ) > 0.(3.26)

Proof. We divide the proof into four steps.
1. Lemma 3.1 implies that the straight line v = bu intersects the shock polar

through (u\infty , 0). Then, from the structure of the apple curve given in [12], problem
(3.1)--(3.2) has a unique solution (u(\sigma ), v(\sigma ), \rho (\sigma )).

2. We now prove (3.24)--(3.26). Define

\sigma \ast := sup

\biggl\{ 
\sigma 0 : 0 <

v(\sigma ) - \sigma u(\sigma )\surd 
1 + \sigma 2

< c, v(\sigma ) < 0, \sigma \in [s0, \sigma 0]

\biggr\} 
.

By Lemmas 3.3--3.5, we have

0 <
v(s0) - s0u(s0)\sqrt{} 

1 + s20
< c, v(s0) < 0.

Therefore, \sigma \ast \geq s0.
3. We now prove \sigma \ast \geq b0. On the contrary, assume that \sigma \ast < b0. Then\biggl( 

v(\sigma \ast ) - \sigma \ast u(\sigma \ast )\sqrt{} 
1 + \sigma 2

\ast 
 - c

\biggr) 
v(\sigma \ast ) = 0,

v(\sigma ) - \sigma u(\sigma ) > 0, 0 <
v(\sigma ) - \sigma u(\sigma )\surd 

1 + \sigma 2
< c for \sigma \in [s0, \sigma \ast ).

By (3.3), we have

u\sigma (\sigma ) < 0, v\sigma (\sigma ) < 0, \rho \sigma (\sigma ) > 0 for \sigma \in [s0, \sigma \ast ).

Denote

h(\sigma ) :=
v(\sigma ) - \sigma u(\sigma )\surd 

1 + \sigma 2
.
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Then

h\prime (\sigma ) =
v\sigma (\sigma ) - \sigma u\sigma (\sigma )\surd 

1 + \sigma 2
 - u(\sigma ) + \sigma v(\sigma )

(1 + \sigma 2)
3
2

< 0 for \sigma \in [s0, \sigma \ast ),

which implies that

v(\sigma \ast ) - \sigma \ast u(\sigma \ast )\sqrt{} 
1 + \sigma 2

\ast 
<
v(s0) - s0u(s0)\sqrt{} 

1 + s20
< c v(\sigma \ast ) < v(s0) < 0.

This leads to a contradiction to (3.27). Thus, \sigma \ast = b0.
4. From (3.1)--(3.2), we have

\rho (\sigma ) > 0, u\sigma (\sigma ) < 0, v\sigma (\sigma ) < 0, \rho \sigma (\sigma ) > 0.

This completes the proof.

Lemma 3.7. For sufficiently large M\infty , solution
\bigl( 
u(\sigma ), v(\sigma ), \rho (\sigma )

\bigr) 
of (3.1)--(3.2)

satisfies

s0 = b0 +O(1)e - m0M
2
\infty ,(3.27)

u(\sigma ) =
\Bigl( 1

1 + b20
+O(1)e - m0M

2
\infty 

\Bigr) 
u\infty ,(3.28)

v(\sigma ) =
\Bigl( b0
1 + b20

+O(1)e - m0M
2
\infty 

\Bigr) 
u\infty ,(3.29)

\rho (\sigma ) = exp
\bigl\{ 
m0M

2
\infty 
\bigl( 
1 +O(1)e - 2m0M

2
\infty 
\bigr) \bigr\} 

(3.30)

for \sigma \in [s0, b0], where m0 :=
b20

2(1+b20)
, and the bound of O(1) is independent of M\infty .

In particular, the largeness of M\infty implies that

u(\sigma ) > c for any \sigma \in (s0, b0).(3.31)

Proof. We first prove (3.28). To do this, for given b0 < 0, consider problem (3.4)--
(3.7) of the planar shock polar solution with b+ = b0. Then m+ = m0. By Lemma
3.1, we know that solution s+ of problem (3.4)--(3.7) satisfies

s+ > b0  - \~K \prime e - m0M
2
\infty ,(3.32)

where \~K \prime > 0 independent of M\infty .
In order to obtain the conical shock with slope s0, we set

b1 =
v(s0)

u(s0)
.

Then, by Lemma 3.5, we have

b0u(s0) \leq b0u(b0) = v(b0) \leq v(s0) = b1u(s0),

which leads to

b0 \leq b1 \leq 0.
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By Lemma 3.4, we can further deduce that

s+ < s0.(3.33)

Since s0 < b0, we obtain by estimates (3.32)--(3.33) that

s0 = b0 +O(1)e - m0M
2
\infty .(3.34)

On the other hand, in the same way as in the proof of Lemma 3.1, we can prove

\varphi (s0, b1) = 0.

Then, by Lemma 3.2, we have

b1 = s0 +O(1)e - m0M
2
\infty = b0 +O(1)e - m0M

2
\infty .(3.35)

Since (u(s0), v(s0)) solves the equations

u(s0) + s0v(s0) = u\infty , u(s0)b1  - v(s0) = 0,

then, employing estimates (3.34)--(3.35), we have

u(s0) =
1

1 + b1s0
=

\biggl( 
1

1 + b20
+O(1)e - m0M

2
\infty 

\biggr) 
u\infty ,

v(s0) =
b1

1 + b1s0

\biggl( 
b0

1 + b20
+O(1)e - m0M

2
\infty 

\biggr) 
u\infty .

Therefore, using the monotonicity of (u(\sigma ), v(\sigma )) again that

u(s0)b0 \leq u(\sigma )b0 \leq u(b0)b0 = v(b0) \leq v(\sigma ) \leq v(s0),

we derive estimates (3.28)--(3.29). Finally, by the Bernoulli law, together with the
estimates of (u(\sigma ), v(\sigma )), we can obtain (3.30). Moreover, for M\infty sufficiently large,
by (3.28), we can obtain (3.31).

Lemma 3.8. For M\infty sufficiently large, the following asymptotic expansions hold:
For any \sigma \in [s0, b0],

\lambda 1(\sigma ) = b0  - (1 + b20)
3
2M - 1

\infty +O(1)M - 2
\infty +O(1)e - m0M

2
\infty ,(3.36)

\lambda 2(\sigma ) = b0 + (1 + b20)
3
2M - 1

\infty +O(1)M - 2
\infty +O(1)e - m0M

2
\infty ,(3.37)

e1(\sigma )

u\infty 
=

1

(1 + b20)
2
+ 3b0(1 + b20)

 - 3
2M - 1

\infty +O(1)M - 2
\infty +O(1)e - m0M

2
\infty ,(3.38)

e2(\sigma )

u\infty 
=

1

(1 + b20)
2
 - 3b0(1 + b20)

 - 3
2M - 1

\infty +O(1)M - 2
\infty +O(1)e - m0M

2
\infty ,(3.39)

e1(\sigma )

e2(\sigma )
= 1 + 6b0(1 + b20)

1
2 M - 1

\infty +O(1)M - 2
\infty +O(1)e - m0M

2
\infty ,(3.40)

where ej(\sigma ) = ej(U(\sigma )), j = 1, 2, and the universal bound of O(1) is independent of
M\infty .
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Proof. By Lemma 3.5 and Taylor's formula when M\infty is large enough, we know
that

\lambda 1(\sigma ) =

v(\sigma )
u(\sigma )  - 

1\surd 
M2 - 1

1 + v(\sigma )
u(\sigma )

1\surd 
M2 - 1

=
b0  - 

\sqrt{} 
1 + b20M

 - 1
\infty +O(1)e - m0M

2
\infty 

1 + b0
\sqrt{} 

1 + b20M
 - 1
\infty +O(1)e - m0M2

\infty 

= b0  - (1 + b20)
3
2M - 1

\infty +O(1)M - 2
\infty +O(1)e - m0M

2
\infty .

The proof of (3.37) is entirely similar.
Next, for ej(\sigma ) in (2.2) with j = 1, 2, using the same method again when M\infty is

large enough, we have

e1(\sigma )

u\infty 
=

\sqrt{} 
M2

M2
\infty 

 - 1

M2
\infty 

\Biggl( 
u

q

\sqrt{} 
1 - 1

M2
+
v

q

1

M

\Biggr) 3

=

\sqrt{} 
1

1 + b20
 - 1

M2
\infty 

\Biggl( \sqrt{} 
1

1 + b20

\sqrt{} 
1 - (1 + b20)

M2
\infty 

+
b0
M\infty 

\Biggr) 3

+O(1)e - m0M
2
\infty 

=
1

(1 + b20)
2
+ 3b0(1 + b20)

 - 3
2M - 1

\infty +O(1)M - 2
\infty +O(1)e - m0M

2
\infty .

The proof of e2(\sigma )
u\infty 

is similar. Finally, we combine (3.38) with (3.39) directly to obtain
(3.40). This completes the proof.

Lemma 3.9. For M\infty sufficiently large, the following estimates hold: For any
\sigma \in [s0, b0],

u\sigma (\sigma ) =

\biggl( 
b0

(1 + b20)
2
+O(1)e - m0M

2
\infty 

\biggr) 
u\infty ,(3.41)

v\sigma (\sigma ) =  - 
\biggl( 

1

(1 + b20)
2
+O(1)e - m0M

2
\infty 

\biggr) 
u\infty ,(3.42)

u\sigma (\sigma ) + \lambda 1(\sigma )v\sigma (\sigma ) =
c\sqrt{} 

1 + b20
+O(1)M\infty e

 - m0M
2
\infty +O(1)M - 1

\infty e - m0M
2
\infty ,(3.43)

u\sigma (\sigma ) + \lambda 2(\sigma )v\sigma (\sigma ) =  - c\sqrt{} 
1 + b20

+O(1)M\infty e
 - m0M

2
\infty +O(1)M - 1

\infty e - m0M
2
\infty ,(3.44)

where the bound of O(1) is independent of M\infty .

Proof. According to (3.3), Lemma 3.5, and Taylor's formula, we have

u\sigma (\sigma ) =
c2v(\sigma )

c2(1 + \sigma 2) - (\sigma u(\sigma ) - v(\sigma ))2
=

c2b0
1+b20

+O(1)e - m0M
2
\infty 

c2
\bigl( 
1 + b20

\bigr) 
+O(1)e - m0M2

\infty 
u\infty 

=

\biggl( 
b0

(1 + b20)
2
+O(1)e - m0M

2
\infty 

\biggr) 
u\infty .

On the other hand, since v\sigma (\sigma ) =  - 1
\sigma u\sigma (\sigma ), we finally obtain (3.42).

D
ow

nl
oa

de
d 

12
/1

5/
21

 to
 1

63
.1

.8
1.

18
4 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2828 GUI-QIANG G. CHEN, JIE KUANG, AND YONGQIAN ZHANG

By Lemma 3.6 and a direct computation,

u\sigma (\sigma ) + \lambda 1(\sigma )v\sigma (\sigma )

=

\biggl( 
b0

(1 + b20)
2
+O(1)e - m0M

2
\infty 

\biggr) 
u\infty 

 - 
\biggl( 

1

(1 + b20)
2
+O(1)e - m0M

2
\infty 

\biggr) \Bigl( 
b0  - (1 + b20)

3
2 M - 1

\infty +O(1)M - 2
\infty +O(1)e - m0M

2
\infty 

\Bigr) 
u\infty 

=
c\sqrt{} 

1 + b20
+O(1)M\infty e

 - m0M
2
\infty +O(1)M - 1

\infty e - m0M
2
\infty .

In the same way, we can prove (3.44). This completes the proof.

4. Riemann solutions for the homogeneous system. In this section, we
analyze the solutions of the Riemann problem for the homogeneous system (2.1) with
piecewise constant initial data:

(4.1) U | \{ x=x0\} =

\Biggl\{ 
Ua for y > y0,

Ub for y < y0,

where the constant states Ua and Ub denote the above state and below state with
respect to line y = y0, respectively, which are near the states of the background
conical flow.

4.1. Riemann problem involving only weak waves. Denote by \Gamma (b0, u\infty )
the curve formed by the states on the conical flow constructed in section 3, so that
\Gamma (b0, u\infty ) is the curve formed by state (u(\sigma ), v(\sigma ))\top that is the solution of (3.1)--
(3.2). Then, on the solution curve \Gamma (b0, u\infty ) of the conical flow, we have the following
properties.

Lemma 4.1. If Ub \in \Gamma (b0, u\infty ), then

lim
M\infty \rightarrow \infty 

det
\bigl( 
r1(Ub), r2(Ub)

\bigr) 
M\infty 

=
2c2

(1 + b20)
5
2

,(4.2)

lim
M\infty \rightarrow \infty 

det
\bigl( 
r1(Ub), r2(Ub)

\bigr) \bigl( 
(ub)\sigma + \lambda j(\sigma )(vb)\sigma 

\bigr) 
M\infty 

= ( - 1)j+1 2c

(1 + b20)
2
, j = 1, 2.(4.3)

Proof. By Lemma 3.6, we have

det
\bigl( 
r1(Ub), r2(Ub)

\bigr) 
M\infty 

=
c e1(Ub)e2(Ub)

u\infty 

\bigl( 
\lambda 2(Ub) - \lambda 1(Ub)

\bigr) 
=
e1(Ub)

u\infty 

e2(Ub)

u\infty 

\Bigl( 
2c2(1 + b20)

3
2 +O(1)M - 1

\infty +O(1)M\infty e
 - m0M

2
\infty 

\Bigr) 
.

Then it follows that

lim
M\infty \rightarrow \infty 

det
\bigl( 
r1(Ub), r2(Ub)

\bigr) 
M\infty 

=
2c2

(1 + b20)
5
2

.

Next, we turn to the proof of (4.3). By Lemma 3.9, we see that, for j = 1,

lim
M\infty \rightarrow \infty 

det
\bigl( 
r1(Ub), r2(Ub)

\bigr) \bigl( 
(ub)\sigma + \lambda 1(\sigma )(vb)\sigma 

\bigr) 
M\infty 

=
2c2

(1 + b20)
5
2

\sqrt{} 
1 + b20
c

=
2c

(1 + b20)
2
.

The proof for j = 2 is similar.
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Using the results in [29] (see also [9, 24]) and Lemma 4.1, we have the following
solvability result.

Proposition 4.2. Given states \Gamma (b0, u\infty ) defined above, then, for M\infty suffi-
ciently large, there exists a small constant \^\varepsilon > 0 such that, for any states Ub and
Ua lying in O\^\varepsilon (\Gamma (b0, u\infty )) with radius \^\varepsilon and center \Gamma (b0, u\infty ), the Riemann problem
(2.1) and (4.1) admits a unique admissible solution consisting of at most two elemen-
tary waves: one for the 1-characteristic field and the other for the 2-characteristic
field. Moreover, states Ub and Ua can be connected by

Ua = \Phi 2(\varepsilon 2; \Phi 1(\varepsilon 1;Ub))(4.4)

with \Phi j \in C2, \Phi j | \varepsilon j=0 = Ub, and
\partial \Phi j

\partial \varepsilon j

\bigm| \bigm| 
\varepsilon j=0

= rj(Ub) for j = 1, 2.

Remark 4.3. For simplicity, we set

\Phi (\varepsilon 1, \varepsilon 2;Ub) = \Phi 2(\varepsilon 2; \Phi 1(\varepsilon 1;Ub)),(4.5)

and denote \{ Ub, Ua\} as the solution of the following equation,

Ua = \Phi (\varepsilon 1, \varepsilon 2;Ub),(4.6)

that is, \{ Ub, Ua\} = \{ \varepsilon 1, \varepsilon 2\} throughout the paper.

For the statements above, the following interaction estimate was given in Glimm
[16] for weak waves (also see [25, 28, 29]),

Lemma 4.4. If Ub \in \Gamma (b0, u\infty ), \alpha , \beta , and \gamma satisfy

\Phi (\gamma ;Ub) = \Phi (\alpha ; \Phi (\beta ;Ub)),(4.7)

then

\gamma = \alpha + \beta +O(1)Q0(\alpha , \beta ),(4.8)

where

Q0(\alpha , \beta ) =
\sum 

\{ | \alpha i| | \beta j | : \alpha i and \beta j approach\} ,

and O(1) depends continuously on M\infty <\infty .

4.2. Riemann problem involving a strong leading shock-front. Denote
by S1(U\infty ) the part of the shock polar corresponding to the 1-characteristic field. Let

S - 
1 (U\infty ) =

\bigl\{ 
(u, v) \in S1(U\infty ) : c2 \leq u2 + v2 \leq u2\infty , v < 0

\bigr\} 
for U\infty = (u\infty , 0)

\top .

Following the ways in [25, 29] in a neighborhood O\^\varepsilon (\Gamma (b0, u\infty )) of \Gamma (b0, u\infty ),
we can parameterize the shock polar S - 

1 (U\infty ) \cap O\^\varepsilon (\Gamma (b0, u\infty )) for the homogeneous
system (2.1) through U\infty by a C2-function \Theta : s \mapsto \rightarrow \Theta (s, U\infty ), that is, \Theta (s, U\infty ) is the
state that can be connected to U\infty by a shock with slope s and left-state U\infty . In the
following, we write \Theta (s, U\infty ) as \Theta (s) for simplification, and denote by \~u(s) and \~v(s)
the components of \Theta (s), i.e., \Theta (s) = (\~u(s), \~v(s))\top . Moreover, on the shock polar, we
have the following.
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Lemma 4.5. For M\infty sufficiently large, the following expansions hold:

\~u(s0)

u\infty 
=

1

1 + b20
+O(1)e - m0M

2
\infty ,(4.9)

\~v(s0)

u\infty 
=

b0
1 + b20

+O(1)e - m0M
2
\infty ,(4.10)

\~us(s0)

u\infty 
=  - 2b0

(1 + b20)
2
+O(1)M2

\infty e
 - m0M

2
\infty +O(1)e - m0M

2
\infty ,(4.11)

\~vs(s0)

u\infty 
=

1 - b20
(1 + b20)

2
+O(1)M2

\infty e
 - m0M

2
\infty +O(1)e - m0M

2
\infty ,(4.12)

and, for j = 1, 2,

\~us(s0) + \lambda j(s0)\~vs(s0)

u\infty 
=  - b0

1 + b20
+ ( - 1)j(1 - b20)(1 + b20)

 - 1
2 M - 1

\infty +O(1)M - 2
\infty (4.13)

+ O(1)M2
\infty e

 - m0M
2
\infty +O(1)e - m0M

2
\infty ,

\~us(s0) + \lambda 1(s0)\~vs(s0)

\~us(s0) + \lambda 2(s0)\~vs(s0)
= 1 + 2b - 1

0 (1 - b20)
\sqrt{} 

1 + b20M
 - 1
\infty +O(1)M - 2

\infty (4.14)

+ O(1)M2
\infty e

 - m0M
2
\infty +O(1)e - m0M

2
\infty ,

where \~us(s0) =
\partial \~u
\partial s (s0), \~vs(s0) =

\partial \~v
\partial s (s0), and the bound of O(1) is independent of M\infty .

Proof. The first two expansions are directly from Lemma 3.5. To obtain the other
expansions, we first see that, on the shock polar, the Rankine--Hugoniot conditions
hold:

\~\rho (s)
\bigl( 
\~u(s)s - v(s)

\bigr) 
= u\infty s,(4.15)

\~u(s) + \~v(s)s = u\infty ,(4.16)

and the Bernoulli law

\~u2(s) + \~v2(s)

2
+ c2 ln \~\rho (s) =

u2\infty 
2
.(4.17)

We take the derivative of (4.15)--(4.17) with respect to s and then let s = s0 to obtain

A11(s0)
\~us(s0)

u\infty 
+A12(s0)

\~vs(s0)

u\infty 
= B1(s0),

A21(s0)
\~us(s0)

u\infty 
+A22(s0)

\~vs(s0)

u\infty 
= B2(s0),

where

A11(s0) =
s0(\~u

2(s0) - c2) - \~u(s0)\~v(s0)

c2
, A12(s0) =

c2  - \~v2(s0) + s0\~u(s0)\~v(s0)

c2
,

A21(s0) =  - 1, A22(s0) =  - s0, B1(s0) =
\~\rho (s0)\~u(s0) + u\infty 

\~\rho (s0)u\infty 
, B2(s0) =

\~v(s0)

u\infty 
.
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For M\infty sufficiently large, it follows from (4.9)--(4.10) that

A11(s0) =  - b0 +O(1)M2
\infty e

 - m0M
2
\infty +O(1)e - m0M

2
\infty ,

A12(s0) = 1 +O(1)M2
\infty e

 - m0M
2
\infty , A22(s0) =  - b0 +O(1)e - m0M

2
\infty ,

B1(s0) =
1

1 + b20
+O(1)e - m0M

2
\infty , B2(s0) =

b0
1 + b20

+O(1)e - m0M
2
\infty .

Thus, by Cramer's rule, we have

\~us(s0)

u\infty 
=

A22(s0)B1(s0) - A12(s0)B2(s0)

A11(s0)A22(s0) - A12(s0)A21(s0)

=  - 2b0
(1 + b20)

2
+O(1)M2

\infty e
 - m0M

2
\infty +O(1)e - m0M

2
\infty ,

\~vs(s0)

u\infty 
=

A11(s0)B2(s0) - A21(s0)B1(s0)

A11(s0)A22(s0) - A12(s0)A21(s0)

=
1 - b20

(1 + b20)
2
+O(1)M2

\infty e
 - m0M

2
\infty +O(1)e - m0M

2
\infty .

Next, for j = 1, we use Lemma 3.6 and (4.11)--(4.12) to obtain

\~us(s0) + \lambda j(s0)\~vs(s0)

u\infty 
=  - 2b0

(1 + b20)
2
+O(1)M2

\infty e
 - m0M

2
\infty +O(1)e - m0M

2
\infty 

+
\Bigl( 
b0  - (1 + b20)

3
2M - 1

\infty +O(1)M - 2
\infty +O(1)e - m0M

2
\infty 

\Bigr) 
\times 
\biggl( 

1 - b20
(1 + b20)

2
+O(1)M2

\infty e
 - m0M

2
\infty +O(1)e - m0M

2
\infty 

\biggr) 
=  - b0

1 + b20
 - (1 - b20)(1 + b20)

 - 1
2M - 1

\infty +O(1)M - 2
\infty 

+O(1)M2
\infty e

 - m0M
2
\infty +O(1)e - m0M

2
\infty .

The case, j = 2, can be handled similarly. Finally, by the Taylor formula, we have

\~us(s0) + \lambda 1(s0)\~vs(s0)

\~us(s0) + \lambda 2(s0)\~vs(s0)

=

b0
1+b20

+ (1 - b20)(1 + b20)
 - 1

2M - 1
\infty +O(1)M - 2

\infty +O(1)M2
\infty e

 - m0M
2
\infty +O(1)e - m0M

2
\infty 

b0
1+b20

 - (1 - b20)(1 + b20)
 - 1

2M - 1
\infty +O(1)M - 2

\infty +O(1)M2
\infty e

 - m0M2
\infty +O(1)e - m0M2

\infty 

= 1 + 2b - 1
0 (1 - b20)

\sqrt{} 
1 + b20M

 - 1
\infty +O(1)M - 2

\infty +O(1)M2
\infty e

 - m0M
2
\infty +O(1)e - m0M

2
\infty .

This completes the proof.

According to Lemma 4.5, we can obtain the solvability of the above Riemann
problem near the strong shock as below.

Proposition 4.6. For M\infty sufficiently large, there exists a constant \delta 0 > 0 such
that, for states Ub = U\infty and Ua \in O\^\varepsilon (\Gamma (b0, u\infty ))\cap O\delta 0(\Theta (s0)), the Riemann problem
(2.1) and (4.1) admits a unique admissible solution that contains a strong 1-shock and
a 2-weak wave of the 2-characteristic field---either a 2-shock or 2-rarefaction wave.
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5. Construction of approximate solutions. In this section, we construct
global approximate solutions of IBVP (1.1)--(1.7) under the assumptions of Theorem
1.2. We develop a modified Glimm scheme with the Riemann solutions of the ho-
mogeneous system (2.1) and the local self-similar solutions of problem (3.1)--(3.2) as
building blocks in order to incorporate the geometric source term.

To do this, denote \Delta x and \Delta y as mesh lengths in x and y, respectively, and \Delta \sigma 
as a uniform grid size for the self-similar variable \sigma . The initial numerical grid sizes
\Delta x and \Delta \sigma are suitably chosen so that the usual Courant--Friedrichs--Lewy condition
holds:

\Delta y

\Delta x
> 2 max

i=1,2

\bigl\{ 
sup
U

| \lambda i(U)| 
\bigr\} 
.

We also choose a set of points \{ Ak\} k=0 with Ak = (xk, bk), where xk = x0+k\Delta x and
bk = b(xk) for k = 0, 1, . . . .

Define

b\Delta (x) = bk +
bk+1  - bk

\Delta x
(x - xk) for x \in [xk, xk+1) and k \geq 0.

Let

\Omega \Delta x,k =
\bigl\{ 
(x, y) : xk \leq x < xk+1, y < b\Delta (x)

\bigr\} 
, \Omega \Delta x =

\bigl\{ 
(x, y) : x > 0, y < b\Delta (x)

\bigr\} 
,

\Gamma \Delta x,k =
\bigl\{ 
(x, y) : xk \leq x < xk+1, y = b\Delta (x)

\bigr\} 
, \Gamma \Delta x =

\bigl\{ 
(x, y) : x > 0, y = b\Delta (x)

\bigr\} 
.

Denote

\theta 0 = arctan b0, \theta k = arctan(
bk  - bk - 1

\Delta x
) for k > 0,

\omega 0 = arctan(
b(x0) - b(0)

x0
), \omega k = \theta k+1  - \theta k for k \geq 0,

so that \omega k represents the change of angle at the turning point Ak for each k \geq 0.
From hypothesis (H1), when x > x0, the cone boundary is approximated by a set

of line segments \Gamma \Delta x,k with \Gamma \Delta x,k = AkAk+1 for k \geq 0, so that the slope of \Gamma \Delta x,k is
negative and uniformly bounded. Then we can extend \Gamma \Delta x,k so that the extension of
\Gamma \Delta x,k and the x-axis intersect at point (X\ast 

k , 0) with

X\ast 
k = xk - 1  - 

bk - 1

bk  - bk - 1
\Delta x;(5.1)

point (X\ast 
k , 0) is called the center of the self-similar solution for each k \geq 0. Moreover,

by a direct computation, we have the following.

Lemma 5.1. For k > 0,

X\ast 
k  - X\ast 

k - 1 = O(1)bk - 1(tan \theta k  - tan \theta k - 1),(5.2)

where O(1) depends only on b0, independent of k.
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Proof. By (5.1), we have

X\ast 
k  - X\ast 

k - 1 = xk - 1  - 
bk - 1

bk  - bk - 1
\Delta x - 

\Bigl( 
xk - 2  - 

bk - 2

bk - 1  - bk - 2
\Delta x
\Bigr) 

=
\Bigl( 
1 - bk - 1

bk  - bk - 1
+

bk - 2

bk - 1  - bk - 2

\Bigr) 
\Delta x

=
bk - 1

tan \theta k tan \theta k - 1
(tan \theta k  - tan \theta k - 1),

which leads to the desire result by assumption (H1).

We now describe the construction of the difference scheme and corresponding
approximate solutions. In region \{ (x, y) : 0 < x \leq x0, y < b0x\} , the approximate
solution is defined as the unperturbed conical flow with center at (0, 0). For x = x0,
the grid points are the intersection points of x = x0 with the self-similar rays centered
at (0, 0):

y = (tan\omega 0 + h\Delta \sigma )x for h = 0, - 1, - 2, . . . .

Choose an equidistributed sequence \vargamma = (\vargamma 0, . . . , \vargamma k, . . .) \in \Pi \infty 
k=0( - 1, 1). Suppose

that the approximate solution U\Delta x,\vargamma (x, y) has been defined for x < xk, and the grid
points have been defined for x \leq xk for k \geq 1. The approximate solution U\Delta x,\vargamma (xl, y)
is a piecewise smooth solution of problem (3.1)--(3.2) on each vertical grid line x = xl+
for l < k. That is, at any continuous point (x, y) of this approximate solution, it has
the form

U\Delta x,\vargamma (x, y) = Uself(\sigma (x, y)),

where \sigma (x, y) = y
x - X\ast , Uself(\sigma ) is a self-similar solution of system (3.1)--(3.2), and

X\ast = X\ast (x, y) (called the center of Uself) is a piecewise constant and right-continuous
function. As part of the induction hypothesis, we also assume that center X\ast of the
constructed self-similar solution has been specified on \{ x = xl, yh - 1(l) < y < yh(l)\} 
for l < k, h = 0, - 1, . . . , and X\ast \in \{ X\ast \} j\geq 0 for x < xk, where y = yh(l) is the grid
points on x = xl and y0(l) = b(xl).

Then we define the approximate solution U\Delta x,\vargamma (x, y) and the numerical grids
inductively for regions \Omega \Delta x,k for k \geq 1. The construction of the approximate solution
on \Omega \Delta x between xk \leq x < xk+1 is based on the following three cases.

5.1. Case 1: Away from the cone boundary in region \{ \bfitx \bfitk \leq \bfitx < \bfitx \bfitk +\bfone \} \cap 
\Omega \bfDelta \bfitx . We construct the approximate solution U\Delta x,\vargamma (x, y) in the following four steps:

(i) Define the approximate solution on any interval yh(k) < y < yh+1(k), h \leq  - 1,
on line x = xk. Let U(xk, y) be the solution of system (3.1)--(3.2) with the following
initial data given at the mesh point:

U(xk, ak,h) = U\Delta x,\vargamma (xk - , ak,h),(5.3)

where ak,h is a random choice point and can be represented as yh(k) + \vargamma k(yh+1(k) - 
yh(k)). This is the Cauchy problem (3.1)--(3.2) of the ordinary differential system,
whose solution is self-similar with variable \sigma that is defined below. It should be noted
that the initial value above does not uniquely determine the nonautonomous system
(3.3), and the center of the self-similar solution needs to be specified. We specify
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center X\ast (xk, y) to be the center of the self-similar solution U\Delta x,\vargamma (xk - , ak,h) through
the random choice method. That is,

X\ast (xk, y) = X\ast (xk - , ak,h) for yh(k) < y < yh+1(k).

In other words, when the center on line x = xk - is defined, the center for
\{ x = xk+, yh(k) < x < yh+1(k)\} is the same as the center for (xk - , ak,h). Then
this yields the self-similar variable

\sigma =
y

xk  - X\ast (xk, y)
.

(ii) The approximate solution on line x = xk defined above may have discon-
tinuities on the grid points (xk, yh(k)), h =  - 1, - 2, . . . . Therefore, we construct
U\Delta x,\vargamma (x, y) in \{ (x, y) : xk < x < xk+1, yh(k) < y < yh+1(k)\} by solving a series of
Riemann problems of system (2.1) with the initial data

(5.4) U\Delta x,\vargamma (x, y) =

\Biggl\{ 
U\Delta x,\vargamma (yh(k)+, xk+) for y > yh(k),

U\Delta x,\vargamma (yh(k) - , xk+) for y < yh(k).

That is, if U\Delta x,\vargamma (yh(k)\pm , xk+) \in O\^\varepsilon 

\bigl( 
\Gamma (b0, u\infty )

\bigr) 
\cap O\delta 0(\Theta (s0)), then it follows from

Proposition 4.1 that this Riemann problem is solvable, and the solution is a function

of \xi = y - yh(k)
x - xk

and consists of shocks and/or rarefaction waves.

(iii) To include the information of the geometric lower order term, we make a
so-called self-similar modification for the approximate solution constructed above.

Let

\sigma = \sigma (x, y) =
y

x - X\ast (x, y)
.

From the above steps, \sigma (x, y) is well defined and satisfies

\lambda 1(U\Delta x,\vargamma (x, y)) < \sigma (x, y) < \lambda 2(U\Delta x,\vargamma (x, y)).

Denote

\sigma h - 1
2
(k) = \sigma (xk - ,

yh - 1 + yh
2

).

Then, along ray y - yh(k)
x - xk

= \xi for each \xi , the approximate solution U\Delta x,\vargamma (x, y) in

\{ xk < x < xk+1, \sigma h - 1
2
(k) < \sigma (x, y) < \sigma h+ 1

2
(k)\} is defined as the solution of (3.3)

with the initial data U(\xi ) at x = xk + 0, where

\sigma =
y

x - X\ast 
k,h

, X\ast 
k,h = X(xk - , ak,h) for \xi > \xi k,h,

\sigma =
y

x - X\ast 
k,h - 1

, X\ast 
k,h - 1 = X(xk - , ak,h - 1) for \xi < \xi k,h,

and U(\xi ) is the solution of the Riemann problem given above. For this, the center
keeps invariant along the rays.

(iv) Finally, as in [21], the grid lines between x = xk and x = xk+1 are defined
by the rays going through every grid point on x = xk, and the numerical grid points
on x = xk+1 are defined to be the interaction points between the corresponding
grid lines and x = xk+1. The new centers on x = xk+1 inherit those centers on
x = xk+ through the random choice. Then we obtain the approximate solution in
region \{ xk \leq x < xk+1\} \cap \Omega \Delta x and extend it to the whole domain \Omega \Delta x by induction.
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5.2. Case 2: On the cone boundary \{ \bfitx \bfitk \leq \bfitx < \bfitx \bfitk +\bfone \} \cap \Gamma \bfDelta \bfitx . In general,
a 1-wave is produced and emerges into the domain owing to the turning angle of the
cone boundary. It can be a shock or rarefaction wave depending on the change of
the boundary angle toward (or away from) the flow. Meanwhile, the 2-wave issuing
from (xk, y - 1(k)) is reflected on the boundary, and a 1-wave is formed. We define the
approximate solution in the following three steps:

(i) As before, we first solve problem (3.1)--(3.2) on \{ x = xk, y - 1(k) < y < y0(k)\} ,
where the center is chosen the same as the center of the initial data.

(ii) Next, we solve the initial boundary problem of system (2.1) with initial data

U(xk, y) = U\Delta x,\vargamma (xk - , y0(k) - ) for y - 1(k) < y < y0(k),

and with the boundary condition on \Gamma \Delta x,k:

v = \sigma 0(k)u,

where

\sigma 0(k) =
y0(k + 1) - y0(k)

xk+1  - xk
.

The solution of this problem contains only a 1-wave. Between the lower edge of the
1-wave and the cone boundary, the center is chosen as the intersection point of the

ray through (xk, y0(k)) with slope \sigma 0(k) and the x-axis, i.e., (xk  - y0(k)
\sigma 0(k)

, 0). We point

out that the center changes of the self-similar solutions in the whole domain between
the cone boundary and the leading shock-front are due to the changes of the cone
boundary slopes. As to the centers below the lower edge of the 1-wave, it has been
defined for Case 1 in section 5.1.

(iii) We also make a self-similar modification for this solution as in Case 1. Then
the approximate solution is extended to\biggl\{ 

(x, y) : xk \leq x < xk+1, y0(k) +
1

2
(y0  - y - 1(k)) < y < y0(k) + \sigma 0(k)(x - xk)

\biggr\} 
as before with center xk  - y0(k)

\sigma 0(k)
.

5.3. Case 3: Near the leading conical shock-front next to the uniform
upstream flow traced continuously. Suppose that the approximate solution has
been constructed for x < xk. Let (x, y\rho s(x)) be the locus of the front of the strong
leading 1-shock. Suppose that yhs - 1(k) < ys(x) < yhs+1(k). As in [21, 25], interval
yhs - 1(k) < ys(x) < yhs+1(k) is called the front region at x = xk. Inside the front
region, we first solve the self-similar solution of system (3.3) with the initial data

U(xk, ak,hs
) = U\Delta x,\vargamma (xk - , ak,hs

)

and self-similar variable

\sigma =
y

xk  - X\ast (xk, ak,hs
)
.

The solution is denoted as Uself(xk, y) that satisfies

\lambda 1(Uself(xk, y)) < \sigma (xk, y) < \lambda 2(Uself(xk, y)).
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Next, we solve the Riemann problem of system (2.2) with the initial data

U | \{ x=xk\} =

\Biggl\{ 
Uself(xk, y) for ys(k) < y < yhs+1(k),

U\infty for y < ys(k).

The solution, U(x, y), contains a weak 2-wave and a strong 1-shock denoted by y =
\chi \Delta x,\vargamma (x) with speed sk+1. Solve (3.3) again on interval ys(k) < y < yhs+1(k) with
initial value U(xk, ys(k)+) = U+ and self-similar variable \sigma = y

xk - X\ast (xk,ak,hs )
. Denote

its solution by U - (\sigma ). Now we can define the approximate solution in the front region:

U\Delta x,\vargamma (x, y) =

\Biggl\{ 
U - (\sigma ) for ys(k) < y < yhs+1(k),

U\infty for y < ys(k).

The discontinuities at point (xk, yhs+1) are resolved in the same way as in Case 1.
Moreover, we must also specify the center of the self-similar variable near the leading
shock-front as

X\ast (x, y) = X\ast 
k,hs

for xk < x < xk+1 and sk+1 <
y - yhs+1(k)

x - xk
< \xi k,hs+1.

In this way, we complete the construction of the difference scheme and corresponding
approximate solutions U\Delta x,\vargamma (x, y) globally in \Omega \Delta x \cup \Gamma \Delta x.

6. Local interaction estimates. In this section, we establish some uniform es-
timates of the approximate solutions constructed in section 5. For these, the following
formulas are used:

(i) If f \in C1(\BbbR ), then

(6.1) f(x) - f(0) = x

\int 1

0

fx(\mu x) d\mu for any x \in \BbbR .

(ii) If f \in C2(\BbbR 2), then, for any (x, y) \in \BbbR 2,

(6.2) f(x, y) - f(x, 0) - f(0, y) + f(0, 0) = xy

\int 1

0

\int 1

0

fxy(\mu x, \tau y) d\mu d\tau .

Lemma 6.1. Let \sigma k = yk

xk - X and \=\sigma k = yk

xk - \=X
for k = 1, 2, with X, \=X > 0 as their

centers. Then

\Delta \=\sigma = \Delta \sigma +O(1)| X  - \=X| | \Delta \sigma | +O(1)| X  - \=X| | x - 1
2  - x - 1

1 | ,(6.3)

where \Delta \sigma = \sigma 2  - \sigma 1, \Delta \=\sigma = \=\sigma 2  - \=\sigma 1, and O(1) is independent of X, \=X, and \Delta \sigma .

Proof. Since

\=\sigma j  - \sigma j =
yj

xj  - \=X
 - yj
xj  - X

=
yj

(xj  - X)(xj  - \=X)
(X  - \=X) for j = 1, 2,
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then

\Delta \=\sigma  - \Delta \sigma =

\biggl( 
y2

(x2  - \=X)(x2  - X)
 - y1

(x1  - \=X)(x1  - X)

\biggr) \bigl( 
\=X  - X

\bigr) 
=

1

x2  - \=X

\Bigl( y2
x2  - X

 - y1
x1  - X

\Bigr) \bigl( 
\=X  - X

\bigr) 
+

y1
x1  - X

x1x2
(x1  - \=X)(x2  - \=X)

\bigl( 
x - 1
2  - x - 1

1

\bigr) \bigl( 
\=X  - X

\bigr) 
= O(1)| X  - \=X| | \Delta \sigma | +O(1)| X  - \=X| | x - 1

2  - x - 1
1 | ,

where O(1) is independent of X, \=X, and \Delta \sigma .

From now on, we use Greek letters \alpha , \beta , \gamma , and \delta to represent the elemen-
tary waves in the approximate solution, and \alpha i, \beta i, \gamma i, and \delta i, i = 1, 2, denote the
corresponding ith components of the respective waves. To avoid confusion, when
U(x, y) = (u, v)\top (x, y) is the solution of problem (3.1)--(3.2), we often use \varpi (\sigma ;O) to
stand for the states, where \sigma = y

x - X\ast 
k
is the self-similar variable with O = (X\ast 

k , 0) as

the corresponding center. In addition, we use \Psi = \Psi (\sigma  - \sigma 0, \sigma 0;\varpi (\sigma 0;O)) to be the
solution of system (3.3) with initial data:

\Psi | \sigma =\sigma 0
= \varpi (\sigma 0;O),

where \varpi (\sigma 0;O) \in O\^\varepsilon (\Gamma (b0, u\infty )).
As in [9, 24, 25, 29], a curve I is called a mesh curve if I is a space-like curve that

consists of the line segments joining the random points one by one in turn. Then I
divides region \Omega \Delta x into two parts: I - and I+, where I - denotes the part containing
line x = x0. For any two mesh curves I and J, we use J > I to represent that every
mesh point of curve J is either on I or contained in I+. In particular, we call J an
immediate successor to I, provided that J > I, and every mesh point of J except the
one is on I.

Let

\Omega +
\Delta x,j = \Omega \Delta x,j \cap \{ y > \chi \Delta x,\vargamma (x)\} , \Omega  - 

\Delta x,j = \Omega \Delta x,j \cap \{ y < \chi \Delta x,\vargamma (x)\} ,

where curve y = \chi \Delta x,\vargamma (x) is the approximate strong leading shock-front with speed
s\Delta x,\vargamma (x).

We make the following inductive hypotheses:
(P1)(k) The approximate solution U\Delta x,\vargamma (x, y) has been defined in

\{ 0 \leq x \leq k\Delta x\} \cap \Omega \Delta x.

(P2)(k) For any (x, y) \in \Omega +
\Delta x,j

U\Delta x,\vargamma \in O\^\varepsilon (\Gamma (b0, u\infty )) \cap O\delta 0(\Theta (s0)),

and, for any (x, y) \in \Omega  - 
\Delta x,j with 0 \leq j \leq k,

U\Delta x,\vargamma = U\infty .

(P3)(k) For any weak wave \alpha ,

\lambda 1(U\Delta x,\vargamma (x\alpha  - , \cdot )) < \sigma (x\alpha  - , \cdot ) < \lambda 2(U\Delta x,\vargamma (x\alpha  - , \cdot )),
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Fig. 6.1. Interactions involving only weak waves.

where (x\alpha , y\alpha ) denotes the point with x\alpha \in \{ xj : 0 \leq j \leq k\} from where the weak
wave \alpha issues, while \sigma (x\alpha , y\alpha ) represents the corresponding self-similar variable, and
U\Delta x,\vargamma (x, y) stands for its approximate solution.

Then we prove in the following subsections that, under suitable conditions, U\Delta x,\vargamma 

can be defined in \{ 0 \leq x \leq (k + 1)\Delta x\} \cap \Omega \Delta x and satisfies (P1)(k+1)--(P3)(k+1). As
in [16] (also see [9, 15, 24]), we carry out this step by considering any pairs of the
mesh curves I and J with J as an immediate successor to I, where I and J are in
\{ (k  - 1)\Delta x \leq x \leq (k + 1)\Delta x\} \cap \Omega \Delta x.

Now let \Lambda be the diamond between I and J. Suppose that

U\Delta x,\vargamma (x, y) \in O\^\varepsilon (\Gamma (b0, u\infty )) \cap O\delta 0(\Theta (s0)) for any (x, y) \in I \cap (\Omega +
\Delta x,k \cup \Omega \Delta x,k+1),

and

\lambda 1(U\Delta x,\vargamma (x\alpha  - , \cdot )) < \sigma (x\alpha  - , \cdot ) < \lambda 2(U\Delta x,\vargamma (x\alpha  - , \cdot )) for any weak wave \alpha crossing I.

6.1. \Lambda is between \bfity = \bfitb \bfDelta (\bfitx ) and \bfity = \bfitchi \bfDelta \bfitx ,\bfitvargamma (\bfitx ). In this section, we consider
the interactions involving only weak waves. By the construction of the approximate
solution, the waves entering \Lambda are denoted by \alpha = (\alpha 1, 0) and \beta = (\beta 1, \beta 2) that issue
from (xk - 1, yh(k  - 1)) and (xk - 1, yh - 1(k  - 1)), respectively. Let \delta = (\delta 1, \delta 2) be the
set of waves issuing from (xk, yh - 1(k)) (see Figure 6.1).

We now consider the case

\varpi (\sigma 1;O1) = \Phi (\alpha ;\varpi (\=\sigma 1;O2)),(6.4)

\varpi (\=\sigma 2;O2) = \Phi (\beta ;\varpi (\~\sigma 3;O3)),(6.5)

\varpi (\sigma 2;O1) = \Phi (\delta ;\varpi (\~\sigma 3;O3)),(6.6)

where O1 = (X, 0), O2 = ( \=X, 0), and O3 = ( \~X, 0).
For notational convenience, we denote \~x0 := | \=X  - X| , \~x1 := | \~X  - \=X| , and Ub :=

\varpi (\~\sigma 3;O3) from now on.

Lemma 6.2. For the waves described above,

\delta = \alpha + \beta +O(1)Q(\Lambda ),(6.7)
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where Q(\Lambda ) = Q0(\Lambda ) +Q1(\Lambda ) +Qc(\Lambda ) with

Q0(\Lambda ) =
\sum \bigl\{ 

| \alpha i| | \beta j | : \alpha i and \beta j approach
\bigr\} 
,

Q1(\Lambda ) = | \alpha | | \Delta \sigma | ,

Qc(\Lambda ) =
\bigl( 
| \Delta \sigma | + | x - 1

k  - x - 1
k - 1| 

\bigr) 
\~x0,

and \Delta \sigma = \sigma 1  - \sigma 2, and O(1) depends continuously on M\infty but is independent of
\alpha , \beta ,\Delta \sigma , and x0.

Proof. We combine (6.4)--(6.6) to obtain

\Psi (\Delta \sigma , \sigma 2; \Phi (\delta ;Ub)) = \Phi (\alpha ; \Psi (\Delta \=\sigma , \=\sigma 2; \Phi (\beta ;Ub))).(6.8)

Lemma 3.9 yields

lim
M\infty \rightarrow \infty 

det

\biggl( 
\partial \Phi (\delta ;Ub)

\partial (\delta 1, \delta 2)

\bigm| \bigm| \bigm| 
\{ \alpha =\beta =\Delta \sigma =\Delta \=\sigma =x0=0\} 

\biggr) 
1

M\infty 

= lim
M\infty \rightarrow \infty 

det(r1(Ub), r2(Ub))

M\infty 
=

2c2

(1 + b20)
5
2

\not = 0.

Then, by the implicit function theorem, system (4.7) has a unique C2-solution:

\delta = \delta (\alpha , \beta ,\Delta \sigma ,\Delta \=\sigma , x0;Ub)

in a neighborhood of (\alpha , \beta ,\Delta \sigma ,\Delta \=\sigma , x0;Ub) = (0, 0, 0, 0, 0;U\infty ).
Let \delta \prime = \delta (\alpha , \beta ,\Delta \sigma ,\Delta \sigma , x0;Ub). By (6.1), we have

\delta = \delta \prime +K \prime | \Delta \=\sigma  - \Delta \sigma | ,(6.9)

where K \prime =
\int 

\partial \delta 
\partial (\Delta \=\sigma ) d\xi , and \delta 

\prime solves the equation

\Psi (\Delta \sigma , \sigma 2; \Phi (\delta 
\prime ;Ub)) = \Phi (\alpha ; \Psi (\Delta \sigma , \=\sigma 2; \Phi (\beta ;Ub))).

Moreover, by Lemma 3.9 again,

lim
M\infty \rightarrow \infty 

\biggl( 
M\infty 

\partial \delta 

\partial (\Delta \=\sigma )

\bigm| \bigm| \bigm| \bigm| 
\{ \alpha =\beta =\Delta \sigma =\Delta \=\sigma =x0=0\} 

\biggr) 

= lim
M\infty \rightarrow \infty 

c2M\infty 

det
\bigl( 
r1(Ub), r2(Ub)

\bigr) \Biggl( dub

d\~\sigma 3
+ \lambda 2(Ub)

dvb
d\~\sigma 3

 - dub

d\~\sigma 3
 - \lambda 1(Ub)

dvb
d\~\sigma 3

\Biggr) 

=  - c (1 + b20)
2

2
(1, 1)\top .

By Lemma 4.4, we have

\delta \prime = \alpha + \beta +O(1)
\bigl( 
Q0(\Lambda ) +Q1(\Lambda )

\bigr) 
.

Substituting this formula into (6.9) and combining then with Lemma 6.1, we conclude
(6.7).

D
ow

nl
oa

de
d 

12
/1

5/
21

 to
 1

63
.1

.8
1.

18
4 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2840 GUI-QIANG G. CHEN, JIE KUANG, AND YONGQIAN ZHANG

hhhhhhhhhhhhhhhhhhhh

!!
!!

!!
!

   
   

 

aaaaaaa c
c
c
c
c
c

HHH
HHHH

hhhhhhhhhh((((
(((

(((

b
b
b
b
b
b
b
b

!!
!!

!!
!!PPPPPPPP

�
�
�
�
�
�
�
�\alpha 1

\beta 2 \delta 1

U1

U2

xk - 1 xk xk+1

y - 1(k - 1)

y0(k - 1)

y - 1(k)

y0(k)

Fig. 6.2. Reflection at the boundary.

6.2. \Lambda covers the part of \bfity = \bfitb \bfDelta (\bfitx ) but none of \bfity = \bfitchi \bfDelta \bfitx ,\bfitvargamma (\bfitx ). We
now consider the wave interactions near the approximate boundary. Suppose that
\Lambda is the diamond centered at (xk, y0(k)). We denote the two waves entering \Lambda by
\alpha 1 and \beta 2 that issue from the grid points (xk - 1, y0(k  - 1)) and (xk - 1, y - 1(k  - 1)),
respectively. Let \delta 1 be the 1-wave issuing from the grid point (xk, y0(k)) with U2 as
its above state (see Figure 6.2). Suppose that the center below the weak waves \alpha 1

and \delta 1 is O1 = (X, 0), between \alpha 1 and the boundary is O2 = ( \=X, 0), and above \delta 1 is
O3 = ( \^X, 0).

Denote

\sigma 0 =
y0(k)

xk  - X
, \sigma 1 =

y - 1(k  - 1)

xk - 1  - X
, \sigma 2 =

y0(k  - 1)

xk - 1  - X
,

\=\sigma 0 =
y0(k  - 1)

xk - 1  - \=X
, \^\sigma 0 =

y0(k)

xk  - \^X
,

and let

U1 = \varpi (\=\sigma 0;O2), U2 = \varpi (\^\sigma 0;O3), Ub = \varpi (\sigma 1;O1),

\Delta \sigma = \sigma 0  - \sigma 1, \Delta \~\sigma = \sigma 2  - \sigma 1, \~x0 = | X  - \=X| .

Then

U1 = \Phi 1(\alpha 1;\varpi (\sigma 2;O1)), \varpi (\sigma 2;O1) = \Psi (\Delta \~\sigma , \sigma 1; \Phi 2(\beta 2;Ub)),

U2 = \Phi 1(\delta 1;\varpi (\sigma 0;O1)), \varpi (\sigma 0;O1) = \Psi (\Delta \sigma , \sigma 1;Ub).

By the construction of the approximate solution, we have

\Phi 1(\delta 1; \Psi (\Delta \sigma , \sigma 1;Ub)) \cdot nk = \Phi 1(\alpha 1; \Psi (\Delta \~\sigma , \sigma 1; \Phi 2(\beta 2;Ub))) \cdot nk - 1 = 0,(6.10)

where nk = ( - sin \theta k, cos \theta k) for each fixed k \geq 0 is the outer normal vector of the
boundary.

To solve (6.10), we first have the following.

Lemma 6.3. lim
M\infty \rightarrow \infty 

r1(Ub) \cdot n0

M\infty 
= c (1 + b20)

 - 3
2 .
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This can be seen via direct computation by using Lemma 3.6:

lim
M\infty \rightarrow \infty 

r1(Ub) \cdot n0

M\infty 
= lim

M\infty \rightarrow \infty 

e1(Ub)

M\infty 
lim

M\infty \rightarrow \infty 

\bigl( 
\lambda 1(Ub) sin \theta 0 + cos \theta 0

\bigr) 
= c (1 + b20)

 - 3
2 <\infty .

Then we have the following lemma for the existence and estimate of \delta 1.

Lemma 6.4. Equation (6.10) has a unique solution

\delta 1 = \delta 1(\alpha 1, \beta 2,\Delta \sigma ,\Delta \~\sigma , \omega k;U\infty ) \in C2

in a neighborhood of \alpha 1 = \beta 2 = \Delta \sigma = \Delta \~\sigma = \omega k = 0 and Ub = U\infty such that

\delta 1 = \alpha 1 +Kr\beta 2 +Kb\omega k +O(1)| \beta 2| | \Delta \sigma | +O(1)| x - 1
k  - x - 1

k - 1| \~x0(6.11)

with

sup
1<M\infty <\infty 

| Kb| <\infty ,(6.12)

Kr| \{ \alpha 1=\beta 2=\omega k=\Delta \sigma =\~x0=0, \theta k=\theta 0\} =
cos2(\theta 0 + \theta ma)

cos2(\theta 0  - \theta ma)
,(6.13)

which implies that

Kr = 1 - 4b0

\sqrt{} 
1 + b20M

 - 1
\infty +O(1)M - 2

\infty +O(1)e - m0M
2
\infty ,(6.14)

where the bound of O(1) depends continuously on M\infty .

Proof. We divide the proof into four steps.
1. A direct computation gives

\partial 

\partial \delta 1
\Phi 1(\delta 1; \Psi (\Delta \sigma , \sigma 1;Ub)) \cdot nk

\bigm| \bigm| 
\{ \alpha 1=\beta 2=\omega k=\Delta \sigma =\Delta \~\sigma =0, \theta k=\theta 0\} 

= r1(Ub) \cdot n0.

Then, by Lemma 6.3 and the implicit function theorem, we can find a unique C2-
solution:

\delta 1 = \delta 1(\alpha 1, \beta 2, \omega k,\Delta \sigma ,\Delta \~\sigma , \sigma 1;Ub)

near (\alpha 1, \beta 2,\Delta \sigma ,\Delta \~\sigma ;Ub) = (0, 0, 0, 0;U\infty ).
Notice that, by a direct computation,

\Delta \~\sigma  - \Delta \sigma = \sigma 2  - \=\sigma 0 + \=\sigma 0  - \sigma 0 = O(1)\~x0| x - 1
k  - x - 1

k - 1| .

Then we have

\delta 1 = \delta \prime 1 +O(1)| \Delta \~\sigma  - \Delta \sigma | = \delta \prime 1 +O(1)\~x0| x - 1
k  - x - 1

k - 1| ,

where \delta \prime 1(\alpha 1, \beta 2, \omega k,\Delta \sigma ) = \delta 1| \Delta \~\sigma =\Delta \sigma solves the equation

\Phi 1(\delta 
\prime 
1; \Psi (\Delta \sigma , \sigma 1;Ub)) \cdot nk = \Phi 1(\alpha 1; \Psi (\Delta \sigma , \sigma 1; \Phi 2(\beta 2;Ub))) \cdot nk - 1.(6.15)

Let

\delta \prime \prime 1 (\alpha 1, \beta 2,\Delta \sigma ) = \delta \prime 1| \omega k=0 = \delta 1(\alpha 1, \beta 2, 0,\Delta \sigma ,\Delta \sigma , \sigma 1;Ub).
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Then there exists some Kb \in C1 such that

\delta \prime 1  - \delta \prime \prime 1 = Kb\omega k.

2. To estimate Kb, we compute

\partial \delta \prime 1
\partial \omega k

\bigm| \bigm| \bigm| \bigm| 
\{ \alpha 1=\beta 2=\omega k=\Delta \sigma =0, \theta k=\theta 0\} 

.

To do this, we take the derivative of both sides of (6.15) with respect to \omega k, and then
let \alpha 1 = \beta 2 = \omega k = \Delta \sigma = 0 and \theta k = \theta 0 to obtain

r1(Ub) \cdot n0
\partial \delta \prime 1
\partial \omega k

\bigm| \bigm| \bigm| \bigm| 
\{ \alpha 1=\beta 2=\omega k=\Delta \sigma =0, \theta k=\theta 0\} 

= Ub \cdot (cos \theta 0, sin \theta 0).

Then we have

Kb

\bigm| \bigm| 
\{ \alpha 1=\beta 2=\omega k=\Delta \sigma =0, \theta k=\theta 0\} 

=
\partial \delta 2
\partial \omega k

\bigm| \bigm| \bigm| \bigm| 
\{ \alpha 1=\beta \prime 

1=\omega k=\Delta \sigma =\~x0=0, \theta k=\theta 0\} 
=
ub cos \theta 0 + vb sin \theta 0

r1(Ub) \cdot n0
,

lim
M\infty \rightarrow \infty 

Kb| \{ \beta 2=\omega k=\Delta \sigma =0, \theta k=\theta 0\} = lim
M\infty \rightarrow \infty 

ub cos \theta 0 + vb sin \theta 0
r1(Ub) \cdot n0

=
1\sqrt{} 

1 + b20
<\infty ,

which is uniformly bounded as M\infty \rightarrow \infty .
3. Now we are in position to estimate \delta \prime \prime 1 (\alpha 1, \beta 2,\Delta \sigma ). Notice that

\delta \prime \prime 1 (\alpha 1, 0,\Delta \sigma ) = \delta \prime \prime 1 (\alpha 1, 0, 0) = \alpha 1.

Then, by (6.2), we have

\delta \prime \prime 1 (\alpha 1, \beta 2,\Delta \sigma ) = \delta \prime \prime 1 (\alpha 1, 0,\Delta \sigma ) + \delta \prime \prime 1 (\alpha 1, \beta 2, 0) - \delta \prime \prime 1 (\alpha 1, 0, 0) +O(1)| \beta 2| | \Delta \sigma | 

= \delta \prime \prime 1 (\alpha 1, \beta 2, 0) +O(1)| \beta 2| | \Delta \sigma | .

Let \delta \prime \prime \prime 1 (\alpha 1, \beta 2) = \delta \prime \prime 1 | \Delta \sigma =0. Then there exists Kr \in C1 such that

\delta \prime \prime \prime 1 (\alpha 1, \beta 2) = \delta \prime \prime \prime 1 (\alpha 1, 0) +Kr\beta 2.

Note that \delta \prime \prime \prime 1 (\alpha 1, \beta 2) solves the following equation:

(6.16) \Phi 1(\delta 
\prime \prime \prime 
1 ;Ub) \cdot nk - 1 = \Phi (\alpha 1; \Phi 2(\beta 2;Ub)) \cdot nk - 1.

We take the derivative of both sides of (6.16) with respect to \beta 2 and let \alpha 1 = \beta 2 = 0
and \theta k = \theta 0 to obtain

(r1(Ub) \cdot n0)
\partial \delta \prime \prime \prime 1
\partial \beta 2

\bigm| \bigm| \bigm| \bigm| 
\{ \alpha 1=\beta 2=0, \theta k=\theta 0\} 

= r2(Ub) \cdot n0.

It follows that

Kr| \{ \alpha 1=\beta 2=0, \theta k=\theta 0\} =
\partial \delta 3
\partial \beta 2

\bigm| \bigm| \bigm| \bigm| 
\{ \alpha 1=\beta 2=0, \theta k=\theta 0\} 

=
r2(Ub) \cdot n0

r1(Ub) \cdot n0
=

cos2(\theta 0 + \theta ma)

cos2(\theta 0  - \theta ma)
,

which gives the formula for Kr.
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\gamma 

\alpha a

\alpha b

\delta 

sk

sk+1

xk - 1 xk

xk+1

yhs - 1(k - 1)

ys(k - 1)

yhs (k - 1)

yhs+1(k - 1)

yhs+2(k - 1)

yhs - 1(k)

ys(k)

yhs (k)

yhs+1(k)

yhs+2(k)

Fig. 6.3. Interactions between weak waves and the strong wave.

4. Finally, we combine the estimates of \delta \prime 1, \delta 
\prime \prime 
1 , and \delta \prime \prime \prime 1 with the property that

\delta \prime \prime \prime 1 (\alpha 1, 0) = \alpha 1 to conclude the desire result.

6.3. \Lambda covers part of \bfity = \bfitchi \bfDelta \bfitx ,\bfitvargamma (\bfitx ) but none of \bfity = \bfitb \bfDelta (\bfitx ). We take
three diamonds simultaneously. As shown in Figure 6.3, let \Delta k,yhs - 1(k), \Delta k,yhs (k)

, and
\Delta k,yhs+1(k) be the diamonds centered in (xk, yhs - 1(k)), (xk, yhs

(k)), and (xk, yhs+1(k)),
respectively. Denote \Lambda = \Delta k,yhs - 1(k) \cup \Delta k,yhs (k)

\cup \Delta k,yhs+1(k). Let \alpha and \gamma be the
weak waves issuing from (xk - 1, yhs+1(k  - 1)) and (xk - 1, yhs+2(k  - 1)), respectively,
and entering \Lambda . We divide \alpha into parts \alpha b = (\alpha b

1, 0) and \alpha 
a = (\alpha a

1 , \alpha 
a
2) with \alpha 

b and
\alpha a entering \Delta k,yhs (k)

and \Delta k,yhs+1(k), respectively. We also assume \gamma = (\gamma 1, 0), and
denote \delta as the outgoing waves that issue from (xk, yhs+1(k)).

The center in the region between sk and the lower edge of \alpha is defined as O1, in
the region between the upper edge of \alpha and the lower edge of \gamma is defined as O2, and
above the lower edge of \gamma is denoted as O3.
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Denote the x-coordinate of Oj by X\ast 
j , j = 1, 2, 3, and denote \~x0 := | X\ast 

1  - X\ast 
2 | 

and \~x1 := | X\ast 
2  - X\ast 

3 | . We also use the coordinates \sigma = \sigma (x, y) = y
x - X\ast 

1
, \=\sigma = \=\sigma (x, y) =

y
x - X\ast 

2
, and \~\sigma = \~\sigma (x, y) = y

x - X\ast 
3
. Also denote

\sigma \alpha = \sigma (xk - 1, yhs+1(k  - 1)), \sigma s(k  - 1) = \sigma (xk - 1, ys(k  - 1)), \sigma s(k) = \sigma (xk, ys(k)),

\=\sigma \alpha = \=\sigma (xk - 1, yhs+1(k  - 1)), \=\sigma s(k  - 1) = \=\sigma (xk - 1, ys(k  - 1)), \=\sigma s(k) = \=\sigma (xk, ys(k)),

\Delta \sigma \alpha = \sigma \alpha  - \sigma s(k), \Delta \sigma sk = \sigma s(k) - \sigma s(k  - 1),

\Delta \~\sigma \gamma = \~\sigma (xk, yhs+1(k)) - \~\sigma (xk - 1, yhs+2(k  - 1)).

To obtain the estimates of (sk+1, \delta ), we first consider the following equation:

\Psi (\=\sigma \alpha  - \=\sigma s(k), \=\sigma s(k); \Phi 2(\varepsilon 2; \Theta (sk+1)))(6.17)

= \Phi 1(\alpha 
b
1; \Psi (\sigma \alpha  - \sigma s(k  - 1), \sigma s(k  - 1);\Theta (sk))).

With solutions (sk+1, \varepsilon 2) of (6.17) and the construction of the approximate solution,
we now give the estimates on the weak wave \delta .

Lemma 6.5. The following asymptotic expansions hold:

\delta 1 = \alpha a
1 + \gamma 1 +O(1)Q(\Lambda ),(6.18)

\delta 2 = \alpha a
2 +Kw\alpha 

b
1 + \mu w\Delta \sigma sk +O(1)Q(\Lambda ),(6.19)

sk+1 = sk +Ks\alpha 
b
1 + \mu s\Delta \sigma sk +O(1)

\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | + | x - 1

k  - x - 1
k - 1| 

\bigr) 
\~x0,(6.20)

where

Q(\Lambda ) =Q0(\alpha a, \gamma ) + | \Delta \sigma \alpha | (| \alpha b
1| + \~x0) + | \Delta \sigma sk | (| \Delta \sigma \alpha | + \~x0)

+ | \Delta \~\sigma \gamma | (| \gamma | + \~x1) + | x - 1
k  - x - 1

k - 1| (\~x0 + \~x1).

In addition, for \alpha b
1 = \Delta \sigma \alpha = \Delta \sigma sk = \~x0 = 0 and sk = s0,

Kw =
e1(s0)

e2(s0)

\~us(s0) + \lambda 1(s0)\~vs(s0)

\~us(s0) + \lambda 2(s0)\~vs(s0)
, Ks =

e1(s0)
\bigl( 
\lambda 2(s0) - \lambda 1(s0)

\bigr) 
\~us(s0) + \lambda 2(s0)\~vs(s0)

,(6.21)

\mu w =
\~us(s0)v\sigma (s0) - \~vs(s0)u\sigma (s0)

e2(s0)
\bigl( 
\~us(s0) + \lambda 2(s0)\~vs(s0)

\bigr) , \mu s =
u\sigma (s0) + \lambda 2(s0)v\sigma (s0)

\~us(s0) + \lambda 1(s0)\~vs(s0)
.(6.22)

Furthermore, for M\infty sufficiently large,

(6.23)

Kw = 1 + 2b - 1
0 (1 + 2b20)

\sqrt{} 
1 + b20M

 - 1
\infty +O(1)M - 2

\infty +O(1)e - m0M
2
\infty ,

Ks =  - 2b - 1
0

\sqrt{} 
1 + b20M

 - 1
\infty +O(1)M - 2

\infty +O(1)e - m0M
2
\infty ,

\mu w =  - 1 - b - 1
0 (1 + 2b20)

\sqrt{} 
1 + b20M

 - 1
\infty +O(1)M - 2

\infty +O(1)e - m0M
2
\infty ,

\mu s = b - 1
0

\sqrt{} 
1 + b20M

 - 1
\infty +O(1)M - 2

\infty +O(1)e - m0M
2
\infty ,

where O(1) depends continuously only on M\infty .
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Proof. We divide the proof into four steps.
1. Lemmas 3.8 and 4.5 imply that

lim
M\infty \rightarrow \infty 

det(r2(\Theta (s0)),\Theta s(s0))

M2
\infty 

=  - lim
M\infty \rightarrow \infty 

e2(s0)

M\infty 

\~us(s0) + \lambda 2(s0)\~vs(s0)

M\infty 

=
c2b0

(1 + b20)
3
<\infty .

Then, by the implicit function theorem, (6.17) admits a unique C2-solution (\delta 2, sk+1)
such that

\varepsilon 2 = \varepsilon 2(\alpha 
b
1, sk, \sigma \alpha  - \sigma s(k  - 1), \=\sigma \alpha  - \=\sigma s(k), \sigma s(k  - 1), \=\sigma s(k)),

sk+1 = sk+1(\alpha 
b
1, sk, \sigma \alpha  - \sigma s(k  - 1), \=\sigma \alpha  - \=\sigma s(k), \sigma s(k  - 1), \=\sigma s(k)).

2. Denote

\varepsilon \prime 2 = \varepsilon \prime 2(\alpha 
b
1, sk,\Delta \sigma \alpha , \sigma s(k)) = \varepsilon 2

\bigm| \bigm| 
\{ \=\sigma \alpha  - \=\sigma s(k)=\sigma \alpha  - \sigma s(k - 1),\=\sigma s(k)=\=\sigma s(k - 1)\} ,

s\prime k+1 = s\prime k+1(\alpha 
b
1, sk,\Delta \sigma \alpha , \sigma s(k)) = sk+1

\bigm| \bigm| 
\{ \=\sigma \alpha  - \=\sigma s(k)=\sigma \alpha  - \sigma s(k - 1),\=\sigma s(k)=\=\sigma s(k - 1)\} .

Then, by a direct computation, we have

\varepsilon 2 = \varepsilon \prime 2 +O(1)
\bigl( 
\=\sigma s(k) - \=\sigma s(k  - 1)

\bigr) 
(6.24)

+O(1)
\bigl( 
\=\sigma \alpha  - \=\sigma s(k) - (\sigma \alpha  - \sigma s(k  - 1))

\bigr) 
,

sk+1 = s\prime k+1 +O(1)
\bigl( 
\=\sigma s(k) - \=\sigma s(k  - 1)

\bigr) 
(6.25)

+O(1)
\bigl( 
\=\sigma \alpha  - \=\sigma s(k) - (\sigma \alpha  - \sigma s(k  - 1))

\bigr) 
,

where (\varepsilon \prime 2, s
\prime 
k+1) solves the equation

\Psi (\sigma \alpha  - \sigma s(k  - 1), \=\sigma s(k  - 1); \Phi 2(\varepsilon 
\prime 
2; \Theta (s\prime k+1)))(6.26)

= \Phi 1(\alpha 1; \Psi (\sigma \alpha  - \sigma s(k  - 1), \sigma s(k  - 1);\Theta (sk))).

Using the Taylor expansion, we have

\varepsilon \prime 2 = Kw\alpha 
b
1 + \varepsilon \prime \prime 2 , s\prime k+1 = Ks\alpha 

b
1 + s\prime \prime k+1,(6.27)

where (\varepsilon \prime \prime 2 , s
\prime \prime 
k+1) satisfies

\Psi (\sigma \alpha  - \sigma s(k  - 1), \=\sigma s(k  - 1); \Phi 2(\varepsilon 
\prime \prime 
2 ; \Theta (s\prime \prime k+1)))(6.28)

= \Psi (\sigma \alpha  - \sigma s(k  - 1), \sigma s(k  - 1);\Theta (sk)).

Since \varepsilon \prime \prime 2 | \{ \sigma \alpha  - \sigma s(k - 1)=\~x0=0\} = 0 and s\prime \prime k+1

\bigm| \bigm| 
\{ \sigma \alpha  - \sigma s(k - 1)=\~x0=0\} = 0, by (6.2),

\varepsilon \prime \prime 2 = O(1)\~x0| \Delta \sigma \alpha | , s\prime \prime k+1 = O(1)\~x0| \Delta \sigma \alpha | .(6.29)

Notice that

\=\sigma s(k) - \=\sigma s(k  - 1) = \Delta \sigma sk +O(1)\~x0
\bigl( 
| \Delta \sigma sk | + | x - 1

k  - x - 1
k - 1| 

\bigr) 
,(6.30)

\=\sigma \alpha  - \=\sigma s(k) - (\sigma \alpha  - \sigma s(k  - 1))(6.31)

= \=\sigma \alpha  - \=\sigma s(k  - 1) - (\sigma \alpha  - \sigma s(k  - 1)) + \=\sigma s(k  - 1) - \=\sigma s(k)

=  - \Delta \sigma sk +O(1)\~x0
\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | + | x - 1

k  - x - 1
k - 1| 

\bigr) 
.
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2846 GUI-QIANG G. CHEN, JIE KUANG, AND YONGQIAN ZHANG

Combining estimates (6.24)--(6.31) together, we obtain the estimates of (\varepsilon 2, sk+1):

\varepsilon 2 = Kw\alpha 
b
1 + \mu w\Delta \sigma sk +O(1)\~x0

\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | + | x - 1

k  - x - 1
k - 1| 

\bigr) 
,(6.32)

sk+1 = sk +Ks\alpha 
b
1 + \mu s\Delta \sigma sk +O(1)\~x0

\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | + | x - 1

k  - x - 1
k - 1| 

\bigr) 
.(6.33)

3. To compute coefficientsKw,Ks, \mu w, and \mu s, we differentiate (6.16) with respect
to \alpha b

1 and \Delta \sigma sk , and let \alpha b
1 = \Delta \sigma \alpha = \Delta \sigma sk = \~x0 = 0 and sk = s0 to obtain

r2(\Theta (s0))Kw +\Theta s(s0)Ks = r1(\Theta (s0)),

r2(\Theta (s0))\mu w +\Theta s(s0)\mu s =
\partial \Psi 

\partial (\Delta \sigma sk)
(0, \sigma s(k); \Theta (s0)).

Cramer's rule implies

Kw =
det(r1(\Theta (s0)), \Theta s(s0))

det(r2(\Theta (s0)), \Theta s(s0))
=
e1(s0)

e2(s0)

\~us(s0) + \lambda 1(s0)\~vs(s0)

\~us(s0) + \lambda 2(s0)\~vs(s0)
,

Ks =
det(r2(\Theta (s0)), r1(\Theta (s0)))

det(r2(\Theta (s0)), \Theta s(s0))
=
e1(s0)(\lambda 2(s0) - \lambda 1(s0))

\~us(s0) + \lambda 2(s0)\~vs(s0)
,

and

\mu w =
det( \partial \Psi 

\partial (\Delta \sigma s)
(0, \sigma s(k); \Theta (s0)),\Theta s(s0))

det(r2(\Theta (s0)),\Theta s(s0))
,

\mu s =
det(r2(\Theta (s0)),

\partial \Psi 
\partial (\Delta \sigma s)

(0, \sigma s(k); \Theta (s0)))

det(r2(\Theta (s0)),\Theta s(s0))
.

Then, by Lemmas 3.8--3.9 and 4.5, we can estimate Kw, Ks, \mu w, and \mu s as expected,
when M\infty is sufficiently large.

4. We finally give the estimates of \delta . By the construction of the approximate
solution, we have

\Phi (\delta ; \Psi (\Delta \=\sigma \alpha , \=\sigma s(k); \Theta (sk+1)))(6.34)

= \Psi (\Delta \~\sigma \gamma , \~\sigma (xk - 1, yhs+2(k  - 1)); \Phi (\gamma ; \Psi (\=\sigma \gamma  - \=\sigma \alpha , \=\sigma \alpha ;Uf)))

with

Uf = \Phi (\alpha a; \Psi (\Delta \=\sigma \alpha , \=\sigma s(k); \Phi 2(\varepsilon 2; \Theta (sk+1)))).(6.35)

Then, as was done in section 6.1, we obtain (6.18)--(6.20).

Lemma 6.6. For \Delta x sufficiently small,\bigm| \bigm| \sigma s(k  - 1) - sk
\bigm| \bigm| \geq 6| \Delta \sigma sk | .(6.36)

Proof. Notice that

sk =
ys(k) - ys(k  - 1)

\Delta x
, \sigma s(k) =

ys(k)

xk  - X\ast 
1

.
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Then, by a direct computation, we have\bigm| \bigm| \sigma s(k  - 1) - sk
\bigm| \bigm| = \bigm| \bigm| \bigm| ys(k) - ys(k  - 1)

\Delta x
 - \sigma s(k  - 1)

\bigm| \bigm| \bigm| 
=
\bigm| \bigm| \bigm| \sigma s(k)(xk  - X\ast 

1 ) - \sigma s(k  - 1)(xk - 1  - X\ast 
1 )

\Delta x
 - \sigma s(k  - 1)

\bigm| \bigm| \bigm| 
=
\bigm| \bigm| \bigm| \sigma s(k) - \sigma s(k  - 1)

\Delta x
(xk  - X\ast 

1 )
\bigm| \bigm| \bigm| 

\geq 6
\bigm| \bigm| \sigma s(k) - \sigma s(k  - 1)

\bigm| \bigm| for \Delta x sufficiently small.

Denote \theta s(k) = | \sigma s(k  - 1)  - sk| , which measures the angle between the leading
shock sk and the line passing through (xk - 1, ys(k - 1)) and the center of sk. Moreover,
we have the following estimate for \theta s(k).

Lemma 6.7. For M\infty sufficiently large and \Delta x sufficiently small,

(6.37) \theta s(k) - \theta s(k+1) \geq | \Delta \sigma sk |  - | Ks| | \alpha b
1|  - C\~x0

\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | +

\bigm| \bigm| x - 1
k  - x - 1

k - 1

\bigm| \bigm| \bigr) ,
where k \geq 0, Ks is given by Lemma 6.5, and constant C > 0 is independent of M\infty 
and \Delta x.

Proof. The proof is divided into two subcases.
1. \sigma s(k  - 1) < sk so that \sigma s(k  - 1) < \sigma s(k).
\bullet If sk+1 > \sigma s(k), then, by Lemma 6.5,

\theta s(k) - \theta s(k + 1) = sk  - \sigma s(k  - 1) - 
\bigl( 
sk+1  - \sigma s(k)

\bigr) 
= (1 - \mu s)\Delta \sigma sk  - Ks\alpha 

b
1

+O(1)\~x0
\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | +

\bigm| \bigm| x - 1
k  - x - 1

k - 1

\bigm| \bigm| \bigr) 
\geq | \Delta \sigma sk |  - Ks\alpha 

b
1  - C\~x0

\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | +

\bigm| \bigm| x - 1
k  - x - 1

k - 1

\bigm| \bigm| \bigr) .
\bullet If sk+1 < \sigma s(k), then, by Lemmas 6.5--6.6,

\theta s(k) - \theta s(k + 1) = sk  - \sigma s(k  - 1) - 
\bigl( 
sk+1  - \sigma s(k)

\bigr) 
= 2
\bigl( 
sk  - \sigma s(k  - 1)

\bigr) 
+ sk+1  - \sigma s(k) - 

\bigl( 
sk  - \sigma s(k  - 1)

\bigr) 
\geq (11 + \mu s)| \Delta \sigma sk | +Ks\alpha 

b
1

 - C\~x0
\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | +

\bigm| \bigm| x - 1
k  - x - 1

k - 1

\bigm| \bigm| \bigr) 
\geq | \Delta \sigma sk | +Ks\alpha 

b
1  - C\~x0

\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | +

\bigm| \bigm| x - 1
k  - x - 1

k - 1

\bigm| \bigm| \bigr) .
2. sk < \sigma s(k  - 1) so that \sigma s(k) < \sigma s(k  - 1).
\bullet If sk+1 > \sigma s(k), then, by Lemmas 6.5--6.6,

\theta s(k) - \theta s(k + 1) = sk  - \sigma s(k) - 
\bigl( 
sk+1  - \sigma s(k + 1)

\bigr) 
= 2
\bigl( 
sk  - \sigma s(k)

\bigr) 
+ sk  - \sigma s(k  - 1) - 

\bigl( 
sk+1  - \sigma s(k)

\bigr) 
\geq (\mu s + 11)| \Delta \sigma sk |  - Ks\alpha 

b
1

 - C\~x0
\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | +

\bigm| \bigm| x - 1
k  - x - 1

k - 1

\bigm| \bigm| \bigr) 
\geq | \Delta \sigma sk |  - Ks\alpha 

b
1  - C\~x0

\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | +

\bigm| \bigm| x - 1
k  - x - 1

k - 1

\bigm| \bigm| \bigr) .
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\bullet If sk+1 < \sigma s(k), then, by Lemma 6.5,

\theta s(k) - \theta s(k + 1) = \sigma s(k  - 1) - sk  - \sigma s(k) + sk+1

= (1 - \mu s)| \Delta \sigma sk | +Ks\alpha 
b
1

+O(1)\~x0
\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | +

\bigm| \bigm| x - 1
k  - x - 1

k - 1

\bigm| \bigm| \bigr) 
\geq | \Delta \sigma sk | +Ks\alpha 

b
1  - C\~x0

\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | +

\bigm| \bigm| x - 1
k  - x - 1

k - 1

\bigm| \bigm| \bigr) .
In the above estimates, we have used the fact that \mu s \in ( - 1, 0) forM\infty sufficiently

large. This completes the proof.

7. The Glimm-type functional and the convergence of the approxi-
mate solutions. In this section, we first apply the difference scheme and the local
interaction estimates obtained in section 6 above to construct a suitable Glimm-type
functional for the approximate solutions, and then prove its monotonicity so that the
TV of the approximate solutions in y is uniformly bounded in x. Thus, we first state
a lemma which is important to prove the monotonicity of the Glimm-type functional.

Lemma 7.1. Let Kr, Kw, Ks, and \mu w be given by Lemmas 6.4--6.6. Then, for
M\infty sufficiently large,

| Kr| 
\bigl( 
| Kw| + | Ks| | \mu w| 

\bigr) 
< 1.(7.1)

Moreover, there exist positive constants K1, K2, and K3 such that

| Kr|  - K2 < 0, K2| \mu w|  - K3 < 0, K2| Kw| +K3| Ks|  - 1 < 0.(7.2)

Proof. By (6.15) in Lemma 6.4 and (6.24) in Lemma 6.5, we obtain that, for M\infty 
sufficiently large,

| Kr| 
\bigl( 
| Kw| + | Ks| | \mu w| 

\bigr) 
(7.3)

= 1 - 2b - 2
0 (1 + b20)(8b

4
0 + 2b20 + 1)M - 1

\infty +O(1)M - 2
\infty +O(1)e - m0M

2
\infty .

Note that the second term on the right-hand side of (7.3) is negative. Thus, we
can choose M\infty sufficiently large such that (7.1) holds. It follows that there exists a
constant K2 > 0 such that

K2 > | Kr| , K2

\bigl( 
| Kw| + | Ks| | \mu w| 

\bigr) 
< 1,

which leads to

K2| Ks| | \mu w| < 1 - K2| Kw| .

Then we can choose another constant K3 > 0 such that

K2| \mu w|  - | K3| < 0, | K3| | Ks| +K2| Kw|  - 1 < 0.

This completes the proof.

We now turn to the construction of the Glimm functional and study its properties.
Let J be a space-like mesh curve connecting the mesh points. Denote \Gamma J as the set
of the corner points with Ak lying in J+, i.e.,

\Gamma J = \{ Ak : Ak = (xk, bk), Ak \in J+, k \geq 0\} .

Then we define the following Glimm-type functional.
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Definition 7.2 (weighted TV). Denote

L
(i)
0 (J) :=

\sum \Bigl\{ 
| \alpha i| : \alpha i is an i-weak wave crossing J

\Bigr\} 
, i = 1, 2,

L1(J) :=
\sum \Bigl\{ 

(1 + | bk| )| \omega (Ak)| : Ak \in \Gamma J

\Bigr\} 
,

Ls(J) := \theta s(J) for \theta s(J) as \theta s(k) in Lemma 6.7 when s crosses J,

Lc(J) :=
\sum \Bigl\{ \bigm| \bigm| X\ast 

\alpha +  - X\ast 
\alpha  - 
\bigm| \bigm| \bigl( 1 + x - 1

\alpha 

\bigr) 
: \alpha is a 1-wave crossing J from x = x\alpha 

\Bigr\} 
,

where x\alpha \in \{ xk : k \geq 0\} , and X\ast 
\alpha \pm denote the limits of X\ast on the right and left of

\alpha . Then the weighted TV is defined as

L(J) := L
(1)
0 (J) +K2L

(2)
0 (J) +K1L1(J) +K3Ls(J) +K4Lc(J),(7.4)

where K1,K2, and K3 are given as in Lemma 7.1, and K4 > 0 is a constant to be
specified later.

Next, we turn to the construction of quadratic terms for the total interaction
potential.

Definition 7.3 (total interaction potential). Denote

Q0(J) :=
\sum \Bigl\{ 

| \alpha i| | \beta j | : \alpha i and \beta j are weak waves that cross J and approach
\Bigr\} 
,

Q1(J) :=
\sum \Bigl\{ 

| \alpha | (\sigma \alpha  - \sigma \ast ) : \alpha is a 1-weak wave crossing J
\Bigr\} 
,

Q2(J) :=
\sum \Bigl\{ 

| \alpha | (\sigma \ast  - \sigma \alpha ) : \alpha is a 2-weak wave crossing J
\Bigr\} 
,

Qc(J) :=
\sum \Bigl\{ 

| X\ast 
\alpha +  - X\ast 

\alpha  - | (\sigma c
\alpha (J) - \sigma \ast ) : \alpha is an i-weak wave crossing J , i = 1, 2

\Bigr\} 
,

Qce(J) :=
\sum \Bigl\{ 

| X\ast 
\alpha +  - X\ast 

\alpha  - | | X\ast 
\beta +  - X\ast 

\beta  - | : \alpha and \beta are weak waves crossing J
\Bigr\} 
,

Q(j)
wc (J) :=

\sum \Bigl\{ 
| \beta j | | X\ast 

\alpha +  - X\ast 
\alpha  - | : \alpha is a 1-weak wave above a j-weak wave \beta j on J

\Bigr\} 
for j = 1, 2, where X\ast 

\alpha \pm denote the right and left limits of X\ast of \alpha , \sigma \alpha is the \sigma -
coordinate of the grid point where \alpha issues, and \sigma c

\alpha (J) is the \sigma -coordinate of the grid
point where the center of the self-similar solution passing through J changes from X\ast 

\alpha  - 
to X\ast 

\alpha +. In addition, denote

\sigma \ast := b0 + C1

\sum 
(1 + | bk| )| \omega k| , \sigma \ast = s0  - \varrho ,

where s0 is the speed of the leading shock-front for the background problem, b0 is the
unperturbed boundary slope, \varrho and C1 are positive constants chosen so that Q1(J),
Q2(J), and Qc(J) are nonnegative. Note that \varrho and (1+ | bk| )| \omega k| are chosen small so
that the largeness of M\infty implies the smallness of s0  - b0 that leads to the smallness

of \sigma \ast  - \sigma \ast . The summation in Q
(j)
wc (J) is taken over for all couples of weak waves

(\alpha , \beta j), j = 1, 2.
Then the total interaction potential is defined as

Q(J) :=
\sum 

i=0,1,2,c

Qi(J) +
\sum 
i=1,2

K(i)
wc Q

(i)
wc(J) +KceQce(J),(7.5)

where K
(i)
wc , i = 1, 2, and Kce are positive constants to be specified later.
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Finally, we give the definition of the Glimm-type functional.

Definition 7.4 (Glimm-type functional).

F (J) := L(J) +KQ(J),(7.6)

where K > 0 is a constant to be given below.

Let

E\Delta x,\vargamma (\Lambda ) =

\left\{         
Q(\Lambda ) (defined in section 6.1),

| \beta 2| + (1 + | bk| )| \omega k| (defined in section 6.2),

Q(\Lambda ) + | \alpha b
1| + | \Delta \sigma sk | (defined in section 6.3).

(7.7)

With the notations given above, we now prove the decreasing property of our func-

tional F (J) by specifying constants K, Ki with i = 1, 2, 3, 4, Kce, and K
(i)
wc with

i = 1, 2.
We first have the main global interaction estimate as stated below.

Proposition 7.5. Suppose that M\infty is sufficiently large and
\sum \infty 

k=0

\bigl( 
1+ | bk| 

\bigr) 
| \omega k| 

is sufficiently small. Let I and J be a pair of space-like mesh curves with I < J , and
let \Lambda be the diamond between I and J . Then there exist positive constants \eta , Ki with

i = 1, 2, 3, 4, K
(i)
wc with i = 1, 2, Kce, and K such that, if F (I) < \eta ,

F (J) \leq F (I) - 1

4
E\Delta x,\vargamma (\Lambda ),(7.8)

where E\Delta x,\vargamma (\Lambda ) is given by (7.7).

Proof. By induction, on the mesh curves, it suffices to consider the case that J is
an immediate successor to I with only one diamond \Lambda between I and J . Let I = I0\cup I \prime 
and J = I0\cup J \prime . As in section 4, we also divide our analysis into three cases depending
on the location of the diamond. From now on, we denote C > 0 a universal constant
depending only on the system, which may be different at each occurrence.

Case 1. \Lambda lies between the cone boundary and the leading shock-front. We now
consider the case as in Lemma 6.2. Notice that\bigl( 

L
(1)
0 +K2L

(2)
0

\bigr) 
(J) - 

\bigl( 
L
(1)
0 +K2L

(2)
0

\bigr) 
(I) \leq C Q(\Lambda ),\bigl( 

K1L1 +K3Ls

\bigr) 
(J) - 

\bigl( 
K1L1 +K3Ls

\bigr) 
(I) = 0,

and

Lc(J) - Lc(I) = | X  - \~X| (1 + x - 1
k ) - | X  - \=X| (1 + x - 1

k - 1) - | \=X  - \~X| (1 + x - 1
k - 1)

\leq  - | x - 1
k  - x - 1

k - 1| (\~x0 + \~x1).

Then

L(J) - L(I) \leq C Q(\Lambda ) - K4| x - 1
k  - x - 1

k - 1| (\~x0 + \~x1).
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For Q, we have

Q0(J) - Q0(I) \leq C L(I)Q(\Lambda ) - Q0(\Lambda ),\bigl( 
Q1 +Q2

\bigr) 
(J) - 

\bigl( 
Q1 +Q2

\bigr) 
(I) \leq C(\sigma \ast  - \sigma \ast )Q(\Lambda ) + C\~x0| \beta |  - | \Delta \sigma | | \alpha | ,

Qc(J) - Qc(I) \leq C\~x0\~x1  - | \Delta \sigma | \~x0,\sum 
i=1,2

Q(i)
wc(J) - 

\sum 
i=1,2

Q(i)
wc(I) \leq  - 

\sum 
i=1,2

K(i)
wc | \beta i| \~x0,

Qce(J) - Qce(I) \leq  - \~x0\~x1.

This implies that

Q(J) - Q(I) \leq  - 
\bigl( 
1 - C(L(I) + \sigma \ast  - \sigma \ast )

\bigr) 
Q(\Lambda ) + | x - 1

k  - x - 1
k - 1| \~x0

 - 
\bigl( 
K(1)

wc  - C
\bigr) 
| \beta 1| \~x0  - 

\bigl( 
K(2)

wc  - C
\bigr) 
| \beta 2| \~x0  - 

\bigl( 
Kce  - C

\bigr) 
\~x0\~x1.

Therefore, it follows that

F (J) - F (I) \leq  - 
\Bigl\{ 
K
\bigl( 
1 - C(L(I) + \sigma \ast  - \sigma \ast )

\bigr) 
 - C

\Bigr\} 
Q(\Lambda )

 - (K4  - K) | x - 1
k  - x - 1

k - 1| \~x0  - K
\bigl( 
K(1)

wc  - C
\bigr) 
| \beta 1| \~x0

 - K
\bigl( 
K(2)

wc  - C
\bigr) 
| \beta 2| \~x0  - K

\bigl( 
Kce  - C

\bigr) 
\~x0\~x1

\leq  - 1

4
Q(\Lambda ),

provided that L(I) and \sigma \ast  - \sigma \ast are small enough, and K
(i)
wc with i = 1, 2, Kce, and

K > K4 are sufficiently large.
Case 2. \Lambda covers part of the cone boundary but not the leading shock-front. We

consider only the case as given in Lemma 6.4. Since | \=X - \^X| = O(1)| bk| | \omega k| by Lemma
5.1, a direct computation yields that

L
(1)
0 (J) - L

(1)
0 (I) \leq | Kr| | \beta 2| + | Kb| | \omega k| + C| \beta 2| | \Delta \sigma | + C| x - 1

k  - x - 1
k - 1| \~x0,

L
(2)
0 (J) - L

(2)
0 (I) =  - | \beta 2| ,

L1(J) - L1(I) =  - (1 + | bk| )| \omega k| ,

Lc(J) - Lc(I) \leq  - | x - 1
k  - x - 1

k - 1| \~x0 + C(1 + x - 1
k )| bk| | \omega k| ,

LS(J) - LS(I) = 0.

Then

L(J) - L(I) \leq  - (K2  - | Kr| )| \beta 2|  - (K1  - | Kb| )| \omega k|  - (K4  - C)| x - 1
k  - x - 1

k - 1| \~x0

 - 
\bigl( 
K1  - K4C (1 + x - 1

k )
\bigr) 
| bk| | \omega k| + C | \beta 2| | \Delta \sigma | .
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For Q, we have

Q0(J) - Q0(I) \leq C
\bigl( 
| \beta 2| + | \omega k| + | \beta 2| | \Delta \sigma | + | x - 1

k  - x - 1
k - 1| \~x0

\bigr) 
L(I),

Q1(J) - Q1(I) \leq C
\bigl( 
| \beta 2| + | \omega k| + | \beta 2| | \Delta \sigma | + | x - 1

k  - x - 1
k - 1| \~x0

\bigr) 
(\sigma \ast  - \sigma \ast )

+ CL(I)| bk| | \omega k| ,

Q2(J) - Q2(I) \leq  - | \beta 2| | \Delta \sigma | ,

Qc(J) - Qc(I) \leq C(\sigma \ast  - \sigma \ast )| bk| | \omega k| + C L(I)| x - 1
k  - x - 1

k - 1| \~x0,\bigl( 
K(1)

wc Q
(1)
wc +K(2)

wc Q
(2)
wc

\bigr) 
(J) - 

\bigl( 
K(1)

wc Q
(1)
wc +K(2)

wc Q
(2)
wc

\bigr) 
(I) \leq 0,

Qce(J) - Qce(I) \leq C L(I)| bk| | \omega k| .

Thus, we obtain the following estimate for Q:

Q(J) - Q(I) \leq  - 
\bigl( 
1 - C(L(I) + \sigma \ast  - \sigma \ast )

\bigr) 
| \beta 2| | \Delta \sigma | 

+ C
\bigl( 
L(I) + \sigma \ast  - \sigma \ast 

\bigr) \bigl( 
| \beta 2| + | \omega k| + | bk| | \omega k| + | x - 1

k  - x - 1
k - 1| \~x0

\bigr) 
.

Finally, we obtain the estimate for F (J):

F (J) - F (I) \leq  - 
\bigl( 
K2  - | Kr|  - KC(L(I) + \sigma \ast  - \sigma \ast )

\bigr) 
| \beta 2| 

 - 
\bigl( 
K1  - | Kb|  - KC(L(I) + \sigma \ast  - \sigma \ast )

\bigr) 
| \omega k| 

 - 
\bigl( 
K1  - K4C(1 + x - 1

k ) - KC(L(I) + \sigma \ast  - \sigma \ast )
\bigr) 
| bk| | \omega k| 

 - 
\bigl( 
K4  - C  - KC(L(I) + \sigma \ast  - \sigma \ast )

\bigr) 
| x - 1

k  - x - 1
k - 1| \~x0

 - 
\bigl( 
K(1 - C(L(I) + \sigma \ast  - \sigma \ast )) - C

\bigr) 
| \beta 2| | \Delta \sigma | .

Using Lemma 7.1, choosing K sufficiently large, and letting L(I) and \sigma \ast  - \sigma \ast be
sufficiently small, we have

F (J) - F (I) \leq  - 1

4

\bigl( 
| \beta 2| + (1 + | bk| )| \omega k| 

\bigr) 
.

Case 3. \Lambda covers a part of the leading shock-front. By Lemma 6.5, we have

L
(1)
0 (J) - L

(1)
0 (I) \leq  - | \alpha b

1| + CQ(\Lambda ),

L
(2)
0 (J) - L

(2)
0 (I) \leq | Kw| | \alpha b

1| + | \mu s| | \Delta \sigma sk | + CQ(\Lambda ),

L1(J) - L1(I) = 0,

Ls(J) - Ls(I) \leq C
\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | + | x - 1

k  - x - 1
k - 1| 

\bigr) 
\~x0  - | \Delta \sigma sk |  - | Ks| | \alpha b

1| ,

Lc(J) - Lc(I) = | X\ast 
1  - X\ast 

3 | (1 + x - 1
k ) - | X\ast 

1  - X\ast 
2 | (1 + x - 1

k - 1)

 - | X\ast 
2  - X\ast 

3 | (1 + x - 1
k - 1)

\leq  - | x - 1
k  - x - 1

k - 1| (\~x0 + \~x1).

Then we combine the estimates for L
(1)
0 , L

(2)
0 , L1, Ls, and Lc to obtain

L(J) - L(I) \leq  - 
\bigl( 
1 - K2| Kw| +K3| Ks| 

\bigr) 
| \alpha b

1|  - 
\bigl( 
K3  - K2| \mu w| 

\bigr) 
| \Delta \sigma sk | 

 - 
\bigl( 
K4  - K3C

\bigr) 
| x - 1

k  - x - 1
k - 1| \~x0  - K4| x - 1

k  - x - 1
k - 1| \~x1

+ CQ(\Lambda ) + C
\bigl( 
| \Delta \sigma \alpha | + | \Delta \sigma sk | 

\bigr) 
\~x0.
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Next, we estimate Q:

Q0(J) - Q0(I) \leq  - Q0(\alpha a, \gamma ) +
\bigl( 
| \mu w| | \Delta \sigma sk | + | Kw| | \alpha b

1|  - | \alpha b
1| 
\bigr) 
L(I) + CL(I)Q(\Lambda ),

Q1(J) - Q1(I) \leq  - | \gamma | | \Delta \~\sigma \gamma |  - | \alpha b
1| | \Delta \sigma \alpha | + C| \alpha a

1 | \~x1 + C(\sigma \ast  - \sigma \ast )Q(\Lambda ),

Q2(J) - Q2(I) \leq (\sigma \ast  - \sigma \ast )
\bigl( 
| Kw| | \alpha b

1| + | \mu w| | \Delta \sigma sk | 
\bigr) 
+ C| \alpha a

2 | \~x1 + C(\sigma \ast  - \sigma \ast )Q(\Lambda ),

Qc(J) - Qc(I) \leq  - | \Delta \sigma \alpha | \~x0  - | \Delta \~\sigma \gamma | \~x1 + C\~x0\~x1,\bigl( 
K(1)

wc Q
(1)
wc +K(2)

wc Q
(2)
wc

\bigr) 
(J) - 

\bigl( 
K(1)

wc Q
(1)
wc +K(2)

wc Q
(2)
wc

\bigr) 
(I) \leq  - K(1)

wc | \alpha a
1 | \~x1  - K(2)

wc | \alpha a
2 | \~x1,

Qce(J) - Qce(I) \leq  - \~x0\~x1.

Then

Q(J) - Q(I)

\leq  - 
\bigl( 
1 - C(L(I) + \sigma \ast  - \sigma \ast )

\bigr) 
Q(\Lambda ) - 

\bigl( 
K(1)

wc  - C
\bigr) 
| \alpha a

1 | \~x1  - 
\bigl( 
K(2)

wc  - C
\bigr) 
| \alpha a

2 | \~x1

 - 
\bigl( 
Kce  - C

\bigr) 
\~x0\~x1 +

\bigl( 
| Kw| (\sigma \ast  - \sigma \ast ) + (| Kw|  - 1)L(I)

\bigr) 
| \alpha b

1| 

+ (| \mu w| + 1)(L(I) + \sigma \ast  - \sigma \ast )| \Delta \sigma sk | + | x - 1
k  - x - 1

k - 1| (\~x0 + \~x1).

Finally, we combine the estimates of L and Q to obtain

F (J) - F (I) \leq  - 
\Bigl\{ 
K
\bigl( 
1 - C(L(I) + \sigma \ast  - \sigma \ast )

\bigr) 
 - C

\Bigr\} 
Q(\Lambda )

 - 
\Bigl\{ 
1 - K2| Kw| +K3| Ks|  - K

\bigl( 
| Kw| (\sigma \ast  - \sigma \ast ) + (| Kw|  - 1)L(I)

\bigr) \Bigr\} 
| \alpha b

1| 

 - 
\Bigl\{ 
K3  - K2| \mu w|  - K(1 + | \mu w| )

\bigl( 
L(I) + \sigma \ast  - \sigma \ast 

\bigr) \Bigr\} 
| \Delta \sigma sk | 

 - 
\bigl( 
K4  - K3C  - K

\bigr) 
| x - 1

k  - x - 1
k - 1| \~x0  - 

\bigl( 
K4  - K

\bigr) 
| x - 1

k  - x - 1
k - 1| \~x1

 - K
\Bigl\{ \bigl( 
K(1)

wc  - C
\bigr) 
| \alpha a

1 | \~x1 +
\bigl( 
K(2)

wc  - C
\bigr) 
| \alpha a

2 | \~x1 +
\bigl( 
Kce  - C

\bigr) 
\~x0\~x1

\Bigr\} 
.

Using (6.2), choosing K > K4, K
(1)
wc ,K

(2)
wc , and Kce sufficiently large, and taking L(I)

and \sigma \ast  - \sigma \ast sufficiently small, we have

F (J) - F (I) \leq  - 1

4

\bigl( 
Q(\Lambda ) + | \alpha b

1| + | \Delta \sigma sk | 
\bigr) 
.

Now we choose an appropriate constant \varrho such that, for any 1-wave \alpha after inter-
action, \sigma \alpha \geq s0  - \varrho . By (6.21), we have

| sk+1  - sk| \leq | Ks\alpha 1| + | \mu s\Delta \sigma sk | + C(| \Delta \sigma \alpha | + | \Delta \sigma sk | )\~x0.

Then the monotonicity of the Glimm functional implies that there exists a constant
C2 > 0 such that\sum 

k\geq 0

\bigm| \bigm| sk+1  - sk
\bigm| \bigm| \leq C2

\sum 
J>I

\bigl( 
F (I) - F (J)

\bigr) 
\leq C2F (0),

which leads to

s0  - C2F (0) \leq sk+1 \leq s0 + C2F (0).

Since \sigma \alpha satisfies \sigma \alpha \geq sk+1  - CF (0), there exists a positive constant C3 such that
\sigma \alpha \geq s0  - C3F (0). Then we choose \varrho = C3F (0).
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For any weak wave \alpha , denote \sigma (x\alpha , y\alpha ) as the corresponding self-similar variable
for point (x\alpha , y\alpha ) from where the weak wave \alpha is issued, with x\alpha \in \{ xk : k \geq 0\} .
Denote U\Delta x,\vargamma (x, y) as the approximate solution. Then we have the following.

Proposition 7.6. For M\infty sufficiently large and
\sum \infty 

k=0(1 + | bk| )| \omega k| sufficiently
small, if

\lambda 1(U\Delta x,\vargamma (x\alpha  - , \cdot )) < \sigma (x\alpha  - , \cdot ) < \lambda 2(U\Delta x,\vargamma (x\alpha  - , \cdot )),(7.9)

then

\lambda 1(U\Delta x,\vargamma (x\alpha +, \cdot )) < \sigma (x\alpha +, \cdot ) < \lambda 2(U\Delta x,\vargamma (x\alpha +, \cdot )).(7.10)

Proof. For any two mesh curves I and J satisfying I < J , we prove the lemma
by induction.

Since | bk  - bk - 1| = O(1)| \omega k| , we assume that

| bk  - b0| \leq 
k\sum 

j=1

| bj  - bj - 1| = O(1)

k\sum 
j=0

| \omega k| \leq C
\bigl( 
F (0) - F (I)

\bigr) 
.

Then, using assumption (7.9), Lemma 6.4, and Proposition 7.5, we have

| bk+1  - b0| \leq | bk+1  - bk| + | bk  - b0| (7.11)

\leq C| \omega k+1| + C
\bigl( 
F (0) - F (I)

\bigr) 
\leq C

\bigl( 
F (I) - F (J) + F (0) - F (I)

\bigr) 
\leq CF (0).

Similarly, for sk, assume that\bigm| \bigm| sk  - s0
\bigm| \bigm| \leq C

\bigl( 
F (0) - F (I)

\bigr) 
.

Then, using assumption (7.9), Lemma 6.5, and Proposition 7.5 again, we have

| sk+1  - s0| \leq | sk+1  - sk| + | sk  - s0| (7.12)

\leq C
\bigl( 
| \alpha b

1| + | \Delta \sigma sk | + \~x0
\bigr) 
+ C

\bigl( 
F (0) - F (I)

\bigr) 
\leq C

\bigl( 
F (I) - F (J) + F (0) - F (I)

\bigr) 
\leq CF (0).

Since

sk+1  - CF (0) < \sigma (x\alpha +, \cdot ) < bk+1 + CF (0),

it follows from (7.11)--(7.12) that

s0  - CF (0) < \sigma (x\alpha +, \cdot ) < b0 + CF (0).(7.13)

On the other hand, since

\lambda 1(U\Delta x,\vargamma (x\alpha +, \cdot )) - \lambda 1(\Theta (sk+1)) = O(1)F (0),
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it follows from Lemma 6.5 and Proposition 7.5 that

\lambda 1(\Theta (sk+1)) - \lambda 1(\Theta (s0)) = O(1)(sk+1  - s0) = O(1)F (0).

Then

\lambda 1(U\Delta x,\vargamma (x\alpha +, \cdot )) - \lambda 1(\Theta (s0))

= \lambda 1(U\Delta x,\vargamma (x\alpha +, \cdot )) - \lambda 1(\Theta (sk+1)) + \lambda 1(\Theta (sk+1)) - \lambda 1(\Theta (s0))

= O(1)F (0),

which leads to

\lambda 1(U\Delta x,\vargamma (x\alpha +, \cdot )) = b0  - (1 + b20)
3
2M - 1

\infty +O(1)F (0)(7.14)

+ O(1)M - 2
\infty +O(1)e - m0M

2
\infty .

Similarly, for \lambda 2(U\Delta x,\vargamma ), we have

\lambda 2(U\Delta x,\vargamma (x\alpha +, \cdot )) = b0 + (1 + b20)
3
2M - 1

\infty +O(1)F (0)(7.15)

+ O(1)M - 2
\infty +O(1)e - m0M

2
\infty .

Finally, by (7.13)--(7.15), we obtain

\lambda 1(U\Delta x,\vargamma (x\alpha +, \cdot )) - \sigma (x\alpha +, \cdot )(7.16)

<  - (1 + b20)
3
2M - 1

\infty + C
\bigl( 
F (0) +M - 2

\infty + e - m0M
2
\infty 
\bigr) 
,

\sigma (x\alpha +, \cdot ) - \lambda 2(U\Delta x,\vargamma (x\alpha +, \cdot ))(7.17)

<  - (1 + b20)
3
2M - 1

\infty + C
\bigl( 
F (0) +M - 2

\infty + e - m0M
2
\infty 
\bigr) 
.

SinceM\infty is sufficiently large and F (0) = O(1)
\sum \infty 

k=0(1+ | bk| )| \omega k| is sufficiently small,
then, by (7.16)--(7.17), we obtain

\lambda 1
\bigl( 
U\Delta x,\vargamma (x\alpha +, \cdot )

\bigr) 
< \sigma 

\bigl( 
x\alpha +, \cdot 

\bigr) 
< \lambda 2

\bigl( 
U\Delta x,\vargamma (x\alpha +, \cdot )

\bigr) 
.

This completes the proof.

Then, applying Proposition 7.5 and following the methods as done in [9, 29], we
conclude the following.

Theorem 7.7. Under assumptions (H1)--(H2), if M\infty is sufficiently large and\sum 
k\geq 0(1 + | bk| )| \omega k| is sufficiently small, then, for any \vargamma \in \Pi \infty 

k=0( - 1, 1) and every
\Delta x > 0, the modified Glimm scheme developed above defines a sequence of global
approximate solutions U\Delta x,\vargamma (x, y) such that

sup
x>0

T.V.
\bigl\{ 
U\Delta x,\vargamma (x, y) :  - \infty < y < b\Delta (x)

\bigr\} 
<\infty ,(7.18) \int 0

 - \infty 

\bigm| \bigm| U\Delta x,\vargamma (x1, y + b\Delta (x1)) - U\Delta x,\vargamma (x2, y + b\Delta (x2))
\bigm| \bigm| dy \leq C4| x1  - x2| ,(7.19)

where C4 > 0 is independent of U\Delta x,\vargamma , \Delta x, and \vargamma .

Denote

s\Delta x,\vargamma (x) = 1(k\Delta x,(k+1)\Delta x)sk for k \geq 0,(7.20)
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where 1A stands for the characteristic function on set A. Then, by direct computation,
we have

\chi \Delta x,\vargamma (x) =

\int x

0

s\Delta x,\vargamma (\tau ) d\tau .(7.21)

Moreover, by Lemma 6.5 and Proposition 7.5, we have the following.

Corollary 7.8. There exists a constant C5 > 0 independent of U\Delta x,\vargamma , \Delta x, and
\vargamma such that

(7.22) T.V. \{ s\Delta x,\vargamma (x) : x \in [0,\infty )\} \leq C5.

Once the uniform boundedness of the TV of the approximate solutions U\Delta x,\vargamma is
obtained, then, by Proposition 7.5 and Corollary 7.8, the convergence of U\Delta x,\vargamma follows.
We can prove that its limit U\vargamma is actually an entropy solution of problem (1.4)--(1.7).
This can be summarized as the following theorem whose proof is standard and similar
to [9, 16, 29], so we omit the details here.

Theorem 7.9. Let assumptions (H1)--(H2) hold. Assume that\int \infty 

0

(1 + | b(x)| ) d\mu (x) < \~\varepsilon ,(7.23)

where \mu (x) = T.V.
\bigl\{ 
b\prime +(\tau ) : \tau \in [0, x)

\bigr\} 
. Then there is a null set \scrN such that, if M\infty 

is sufficiently large and \~\varepsilon > 0 sufficiently small, for each \vargamma \in (\Pi \infty 
k=0( - 1, 1)\setminus \scrN ), there

exist both a subsequence \{ \Delta i\} \infty i=0 \subset \{ \Delta x\} of mesh sizes with \Delta i \rightarrow 0 as i\rightarrow \infty and a
pair of functions U\vargamma (x, y) \in O\^\varepsilon (\Gamma (b0, u\infty )) and \chi \vargamma (x) with \chi \vargamma (0) = 0 such that

(i) U\Delta i,\vargamma (x, \cdot ) converges to U\vargamma (x, \cdot ) in L1( - \infty , b(x)) for every x > 0 as i\rightarrow \infty ,
and U\vargamma is a global entropy solution of problem (1.4)--(1.7);

(ii) s\Delta i,\vargamma (x) converges to s\vargamma (x) \in BV ([0,\infty )) with | s\vargamma (x) - s0| < C\~\varepsilon ;
(iii) \chi \Delta i,\vargamma (x) converges to \chi \vargamma (x) uniformly in any bounded x-interval such that

\chi \vargamma (x) =

\int x

0

s\vargamma (\tau ) d\tau ,(7.24)

and \chi \vargamma (x) < b(x) for any x > 0, where C > 0 is a constant depending only
on the system.

8. Asymptotic behavior of global entropy solutions. To understand the
asymptotic behavior of global entropy solutions U\vargamma (x, y), we need further estimates
of the approximate solutions U\Delta i,\vargamma (x, y).

Lemma 8.1. There exists a constant M1 independent of U\Delta x,\vargamma , \Delta x, and \vargamma such
that

(8.1)
\sum 
\Lambda 

E\Delta x,\vargamma (\Lambda ) < M1

for E\Delta x,\vargamma (\Lambda ) given as in (7.7).

Proof. By Proposition 7.5, for any interaction diamond \Lambda \subset \{ (k  - 1)\Delta x \leq x \leq 
(k + 1)\Delta x\} , k \geq 1, we have\sum 

\Lambda 

E\Delta x,\vargamma (\Lambda ) \leq 4
\sum 
\Lambda 

\bigl( 
F (I) - F (J)

\bigr) 
\leq 4F (0).

Then estimate (8.1) follows by choosing M1 = 4F (0) + 1.
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For any \tau > 0, let \scrL j,\vargamma (\tau  - ), j = 1, 2, be the TV of j-weak waves in U\vargamma crossing
line x = \tau , and let \scrL j,\Delta x,\vargamma (\tau  - ), j = 1, 2, be the TV of j-weak waves in U\Delta x,\vargamma crossing
line x = \tau . In addition, denote by \scrC \vargamma (\tau  - ) the TV for the centers in U\vargamma when the
self-similar lines cross line x = \tau , and let \scrC \Delta x,\vargamma (\tau  - ) be the TV of the center changes
in U\Delta x,\vargamma when the self-similar lines cross line x = \tau . Then we have the following.

Lemma 8.2. As x\rightarrow \infty ,

2\sum 
j=1

\scrL j,\vargamma (x - ) + \scrC \vargamma (x - )  - \rightarrow 0.

Proof. Let U\Delta i,\vargamma (x, y) be a sequence of the approximate solutions stated in The-
orem 7.9, and let the corresponding term E\Delta i,\vargamma (\Lambda ) be defined in (7.7). As in [16],
denote by dE\Delta i,\vargamma the measures of the assigning quantities E\Delta i,\vargamma (\Lambda ) of the centers of
\Lambda . Then, by Lemma 8.1, we can select a subsequence (still denoted as dE\Delta i,\vargamma ) such
that

dE\Delta i,\vargamma \rightarrow dE\vargamma as \Delta i \rightarrow 0

with E\vargamma (\Lambda ) <\infty .
Therefore, for \^\varepsilon > 0 sufficiently small, we can choose x\^\varepsilon > 0 (independent of

U\Delta i,\vargamma ), \Delta i, and \vargamma such that \sum 
k>[x\^\varepsilon /\Delta x]

E\Delta i,\vargamma (\Lambda k,n) < \^\varepsilon .

Let X1
\^\varepsilon = (x\^\varepsilon , \chi \Delta i,\vargamma (x\^\varepsilon )) and X2

\^\varepsilon = (x\^\varepsilon , b\Delta i
(x\^\varepsilon )) be the two points lying in the

approximate 1-shock y = \chi \Delta i,\vargamma (x) and the approximate cone boundary \Gamma \Delta i
, respec-

tively. Let \chi j
\Delta i,\vargamma 

be the approximate j-generalized characteristic issuing from Xj
\^\varepsilon for

j = 1, 2, respectively. According to the construction of the approximate solution,
there exist constants \^Mj > 0 for j = 1, 2, independent of U\Delta i,\vargamma , \Delta i, and \vargamma , such that\bigm| \bigm| \chi j

\Delta i,\vargamma 
(x1) - \chi j

\Delta i,\vargamma 
(x2)

\bigm| \bigm| \leq \^Mj

\bigl( 
| x1  - x2| +\Delta i

\bigr) 
for x1, x2 > x\^\varepsilon .

Then we can choose a subsequence (still denoted by) \Delta i such that

\chi j
\Delta i,\vargamma 

(x) \rightarrow \chi j
\vargamma (x) as \Delta i \rightarrow 0

for some \chi j
\vargamma \in Lip with (\chi j

\vargamma )
\prime bounded.

Let the two characteristics \chi 1
\vargamma (x) and \chi 2

\vargamma (x) intersect with the cone boundary
\partial \Omega and shock-front y = \chi \vargamma (x) at points (t1\^\varepsilon , \chi 

1(t1\^\varepsilon )) and (t2\^\varepsilon , \chi 
2(t2\^\varepsilon )) for some t1\^\varepsilon and

t2\^\varepsilon , respectively. Then, as in [17], we apply the approximate conservation law to the
domain below \chi 1

\Delta i,\vargamma 
and above \chi 1

\Delta i,\vargamma 
, and use Lemma 8.1 to obtain

\scrL j,\Delta i,\vargamma (x - ) \leq C
\sum 

k>[x\^\varepsilon /\Delta x]

E\Delta i,\vargamma (\Lambda k,n) \leq C\^\varepsilon ,

\scrC \Delta x,\vargamma (x - ) \leq C
\sum 

k>[x\^\varepsilon /\Delta x]

(1 + | bk| )| \omega k| \leq C\^\varepsilon 

for j = 1, 2, and x > t1\^\varepsilon + t2\^\varepsilon , where the bound of O(1) is independent of U\Delta x,\vargamma , \Delta x,
and \vargamma . These lead to

\scrL j,\vargamma (x - ) = O(1)\^\varepsilon , \scrC \vargamma (x - ) = O(1)\^\varepsilon 

for j = 1, 2, and x > t1\^\varepsilon + t2\^\varepsilon . This completes the proof.
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Denote

X\ast 
\infty = lim

x\rightarrow \infty 
X\ast (x, b(x)).(8.2)

Theorem 8.3. Let U\vargamma be the entropy solution of problem (1.4)--(1.7) given by
Theorem 7.9. Denote s\infty = limx\rightarrow \infty s\vargamma (x) and b

\prime 
\infty = limx\rightarrow \infty b\prime +(x). Then

lim
x\rightarrow \infty 

sup
\bigl\{ 
| U\vargamma (x, y) - \varpi (\sigma \infty ;O\infty )| : \chi \vargamma (x) < y < b(x)

\bigr\} 
= 0,(8.3)

where \varpi (\sigma \infty ;O\infty ) is the state of the self-similar solutions with \sigma \infty = y
x - X\ast 

\infty 
and

O\infty = (X\ast 
\infty , 0) as its self-similar variable and center, respectively, and satisfies

\varpi (s\infty ;O\infty ) = \Theta (s\infty ), \varpi (b\prime \infty ;O\infty ) \cdot ( - b\prime \infty , 1) = 0(8.4)

with \Theta (s) as the state connected to state U\infty by the 1-shock of speed s.

Proof. From the construction of the approximate solution, there exists a state
\varpi (\sigma k;Ok) such that U\Delta i,\vargamma (x, y) = \varpi (\sigma k;Ok) for some k \geq 1 with \sigma k = y

x - X\ast 
k
and

Ok = (X\ast 
k , 0). Let x \in [(l  - 1)\Delta x, l\Delta x) for some l \geq 1, and let

X\ast 
l = xl - 1  - 

bl - 1

bl  - bl - 1
\Delta x.

Then, for every x > 0,\bigm| \bigm| U\Delta i,\vargamma (x, y) - \varpi (\sigma l;Ol)
\bigm| \bigm| = | \varpi (\sigma k;Ok) - \varpi (\sigma l;Ol)| 

\leq C

\biggl( \sum 
j=1,2

\scrL j,\Delta i,\vargamma (x - ) + \scrC \Delta i,\vargamma (x - )

\biggr) 
,

where C > 0 is independent of U\Delta i,\vargamma , \Delta i, and \vargamma .
On the other hand, for every x > 0

| \varpi (\sigma l;Ol) - \varpi (\sigma \infty ;O\infty )| \leq C \scrC \Delta x,\vargamma (x - ),

where C > 0 is independent of U\Delta i,\vargamma , \Delta i, and \vargamma . Thus, for every x > 0, we obtain

| \varpi (s\Delta i;\vargamma ;Ol) - \Theta (s\Delta i,\vargamma (x))| + | \varpi (b\prime \Delta i
(x);Ol) \cdot ( - b\prime \Delta i

, 1)| 
+ | U\Delta i,\vargamma (x, \cdot ) - \varpi (\sigma \infty ;O\infty )| 

\leq sup
\chi \Delta i,\vargamma 

(x)<y<b\Delta i
(x)

| U\Delta i,\vargamma (x, y) - \varpi (\sigma l;Ol)| 

+ sup
\chi \Delta i,\vargamma 

(x)<y<b\Delta i
(x)

| \varpi (\sigma l;Ol) - \varpi (\sigma \infty ;O\infty )| 

\leq C

\biggl( \sum 
j=1,2

\scrL j,\Delta i,\vargamma (x - ) + \scrC \Delta i,\vargamma (x - )

\biggr) 
.

By Theorem 7.9, letting \Delta i \rightarrow 0, we have

| \varpi (s\vargamma ;Ol) - \Theta (s\vargamma (x))| + | \varpi (b\prime +(x);Ol) \cdot ( - b\prime +, 1)| 
+ sup

\chi \vargamma (x)<y<b(x)

| U\vargamma (x, y) - \varpi (\sigma \infty ;O\infty )| 

\leq C

\biggl( \sum 
j=1,2

\scrL j,\vargamma (x - ) + \scrC \vargamma (x - )

\biggr) 
for every x > 0,

which leads to the desire result by using Lemma 8.2.
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Appendix A. Proof of Lemma 2.1. In this appendix, we give a proof of
Lemma 2.1 by showing the fact that system (2.1) is genuinely nonlinear for u > c.
We first introduce some notations for the computational convenience.

Denote q =
\surd 
u2 + v2, M = q

c , \theta = arctan v
u , and \lambda j = \lambda j(U), j = 1, 2. Then the

eigenvalues can be rewritten as

\lambda j = tan(\theta + ( - 1)j\theta ma) for j = 1, 2,(A.1)

where \theta ma is the Mach angle,

(A.2) \theta ma := arctan(
1\surd 

M2  - 1
).

Moreover, \theta ma = arcsin( 1
M ) \in (0, \pi 2 ) for supersonic flow. Then we have the following.

Lemma A.1. If u > c, then

(A.3) cos(\theta + ( - 1)j\theta ma) =
u
\surd 
M2  - 1 + ( - 1)j+1v

cM2
> 0 for j = 1, 2.

Proof. By direct computation, we obtain the first equality:

cM2 cos(\theta + ( - 1)j\theta ma) = u
\sqrt{} 
M2  - 1 + ( - 1)j+1v for j = 1, 2.

Since
\bigl( 
u
\sqrt{} 
q2  - c2

\bigr) 2  - c2v2 = (u2  - c2)q2 > 0, then

u
\sqrt{} 
M2  - 1 > | u| .

This completes the proof.

Lemma A.2. If u > c, then

\partial q

\partial u
= cos \theta ,

\partial q

\partial v
= sin \theta ,

\partial \theta 

\partial u
=  - sin \theta 

q
,

\partial \theta 

\partial v
=

cos \theta 

q
,

\partial \theta ma

\partial q
=  - 1

cM
\surd 
M2  - 1

.

Proof. We prove only for the last identity above, since the proofs for the others
are similar. From (A.2), we have

cos \theta ma =

\surd 
M2  - 1

M
.

Therefore, we have

\partial \theta ma

\partial q
=  - M

(M2  - 1)
3
2

cos2 \theta ma =  - 1

cM
\surd 
M2  - 1

.

This completes the proof.

Lemma A.3. If u > c, then

\partial \lambda j
\partial \theta 

= sec2(\theta + ( - 1)j\theta ma),
\partial \lambda j
\partial q

= ( - 1)j+1 1

cM
\surd 
M2  - 1

sec2(\theta + ( - 1)j\theta ma)

for j = 1, 2.
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Lemma A.4. If u > c, then

\partial \lambda j
\partial u

=
( - 1)j

c
\surd 
M2  - 1

sin(\theta + ( - 1)j\theta ma) sec
2(\theta + ( - 1)j\theta ma),

\partial \lambda j
\partial v

=
( - 1)j+1

c
\surd 
M2  - 1

cos(\theta + ( - 1)j\theta ma) sec
2(\theta + ( - 1)j\theta ma) for j = 1, 2.

Proof. For j = 1, from Lemmas A.2--A.3, we have

\partial \lambda 1
\partial u

=
\partial \lambda 1
\partial \theta 

\partial \theta 

\partial u
+
\partial \lambda 1
\partial q

\partial q

\partial u

=  - sec2(\theta  - \theta ma)
sin \theta 

q
+

1

cM
\surd 
M2  - 1

sec2(\theta  - \theta ma) cos \theta 

=  - 1

c
\surd 
M2  - 1

sin(\theta  - \theta ma) sec
2(\theta  - \theta ma),

\partial \lambda 1
\partial v

=
\partial \lambda 1
\partial \theta 

\partial \theta 

\partial v
+
\partial \lambda 1
\partial q

\partial q

\partial v

= sec2(\theta  - \theta ma)
cos \theta 

cM
+

1

cM
\surd 
M2  - 1

sec2(\theta  - \theta ma) sin \theta 

=
1

c
\surd 
M2  - 1

cos(\theta  - \theta ma) sec
2(\theta  - \theta ma).

The case for j = 2 can be carried out in the same way. This completes the proof.

Lemma A.5. For u > c,

(
\partial \lambda j
\partial u

,
\partial \lambda j
\partial v

) \cdot ( - \lambda j , 1) =
sec3(\theta + ( - 1)j\theta ma)

c
\surd 
M2  - 1

for j = 1, 2.(A.4)

Proof. We consider only the case that j = 1, since it is similar to j = 2. By
(A.1)--(A.4) and Lemma A.4, we know that

(
\partial \lambda 1
\partial u

,
\partial \lambda 1
\partial v

) \cdot ( - \lambda 1, 1) =
sec3(\theta  - \theta ma) sin

2(\theta  - \theta ma)

c
\surd 
M2  - 1

+
sec2(\theta  - \theta ma) cos(\theta  - \theta ma)

c
\surd 
M2  - 1

=
sec3(\theta  - \theta ma)

c
\surd 
M2  - 1

.

This completes the proof.

From Lemma A.1, we know that system (2.1)--(2.2) is genuinely nonlinear for
u > c.

Then, according to Lemmas A.1 and A.5, we have the following property that
leads to the proof of Lemma 2.1.

Lemma A.6. For u > c,

ej(U) =
\sqrt{} 
q2  - c2 cos3

\bigl( 
\theta + ( - 1)j\theta ma

\bigr) 
> 0 for j = 1, 2.(A.5)
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