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Abstract

We are concerned with the nonlinear stability of vortex sheets for the relativistic
Euler equations in three-dimensional Minkowski spacetime. This is a nonlinear
hyperbolic problem with a characteristic free boundary. In this paper, we introduce
a new symmetrization by choosing appropriate functions as primary unknowns. A
necessary and sufficient condition for theweakly linear stability of relativistic vortex
sheets is obtained by analyzing the roots of the Lopatinskiı̆ determinant associated
to the constant coefficient linearized problem. Under this stability condition, we
show that the variable coefficient linearized problem obeys an energy estimate with
a loss of derivatives. The construction of certain weight functions plays a crucial
role in absorbing the error terms caused by microlocalization. Based on the weakly
linear stability result, we establish the existence and nonlinear stability of relativistic
vortex sheets under small initial perturbations by a Nash–Moser iteration scheme.
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1. Introduction

We are concerned with the nonlinear stability of relativistic vortex sheets for
the Euler equations describing the evolution of a relativistic compressible fluid.
Relativistic vortex sheets arise as a very important feature in several models of
phenomena occurring in astrophysics, plasma physics, and nuclear physics. Vortex
sheets are interfaces between two incompressible or compressible flows across
which there is a discontinuity in fluid velocity. In particular, across a vortex sheet,
the tangential velocity field has a jump, while the normal component of the flow
velocity is continuous. The discontinuity in the tangential velocity field creates a
concentration of vorticity along the interface.Moreover, compressible vortex sheets
are characteristic discontinuities to the Euler equations for compressible fluids and
as such they are fundamental waves which play an important role in the study of
general entropy solutions to multidimensional hyperbolic systems of conservation
laws (cf. Chen–Feldman [7]).

It was observed in [21,36], by the normal mode analysis, that rectilinear vortex
sheets for non-relativistic isentropic compressible fluids in two space dimensions
are linearly stable when the Mach number M >

√
2 and are violently unstable

when M <
√
2, while planar vortex sheets are always violently unstable in three

space dimensions. This kind of instability is the analogue of the Kelvin–Helmholtz
instability for incompressible fluids. Artola–Majda [3] studied certain instabili-
ties of two-dimensional supersonic vortex sheets by analyzing the interaction with
highly oscillatory waves through geometric optics. A rigorous mathematical the-
ory on the nonlinear stability and local-in-time existence of two-dimensional non-
relativistic supersonic vortex sheets was first established by Coulombel–Secchi
[19,20] based on their linear stability results in [17] and a Nash–Moser iteration
scheme.

Motivated by the earlier results in [17,19,20], we aim to establish the nonlinear
stability of relativistic vortex sheets in three-dimensional Minkowski spacetime
under the necessary condition for the linear stability on the piecewise constant
background state. This problem is a nonlinear hyperbolic problem with a charac-
teristic free boundary. The so-called Lopatinskiı̆ condition holds only in a weak
sense, which yields a loss of derivatives.

We first reformulate the relativistic Euler equations into a symmetrizable hy-
perbolic system by choosing appropriate functions as primary unknowns. Our sym-
metrization is purely algebraic and different from those obtained by Makino–Ukai
in [33] and Trakhinin [48]. As in Francheteau–Métivier [22], we straighten the
unknown front by lifting functions Φ± that satisfy the eikonal equations (2.23a)
on the whole domain. Consequently, the original problem can be transformed into
a nonlinear problem in a half-space for which the boundary matrix has constant
rank on the whole half-space. This constant rank property is essential for deriving
energy estimates for the variable coefficient linearized problem by developing the
Kreiss’ symmetrizers technique from [15,17,27].
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Then we consider the constant coefficient linearized problem around the piece-
wise constant background state. By computing the roots of the associated Lopatin-
skiı̆ determinant, we deduce the necessary stability condition (cf. (2.25)):

M > Mc :=
√
2√

1 + ε2c̄2
,

where ε−1 is the speed of light and c̄ is the sound speed of the background state.
In the non-relativistic limit ε → 0, this stability condition is reduced to M >√
2, the well-known fact studied in [17,36]. The critical Mach number Mc of the

relativistic stability condition is always strictly smaller than
√
2, which means that

the relativistic vortex sheets are stable in a larger physical regime. Moreover, when
the sound speed c̄ is arbitrarily close to the light speed ε−1, the criticalMach number
Mc approaches 1 so that the stability holds precisely for supersonic relativistic flows.
The symbol associated to the unknown front is elliptic,which enables us to eliminate
the front and to consider a standard boundary value problem. We prove that the
constant coefficient linearized problem obeys an a priori energy estimate, which
exhibits a loss of derivatives with respect to the source terms, owing to the failure
of the uniform Kreiss–Lopatinskiı̆ condition. Since the boundary is characteristic,
there exists a loss of control on the trace of the solution.

After that, we study the effective linear problem, which is deduced from the lin-
earized problem around a perturbation of the background state by using the “good
unknown” of Alinhac [1] and neglecting some zero-th order terms. The dropped
terms will be considered as the error terms at each Nash–Moser iteration step in
the subsequent nonlinear analysis. We first prove for small perturbations that the
solution satisfies the same a priori estimate as the constant coefficient case. The
energy estimate is deduced by the technique applied earlier to weakly stable shock
waves in [15] and isentropic compressible vortex sheets in [17]. It consists of the
paralinearization of the linearized problem, analysis of the Lopatinskiı̆ determinant,
microlocalization, and construction of the Kreiss’ symmetrizers. In particular, we
introduce certain weight functions, vanishing only on the bicharacteristic curves
starting from the critical set, to absorb the error terms caused by microlocalization.
Based on this basic energy estimate, we establish a well-posedness result for the
effective linear problem in the usual Sobolev space Hs with s large enough. This
is achieved by means of a duality argument and higher order energy estimates.
Although our problem is a hyperbolic problem with a characteristic boundary that
yields a natural loss of normal derivatives, wemanage to compensate for this loss by
estimating missing normal derivatives through the equations of the linearized vor-
ticity.With the well-posedness and tame estimate for the effective linear problem in
hand, we prove the local existence theorem for relativistic vortex sheets (see Theo-
rem 2.1) by a Nash–Moser iteration scheme. We emphasize that our choice of new
primary unknowns is essential for three main reasons: the system becomes sym-
metrizable hyperbolic; it has an appropriate form for the analysis of the Lopatinskiı̆
determinant; and, most of all, it is suitable for getting a vorticity-type equation.

Characteristic discontinuities, especially vortex sheets, arise in a broad range
of physical problems in fluid mechanics, oceanography, aerodynamics, plasma
physics, astrophysics, and elastodynamics. The linear results in [17] have been
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generalized to cover two-dimensional nonisentropic flows [38], three-dimensional
compressible steady flows [50,52], and two-dimensional two-phase flows [42]. It
is worth mentioning that a key ingredient in all of these proofs is the constant
rank property of the boundary matrix. Recently, the methodology in [17] has been
developed to deal with several constant coefficient linearized problems arising in
two-dimensional compressible magnetohydrodynamics (MHD) and elastic flows;
cf. [5,10,49]. See also the very recent preprint [11] for the linear stability of elastic
vortex sheets in the variable coefficient case. For three-dimensional MHD, Chen–
Wang [8,9] and Trakhinin [47] proved independently the nonlinear stability of
compressible current-vortex sheets, which indicates that non-paralleled magnetic
fields stabilize the motion of three-dimensional compressible vortex sheets. More-
over, themodifiedNash–Moser iteration scheme developed in [19,24] has been suc-
cessfully applied to the compressible liquids in vacuum [48], the plasma-vacuum
interface problem [44], MHD contact discontinuities [39], and vortex sheets for
three-dimensional steady flow [51] and two-dimensional two-phase flow [25].

Let us also mention some earlier works on the relativistic fluids. The global
existence of discontinuous solutions to the relativistic Euler equations in one space
dimension was first investigated by Smoller–Temple [45]. Also, Makino–Ukai
[33] showed the existence of local smooth solutions in three space dimensionswhen
the initial data is away from the vacuum. The stability of relativistic compressible
flowswith vacuumwas addressed in [26,48].Moreover, the blow-up in finite time of
smooth solutions for the relativistic Euler equations was shown in Pan–Smoller
[40]. Also see Christodoulou [12,13] for the formation and development of
shocks in the multidimensional relativistic compressible fluids.

The plan of this paper is as follows: in Section2, after introducing the free
boundary problem for relativistic vortex sheets, we reformulate the relativistic Euler
equations and reduce our nonlinear problem to that in a fixed domain. Then we
state the main result in this paper and introduce the weighted spaces and norms.
Section 3 is mainly devoted to proving Theorem 3.1, i.e. an energy estimate for
the constant coefficient linearized problem. More precisely, after some reductions,
we compute the roots of the associated Lopatinskiı̆ determinant and deduce the
criterion for weakly linear stability in Section 3.2. Then we adopt the argument
developed recently by Chen–Hu–Wang [10] to prove the energy estimate for the
constant coefficient case. In Section 4, we introduce the effective linear problem
and its reformulation. Section 5 is devoted to the proof of Theorem 5.1, the energy
estimate for the effective linear problem. After deriving a weighted energy estimate
with certain weights vanishing only on the bicharacteristic curves starting from the
critical set, we can absorb the error terms caused bymicrolocalization and complete
the proof of Theorem 5.1. In Section 6, we prove a well-posedness result of the
effective linear problem in the usual Sobolev space Hs with s large enough. In
Section 7, we obtain the smooth “approximate solution” by imposing necessary
compatible conditions on the initial data. Then the original problem (2.20) and
(2.23) is reduced into a nonlinear problem with zero initial data. In Section 8, by
using a modification of the Nash–Moser iteration scheme, we show the existence
of solutions to the reduced problem and conclude the proof of our main result,
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Theorem 2.1. “Appendix A” concerns the motivation of introducing new primary
unknowns and the derivation of the new symmetrization.

2. Nonlinear Problems and the Main Theorem

In this section, we first introduce the free boundary problem for relativistic
vortex sheets, then reformulate the relativistic Euler equations and reduce our non-
linear problem to that in a fixed domain, and finally state the main theorem of this
paper and introduce the weighted spaces and norms.

2.1. Relativistic Vortex Sheets

We consider the equations of relativistic perfect fluid dynamics in the three-
dimensional Minkowski spacetime R

2+1, that is, the relativistic Euler equations
(see Lichnerowicz [30]):

∂αT
αβ = 0, (2.1)

where T denotes the energy-momentum stress tensor with components

T αβ =
(
p + ρε−2

)
uαuβ + pgαβ.

Here p is the pressure, ρ is the energy-mass density, ε−1 is the speed of light,
gαβ = diag (−1, 1, 1) is the flat Minkowski metric, and u = (u0, u1, u2)T is the
flow velocity satisfying

gαβuαuβ = −1. (2.2)

The notation ∂α denotes the differentiation with respect to variable xα , and the
Greek indices “α” and “β” run from 0 to 2. Throughout this paper, we use the
Einstein summation convention whereby a repeated index in a term implies the
summation over all the values of that index.

We introduce the coordinate velocity v = (v1, v2)
T := (u1, u2)T/(εu0). By

virtue of (2.2), the physical constraint is

|v| < ε−1. (2.3)

We also introduce the spacetime coordinates (t, x)with t := εx0 and x := (x1, x2).
Then system (2.1) can be equivalently rewritten as

∂t

(
(ρ + ε2 p)Γ 2 − ε2 p

)
+ ∇x ·

(
(ρ + ε2 p)Γ 2v

)
= 0, (2.4a)

∂t

(
(ρ + ε2 p)Γ 2v

)
+ ∇x ·

(
(ρ + ε2 p)Γ 2v ⊗ v

)
+ ∇x p = 0, (2.4b)

where ∂t = ∂
∂t , ∇x = (∂1, ∂2)

T with ∂ j = ∂
∂x j

, matrix v ⊗ v has (i, j)-entry viv j ,
and

Γ = Γ (v) := 1√
1 − ε2|v|2 (2.5)
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is the Lorentz factor. The fluid is assumed to be barotropic, which means that
pressure p is given by an explicit function of ρ. We also assume that p = p(ρ) is
a C∞ function defined on (ρ∗, ρ∗) and satisfies

0 < p′(ρ) < ε−2 for all ρ ∈ (ρ∗, ρ∗), (2.6)

where ρ∗ and ρ∗ are some constants such that 0 � ρ∗ < ρ∗ � ∞. Consequently,
densityρ is a strictly increasing function of p definedon (p(ρ∗), p(ρ∗)), and system
(2.4) is closed with three unknowns (ρ, v1, v2). Barotropic fluids arise in many
physical situations such as very cold matter, nuclear matter and ultrarelativistic
fluids (cf. [2, Chapter II], [14, Chapter IX], and [45, Section 1]).

Let (ρ, v)(t, x) be smooth functions on either side of a smooth hypersurface
Σ(t) := {x2 = ϕ(t, x1)}. Then (ρ, v) is a weak solution of (2.4) if and only if
(ρ, v) is a classical solution of (2.4) on each side ofΣ(t) and satisfies the Rankine–
Hugoniot conditions at every point of Σ(t):

⎧⎪⎨
⎪⎩
∂tϕ

[
(ρ + ε2 p)Γ 2 − ε2 p

]
−

[
(ρ + ε2 p)Γ 2v · ν

]
= 0,

∂tϕ
[
(ρ + ε2 p)Γ 2v

]
−

[
(ρ + ε2 p)Γ 2(v · ν)v

]
− [p] ν = 0,

(2.7)

where ν := (−∂1ϕ, 1) is a spatial normal vector toΣ(t). As usual, for any function
g, we denote by g± the value of g in {±(x2 − ϕ(t, x1)) > 0}, and [g] := g+|Σ(t)−
g−|Σ(t) the jump across Σ(t).

In this paper, we are interested in weak solutions (ρ, v) of (2.4) such that
the tangential velocity (with respect to Σ(t)) is the only jump experienced by
the solution (ρ, v) across Σ(t). Then the Rankine–Hugoniot conditions (2.7) are
reduced to

∂tϕ = v+ · ν = v− · ν, p+ = p− on Σ(t). (2.8)

A piecewise smooth weak solution (ρ, v) of (2.4) with discontinuities acrossΣ(t)
is called a relativistic vortex sheet if its trace on Σ(t) satisfies (2.8).

We note that system (2.4) admits trivial vortex-sheet solutions that consist of
two constant states separated by a rectilinear front:

(ρ, v)(t, x1, x2) =
{
(ρ̄, v̄, 0) if x2 > 0,

(ρ̄,−v̄, 0) if x2 < 0,
(2.9)

where ρ̄ and v̄ are suitable positive constants. Every rectilinear relativistic vortex
sheet is of this form by changing the observer if necessary. In view of (2.3) and
(2.6), we may assume without loss of generality that

ρ̄ ∈ (ρ∗, ρ∗), v̄ ∈ (0, ε−1). (2.10)

The aim of this paper is to study the local-in-time existence and nonlinear
stability of relativistic vortex sheets with initial data close to the piecewise constant
state (2.9).
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2.2. Reformulation and the Main Theorem

Let us first reformulate the relativistic Euler equations (2.4) by choosing appro-
priate functions as primary unknowns. To this end, we define the particle number
density N = N (ρ), the sound speed c = c(ρ), and h = h(ρ) by

N (ρ) := exp

(∫ ρ

ρ̄

ds

s + ε2 p(s)

)
, c(ρ) := √

p′(ρ), h(ρ) := ρ + ε2 p(ρ)

N (ρ)
.

(2.11)

We also introduce

w := Γ v = v√
1 − ε2|v|2 , (2.12)

so that

Γ =
√
1 + ε2|w|2, v = w√

1 + ε2|w|2 . (2.13)

Then we discover that smooth solutions to system (2.4) satisfy

Γ (∂t + v · ∇x )(hw)+ N−1∇x p = 0. (2.14)

Let us take U := (p, hw1, hw2)
T as primary unknowns and define the following

matrices:

A0(U ) :=
⎛
⎝
Γ (1 − ε4c2|v|2) 2ε2Nc2v1 2ε2Nc2v2

0 Γ (1 − ε2v21) −ε2Γ v1v2
0 −ε2Γ v1v2 Γ (1 − ε2v22)

⎞
⎠ , (2.15)

A1(U ) :=
⎛
⎝
Γ v1(1 − ε4c2|v|2) Nc2(1 + ε2v21) ε2v1v2Nc2

N−1(1 − ε2v21) Γ v1(1 − ε2v21) −ε2Γ v21v2
−ε2v1v2N−1 −ε2Γ v21v2 Γ v1(1 − ε2v22)

⎞
⎠ , (2.16)

A2(U ) :=
⎛
⎝
Γ v2(1 − ε4c2|v|2) ε2v1v2Nc2 Nc2(1 + ε2v22)

−ε2v1v2N−1 Γ v2(1 − ε2v21) −ε2Γ v1v22
N−1(1 − ε2v22) −ε2Γ v1v22 Γ v2(1 − ε2v22)

⎞
⎠ . (2.17)

When the solution is in C1, system (2.4) equivalently reads

A0(U )∂tU + A1(U )∂1U + A2(U )∂2U = 0. (2.18)

We postpone proving the equivalence of systems (2.4) and (2.18) to “Appendix A”.
The choice of the new unknowns U has several advantages. First, system (2.18)
is symmetrizable hyperbolic in region {ρ∗ < ρ < ρ∗, |v| < ε−1} (see “Appendix
A” for the precise expression of the Friedrichs symmetrizer). Second, we will see
in the sequel that the form of (2.18) is appropriate for computing the roots of the
Lopatinskiı̆ determinant. Third, equations (2.14) will enable us to obtain the lin-
earized vorticity equation throughwhich the loss of derivatives can be compensated
in the higher-order energy estimates.
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Note that the first two identities in (2.8) are the eikonal equations

∂tϕ + λ2(U
+, ∂1ϕ) = 0, ∂tϕ + λ2(U

−, ∂1ϕ) = 0,

where λ2(U, ξ) := v1ξ − v2, and ξ ∈ R is the second characteristic field of (2.18)
with the corresponding eigenvector:

r2(U, ξ) :=
(
0, 1 − ε2v22 + ε2v1v2ξ, (1 − ε2v21)ξ + ε2v1v2

)T
.

It follows from (2.11) and (2.13) that ∇Uλ2(U, ξ) · r2(U, ξ) ≡ 0, i.e. the charac-
teristic field λ2 is linearly degenerate in the sense of Lax [28]. As a consequence,
a relativistic vortex sheet is a characteristic discontinuity.

Function ϕ describing the discontinuity front is a part of the unknowns, and thus
the relativistic vortex sheet problem is a free boundary problem. To reformulate this
problem in a fixed domain, we replace unknowns U , which are smooth on either
side of Σ(t), by

U±
� (t, x) := U (t, x1, Φ

±(t, x)), (2.19)

where Φ± are smooth functions satisfying the constraints

Φ±(t, x1, 0) = ϕ(t, x1), ±∂2Φ±(t, x) � κ > 0 i f x2 � 0.

Then the existence of relativistic vortex sheets amounts to constructing solutions
U±
� , which are smooth in the fixed domain {x2 > 0}, to the following initial-

boundary value problem:

L(U±, Φ±) = 0 if x2 > 0, (2.20a)

B(U+,U−, ϕ) = 0 if x2 = 0, (2.20b)

(U±, ϕ)|t=0 = (U±
0 , ϕ0), (2.20c)

where index “�” has been dropped for notational simplicity. According to transfor-
mation (2.19), operators L and B take the forms

{
L(U, Φ) = L(U, Φ)U

with L(U, Φ) := A0(U )∂t + A1(U )∂1 + Ã2(U, Φ)∂2,
(2.21)

B(U+,U−, ϕ) :=
⎛
⎝

[v1]∂1ϕ − [v2]
∂tϕ + v+

1 ∂1ϕ − v+
2

p+ − p−

⎞
⎠ , (2.22)

where A j (U ), j = 0, 1, 2, are defined by (2.15), (2.16), (2.17), respectively, and

Ã2(U, Φ) := 1

∂2Φ
(A2(U )− ∂tΦA0(U )− ∂1ΦA1(U )) .

As in Francheteau–Métivier [22], we choose the change of variables Φ±
such that

∂tΦ
± + v±

1 ∂1Φ
± − v±

2 = 0 if x2 � 0, (2.23a)
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± ∂2Φ
± � κ > 0 if x2 � 0, (2.23b)

Φ+ = Φ− = ϕ if x2 = 0. (2.23c)

Not only does this choice simplify much the expression of system (2.20a), but it
also implies that the boundary matrix for problem (2.20):

diag
(− Ã2(U

+, Φ+), − Ã2(U
−, Φ−)

)
,

has constant rank on the whole closed half-space {x2 � 0}. This will play a crucial
role in deriving the energy estimates for the variable coefficient linearized problem
by developing further the Kreiss’ symmetrizers argument from [15,17,27].

In the new variables, the rectilinear vortex sheet (2.9) corresponds to the fol-
lowing stationary solution of (2.20a)–(2.20b) and (2.23):

�U± := (
p̄,±h̄�w, 0)T, �ϕ := 0, �Φ± := ±x2, (2.24)

where p̄ := p(ρ̄), h̄ := h(ρ̄), and �w := �Γ v̄ with �Γ −1 := √
1 − ε2v̄2.

Imposing the smooth initial data (U±
0 , ϕ0) close to (2.24), we aim to show

the existence of solutions to the nonlinear problem (2.20) and (2.23) under the
necessary condition for the linear stability on the background state (2.24). The
main result is stated as follows:

Theorem 2.1. Let T > 0 be any fixed constant and μ ∈ N with μ � 13. Assume
that the background state (2.24) satisfies the physical constraints (2.10) and the
necessary stability condition

M := |v̄|
c̄

>

√
2√

1 + ε2c̄2
with c̄ := c(ρ̄). (2.25)

Assume further that the initial data U±
0 and ϕ0 satisfy the compatibility conditions

up to order μ (see §7), and that (U±
0 − �U±, ϕ0) ∈ Hμ+1/2(R2+)× Hμ+1(R) has

a compact support. Then there exists a positive constant ε such that, if ‖U±
0 −

�U±‖Hμ+1/2(R2+) + ‖ϕ0‖Hμ+1(R) � ε, problem (2.20) and (2.23) has a solution

(U±, Φ±, ϕ) on the time interval [0, T ] satisfying
(U± − �U±, Φ± − �Φ±) ∈ Hμ−7((0, T )× R

2+), ϕ ∈ Hμ−6((0, T )× R).

Remark 2.1. In the non-relativistic limit ε → 0, from (2.25), one obtains the
classical stability condition M >

√
2 for compressible vortex sheets. The critical

Mach number

Mc :=
√
2√

1 + ε2c̄2

of the relativistic stability condition is always strictly smaller than
√
2, whichmeans

that the relativistic vortex sheets are stable in a larger physical regime of the param-
eters.When c̄ is arbitrarily close to the light speed ε−1, the criticalMach numberMc

approaches 1 so that the stability holds precisely for supersonic relativistic flows.
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2.3. Weighted Sobolev Spaces and Norms

We are going to introduce certain weighted Sobolev spaces in order to prove
Theorem 2.1. Let Ω denote the half-space {(t, x1, x2) ∈ R

3 : x2 > 0}. Boundary
∂Ω is identified to R

2. For all s ∈ R and γ � 1, the usual Sobolev space Hs(R2)

is equipped with the following norm:

‖v‖2s,γ := 1

(2π)2

∫

R2
λ2s,γ (ξ)|̂v(ξ)|2 dξ, λs,γ (ξ) := (γ 2 + |ξ |2) s2 ,

where v̂ is the Fourier transform of v. We equip space L2(R+; Hs(R2)) with the
norm

|||v|||2s,γ :=
∫

R+
‖v(·, x2)‖2s,γ dx2.

We will abbreviate the usual norms of L2(R2) and L2(Ω) as

‖ · ‖ := ‖ · ‖0,γ and ||| · ||| := ||| · |||0,γ .
The scalar products in L2(R2) and L2(Ω) are denoted as

〈a, b〉 :=
∫

R2
a(x)b(y) dy, ⟪a, b⟫ :=

∫

Ω

a(y)b(y) dy,

where b(y) is the complex conjugation of b(y).
For s ∈ R and γ � 1, we introduce the weighted Sobolev space Hs

γ (R
2) as

Hs
γ (R

2) :=
{
u ∈ D′(R2) : e−γ t u(t, x1) ∈ Hs(R2)

}
,

and its norm ‖u‖Hs
γ (R

2) := ‖e−γ t u‖s,γ . We write L2
γ (R

2) := H0
γ (R

2) and

‖u‖L2
γ (R

2) := ‖e−γ t u‖.
We define L2(R+; Hs

γ (R
2)), briefly denoted by L2(Hs

γ ), as the space of distri-
butions with finite L2(Hs

γ )–norm, where

‖u‖2L2(Hs
γ )

:=
∫

R+
‖u(·, x2)‖2Hs

γ (R
2)
dx2 = |||e−γ t u|||2s,γ .

We set L2
γ (Ω) := L2(H0

γ ) and ‖u‖L2
γ (Ω) := |||e−γ t u|||.

For all k ∈ N and γ � 1, we define the weighted Sobolev space Hk
γ (Ω) as

Hk
γ (Ω) :=

{
u ∈ D′(Ω) : e−γ t u ∈ Hk(Ω)

}
.

Throughout the paper, we introduce the notation A � B (B � A) if A � CB
holds uniformly for some positive constantC that is independent of γ . The notation,
A ∼ B, means that both A � B and B � A. Then, for k ∈ N, one has

‖u‖k,γ ∼
∑

|α|�k

γ k−|α|‖∂αu‖ for all u ∈ Hk(R2). (2.26)
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For any real number T , we introduceωT := (−∞, T )×R andΩT := ωT ×R+.
For all k ∈ N and γ � 1, we define the weighted space Hk

γ (ΩT ) as

Hk
γ (ΩT ) :=

{
u ∈ D′(ΩT ) : e−γ t u ∈ Hk(ΩT )

}
.

In view of relation (2.26), we introduce the norm on Hk
γ (ΩT ) as

‖u‖Hk
γ (ΩT )

:=
∑

|α|�k

γ k−|α|‖e−γ t∂αu‖L2(ΩT )
. (2.27)

The norm on Hk
γ (ωT ) is defined in the same way. For all k ∈ N and γ � 1, we

define space L2(R+; Hk
γ (ωT )), briefly denoted by L2(Hk

γ (ωT )), as the space of

distributions with finite L2(Hk
γ (ωT ))–norm, where

‖u‖2L2(Hk
γ (ωT ))

:=
∫

R+
‖u(·, x2)‖2Hk

γ (ωT )
dx2

=
∑

α0+α1�k

γ k−α0−α1‖e−γ t∂α0t ∂
α1
1 u‖L2(ΩT )

.

This is an anisotropic Sobolev space for measuring only the tangential regularity
(with respect to boundary ∂Ω). We write L2

γ (ΩT ) := L2(H0
γ (ωT )) and ‖u‖L2

γ (ΩT )

:= ‖u‖L2(H0
γ (ωT ))

.

3. Constant Coefficient Linearized Problem

In order to deduce the necessary condition for the linear stability of the back-
ground state (2.24), in this section, we consider the following linearized problem
of (2.20) and (2.23) around (2.24):

L
′±V± := d

dθ
L
(
U±
θ , Φ

±
θ

)∣∣∣∣
θ=0

= f ± if x2 > 0, (3.1a)

B
′(V+, V−, ψ) := d

dθ
B(U+

θ ,U
−
θ , ϕθ )

∣∣∣∣
θ=0

= g if x2 = 0, (3.1b)

whereU±
θ := �U±+θV±,Φ±

θ := �Φ±+θΨ±, andϕθ (resp. ψ) denotes the common
trace of Φ±

θ (resp. Ψ±) on the boundary {x2 = 0}. The differential operators L
′+

and L
′− are given by

L
′± := A0

(�U±)
∂t + A1

(�U±)
∂1 ± A2

(�U±)
∂2,

which are both constant coefficient differential operators. It follows from (2.6) and
(2.11) that

N (ρ̄) = 1, c̄ = c(ρ̄) ∈ (0, ε−1). (3.2)
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To derive the boundary operator B
′, we infer from (2.13) that

Γ (U ) =
√
h(U1)2 + ε2U 2

2 + ε2U 2
3

h(U1)
, v j (U ) = Uj+1

Γ (U )h(U1)
, j = 1, 2. (3.3)

Utilizing the identity h′(U1) = ε2/N (U1) yields

∂v j

∂U1
= − ε2v j

NhΓ 2 ,
∂v j

∂Uj+1
= 1 − ε2v2j

hΓ
,

∂v2

∂U2
= ∂v1

∂U3
= −ε2v1v2

hΓ
(3.4)

for j = 1, 2. The second component of B(U+
θ ,U

−
θ , ϕθ ) is θ(∂tψ+v1(U

+
θ )∂1ψ)−

v2(U
+
θ ). Then we use (3.4) to obtain

d

dθ

(
B(U+

θ ,U
−
θ , ϕθ )

)
2

∣∣∣∣
θ=0

= ∂tψ + v̄+∂1ψ − (h̄�Γ )−1V+
3 .

After a similar argument as to that regarding the other components of B(U+
θ ,U

−
θ ,

ϕθ ), we have

B
′(V+, V−, ψ) = B

′(V nc, ψ) := b̄∇ψ + B̂V nc,

where ∇ψ := (∂tψ, ∂1ψ)
T, V nc := (V+

1 , V
+
3 , V

−
1 , V

−
3 )

T denotes the “noncharac-
teristic part” of V := (V+, V−)T, and coefficients b̄ and B̂ are given by

b̄ :=
⎛
⎝
0 2v̄
1 v̄

0 0

⎞
⎠ , B̂ :=

⎛
⎜⎝
0 −(

h̄�Γ )−1 0
(
h̄�Γ )−1

0 −(
h̄�Γ )−1 0 0

1 0 −1 0

⎞
⎟⎠ . (3.5)

We are now ready to state the main result for the constant coefficient case.

Theorem 3.1. Assume that the stationary solution defined by (2.24) satisfies (2.10)
and (2.25). Then, for allγ � 1and for all (V, ψ) ∈ H2

γ (Ω)×H2
γ (R

2), the following
estimate holds:

γ ‖V ‖2L2
γ (Ω)

+ ‖V nc|x2=0‖2L2
γ (R

2)
+ ‖ψ‖2H1

γ (R
2)

� γ−3‖L
′±V±‖2L2(H1

γ )
+ γ−2‖B

′(V nc|x2=0, ψ)‖2H1
γ (R

2)
. (3.6)

Remark 3.1. In the case of M < Mc :=
√
2√

1+ε2 c̄2 , the relativistic vortex sheet
(2.24) is violently unstable, i.e. the Lopatinskiı̆ determinant admits the roots in the
interior of frequency space. On the other hand, when M ≥ Mc, all the roots of
the Lopatinskiı̆ determinant are localized on the boundary of frequency space. In
particular, if M = Mc, the only root of the Lopatinskiı̆ determinant is a triple one,
which leads to the following weaker estimate than (3.6):

γ ‖V ‖2L2
γ (Ω)

+ ‖V nc|x2=0‖2L2
γ (R

2)
+ ‖ψ‖2H1

γ (R
2)

� γ−7‖L
′±V±‖2L2(H3

γ )
+ γ−6‖B

′(V nc|x2=0, ψ)‖2H3
γ (R

2)
, (3.7)
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for all γ � 1 and (V, ψ) ∈ H4
γ (Ω) × H4

γ (R
2). See Remarks 3.2–3.4 for more

details. This latter case corresponds to a transition between a weakly stable zone
and a violently unstable zone (cf. Coulombel–Secchi [18] for the non-relativistic
case).

The rest of this section is devoted mainly to proving Theorem 3.1.

3.1. Some Reductions

Before proving Theorem 3.1, we first make some reductions of problem (3.1).

3.1.1. Reformulation of Theorem 3.1 We first transform our problem (3.1) into
the one with diagonal boundary matrix. For this purpose, we calculate the eigen-
values and corresponding eigenvectors of A2

(�U±)
. The eigenvalues of

A2
(�U+) = A2

(�U−) =
⎛
⎝
0 0 c̄2

0 0 0
1 0 0

⎞
⎠

are λ1 = 0, λ2 = −c̄, and λ3 = c̄, with the corresponding right eigenvectors:

r1 = (0, 1, 0)T, r2 =
(
1, 0,−1

c̄

)T

, r3 =
(
1, 0,

1

c̄

)T

.

Set R̄ := (r1 r2 r3). Then R̄−1A2
(�U±)

R̄ = diag (0,−c̄, c̄). We thus perform the
linear transformation W± := R̄−1V± with

W±
1 := V±

2 , W±
2 := 1

2

(
V±
1 − c̄V±

3

)
, W±

3 := 1
2

(
V±
1 + c̄V±

3

)
.

Let us multiply (3.1a) by S̄ R̄−1 with S̄ := diag (1, 2/c̄2, 2/c̄2). Then problem (3.1)
becomes equivalent to

{
LW := A0∂tW + A1∂1W + A2∂2W = f if x2 > 0,

B(W nc, ψ) := b̄∇ψ + �BW nc = g if x2 = 0,
(3.8)

with new f and g, where W nc := (W+
2 ,W

+
3 ,W

−
2 ,W

−
3 )

T denotes the “noncharac-
teristic part” ofW := (W+,W−)T. The coefficient matricesA j = diag (A+

j ,A−
j ),

j = 0, 1, 2, are block diagonal with

A±
0 := S̄ R̄−1A0(�U±)R̄

=

⎛
⎜⎜⎜⎝

�Γ (1 − ε2v̄2) 0 0

±2ε2v̄
�Γ (2 − ε4c̄2v̄2)

c̄2
−ε4 �Γ v̄2

±2ε2v̄ −ε4 �Γ v̄2 �Γ (2 − ε4c̄2v̄2)

c̄2

⎞
⎟⎟⎟⎠ , (3.9)

A±
1 := S̄ R̄−1A1(�U±)R̄
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=

⎛
⎜⎜⎜⎝

±�Γ (1 − ε2v̄2)v̄ 1 − ε2v̄2 1 − ε2v̄2

1 + ε2v̄2 ± �Γ v̄(2 − ε4c̄2v̄2)

c̄2
∓ε4 �Γ v̄3

1 + ε2v̄2 ∓ε4 �Γ v̄3 ± �Γ v̄(2 − ε4c̄2v̄2)

c̄2

⎞
⎟⎟⎟⎠ , (3.10)

and

A±
2 := ±S̄ R̄−1A2(�U±)R̄ = ±diag

(
0,−2

c̄
,
2

c̄

)
. (3.11)

We notice that (2.18) is a symmetrizable hyperbolic system with the Friedrichs
symmetrizer S2(U ) defined in (A.10). Consequently, operator L is symmetrizable
hyperbolic with the Friedrichs symmetrizer S3 defined by

S3 := diag (R̄TS2(�U+)R̄ S̄−1, R̄TS2(�U−)R̄ S̄−1). (3.12)

Regarding the boundary coefficients, b̄ is given in (3.5), and �B is defined by

�B :=
⎛
⎝
(�Γ c̄h̄)−1 −(�Γ c̄h̄)−1 −(�Γ c̄h̄)−1 (�Γ c̄h̄)−1

(�Γ c̄h̄)−1 −(�Γ c̄h̄)−1 0 0
1 1 −1 −1

⎞
⎠ . (3.13)

For γ � 1, we define

Lγ := L + γA0, Bγ (W nc, ψ) := b̄

(
γψ + ∂tψ

∂1ψ

)
+ �BW nc.

It is easily shown that Theorem 3.1 admits the following equivalent proposition.

Proposition 3.1. Assume that the stationary solution (2.24) satisfies (2.10) and
(2.25). Then, for all γ � 1 and (W, ψ) ∈ H2(Ω)×H2(R2), the following estimate
holds:

γ |||W |||2+∥∥Wnc|x2=0
∥∥2+‖ψ‖21,γ �γ−3|||LγW |||21,γ +γ−2‖Bγ (Wnc|x2=0, ψ)‖21,γ .

3.1.2. Partial homogenization In order to prove Proposition 3.1, we show that
it suffices to study the homogeneous case LγW ≡ 0. Given (W, ψ) ∈ H2(Ω) ×
H2(R2), we set

f := LγW ∈ H1(Ω), g := Bγ (W nc|x2=0, ψ) ∈ H1(R2),

and consider the following auxiliary problem:
{
LγW1 = f if x2 > 0,

BauxW nc
1 = 0 if x2 = 0,

(3.14)

where

Baux :=
(
0 1 0 0
0 0 1 0

)
.
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The boundary matrix for problem (3.14) (i.e. −A2) has two negative eigenvalues
and is nonnegative on ker Baux = {W+

3 = W−
2 = 0}. Thus, the boundary conditions

in (3.14) are maximally dissipative. From Lax–Phillips [29], there exists a unique
solution W1 ∈ L2(R+; H1(R2)) to problem (3.14) such that the trace of W1 on
{x2 = 0} is in H1(R2), and

γ |||W1|||2 � γ−1||| f |||2, ‖W nc
1 |x2=0‖21,γ � γ−1||| f |||21,γ . (3.15)

It is clear that W2 := W − W1 satisfies

LγW2 = 0 if x2 > 0, (3.16a)

Bγ (W nc
2 , ψ) = g̃ if x2 = 0, (3.16b)

where g̃ := g − �BW nc
1 . By virtue of (3.15), we obtain

‖g̃‖21,γ � ‖g‖21,γ + γ−1||| f |||21,γ . (3.17)

Multiplying (3.16a) by the symmetrizer S3 (cf. (3.12)), then taking the scalar prod-
uct of the resulting equations with W2, and employing integration by parts yield

γ |||W2|||2 � ‖W nc
2 |x2=0‖2. (3.18)

The next lemma follows directly from (3.15) and (3.17)–(3.18).

Lemma 3.1. If the solution of (3.16) satisfies the estimate

‖Wnc
2 |x2=0‖2 + ‖ψ‖21,γ � γ−2‖g̃‖21,γ ,

then Proposition 3.1 holds.

3.1.3. Eliminating the front Weperform the Fourier transformof problem (3.16)
in (t, x1), with dual variables denoted by (δ, η). Setting τ = γ + iδ, we have

(τA0 + iηA1) Ŵ + A2
dŴ

dx2
= 0 if x2 > 0, (3.19a)

b(τ, η)ψ̂ + �BŴ nc = ĝ if x2 = 0, (3.19b)

where we write g for g̃ andW forW2 for simplicity when no confusion arises. The
coefficient

b(τ, η) := b̄ (τ, iη)T = (2iv̄η, τ + iv̄η, 0)T

is homogeneous of degree 1 in (τ, η). In order to take this homogeneity into account,
we define the hemisphere

Ξ1 :=
{
(τ, η) ∈ C × R : |τ |2 + η2 = 1,Re τ � 0

}
,

and the set of “frequencies”

Ξ := {(τ, η) ∈ C × R : Re τ � 0, (τ, η) �= (0, 0)} = (0,∞) ·Ξ1.
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Notice that symbol b(τ, η) is elliptic, i.e. it is always different from zero on Ξ1.
We set k := √|τ |2 + η2, and define

Q(τ, η) := 1

k

⎛
⎝

0 0 k
τ + iv̄η −2iv̄η 0
−2iv̄η τ̄ − iv̄η 0

⎞
⎠ for (τ, η) ∈ Ξ,

where τ̄ denotes the complex conjugation of τ , so that Q ∈ C∞(Ξ,GL3(C)) is
homogeneous of degree 0 in (τ, η) and satisfies

Q(τ, η)b(τ, η) = (0, 0, θ(τ, η))T with θ(τ, η) = k−1|b(τ, η)|2.
Since v̄ �= 0, and Ξ1 is compact, we obtain that min(τ,η)∈Ξ1 |θ(τ, η)| > 0. Multi-
plying (3.19b) by Q(τ, η) yields

⎛
⎝

0
0

θ(τ, η)

⎞
⎠ ψ̂(δ, η)+

(
β(τ, η)

�(τ, η)

)
Ŵ nc(δ, η, 0) = Q(τ, η)ĝ, (3.20)

where β is the 2 × 4 matrix given by the first two rows of Q(τ, η)�B, and � is the
last row of Q(τ, η)�B. Both β and � are C∞ and homogeneous of degree 0 on Ξ .
In view of (3.13), symbol β satisfies

β(τ, η) =
⎛
⎝

1 1 −1 −1
τ − iv̄η

�Γ c̄h̄

−τ + iv̄η
�Γ c̄h̄

−τ − iv̄η
�Γ c̄h̄

τ + iv̄η
�Γ c̄h̄

⎞
⎠ on Ξ1. (3.21)

The last component in (3.20) reads

θ(τ, η)ψ̂ + �(τ, η)̂W nc(δ, η, 0) = Q3(τ, η)ĝ,

where Q3(τ, η) is the last row of Q(τ, η). Hence, it is homogeneous of degree 0.
Thanks to the homogeneity of θ and �, we obtain

k2|ψ̂ |2 �
∣∣̂W nc|x2=0

∣∣2 + |̂g|2 in Ξ,

from which we employ Plancherel’s theorem to deduce

‖ψ‖21,γ �
∥∥W nc|x2=0

∥∥2 + γ−2‖g‖21,γ . (3.22)

After eliminating the front function ψ , we have

(τA0 + iηA1) Ŵ + A2
dŴ

dx2
= 0 if x2 > 0, (3.23a)

β(τ, η)̂W nc = Ĝ if x2 = 0, (3.23b)

where Ĝ consists of the first two rows of Q(τ, η)ĝ. From (3.9)–(3.10), we have

τA±
0 + iηA±

1
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=

⎛
⎜⎜⎜⎜⎝

a± �Γ (1 − ε2v̄2) iη(1 − ε2v̄2) iη(1 − ε2v̄2)

iη(1 + ε2v̄2)± 2ε2v̄τ
�Γ (2 − ε4c̄2v̄2)

c̄2
a± −ε4 �Γ v̄2a±

iη(1 + ε2v̄2)± 2ε2v̄τ −ε4 �Γ v̄2a±
�Γ (2 − ε4c̄2v̄2)

c̄2
a±

⎞
⎟⎟⎟⎟⎠
, (3.24)

where a± := τ ± iv̄η. Recalling that formula (3.11) defines the boundary matrix
A±

2 , we write the first and fourth equations of (3.23a) as

a± �Γ̂W±
1 + iη̂W±

2 + iη̂W±
3 = 0. (3.25)

Thenweutilize (3.25) to expresŝW±
1 in terms of̂W±

2 and̂W±
3 , and plug the resulting

expressions into the other four equations of (3.23a). As a consequence, we obtain
a system of ordinary differential equations for Ŵ nc in the following form:

⎧⎪⎨
⎪⎩

d

dx2
Ŵ nc = A(τ, η)̂W nc if x2 > 0,

β(τ, η)̂W nc = Ĝ if x2 = 0.

(3.26)

Here matrix A(τ, η) is given by

A(τ, η) :=

⎛
⎜⎜⎝
μ+ −m+ 0 0
m+ −μ+ 0 0
0 0 −μ− m−
0 0 −m− μ−

⎞
⎟⎟⎠ , (3.27)

where

μ± := �Γ a±
c̄

− m±, m± := ε2c̄v̄2 �Γ 2a2± + iηc̄(iη(1 + ε2v̄2)± 2ε2v̄τ )

2�Γ a±
.

Using the relation �Γ −2 = 1 − ε2v̄2 yields

μ± = �Γ (τ ± iv̄η)

c̄
− c̄�Γ (iη ± ε2v̄τ )2

2(τ ± iv̄η)
, m± = c̄�Γ (iη ± ε2v̄τ )2

2(τ ± iv̄η)
. (3.28)

The reader may recognize the form of the symbol in (3.27) given also by [17,
Page 957, (4.12)]. The poles of symbolA(τ, η) onΞ1 are exactly the points (τ, η) ∈
Ξ1 with τ = ∓iv̄η, where the coefficient of̂W+

1 or̂W−
1 in (3.25) vanishes.

By virtue of (3.22) and Lemma 3.1, we infer that, in order to prove Proposi-
tion 3.1, it suffices to study problem (3.26). More precisely, we have the following
lemma:

Lemma 3.2. If the solution of (3.26) satisfies the estimate
∥∥Wnc|x2=0

∥∥2 � γ−2‖G‖21,γ , (3.29)

then Proposition 3.1 holds.
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3.2. Lopatinskiı̆ Condition

In this subsection, we show that the Kreiss–Lopatinskiı̆ condition (or briefly
the Lopatinskiı̆ condition) holds only in the weak form under assumption (2.25) by
computing the Lopatinskiı̆ determinant associated to problem (3.26).

We first calculate the stable subspace of the coefficient matrix A(τ, η), that is,
the sum of eigenspaces ofA(τ, η) corresponding to the eigenvalues of negative real
parts.

Lemma 3.3. The following properties hold:

(a) If (τ, η) ∈ Ξ1 with Re τ > 0, then the eigenvalues of A(τ, η) are roots ω of

ω2 = μ2+ − m2+ = �Γ 2

c̄2
(τ + iηv̄)2 − �Γ 2(iη + ε2v̄τ )2

= �C2
0

(�C2
1 (τ + i�C2η)

2 + η2
)
, (3.30a)

ω2 = μ2− − m2− = �Γ 2

c̄2
(τ − iηv̄)2 − �Γ 2(iη − ε2v̄τ )2

= �C2
0

(�C2
1 (τ − i�C2η)

2 + η2
)
, (3.30b)

where �C j , j = 0, 1, 2, are positive constants defined by

�C0 := �Γ (1 − ε2v̄2)√
1 − ε4c̄2v̄2

, �C1 := 1 − ε4c̄2v̄2

(1 − ε2v̄2)c̄
, �C2 := (1 − ε2c̄2)v̄

1 − ε4c̄2v̄2
. (3.31)

Moreover, (3.30a) (resp. (3.30b)) has a unique root ω+ (resp. ω−) of negative
real part. The other root of (3.30a) (resp. (3.30b)) is −ω+ (resp. −ω−);

(b) If (τ, η) ∈ Ξ1 with Re τ > 0, then the stable subspace E−(τ, η) ofA(τ, η) has
dimension two and is spanned by

E+(τ, η) := ((τ + iv̄η)m+, (τ + iv̄η)(μ+ − ω+), 0, 0)T , (3.32a)

E−(τ, η) := (0, 0, (τ − iv̄η)(μ− − ω−), (τ − iv̄η)m−)T ; (3.32b)

(c) Both ω+ and ω− admit a continuous extension to any point (τ, η) ∈ Ξ1 with
Re τ = 0. In particular, if τ = iδ ∈ iR, then

ω±(τ, η)

=
⎧⎨
⎩

− �C0

√
η2 − �C2

1 (δ ± �C2η)
2 if η2 � �C2

1
(
δ ± �C2η

)2
,

− i sgn(δ ± �C2η)�C0

√
�C2
1 (δ ± �C2η)

2 − η2 if η2 < �C2
1
(
δ ± �C2η

)2;
(3.33)

(d) Vectors E±(τ, η) do not vanish at any point inΞ1. Both E+(τ, η) and E−(τ, η)
can be extended continuously to any point (τ, η) ∈ Ξ1 with Re τ = 0. These
two vectors are linearly independent of the whole hemisphere Ξ1;

(e) MatrixA(τ, η) is diagonalizable as long as eigenvalues ω± do not vanish, i.e.
when τ �= i(∓�C2 ± �C−1

1 )η. Apart from these points, A(τ, η) has a C∞ basis
of eigenvectors.
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Proof. The relations in (3.30) and assertions (b)–(c) and (e) can be deduced from
straightforward calculations and the implicit functions theorem.

It follows from (2.10) and (3.2) that �C j is positive. We now show that root ω of
(3.30a) is not purely imaginary when Re τ > 0. If this were not true, there would
exist σ ∈ R such that iσ would be a root of (3.30a). Then we would have

�C0�C1(τ + i�C2η) = ±i
√
σ 2 + �C2

0η
2 ∈ iR,

which would imply Re τ = 0. This concludes assertion (a).
It remains to prove assertion (d). We see from (3.28) that, if τ + iv̄η = 0, then

(τ + iv̄η)m+ = −c̄η2(1 − ε2v̄2)/(2�Γ ) �= 0. Hence, when (τ + iv̄η)m+ = 0,

τ �= −iv̄η, m+ = 0, μ+ = �Γ (τ + iv̄η)/c̄ �= 0, μ2+ = ω2+.

Using the relations Reμ+ = �Γ Re τ/c̄ � 0 and Reω+ � 0, we have

(τ + iv̄η)(μ+ − ω+) = 2(τ + iv̄η)μ+ �= 0.

Therefore, E+(τ, η) defined by (3.32a) does not vanish. We can also show in a
similar way that E−(τ, η) does not vanish. Assertion (d) then follows. ��

As inMajda–Osher [32], we define the Lopatinskiı̆ determinant associated with
problem (3.26) by

Δ(τ, η) := det
[
β(τ, η) (E+(τ, η) E−(τ, η))

]
, (3.34)

where β and E± are given in (3.21) and (3.32), respectively. We say that the
Lopatinskiı̆ condition holds if Δ(τ, η) �= 0 for all (τ, η) ∈ Ξ with Re τ > 0.
Furthermore, ifΔ(τ, η) �= 0 for all (τ, η) ∈ Ξ , we say that the uniform Lopatinskiı̆
condition holds. To deduce the energy estimate, we need to study the zeros of
Δ(τ, η). For this, we have

Lemma 3.4. Assume that (2.10) and (2.25) hold. Then, for any (τ, η) ∈ Ξ1,

Δ(τ, η) = 0 if and only if τ ∈ {0,±iz1η}, (3.35)

where z1 is some positive constant satisfying

0 < z1 < �C2 − �C−1
1 < �C2 < v̄ < �C2 + �C−1

1 . (3.36)

Moreover, each of these roots is simple in the sense that, if q ∈ {0,−z1, z1}, then
there exists a neighborhood V of (iqη, η) in Ξ1 and a C∞–function hq defined on
V such that

Δ(τ, η) = (τ − iqη)hq(τ, η), hq(τ, η) �= 0 for all (τ, η) ∈ V . (3.37)
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Proof. We divide the proof into seven steps.
1. According to (3.21) and (3.32), we have

β(τ, η) (E+(τ, η) E−(τ, η))

=
(

(τ + iv̄η)(m+ + μ+ − ω+) −(τ − iv̄η)(m− + μ− − ω−)
τ − iv̄η

�Γ c̄h̄
(τ + iv̄η)(m+ − μ+ + ω+)

τ + iv̄η
�Γ c̄h̄

(τ − iv̄η)(m− − μ− + ω−)

)
.

(3.38)

By using (3.28) and Lemma 3.3 (a), we have

m± + μ± = �Γ τ ± iv̄η

c̄
, m± − μ± = − c̄ω2±

�Γ (τ ± iv̄η)
. (3.39)

It then follows that

Δ(τ, η) = 1

c̄2h̄

{
τ + iv̄η − c̄ω+

�Γ
}{
τ − iv̄η − c̄ω−

�Γ
}

×
{
ω−(τ + iv̄η)2 + ω+(τ − iv̄η)2

}
. (3.40)

We will check the zeros of each factors in this expression separately.
2. We show in this step that both �Γ (τ + iv̄η) − c̄ω+ and �Γ (τ − iv̄η) − c̄ω− do
not vanish at any point (τ, η) ∈ Ξ1. By contradiction, we assume without loss of
generality that there exists a point (τ0, η0) ∈ Ξ1 such that

�Γ (τ0 + iv̄η0) = c̄ω+(τ0, η0). (3.41)

From (3.30a), we have

�Γ 2(τ0 + iv̄η0)
2 − c̄2ω+(τ0, η0)2 = �Γ 2c̄2(iη0 + ε2v̄τ0)

2 = 0,

which implies τ0 = iδ0 ∈ iR with η0 = −ε2v̄δ0. Since (τ0, η0) ∈ Ξ1, we see
that both η0 and δ0 are nonzero real numbers. If η20 � �C2

1 (δ0 + �C2η0)
2, then

ω+(τ0, η0) ∈ R due to (3.33). Then c̄ ω+(τ0, η0) �= �Γ (τ0 + iv̄η0), since

�Γ (τ0 + iv̄η0) = i�Γ (1 − ε2v̄2)δ0 ∈ iR\{0}.
According to (3.41), η20 < �C2

1 (δ0 + �C2η0)
2 so that �C2

1 (1− ε2�C2v̄)
2 > ε4v̄2. It then

follows from (3.33) that

ω+(τ0, η0) = −i sgn(δ0) sgn(1 − ε2�C2v̄)�C0

√(�C2
1 (1 − ε2�C2v̄)2 − ε4v̄2

)
δ20

= −i δ0�C0

√
�C2
1 (1 − ε2�C2v̄)2 − ε4v̄2,

where we have used that 1 − ε2�C2v̄ = (1 − ε2v̄2)/(1 − ε4c̄2v̄2) > 0 from (3.2).
Consequently, we have

�Γ (τ0 + iv̄η0)− c̄ω+(τ0, η0)

= iδ0

{
�Γ (1 − ε2v̄2)+ c̄ �C0

√
�C2
1 (1 − ε2�C2v̄)2 − ε4v̄2

}
�= 0.
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This contradicts (3.41).
3. From the above analysis, we know thatΔ(τ, η) = 0 if and only if factor ω−(τ +
iv̄η)2+ω+(τ − iv̄η)2 vanishes. We first prove that this factor does not vanish when
η = 0.

If η = 0, then we see from (3.30) that ω2± = c̄−2 �Γ 2τ 2(1 − ε4c̄2v̄2). Using
(3.2) and noting Re τ � 0, we find that ω± = −c̄−1 �Γ τ√1 − ε4c̄2v̄2, which yields

ω−(τ + iv̄η)2 + ω+(τ − iv̄η)2 = −2c̄−1 �Γ τ 3(1 − ε4c̄2v̄2)1/2 �= 0.

We thus assume that η �= 0. Introducing z := τ/(iη), we find from (3.30) that

c̄2ω2−(τ + iv̄η)4

�Γ 2(iη)6
= (z + v̄)4

{
(z − v̄)2 − c̄2(1 − ε2v̄z)2

}
=: P1(z), (3.42)

c̄2ω2+(τ − iv̄η)4

�Γ 2(iη)6
= (z − v̄)4

{
(z + v̄)2 − c̄2(1 + ε2v̄z)2

}
=: P2(z). (3.43)

Define

P(z) := P1(z)− P2(z). (3.44)

ThenΔ(τ, η) = 0 holds only if ω2−(τ + iv̄η)4 = ω2+(τ − iv̄η)4, which is equivalent
to P(z) = 0. A straightforward calculation yields

P(z) = −4zv̄P0(z), P0(z) := E1z
4 + E2z

2 + E3,

where E1 = 2ε4c̄2v̄2 − ε2c̄2 − 1, E2 = 2ε4c̄2v̄4 − 6ε2c̄2v̄2 + 2v̄2 + 2c̄2, and

E3 = 2c̄2v̄2 − ε2c̄2v̄4 − v̄4. (3.45)

It is trivial that z = 0 is one zero of P(z). Function P0(z) is a polynomial one of
z2 with the following zeros:

−
E2 ±

√
E2
2 − 4E1E3

2E1
. (3.46)

By virtue of (2.10) and (3.2), we have
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E1 = −(1 − ε4c̄2v̄2)− ε2c̄2(1 − ε2v̄2) < 0,

E2 = 2v̄2(1 − ε2c̄2)+ 2c̄2(1 − ε2v̄2)2 > 0,

E2
2 − 4E1E3

= 4c̄2 (εv̄ − 1)2 (εv̄ + 1)2
(
ε4c̄4v̄4 − 2ε2c̄2v̄2 + 4v̄2 + c̄2

)
> 0,

(3.47)

which yields that the zeros in (3.46) are real and distinct. If (2.25) holds, then
E3 < 0, which immediately implies that the zeros in (3.46) are also positive. Let
us denote these zeros by z21 and z22 with 0 < z1 < z2 so that

z21 =
E2 −

√
E2
2 − 4E1E3

−2E1
, z22 =

E2 +
√
E2
2 − 4E1E3

−2E1
. (3.48)
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Consequently, the Lopatinskiı̆ determinant vanishes only if z ∈ {0,±z1,±z2}.
4. In this step, we show that the Lopatinskiı̆ determinant vanishes when z = 0, i.e.
when τ = 0. We note that c̄ < v̄ by combining (2.25) and (3.2). Then

�C2 − �C−1
1 = (v̄ − c̄)(1 + ε2c̄v̄)

1 − ε4c̄2v̄2
> 0. (3.49)

It then follows directly from (3.33) that

ω±(0, η) = −i sgn(±�C2η)�C0

√
�C2
1
�C2
2η

2 − η2 = ∓i η�C0

√
�C2
1
�C2
2 − 1.

Then we infer
{
ω−(τ + iv̄η)2 + ω+(τ − iv̄η)2

}∣∣∣
τ=0

= −v̄2η2 (ω+(0, η)+ ω−(0, η)) = 0,

and hence Δ(0, η) = 0.
5. We prove that ω−(τ + iv̄η)2 + ω+(τ − iv̄η)2 �= 0 when z = ±z2, i.e. when
τ = ±iz2η. To this end, we need to show that

z2 + �C2 > z2 − �C2 > �C−1
1 . (3.50)

The first inequality is trivial, so it suffices to prove the second one. From (3.31) and
(3.48), we have

z22 − (�C−1
1 + �C2

)2 = −
E2 +

√
E2
2 − 4E1E3

2E1
−

(
(1 − ε2v̄2)c̄+(1 − ε2c̄2)v̄

)2
(1 − ε4c̄2v̄2)2

= −
(1 − ε4c̄2v̄2)2

(√
E2
2 − 4E1E3 + E2

)+2E1
(
(1 − ε2v̄2)c̄+(1 − ε2c̄2)v̄

)2

2E1(1 − ε4c̄2v̄2)2

= −2c(1 − ε2v̄2)(1 − ε2c̄v̄)2(R2 − L2)

2E1(1 − ε4c̄2v̄2)2
,

where R2 := (1 + ε2c̄v̄)2
√
ε4c̄2v̄4 − 2ε2c̄2v̄2 + 4v̄2 + c̄2 and

L2 := ε6c̄3v̄4 + 2ε4c̄2v̄3 − 2ε4c̄3v̄2 + 4ε2c̄v̄2 + 2v̄ + ε2c̄3.

Then
we obtain from (3.2) that

R2
2 − L2

2 = c̄2(εc̄ − 1)(εc̄ + 1)(εv̄ − 1)2(εv̄ + 1)2(2ε4c̄2v̄2 − ε2c̄2 − 1) > 0,

which, combinedwith (3.2) and (3.47), implies that z22 >
(�C−1

1 +�C2
)2. Then (3.50)

follows.
In view of (3.50), we see from (3.33) that, for τ = iz2η,

ω±(τ, η) = −i sgn(z2η ± �C2η)�C0

√
�C2
1 (z2 ± �C2)2η2 − η2

= −i η �C0

√
�C2
1 (z2 ± �C2)2 − 1.
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Therefore, we obtain that

ω−(τ + iv̄η)2 + ω+(τ − iv̄η)2 = −η2
(
ω+(z2 − v̄)2 + ω−(z2 + v̄)2

)

= i η3
{

�C0

√
�C2
1 (z2 + �C2)2 − 1 (z2 − v̄)2 + �C0

√
�C2
1 (z2 − �C2)2 − 1 (z2 + v̄)2

}
,

which is away from zero. Applying a similar argument and using (3.50) imply that
the Lopatinskiı̆ determinant Δ does not vanish either for the case: z = −z2.
6. Let us now show that ω−(τ + iv̄η)2 + ω+(τ − iv̄η)2 = 0 if z = ±z1, i.e. if
τ = ±iz1η. For this purpose, we first prove

z1 + �C2 > �C−1
1 , z1 − �C2 < −�C−1

1 . (3.51)

The first inequality in (3.51) follows from (3.49). For the second in (3.51), it suffices
to derive that z21 < (�C2 − �C−1

1 )2. From (3.31) and (3.48), we have

(�C2 − �C−1
1

)2 − z21 =
(
(1 − ε2c̄2)v̄ − (1 − ε2v̄2)c̄

)2
(1 − ε4c̄2v̄2)2

+
E2 −

√
E2
2 − 4E1E3

2E1

=
(1 − ε4c̄2v̄2)2

(
E2 −

√
E2
2 − 4E1E3

) + 2E1
(
(1 − ε2c̄2)v̄ − (1 − ε2v̄2)c̄

)2

2E1(1 − ε4c̄2v̄2)2

= 2c(1 − ε2v̄2)(1 + ε2c̄v̄)2(R4 + L4)

−2E1(1 − ε4c̄2v̄2)2
,

where R4 := (1 − ε2c̄v̄)2
√
ε4c̄2v̄4 − 2ε2c̄2v̄2 + 4v̄2 + c̄2 and

L4 := ε6c̄3v̄4 − 2ε4c̄2v̄3 − 2ε4c̄3v̄2 + 4ε2c̄v̄2 − 2v̄ + ε2c̄3.

We compute that R2
4 −L2

4 = R2
2 −L2

2 > 0. Hence, we deduce the second inequality
in (3.51).

By virtue of (3.33) and (3.51), we derive that, for τ = iz1η,

ω+(τ, η) = −i η �C0

√
�C2
1 (z1 + �C2)2 − 1, ω−(τ, η) = i η �C0

√
�C2
1 (z1 − �C2)2 − 1.

Since z = z1 solves P(z) = 0, if τ = iz1η, it follows from the definition of P(z)
that ω2−(τ + iv̄η)4 = ω2+(τ − iv̄η)4. Hence, the Lopatinskiı̆ determinant vanishes
for z = z1 (i.e. τ = iz1η). The same argument can be applied to show that the
Lopatinskiı̆ determinant Δ(τ, η) also vanishes for z = −z1, i.e. for τ = −iz1η.
7. We obtain from (3.2) by a direct computation that �C2 < v̄ < �C2 + �C−1

1 , which,
combined with (3.51), yields (3.36).

It remains to show that the roots of the Lopatinskiı̆ determinant are simple. By
introducing Ω± := ω±/(iη), we find that, for η �= 0,

ω−(τ + iv̄η)2

(iη)3
=Ω−(z+v̄)2 =: Q1(z),

ω+(τ − iv̄η)2

(iη)3
=Ω+(z − v̄)2 =: Q2(z).
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It follows from (3.36) and Lemma 3.3 that ω±(τ, η) �= 0 and η �= 0 when (τ, η)
are near any root of the Lopatinskiı̆ determinant. Hence,Ω± are analytic functions
of z only and satisfy

Ω2± = c̄−2 �Γ 2
(
(z ± v̄)2 − c̄2(1 ± ε2v̄z)2

)
.

Since Δ(τ, η) = 0 if and only if ω−(τ + iv̄η)2 + ω+(τ − iv̄η)2 = 0, it suffices to
prove

d (Q1 + Q2)

dz

∣∣∣∣
z=q

�= 0 for all q ∈ {0,−z1, z1}.

Using (3.42)–(3.44) and the fact that Q1(q) = −Q2(q) �= 0 for q ∈ {0,−z1, z1},
we derive that, for q ∈ {0,−z1, z1},

d (Q1 + Q2)

dz

∣∣∣∣
z=q

= 1

2Q1(q)

d
(
Q2

1 − Q2
2

)

dz

∣∣∣∣∣
z=q

= �Γ 2

2c̄2Q1(q)

dP

dz

∣∣∣∣
z=q

= �Γ 2

c̄2Q1(q)

{
−2v̄P0(q)− 4v̄q2(2E1q

2 + E2)
}

�= 0.

Using the factorization property of holomorphic functions, we obtain

Q1(z)+ Q2(z) = (z − q)Hq(z) for all q ∈ {0,−z1, z1},
where Hq is holomorphic near q and Hq(q) �= 0. This yields that the Lopatinskiı̆
determinant Δ has a factorization as follows

Δ(τ, η) = (τ − iqη)hq(τ, η) for all q ∈ {0,−z1, z1},
where hq(τ, η) is C∞ and does not vanish near (iqη, η) ∈ Ξ1. The proof is com-
pleted. ��
Remark 3.2. If M = Mc, then both E3 and z1 defined by (3.45) and (3.48) van-
ish. Employing a similar argument, we can show that the Lopatinskiı̆ determinant
Δ(τ, η) has only one triple root τ = 0. On the other hand, if M < Mc, then
E3 > 0. In the latter case, the Lopatinskiı̆ determinantΔ(τ, η) vanishes if and only
if τ/(iη) ∈ {0,±z1} with nonreal number z1 given by (3.48). Therefore, the rela-
tivistic vortex sheet (2.24) is violently unstable, which means that the Lopatinskiı̆
condition does not hold.

3.3. Proof of Theorem 3.1

The following lemma relies heavily on the fact that each root of the Lopatinskiı̆
determinant is simple (see Lemma 3.4):

Lemma 3.5. For every point (τ0, η0) ∈ Ξ1, there exists a neighborhood V of
(τ0, η0) in Ξ1 and a positive constant c depending on (τ0, η0) such that

|β(τ, η)(E+(τ, η) E−(τ, η))Z | � cγ |Z | for all (τ, η) ∈ V , Z ∈ C
2. (3.52)
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Proof. The proof is divided into two steps.
1. Let (τ0, η0) ∈ Ξ1 with Δ(τ0, η0) �= 0. Since the Lopatinskiı̆ determinant
Δ(τ, η) is continuous in (τ, η), then there exists a neighborhood V of (τ0, η0) in
Ξ1 such that Δ(τ, η) �= 0 for all (τ, η) ∈ V . It follows from definition (3.34) that
β(τ, η)(E+ E−) is invertible in V . We combine this with the fact that γ � 1 to
obtain (3.52).
2. Let (τ0, η0) ∈ Ξ1 such that Δ(τ0, η0) = 0. We see from Lemma 3.4 that
τ0 = iqη0 for some q ∈ {0,−z1, z1}. Let us write (3.38) as

β(E+ E−) =
(
ζ1 ζ2
ζ3 ζ4

)
,

where the upper left corner ζ1 is given by

ζ1 = (τ − iv̄η)(m+ + μ+ − ω+) = τ + iv̄η

c̄

(�Γ (τ + iv̄η)− c̄ω+
)
.

From (3.36) and the proof of Lemma 3.4 (especially, Step 2), we know that
τ �= −iv̄η and �Γ (τ + iv̄η) �= c̄ ω+ when (τ, η) is close to (τ0, η0). Hence, there
exists a neighborhood V of (τ0, η0) inΞ1 such that ζ1(τ, η) �= 0 for all (τ, η) ∈ V .
Using the identity (cf. [15, Page 439])

(
1/ζ1 0

−ζ3/(ζ1ζ5) 1/ζ5

)
β(E+ E−)

(
1 −ζ2
0 ζ1

)
=

(
1 0

0 (ζ1ζ4 − ζ2ζ3)/ζ5

)
(3.53)

with ζ5 = 1, and noting Δ(τ, η) = det [β (E+ E−)] = ζ1ζ4 − ζ2ζ3, we have

|β(τ, η)(E+(τ, η) E−(τ, η))Z | � cmin(1, |Δ(τ, η)|)|Z | (3.54)

for all (τ, η) ∈ V , Z ∈ C
2. It thus remains to show that |Δ(τ, η)| � cγ for all

(τ, η) ∈ V . Employ Lemma 3.4 and shrink V if necessary to find that factorization
(3.37) holds. Thus, we have

∂γΔ(τ, η) = hq(τ, η)+ (τ − iqη)∂γ hq(τ, η) for all (τ, η) ∈ V . (3.55)

Let (iδ, η) ∈ V so that (iδ, η) ∈ V is close to (iqη0, η0). It follows from (3.36)
that �C2

1

(
δ + �C2η

)2
> η2, which, combined with (3.33), implies

ω±(iδ, η) ∈ iR\{0}. (3.56)

Then we obtain from (3.37) and expression (3.40) that

hq(iδ, η) �= 0, i(δ − qη)hq(iδ, η) = Δ(iδ, η) ∈ iR,

from which we have

hq(iδ, η) ∈ R\{0}. (3.57)

Since τ0 �= i(±�C2 ± �C−1
1 )η0, eigenvalues ω± depend analytically on (τ, η) in a

neighborhood of (τ0, η0) by the implicit function theorem. We then use (3.30) to
obtain that, for (τ, η) near (τ0, η0),

ω+(τ, η)∂γ ω+(τ, η) = �C2
0
�C2
1 (τ + i�C2η). (3.58)
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From (3.56) and (3.58),we infer that the derivative, ∂γ ω+(iδ, η), is real by shrinking
V if necessary. Employ (3.40) to derive ∂γΔ(iδ, η) ∈ R. We then deduce from
(3.55) and (3.57) that

∂γ hq(iδ, η) ∈ iR. (3.59)

Using (3.37) and the Taylor formula for hq , we find that, for (τ, η) ∈ V ,

Δ(τ, η) = (
γ + i(δ − qη)

) (
hq(iδ, η)+ γ ∂γ hq(iδ, η)+ O(γ 2)

)

= i(δ − qη)hq(iδ, η)+ {
hq(iδ, η)+ i∂γ hq(iδ, η)(δ − qη)

}
γ

+ O(γ 2) (γ → 0),

where we have used the Landau symbol f = O(g) (x → x0), which means that
there exists a constant C such that | f (x)| � C |g(x)| for all x sufficiently close to
x0. We can conclude from (3.57) and (3.59) that

ReΔ(τ, η) = {
hq(iδ, η)+ i∂γ hq(iδ, η)(δ − qη)

}
γ + O(γ 2) (γ → 0).

Shrinking V if necessary, we derive from (3.57) that

|Δ(τ, η)| � |ReΔ(τ, η)| � cγ for all (τ, η) ∈ V .

Plug this into (3.54) to complete the proof of this lemma. ��
Remark 3.3. In the case ofM = Mc,we know fromRemark3.2 that theLopatinskiı̆
determinant Δ(τ, η) has only one triple root τ = 0. In a similar way, we can find
neighborhoods V± of (0,±1) in Ξ1 and a positive constant c such that

|β(τ, η)(E+(τ, η) E−(τ, η))Z | � cγ 3|Z | for all (τ, η) ∈ V±, Z ∈ C
2. (3.60)

We now adopt the argument developed recently by Chen–Hu–Wang [10] to
avoid constructing the Kreiss’ symmetrizers in the derivation of energy estimates
for the constant coefficient case. To this end, we need the following lemma:

Lemma 3.6. For each point (τ0, η0) ∈ Ξ1, there exist a neighborhoodV of (τ0, η0)
in Ξ1 and a continuous invertible matrix T (τ, η) defined on V such that

T−1AT (τ, η) =

⎛
⎜⎜⎝
ω+ z+ 0 0
0 −ω+ 0 0
0 0 ω− z−
0 0 0 −ω−

⎞
⎟⎟⎠ (3.61)

for all (τ, η) ∈ V \{τ = ±i v̄η}, where z± = z±(τ, η)are complex-valued functions
defined on V \{τ = ±i v̄η}. Moreover, the first and third columns of T (τ, η) are
E+(τ, η) and E−(τ, η), respectively.
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Proof. We set a±(τ, η) := τ ± i v̄η and define the following vectors on a neigh-
borhood V of (τ0, η0):

Y+(τ, η) :=
{
(0, 1, 0, 0)T if a+m+(τ0, η0) �= 0,

(1, 0, 0, 0)T if a+(μ+ − ω+)(τ0, η0) �= 0,

Y−(τ, η) :=
{
(0, 0, 1, 0)T if a−m−(τ0, η0) �= 0,

(0, 0, 0, 1)T if a−(μ− − ω−)(τ0, η0) �= 0.

Recall that E±(τ, η) defined by (3.32) are continuous and never vanish on Ξ1.
Hence, one can define the following continuous and invertible matrix on V :

T (τ, η) := (E+(τ, η) Y+(τ, η) E−(τ, η) Y−(τ, η)).

When τ �= ±i v̄η, by a direct computation and using (3.30), we obtain (3.61) with

z±(τ, η) :=

⎧⎪⎪⎨
⎪⎪⎩

− 1

a±(τ, η)
if a±m±(τ0, η0) �= 0,

− m±
a±(μ± − ω±)(τ, η)

if a±(μ± − ω±)(τ0, η0) �= 0,

which are well-defined apart from the poles of A, i.e. from τ = ±i v̄η. ��
Proof of Theorem 3.1. According to Lemma 3.2, it suffices to show estimate
(3.29) in order to prove Theorem 3.1. Using Lemmas 3.5–3.6, for each point
(τ0, η0) ∈ Ξ1, there exists a neighborhood V of (τ0, η0) in Ξ1 and a continuous
invertible matrix T (τ, η) defined on V such that (3.52) and (3.61) hold. Thanks to
the compactness of hemisphere Ξ1, there exists a finite covering {V1, . . . ,VJ } of
Ξ1 by such neighborhoods with corresponding matrices {T1(τ, η), . . . , TJ (τ, η)},
and a smooth partition of unity {χ j (τ, η)}Jj=1 such that

χ j ∈ C∞
c (V j ),

J∑
j=1

χ2
j = 1 on Ξ1.

We now derive an energy estimate in Π j := {(τ, η) ∈ Ξ : s · (τ, η) ∈
V j for some s > 0} and then patch them together to obtain (3.29). We first ex-
tend χ j and Tj to the conic zone Π j as homogeneous mappings of degree 0 with
respect to (τ, η). Note that both Tj (τ, η) and its inverse are bounded on Π j , and
identity (3.61) holds for all (τ, η) ∈ Π j with τ �= ±i v̄η. Define

W(τ, η, x2) := χ j Tj (τ, η)
−1Ŵ nc(τ, η, x2) for all (τ, η) ∈ Π j .

Assume that (τ, η) ∈ Π j with Re τ > 0. In light of (3.26), we obtain that W
satisfies

dW
dx2

= Tj (τ, η)
−1ATj (τ, η)W.
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Since (3.61) holds when (τ, η) ∈ Π j with Re τ > 0, the equations forW2 andW4
read

dW2

dx2
= −ω+W2,

dW4

dx2
= −ω−W4. (3.62)

Recall from Lemma 3.3 (a) that Reω±(τ, η) < 0 whenever Re τ > 0. Integration
by parts for (3.62) yields

‖W2(τ, η, ·)‖L2(R+) = ‖W4(τ, η, ·)‖L2(R+) = 0,

from which we immediately deduce

W2(τ, η, x2) = W4(τ, η, x2) = 0 (3.63)

for all x2 ∈ R+ and (τ, η) ∈ Π j with Re τ > 0, where we have used the continuity
of W2 and W4. Using the boundary equations in (3.26) yields

χ j Ĝ = β(τ, η)Tj (τ, η)W(τ, η, 0) = β(τ, η)(E+ E−)
(
W1(τ, η, 0)
W3(τ, η, 0)

)
(3.64)

for all (τ, η) ∈ Π j with Re τ > 0. By the homogeneity of Tj and β, we obtain
from (3.52) that

(|τ | + |η|)|β(τ, η)(E+(τ, η) E−(τ, η))Z | � c jγ |Z | for all (τ, η) ∈ Π j , Z ∈ C
2.

Combine this with (3.64) to deduce

|(W1(τ, η, 0),W3(τ, η, 0))| � |τ | + |η|
c jγ

∣∣χ j Ĝ(τ, η)
∣∣ (3.65)

for all (τ, η) ∈ Π j with Re τ > 0. Combining (3.63) and (3.65) yields

|W(τ, η, 0)| � |τ | + |η|
c jγ

∣∣χ j Ĝ(τ, η)
∣∣ for all (τ, η) ∈ Π j with Re τ > 0.

We then obtain from the definition of W and boundedness of Tj (τ, η) that

∣∣χ j Ŵ nc(τ, η, 0)
∣∣ � |τ | + |η|

c jγ

∣∣χ j Ĝ(τ, η)
∣∣

for all (τ, η) ∈ Π j with γ = Re τ > 0 and new positive constants c j . Adding
the above estimates for all j ∈ {1, . . . , J } and integrating the resulting estimate
over R

2 with respect to (δ, η), we can derive the desired estimate (3.29) from the
Plancherel theorem. This completes the proof of Theorem 3.1. ��
Remark 3.4. In the case of M = Mc, we can derive the energy estimate (3.7) by
using (3.60) and employing a completely similar argument as above.
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4. Variable Coefficient Linearized Problem

In this section, we derive the linearized problem of (2.20) around a basic state(
Ů±, Φ̊±)

that is a small perturbation of
(�U±, �Φ±)

given in (2.24).More precisely,

we assume that the perturbations V̊± := Ů± − �U± and Ψ̊± := Φ̊± − �Φ± satisfy

supp
(
V̊±, Ψ̊±)

⊂ {−T ≤ t ≤ 2T, x2 � 0, |x | � R}, (4.1)

V̊± ∈ W 2,∞(Ω), Ψ̊± ∈ W 3,∞(Ω),
∥∥V̊±∥∥

W 2,∞(Ω)
+ ∥∥Ψ̊±∥∥

W 3,∞(Ω)
� K ,

(4.2)

where T , R, and K are positive constants. Moreover, we assume that
(
Ů±, Φ̊±)

satisfies constraints (2.23) and the Rankine–Hugoniot conditions (2.20b), i.e.

∂t Φ̊
± + v̊±

1 ∂1Φ̊
± − v̊±

2 = 0 if x2 � 0, (4.3a)

± ∂2Φ̊
± � κ0 > 0 if x2 � 0, (4.3b)

Φ̊+ = Φ̊− = ϕ̊ if x2 = 0, (4.3c)

B
(
Ů+, Ů−, ϕ̊

) = 0 if x2 = 0, (4.3d)

whereκ0 is a positive constant.Wewill use V̊ := (V̊+, V̊−)T and Ψ̊ := (Ψ̊+, Ψ̊−)T
to avoid overloaded expressions.

4.1. Linearized Problem

Let us consider the families,U±
θ = Ů± + θV± and Φ±

θ = Φ̊± + θΨ±, with a
small parameter θ . The linearized operators are given by

⎧⎪⎪⎨
⎪⎪⎩

L
′(Ů±, Φ̊±)

(V±, Ψ±) := d

dθ
L
(
U±
θ , Φ

±
θ

)∣∣∣∣
θ=0

,

B
′(Ů±, Φ̊±)

(V, ψ) := d

dθ
B(U+

θ ,U
−
θ , ϕθ )

∣∣∣∣
θ=0

,

where V := (V+, V−)T, and ϕθ (resp. ψ) denotes the common trace of Φ±
θ

(resp. Ψ±) on boundary {x2 = 0}. A standard computation yields the following
expression for L

′:

L
′(U, Φ)(V, Ψ ) = L(U, Φ)V + C(U, Φ)V − 1

∂2Φ
L(U, Φ)Ψ ∂2U , (4.4)

where C(U, Φ) is the zero-th order operator defined by

C(U, Φ)V := (
∂Ui A0(U )∂tU + ∂Ui A1(U )∂1U + ∂Ui Ã2(U, Φ)∂2U

)
Vi . (4.5)

We notice that matrices C(Ů±, Φ̊±)
are C∞–functions of

(
V̊±,∇ V̊±,∇Ψ̊±)

van-
ishing at the origin.
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Werecall that thefirst component ofB(U+
θ ,U

−
θ , ϕθ ) is [v1(Uθ )] ∂1ϕθ−[v2(Uθ )].

Ignoring indices “+” and “−” for the moment, it follows from (3.4) and (4.3a) that

d

dθ

(
B(U+

θ ,U
−
θ , ϕθ )

)
1

∣∣∣∣
θ=0

= v̊1∂1ψ + ∂1ϕ̊∇Uv1(Ů ) · V − ∇Uv2(Ů ) · V

= v̊1∂1ψ − ε2(∂1ϕ̊v̊1 − v̊2)

N̊ h̊Γ̊ 2
V1 + ∂1ϕ̊(1 − ε2v̊21)+ ε2v̊1v̊2

h̊Γ̊
V2

− ∂1ϕ̊ε
2v̊1v̊2 + (1 − ε2v̊22)

h̊Γ̊
V3

= v̊1∂1ψ + ε2∂t ϕ̊

N̊ h̊Γ̊ 2
V1 + ∂1ϕ̊ + ε2v̊1∂t ϕ̊

h̊Γ̊
V2 − 1 − ε2v̊2∂t ϕ̊

h̊Γ̊
V3 on {x2 = 0},

where v̊ j := v j (Ů ), N̊ := N (Ů1), h̊ := h(Ů1), and Γ̊ := Γ (Ů ). Performing a
similar analysis to the other components of B(U+

θ ,U
−
θ , ϕθ ) implies

B
′(Ů±, Φ̊±)

(V, ψ) := b̊∇ψ + B̊V |x2=0, (4.6)

where ∇ψ := (∂tψ, ∂1ψ)
T. Coefficients b̊ and B̊ are defined by

b̊(t, x1) :=
⎛
⎝0 (v̊+

1 − v̊−
1 )|x2=0

1 v̊+
1 |x2=0

0 0

⎞
⎠, (4.7)

B̊(t, x1) :=

⎛
⎜⎜⎜⎜⎝

ε2∂t ϕ̊

N̊+h̊+Γ̊ 2+
"̊+

h̊+Γ̊+
−ς̊+
h̊+Γ̊+

−ε2∂t ϕ̊
N̊−h̊−Γ̊ 2−

−"̊−
h̊−Γ̊−

ς̊−
h̊−Γ̊−

ε2∂t ϕ̊

N̊+h̊+Γ̊ 2+
"̊+

h̊+Γ̊+
−ς̊+
h̊+Γ̊+

0 0 0

1 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
x2=0

. (4.8)

In expression (4.8), we have set "̊± := "
(
Ů±, Φ̊±)

and ς̊± := ς
(
Ů±, Φ̊±)

, where

"(U, Φ) := ∂1Φ + ε2v1∂tΦ, ς(U, Φ) := 1 − ε2v2∂tΦ. (4.9)

In particular, if Ψ̊± ≡ 0, then "̊± ≡ 0 and ς̊± ≡ 1. Moreover, b̊ is a C∞–function
of V̊ |x2=0, and B̊ is a C∞–function of (V̊ |x2=0,∇ϕ̊).

We simplify expression (4.4) as Alinhac [1] by employing the “good un-
known”

V̇± := V± − ∂2Ů±

∂2Φ̊±Ψ
±. (4.10)

After some direct calculation, we find (cf.Métivier [34, Proposition1.3.1]) that

L
′(Ů±, Φ̊±)(V±, Ψ±)

= L(Ů±, Φ̊±)V̇± + C(Ů±, Φ̊±)V̇± + Ψ±

∂2Φ̊± ∂2
(
L(Ů±, Φ̊±)Ů±)

. (4.11)
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In view of the nonlinear results obtained in [1,19,22], we neglect the zero-th order
term in Ψ± and consider the following effective linear problem:

L
′
e

(
Ů±, Φ̊±)

V̇± := L
(
Ů±, Φ̊±)

V̇± + C(Ů±, Φ̊±)V̇± = f ±, x2 > 0, (4.12a)

B
′
e

(
Ů±, Φ̊±)

(V̇ , ψ) := b̊∇ψ + b�ψ + B̊V̇ |x2=0 = g, x2 = 0, (4.12b)

Ψ+ = Ψ− = ψ, x2 = 0, (4.12c)

where C(Ů±, Φ̊±), b̊, and B̊ are defined by (4.5), (4.7), and (4.8) respectively,
V̇ := (V̇+, V̇−)T, and

b�(t, x1) := B̊(t, x1)

(
∂2Ů+

∂2Φ̊+ ,
∂2Ů−

∂2Φ̊−

)T

|x2=0. (4.13)

Note that b� is a C∞–function of (V̊ |x2=0, ∂2V̊ |x2=0,∇ϕ̊, ∂2Ψ̊ |x2=0) that vanishes
at the origin. By virtue of (4.2), it follows that C(Ů±, Φ̊±) ∈ W 1,∞(Ω), and the
coefficients of operators L

(
Ů±, Φ̊±)

are in W 2,∞(Ω). We observe that the trace

of vector B̊V̇ involved in boundary conditions (4.12b) depends solely on the traces
of P

+(ϕ̊)V̇+ and P
−(ϕ̊)V̇− on {x2 = 0}, where P

±(ϕ̊) are defined as

P
±(ϕ̊)V := (

V1, ς̊±|x2=0V3 − "̊±|x2=0V2
)T
, (4.14)

with "̊± and ς̊± defined by (4.9). We will consider the dropped term in (4.11) as an
error term at each Nash–Moser iteration step in the subsequent nonlinear analysis.

4.2. Reformulation

It is more convenient to transform the linearized problem (4.12) into a problem
with a constant anddiagonal boundarymatrix. This is possible because the boundary
matrix for (4.12) has constant rank on the whole closed half-space {x2 � 0}.

Let us calculate the eigenvalues and the corresponding eigenvectors of the
boundary matrix for (4.12). Using constraint (4.3a) reduces the coefficient matrices
Ã2

(
Ů±, Φ̊±)

to

Ã2
(
Ů±, Φ̊±) = 1

∂2Φ̊±

⎛
⎝

0 −N̊±c̊2±"̊± N̊±c̊2±ς̊±
−"̊±/N̊± 0 0
ς̊±/N̊± 0 0

⎞
⎠ . (4.15)

After a direct calculation, we obtain that the eigenvalues are

λ1 = 0, λ2 = −
c̊±

√
"̊2± + ς̊2±
∂2Φ̊± , λ3 =

c̊±
√
"̊2± + ς̊2±
∂2Φ̊± ,

with corresponding eigenvectors

r1 =
⎛
⎝

0
ς̊±
"̊±

⎞
⎠ r2 =

⎛
⎜⎝

√
"̊2± + ς̊2±

"̊±/(N̊±c̊±)
−ς̊±/(N̊±c̊±)

⎞
⎟⎠ , r3 =

⎛
⎜⎝

√
"̊2± + ς̊2±

−"̊±/(N̊±c̊±)
ς̊±/(N̊±c̊±)

⎞
⎟⎠ .
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Define the matrices

R
(
Ů±, Φ̊±) :=

⎛
⎜⎝

0
√
"̊2± + ς̊2±

√
"̊2± + ς̊2±

ς̊± "̊±/(N̊±c̊±) −"̊±/(N̊±c̊±)
"̊± −ς̊±/(N̊±c̊±) ς̊±/(N̊±c̊±)

⎞
⎟⎠ , (4.16)

and Ã0
(
Ů±, Φ̊±) := diag (1, λ−1

2 , λ−1
3 ). Then it follows that

Ã0R
−1 Ã2R

(
Ů±, Φ̊±) = I2 := diag (0, 1, 1).

We thus perform the transformation

W± := R−1(Ů±, Φ̊±)
V̇±. (4.17)

Multiplying (4.12a) by matrices Ã0R−1
(
Ů±, Φ̊±)

yields the equivalent system of
(4.12a):

A±
0 ∂tW

± + A±
1 ∂1W

± + I2∂2W± + C±W± = F±, (4.18)

where F± := Ã0R−1
(
Ů±, Φ̊±)

f ±, and

A±
0 := Ã0R

−1A0R
(
Ů±, Φ̊±)

, A±
1 := Ã0R

−1A1R
(
Ů±, Φ̊±)

, (4.19)

C± := Ã0

(
R−1A0∂t R + R−1A1∂1R + R−1 Ã2∂2R + R−1CR

) (
Ů±, Φ̊±)

.

Matrices A±
0 and A±

1 belong to W 2,∞(Ω), while matrices C± are in W 1,∞(Ω).
Moreover, A±

0 and A±
1 are C∞–functions of their arguments (V̊±,∇Ψ̊±), and C±

are C∞–functions of their arguments (V̊±,∇ V̊±,∇Ψ̊±,∇2Ψ̊±). Under transfor-
mation (4.17), the boundary conditions (4.12b)–(4.12c) become

Bγ (W, ψ) := b̊∇ψ + b�ψ + BW = g if x2 = 0, (4.20a)

Ψ+ = Ψ− = ψ if x2 = 0, (4.20b)

where b̊ and b� are given by (4.7) and (4.13) respectively, W := (W+,W−)T, and

B(t, x1) := B̊

(
R(Ů+, Φ̊+) 0

0 R(Ů−, Φ̊−)

)∣∣∣∣
x2=0

=

⎛
⎜⎜⎝

0 m+
1 + m+

2 m+
1 − m+

2 0 −m−
1 − m−

2 −m−
1 + m−

2

0 m+
1 + m+

2 m+
1 − m+

2 0 0 0

0
√
"̊2+ + ς̊2+

√
"̊2+ + ς̊2+ 0 −

√
"̊2− + ς̊2− −

√
"̊2− + ς̊2−

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
x2=0

. (4.21)

In the last expression, for notational simplicity, we have introduced m±
j as

m±
1 :=

ε2∂t Φ̊
±
√
"̊2± + ς̊2±

Γ̊ 2±h̊± N̊± , m±
2 := "̊2± + ς̊2±

Γ̊±c̊±h̊± N̊± . (4.22)
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It is clear that matrix B is a C∞–function of (V̊ |x2=0,∇ϕ̊). According to (4.14)
and (4.17), we have

P
±(ϕ̊)V̇±|x2=0 =

⎛
⎜⎝

√
"̊2± + ς̊2±(W±

2 + W±
3 )

− "̊2± + ς̊2±
N̊±c̊±

(W±
2 − W±

3 )

⎞
⎟⎠

∣∣∣∣∣∣∣
x2=0

. (4.23)

We find that the trace of vector BW involved in boundary conditions (4.20) depends
only on the traces of the noncharacteristic part of vectorW , i.e. sub-vectorW nc :=
(W+

2 ,W
+
3 ,W

−
2 ,W

−
3 )

T.

5. Basic Energy Estimate for the Linearized Problem

In this section, we are going to prove the following theorem, which provides
the basic energy estimate for the effective linear problem (4.12):

Theorem 5.1. Assume that the stationary solution (2.24) satisfies (2.10)and (2.25).
Assume further that the basic state

(
Ů±, Φ̊±)

satisfies (4.1)–(4.3).
Then there exist constants K0 > 0 and γ0 � 1 such that, if K � K0 and

γ � γ0, then, for all (V̇ , ψ) ∈ H2
γ (Ω)× H2

γ (R
2), the following estimate holds:

γ ‖V̇ ‖2L2
γ (Ω)

+ ‖P
±(ϕ̊)V̇±|x2=0‖2L2

γ (R
2)

+ ‖ψ‖2H1
γ (R

2)

� γ−3
∥∥L

′
e

(
Ů±, Φ̊±)

V̇±∥∥2
L2(H1

γ )
+ γ−2

∥∥B
′
e

(
Ů±, Φ̊±)

(V̇ |x2=0, ψ)
∥∥2
H1
γ (R

2)
.

(5.1)

Remark 5.1. Since the Lopatinskiı̆ determinant associated with problem (4.12)
admits the roots on the boundary of frequency space, the energy estimate (5.1) has
a loss of regularity of the solution with respect to the source terms. Furthermore,
there is a loss of control on the traces of the solution in (5.1), which is mainly owing
to the fact that (4.12) is a characteristic boundary problem.

Wenotice that systems (4.12a) are symmetrizable hyperbolicwith theFriedrichs
symmetrizers S2

(
Ů±)

for operatorsL
′
e

(
Ů±, Φ̊±)

, where function S2(U ) is defined
in (A.10). By virtue of (4.3a), we compute

S2(Ů
±) Ã2(Ů

±, Φ̊±)

= 1

∂2Φ̊± S2(Ů
±)

(
A2(Ů

±)− ∂t Φ̊
±A0(Ů

±)− ∂1Φ̊
±A1(Ů

±)
)

= 1

∂2Φ̊±

⎛
⎝

0 −N̊±c̊2±"̊± N̊±c̊2±ς̊±
−N̊±c̊2±"̊± 0 0
N̊±c̊2±ς̊± 0 0

⎞
⎠ ,

where "̊± and ς̊± are defined in (4.9). Multiplying (4.12a) by the Friedrichs sym-
metrizers S2(Ů±) and employing integration by parts yield the following lemma:
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Lemma 5.1. There exists a constant γ0 � 1 such that, for all γ � γ0, the following
estimate holds:

γ ‖V̇±‖2L2
γ (Ω)

� γ−1
∥∥L

′
e

(
Ů±, Φ̊±)

V̇±∥∥2
L2
γ (Ω)

+ ‖P
±(ϕ̊)V̇±|x2=0‖2L2

γ (R
2)
.

To prove Theorem 5.1, it remains to deduce the desired energy estimate for the
discontinuity frontψ and the traces of P

±(ϕ̊)V̇± on {x2 = 0} in terms of the source
terms in the interior domain and on the boundary.

Introducing W̃± := e−γ tW±, system (4.18) equivalently reads

Lγ
±W̃±

:= γ A±
0 W̃

± + A±
0 ∂t W̃

± + A±
1 ∂1W̃

± + I2∂2W̃± + C±W̃± = e−γ t F±.
(5.2)

We also introduce W̃ := (W̃+, W̃−)T, Ψ̃± := e−γ tΨ±, and ψ̃ := e−γ tψ . Then
the boundary conditions (4.20) are equivalent to

Bγ (W̃ , ψ̃) := γ b0ψ̃ + b̊∇ψ̃ + b�ψ̃ + BW̃ = e−γ t g if x2 = 0, (5.3a)

Ψ̃+ = Ψ̃− = ψ̃ if x2 = 0, (5.3b)

where b0 := (0, 1, 0)T. In view of (4.23), we obtain the estimate

‖P
±(ϕ̊)V̇±|x2=0‖L2

γ (R
2) �

∥∥W nc|x2=0
∥∥
L2
γ (R

2)
�

∥∥W̃ nc|x2=0
∥∥, (5.4)

where W̃ nc := (
W̃+

2 , W̃
+
3 , W̃

−
2 , W̃

−
3

)T. By virtue of (5.4) and Lemma 5.1, we
obtain that Theorem 5.1 admits the following equivalent proposition:

Proposition 5.1. Assume that the stationary solution (2.24) satisfies (2.10) and
(2.25). Assume further that the basic state

(
Ů±, Φ̊±)

satisfies (4.1)–(4.3).
Then there exist some constants K0 > 0 and γ0 � 1 such that, if K � K0 and

γ � γ0, then the following estimate holds: for all (W, ψ) ∈ H2(Ω)× H2(R2),

∥∥Wnc|x2=0
∥∥2 + ‖ψ‖21,γ � γ−3|||Lγ

±W±|||21,γ + γ−2‖Bγ (Wnc|x2=0, ψ)‖21,γ ,
(5.5)

where operators Lγ
± and Bγ are given by (5.2) and (5.3a), respectively.

In the rest of this section, we give the proof of Proposition 5.1.

5.1. Paralinearization

Wenowperform the paralinearization of the interior equations and the boundary
conditions.
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5.1.1. Some results on paradifferential calculus For self-containedness, we list
some definitions and results about paradifferential calculus with a parameter that
will be used in this paper (see [4, Appendix C] and the references cited therein for
the rigorous proofs).

Definition 5.1. For any m ∈ R and k ∈ N, we define the following:

(i) A function a(x, ξ, γ ) : R
2×R

2×[1,∞) → C
N×N is called a paradifferential

symbol of degree m and regularity k if a is C∞ in ξ and, for each α ∈ N
2,

there exists a positive constant Cα such that

‖∂αξ a(·, ξ, γ )‖Wk,∞(R2) � Cαλ
m−|α|,γ (ξ) for all (ξ, γ ) ∈ R

2 × [1,∞),

where λs,γ (ξ) := (γ 2 + |ξ |2)s/2 for s ∈ R;
(ii) $m

k denotes the set of paradifferential symbols of degree m and regularity k.
We denote by αm a generic symbol in the class $m

1 ;
(iii) We say that a family of operators {Pγ }γ�1 is of order� m, if, for every s ∈ R

and γ � 1, there exists a constant C(s,m) independent of γ such that

‖Pγ u‖s,γ � C(s,m)‖u‖s+m,γ for all u ∈ Hs+m .

We useRm to denote a generic family of operators of order � m;
(iv) For s ∈ R, operator Λs,γ is defined in such a way that

Λs,γ u(x) := 1

(2π)2

∫

R2
eix ·ξ λs,γ (ξ )̂u(ξ)dξ

for all u in the Schwartz class S;
(v) To any symbol a ∈ $m

0 , we associate the family of paradifferential operators
{T γ

a }γ�1 defined in such a way that

T γ
a u(x) := 1

(2π)2

∫

R2

∫

R2
eix ·ξKψ(x − y, ξ, γ )a(y, ξ, γ )̂u(ξ) dydξ

for all u ∈ S. In the last expression, Kψ(·, ξ, γ ) is the inverse Fourier trans-
form of ψ(·, ξ, γ ) with ψ given by

ψ(x, ξ, γ ) :=
∑
q∈N

χ(22−1x, 0)φ(2−qξ, 2−qγ ),

where φ(ξ, γ ) := χ(2−1ξ, 2−1γ )− χ(ξ, γ ), and χ is a C∞–function on R
3

such that

χ(z) � χ(z′) if |z| � |z′|, χ(z) =
{
1 if |z| � 1

2 ,

0 if |z| � 1.

Lemma 5.2. The following statements hold:

(i) If a ∈ W 1,∞(R2), u ∈ L2(R2), and γ � 1, then

γ ‖au − T γ
a u‖ + ‖a∂ j u − T γ

iξ j a
u‖ + ‖au − T γ

a u‖1,γ � ‖a‖W 1,∞(R2)‖u‖;
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(ii) If a ∈ W 2,∞(R2), u ∈ L2(R2), and γ � 1, then

γ ‖au − T γ
a u‖1,γ + ‖a∂ j u − T γ

iξ j a
u‖1,γ � ‖a‖W 2,∞(R2)‖u‖;

(iii) If a ∈ $m
k , then T γ

a is of order � m. In particular, if a ∈ L∞(R2) is indepen-
dent of ξ , then

‖T γ
a u‖s,γ � ‖a‖L∞(R2)‖u‖s,γ for all s ∈ R, u ∈ Hs(R2);

(iv) If a ∈ $m
1 and b ∈ $m′

1 , then product ab ∈ $m+m′
1 , family {T γ

a T γ

b − T γ

ab}γ�1
is of order � m +m′ − 1, and family {(T γ

a )
∗ − T γ

a∗}γ�1 is of order � m − 1;

(v) If a ∈ $m
2 and b ∈ $m′

2 , then {T γ
a T γ

b − T γ

ab − T γ

−i
∑

j ∂ξ j a∂x j b
}γ�1 is of order

� m + m′ − 2;
(vi) Gårding’s inequality: If a ∈ $2m

1 is a square matrix symbol that satisfies

Re a(x, ξ, γ ) � c(γ 2 + |ξ |2)m I for all (x, ξ, γ ) ∈ R
4 × [1,∞)

for some constant c, then there exists γ0 � 1 such that

Re
〈
T γ
a u, u

〉
� c

4
‖u‖2m,γ for all u ∈ Hm(R2) and γ � γ0;

(vii) Microlocalized Gårding’s inequality: Let a ∈ $2m
1 be a square matrix symbol

and χ ∈ $0
1 . If there exist a scalar real symbol χ̃ ∈ $0

1 and a constant c > 0
such that χ̃ � 0, χχ̃ ≡ χ , and

χ̃2(x, ξ, γ )Re a(x, ξ, γ ) � cχ̃2(x, ξ, γ )(γ 2 + |ξ |2)m I
for all (x, ξ, γ ) ∈ R

4 × [1,∞), then there exist γ0 � 1 and C > 0 such that

Re
〈
T γ
a T γ

χ u, T γ
χ u

〉
� c

2
‖T γ

χ u‖2m,γ − C‖u‖2m−1,γ

for all u ∈ Hm(R2), γ � γ0.

Here we have used the notationRe B := (B+B∗)/2 for any complex squarematrix
B with B∗ being its conjugate transpose.

The reader may find the detailed proof of Lemma 5.2 (vii) in Métivier–
Zumbrun [35, Theorem B.18].

5.1.2. Paralinearization of the interior equations In view of (4.2) and (4.3b),
we have the following estimate for the coefficients of Lγ

± given in (5.2):

‖(A±
0 , A

±
1 )‖W 2,∞(Ω) + ‖C±‖W 1,∞(Ω) � C(K , κ0).
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It then follows from Lemma 5.2 (ii) that

∣∣∣∣∣∣γ A+
0 W

+ − T γ

γ A+
0
W+∣∣∣∣∣∣2

1,γ =
∫ ∞

0
‖γ A+

0 W
+(·, x2)− T γ

γ A+
0
W+(·, x2)‖21,γ dx2

�
∫ ∞

0
‖A+

0 (·, x2)‖2W 2,∞(R2)
‖W+(·, x2)‖2dx2

� C(K , κ0)|||W+|||2.
Similarly, we derive from Lemma 5.2 (i)–(ii) that

∣∣∣∣∣∣A+
0 ∂tW

+ − T γ

iδA+
0
W+∣∣∣∣∣∣

1,γ � ‖A+
0 ‖W 2,∞(Ω)|||W+||| � C(K , κ0)|||W+|||,

∣∣∣∣∣∣A+
1 ∂1W

+ − T γ

iηA+
1
W+∣∣∣∣∣∣

1,γ � ‖A+
1 ‖W 2,∞(Ω)|||W+||| � C(K , κ0)|||W+|||,

∣∣∣∣∣∣C+W+ − T γ

C+W
+∣∣∣∣∣∣

1,γ � ‖C+‖W 1,∞(Ω)|||W+||| � C(K , κ0)|||W+|||.

Combining these estimates yields
∣∣∣∣∣∣Lγ

+W+ − I2∂2W+ − T γ

τ A+
0 +iηA+

1 +C+W
+∣∣∣∣∣∣

1,γ � C(K , κ0)|||W+|||, (5.6)

where τ = γ + iδ, and Lγ
+ is the linearized operator defined by (5.2). We can also

obtain the following estimate for the equations on W−:
∣∣∣∣∣∣Lγ

−W− − I2∂2W− − T γ

τ A−
0 +iηA−

1 +C−W
−∣∣∣∣∣∣

1,γ � C(K , κ0)|||W−|||. (5.7)

The paralinearization for the interior equations is thus given as follows:

T γ

τ A±
0 +iηA±

1 +C±W
± + I2∂2W± = F̃± if x2 > 0. (5.8)

Note that the above paralinearized equations do not involve the discontinuity func-
tion ϕ.

5.1.3. Paralinearization of the boundary conditions According to (5.3a), we
define

b0 := (0, 1, 0)T, b1(t, x1) := (
(v̊+

1 − v̊−
1 )|x2=0, v̊

+
1 |x2=0, 0

)T
,

b(t, x1, δ, η, γ ) := τ b0 + iηb1(t, x1) = (iη(v̊+
1 − v̊−

1 ), τ + iv̊+
1 η, 0)

T|x2=0.

Since b0, b1 ∈ W 2,∞(R2), we obtain from Lemma 5.2 (iii) that

‖γ b0ψ + b̊∇ψ − T γ

b ψ‖1,γ
= ‖γ b0ψ + b0∂tψ + b1∂1ψ − T γ

b ψ‖1,γ
� ‖(b0, b1)‖W 2,∞(R2)‖ψ‖ � C(K )‖ψ‖ � C(K )γ−1‖ψ‖1,γ . (5.9)

It follows from (4.2), (4.3b), and (4.13) that ‖b�‖W 1,∞(R2) � C(K , κ0). Employing
Lemma 5.2 (ii)–(iii) yields
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‖b�ψ‖1,γ � ‖b�ψ − T γ

b�
ψ‖1,γ + ‖T γ

b�
ψ‖1,γ

� ‖b�‖W 1,∞(R2)‖ψ‖ + ‖b�‖L∞(R2)‖ψ‖1,γ
� C(K , κ0)‖ψ‖1,γ . (5.10)

In light of (4.21), we find that ‖B‖W 2,∞(R2) � C(K , κ0), and B acts only on the
noncharacteristic part W nc of vector W . Hence, we deduce

‖BW |x2=0 − T γ

BW |x2=0‖1,γ
� γ−1‖B‖W 2,∞(R2)

∥∥W nc|x2=0
∥∥ � C(K , κ0)γ

−1
∥∥W nc|x2=0

∥∥ . (5.11)

Combine (5.9)–(5.11) together to find

‖Bγ (W |x2=0, ψ)− T γ

b ψ − T γ

BW |x2=0‖1,γ
� C(K , κ0)

(
‖ψ‖1,γ + γ−1

∥∥W nc|x2=0
∥∥) . (5.12)

The paralinearization of the boundary conditions (5.3a) is then given as follows:

T γ

b ψ + T γ

BW = G if x2 = 0. (5.13)

5.1.4. Eliminating the front We can eliminate front ψ from the paralinearized
boundary conditions (5.13) as in the constant coefficient case. For this purpose, we
first notice that symbol b is elliptic, which means that, for any (t, x1, δ, η, γ ) ∈
R
4 × (0,∞),

|b(t, x1, δ, η, γ )|2 � c(K )(γ 2 + δ2 + η2). (5.14)

To show this estimate, by observing that b is homogeneous of degree 1 with respect
to (τ, η) and that Ξ1 is compact, we only need to prove

|b(t, x1, δ, η, γ )|2 > 0 on Ξ1.

This estimate follows from the similar property for the constant coefficient case,
by taking the perturbation, V̊ , small enough in L∞(Ω).

Using (5.14) and the Gårding inequality (Lemma 5.2 (vi)), we have

Re
〈
T γ

b∗bψ,ψ
〉
� c(K )‖ψ‖21,γ for all γ � γ0,

where γ0 depends only on K . Since b ∈ $1
2, the operator

T γ

b∗b − (T γ

b )
∗T γ

b = T γ

b∗b − T γ

b∗T
γ

b +
{
T γ

b∗ − (
T γ

b

)∗}
T γ

b

is of order � 1. Then

‖ψ‖21,γ � C(K )
(
‖T γ

b ψ‖2 + ‖ψ‖1,γ ‖ψ‖
)

� C(K )
(
‖T γ

b ψ‖2 + γ−1‖ψ‖21,γ
)
,

from which we take γ sufficiently large to derive

‖ψ‖1,γ � C(K )‖T γ

b ψ‖.
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Since the first and fourth columns of B ∈ W 2,∞(R2) vanish, we apply Lemma 5.2
to obtain

‖ψ‖1,γ � C(K )
(‖T γ

b ψ + T γ

BW |x2=0‖ + ‖W nc|x2=0‖
)

� C(K )
(
γ−1‖T γ

b ψ + T γ

BW |x2=0‖1,γ + ‖W nc|x2=0‖
)
. (5.15)

Combine this estimate with (5.12) and let γ large enough to deduce

‖ψ‖1,γ � C(K )
(
γ−1‖Bγ (W |x2=0, ψ)‖1,γ + ‖W nc|x2=0‖

)
. (5.16)

This last estimate indicates that it only remains to deduce an estimate of W nc|x2=0
in terms of the source terms.

To eliminate ψ in the boundary conditions (5.13), we define the matrix

Q(t, x1, δ, η, γ ) :=
(

0 0 1

τ + iηv̊+
1 −iη(v̊+

1 − v̊−
1 ) 0

)∣∣∣∣∣
x2=0

for all (τ, η) ∈ Ξ1.

Then we extend Q as a homogeneous mapping of degree 0 with respect to (τ, η)
on Ξ . It follows that Q ∈ $0

2 and Qb ≡ 0. We define symbol β as

β(t, x1, δ, η, γ ) := Q(t, x1, δ, η, γ )B(t, x1) ∈ $0
2

for all (t, x1, δ, η, γ ) ∈ R
4 × R+. After a direct calculation, we find that the first

and fourth columns of β vanish, so that we consider β as a matrix with only four
columns and two rows. More precisely, for all (τ, η) ∈ Ξ1, symbol β is given by

β(t, x1, δ, η, γ )

=
( √

"̊2+ + ς̊2+
√
"̊2+ + ς̊2+ −

√
"̊2− + ς̊2− −

√
"̊2− + ς̊2−

å−(m+
1 + m+

2 ) å−(m+
1 − m+

2 ) −å+(m−
1 + m−

2 ) −å+(m−
1 − m−

2 )

)∣∣∣∣∣
x2=0

,

(5.17)

where "̊± and ς̊± are given in (4.9), m±
1 and m±

2 are given in (4.22), and

å± := τ + iv̊±
1 (t, x)η. (5.18)

Since B ∈ $0
2, b ∈ $1

2, and Qb ≡ 0, we find from (5.12) and Lemma 5.2 that

‖T γ

β W nc|x2=0‖1,γ
= ‖T γ

QBW |x2=0 − T γ

QT
γ

BW |x2=0 + T γ

Q (T
γ

BW |x2=0 + T γ

b ψ)− T γ

QT
γ

b ψ‖1,γ
� ‖W nc|x2=0‖ + ‖T γ

BW |x2=0 + T γ

b ψ‖1,γ + ‖T γ

QT
γ

b ψ − T γ

Qbψ‖1,γ
� ‖W nc|x2=0‖ + ‖Bγ (W |x2=0, ψ)‖1,γ + ‖ψ‖1,γ . (5.19)

In view of (5.8) and (5.13), we obtain the following paralinearized problem with
reduced boundary conditions:

T γ

τ A+
0 +iηA+

1 +C+W
+ + I2∂2W+ = F+ if x2 > 0, (5.20a)
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T γ

τ A−
0 +iηA−

1 +C−W
− + I2∂2W− = F− if x2 > 0, (5.20b)

T γ

β W nc = G if x2 = 0. (5.20c)

We can deduce the following proposition for problem (5.20) by using the error esti-
mates (5.6)–(5.7), (5.12), (5.15)–(5.16), and (5.19) (see also [17, Proposition 5.3]).

Proposition 5.2. If there exist constants K0 > 0 and γ0 � 1 such that solution W
to the paralinearized problem (5.20) satisfies

‖Wnc|x2=0‖2 � γ−3|||F±|||21,γ + γ−2‖G‖21,γ (5.21)

for K � K0 and γ � γ0, then Proposition 5.1 holds.

5.2. A Reduced Problem

In order to derive the energy estimate (5.21), we now derive a problem for the
noncharacteristic variables W nc from (5.20). This is possible since the coefficient
matrix I2 = diag (0, 1, 1) has constant rank. For convenience, we write

τ A±
0 + iηA±

1 =: (b±
i j ) ∈ $1

2, (5.22)

where A±
k = (Ai j

k,±), k = 0, 1, are defined by (4.19). In particular, we compute

A11
1,± = v̊±

1 A11
0,±, A11

0,± = Γ̊±

{
1 − ε2(ς̊±v̊±

1 + "̊±v̊±
2 )

2

ς̊2± + "̊2±

}
=: F

±
1 ∈ R, (5.23)

from which we obtain

b±
11 := τ A11

0,± + iηA11
1,± = F

±
1 (τ + iv̊±

1 η). (5.24)

In view of (4.9), F
±
1 = �Γ (1 − ε2v̄2) > 0 when

(
V̊±, Ψ̊±) = 0 (cf. 3.24). We

use the continuity of F
±
1 and take K in (4.2) small enough to derive that F

±
1 > 0

for all (t, x) ∈ �Ω . As a consequence, we have

b±
11 = 0 if and only if å± = τ + iv̊±

1 η = 0. (5.25)

To represent the characteristic variables W±
1 in terms of W nc, the singular points

(t, x, τ, η) that are given by (5.25) should be excluded. We thus introduce two
C∞–functions χ+ and χ̃+ defined on �Ω ×Ξ such that

– both χ+ and χ̃+ are homogeneous of degree zero with respect to (τ, η) ∈ Ξ ;
– for all (t, x, τ, η) ∈ �Ω ×Ξ1,

0 � χ+(t, x, τ, η) � χ̃+(t, x, τ, η) � 1, (5.26)

χ̃+ ≡ 1 on supp χ+, supp χ̃+ ⊂ {
å+(t, x, τ, η) �= 0

}
. (5.27)
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Since τ A+
0 + iηA+

1 ∈ $1
2, C

+ ∈ $0
1, and χ+ ∈ $0

k for all k ∈ N, we find from
Lemma 5.2 (iv)–(v) that

T γ
χ+T

γ

τ A+
0 +iηA+

1 +C+ = T γ

τ A+
0 +iηA+

1
T γ
χ+ + T γ

−i
{
χ+,τ A+

0 +iηA+
1

} + T γ

C+T
γ
χ+ + R−1,

where {a, b} denotes the Poisson bracket of a and b:

{a, b} := ∂a

∂δ

∂b

∂t
+ ∂a

∂η

∂b

∂x1
− ∂a

∂t

∂b

∂δ
− ∂a

∂x1

∂b

∂η
. (5.28)

Setting
w+ := T γ

χ+W
+

and applying operator T γ
χ+ to (5.20a), we obtain

T γ

τ A+
0 +iηA+

1
w+ + T γ

C+w+ + I2∂2w+ = T γ
r W+ + T γ

χ+F
+ + R−1W

+, (5.29)

where r = i
{
χ+, τ A+

0 + iηA+
1

} + ∂2χ+ I2.We will employ letter r+ to denote a
generic symbol that belongs to $0

1 and vanishes on {χ+ ≡ 1} ∪ {χ+ ≡ 0}. Since
b+
11 �= 0 on supp χ̃+, we infer that χ̃+

b+
11

∈ $−1
2 and

T γ

χ̃+/b+
11
T γ

b+
1 j

w+
j = T γ

χ̃+b+
1 j /b

+
11

w+
j + T γ

α−1
w+

j + R−2W
+.

Applying operator T γ

χ̃+/b+
11
to the first equation in (5.29) yields

T γ
χ̃+w+

1 + T γ

χ̃+b+
12/b

+
11

w+
2 + T γ

χ̃+b+
13/b

+
11

w+
3

=
3∑
j=1

T γ
α−1

w+
j + T γ

r+α−1W
+ + T γ

α−1
T γ
χ+F

+
1 + R−2W

+. (5.30)

By virtue of (5.27) we have the identities χ̃+χ+ ≡ χ+ and

∂χ̃+
∂δ

∂χ+
∂t

+ ∂χ̃+
∂x1

∂χ+
∂η

≡ 0,

which imply

T γ
χ̃+w+

1 = T γ
χ̃+T

γ
χ+W

+
1 = T γ

χ̃+χ+W
+
1 + R−2W

+
1 = w+

1 + R−2W
+
1 .

Plug this identity into (5.30) to obtain

w+
1 = − T γ

χ̃+b+
12/b

+
11

w+
2 − T γ

χ̃+b+
13/b

+
11

w+
3

+
3∑
j=1

T γ
α−1

w+
j + T γ

r+α−1W
+ + T γ

α−1
T γ
χ+F

+
1 + R−2W

+. (5.31)

The second equation of (5.29) reads

3∑
j=1

T γ

b+
2 j

w+
j +

3∑
j=1

T γ
α0

w+
j + ∂2w

+
2 = T γ

r+W
+ + T γ

χ+F
+
2 + R−1W

+.
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Since b+
j1 ∈ $1

2 and χ̃+b+
1 j/b

+
11 ∈ $0

2, we then apply operator T γ

b+
21

to expression

(5.31) and obtain

T γ

b+
21

w+
1 = − T γ

χ̃+b+
21b

+
12/b

+
11

w+
2 − T γ

χ̃+b+
21b

+
13/b

+
11

w+
3

+
3∑
j=1

T γ
α0

w+
j + T γ

r+W
+ + R0T

γ
χ+F

+ + R−1W
+.

Consequently, we have

∂2w
+
2 = T γ

A
11
χ̃+

w+
2 + T γ

A
12
χ̃+

w+
3

+
3∑
j=1

T γ
α0

w+
j + T γ

r+W
+ + R0T

γ
χ+F

+ + R−1W
+, (5.32)

where

A
11
χ̃+ = −b+

22 + χ̃+b+
21b

+
12/b

+
11, A

12
χ̃+ = −b+

23 + χ̃+b+
21b

+
13/b

+
11.

Note that w+
1 appears in a zero-th order term in (5.32). We thus apply T γ

α0 to
expression (5.31) and deduce

T γ
α0

w+
1 = T γ

α0
w+
2 + T γ

α0
w+
3 + T γ

r+α−1W
+ + R−1T

γ
χ+F

+ + R−1W
+,

which, together with (5.32), implies the following equation for w+
2 :

∂2w
+
2 = T γ

A
11
χ̃+

w+
2 + T γ

A
12
χ̃+

w+
3

+
3∑
j=2

T γ
α0

w+
j + T γ

r+W
+ + R0T

γ
χ+F

+ + R−1W
+. (5.33)

In this equation, the first and zero-th order terms in w+
1 have been eliminated.

Performing a similar computation to the third equation of (5.29), we obtain the
following equations for wnc+ := (w+

2 ,w
+
3 )

T:

∂2w
nc+ = T γ

Aχ̃+
wnc+ + T γ

E+wnc+ + T γ
r+W

+ + R0T
γ
χ+F

+ + R−1W
+, (5.34)

where E
+ ∈ $0

1, symbol r+ ∈ $0
1 vanishes on region {χ+ ≡ 1} ∪ {χ+ ≡ 0}, and

Aχ̃+ =
(

A
11
χ̃+ A

12
χ̃+

A
21
χ̃+ A

22
χ̃+

)
∈ $1

2, A
i j
χ̃+ = −b+

i+1, j+1 + χ̃+b+
i+1,1b

+
1, j+1/b

+
11.

Let us define χ− and χ̃− as χ+ and χ̃+ by changing index “+” into “−”. We
set w− := T γ

χ−W
− and employ a similar analysis to find that wnc− := (w−

2 ,w
−
3 )

T

satisfies the same system as (5.34) with index “+” replaced by “−”. Applying the
rule of symbolic calculus (Lemma 5.2iv) to (5.20c) yields the boundary condition
for wnc := (w+

2 ,w
+
3 ,w

−
2 ,w

−
3 )

T:

T γ

β wnc|x2=0 = G + R−1W
nc.
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We combine this last relationwith the systems forwnc± to obtain the reduced problem

{
∂2w

nc = T γ

Ar
wnc + T γ

E
wnc + T γ

r W + R0T
γ
χ F + R−1W if x2 > 0,

T γ

β wnc = G + R−1W
nc if x2 = 0,

(5.35)

where β is given by (5.17) for (τ, η) ∈ Ξ1. The symbol matrix Ar ∈ $1
2 is given

by

⎧⎪⎨
⎪⎩

Ar =
(

Aχ̃+ 0
0 Aχ̃−

)
, Aχ̃± = (

A
i j
χ̃±

)
,

with A
i j
χ̃± = −b±

i+1, j+1 + χ̃±b±
i+1,1b

±
1, j+1/b

±
11.

(5.36)

Matrices E and r both belong to $0
1 and have the same block diagonal structure as

Ar . Moreover, symbol r vanishes on region {χ+ = χ− ≡ 1} ∪ {χ+ = χ− ≡ 0}.

5.3. Microlocalization

We now construct the degenerate Kreiss’ symmetrizers that are microlocal (i.e.
local in the frequency space) in order to derive our energy estimate. The whole
space �Ω ×Ξ will be divided into three disjoint parts according to the poles of the
“non-cutoff” symbol A and the zeros of the associated Lopatinskiı̆ determinant,
where

A =
(

A
+ 0
0 A

−
)
, A

± = (
a±
i j

)
, a±

i j = −b±
i+1, j+1 + b±

i+1,1b
±
1, j+1/b

±
11. (5.37)

Notice that Aχ̃± = A
± in region {χ̃± ≡ 1}. In light of (5.25), we obtain that the

poles of A belong to the set Υp := Υ +
p ∪ Υ −

p , with

Υ ±
p := {

(t, x, τ, η) ∈ �Ω ×Ξ : τ = −iηv̊±
1 (t, x, τ, η)

}
.

For the eigenvalues and the stable subspace of A(t, x, τ, η), we have the fol-
lowing lemma:

Lemma 5.3. Assume that
(
V̊ ,∇Ψ̊

)
is sufficiently small in W 2,∞(Ω). Then we

have that:

(a) If (τ, η) ∈ Ξ1 with Re τ > 0, then the eigenvalues of A
±(t, x, τ, η) are roots

ω of

(
ω − a±

11 + a±
22

2

)2 = (
C̊±
0

)2 {(
C̊±
1

)2(
τ ± iC̊±

2 η
)2 + η2

}
, (5.38)

where C̊±
j , j = 0, 1, 2, are positive smooth functions of (V̊±,∇Ψ̊±) such that

C̊±
j = �C j when

(
V̊±, Ψ̊±) = 0, with �C j given by (3.31). Moreover, A

± has a
unique eigenvalue ω± (resp. ω′±) of negative (resp. positive) real part;
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(b) If (τ, η) ∈ Ξ1 with Re τ > 0, then the stable subspace E−(t, x, τ, η) of
A(t, x, τ, η) has dimension two and is spanned by

⎧⎪⎨
⎪⎩

E+(t, x, τ, η) :=
(
−(τ + iv̊+

1 η)a
+
12, (τ + iv̊+

1 η)(a
+
11 − ω+), 0, 0

)T
,

E−(t, x, τ, η) :=
(
0, 0, (τ + iv̊−

1 η)(a
−
22 − ω−),−(τ + iv̊−

1 η)a
−
21

)T ;
(5.39)

(c) Both ω+ and ω− admit a continuous extension to any point (τ, η) ∈ Ξ1 with
Re τ = 0. If (τ, η) ∈ Ξ1 with τ = iδ ∈ iR, then

ω̃±(t, x, τ, η) := ω±(t, x, τ, η)− a±
11 + a±

22

2
(t, x, τ, η)

=
⎧⎨
⎩

− C̊±
0

√
η2 − (C̊±

1 )
2(δ ± C̊±

2 η)
2 if η2 � (C̊±

1 )
2(δ ± C̊±

2 η)
2,

− i sgn(δ ± C̊±
2 η)C̊

±
0

√
(C̊±

1 )
2(δ ± C̊±

2 η)
2 − η2 elsewise;

(5.40)

(d) Both E+(t, x, τ, η) and E−(t, x, τ, η) can be extended continuously to any
point (τ, η) ∈ Ξ1 with Re τ = 0. These two vectors are linearly independent
on the whole hemisphere Ξ1;

(e) If (t, x, τ, η) /∈ Υnd , where Υnd is given by

Υnd :=
{
τ ∈ {

i(−C̊+
2 ± (C̊+

1 )
−1)η, i(−C̊−

2 ± (C̊−
1 )

−1)η
}}

, (5.41)

then matrix A(t, x, τ, η) is diagonalizable.

Proof. We just need to deduce that relations (5.38) hold and that a±
11 + a±

22 are
well-defined for any point (τ, η) ∈ Ξ1, since the other assertions can be proved
similarly to the proof of Lemma 3.3.

By definition, we know that the eigenvalues of A
± are roots ω of

ω2 − (a±
11 + a±

22)ω + a±
11a

±
22 − a±

12a
±
21 = 0, (5.42)

from which we have

ω̃2+ =
(a+

11 − a+
22

2
+ a+

12

)(a+
11 − a+

22

2
− a+

12

)
+ a+

12(a
+
12 + a+

21), (5.43a)

ω̃2− =
(a−

22 − a−
11

2
+ a−

21

)(a−
22 − a−

11

2
− a−

21

)
+ a−

21(a
−
12 + a−

21). (5.43b)

We now deduce the expressions for a±
11 − a±

22 − 2a±
12 and a±

12 + a±
21. Recall that

a±
i j and b

±
i j are given by (5.37) and (5.22), respectively. Entries A11

0,± and A11
1,± are

given by (5.23). For notational simplicity, we ignore indices “±” and “˚” in the
following expressions. We calculate coefficients A±

j defined in (4.19) by using the
computer algebra system “Maxima” to obtain the following relations:

A23
1 = v1A

23
0 , A32

1 = v1A
32
0 , A22

1 − A33
1 = v1(A

22
0 − A33

0 ), (5.44a)

A12
1 − A13

1 = v1(A
12
0 − A13

0 ), A21
1 + A31

1 = v1(A
21
0 + A31

0 ), (5.44b)
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A21
1 (A

12
0 − A13

0 )− A13
1 (A

21
0 + A31

0 )

= v1

{
A21
0 (A

12
0 − A13

0 )− A13
0 (A

21
0 + A31

0 )
}
, (5.44c)

A13
1 (A

21
0 + A31

0 )+ A31
1 (A

12
0 − A13

0 )

= v1

{
A13
0 (A

21
0 + A31

0 )+ A31
0 (A

12
0 − A13

0 )
}
. (5.44d)

Then it follows from (5.44a) that

−b22 + b33 + 2b23 = (−A22
0 + A33

0 + 2A23
0 )(τ + iv1η).

By virtue of (5.44b)–(5.44c), we obtain

b21b12 − b31b13 − 2b21b13 = b21(b12 − b13)− b13(b21 + b31)

=
{
b21(A

12
0 − A13

0 )− b13(A
21
0 + A31

0 )
}
(τ + iv1η)

=
{
A21
0

(
A12
0 − A13

0

)
− A13

0

(
A21
0 + A31

0

)}
(τ + iv1η)

2.

Then

a11 − a22 − 2a12 = F2(τ + iv1η), (5.45)

where

F2 = (A110 )−1
{
A110 (−A220 + A330 + 2A230 )+ A210 (A120 − A130 )− A130 (A210 + A310 )

}

= 2∂2Φ
{
Γ (ς2 + "2)1/2(ε2|v|2 − 1)+ ε2c(ςv2 − "v1)

}

c
(
ε2("v2 + ςv1)2 − ς2 − "2

) . (5.46)

In particular, F
±
2 = ±2�Γ /c̄ �= 0 when the perturbation

(
V̊±, Ψ̊±)

vanishes. As a
consequence, F

±
2 never vanish by taking K in (4.2) small enough. Using (5.44a)–

(5.44b) and (5.44d), we can deduce from a similar calculation that

a12 + a21 = F3(τ + iv1η), (5.47)

where

F3 = (A11
0 )

−1
{
A11
0 (−A23

0 − A32
0 )+ A21

0 A13
0 + A31

0 A12
0

}

= − 2∂2Φε2 (ςv2 − "v1)

ε2("v2 + ςv1)2 − ς2 − "2
. (5.48)

Relations (5.38) follows by plugging (5.45) and (5.47) into (5.43a)–(5.43b).
We now show that a±

11 + a±
22 are well-defined. Use (5.44b) to derive

b21b12 + b31b13 = b12(b21 + b31)+ b31(b13 − b12)

=
{
b12(A

21
0 + A31

0 )+ b31(A
13
0 − A12

0 )
}
(τ + iv1η),
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which implies

a11 + a22 = −b22 − b33 + b21b12 + b31b13
F1(τ + iv1η)

= F4τ + iηF5, (5.49)

whereF4 andF5 are some smooth functions of (V̊ ,∇Ψ̊ ) that vanishwhen (
V̊ , Ψ̊

) =
0 (cf. (3.27) with a±

11 = ±μ± and a±
22 = ∓μ±). The proof of the lemma can be

completed by using the fact that A±
0 and A±

1 are smoothwith respect to (V̊±,∇Ψ̊±).
��

As in the constant coefficient case, we define the Lopatinskiı̆ determinant as-
sociated with A and β as

Δ(t, x1, τ, η) := det
[
β(t, x1, τ, η) (E+(t, x1, 0, τ, η) E−(t, x1, 0, τ, η))

]
,

(5.50)

where β and E± are given by (5.17) and (5.39), respectively. For the zeros of
Δ(t, x1, τ, η), we have the following lemma:

Lemma 5.4. Assume that
(
V̊ ,∇Ψ̊ )

is sufficiently small in W 2,∞(Ω). Then

Δ(t, x1, τ, η) = 0 if and only if (t, x1, τ, η) ∈ Υc,

where Υc := Υ −1
c ∪ Υ 0

c ∪ Υ 1
c is called the critical set with

Υ
q
c :=

{
(t, x1, τ, η) ∈ R

2 ×Ξ : τ = iηz̊q(t, x1)
}
,

where z̊0 and z̊±1 are real-valued functions of (V̊±|x2=0,∇ϕ̊) satisfying
Υc ∩ (

(Υnd ∪ Υp) ∩ {x2 = 0}) = ∅.

Moreover, each of these roots is simple in the sense that, if q ∈ {0,±1}, then there
exist a neighborhoodV of (iz̊qη, η) inΞ1 and aC∞–function hq defined onR

2×V
such that

Δ(t, x1, τ, η) = (τ − iz̊qη)hq(t, x1, τ, η), hq(t, x1, τ, η) �= 0 (5.51)

for all (τ, η) ∈ V .

Proof. Thanks to (5.17) and (5.39), we obtain that, for (τ, η) ∈ Ξ1,

β(t, x1, τ, η)(E+(t, x1, 0, τ, η) E−(t, x1, 0, τ, η)) =
(
ζ̊1 ζ̊2

ζ̊3 ζ̊4

)∣∣∣∣
x2=0

, (5.52)

where

ζ̊1 := å+
√
"̊2+ + ς̊2+(a+

11 − a+
12 − ω+), ζ̊2 := −å−

√
"̊2− + ς̊2−(a−

22 − a−
21 − ω−),

ζ̊3 := å+å−
{−a+

12(m
+
1 + m+

2 )+ (a+
11 − ω+)(m+

1 − m+
2 )

}
,

ζ̊4 := å+å−
{−(a−

22 − ω−)(m−
1 + m−

2 )+ a−
21(m

−
1 − m−

2 )
}
.

Recall that å± and m±
j are defined by (5.18) and (4.22), respectively.
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Thanks to (5.45), we have

ζ̊1 = å+
√
"̊2+ + ς̊2+

(a+
11 − a+

22 − 2a+
12

2
− ω̃+

)

= å+
√
"̊2+ + ς̊2+

(
F

+
2 å+
2

− ω̃+
)
. (5.53)

Using (5.45) and (5.47) yields

ζ̊2 = å−
√
"̊2− + ς̊2−

(
F

−
2 + 2F

−
3

2
å− + ω̃−

)
. (5.54)

It follows from (5.43a) that

a+
11 − a+

22 + 2a+
12

2
= 2ω̃2+ − 2a+

12(a
+
12 + a+

21)

a+
11 − a+

22 − 2a+
12

.

By virtue of this last identity, we obtain

ζ̊3 = å+å−

{(
ω̃+ − a+

11 − a+
22 + 2a+

12

2

)
(m+

2 − m+
1 )− 2a+

12m
+
1

}

= å+å−(m+
2 − m+

1 )ω̃+

(
1 − 2ω̃+

a+
11 − a+

22 − 2a+
12

)

+ 2å+å−a+
12

a+
11 − a+

22 − 2a+
12

{
(m+

2 − m+
1 )(a

+
12 + a+

21)− m+
1 (a

+
11 − a+

22 − 2a+
12)

}
.

Use (5.45) and (5.47) to deduce

(m+
2 − m+

1 )(a
+
12 + a+

21)− m+
1 (a

+
11 − a+

22 − 2a+
12)

= å+
(
m+

2 F
+
3 − m+

1 (F
+
2 + F

+
3 )

) = 0,

which, combined with (5.45), yields

ζ̊3 = å+å−(m+
2 − m+

1 )ω̃+
(
1 − 2ω̃+

å+F
+
2

)
. (5.55)

Similar to the derivation of (5.55), we can infer from (5.43b), (5.45), and (5.47)
that

ζ̊4 = å+å−(m−
2 + m−

1 )ω̃−
(
1 + 2ω̃−

å−(F−
2 + 2F

−
3 )

)
. (5.56)

Therefore, we find that Δ = Δ1Δ2Δ3|x2=0, where

Δ1 := F
+
2 å+
2

− ω̃+, Δ2 := F
−
2 + 2F

−
3

2
å− + ω̃−,

Δ3 := det

⎛
⎜⎝

å+
√
"̊2+ + ς̊2+ å−

√
"̊2− + ς̊2−

2(m+
2 − m+

1 )

F
+
2

å−ω̃+
2(m−

2 + m−
1 )

F
−
2 + 2F

−
3

å+ω̃−

⎞
⎟⎠ .
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If
(
V̊±, Ψ̊±) = 0, then F

±
2 = ±2�Γ /c̄, F

±
3 = 0, m±

1 = 0, and m±
2 = 1/(�Γ c̄h̄).

Thus,

Δ1|(V̊ ,Ψ̊ )=0 = c̄−1 �Γ (τ + iv̄η)− ω+, Δ2|(V̊ ,Ψ̊ )=0 = −c̄−1 �Γ (τ − iv̄η)+ ω−,

Δ3|(V̊ ,Ψ̊ )=0 = − 1
�Γ 2h̄

{
ω−(τ + iv̄η)2 + ω+(τ − iv̄η)2

}
.

Recalling the proof of Lemma 3.4 and using the continuity of Δk with respect to
(V̊ ,∇Ψ̊ ), we find that, if perturbation

(
V̊ ,∇Ψ̊ )

is suitably small in W 2,∞(Ω),
then Δ1 and Δ2 never vanish on R

2 × Ξ , and Δ3(t, x1, τ, η) �= 0 for η = 0.
Consequently, Δ(t, x1, τ, η) = 0 if and only if Δ3(t, x1, τ, η) = 0 and η �= 0.

Let η �= 0. Setting z := τ/(iη), we obtain that Δ3/(iη)3 = Q̊1(z) + Q̊2(z),
where

Q̊1(z) := 2(m−
2 + m−

1 )

F
−
2 + 2F

−
3

√
"̊2+ + ς̊2+

å2+ω̃−
(iη)3

,

Q̊2(z) := 2(m+
1 − m+

2 )

F
+
2

√
"̊2− + ς̊2−

å2−ω̃+
(iη)3

.

As in the proof of Lemma 3.4, we define

P̊(z) := c̄2h̄2 �Γ 2(Q̊1(z)
2 − Q̊2(z)

2).
When

(
V̊ , Ψ̊

) = 0, P̊(z) is exactly a polynomial P(z) of degree 5, given by (3.44).

As a consequence, if K in (4.2) is suitably small, then P̊(z) is a polynomial function
with degree 5 or 6, and there are functions z̊k , k ∈ {0,±1,±2,±3}, of (V̊ , Ψ̊ )

such
that

P̊(z) = (z̊3z + 1)P̊1(z), P̊1(z) = z̊−3

∏
k∈{0,±1,±2}

(z − z̊k),

where z̊3 and P̊1(z) satisfy that

z̊3 = 0, P̊1(z) = P(z) when
(
V̊ , Ψ̊

) = 0.

Under condition (2.25), we can compute that the discriminants of d j P(z)
dz j

, j ∈
{0, 1, 2, 3} are all positive. Since the discriminant for a polynomial is continuous
with respect to the coefficients of the polynomial, we take K suitably small to

conclude that the discriminants of d j P̊1(z)
dz j

, j ∈ {0, 1, 2, 3}, are all positive. Conse-
quently, roots z̊k , k ∈ {0,±1,±2}, of P̊1(z) are real and distinct.

Noting that the coefficients of P̊(z) are all real, we obtain that z̊±3 are both real.
Since z̊k , k ∈ {0,±1,±2}, are all different, we infer that z̊k , k ∈ {0,±1,±2,±3},
can be expressed as continuous functions of the coefficients of P̊(z). Choosing K in
(4.2) sufficiently small, we see that z̊−3 is always nonzero, z̊3 and z̊0 are in a small
neighborhood of 0, and z̊k , k ∈ {±1,±2}, are respectively in a small neighborhood
of ±z|k| with z1 and z2 given by (3.48).

We then use (5.40) and employ an entirely similar argument as in the proof of
Lemma 3.4 to conclude the result as expected. ��
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In view of Lemma5.4, we can obtain the following result by using the continuity
of A±

k and the fact that the perturbation (V̊ , Ψ̊ ) has a compact support (see [15,
Page 423] for the proof of Proposition 5.3 (c)):

Proposition 5.3. Assume that (V̊ , Ψ̊ ) satisfies (4.1)–(4.2)with K being sufficiently
small. Then we can find neighborhoods V q

c of Υ q
c , q ∈ {0,±1}, in �Ω × Ξ such

that

(a) V q
c ∩ (Υp ∪ Υnd) = ∅;

(b) Matrix A defined by (5.37) is diagonalizable on V
q
c . In particular, there exist

matrices Q±
0 ∈ $0

2 such that

Q±
0 (z)A

±(z)Q±
0 (z)

−1 = diag
(
ω±(z), ω′±(z)

) =: D
±
1 (5.57)

for all z = (t, x, τ, η) ∈ V
q
c , where ω+(z) �= ω′+(z) and ω−(z) �= ω′−(z);

(c) Let � be Imω+ or Imω−. Then the solution of the system
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dt

dx2
= ∂�

∂δ
(t, x1, x2, τ, η),

dx1
dx2

= ∂�

∂η
(t, x1, x2, τ, η),

dδ

dx2
= −∂�

∂t
(t, x1, x2, τ, η),

dη

dx2
= − ∂�

∂x1
(t, x1, x2, τ, η),

(t, x1, γ + iδ, η)|x2=0 ∈ V
q
c ∩ {x2 = 0}

(5.58)

defines a curve (t, x1, γ + iδ, η) for all x2 � 0, which remains in V
q
c and is

called the bicharacteristic curve.

In order to absorb the error terms caused by microlocalization, as in [15,17],
we will construct the weight functions that vanish on the bicharacteristic curves
originating from Υc and that are nonzero far from these curves.

We define the complex-valued functions: for all z = (t, x1, τ, η) ∈ R
2 × Ξ1

with τ = γ + iδ,

σq(z) := −iγ + σ̃q(z), σ̃q(z) := δ − ηz̊q(t, x1), q ∈ {0,±1}, (5.59)

and we extend σq toR
2×Ξ as a homogeneous mapping of degree 1 with respect to

(τ, η). Functions z̊0(t, x1) and z̊±1(t, x1) are given by Lemma 5.4 and correspond
to the points where the Lopatinskiı̆ determinant vanishes. Symbol σq thus belongs
to $1

2 such that

Υ
q
c =

{
z = (t, x1, τ, η) ∈ R

2 ×Ξ : σq(z) = 0
}
.

In view of Proposition 5.3(c), we can construct solutions σ q
± of the linear trans-

port equations
⎧
⎪⎨
⎪⎩

∂2σ
q
+ + {σ q

+, Imω+} = 0 if x2 > 0,

∂2σ
q
− + {σ q

−, Imω−} = 0 if x2 > 0,

σ
q
+ = σ

q
− = σq if x2 = 0,

(5.60)
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where σq is given in (5.59), and {·, ·} is the Poisson bracket defined by (5.28). Then
we infer that σ q

+ (resp. σ q
−) is constant along each bicharacteristic curve defined by

(5.58) with � = Imω+ (resp. � = Imω−). In particular, function σ q
+ (resp. σ q

−)
vanishes only on the bicharacteristic curves originated from Υ

q
c with � = Imω+

(resp. � = Imω−). By shrinking V
q
c if necessary, we may assume that σ q

± are
defined in the whole set V q

c . We will see that functions σ q
± are appropriate to deal

with the error terms appearing in the energy estimates.
From the above analysis, the whole space �Ω×Ξ is naturally divided into three

disjoint subsets: Υp, Vc, and �Ω ×Ξ\(Υp ∪Vc), where Vc := V −1
c ∪V 0

c ∪V 1
c . To

derive our energy estimate (5.21), we introduce smooth cut-off functions according
to this division. More precisely, we introduce nonnegative functions χ±

p and χq
c

(with values in [0, 1]), q ∈ {0,±1}, such that

– χ±
p and χq

c are C∞ and homogeneous of degree 0 with respect to (τ, η) so that
they belong to $0

k for all integer k;
– suppχq

c ⊂ V
q
c and χq

c ≡ 1 in a neighborhood of the bicharacteristic curves
originated from the critical set Υ q

c ;
– χ±

p ≡ 1 in a neighborhood of Υ ±
p , suppχ+

p ∩ suppχ−
p = ∅, and suppχ±

p ∩
suppχq

c = ∅ for all q ∈ {0,±1}.
Since σ q

+ and σ q
− vanish only on the bicharacteristic curves originated from Υ

q
c ,

there exists a constant c such that

|σ q
±| � c > 0 in

{
χ
q
c < 1

} ∩ V
q
c . (5.61)

We also define

χp := χ+
p + χ−

p , χc := χ−1
c + χ0

c + χ1
c , χu := 1 − χp − χc. (5.62)

Then χu has support far from the poles and the bicharacteristic curves originated
from Υc. We observe that the Lopatinskiı̆ determinant does not vanish on suppχu ∩
{x2 = 0}. This enables us to apply the standard Kreiss’ symmetrizers to derive the
energy estimate for T γ

χuW
nc, which will be shown in Section 5.4. After that, we

will show how the traces of T γ
χpW

nc and T γ
χcW

nc can be estimated. At the end of
this section, we will complete the proof of Theorem 5.1 by using a weighted energy
estimate with the weight functions σ q

± given by (5.60). In particular, we will prove
that the microlocalization error terms can be absorbed by such a weighted estimate.

5.4. Estimate at Good Frequencies

In this subsection,we showhow the solutions of problem (5.20) can be estimated
for the frequencies that are far from both the poles Υp and the critical set Υc. We
define

W nc
u :=

(
T γ
χu
W+

2 , T
γ
χu
W+

3 , T
γ
χu
W−

2 , T
γ
χu
W−

3

)T

and introduce a smooth cut-off function χ̃u with values in [0, 1] such that

χ̃u ≡ 1 on suppχu, supp χ̃u ∩ Υp = ∅, (supp χ̃u ∩ {x2 = 0}) ∩ Υc = ∅,
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where χu is given by (5.62). Employing the same analysis as in Section 5.2, we
derive that W nc

u satisfies

{
∂2W

nc
u = T γ

Au
W nc

u + T γ

E
W nc

u + T γ
r W + R0T

γ
χu
F + R−1W, x2 > 0,

T γ

β W nc
u = G + R−1W

nc, x2 = 0,
(5.63)

where β ∈ $0
2 is given by (5.17) for (τ, η) ∈ Ξ1. The symbolmatricesAu is defined

as Ar in (5.36) with χ̃± replaced by χ̃u . Both E and r have the same block diagonal
structure as Au and belong to $0

1. We note that Au ≡ A on region {χ̃u ≡ 1}, and r
is identically zero on region {χu ≡ 1} ∪ {χu ≡ 0}.

In view of Lemma 5.4, we find that the Lopatinskiı̆ determinant never vanishes
on suppχu ∩ {x2 = 0}. Note that the perturbation, (V̊ , Ψ̊ )

, is assumed in (4.1) to
have a compact support. In the next lemma, we construct the Kreiss’ symmetrizers
that are microlocalized at all frequencies in the compact set K, where

K := suppχu ∩ {−T ≤ t ≤ 2T, x2 � 0, |x | � R, (τ, η) ∈ Ξ1}.
Lemma 5.5. Assume that (4.1)–(4.2) hold for a sufficiently small positive constant
K . Then, for each z0 ∈ K, there exist a neighborhood V of z0 in K and C∞–
mappings r(z) and T (z) defined on V such that

(a) Matrix r(z) is Hermitian, and T (z) is invertible for all z ∈ V ;
(b) There exists c > 0 so that

Re
(
r(z)T (z)A(z)T (z)−1

)
� cγ I for all z ∈ V with γ = Re τ ; (5.64)

(c) If z0 ∈ K ∩ {x2 = 0}, then there exists a positive constant C so that

r(z)+ C
(
β(z)T (z)−1)∗β(z)T (z)−1 � I (5.65)

for all z ∈ V ∩ {x2 = 0},
where A and β are given by (5.37) and (5.17), respectively.

To prove Lemma 5.5, we first establish the following result:

Lemma 5.6. Let z0 = (t0, x0, τ0, η0) ∈ �Ω × Ξ1 so that Re τ0 = 0 and τ0 �=
i
( − C̊+

2 ± (C̊+
1 )

−1
)
η0. Assume that K given in (4.2) is sufficiently small. Then

there exists a neighborhood V of z0 in �Ω ×Ξ1 such that

Reω+(z) � −γ, Reω′+(z) � γ (5.66)

for all z = (t, x, τ, η) ∈ V with γ = Re τ. A similar result holds for ω− and ω′−
near z0 = (t0, x0, τ0, η0) ∈ �Ω × Ξ1 so that Re τ0 = 0 and τ0 �= i

( − C̊−
2 ±

(C̊−
1 )

−1
)
η0.
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Proof. This proof is divided into two steps.
1. If Reω+(z0) < 0, then one uses the identities

ω̃+ = ω+ − a+
11 + a+

22

2
, −ω̃+ = ω′+ − a+

11 + a+
22

2
, (5.67)

and (5.49) to infer that Reω′+(z0) > 0 for sufficiently small K . Since γ = Re τ � 1
for (τ, η) ∈ Ξ1, estimates (5.66) follow directly from the continuity of ω+(z) and
ω′+(z) with respect to z.

2. Assume that Reω+(z0) = 0. It follows from Re τ0 = 0 and (5.49) that
Re ω̃+(z0) = 0. Thanks to (5.40), η20 < (C̊+

1 )
2(δ0 + C̊+

2 η0)
2 for δ0 = Im τ0 so that

δ0 �= −C̊+
2 η0. For all (iδ, η) with (C̊

+
1 )

2
(
δ + C̊+

2 η
)2
> η2, we apply (5.40) again

to derive that

δ �= −C̊+
2 η, ω̃+(t, x, iδ, η) = −i sgn(δ + C̊+

2 η)C̊
+
0

√
(C̊+

1 )
2(δ + C̊+

2 η)
2 − η2.

(5.68)

Since τ0 �= i(−C̊+
2 ± (C̊+

1 )
−1)η0, ω̃+ depends analytically on (τ, η) by applying

the implicit functions theorem to (5.38). In particular, we obtain that, for z near z0,

ω̃+(t, x, τ, η)∂γ ω̃+(t, x, τ, η) = (C̊+
0 C̊

+
1 )

2(τ + iC̊+
2 η). (5.69)

From (5.68)–(5.69), ∂γ ω̃+(t, x, iδ, η) is real and negative for (t, x, iδ, η) in a
suitable neighborhood V of z0. Using the Taylor expansion yields that, for all
(τ, η) ∈ V ,

ω̃+(τ, η) = ω̃+(iδ, η)+ ∂γ ω̃+(iδ, η)γ + O(γ 2) (γ → 0).

Then we deduce that Re ω̃+ � −γ , up to shrinking V . In view of (5.49) and (5.67),
estimates (5.66) follow by taking K small enough. ��
Proof of Lemma 5.5. The proof is divided into two cases.

Case 1. Let z0 ∈ K\Υnd with Υnd given in (5.41). In light of Lemmas 5.4 and
5.6, we can find a neighborhood V of z0 in K such that

Reω±(z) � −γ, Reω′±(z) � γ for all z ∈ V , (5.70)

and

Δ(z) �= 0 for all z ∈ V ∩ {x2 = 0}. (5.71)

According to Lemma 5.3, matrix A is diagonalizable in V . Indeed, a smooth basis
of the eigenvectors is given by

E+(z), Y+(z) := (
(τ + iv̊+

1 η)(−a+
22 + ω′+), (τ + iv̊+

1 η)a
+
21, 0, 0

)T
, (5.72)

E−(z), Y−(z) := (
0, 0, (τ + iv̊−

1 η)a
−
12, (τ + iv̊−

1 η)(−a−
11 + ω′−)

)T
, (5.73)
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where E± are given by (5.39). Notice that E± and Y± are linearly independent inV .
We can thus define the smooth and invertible matrix T (z) := (E+ E− Y+ Y−)−1

in V so that

T (z)A(z)T (z)−1 = diag (ω+, ω−, ω′+, ω′−) for all z ∈ V .

Construct the symmetrizer r(z) as

r(z) := diag (−1,−1, K ′, K ′) for all z ∈ V , (5.74)

where K ′ � 1 is a constant to be chosen. Then we can obtain (5.64) from (5.70)
directly.

Thanks to (5.71), we have
∣∣β(z)(E+(z) E−(z))Z−∣∣ � |Z−| for all z ∈ V ∩ {x2 = 0}, Z− ∈ C

2. (5.75)

This implies that

|Z−|2 � C0
(|Z+|2 + |β(z)T (z)−1Z |2)

for all Z = (Z−, Z+)T ∈ C
4 with Z± ∈ C

2, where C0 is some positive constant
independent of z ∈ V . Then we have

〈(
r(z)+ 2C0

(
β(z)T (z)−1)∗β(z)T (z)−1)Z , Z 〉

C4

= −|Z−|2 + K |Z+|2 + 2C0

∣∣∣β(z)T (z)−1Z
∣∣∣
2

� |Z−|2 + (K ′ − 2C0)|Z+|2 � |Z |2

by choosing K ′ � 2C0 + 1, which implies (5.65).
Case 2. Let z0 ∈ K ∩ Υnd . Then symbol A is not diagonalizable at z0. We

consider without loss of generality that z0 = (t0, x0, τ0, η0) ∈ K satisfies τ0 =
−i(C̊+

2 ± (C̊+
1 )

−1)η0. The case τ0 = −i(C̊−
2 ± (C̊−

1 )
−1)η0 can be dealt with in

an entirely similar way. Using (3.36) and the continuity of C̊±
j in (V̊±,∇Ψ̊±), we

take K sufficiently small to find

τ0 + iv̊+
1 η0 �= 0, τ0 �= −i(C̊−

2 ± (C̊−
1 )

−1)η0,

which, combined with (5.38) and (5.45), implies
(
a+
11 − a+

22 − 2a+
12

)
(z0) = F

+
2 (z0)a+(z0) �= 0, ω−(z0) �= ω′−(z0).

Since ω̃+(z0) = 0, we use (5.43a), (5.45) and (5.47) to obtain

(a+
11 − a+

22)(z0)

2
= −

(
1 + 2F

+
3 (z0)

F
+
2 (z0)

)
a+
12(z0), (5.76)

and hence

(a+
11 − ω+)(z0) = a+

11 − a+
22

2
(z0)− ω̃+(z0) = −

(
1 + 2F

+
3 (z0)

F
+
2 (z0)

)
a+
12(z0) �= 0.
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In view of (5.39) and (5.72)–(5.73) we find that the vectors

Ẽ+ := (−a+
12,−(F+

2 + 2F
+
3 )a

+
12/F

+
2 , 0, 0)

T, Ỹ+ := (i, 0, 0, 0)T, E−(z), Y−(z)

form a smooth basis in neighborhood V . Define T (z) :=(
Ẽ+ Ỹ+ E− Y−

)−1. Then

T (z)A(z)T (z)−1 =
⎛
⎝
ar 0 0
0 ω− 0
0 0 ω′−

⎞
⎠ for all z ∈ V ,

where ar is the 2 × 2 matrix with (i, j)–entry ai jr (z)

a11r (z) = (2F
+
3 + F

+
2 )a

+
22 + F

+
2 a

+
21

2F
+
3 + F

+
2

, a12r (z) = −F
+
2 a

+
21i

(2F
+
3 + F

+
2 )a

+
12

,

a22r (z) = (2F
+
3 + F

+
2 )a

+
11 − F

+
2 a

+
21

2F
+
3 + F

+
2

, a21r (z) = a+
12ã

21
r (z)

(2F
+
3 + F

+
2 )F

+
2 i
,

with

ã21r (z) := F
+
2 (2F

+
3 + F

+
2 )(a

+
22 − a+

11 − 2a+
12)− 4(F+

3 )
2a+

12 + (F+
2 )

2(a+
12 + a+

21).

By virtue of (5.45) (5.47) and (5.76) we derive

2F
+
2 a

+
21(z0) = −2F

+
2 a

+
12(z0)+ 2F

+
3 (a

+
11 − a+

22 − 2a+
12)(z0)

= (2F
+
3 + F

+
2 )(a

+
11 − a+

22)(z0),

ã21r (z0) = 4F
+
3 (F

+
3 + F

+
2 )a

+
12(z0)+ (F+

2 )
2(a+

12 + a+
21)(z0)

= 4F
+
3 (F

+
3 + F

+
2 )a

+
12(z0)+ F

+
2 F

+
3 (a

+
11 − a+

22 − 2a+
12)(z0),

= 0,

which implies

a11r (z0)− a22r (z0) = a21r (z0) = 0. (5.77)

We now look for a symmetrizer r with the form

r(z) =
⎛
⎝
s(z) 0 0
0 −1 0
0 0 K ′

⎞
⎠ ,

where K ′ � 1 is some real constant, and s is some 2 × 2 Hermitian matrix,
depending smoothly on z. Both K ′ and s are to be fixed such that (5.65) holds for
z ∈ V ∩ {x2 = 0} when z0 ∈ {x2 = 0} and (5.64) holds for all z ∈ V .

We recall that Δ(z) �= 0 in V ∩ {x2 = 0} so that (5.75) holds. Noting that the
first and third columns of T (z0)−1 are E+(z0) and E−(z0), we can find a positive
constant C0 such that, if z0 ∈ K ∩ {x2 = 0}, then

|Z1|2 + |Z3|2 � C0

(
|Z2|2 + |Z4|2 + |β(z0)T (z0)−1Z |2

)
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for all Z = (Z1, Z2, Z3, Z4)
T ∈ C

4. Assume that the Hermitian matrix s satisfies

s(z0) =
(
0 e1
e1 e2

)
=: E, (5.78)

where e1 and e2 are some real constants to be fixed. Then we have
〈(
r(z0)+ C ′C0

(
β(z0)T (z0)

−1)∗β(z0)T (z0)−1)Z , Z 〉
C4

= 2e1 Re〈Z1, Z2〉C + e2|Z2|2 − |Z3|2 + K ′|Z4|2 + C ′C0

∣∣∣β(z0)T (z0)−1Z
∣∣∣
2

� (C ′ − max{|e1|, 1})
(
|Z1|2 + |Z3|2

)

+ (e2 − |e1| − C ′C0)|Z2|2 + (K ′ − C ′C0)|Z4|2.
We choose C ′ = max{|e1|, 1} + 2, e2 = |e1| + C ′C0 + 2, and K ′ = C ′C0 + 2 to
obtain

r(z0)+ C ′C0
(
β(z0)T (z0)

−1)∗β(z0)T (z0)−1 � 2I.

Using the continuity and shrinking V if necessary, we derive estimate (5.65) for
C = C ′C0.

It remains to choose a suitable Hermitian matrix s(τ, η) and e1 ∈ R such
that both (5.64) and (5.78) hold. Since τ0 �= −i(C̊−

2 ± (C̊−
1 )

−1)η0, we find that
Reω−(z) � −γ and Reω′−(z) � γ for all z ∈ V from Lemma 5.6. Consequently,
it suffices to find e1 ∈ R and a Hermitian matrix s(z) satisfying (5.78) and

Re (s(z)ar (z)) � γ I for all z ∈ V . (5.79)

To this end, we let

s(z) = E + F(z)+ γG(z)

for some smooth 2 × 2 Hermitian matrices F and G satisfying F(z0) = 0, where
E is defined by (5.78). In light of Taylor’s formula, we may write

ar (z) = ar (t, x, γ + iδ, η) = ar (t, x, iδ, η)+ γ ∂γ ar (t, x, iδ, η)+ γ 2N1(z)

for a suitable continuous function N1. Noting from (5.22) and (5.37) that ai jr (t, x,
iδ, η) are purely imaginary, we may choose

F(z) := diag ( f (z), 0)

with

f (z) = e1(a11r − a22r )(t, x, iδ, η)+ e2a21r (t, x, iδ, η)

a12r (t, x, iδ, η)
,

so that matrix (E + F(z))ar (t, x, iδ, η) is symmetric and purely imaginary for all
z ∈ V . It follows from (5.77) that F(z0) = 0. Therefore, we have
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Re (s(z)ar (z))

= Re
{
γ (E + F(z))∂γ ar (t, x, iδ, η)+ γG(z)ar (t, x, iδ, η)+ γ 2N2(z)

}

= γ Re
{
E∂γ ar (t, x, iδ, η)+ G(z)ar (t, x, iδ, η)+ N3(z)

}

for some continuous functions N2 and N3 satisfying N3(z0) = 0, where we have
used F(z0) = 0. According to (3.28), we see that, for τ̃ = −i(�C2 ± �C−1

1 )η0,

∂γ a
21
r (t0, x0, τ̃ , η0)|(V̊ ,Ψ̊ )=0 = ∂γ {2im+(m+ − μ+)} (τ̃ , η0)

= 2i�Γ 2(iη0 + ε2v̄τ̃ )

(τ̃ + iv̄η0)3

×
{
2ε2c̄2v̄(τ̃ + iv̄η0)(iη0 + ε2v̄τ̃ )2 − c̄2(iη0 + ε2v̄τ̃ )3 − ε2v̄(τ̃ + iv̄η0)

3
}

= 2�Γ 2(1 − ε2v̄2)
η20(iη0 + ε2v̄τ̃ )

τ̃ + iv̄η0
∈ R\{0},

where we have used c̄2(iη0 + ε2v̄τ̃ )2 = (τ̃ + iv̄η0)2 and condition (2.10). Then
∂γ a21r (z0) is always non-zero by choosing K sufficiently small and using the con-
tinuity of A±

j and C̊±
j . In order to obtain (5.64), we choose

e1 :=
(
∂γ a

21
r (z0)

)−1
, G(z) :=

(
0 ig

−ig 0

)

for some positive constant g. This choice of e1 and G yields

Re
{
E∂γ ar (z0)+ G(z)ar (z0)

} =
(
1 *

* *

)
+

(
0 iga22r (z0)

−iga11r (z0) −iga12r (z0)

)
,

where the entries with * are the coefficients that depend only on z0, e1, and e2
(which have been fixed earlier). Notice that, if (V̊ , Ψ̊ ) = 0, then

a11r (z0) = −a22r (z0) = (μ+ − m+)(τ̃ , η0) = 0, a12r (z0) = i

for τ̃ = −i(�C2 ± �C−1
1 )η0. Then we can take K sufficiently small, g suitably large,

and shrink V to conclude (5.64). This completes the proof. ��
Thanks to Lemma 5.5, one can deduce the following lemma by using a partition

of unity (we refer to [4, Theorem 9.1] and [52, §4.7.3] for a detailed derivation of
the following “global” symmetrizer S):

Lemma 5.7. Assume that (4.1)–(4.2) hold for a sufficiently small positive constant
K . Then there exists a mapping

S : �Ω × (R2 × R+\{0}) → M4(C)

that satisfies the following properties:

(a) For all z ∈ �Ω × (R2 × R+\{0}), matrix S(z) is Hermitian and S ∈ $2
2;
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(b) For all z = (t, x1, δ, η, γ ) ∈ ∂Ω × (R2 × R+\{0}),
χ̃u(z)

2S(z)+ Cχ̃u(z)
2λ2,γβ(z)∗β(z) � cχ̃u(z)

2λ2,γ I,

where λm,γ := (γ 2 + δ2 + η2)m/2;
(c) There exists a finite set of matrix-valued mappings Vj , Hj , and E j such that

Re (S(z)Au(z)) =
∑
j

V j (z)
∗
(
γ Hj (z) 0

0 E j (z)

)
Vj (z),

where Vj and E j belong to $1
2 , Hj ∈ $0

2 , and the following estimates hold:
∑
j

V j (z)
∗Vj (z) � cλ2,γ χ̃u(z)

2 I, Hj (z) � cI, E j (z) � cλ1,γ I.

With Lemma 5.7 in hand, we can choose S as a symmetrizer for problem (5.63)
to show the energy estimate as in [15, §3.5], for which we only give the result
here for brevity. We just recall that the components T γ

χuW
±
1 are given in terms of

T γ
χuW

±
2,3 by relations similar to (5.31). The estimate for T γ

χuW reads

γ |||T γ
χu
W |||21,γ + ‖T γ

χu
W nc|x2=0‖21,γ

� ‖G‖21,γ + ‖W nc|x2=0‖2 + γ−1
(
|||F |||21,γ + |||W |||2 + |||T γ

r W |||21,γ
)
, (5.80)

where symbol r ∈ $0
1 vanishes on region {χu ≡ 1} ∪ {χu ≡ 0}.

5.5. Estimate near the Poles

This subsection is devoted to deriving the energy estimate near poles Υp =
Υ +
p ∪ Υ −

p . Matrix A is not defined at points in Υp, while the stable subspace E−
of A admits a continuous extension at these points, due to Lemma 5.3. We show
the estimate near Υ +

p without loss of generality. For this purpose, we define two
cut-off functions χ̃ and χ̃1 with values in [0, 1] that are bothC∞ and homogeneous
of degree 0 with respect to (τ, η) and satisfy that

χ̃ ≡ 1 on suppχ+
p , χ̃1 ≡ 1 on supp χ̃ , supp χ̃1 ∩ suppχc = ∅, (5.81)

where χ+
p and χc are introduced at the end of Section 5.3. As in [17], we go back

to the original problem (5.20) and set

W+
p := T γ

χ+
p
W+, W−

p := T γ

χ+
p
W−. (5.82)

Then we employ the argument in the derivation of (5.29) to obtain

T γ

τ A+
0 +iηA+

1
W+

p + T γ

C+W
+
p + I2∂2W+

p = T γ
r W+ + T γ

χ+
p
F+ + R−1W

+, (5.83)

where r = i
{
χ+
p , τ A

+
0 + iηA+

1

}
+ ∂2χ

+
p I2 ∈ $0

1. The equation for W−
p is the

same as (5.83) with index “+′′ replaced by “−′′.
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Let us introduce symbols R+ and L+
1 , both belonging to $0

2, such that, for
(τ, η) ∈ Ξ1,

R+ :=
⎛
⎝
1 k1 k2
0 −å+a+

12 0
0 å+(a+

11 − ω+) 1

⎞
⎠ , L+

1 :=
⎛
⎝
1 0 0
0 1 0
l1 l2 l3

⎞
⎠ .

Recalling from (5.22) and (5.24) that (b+
i j ) = τ A+

0 + iηA+
1 and b+

11 = F
+
1 å+, we

choose

k1 = (F+
1 )

−1 {
b+
12a

+
12 − b+

13(a
+
11 − ω+)

}
, k2 = −b+

23/b
+
21,

l1 = −(F+
1 )

−1 {
b+
21(a

+
11 − ω+)+ b+

31a
+
12

}
, l2 = å+(a+

11 − ω+), l3 = å+a+
12,

so that L+
1 I2R+ = diag (0, −å+a+

12, å+a+
12) and

L+
1 (τ A

+
0 + iηA+

1 )R
+ =

⎛
⎝
b+
11 0 k2b

+
11 + b+

13
b+
21 d1 0
0 d3 d2

⎞
⎠ ,

where

d1 = b+
21k1 − b+

22å+a+
12 + b+

23å+(a+
11 − ω+), d2 = l j (k2b

+
j1 + b+

j3) = l j b
+
j3,

d3 = l j
(
k1b

+
j1 − b+

j2å+a+
12 + b+

j3å+(a+
11 − ω+)

)

= l j
(
−b+

j2å+a+
12 + b+

j3å+(a+
11 − ω+)

)
.

We have used the relation: l j b
+
j1 = 0. From (5.24) and definition (5.37) of A, we

have

d1 = (F+
1 )

−1 {
(b+

21b
+
12 − b+

22F
+
1 å+)a+

12 + (−b+
21b

+
13 + b+

23F
+
1 å+)(a+

11 − ω+)
}

= (F+
1 )

−1 {
b+
11a

+
11a

+
12 − b+

11a
+
12(a

+
11 − ω+)

} = å+a+
12ω+,

d2 = (F+
1 )

−1 {
(a+

11 − ω+)(−b+
21b

+
13 + F

+
1 å+b+

23)+ a+
12(−b+

31b
+
13 + F

+
1 å+b+

33)
}

= −(F+
1 )

−1 {
(a+

11 − ω+)b+
11a

+
12 + a+

12b
+
11a

+
22

} = å+a+
12(ω+ − a+

11 − a+
22),

and

F
+
1 d3 = (a+

11 − ω+)2(−b+
21å+b+

13 + F
+
1 å

2+b+
23)+ (a+

12)
2å+(b+

12b
+
31 − F

+
1 å+b+

32)

+ (a+
11 − ω+)a+

12å+(b+
12b

+
21 − b+

13b
+
31 − F

+
1 å+b+

22 + F
+
1 å+b+

33)

= − å+b+
11a

+
12

{
(a+

11 − ω+)2 − a+
12a

+
21 − (a+

11 − ω+)(a+
11 − a+

22)
}

= 0.

We have used (5.42) for deriving the last identity. We notice from (3.27)–(3.28)
that

å+a+
12|(V̊ ,Ψ̊ )=0 = −(τ + iv̄η)m+ = �Γ c̄(iη + ε2v̄τ )2/2
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does not vanish on supp χ̃1 by shrinking supp χ̃1 if necessary. Since å+a+
12 is

smooth in (τ, η) and (V̊ ,∇Ψ̊ ), matrix L+
2 := diag (1, −(å+a+

12)
−1, (å+a+

12)
−1)

is a smooth and invertible mapping on supp χ̃1. We then derive

L+ I2R+ = I2, L+ := L+
2 L

+
1 , (5.84)

L+(τ A+
0 + iηA+

1 )R+

=
⎛
⎝

b+
11 0 k2b

+
11 + b+

13−b+
21/(å+a+

12) −ω+ 0
0 0 ω+ − a+

11 − a+
22

⎞
⎠ =: Ad+. (5.85)

We also introduce symbols R− and L−
1 that belong to $0

2 and satisfy that, for
(τ, η) ∈ Ξ1,

R− :=
⎛
⎝
1 k−

1 k−
2

0 å−(a−
22 − ω−) å−a−

12
0 −å−a−

21 å−(−a−
11 + ω′−)

⎞
⎠ ,

L−
1 :=

⎛
⎝

1 0 0
l−1 å−(a−

11 − ω′−) å−a−
12

l−2 å−a−
21 å−(a−

22 − ω−)

⎞
⎠ ,

with

k−
1 = (F−

1 )
−1 {−(a−

22 − ω−)b−
12 + a−

21b
−
13

}
,

k−
2 = (F−

1 )
−1 {−a−

12b
−
12 + (a−

11 − ω′−)b−
13

}
,

l−1 = (F−
1 )

−1 {−(a−
11 − ω′−)b−

21 − a−
12b

−
31

}
,

l−2 = (F−
1 )

−1 {−a−
21b

−
21 − (a−

22 − ω−)b−
31

}
,

so that L−
1 I2R− = diag (0, d4, −d4) and

L−
1 (τ A

−
0 + iηA−

1 )R− =
⎛
⎝
b−
11 0 0
0 d5 d6
0 d7 d8

⎞
⎠ ,

where d4 = å2−
{
(a−

11 − ω′−)(a−
22 − ω−)− a−

12a
−
21

}
and

d5 = å−(a−
11 − ω′−)

{
b−
21k

−
1 + b−

22å−(a−
22 − ω−)− b−

23å−a−
21

}

+ å−a−
12

{
b−
31k

−
1 + b−

32å−(a−
22 − ω−)− b−

33å−a−
21

}
.

We omit the expressions for d j , j ∈ {6, 7, 8}, since they are quite similar to that of
d5. By virtue of the identity: a−

22 − ω− = −a−
11 + ω′− and (5.42), we deduce

(a−
11 − ω′−)(a−

22 − ω−)− a−
12a

−
21 = −(a−

22 − ω−)2 − a−
12a

−
21

= (ω− − a−
22)(−2ω− + a−

11 + a−
22), (5.86)
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which yields d4 = å2−(ω− −a−
22)(−2ω− +a−

11 +a−
22). Using (5.22), (5.24) and the

identity a−
22 − ω− = −a−

11 + ω′−, we compute

d5 = å2−
{
a−
11(a

−
22 − ω−)2 − 2a−

12a
−
21(a

−
22 − ω−)+ a−

12a
−
21a

−
22

}
,

which, combined with (5.42) and (5.86), implies

d5 = å2−ω−(ω− − a−
22)(2ω− − a−

11 − a−
22) = −ω−d4.

Performing the similar calculations to d j for j = 6, 7, 8, we can discover that
d6 = d7 = 0 and d8 = ω′−d4 so that

L−
1 (τ A

−
0 + iηA−

1 )R− = diag (0, −ω−d4, ω′−d4).

Note thatd4 does not vanish in neighborhood supp χ̃1 ofΥ +
p up to shrinking supp χ̃1.

Setting L−
2 := diag (1, d−1

4 , −d−1
4 ) and L− := L−

2 L
−
1 , we obtain

{
L− I2R− = I2,

L−(τ A−
0 + iηA−

1 )R− = diag (b−
11, −ω−, −ω′−) =: Ad−.

(5.87)

Let us define

Z+ := T γ

χ̃R−1+
W+

p , Z− := T γ

χ̃R−1−
W−

p .

Applying operator T γ

χ̃L+ to (5.83) and using (5.84) yield

T γ

χ̃L+(τ A+
0 +iηA+

1 )
W+

p + T γ

−i
∑1

j=0 ∂ξ j (χ̃L+)∂x j (τ A
+
0 +iηA+

1 )
W+

p + T γ

χ̃L+C+W
+
p

= −T γ

χ̃L+ I2
∂2W

+
p + T γ

χ̃L+T
γ
r W+ + T γ

χ̃L+T
γ

χ+
p
F+ + R−1W

+

= −I2∂2Z+ + T γ

I2∂2(χ̃R
−1+ )

W+
p + T γ

χ̃L+T
γ
r W+ + T γ

χ̃L+T
γ

χ+
p
F+ + R−1W

+,

where x0 := t , ξ0 := δ, and ξ1 := η to avoid overloaded equations. On the other
hand, it follows from (5.82) and (5.85) that

T γ

Ad+
Z+ = T γ

χ̃L+(τ A+
0 +iηA+

1 )
W+

p + T γ

−i
∑1

j=0 ∂ξ j A
d+∂x j (χ̃R

−1+ )
W+

p + R−1W
+.

Then we have

I2∂2Z+ + T γ

Ãd+
Z+ + T γ

D
p
+
Z+ = T γ

r W+ + R0T
γ

χ+
p
F+ + R−1W

+ (5.88)

for new r ∈ $0
1 vanishing on {χ+

p ≡ 1} ∪ {χ+
p ≡ 0}, where Ãd+ is an extension of

Ad+ to the whole set �Ω ×Ξ , and D
p
+ ∈ $0

1 is given by

D
p
+ := χ̃L+C+R+ − I2∂2(χ̃R

−1+ )R+
+ i

∑
j=0,1

{
∂ξ j Ã

d+∂x j (χ̃R−1+ )− ∂ξ j (χ̃L+)∂x j (τ A+
0 + iηA+

1 )
}
R+.
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Similarly, we have

I2∂2Z− + T γ

Ãd−
Z− + T γ

D
p
−
Z− = T γ

r W− + R0T
γ

χ+
p
F− + R−1W

−, (5.89)

where r ∈ $0
1 vanishes on {χ+

p ≡ 1} ∪ {χ+
p ≡ 0}, Ãd− is an extension to the whole

set �Ω ×Ξ of Ad−, and D
p
− ∈ $0

1. According to the definitions of R±, we have

Znc = T γ

χ̃ R̃−1T
γ

χ+
p
W nc, (5.90)

where Znc := (Z+
2 , Z

+
3 , Z

−
2 , Z

−
3 )

T and

R̃ :=

⎛
⎜⎜⎝

−å+a+
12 0 0 0

å+(a+
11 − ω+) 1 0 0
0 0 å−(a−

22 − ω−) å−a−
12

0 0 −å−a−
21 å−(−a−

11 + ω′−)

⎞
⎟⎟⎠ .

Note from (5.39) that the first and third columns of R̃ are E+ and E−. By virtue of
(5.20c), we obtain the following boundary conditions in terms of Znc:

T γ

β(E+ E−)

(
Z+
2

Z−
2

)
+ R0

(
Z+
3

Z−
3

)
= R0G + R−1W

nc if x2 = 0. (5.91)

For problem (5.88)–(5.89) and (5.91), we obtain the following energy estimate:

Lemma 5.8. There exists constants K0 � 1 and γ0 � 1 such that, if γ � γ0 and
K � K0 for K given in (4.2), then

γ |||Z±|||21,γ + ‖(Z±
2 , Z

±
3 )|x2=0‖21,γ

� ‖G‖21,γ + ‖Wnc|x2=0‖2 + γ−1(|||T γ

χ+
p
F |||21,γ + |||W |||2 + |||T γ

r W |||21,γ
)
,

(5.92)

where symbol r ∈ $0
1 vanishes in region {χ+

p ≡ 1} ∪ {χ+
p ≡ 0}.

Proof. We divide the proof into five steps.
1. Estimate for Z+

3 . According to the form of Ad+ given by (5.85), the third
equation in (5.88) for Z+

3 reads

∂2Z
+
3 = T γ

−ω++a+
11+a+

22
Z+
3 + T γ

α0
Z+ + T γ

r W+ + R0T
γ

χ+
p
F+
3 + R−1W

+. (5.93)

Take the scalar product in L2(Ω) of (5.93) with Λ2,γ Z+
3 to obtain

‖Z+
3 |x2=0‖21,γ + 2Re ⟪Λ1,γ Z+

3 ,Λ
1,γ T γ

−ω++a+
11+a+

22
Z+
3 ⟫ =

4∑
j=1

H j , (5.94)
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where each term H j in the decomposition is defined in the following:

H1 := −2Re ⟪Λ1,γ Z+
3 ,Λ

1,γ T γ
α0
Z+⟫ � |||Z+|||21,γ ,

H2 := −2Re ⟪Λ1,γ Z+
3 ,Λ

1,γ T γ
r W+⟫ � εγ |||Z+

3 |||21,γ + 1

εγ
|||T γ

r W+|||21,γ ,

H3 := −2Re ⟪Λ1,γ Z+
3 ,Λ

1,γR0T
γ

χ+
p
F+
3 ⟫ � εγ |||Z+

3 |||21,γ + 1

εγ
|||T γ

χ+
p
F+
3 |||21,γ ,

H4 := −2Re ⟪Λ1,γ Z+
3 ,Λ

1,γR−1W
+⟫ � εγ |||Z+

3 |||21,γ + 1

εγ
|||W+|||2.

For the second term on the left-hand side of (5.94), we employ Lemma 5.2 (iv) to
deduce

Re ⟪Λ1,γ Z+
3 ,Λ

1,γ T γ

−ω++a+
11+a+

22
Z+
3 ⟫

� Re ⟪Λ1,γ Z+
3 , T

γ

−ω++a+
11+a+

22
Λ1,γ Z+

3 ⟫− C |||Z+
3 |||21,γ .

Thanks to (5.49), Re(a+
11+a+

22) = F
+
4 γ , whereF

+
4 is a smooth function of (V̊ ,∇Ψ̊ )

that vanishes at the origin. We then employ Lemma 5.6 and take K in (4.2) suffi-
ciently small to obtain that Re(−ω+ +a+

11 +a+
22) � γ . Apply Gårding’s inequality

(Lemma 5.2vi) to obtain

Re ⟪Λ1,γ Z+
3 , T

γ

−ω++a+
11+a+

22
Λ1,γ Z+

3 ⟫ � γ |||Λ1,γ Z+
3 |||2 � γ |||Z+

3 |||21,γ ,

from which we have

Re ⟪Λ1,γ Z+
3 ,Λ

1,γ T γ

−ω++a+
11+a+

22
Z+
3 ⟫ � (γ − C)|||Z+

3 |||21,γ .

Choosing ε small and γ large, we derive from (5.94) that

γ |||Z+
3 |||21,γ + ‖Z+

3 |x2=0‖21,γ
� |||Z+|||21,γ + γ−1(|||T γ

r W+|||21,γ + |||T γ

χ+
p
F+
3 |||21,γ + |||W+|||2). (5.95)

2. Estimate for Z+
1 . The equation for Z+

1 in (5.88) is as follows:

T γ

b+
11
Z+
1 + T γ

k2b
+
11+b+

13
Z+
3 = T γ

α0
Z+ + T γ

r W+ + R0T
γ

χ+
p
F+
1 + R−1W

+. (5.96)

Recall from (5.24) that Re b+
11 = F

+
1 γ and Re(k2b

+
11 + b+

13) = γα0. Similar to
Step 1, we take the scalar product in L2(Ω) of (5.96) withΛ2,γ Z+

1 and use (5.95)
to obtain

γ |||Z+
1 |||21,γ

� |||Z+|||21,γ + γ |||Z+
3 |||21,γ + γ−1(|||T γ

r W+|||21,γ + |||T γ

χ+
p
F+
1 |||21,γ + |||W+|||2)

� |||Z+|||21,γ + γ−1(|||T γ
r W+|||21,γ + |||T γ

χ+
p
F+|||21,γ + |||W+|||2) (5.97)

for γ sufficiently large.
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3. Estimate for Z+
2 . The equation for Z+

2 in (5.88) reads

∂2Z
+
2 = T γ

(å+a+
12)

−1b+
21
Z+
1 + T γ

ω+ Z
+
2 + T γ

α0
Z+

+ T γ
r W+ + R0T

γ

χ+
p
F+
2 + R−1W

+.

We note that Reω+ � −γ and Re((å+a+
12)

−1b+
21) = γα0. Employing a similar

analysis as to that in Step 1 and using (5.97) yield

γ |||Z+
2 |||21,γ − C‖Z+

2 |x2=0‖21,γ
� |||Z+|||21,γ + γ |||Z+

1 |||21,γ + γ−1(|||T γ
r W+|||21,γ + |||T γ

χ+
p
F+
2 |||21,γ + |||W+|||2)

� |||Z+|||21,γ + γ−1(|||T γ
r W+|||21,γ + |||T γ

χ+
p
F+|||21,γ + |||W+|||2). (5.98)

4. Combine estimates (5.95) and (5.97)–(5.98), and take γ suitably large to find

γ |||Z+|||21,γ + ‖Z+
3 |x2=0‖21,γ

� ‖Z+
2 |x2=0‖21,γ + γ−1(|||T γ

r W+|||21,γ + |||T γ

χ+
p
F+|||21,γ + |||W+|||2). (5.99)

The derivation for the estimate of Z− is entirely similar so that

γ |||Z±|||21,γ + ‖Z±
3 |x2=0‖21,γ

� ‖Z±
2 |x2=0‖21,γ + γ−1(|||T γ

r W |||21,γ + |||T γ

χ+
p
F |||21,γ + |||W |||2). (5.100)

5. Estimate on the boundary. It remains to make an estimate for ‖Z±
2 |x2=0‖1,γ .

Using the boundary conditions (5.91), we have

‖T γ

β̃
Z2|x2=0‖21,γ � ‖Z±

3 |x2=0‖21,γ + ‖G‖21,γ + ‖W nc|x2=0‖2, (5.101)

where β̃ := β(E+ E−) and Z2 := (Z+
2 , Z

−
2 )

T. Setting V± := T γ

R̃−1T
γ

χ+
p
W nc± , we

see from (5.90) that

Z±
2 = T γ

χ̃ V±
1 + R−1W

nc. (5.102)

Since β̃ ∈ $0
2, we apply the rule of symbolic calculus (Lemma 5.2iv) to find that

T γ

β̃
R−1 = R−1, (Λ1,γ T γ

β̃
)∗Λ1,γ T γ

β̃
− T γ

λ2,γ β̃∗β̃ = R−1.

Thus, we have

‖T γ

β̃
Z2|x2=0‖21,γ

� Re
〈
(Λ1,γ T γ

β̃
)∗Λ1,γ T γ

β̃
T γ
χ̃ V1|x2=0, T

γ
χ̃ V1|x2=0

〉 − C‖W nc|x2=0‖2

� Re
〈
T γ

λ2,γ β̃∗β̃T
γ
χ̃ V1|x2=0, T

γ
χ̃ V1|x2=0

〉

− C‖T γ
χ̃ V1|x2=0‖1,γ ‖T γ

χ̃ V1|x2=0‖ − C‖W nc|x2=0‖2
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for V1 := (V+
1 , V

−
1 )

T, which, combined with (5.101), implies

Re
〈
T γ

λ2,γ β̃∗β̃T
γ
χ̃ V1|x2=0, T

γ
χ̃ V1|x2=0

〉

� ‖Z±
3 |x2=0‖21,γ + ‖G‖21,γ + γ−1‖Z±

2 |x2=0‖21,γ + ‖W nc|x2=0‖2. (5.103)

Recall from Lemma 5.4 that the Lopatinskiı̆ determinant Δ does not vanish on
supp χ̃1, owing to (5.81). It then follows from definition (5.50) of Δ that

χ̃2
1 Re(λ

2,γ β̃∗β̃) � χ̃2
1λ

2,γ I.

Then we can employ the localized Gårding’s inequality (Lemma 5.2 (vii)) and
utilize (5.102) to derive

Re
〈
T γ

λ2,γ β̃∗β̃T
γ
χ̃ V1|x2=0, T

γ
χ̃ V1|x2=0

〉

� ‖T γ
χ̃ V1|x2=0‖21,γ − C‖V1|x2=0‖2 � ‖Z2|x2=0‖21,γ − C‖W nc|x2=0‖2.

(5.104)

Combine (5.103) with (5.104) and take γ small to infer that

‖Z±
2 |x2=0‖21,γ � ‖Z±

3 |x2=0‖21,γ + ‖G‖21,γ + ‖W nc|x2=0‖2. (5.105)

We combine (5.105) with (5.95) to eliminate the first term on the right hand side
of (5.105), and then use (5.100) to conclude estimate (5.92). This completes the
proof. ��

Recall that χp = χ+
p +χ−

p and suppχ+
p ∩suppχ−

p = ∅. Shrinking the support
of χp if necessary, we obtain the following result from Lemma 5.8:

Proposition 5.4. There exist constants K0 � 1 and γ0 � 1 such that, if γ � γ0
and K � K0 for K given in (4.2), then

γ |||T γ
χp
W |||21,γ + ‖T γ

χp
Wnc|x2=0‖21,γ

� ‖G‖21,γ + ‖Wnc|x2=0‖2 + γ−1(|||T γ
χp

F |||21,γ + |||W |||2 + |||T γ
r W |||21,γ

)
,

(5.106)

where symbol r ∈ $0
1 vanishes in region {χp ≡ 1} ∪ {χp ≡ 0}.

5.6. Estimate near Bad Frequencies

We now show the energy estimate near the points in Υc = ∪q∈{0,±1}Υ q
c , i.e.

near the zeros of the Lopatinskiı̆ determinant. We consider the case near set Υ 0
c ,

without loss of generality. To this end, we introduce two smooth cut-off functions
χ1 and χ2 with values in [0, 1] such that
– χ1 ≡ 1 on the support of χ0

c , χ2 ≡ 1 on the support of χ0
c , and suppχ2 ⊂ V 0

c ;
– χ1 and χ2 are both C∞ and homogeneous of degree 0 with respect to (τ, η),
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where χ0
c is given at the end of Section 5.3. Defining

w± := T γ

χ0
c
W±, wnc± := (w±

2 ,w
±
3 )

T,

we perform similar calculations as we have done in Section 5.2 to obtain the fol-
lowing system:

∂2w
nc± = T γ

A
±
χ2

wnc± + T γ

E±wnc± + T γ
r W± + R0T

γ

χ0
c
F± + R−1W

±, (5.107)

where E
± ∈ $0

1, A
±
χ2

∈ $1
2 is given in (5.36) with χ̃± replaced by χ2, and r ∈ $0

1

vanishes in region {χ0
c ≡ 1} ∪ {χ0

c ≡ 0}.
Since matrix A

±
χ2

≡ A± in region {χ2 ≡ 1}, we obtain from Proposition 5.3
that

Q±
0 A

±
χ2

= D
±
1 Q

±
0 in {χ2 ≡ 1}. (5.108)

More precisely, we have
(
Q+

0 0
0 Q−

0

)−1

= (E+ Y+ E− Y−), (5.109)

where E±, Y+, and Y− are defined by (5.39) and (5.72)–(5.73), respectively. Then
the following lemma can be proved as in [15, Page 425] by using (5.108):

Lemma 5.9. There exist symbols Q±
−1 ∈ $−1

1 and diagonal symbols D
±
0 ∈ $0

1 ,
which are defined in region {χ2 ≡ 1}, such that

(Q±
0 + Q±

−1)(A
±
χ2

+ E
±)− (D±

1 + D
±
0 )(Q

±
0 + Q±

−1)+ ∂2Q
±
0

− i(∂δQ
±
0 ∂tA

±
χ2

+ ∂ηQ
±
0 ∂x1A

±
χ2

− ∂δD
±
1 ∂t Q

±
0 − ∂ηD

±
1 ∂x1Q

±
0 ) ∈ $−1

1 .

We now prove the estimates for

Z± := T γ

χ1(Q
±
0 +Q±

−1)
wnc± , (5.110)

whichwill be shown to satisfy the paradifferential equationswith diagonal principle
symbols.

In fact, using Lemmas 5.2 and 5.9, we see from (5.107) that

∂2Z
+ = T γ

D̃
+
1
Z+ + T γ

D̃
+
0
Z+ + T γ

r W+ + R0T
γ

χ0
c
F+ + R−1W

+, (5.111)

where D̃
+
1 (resp. D̃+

0 ) is an extension of D
+
1 (resp. D+

0 ) to the whole set �Ω × Ξ .
Thanks to Lemma 5.6, these extension can be chosen such that

D̃
+
1 =

(
ω+ 0
0 ω′+

)
=

(
γ e+ + i�+ 0

0 γ e′+ + i�′+

)
, D̃

+
0 = diag (d+, d ′+),

(5.112)

where e+, e′+ ∈ $0
2 and �+, �′+ ∈ $1

2 are real-valued symbols, and d+, d ′+ ∈ $0
1

such that

e+ � −1, e′+ � 1.

We obtain the following result for functions Z± that are given in (5.110):
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Lemma 5.10. There exist constants K0 � 1 and γ0 � 1 such that, if γ � γ0 and
K � K0 for K given in (4.2), then

γ 3|||Z1|||2 + γ |||Z2|||21,γ + ‖Z2|x2=0‖21,γ + γ 2‖Z1|x2=0‖2 + ‖T γ
σ̃0
Z1|x2=0‖2

� γ−1(|||T γ
r W |||21,γ + |||T γ

χ0
c
F |||21,γ + |||W |||2) + ‖G‖21,γ + ‖Wnc|x2=0‖2,

(5.113)

where Z j := (Z+
j , Z

−
j )

T, j = 1, 2, σ̃0 is the scalar real symbol given by (5.59),

and r ∈ $0
1 vanishes in region {χ0

c ≡ 1} ∪ {χ0
c ≡ 0}.

Proof. The proof is divided into two steps.

1. Estimate in domain Ω . The first equation in (5.111) reads

∂2Z
+
1 = T γ

ω+ Z
+
1 + T γ

d+ Z
+
1 + T γ

r W+ + R0T
γ

χ0
c
F+ + R−1W

+. (5.114)

Recalling that Reω+ = γ e+ � −γ , we choose the identity as a symmetrizer and
obtain the L2 estimate

γ |||Z+
1 |||2 � ‖Z+

1 |x2=0‖2 + γ−1|||(T γ
r W+,R0T

γ

χ0
c
F+,R−1W

+)|||2

� ‖Z+
1 |x2=0‖2 + γ−3(|||T γ

r W+|||21,γ + |||T γ

χ0
c
F+|||21,γ + |||W+|||2) (5.115)

for sufficiently large γ .
The second equation in (5.111) reads

∂2Z
+
2 = T γ

ω′+
Z+
2 + T γ

d ′+
Z+
2 + T γ

r W+ + R0T
γ

χ0
c
F+ + R−1W

+.

Recalling that Reω′+ = γ e′+ � γ , we perform a similar calculation as Step 1 in
the proof of Lemma 5.8 to deduce

γ |||Z+
2 |||21,γ + ‖Z+

2 |x2=0‖21,γ
� γ−1(|||T γ

r W+|||21,γ + |||T γ

χ0
c
F+|||21,γ + |||W+|||2) (5.116)

for sufficiently large γ .
A similar analysis enables us to deduce the energy estimates for Z−

1 and Z−
2 as

(5.115) and (5.116). The combination of all these estimates is

γ 3|||Z1|||2 + γ |||Z2|||21,γ + ‖Z2|x2=0‖21,γ
� γ 2‖Z1|x2=0‖2 + γ−1(|||T γ

r W |||21,γ + |||T γ

χ0
c
F |||21,γ + |||W |||2). (5.117)

2. Estimate for the boundary terms. We now estimate the traces of the incoming
modes Z1 in terms of the outgoing models Z2 and the source term G. Using the
boundary condition (5.20c) yields

T γ

β wnc = G + R−1W
nc if x2 = 0.
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From the proof of Lemma 5.4, we find that ζ̊1 �= 0, and

(ζ̊1ζ̊4 − ζ̊2ζ̊3)|x2=0 = Δ = (τ − iz̊0η)h0(t, x1, τ, η), h0(t, x1, τ, η) �= 0

in a neighborhood of (iz̊0η, η) ∈ Ξ1. According to identity (3.53), we define the
following invertible matrices in a suitably small neighborhood of Υ 0

c :

P1 =
(

1/ζ̊1 0

−ζ̊3/(ζ̊1ζ5) 1/ζ5

)
, P2 =

(
1 −ζ̊2
0 ζ̊1

)
,

with ζ5 := h0(t, x1, τ, η) such that P1 and P2 belong to $0
2. Shrinking V 0

c if
necessary, we have

βin := P1β(E+ E−)P2 =
(
1 0
0 λ−1,γ (γ + ĩσ0)

)
in V 0

c , (5.118)

where σ̃0 = δ − z̊0η is the scalar real symbol in $1
2. We recall from (5.59) that

σ0 = −iγ + σ̃0.
We then fix the four cut-off functions χc1 , χc2 , χc3 , and χc4 such that

– χc1 ≡ 1 in a neighborhood of suppχ1 ∩ {x2 = 0};
– χc j ≡ 1 in a neighborhood of suppχc j−1 for j = 2, 3, 4;
– suppχc4 ⊂ V 0

c ∩ {x2 = 0}.
As in [15, §3.4.3], the following estimate can be obtained by using the localized
Gårding’s inequality:

‖T γ

χc2λ
1,γ βin

T γ
χc1

T γ

χc4 P
−1
2

Z1|x2=0‖
� ‖G‖1,γ + ‖Z2|x2=0‖1,γ + ‖W nc|x2=0‖. (5.119)

Now we utilize the special structure of βin to derive a lower bound for the term on
the left-hand side of (5.119). Setting

(υ1, υ2)
T := T γ

χc4 P
−1
2

Z1|x2=0, (5.120)

we obtain from (5.118) that

‖T γ

χc2λ
1,γ βin

T γ
χc1

T γ

χc4 P
−1
2

Z1|x2=0‖2

= ‖T γ

χc2λ
1,γ T

γ
χc1
υ1‖2 + ‖T γ

χc2 (γ+ĩσ0)
T γ
χc1
υ2‖2. (5.121)

Use Lemma 5.2 (iv) and apply the localized Gårding’s inequality (Lemma 5.2 (vii))
to obtain

‖T γ

χc2λ
1,γ T

γ
χc1
υ1‖2 = 〈(

T γ

χc2λ
1,γ

)∗
T γ

χc2λ
1,γ T

γ
χc1
υ1, T

γ
χc1
υ1

〉

� Re
〈
T γ

χ2
c2
λ2,γ

T γ
χc1
υ1, T

γ
χc1
υ1

〉 − C
∥∥T γ

χc1
υ1

∥∥∥∥T γ
χc1
υ1

∥∥
1,γ
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� c‖T γ
χc1
υ1‖21,γ − C‖υ1‖2 − C‖T γ

χc1
υ1‖2

� ‖υ1‖21,γ − C‖Z1|x2=0‖2 � γ 2‖υ1‖2 + ‖T γ
σ̃0
υ1‖2 − C‖Z1|x2=0‖2

for large enough γ . Similarly, we obtain that, for sufficiently large γ ,

‖T γ

χc2 (γ+ĩσ0)
T γ
χc1
υ2‖2 � γ 2‖υ2‖2 + ‖T γ

σ̃0
υ2‖2 − C‖Z1|x2=0‖2.

Plug the above two estimates into (5.121) to infer

‖T γ

χc2λ
1,γ βin

T γ
χc1

T γ

χc4 P
−1
2

Z1|x2=0‖2

� γ 2‖(υ1, υ2)‖2 + ‖T γ
σ̃0
(υ1, υ2)‖2 − C‖Z1|x2=0‖2. (5.122)

Since χc3χ1 ≡ χ1, we see from (5.110) and (5.120) that

T γ
χc3

T γ
σ̃0
Z1 = T γ

σ̃0
T γ
χc3

Z1 + R0Z1 = T γ
σ̃0
Z1 + R0Z1,

so that

T γ
σ̃0
(υ1, υ2) = T γ

χc4 P
−1
2

T γ
σ̃0
Z1|x2=0 + R0Z1|x2=0

= T γ

χc4 P
−1
2

T γ
χc3

T γ
σ̃0
Z1|x2=0 + R0Z1|x2=0.

Thanks to the ellipticity of (P−1
2 )∗P−1

2 on the support ofχc4 , we apply the localized
Gårding’s inequality to obtain

‖T γ
σ̃0
(υ1, υ2)‖2

�
〈(
T γ

χc4 P
−1
2

)∗
T γ

χc4 P
−1
2

T γ
χc3

T γ
σ̃0
Z1|x2=0, T

γ
χc3

T γ
σ̃0
Z1|x2=0

〉 − C‖Z1|x2=0‖2

� ‖T γ
χc3

T γ
σ̃0
Z1|x2=0‖2 − C‖T γ

σ̃0
Z1|x2=0‖2−1,γ

− C‖T γ
χc3

T γ
σ̃0
Z1|x2=0‖2−1,γ − C‖Z1|x2=0‖2

for large enough γ . Then we take γ sufficiently large to deduce

‖T γ
σ̃0
(υ1, υ2)‖2 � ‖T γ

σ̃0
Z1|x2=0‖2 − C‖Z1|x2=0‖2. (5.123)

Similarly, we have

‖(υ1, υ2)‖2 � ‖Z1|x2=0‖2 − C‖Z1|x2=0‖2−1,γ

� ‖Z1|x2=0‖2 − C

γ 2 ‖Z1|x2=0‖2. (5.124)

Combining estimates (5.117), (5.119), and (5.122)–(5.124), we take γ large
enough to derive (5.113) and conclude the proof. ��
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Recall that vectors Z± are defined by (5.110) and that matrices Q±
0 ∈ $0

2 are
invertible in a neighborhood of the support of χ1 and Q±

−1 ∈ $−1
1 . It then follows

from Lemma 5.10 that

γ 3|||T γ

χ0
c
W nc|||2 + γ 2‖T γ

χ0
c
W nc|x2=0‖2 + ‖T γ

σ̃0
T γ

χ0
c
W nc|x2=0‖2

� γ−1(|||T γ
r W |||21,γ + |||T γ

χ0
c
F |||21,γ + |||W |||2) + ‖G‖21,γ + ‖W nc|x2=0‖2.

(5.125)

Noting that components T γ

χ0
c
W±

1 are given in terms of T γ

χ0
c
W±

2 and T γ

χ0
c
W±

3 by

relation (5.31), we can deduce an L2 estimate for T γ

χ0
c
W±

1 , that is, we can add the

terms, γ 3|||T γ

χ0
c
W±

1 |||2, on the left-hand side of (5.125).

The following proposition then follows by combining the estimates for the three
cases Υ q

c with q ∈ {0,±1}:
Proposition 5.5. There exist constants K0 � 1 and γ0 � 1 such that, if γ � γ0
and K � K0 for K given in (4.2), then

γ 3|||T γ
χc
W |||2 + γ 2‖T γ

χc
Wnc|x2=0‖2 +

∑
q∈{0,±1}

‖T γ
σ̃q
T γ
χc
Wnc|x2=0‖2

� γ−1
(
|||T γ

r W |||21,γ + |||T γ
χc
F |||21,γ + |||W |||2

)
+ ‖G‖21,γ + ‖Wnc|x2=0‖2,

(5.126)

where σ̃q ∈ $1
2 is given in (5.59) and r ∈ $0

1 vanishes in region {χc ≡ 1}∪{χc ≡ 0}.

5.7. Proof of Theorem 5.1

We now patch the microlocalized energy estimates (5.80), (5.106), and (5.126)
together to deduce estimate (5.21). Since χu + χp + χc ≡ 1,

γ 3|||W |||2 + γ 2‖W nc|x2=0‖2
� γ |||(T γ

χu
W, T γ

χp
W )|||21,γ + γ 3|||T γ

χc
W |||2

+ ‖(T γ
χu
W nc, T γ

χp
W nc)|x2=0‖21,γ + γ 2‖T γ

χc
W nc|x2=0‖2. (5.127)

Adding estimates (5.80), (5.106), and (5.126), we use (5.127) and take γ large
enough to deduce

γ |||(T γ
χu
W, T γ

χp
W )|||21,γ + ‖(T γ

χu
W nc, T γ

χp
W nc)|x2=0‖21,γ

+ γ 3|||T γ
χc
W |||2 + γ 2‖T γ

χc
W nc|x2=0‖2

� ‖G‖21,γ + γ−1|||F |||21,γ + γ−1|||T γ
r W |||21,γ . (5.128)

In order to absorb the microlocalization error term |||T γ
r W |||1,γ , we decompose

symbol r in terms of χu , χp, and σq (q ∈ {0,±1}). Notice that symbol r ∈ $0
1

vanishes in the region

{χc ≡ 1} ∩ {χp ≡ 0} ∩ {χu ≡ 0} ≡ {χc ≡ 1}.
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In region {χc � 1/2}, χu + χp � 1
2 , so that we can write

r = αuχu + αpχp,

where matrices αu and αp belong to $0
1 and have the same block diagonal structure

as A. In region { 12 � χc < 1}, we can utilize (5.61) to write

r =
∑

q∈{0,±1}
α
q
c

(
σ
q
+ I3 0
0 σ

q
− I3

)
χ
q
c ,

where αqc ∈ $−1
1 has the same block diagonal structure as A, and σ q

± are solutions
to (5.60). Thus we obtain

|||T γ
r W |||1,γ � |||(T γ

χu
W, T γ

χp
W )|||1,γ +

∑
q∈{0,±1}

|||T γ

σ
q
±
T γ

χ
q
c
W |||. (5.129)

We now make the estimate for the last term in (5.129) in the following lemma:

Lemma 5.11. There exist constants K0 � 1 and γ0 � 1 such that, if γ � γ0 and
K � K0 for K given in (4.2), then, for q ∈ {0,±1},

γ |||T γ

σ
q
±
T γ

χ
q
c
W |||2 � γ |||W |||2 + γ−1(|||T γ

r W |||21,γ + |||T γ

χ
q
c
F |||21,γ

)

+ ‖G‖21,γ + γ 2‖Wnc|x2=0‖2, (5.130)

where r ∈ $0
1 vanishes in region {χq

c ≡ 1}.
Proof. Let us show an estimate for T γ

σ 0+
Z+
1 with Z+

1 defined by (5.110). Recall

from (5.60) that symbol σ 0+ satisfies the transport equation
{
∂2σ

0+ + {σ 0+, Imω+} = 0 if x2 > 0,

σ 0+ = −iγ + σ̃0 if x2 = 0.
(5.131)

Setting S := (T γ

σ 0+
)∗T γ

σ 0+
, we take the scalar product in L2(Ω) of (5.114) with SZ+

1

and apply integration by parts to derive

∥∥(T γ

σ 0+
Z+
1

)|x2=0
∥∥2 +

6∑
j=1

I j = 0, (5.132)

where each term I j in the decomposition will be defined and estimated below. First,
noting that σ 0+ ∈ $1

2 and T γ

σ 0+
T γ

d+ = T γ

d+T
γ

σ 0+
+ R0, we obtain

I1 := 2Re⟪T γ

σ 0+
T γ

d+ Z
+
1 , T

γ

σ 0+
Z+
1 ⟫

� |||T γ

σ 0+
Z+
1 |||2 + |||Z+

1 ||||||T γ

σ 0+
Z+
1 ||| � |||T γ

σ 0+
Z+
1 |||2 + |||Z+

1 |||2. (5.133)
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Moreover, we have

I2 := 2Re⟪T γ

σ 0+
T γ
r W+, T γ

σ 0+
Z+
1 ⟫

� (εγ )−1|||T γ
r W |||21,γ + εγ |||T γ

σ 0+
Z+
1 |||2, (5.134)

I3 := 2Re⟪T γ

σ 0+
R0T

γ

χ0
c
F+, T γ

σ 0+
Z+
1 ⟫

� (εγ )−1|||T γ

χ0
c
F+|||21,γ + εγ |||T γ

σ 0+
Z+
1 |||2, (5.135)

I4 := 2Re⟪T γ

σ 0+
R−1W

+, T γ

σ 0+
Z+
1 ⟫

� (εγ )−1|||W+|||2 + εγ |||T γ

σ 0+
Z+
1 |||2. (5.136)

For the terms

I5 := Re⟪(∂2S)Z
+
1 , Z

+
1 ⟫, I6 := 2Re⟪ST γ

ω+ Z
+
1 , Z

+
1 ⟫,

we use the identity ∂2S = (T γ

∂2σ
0+
)∗T γ

σ 0+
+ (T γ

σ 0+
)∗T γ

∂2σ
0+
to obtain

I5 + I6 = 2Re⟪T γ

∂2σ
0+
Z+
1 + T γ

σ 0+
T γ
ω+ Z

+
1 , T

γ

σ 0+
Z+
1 ⟫. (5.137)

We write ω+ = γ e+ + i�+ with real-valued symbols e+ ∈ $0
2 and �+ ∈ $1

2 as in
(5.112). Employing the rule of symbolic calculus (Lemma 5.2), we have

T γ

σ 0+
T γ
ω+ = γ T γ

e+T
γ

σ 0+
+ γ T γ

−i{σ 0+,e+}
+ γR−1 + T γ

i�+T
γ

σ 0+
+ T γ

{σ 0+,�+} + R0.

It follows from (5.131) and (5.137) that

I5 + I6 � Re ⟪(γ T γ
e+T

γ

σ 0+
+ γ T γ

−i{σ 0+,e+} + T γ

i�+T
γ

σ 0+
)Z+

1 , T
γ

σ 0+
Z+
1 ⟫

+ |||Z+
1 ||||||T γ

σ 0+
Z+
1 |||.

Since σ 0+ ∈ $1
2 and i�+ ∈ iR, operators T γ

−i{σ 0+,e+} and Re T γ

i�+ are both of order

� 0. It then follows that

Re ⟪(γ T γ

−i{σ 0+,e+} + T γ

i�+T
γ

σ 0+
)Z+

1 , T
γ

σ 0+
Z+
1 ⟫

� γ |||Z+
1 ||||||T γ

σ 0+
Z+
1 ||| + |||T γ

σ 0+
Z+
1 |||2 � ε−1γ |||Z+

1 |||2 + εγ |||T γ

σ 0+
Z+
1 |||2,

which implies

I5 + I6 � Re ⟪γ T γ
e+T

γ

σ 0+
Z+
1 , T

γ

σ 0+
Z+
1 ⟫+ ε−1γ |||Z+

1 |||2 + εγ |||T γ

σ 0+
Z+
1 |||2.

(5.138)

Since e+ � −c < 0, we apply Gårding’s inequality to deduce

−Re ⟪γ T γ
e+T

γ

σ 0+
Z+
1 , T

γ

σ 0+
Z+
1 ⟫ � γ |||T γ

σ 0+
Z+
1 |||2 (5.139)
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for sufficiently large γ . Plugging estimates (5.133)–(5.136) and (5.138)–(5.139)
into (5.132), we take ε small enough to deduce

γ |||T γ

σ 0+
Z+
1 |||2 � ‖(T γ

σ 0+
Z+
1 )|x2=0‖2

+ γ−1|||T γ
r W |||21,γ + γ−1|||T γ

χ0
c
F+|||21,γ + γ |||W+|||2. (5.140)

For the first term on the right-hand side, we use the fact that σ 0+|x2=0 = −iγ + σ̃0
to obtain

‖(T γ

σ 0+
Z+
1 )|x2=0‖ � γ ‖Z+

1 |x2=0‖ + ‖T γ
σ̃0
Z+
1 |x2=0‖. (5.141)

We plug (5.141) into (5.140) and use (5.113) to find

γ |||T γ

σ 0+
Z+
1 |||2 � γ−1(|||T γ

r W |||21,γ + |||T γ

χ0
c
F |||21,γ

)

+ γ |||W+|||2 + ‖G‖21,γ + γ 2
∥∥W nc|x2=0

∥∥2 . (5.142)

Recall that Z+
1 is defined by (5.110) with Q0 ∈ $0

2 being invertible. We then use
(5.116) and (5.31) to conclude (5.130). The proof is completed. ��
Combining estimates (5.128)–(5.129) together, using (5.127), and taking γ suitably
large, we obtain (5.21). In view of Proposition 5.2, estimate (5.1) also holds. This
completes the proof of Theorem 5.1.

6. Well-posedness for the Linearized Problem

In this section, we establish a well-posedness result for the linearized problem
(4.12) in the usual Sobolev space Hs with s large enough. The essential point is
to deduce a tame estimate in Hs . For a hyperbolic problem with a characteristic
boundary, there is a loss of derivatives in a priori energy estimates. To overcome
this difficulty, it is natural to introduce Sobolev spaces with conormal regularity,
where two tangential derivatives count as one normal derivative (see Secchi [43]
and the references therein). However, for our problem (4.12), we can manage to
compensate the loss of derivatives anddeduceapriori estimates in the usual Sobolev
spaces. This is achieved by employing the idea in [19] and estimating the missing
derivatives through the equation of the linearized vorticity.

The main result in this section is stated as follows:

Theorem 6.1. Let T > 0 and s ∈ [3, α̃] ∩ N with any integer α̃ � 3. Assume
that the background state (2.24) satisfies (2.10) and (2.25), and that perturbations
(V̊±, Ψ̊±) belong to Hs+3

γ (ΩT ) for all γ � 1 and satisfy (4.1)–(4.3), and

‖(V̊±,∇Ψ̊±)‖H5
γ (ΩT )

+ ‖(V̊±, ∂2V̊±,∇Ψ̊±)|x2=0‖H4
γ (ωT )

� K . (6.1)

Assume further that the source terms ( f, g) ∈ Hs+1(ΩT )×Hs+1(ωT ) vanish in the
past. Then there exists a positive constant K0, which is independent of s and T , and
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there exist two constants C > 0 and γ � 1, which depend solely on K0, such that,
if K � K0, then problem (4.12) admits a unique solution (V̇±, ψ) ∈ Hs(ΩT ) ×
Hs+1(ωT ) that vanishes in the past and obeys the following tame estimate:

‖V̇ ‖Hs
γ (ΩT ) + ‖P

±(ϕ̊)V̇±|x2=0‖Hs
γ (ωT ) + ‖ψ‖Hs+1

γ (ωT )

� C
{‖ f ‖Hs+1

γ (ΩT )
+ ‖g‖Hs+1

γ (ωT )

+ (‖ f ‖H4
γ (ΩT )

+ ‖g‖H4
γ (ωT )

)‖(V̊±, Ψ̊±)‖Hs+3
γ (ΩT )

}
. (6.2)

We consider the case where the source terms f and g vanish in the past, which
corresponds to the case with zero initial data. The case of general initial data is
postponed to the nonlinear analysis which involves the construction of a so-called
approximate solution. Before estimating the higher order derivatives of solutions,
we first prove that the linearized problem (4.12) is well-posed in L2.

6.1. First Well-Posedness Result

In this subsection, we apply thewell-posedness result in L2 ofCoulombel [16]
to the effective linear problem (4.12).We recall that system (4.12a) is symmetrizable
hyperbolic and observe that the coefficients of the linearized operators satisfy the
regularity assumptions of [16]. We also recall that problem (4.12) satisfies the
energy estimate (5.1), which exhibits a loss of one tangential derivative. According
to the result in [16], we only need to find a dual problem that obeys an appropriate
energy estimate.

Let us define a dual problem for (4.12). We introduce the following matrices:

B̊1 :=
⎛
⎝

0 0 0 −�̊−1 0 0
�̊+1 0 0 �̊−1 0 0
0 �̊+2 �̊+3 0 −�̊−2 −�̊−3

⎞
⎠

∣∣∣∣∣∣
x2=0

, D̊1 :=
(
0 0 0 0 0 0
0 0 0 0 0 0
0 �̊+2 �̊+3 0 �̊−2 �̊−3

)∣∣∣∣∣
x2=0

,

(6.3)

and

D̊ :=
⎛
⎝0 Γ̊ −1+ "̊+ −Γ̊ −1+ ς̊+ 0 Γ̊ −1− "̊− −Γ̊ −1− ς̊−
0 Γ̊ −1+ "̊+ −Γ̊ −1+ ς̊+ 0 0 0
1 0 0 1 0 0

⎞
⎠

∣∣∣∣∣∣
x2=0

,

where

�̊±
1 := − N̊±c̊2±Γ̊±

∂2Φ̊± , �̊±
2 := − "̊±

2N̊±∂2Φ̊± , �̊±
3 := ς̊±

2N̊±∂2Φ̊± .

Thanks to (4.15), we compute that these matrices satisfy the relation

B̊T
1 B̊ + D̊T

1 D̊ = diag
(
Ã2(Ů

+, Φ̊+), Ã2(Ů
−, Φ̊−)

)∣∣
x2=0, (6.4)
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where B̊ is defined by (4.8). Moreover, we infer from (4.2) that all matrices B̊, B̊1,
D̊, and D̊1 belong to W 2,∞(R2). Following [34, §3.2], we define a dual problem
for (4.12) as

⎧⎪⎪⎨
⎪⎪⎩

L
′
e

(
Ů±, Φ̊±)∗

U± = f̃±, x2 > 0,

D̊1U = 0, x2 = 0,

div(b̊T B̊1U )− bT� B̊1U = 0, x2 = 0,

(6.5)

where b̊, b�, B̊1, and D̊1 are defined in (4.7), (4.13), and (6.3), div denotes the diver-
gence operator in R

2 with respect to (t, x1), and the dual operators L
′
e

(
Ů±, Φ̊±)∗

are the formal adjoints of L
′
e

(
Ů±, Φ̊±)

. More precisely, we have

L
′
e(V, Ψ )

∗U = − A0(V )
T∂tU − A1(V )

T∂1U − Ã2(V, Ψ )
T∂2U

+ C(V, Ψ )∗U − (
∂t A0(V )

T + ∂1A1(V )
T + ∂2 Ã2(V, Ψ )

T)U,
where C(V, Ψ )∗, the adjoint of C(V, Ψ ), is a zero-th order operator. We refer to
[34, §3.2] for the derivation of the dual problem by using integration by parts and
identity (6.4).

Since the first two rows of matrix D̊1 given in (6.3) are zero, we see that the
number of the boundary conditions in (6.5) is exactly two. This is compatible with
the number of incoming characteristics, that is, the number of negative eigenvalues
of the boundarymatrix for (6.5). In fact, the boundarymatrix of operatorL

′
e(V, Ψ )

∗
in the half-space Ω is Ã2(V, Ψ )T. Then we infer from (4.15) that problem (6.5)
has two incoming characteristics and two outgoing characteristics.

We can define and analyze the Lopatinskiı̆ determinant associated with the
boundary conditions in (6.5) as we have done in Section 5. Then we have the
following result, which is an analogue of Lemma 5.4 by changing γ into −γ .
Lemma 6.1. Assume that (4.1)–(4.2) hold for a sufficiently small K > 0. Then
the dual problem (6.5) satisfies the backward Lopatinskiı̆ condition. Moreover, the
roots of the associated Lopatinskiı̆ determinant are simple and coincide with the
roots of the Lopatinskiı̆ determinant (5.50) for the original problem (4.12).

One can reproduce the same analysis as we have done in Section 5 to show that
the dual problem satisfies an a priori estimate that is similar to (5.1). The linearized
problem (4.12) thus satisfies all the assumptions (i.e. symmetrizability, regularity,
and weak stability) listed in [16]. We therefore obtain the following well-posedness
result:

Theorem 6.2. Let T > 0 be any fixed constant. Assume that the background state
(2.24) satisfies (2.10) and (2.25). Assume further that the basic state

(
V̊±, Ψ̊±)

sat-
isfies (4.1)–(4.3). Then there exist positive constants K0 > 0 and γ0 � 1, indepen-
dent of T , such that, if K � K0, then, for the source terms f ± ∈ L2(R+; H1(ωT ))

and g ∈ H1(ωT ) that vanish for t < 0, the problem
{

L
′
e

(
Ů±, Φ̊±)

V̇± = f ± for t < T, x2 > 0,

B
′
e

(
Ů±, Φ̊±)

(V̇ , ψ) = g for t < T, x2 = 0
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has a unique solution (V̇+, V̇−, ψ) ∈ L2(ΩT )× L2(ΩT )× H1(ωT ) that vanishes
for t < 0 and satisfies P

±(ϕ̊)V̇±|x2=0 ∈ L2(ωT ). Moreover, the following estimate
holds for all γ � γ0 and for all t ∈ [0, T ]:

γ ‖V̇ ‖2L2
γ (Ωt )

+ ‖P
±(ϕ̊)V̇±|x2=0‖2L2

γ (ωt )
+ ‖ψ‖2H1

γ (ωt )

� γ−3‖ f ±‖2L2(H1
γ (ωt ))

+ γ−2‖g‖2H1
γ (ωt )

. (6.6)

Theorem 6.2 shows thewell-posedness of problem (4.12) in L2 when the source
terms ( f, g) belong to L2(H1)× H1. We now turn to the energy estimates for the
higher-order derivatives of solutions.

6.2. A Priori Tame Estimates

To obtain the estimates for the higher-order derivatives of solutions to (4.12), it
is convenient to deal with the reformulated problem (4.18) and (4.20) for the new
unknowns W . Until the end of this section, we always assume that γ � γ0 and
K � K0, where γ0 and K0 are given by Theorem 6.2. Then estimate (6.6) can be
rewritten as

√
γ ‖W‖L2

γ (ΩT )
+ ‖W nc|x2=0‖L2

γ (ωT )
+ ‖ψ‖H1

γ (ωT )

� γ−3/2‖F±‖L2(H1
γ (ωT ))

+ γ−1‖g‖H1
γ (ωT )

. (6.7)

We first derive the estimate of the tangential derivatives. Let k ∈ [1, s] be
a fixed integer. Applying the tangential derivative ∂α = ∂

α0
t ∂

α1
1 with |α| = k

to system (4.18) yields the equations for ∂αW± that involve the linear terms of
the derivatives, ∂α−β∂tW± and ∂α−β∂1W±, with |β| = 1. These terms cannot be
treated simply as source terms, owing to the loss of derivatives in the energy estimate
(6.7). To overcome this difficulty, we adopt the idea of [19] and dealwith a boundary
value problem for all the tangential derivatives of order equal to k, i.e. for W (k) :=
{∂α0t ∂

α1
1 W±, α0+α1 = k}. Such aproblemsatisfies the same regularity and stability

properties as the original problem (4.18) and (4.20). Repeating the derivation in
Section 5, we find that W (k) obeys an energy estimate similar to (6.7) with new
source terms F (k) and G(k). Then we can employ the Gagliardo–Nirenberg and
Moser-type inequalities (cf. [19, Theorems 8–10]) to derive the following estimate
for tangential derivatives (see [19, Proposition 1] for the detailed proof).

Lemma 6.2 (Estimate of tangential derivatives). Assume that the hypotheses of
Theorem 6.1 hold. Then there exist constants Cs > 0 and γs � 1, independent of
T , such that, for all γ � γs and for all (W, ψ) ∈ Hs+2

γ (ΩT )× Hs+2
γ (ωT ) that are

solutions of problem (4.18) and (4.20), the following estimate holds:
√
γ ‖W‖L2(Hs

γ (ωT ))
+ ‖Wnc|x2=0‖Hs

γ (ωT ) + ‖ψ‖Hs+1
γ (ωT )

� Cs
{
γ−1‖g‖Hs+1

γ (ωT )
+ γ−3/2

∥∥F±∥∥
L2(Hs+1

γ (ωT ))

+ γ−1(‖Wnc|x2=0‖L∞(ωT ) + ‖ψ‖W 1,∞(ωT )

)∥∥(V̊ , ∂2V̊ ,∇Ψ̊
)|x2=0

∥∥
Hs+1
γ (ωT )

+ γ−3/2‖W‖W 1,∞(ΩT )

∥∥(V̊ ,∇Ψ̊ )∥∥
Hs+2
γ (ΩT )

}
. (6.8)
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We recall that the boundary matrix for our problem (4.18) and (4.20) is not
invertible. Thus, there is no hope to estimate all the normal derivatives ofW directly
from (4.18) by employing the standard argument for noncharacteristic boundary
problems as in [41].Nevertheless, for our problem (4.12),we can obtain the estimate
of the missing normal derivatives through the equation of the “linearized vorticity”.

In view of the original equations (2.14), taking into account the change of
variables and linearization, we define the “linearized vorticity” as

ξ̇± :=
(
∂1 − ∂1Φ̊

±

∂2Φ̊± ∂2
)
V̇±
3 − 1

∂2Φ̊± ∂2V̇
±
2 , (6.9)

where V̇±
2 and V̇±

3 are the second and third components of the good unknown
(4.10), respectively. We notice that multiplying (A.6) by S1(U ) leads to system
(2.18), where S1(U ) is defined by (A.9). Thus, we multiply (4.12a) with matrices
S1(Ů±)−1 to obtain

(
B0(Ů

±)∂t + B1(Ů
±)∂1 + B̃2(Ů

±, Φ̊±)∂2
)
V̇± + C̃(Ů±, Φ̊±)V̇± = f̃ ±,

(6.10)

where C̃(Ů±, Φ̊±) := S1(Ů±)−1C(Ů±, Φ̊±), f̃ ± := S1(Ů±)−1 f ±, and matrices
Bj are defined by (A.7)–(A.8). In light of (4.3a), we have

B̃2(Ů , Φ̊) := 1

∂2Φ̊

(
B2(Ů )− ∂t Φ̊B0(Ů )− ∂2Φ̊B1(Ů )

)

= 1

∂2Φ̊

⎛
⎝

B̃11
2 B̃12

2 B̃13
2

−N̊−1∂1Φ̊ 0 0
N̊−1 0 0

⎞
⎠ ,

where the explicit form of B̃1 j
2 is of no interest. Using the second and third com-

ponents of (6.10) yields the following equations for ξ̇±:

(∂t + v̊±
1 ∂1)ξ̇

±

= ∂1F±
2 − 1

∂2Φ̊±
(
∂1Φ̊

±∂2F±
2 + ∂2F±

1

)
+ Λ̊±

1 · ∂1V̇± + Λ̊±
2 · ∂2V̇±,

(6.11)

where vectors Λ̊±
1 and Λ̊±

2 are C∞–functions of (V̊±,∇ V̊±,∇Ψ̊±,∇2Ψ̊±) that
vanish at the origin, and the source terms F±

1 and F±
2 are given by

F±
1 := Γ̊ −1±

(
f̃ ± − C̃(Ů±, Φ̊±)V̇±)

2, F±
2 := Γ̊ −1±

(
f̃ ± − C̃(Ů±, Φ̊±)V̇±)

3.

Employing a standard energy estimate to the transport equations (6.11), we can
apply the Gagliardo–Nirenberg andMoser-type inequalities to derive the following
estimate of ξ̇±:
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Lemma 6.3 (Estimate of vorticity). Assume that the hypotheses of Theorem 6.1
hold. Then there exist constants Cs > 0 and γs � 1, independent of T , such that,
for all γ � γs and for all (W, ψ) ∈ Hs+2

γ (ΩT ) × Hs+2
γ (ωT ) that are solutions

of problem (4.18) and (4.20), functions ξ̇± defined by (6.9) satisfy the following
estimate:

γ
∥∥ξ̇±∥∥

Hs−1
γ (ΩT )

� Cs

{∥∥ f ±∥∥
Hs
γ (ΩT )

+ ∥∥ f ±∥∥
L∞(ΩT )

∥∥(V̊ ,∇Ψ̊ )∥∥
Hs
γ (ΩT )

+ ∥∥V̇±∥∥
Hs
γ (ΩT )

+ ∥∥V̇±∥∥
W 1,∞(ΩT )

(∥∥V̊∥∥
Hs+1
γ (ΩT )

+ ∥∥∇Ψ̊ ∥∥
Hs
γ (ΩT )

)}
. (6.12)

We are going to make the estimate for all the normal derivatives by means of
estimates (6.8) and (6.12) for the tangential derivatives and the linearized vorticity.
To this end, we need to express the normal derivatives ∂2W± in terms of the tan-
gential derivatives ∂tW±, ∂1W±, and vorticity ξ̇±. Since I2 = diag (0, 1, 1), the
normal derivatives ∂2W

±
2 and ∂2W

±
3 are directly given by (4.18) as

I2∂2W± = I2(F± − A±
0 ∂tW

± − A±
1 ∂1W

± − C±W±). (6.13)

The “missing” normal derivatives ∂2W
±
1 can be expressed by ξ̇± and equations

(4.18). From transformation (4.17) and definition (4.16), we have

∂2V̇2 = ς̊∂2W1 + "̊

N̊ c̊
∂2(W2 − W3)+ ∂2ς̊W1 + ∂2

(
"̊

N̊ c̊

)
(W2 − W3),

∂2V̇3 = "̊∂2W1 − ς̊

N̊ c̊
∂2(W2 − W3)+ ∂2"̊W1 − ∂2

(
ς̊

N̊ c̊

)
(W2 − W3),

where we have omitted indices “±”. By definition (6.9), we obtain
(
∂1Φ̊"̊ + ς̊

)
∂2W1

= ∂2Φ̊
(
∂1V̇3 − ξ̇

) + ∂1Φ̊ς̊ − "̊

N̊ c̊
∂2(W2 − W3)+ C(Ů , Φ̊)W, (6.14)

where C(Ů , Φ̊) is a C∞–function of (V̊ ,∇ V̊ ,∇Ψ̊ ,∇2Ψ̊ ) that vanishes at the ori-
gin. According to (4.9), we see that ∂1Φ̊"̊ + ς̊ � 1 by taking K0 > 0 sufficiently
small. Then we find from (6.13)–(6.14) that

∂2W
± = Ã±

3 F
± + Ã±

0 ∂tW
±

+ Ã±
1 ∂1W

± + C̃±W± − ∂2Φ̊
±

∂1Φ̊±"̊± + ς̊±

⎛
⎝
ξ̇±
0
0

⎞
⎠ , (6.15)

where Ã±
0,1,3 are C∞–functions of (V̊ ,∇Ψ̊ ), and C̃± are C∞–functions of (V̊ ,

∇ V̊ ,∇Ψ̊ ,∇2Ψ̊ ) that vanish at the origin. Although the linearized problem (4.18)
and (4.20) is characteristic, we manage to express all the normal derivatives ∂2W±
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by (6.15) as a linear combination of the tangential derivatives, vorticity, zero-th
order terms, and source terms. Then we can prove the following result (which is
similar to [19, Proposition 3], so we omit its proof):

Lemma 6.4 (Estimate of normal derivatives).Assume that the hypotheses of The-
orem 6.1 hold. Then there exist constantsCs > 0 and γs � 1, which are independent
of T , such that, for all γ � γs and solutions (W, ψ) ∈ Hs+2

γ (ΩT )× Hs+2
γ (ωT ) of

problem (4.18) and (4.20), the following estimate holds for all integer k ∈ [1,m]:
∥∥∂k2W±∥∥

L2(Hs−k
γ (ωT ))

� Cs

{∥∥(F±,W±, ξ̇±)∥∥
Hs−1
γ (ΩT )

+ ∥∥W±∥∥
L2(Hs

γ (ωT ))

+ ∥∥ξ̇±∥∥
L∞(ΩT )

∥∥(V̊ ,∇Ψ̊ )∥∥
Hs−1
γ (ΩT )

+ ∥∥(F±,W±)∥∥
L∞(ΩT )

∥∥(V̊ ,∇Ψ̊ )∥∥
Hs
γ (ΩT )

}
. (6.16)

In light of definition (2.27), we see that, for all s ∈ N and θ ∈ Hs
γ (ΩT ),

‖θ‖Hs
γ (ΩT ) =

s∑
k=0

‖∂k2 θ‖L2(Hs−k
γ (ωT ))

, γ ‖θ‖Hs−1
γ (ΩT )

� ‖θ‖Hs
γ (ΩT ).

By virtue of these identities, we combine Lemmas 6.2–6.4 and employ the Moser-
type inequalities to obtain the following a priori estimates on the Hs

γ –norm of

solution V̇± to the linearized problem (4.12):

Proposition 6.1. Assume that the hypotheses of Theorem 6.1 hold. Then there exists
a constant K0 > 0 (independent of s and T ) and constants Cs > 0 and γs � 1
(depending on s, but independent of T ) such that, if K � K0, then, for all γ � γs
and solutions (V̇ , ψ) ∈ Hs+2

γ (ΩT )× Hs+2
γ (ωT ) of problem (4.12), the following

estimate holds:
√
γ
∥∥V̇±∥∥

Hs
γ (ΩT )

+ ∥∥P
±(ϕ̊)V̇±|x2=0

∥∥
Hs
γ (ωT )

+ ‖ψ‖Hs+1
γ (ωT )

� Cs

{
γ−1/2

∥∥ f ±∥∥
Hs
γ (ΩT )

+ γ−3/2
∥∥ f ±∥∥

L2(Hs+1
γ (ωT ))

+ γ−1‖g‖Hs+1
γ (ωT )

+ γ−1(∥∥P
±(ϕ̊)V̇±∥∥

L∞(ωT )
+ ‖ψ‖W 1,∞(ωT )

)‖(V̊ , ∂2V̊ ,∇Ψ̊ )‖Hs+1
γ (ωT )

+ (
γ−1/2

∥∥ f ±∥∥
L∞(ΩT )

+ γ−3/2
∥∥V̇±∥∥

W 1,∞(ΩT )

)∥∥(V̊ ,∇Ψ̊ )∥∥
Hs+2
γ (ΩT )

}
.

(6.17)

6.3. Proof of Theorem 6.1

Theorem 6.2 shows that the linearized problem (4.12) is well-posed for sources
terms ( f ±, g) ∈ L2(H1(ωT ))× H1(ωT ) that vanish in the past. Following [6,41],
we can use Proposition 6.1 to covert Theorem 6.2 into a well-posedness result of
(4.12) in Hs . More precisely, we can prove that, under the assumptions of Theorem
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6.1, if ( f ±, g) ∈ Hs+1(ΩT ) × Hs+1(ωT ) vanish in the past, then there exists a
unique solution (V̇±, ψ) ∈ Hs(ΩT ) × Hs+1(ωT ) that vanishes in the past and
satisfies (6.17) for all γ � γs .

It remains to prove the tame estimate (6.2). To this end, we first fix the value of
γ such that γ is greater than the maximum of γ3, . . . , γα̃ . Using (6.17) with s = 3
and (6.1), we have

∥∥V̇±∥∥
H3
γ (ΩT )

+ ∥∥P
±(ϕ̊)V̇±|x2=0

∥∥
H3
γ (ωT )

+ ‖ψ‖H4
γ (ωT )

� K
( ∥∥ f ±∥∥

L∞(ΩT )
+ ∥∥V̇±∥∥

W 1,∞(ΩT )
+ ∥∥P

±(ϕ̊)V̇±|x2=0
∥∥
L∞(ωT )

+ ‖ψ‖W 1,∞(ωT )

)

+ ∥∥ f ±∥∥
H4
γ (ΩT )

+ ‖g‖H4
γ (ωT )

. (6.18)

Note that T > 0 and γ have been fixed. Thanks to the classical Sobolev inequalities
that ‖θ‖L∞(ΩT ) � ‖θ‖H2(ΩT )

and ‖θ‖L∞(ωT ) � ‖θ‖H2(ωT )
, we utilize (6.18) and

take K > 0 sufficiently small to obtain that
∥∥ f ±∥∥

L∞(ΩT )
�

∥∥ f ±∥∥
H4
γ (ΩT )

and

∥∥V̇±∥∥
W 1,∞(ΩT )

+ ∥∥P
±(ϕ̊)V̇±|x2=0

∥∥
L∞(ωT )

+ ‖ψ‖W 1,∞(ωT )

�
∥∥V̇±∥∥

H3
γ (ΩT )

+ ∥∥P
±(ϕ̊)V̇±|x2=0

∥∥
H3
γ (ωT )

+ ‖ψ‖H4
γ (ωT )

�
∥∥ f ±∥∥

H4
γ (ΩT )

+ ‖g‖H4
γ (ωT )

.

Plugging these estimates into (6.17) yields (6.2), which completes the proof of
Theorem 6.1.

7. Construction of the Approximate Solution

In this section, we introduce the “approximate” solution (Ua, Φa) in order to
reduce the original problem (2.20) and (2.23) into a nonlinear problem with zero
initial data. We naturally expect to solve this reformulated problem in the space of
functions vanishing in the past, so that Theorem 6.1, which is the well-posedness
result in the same function space for the linearized problem, can be applied. We
need to impose the necessary compatibility conditions on the initial data (U±

0 , ϕ0)

for the existence of smooth approximate solutions (Ua, Φa), which are solutions
of problem (2.20) and (2.23) in the sense of Taylor’s series at time t = 0.

Let s � 3 be an integer. Assume that Ũ±
0 := U±

0 − �U± ∈ Hs+1/2(R2+) and
ϕ0 ∈ Hs+1(R). We also assume without loss of generality that (Ũ±

0 , ϕ0) has the
following compact support:

supp Ũ±
0 ⊂ {x2 � 0, x21 + x22 � 1}, suppϕ0 ⊂ [−1, 1]. (7.1)

We extend ϕ0 from R to R
2+ by constructing Φ̃+

0 = Φ̃−
0 ∈ Hs+3/2(R2+), which

satisfies

Φ̃±
0 |x2=0 = ϕ0, supp Φ̃±

0 ⊂
{
x2 � 0, x21 + x22 � 2

}
, (7.2)
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and the estimate
∥∥Φ̃±

0

∥∥
Hs+3/2(R2+)

� C‖ϕ0‖Hs+1(R). (7.3)

By virtue of (7.3) and the Sobolev embedding theorem, we infer that, for ϕ0 small
enough in Hs+1(R), the following estimates hold for Φ±

0 := Φ̃±
0 + �Φ±

0 :

±∂2Φ±
0 � 7

8
for all x ∈ R

2+. (7.4)

For problem (2.23), we prescribe the initial data

Φ±|t=0 = Φ±
0 . (7.5)

Let us denote the perturbation by (Ũ±, Φ̃±) := (U± − �U±, Φ± − �Φ±), and
the traces of the �-th order time derivatives on {t = 0} by

Ũ±
� := ∂�t Ũ

±|t=0, Φ̃±
� := ∂�t Φ̃

±|t=0, � ∈ N.

To introduce the compatibility conditions, we need to determine traces Ũ±
� and

Φ̃±
� in terms of the initial data Ũ±

0 and Φ̃±
0 through equations (2.20a) and (2.23a).

For this purpose, we set W± := (Ũ±,∇xŨ±,∇x Φ̃
±) ∈ R

11, and rewrite (2.20a)
and (2.23a) as

∂t Ũ
± = F1(W±), ∂t Φ̃

± = F2(W±), (7.6)

whereF1 andF2 are suitableC∞–functions that vanish at the origin. After applying
operator ∂�t to (7.6),we take the traces at time t = 0.One can employ the generalized
Faà di Bruno’s formula (cf. [37, Theorem 2.1]) to derive

Ũ±
�+1 =

∑

αi∈N11,|α1|+···+�|α�|=�
Dα1+···+α�F1(W±

0 )

�∏
i=1

�!
αi !

(
W±

i

i !

)αi

, (7.7)

Φ̃±
�+1 =

∑

αi∈N11,|α1|+···+�|α�|=�
Dα1+···+α�F2(W±

0 )

�∏
i=1

�!
αi !

(
W±

i

i !

)αi

, (7.8)

whereW±
i denotes trace (Ũ±

i ,∇xŨ
±
i ,∇x Φ̃

±
i ) at t = 0. From (7.7)–(7.8), one can

determine (Ũ±
� , Φ̃

±
� )��0 inductively as functions of the initial data Ũ±

0 and Φ̃±
0 .

Furthermore, we have the following lemma (see [34, Lemma 4.2.1] for the proof):

Lemma 7.1. Assume that (7.1)–(7.4) hold. Then the equations (7.7)–(7.8) de-
termine Ũ±

� ∈ Hs+1/2−�(R2+) for � = 1, . . . , s, and Φ̃±
� ∈ Hs+3/2−�(R2+) for

� = 1, . . . , s + 1, such that

supp Ũ±
� ⊂ {x2 � 0, x21 + x22 � 1}, supp Φ̃±

� ⊂ {x2 � 0, x21 + x22 � 2}.
In addition,

s∑
�=0

∥∥Ũ±
�

∥∥
Hs+1/2−�(R2+)

+
s+1∑
�=0

∥∥Φ̃±
�

∥∥
Hs+3/2−�(R2+)
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� C
(∥∥Ũ±

0

∥∥
Hs+1/2(R2+)

+ ‖ϕ0‖Hs+1(R)

)
,

where constant C > 0 depends only on s and ‖(Ũ±
0 , Φ̃

±
0 )‖W 1,∞(R2+).

To construct a smooth approximate solution, one has to impose certain as-
sumptions on traces Ũ±

� and Φ̃±
� . We are now ready to introduce the following

terminology:

Definition 7.1. [Compatibility conditions] Let s � 3 be an integer. Let Ũ±
0 :=

U±
0 − �U±

0 ∈ Hs+1/2(R2+) and ϕ0 ∈ Hs+1(R) satisfy (7.1). The initial dataU±
0 and

ϕ0 are said to be compatible up to order s if there exist functions Φ̃±
0 ∈ Hs+3/2(R2+)

satisfying (7.2)–(7.4) such that functions Ũ±
1 , . . . , Ũ

±
s , Φ̃

±
1 , . . . , Φ̃

±
s+1 determined

by (7.7)–(7.8) satisfy

∂
j
2

(
Φ̃+
� − Φ̃−

�

)|x2=0 = 0 for j, � ∈ N with j + � < s + 1, (7.9a)

∂
j
2

(
p̃+
� − p̃−

�

)|x2=0 = 0 for j, � ∈ N with j + � < s, (7.9b)

and
∫

R
2+

∣∣∂s+1−�
2

(
Φ̃+
� − Φ̃−

�

)∣∣2 dx1 dx2
x2

< ∞ for � = 0, . . . , s + 1, (7.10a)

∫

R
2+

∣∣∂s−�2

(
p̃+
� − p̃−

�

)∣∣2 dx1 dx2
x2

< ∞ for � = 0, . . . , s. (7.10b)

It follows from Lemma 7.1 that p̃±
0 , . . . , p̃

±
s−2, Φ̃

±
0 , . . . , Φ̃

±
s−1 ∈ H5/2(R2+) ⊂

W 1,∞(R2+). Then we can take the j-th order derivatives of the traces in (7.9).
In what follows, we employ ε0(·) to denote a function that tends to 0 when its
argument tends to 0. Relations (7.9)–(7.10) enable us to utilize the lifting result in
[31, Theorem 2.3] to construct the approximate solution in the following lemma
(we refer to [19, Lemma 3] for the proof):

Lemma 7.2. Let s � 3 be an integer. Assume that Ũ±
0 := U±

0 −�U±
0 ∈ Hs+1/2(R2+)

and ϕ0 ∈ Hs+1(R) satisfy (7.1), and that the initial dataU±
0 and ϕ0 are compatible

up to order s. If Ũ±
0 and ϕ0 are sufficiently small, then there exist functions Ua±,

Φa±, and ϕa such that Ũa± := Ua± − �U± ∈ Hs+1(Ω), Φ̃a± := Φa± − �Φ± ∈
Hs+2(Ω), ϕa ∈ Hs+3/2(∂Ω), and

∂tΦ
a± + va±

1 ∂1Φ
a± − va±

2 = 0 in Ω, (7.11a)

∂
j
t L(Ua±, Φa±)|t=0 = 0 for j = 0, . . . , s − 1, (7.11b)

Φa+ = Φa− = ϕa on ∂Ω, (7.11c)

B(Ua+,Ua−, ϕa) = 0 on ∂Ω. (7.11d)

Furthermore, we have

± ∂2Φ
a± � 3

4
for all (t, x) ∈ Ω, (7.12)



672 Gui-Qiang G. Chen et al.

supp
(
Ũ a±, Φ̃a±) ⊂

{
t ∈ [−T, T ], x2 � 0, x21 + x22 � 3

}
, (7.13)

and
∥∥Ũ a±∥∥

Hs+1(Ω)
+ ∥∥Φ̃a±∥∥

Hs+2(Ω)
+ ‖ϕa‖Hs+3/2(∂Ω)

� ε0
(∥∥Ũ±

0

∥∥
Hs+1/2(R2+)

+ ‖ϕ0‖Hs+1(R)

)
. (7.14)

Let us denoteUa := (Ua+,Ua−)T andΦa := (Φa+, Φa−)T. Vector (Ua, Φa)

in Lemma 7.2 is called the approximate solution to problem (2.20) and (2.23).
Relations (7.11c) and (7.13) immediately imply that ϕa is supported within {−T ≤
t ≤ T, x21 � 3}. Since s � 3, it follows from (7.14) and the Sobolev embedding
theorem that

∥∥Ũ a±∥∥
W 2,∞(Ω)

+ ∥∥Φ̃a±∥∥
W 3,∞(Ω)

� ε0
(∥∥Ũ±

0

∥∥
Hs+1/2(R2+)

+ ‖ϕ0‖Hs+1(R)

)
.

We are going to reformulate the original problem into that with zero initial data
by using the approximate solution (Ua, Φa). Let us introduce

f a :=
{

− L(Ua, Φa) if t > 0,

0 if t < 0.
(7.15)

Since (Ũ a±,∇Φ̃a±) ∈ Hs+1(Ω), taking into account (7.11b) and (7.13), we obtain
that f a ∈ Hs(Ω) and

supp f a ⊂
{
0 ≤ t ≤ T, x2 � 0, x21 + x22 � 3

}
.

Using the Moser-type inequalities and the fact that f a vanishes in the past, we
obtain from (7.14) the estimate

‖ f a‖Hs (Ω) � ε0
(∥∥Ũ±

0

∥∥
Hs+1/2(R2+)

+ ‖ϕ0‖Hs+1(R)

)
. (7.16)

Let (Ua, Φa) be the approximate solution defined in Lemma 7.2. By virtue
of (7.11) and (7.15), we see that (U, Φ) = (Ua, Φa) + (V, Ψ ) is a solution of
the original problem (2.20) and (2.23) on [0, T ] × R

2+, if V = (V+, V−)T and
Ψ = (Ψ+, Ψ−)T solve the following problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L(V, Ψ ) := L(Ua + V, Φa + Ψ )− L(Ua, Φa) = f a in ΩT ,

E(V, Ψ ) := ∂tΨ + (va1 + v1)∂1Ψ + v1∂1Φ
a − v2 = 0 in ΩT ,

B(V, ψ) := B(Ua + V, ϕa + ψ) = 0 on ωT ,

Ψ+ = Ψ− = ψ on ωT ,

(V, Ψ ) = 0, for t < 0.

(7.17)

The initial data (2.20c) and (7.5) have been absorbed into the interior equations.
From (7.11a) and (7.11d), we observe that (V, Ψ ) = 0 satisfies (7.17) for t < 0.
Therefore, the original nonlinear problem on [0, T ] × R

2+ is now reformulated as
a problem on ΩT whose solutions vanish in the past.
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8. Nash–Moser Iteration

In this section, we prove the existence of solutions to problem (7.17) by a
suitable iteration scheme of Nash–Moser type (cf.Hörmander [24]). First, we
introduce the smoothing operators Sθ and describe the iterative scheme for problem
(7.17).

8.1. The Iterative Scheme

We first state the following result from [19, Proposition 4]:

Proposition 8.1. Let T > 0 and γ � 1, and let m � 4 be an integer. Then there
exists a family {Sθ }θ�1 of smoothing operators

Sθ : F3
γ (ΩT )× F3

γ (ΩT ) −→
⋂
β�3

Fβ
γ (ΩT )× Fβ

γ (ΩT ),

where Fβ
γ (ΩT ) := {

u ∈ Hβ
γ (ΩT ) : u = 0 for t < 0

}
is a closed subspace of

Hβ
γ (ΩT ) such that

‖Sθu‖
Hβ
γ (ΩT )

� Cθ(β−α)+‖u‖Hα
γ (ΩT ) for all α, β ∈ [1,m], (8.1a)

‖Sθu − u‖
Hβ
γ (ΩT )

� Cθβ−α‖u‖Hα
γ (ΩT ) for all 1 � β � α � m, (8.1b)

∥∥∥∥
d

dθ
Sθu

∥∥∥∥
Hβ
γ (ΩT )

� Cθβ−α−1‖u‖Hα
γ (ΩT ) for all α, β ∈ [1,m], (8.1c)

and

‖(Sθu − Sθ v)|x2=0‖Hβ
γ (ωT )

� Cθ(β+1−α)+‖(u − v)|x2=0‖Hα
γ (ωT ) for all α, β ∈ [1,m], (8.2)

where α, β ∈ N, (β − α)+ := max{0, β − α}, and C > 0 is a constant depending
only on m. In particular, if u = v on ωT , then Sθu = Sθ v on ωT . Furthermore,
there exists another family of smoothing operators (still denoted by Sθ ) acting on
the functions defined on the boundary ωT and satisfying the properties in (8.1)with
norms ‖ · ‖Hα

γ (ωT ).

The proof of (8.2) is based on the following lifting operator (see [22, Chapter
5] and [19]):

Lemma 8.1. Let T > 0 and γ � 1, and let m � 1 be an integer. Then there
exists an operator RT , which is continuous from F s

γ (ωT ) to F s+1/2
γ (ΩT ) for all

s ∈ [1,m], such that, if s � 1 and u ∈ F s
γ (ωT ), then (RT u)|x2=0 = u.
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Now, following [19], we describe the iteration scheme for problem (7.17).

Assumption (A-1): (V0, Ψ0, ψ0) = 0 and, for k = 0, . . . , n, (Vk, Ψk, ψk) are
already given and satisfy

(Vk, Ψk, ψk)|t<0 = 0, Ψ+
k |x2=0 = Ψ−

k |x2=0 = ψk . (8.3)

Let us consider

Vn+1 = Vn + δVn, Ψn+1 = Ψn + δΨn, ψn+1 = ψn + δψn, (8.4)

where these differences δVn , δΨn , and δψn will be specified below.
First we are going to find (δV̇n, δψn) by solving the effective linear problem

⎧⎪⎨
⎪⎩

L
′
e(U

a + Vn+1/2, Φ
a + Ψn+1/2)δV̇n = fn in ΩT ,

B
′
e(U

a + Vn+1/2, Φ
a + Ψn+1/2)(δV̇n, δψn) = gn on ωT ,

(δV̇n, δψn) = 0 for t < 0,

(8.5)

where operators L
′
e and B

′
e are defined in (4.12a)–(4.12b),

δV̇n := δVn − ∂2(Ua + Vn+1/2)

∂2(Φa + Ψn+1/2)
δΨn (8.6)

is the “good unknown” (cf. (4.10)), and (Vn+1/2, Ψn+1/2) is a smoothmodified state
such that (Ua +Vn+1/2, Φ

a +Ψn+1/2) satisfies constraints (4.1)–(4.3). The source
term ( fn, gn) will be defined through the accumulated error terms at Step n later
on.

We define the modified state as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ψ±
n+1/2 := SθnΨ

±
n , v1

(
V±
n+1/2

) := Sθnv1
(
V±
n

)
,

p±
n+1/2 := Sθn p

±
n ∓ 1

2RT
(
Sθn p

+
n |x2=0 − Sθn p

−
n |x2=0

)
,

v2
(
V±
n+1/2

) := ∂tΨ
±
n+1/2 + (

va±
1 + v1

(
V±
n+1/2

))
∂1Ψ

±
n+1/2

+ v1
(
V±
n+1/2

)
∂1Φ

a±,

(8.7)

where Sθn are the smoothing operators defined in Proposition 8.1 with sequence
{θn} given by

θ0 � 1, θn =
√
θ20 + n, (8.8)

and RT is the lifting operator given in Lemma 8.1. Thanks to (8.3), we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ψ+
n+1/2|x2=0 = Ψ−

n+1/2|x2=0 =: ψn+1/2,

p+
n+1/2|x2=0 = p−

n+1/2|x2=0,

E(Vn+1/2, Ψn+1/2) = 0,(
Vn+1/2, Ψn+1/2, ψn+1/2

)|t<0 = 0.

(8.9)
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It then follows from (7.11) that (Ua + Vn+1/2, Φ
a + Ψn+1/2) satisfies (4.3a) and

(4.3c)–(4.3d). The additional constraint (4.3b) will be obtained by taking the initial
data small enough.

The error terms at Step n are defined from the following decompositions:

L(Vn+1, Ψn+1)− L(Vn, Ψn)

= L
′(Ua + Vn, Φ

a + Ψn)(δVn, δΨn)+ e′
n

= L
′(Ua + Sθn Vn, Φ

a + SθnΨn)(δVn, δΨn)+ e′
n + e′′

n

= L
′(Ua + Vn+1/2, Φ

a + Ψn+1/2)(δVn, δΨn)+ e′
n + e′′

n + e′′′
n

= L
′
e(U

a + Vn+1/2, Φ
a + Ψn+1/2)δV̇n + e′

n + e′′
n + e′′′

n + Dn+1/2δΨn (8.10)

and

B(Vn+1|x2=0, ψn+1)− B(Vn|x2=0, ψn)

= B
′(Ua + Vn, Φ

a + Ψn)(δVn|x2=0, δψn)+ ẽ′
n

= B
′(Ua + Sθn Vn, Φ

a + SθnΨn)(δVn|x2=0, δψn)+ ẽ′
n + ẽ′′

n

= B
′
e(U

a + Vn+1/2, Φ
a + Ψn+1/2)(δV̇n|x2=0, δψn)+ ẽ′

n + ẽ′′
n + ẽ′′′

n , (8.11)

where we have set

Dn+1/2 := 1

∂2(Φa + Ψn+1/2)
∂2L(U

a + Vn+1/2, Φ
a + Ψn+1/2), (8.12)

and have used (4.11) to obtain the last identity in (8.10). Let us set

en := e′
n + e′′

n + e′′′
n + Dn+1/2δΨn, ẽn := ẽ′

n + ẽ′′
n + ẽ′′′

n . (8.13)

Assumption (A-2): f0 := Sθ0 f
a , (e0, ẽ0, g0) := 0, and ( fk, gk, ek, ẽk) are already

given and vanish in the past for k = 0, . . . , n − 1.
We compute the accumulated error terms at Step n, n � 1, by

En :=
n−1∑
k=0

ek, Ẽn :=
n−1∑
k=0

ẽk . (8.14)

Then we compute fn and gn for n � 1 from the equations

n∑
k=0

fk + Sθn En = Sθn f
a,

n∑
k=0

gk + Sθn Ẽn = 0. (8.15)

Under assumptions (A-1)–(A-2), (Vn+1/2, Ψn+1/2) and ( fn, gn)havebeen spec-
ified from (8.7) and (8.15). Then we can obtain (δV̇n, δψn) as the solution of the
linear problem (8.5) by applying Theorem 6.1.

Next we need to construct δΨn = (δΨ+
n , δΨ

−
n )

T satisfying δΨ±
n |x2=0 = δψn .

We use the boundary conditions in (8.5) (cf. (4.7)–(4.8), (4.13), and (8.6)) to derive
that δψn satisfies

(
ε2∂tΦ

+
n+1/2

N+
n+1/2h

+
n+1/2(Γ

+
n+1/2)

2
,

"+
n+1/2

h+
n+1/2Γ

+
n+1/2

,
−ς+

n+1/2

h+
n+1/2Γ

+
n+1/2

)∣∣∣∣
x2=0
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×
(
δV̇+

n + δψn
∂2U

+
n+1/2

∂2Φ
+
n+1/2

)∣∣∣∣
x2=0

+ ∂t (δψn)+ v1
(
U+
n+1/2

)∣∣
x2=0∂1(δψn)

= gn,2,

(
ε2∂tΦ

−
n+1/2

N−
n+1/2h

−
n+1/2(Γ

−
n+1/2)

2
,

"−
n+1/2

h−
n+1/2Γ

−
n+1/2

,
−ς−

n+1/2

h−
n+1/2Γ

−
n+1/2

)∣∣∣∣
x2=0

×
(
δV̇−

n + δψn
∂2U

−
n+1/2

∂2Φ
−
n+1/2

)∣∣∣∣
x2=0

+ ∂t (δψn)+ v1
(
U−
n+1/2

)∣∣
x2=0∂1(δψn)

= gn,2 − gn,1,

where we have set U±
n+1/2 := Ua± + V±

n+1/2, Φ
±
n+1/2 := Φa± + Ψ±

n+1/2, and

(N±
n+1/2, h

±
n+1/2, Γ

±
n+1/2, "

±
n+1/2, ς

±
n+1/2) := (N , h, Γ, ", ς)(U±

n+1/2, Φ
±
n+1/2),

with (N , h, Γ, ", ς) defined in (2.11), (3.3), and (4.9). Then we define δΨ+
n and

δΨ−
n as solutions to the following equations:

(
ε2∂tΦ

+
n+1/2

N+
n+1/2h

+
n+1/2(Γ

+
n+1/2)

2
,

"+
n+1/2

h+
n+1/2Γ

+
n+1/2

,
−ς+

n+1/2

h+
n+1/2Γ

+
n+1/2

)

×
(
δΨ+

n

∂2U
+
n+1/2

∂2Φ
+
n+1/2

+ δV̇+
n

)
+ ∂t (δΨ

+
n )+ v1

(
U+
n+1/2

)
∂1(δΨ

+
n )

= RT gn,2 + G+
n , (8.16)

(
ε2∂tΦ

−
n+1/2

N−
n+1/2h

−
n+1/2(Γ

−
n+1/2)

2
,

"−
n+1/2

h−
n+1/2Γ

−
n+1/2

,
−ς−

n+1/2

h−
n+1/2Γ

−
n+1/2

)

×
(
δΨ−

n

∂2U
−
n+1/2

∂2Φ
−
n+1/2

+ δV̇−
n

)
+ ∂t (δΨ

−
n )+ v1

(
U−
n+1/2

)
∂1(δΨ

−
n )

= RT (gn,2 − gn,1)+ G−
n , (8.17)

where the source terms G±
n will be chosen by using a decomposition for operator

E .
We define the error terms: ê′

n , ê
′′
n , and ê′′′

n by

E(Vn+1, Ψn+1)− E(Vn, Ψn) = E ′(Vn, Ψn)(δVn, δΨn)+ ê′
n

= E ′(Sθn Vn, SθnΨn)(δVn, δΨn)+ ê′
n + ê′′

n

= E ′(Vn+1/2, Ψn+1/2)(δVn, δΨn)+ ê′
n + ê′′

n + ê′′′
n , (8.18)

and denote

ên := ê′
n + ê′′

n + ê′′′
n , Ên :=

n−1∑
k=0

êk . (8.19)
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From (7.11a), we have

E(V, Ψ ) = ∂t (U
a + V )+ v1(U

a + V )∂1(Φ
a + Ψ )− v2(U

a + V ).

Similar to the derivation of (4.6) and (4.12b), we deduce that

E ′(V±
n+1/2, Ψ

±
n+1/2)(δV

±
n , δΨ

±
n )

are equal to the left-hand sides of (8.16)–(8.17), respectively. Then it follows from
(8.16)–(8.18) that

E(Vn+1, Ψn+1)− E(Vn, Ψn) =
( RT gn,2 + G+

n + ê+
n

RT (gn,2 − gn,1)+ G−
n + ê−

n

)
.

Summing these relations and using E(V0, Ψ0) = 0 yields

E(V−
n+1, Ψ

−
n+1) = RT

(
n∑

k=0

(gk,2 − gk,1)

)
+

n∑
k=0

G−
k + Ê−

n+1.

On the other hand, we obtain from (8.5) and (8.11) that

gn = B(Vn+1|x2=0, ψn+1)− B(Vn|x2=0, ψn)− ẽn . (8.20)

In view of (7.17) and (2.22), one obtains the relations
(B(Vn+1|x2=0, ψn+1)

)
2

= E(V+
n+1|x2=0, ψn+1)

= E(V−
n+1|x2=0, ψn+1)+ (B(Vn+1|x2=0, ψn+1)

)
1. (8.21)

Summing (8.20) and using B(V0|x2=0, ψ0) = 0, we have

E(V−
n+1, Ψ

−
n+1)

= RT

(
E(V−

n+1|x2=0, ψn+1
) − Ẽn+1,2 + Ẽn+1,1

)
+

n∑
k=0

G−
k + Ê−

n+1. (8.22)

Similarly, we can also obtain

E(V+
n+1, Ψ

+
n+1)

= RT

(
E(V+

n+1|x2=0, ψn+1
) − Ẽn+1,2

)
+

n∑
k=0

G+
k + Ê+

n+1. (8.23)

Assumption (A-3): (G+
0 ,G

−
0 , ê0) = 0, and (G+

k ,G
−
k , êk) are already given and

vanish in the past for k = 0, . . . , n − 1.
Under assumptions (A-1)–(A-3), taking into account (8.22)–(8.23) and the

property of RT , we compute the source terms G±
n from

Sθn
(
Ê+
n − RT Ẽn,2

) +
n∑

k=0

G+
k = 0, (8.24a)
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Sθn
(
Ê−
n − RT Ẽn,2 + RT Ẽn,1

) +
n∑

k=0

G−
k = 0. (8.24b)

From assumption (A-3) and the properties of Sθ , it is clear that G±
n vanish in

the past. As in [22], one can also check that the trace of G±
n on ωT vanishes. Hence,

we can find δΨ±
n , vanishing in the past and satisfying δΨ±

n |x2=0 = δψn , as the
unique smooth solutions to the transport equations (8.16)–(8.17).

Once δΨn is specified, we can obtain δVn from (8.6) and (Vn+1, Ψn+1, ψn+1)

from (8.4). The error terms: e′
n , e

′′
n , e

′′′
n , ẽ

′
n , ẽ

′′
n , ẽ

′′′
n , ê

′
n , ê

′′
n , and ê′′′

n are computed
from (8.10)–(8.11) and (8.18). Then en , ẽn , and ên are obtained from (8.13) and
(8.19).

Using (8.5) and (8.15), we sum (8.10) and (8.20) from n = 0 tom, respectively,
to obtain

L(Vm+1, Ψm+1) =
m∑

n=0

fn + Em+1 = Sθm f a + (I − Sθm )Em + em, (8.25)

B(Vm+1|x2=0, ψm+1) =
m∑

n=0

gn + Ẽm+1 = (I − Sθm )Ẽm + ẽm . (8.26)

Plugging (8.24) into (8.22)–(8.23), we utilize (8.21) to deduce

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(V−
m+1, Ψ

−
m+1) = RT

((B(Vm+1|x2=0, ψm+1)
)
2 − (B(Vm+1|x2=0, ψm+1)

)
1

)

+ (I − Sθm )
(
Ê−
m − RT

(
Ẽm,2 − Ẽm,1

))

+ ê−m − RT
(
ẽm,2 − ẽm,1

)
,

E(V+
m+1, Ψ

+
m+1) = RT

((B(Vn+1|x2=0, ψn+1)
)
2

)

+ (I − Sθm )
(
Ê+
m − RT Ẽm,2

) + ê+m − RT ẽm,2.
(8.27)

Since Sθm → I as m → ∞, we can formally obtain the solution to problem (7.17)
from

L(Vm+1, Ψm+1) → f a, B(Vm+1|x2=0, ψm+1) → 0, E(Vm+1, Ψm+1) → 0,

provided that the error terms (em, ẽm, êm) → 0.

8.2. Inductive Hypothesis

Given a constant ε > 0 and an integer α̃ that will be chosen later on, we assume
that (A-1)–(A-3) are satisfied and that the following estimate holds:

∥∥Ũ a
∥∥
H α̃+3
γ (ΩT )

+ ∥∥Φ̃a
∥∥
H α̃+4
γ (ΩT )

+ ∥∥ϕa∥∥
H α̃+7/2
γ (ΩT )

+ ∥∥ f a
∥∥
H α̃+2
γ (ΩT )

� ε.

(8.28)



Relativistic Vortex Sheets 679

Given another integer α, our inductive hypothesis reads

(Hn−1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) ‖(δVk, δΨk)‖Hs
γ (ΩT ) + ‖δψk‖Hs+1

γ (ωT )
� εθ s−α−1

k Δk

for all k = 0, . . . , n − 1 and s ∈ [3, α̃] ∩ N;
(b) ‖L(Vk, Ψk)− f a‖Hs

γ (ΩT ) � 2εθ s−α−1
k

for all k = 0, . . . , n − 1 and s ∈ [3, α̃ − 2] ∩ N;
(c) ‖B(Vk |x2=0, ψk)‖Hs

γ (ωT ) � εθ s−α−1
k

for all k = 0, . . . , n − 1 and s ∈ [4, α] ∩ N;
(d) ‖E(Vk, Ψk)‖H3

γ (ΩT )
� εθ2−αk for all k = 0, . . . , n − 1,

where Δk := θk+1 − θk with θk defined by (8.8). Notice that

1

3θk
� Δk =

√
θ2k + 1 − θk � 1

2θk
for all k ∈ N.

In particular, sequence (Δk) is decreasing and tends to 0. Our goal is to show that,
for a suitable choice of parameters θ0 � 1 and ε > 0, and for f a small enough,
(Hn−1) implies (Hn) and that (H0) holds. Once this goal is achieved, we infer that
(Hn) holds for all n ∈ N, which enables us to conclude the proof of Theorem 2.1.

From now on, we assume that (Hn−1) holds. As in [19], hypothesis (Hn−1)
yields the following consequences:

Lemma 8.2. If θ0 is large enough, then, for each k = 0, . . . , n and each integer
s ∈ [3, α̃],

‖(Vk, Ψk)‖Hs
γ (ΩT ) + ‖ψk‖Hs+1

γ (ωT )
�

{
εθ

(s−α)+
k if s �= α,

ε log θk if s = α,
(8.29)

‖((I − Sθk )Vk, (I − Sθk )Ψk)‖Hs
γ (ΩT ) � Cεθ s−αk . (8.30)

Furthermore, for each k = 0, . . . , n, and each integer s ∈ [3, α̃ + 4],

‖(Sθk Vk, SθkΨk)‖Hs
γ (ΩT ) �

{
Cεθ(s−α)+k if s �= α,

Cε log θk if s = α.
(8.31)

Estimates (8.30)–(8.31) follow directly from (8.1) and (8.29).

8.3. Estimate of the Error Terms

To deduce (Hn) from (Hn−1), we need to estimate the quadratic error terms e′
k ,

ẽ′
k , and ê′

k , the first substitution error terms e′′
k , ẽ

′′
k , and ê′′

k , the second substitution
error terms e′′′

k , ẽ
′′′
k , and ê

′′′
k , and the last error term Dk+1/2δΨk . Recall from (8.10)

that

e′
k = L(Vk+1, Ψk+1)− L(Vk, Ψk)− L

′(Ua + Vk, Φ
a + Ψk)(δVk, δΨk),
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which can be rewritten as

e′
k =

∫ 1

0
L

′′(Ua + Vk + τδVk,

Φa + Ψk + τδΨk)
(
(δVk, δΨk), (δVk, δΨk)

)
(1 − τ) dτ, (8.32)

where operator L
′′ is defined by

L
′′(U, Φ)

(
(V ′, Ψ ′), (V ′′, Ψ ′′)

) := d

dτ
L

′(U + τV ′′, Φ + τΨ ′′)(V ′, Ψ ′)
∣∣∣∣
τ=0

,

with operator L
′ given in (4.4). We can also obtain a similar expression for ẽ′

k
(resp. ê′

k) defined by (8.11) (resp. 8.18) in terms of the second derivative operator
B

′′ (resp. E ′′).
To control the quadratic error terms, we need the estimates for operators L

′′,
B

′′, and E ′′ (see 8.32). These can be obtained from the explicit forms of L
′′, B

′′,
and E ′′ by applying the Moser-type and Sobolev embedding inequalities. Omitting
detailed calculations, we find that the explicit forms of operators E ′′(U, Φ) and
B

′′(U, Φ) depend on state (U, Φ), which make the next estimates for E ′′ and B
′′

different from those obtained in [19, Proposition 5]. This difference is caused by
the introduction of new primary unknowns (p, hw1, hw2).

Proposition 8.2. Let T > 0 and s ∈ N with s � 3. Assume that (Ũ , Φ̃) ∈
Hs+1
γ (ΩT ), Φ̃|x2=0 ∈ Hs+1

γ (ωT ), and ‖(Ũ , Φ̃)‖H3
γ (ΩT )

� K̃ for all γ � 1.

Then there exist two positive constants K̃0 and C, which are independent of T
and γ , such that, if K̃ + ε � K̃0, γ � 1, (V1, Ψ1), (V2, Ψ2) ∈ Hs+1

γ (ΩT ), and

(W1, ψ1), (W2, ψ2) ∈ Hs+1
γ (ωT )× Hs+1

γ (ωT ), then
∥∥L

′′(Ua + Ũ , Φa + Φ̃
)(
(V1, Ψ1), (V2, Ψ2)

)∥∥
Hs
γ (ΩT )

+ ∥∥E ′′(Ũ , Φ̃)(
(V1, Ψ1), (V2, Ψ2)

)∥∥
Hs
γ (ΩT )

� C

⎧
⎨
⎩‖(V1, Ψ1)‖W 1,∞(ΩT )

‖(V2, Ψ2)‖W 1,∞(ΩT )

∥∥(Ũ + Ũ a, Φ̃ + Φ̃a)∥∥
Hs+1
γ (ΩT )

+
∑
i �= j

‖(Vi , Ψi )‖Hs+1
γ (ΩT )

‖(Vj , Ψ j )‖W 1,∞(ΩT )

⎫⎬
⎭ ,

∥∥B
′′(Ua + Ũ , Φa + Φ̃

)(
(W1, ψ1), (W2, ψ2)

)∥∥
Hs
γ (ωT )

� C

⎧⎨
⎩‖(W1, ψ1)‖W 1,∞(ωT )

‖(W2, ψ2)‖W 1,∞(ωT )

∥∥(Ũ + Ũ a, Φ̃ + Φ̃a)∥∥
Hs+1
γ (ωT )

+
∑
i �= j

‖(Wi , ψi )‖Hs+1
γ (ωT )

‖(Wj , ψ j )‖W 1,∞(ωT )

⎫⎬
⎭ .

Using Proposition 8.2, we obtain
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Lemma 8.3 (Estimate of the quadratic error terms). Let α � 4. Then there
exist ε > 0 sufficiently small and θ0 � 1 sufficiently large such that, for all k =
0, . . . , n − 1, and all integers s ∈ [3, α̃ − 1],

‖(e′
k, ê

′
k)‖Hs

γ (ΩT ) + ‖ẽ′
k‖Hs

γ (ωT ) � Cε2θ L1(s)−1
k Δk,

where L1(s) := max{(s + 2 − α)+ + 4 − 2α, s + 3 − 2α}.
Proof. In light of (Hn−1) and (8.29), we have

sup
0�τ�1

‖(Vk + τδVk, Ψk + τδΨk)‖H3
γ (ΩT )

� Cε.

For ε small enough, we can apply Proposition 8.2 and use the Sobolev embedding
inequality, (8.28), and (Hn−1) to obtain

‖e′
k‖Hs

γ (ΩT )

� C
{
ε2θ4−2α

k Δ2
k

(
ε + ‖(Vk, Ψk, δVk, δΨk)‖Hs+1

γ (ΩT )

) + ε2θ s+2−2α
k Δ2

k

}

for s ∈ [3, α̃ − 1]. If s + 1 �= α, then we obtain from (8.29) and the inequality
2θkΔk � 1 that

‖e′
k‖Hs

γ (ΩT ) � Cε2Δ2
k

(
θ
(s+1−α)++4−2α
k + θ s+2−2α

k

)
� Cε2θ L1(s)−1

k Δk .

If s + 1 = α, then using (8.29) and α � 4 yields

‖e′
k‖Hα−1

γ (ΩT )
� Cε2Δ2

k

{
(ε + ε log θk + εθ−1

k Δk)+ θ1−αk

}

� Cε2Δ2
kθ

1−α
k � Cε2θ L1(α−1)−1

k Δk .

The estimates for ê′
k and ẽ

′
k are similar and follow by applying Proposition 8.2 and

the trace theorem. This completes the proof. ��
Nowwe estimate the first substitution error terms e′′

k , ẽ
′′
k , and ê

′′
k given in (8.10)–

(8.11), and (8.18) by rewriting them in terms of L
′′, B

′′, and E ′′. For instance, ẽ′′
k

can be rewritten as

ẽ′′
k =

∫ 1

0
B

′′(Ua + Sθk Vk + τ(I − Sθk )Vk, Φ
a + SθkΨk + τ(I − Sθk )Ψk

)
(
(δVk |x2=0, δψk), ((I − Sθk )Vk |x2=0, (I − Sθk )Ψk |x2=0)

)
dτ. (8.33)

Then we have the following lemma:

Lemma 8.4. [Estimate of the first substitution error terms] Let α � 4. Then there
exist ε > 0 sufficiently small and θ0 � 1 sufficiently large such that, for all k =
0, . . . , n − 1, and all integers s ∈ [3, α̃ − 2],

‖(e′′
k , ê

′′
k )‖Hs

γ (ΩT ) + ‖ẽ′′
k‖Hs

γ (ωT ) � Cε2θ L2(s)−1
k Δk,

where L2(s) := max{(s + 2 − α)+ + 6 − 2α, s + 5 − 2α}.
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Proof. It follows from (8.30) and (8.31) that

sup
0�τ�1

‖(Sθk Vk + τ(I − Sθk )Vk, SθkΨk + τ(I − Sθk )Ψk)‖H3
γ (ΩT )

� Cε.

For ε sufficiently small, we can apply Proposition 8.2 to estimate B
′′ in (8.33).

Employ the trace and embedding theorems to obtain

‖ẽ′′
k‖Hs

γ (ωT )

�
∥∥(δVk, δΨk

)∥∥
H3
γ (ΩT )

∥∥((I − Sθk )Vk, (I − Sθk )Ψk
)∥∥

H3
γ (ΩT )

× ∥∥(Ũ a + Sθk Vk + τ(I − Sθk )Vk, Φ̃
a + SθkΨk + τ(I − Sθk )Ψk

)∥∥
Hs+2
γ (ΩT )

+ ∥∥(δVk, δΨk
)∥∥

Hs+2
γ (ΩT )

∥∥((I − Sθk )Vk, (I − Sθk )Ψk
)∥∥

H3
γ (ΩT )

+ ∥∥((I − Sθk )Vk, (I − Sθk )Ψk
)∥∥

Hs+2
γ (ΩT )

∥∥(δVk, δΨk
)∥∥

H3
γ (ΩT )

.

Using estimates (8.28), (Hn−1), and (8.30)–(8.31), we obtain that, for s + 2 �= α

and s + 2 � α̃,

‖ẽ′′
k‖Hs

γ (ωT )

� C
{
ε2θ5−2α

k Δk
(
ε + εθ

(s+2−α)+
k

) + ε2θ s+4−2α
k Δk

}
� Cε2θ L2(s)−1

k Δk .

For s + 2 = α, we obtain

‖ẽ′′
k‖Hs

γ (ωT ) � C
{
ε2θ5−2α

k Δk
(
ε + ε log θk

) + ε2θ2−αk Δk

}

� Cε2Δk

(
θ5−2α
k log θk + θ2−αk

)
� Cε2θ L2(α−2)−1

k Δk,

owing to α � 4. The estimate for e′′
k and ê′′

k can be deduced in the same way. ��
Now we estimate the second substitution error terms e′′′

k , ẽ
′′′
k , and ê′′′

k given in
(8.10)–(8.11) and (8.18) by rewriting them in terms ofL

′′,B′′, and E ′′. For instance,
ê′′′
k can be rewritten as

ê′′′
k =

∫ 1

0
E ′′(Vk+1/2 + τ(Sθk Vk − Vk+1/2), Ψk+1/2

)(
(δVk , δΨk),

(Sθk Vk − Vk+1/2, 0)
)
dτ. (8.34)

Here we have used relationΨk+1/2 = SθkΨk (cf. (8.7)). Then we have the following
result:

Lemma 8.5. [Estimate of the second substitution error terms] Let α � 4. Then
there exist ε > 0 sufficiently small and θ0 � 1 sufficiently large such that, for all
k = 0, . . . , n − 1, and all integers s ∈ [3, α̃ − 1],

‖(e′′′
k , ê

′′′
k )‖Hs

γ (ΩT ) + ‖ẽ′′′
k ‖Hs

γ (ωT ) � Cε2θ L3(s)−1
k Δk,

where L3(s) := max{(s + 2 − α)+ + 8 − 2α, s + 6 − 2α}.
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Proof. Omitting detailed derivation, we can use the inductive assumption (Hn−1),
definition (8.7), and the properties of Sθ and RT to obtain

‖Sθk Vk − Vk+1/2‖Hs
γ (ΩT ) � Cεθ s+1−α

k (8.35)

for all k = 0, . . . , n−1 and all integers s ∈ [3, α̃+3].We refer to [19, Proposition 7]
for the proof of (8.35). It follows from (8.31) and (8.35) that

‖Vk+1/2‖Hs
γ (ΩT ) � Cεθ(s−α)++1

k for s ∈ [3, α̃ + 3]. (8.36)

Thus, we have

‖(Ũ a + Vk+1/2 + τ(Sθk Vk − Vk+1/2), Φ̃
a + Ψk+1/2)‖Hs+1

γ (ΩT )

� Cεθ(s+1−α)++1
k . (8.37)

For ε small enough, one may apply Proposition 8.2 and use (Hn−1), (8.35), and
(8.37) to deduce

‖ê′′′
k ‖Hs

γ (ΩT ) � C
{
ε2θ6−2α

k Δkεθ
(s+1−α)++1
k + ε2θ s+4−2α

k Δk

}
� Cε2θ L3(s)−1

k Δk .

The estimate for e′′′
k and ẽ′′′

k can be deduced in a similar way by using the trace
theorem. ��

We now estimate the last error term (8.12), which is

Dk+1/2δΨk = δΨk

∂2(Φa + Ψk+1/2)
Rk,

where Rk := ∂2L(Ua + Vk+1/2, Φ
a + Ψk+1/2). This error term results from the

introduction of the good unknown in decomposition (8.10). Note from (8.7), (8.28),
and (8.31) that

|∂2(Φa + Ψk+1/2)| = ∣∣∂2 �Φ + ∂2
(
Φ̃a + Ψk+1/2

)∣∣ � 1

2
,

provided that ε is small enough. Then we have the following estimate:

Lemma 8.6. Let α � 5 and α̃ � α + 2. Then there exist ε > 0 sufficiently small
and θ0 � 1 sufficiently large such that, for all k = 0, . . . , n−1, and for all integers
s ∈ [3, α̃ − 2], we have

‖Dk+1/2δΨk‖Hs
γ (ΩT ) � Cε2θ L(s)−1

k Δk, (8.38)

where L(s) := max{(s + 2− α)+ + 8− 2α, (s + 1− α)+ + 9− 2α, s + 6− 2α}.
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Proof. The proof follows from the arguments as in [1,19]. LetΩ+
T := (0, T )×R

2+.
Since δΨk vanishes in the past, using the Moser-type inequality, we obtain

‖Dk+1/2δΨk‖Hs
γ (ΩT ) = ‖Dk+1/2δΨk‖Hs

γ (Ω
+
T )

� C
{
‖δΨk‖L∞(Ω+

T )

(‖Rk‖Hs
γ (Ω

+
T )

+ ‖Rk‖L∞(Ω+
T )

‖Φ̃a + Ψk+1/2‖Hs+1
γ (Ω+

T )

)

+ ‖δΨk‖Hs
γ (Ω

+
T )

‖Rk‖L∞(Ω+
T )

}
. (8.39)

To estimate Rk , we introduce the following decomposition for t > 0:

L(Ua + Vk+1/2, Φ
a + Ψk+1/2)− L(Vk, Ψk)+ f a

= L(Ua + Vk+1/2, Φ
a + Ψk+1/2)− L(Ua + Vk, Φ

a + Ψk)

=
∫ 1

0
L

′(Ua + Vk + τ(Vk+1/2 − Vk),

Φa + Ψk + τ(Ψk+1/2 − Ψk)
)
(Vk+1/2 − Vk, Ψk+1/2 − Ψk) dτ. (8.40)

If s � α̃ − 3, the inductive assumption (Hn−1) implies

‖L(Vk, Ψk)− f a‖Hs+1
γ (ΩT )

� 2εθ s−αk . (8.41)

Since we can obtain an estimate for L
′ similar to that for L

′′ (see Proposition 8.2),
using Lemma 8.2 and (8.35) leads to

‖L(Ua + Vk+1/2, Φ
a + Ψk+1/2)− L(Ua + Vk, Φ

a + Ψk)‖Hs+1
γ (ΩT )

� Cε
(
θ s+3−α
k + θ

(s+2−α)++5−α
k

)
. (8.42)

Plugging (8.41)–(8.42) into (8.40) yields

‖Rk‖Hs
γ (ΩT ) � Cε

(
θ s+3−α
k + θ

(s+2−α)++5−α
k

)
for s ∈ [3, α̃ − 3]. (8.43)

If s = α̃ − 2 � α, then we use (8.31) and (8.36) to obtain

‖Rk‖Hs
γ (ΩT ) � ‖L(Ua + Vk+1/2, Φ

a + Ψk+1/2)‖Hs+1
γ (ΩT )

� C‖(Ũ a + Vk+1/2, Φ̃
a + Ψk+1/2)‖Hs+2

γ (ΩT )

� Cεθ s+3−α
k .

Thus, we obtain estimate (8.43) for s ∈ [3, α̃ − 2]. Thanks to (Hn−1) and (8.43),
we utilize the embedding inequality to find

‖δΨk‖L∞(ΩT ) � Cεθ2−αk Δk, ‖Rk‖L∞(ΩT ) � Cεθ6−αk .

Using these bounds and plugging (8.43), (Hn−1), and (8.31) into (8.39) yield (8.38).
��

From Lemmas 8.3–8.6, we can immediately obtain the following estimate for
ek , ẽk and êk defined in (8.13) and (8.19):
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Lemma 8.7. Let α � 5. Then there exist ε > 0 sufficiently small and θ0 � 1
sufficiently large such that, for all k = 0, . . . , n − 1, and for all integers s ∈
[3, α̃ − 2], we have

‖ek‖Hs
γ (ΩT ) + ‖êk‖Hs

γ (ΩT ) + ‖ẽk‖Hs
γ (ωT ) � Cε2θ L(s)−1

k Δk, (8.44)

where L(s) is defined in Lemma 8.6.

Lemma 8.7 yields the estimate of the accumulated error terms Ek , Ẽk , and Êk

that are defined in (8.14) and (8.19).

Lemma 8.8. Let α � 7 and α̃ = α + 4. Then there exist ε > 0 sufficiently small
and θ0 � 1 sufficiently large such that

‖(En, Ên)‖Hα+2
γ (ΩT )

+ ‖Ẽn‖Hα+2
γ (ωT )

� Cε2θn . (8.45)

Proof. Notice that L(α + 2) � 1 if α � 7. From (8.44), we have

‖(En, Ên)‖Hα+2
γ (ΩT )

+ ‖Ẽn‖Hα+2
γ (ωT )

�
n−1∑
k=0

{‖(ek, êk)‖Hα+2
γ (ΩT )

+ ‖ẽk‖Hα+2
γ (ωT )

}

�
n−1∑
k=0

Cε2Δk � Cε2θn,

provided that α � 7 and α+ 2 ∈ [3, α̃− 2]. Thus, the minimal possible α̃ is α+ 4.
��

8.4. Proof of Theorem 2.1

To prove our main result, we first derive the estimates of the source terms fn ,
gn , and G±

n defined in (8.15) and (8.24).

Lemma 8.9. Let α � 7 and α̃ = α + 4. Then there exist ε > 0 sufficiently small
and θ0 � 1 sufficiently large such that, for all integers s ∈ [3, α̃ + 1],

‖ fn‖Hs
γ (ΩT ) � CΔn

{
θ s−α−2
n (‖ f a‖Hα+1

γ (ΩT )
+ ε2)+ ε2θ L(s)−1

n

}
, (8.46)

‖gn‖Hs
γ (ωT ) � Cε2Δn

(
θ s−α−2
n + θ L(s)−1

n

)
, (8.47)

and for all integers s ∈ [3, α̃],

‖G±
n ‖Hs

γ (ΩT ) � Cε2Δn
(
θ s−α−2
n + θ L(s)−1

n

)
. (8.48)
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Proof. It follows from (8.15) that

fn = (Sθn − Sθn−1) f
a − (Sθn − Sθn−1)En−1 − Sθn en−1.

Using (8.1a), (8.1c), (8.44) and (8.45), we obtain the estimates

‖(Sθn − Sθn−1) f
a‖Hs

γ (ΩT ) � Cθ s−α−2
n−1 ‖ f a‖Hα+1

γ (ΩT )
Δn−1,

‖(Sθn − Sθn−1)En−1‖Hs
γ (ΩT ) � Cθ s−α−3

n−1 ‖En−1‖Hα+2
γ (ΩT )

Δn−1

� Cε2θ s−α−2
n−1 Δn−1,

‖Sθn en−1‖Hs
γ (ΩT ) � Cε2θ L(s)−1

n−1 Δn−1.

Combining the above estimates with the inequalities: θn−1 � θn �
√
2θn−1 and

Δn−1 � 3Δn , we derive (8.46). Similarly, we obtain (8.47). To prove (8.48), we
use (8.24) to find

G+
n = (Sθn − Sθn−1)

(RT Ẽn−1,2 − Ê+
n−1

) + Sθn
(RT ẽn−1,2 − ê+

n−1

)
.

Then we obtain the estimate for G+
n by using (8.44)–(8.45) as above. The estimate

of G−
n is the same. ��
We are going to obtain the estimate of the solution to problem (8.5) by employ-

ing the tame estimate (6.2).

Lemma 8.10. Let α � 7. If ε > 0 and ‖ f a‖Hα+1
γ (ΩT )

/ε are sufficiently small, and

if θ0 � 1 is sufficiently large, then, for all integers s ∈ [3, α̃],
‖(δVn, δΨn)‖Hs

γ (ΩT ) + ‖δψn‖Hs+1
γ (ωT )

� εθ s−α−1
n Δn . (8.49)

Proof. Let us consider problem (8.5), which can be solved, sinceUa +Vn+1/2 and
Φa +Ψn+1/2 satisfy the required constraints (8.9). Constraint (4.1) can be obtained
by truncating the coefficients,Ua + Vn+1/2 andΦa +Ψn+1/2, by a suitable cut-off
function, while (4.3b) can be obtained by taking ε > 0 small enough. We can
consider the coefficients with a fixed compact support. In order to apply Theorem
6.1, we obtain (6.1) by using the classical trace estimate, (8.28), (8.31), (8.35) and
α � 7. Thus, we can employ the tame estimate (6.2) to obtain

‖δV̇n‖Hs
γ (ΩT ) + ‖δψn‖Hs+1

γ (ωT )

� C
{(‖ fn‖H4

γ (ΩT )
+ ‖gn‖H4

γ (ωT )

)‖(Ũ a + Vn+1/2, Φ̃
a + Ψn+1/2)‖Hs+3

γ (ΩT )

+ ‖ fn‖Hs+1
γ (ΩT )

+ ‖gn‖Hs+1
γ (ωT )

}
. (8.50)

The particular case s = 3 implies

‖δV̇n‖H3
γ (ΩT )

� C
(‖ fn‖H4

γ (ΩT )
+ ‖gn‖H4

γ (ωT )

)
. (8.51)

Given δψn , we can compute δΨn from equations (8.16)–(8.17). Performing the
energy estimates for δΨn , and using Lemma 8.2, (8.35), and the Sobolev embedding
theorem, we derive

γ ‖δΨn‖Hs
γ (ΩT )
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� C
{‖gn‖Hs

γ (ωT ) + ‖Gn‖Hs
γ (ΩT ) + ‖δV̇n‖Hs

γ (ΩT ) + ‖δV̇n‖H3
γ (ΩT )

× ‖Φ̃a + SθnΨn‖Hs+1
γ (ΩT )

+ εθ
(s+2−α)+
n ‖δΨn‖H3

γ (ΩT )

}
(8.52)

for all integers s ∈ [3, α̃] and ε small enough. For s = 3, using (8.51), we have

‖δΨn‖H3
γ (ΩT )

� C
(‖ fn‖H4

γ (ΩT )
+ ‖gn‖H4

γ (ωT )
+ ‖Gn‖H3

γ (ΩT )

)
. (8.53)

In view of (8.6), using estimates (8.50), (8.52)–(8.53), and the Moser-type inequal-
ity, we obtain

‖(δVn, δΨn)‖Hs
γ (ΩT ) + ‖δψn‖Hs+1

γ (ωT )

� C
{‖ fn‖Hs+1

γ (ΩT )
+ ‖gn‖Hs+1

γ (ωT )
+ ‖Gn‖Hs

γ (ΩT )

+ (‖ fn‖H4
γ (ΩT )

+ ‖gn‖H4
γ (ωT )

+ ‖Gn‖H3
γ (ΩT )

)

× (‖(Ũ a + Vn+1/2, Φ̃
a + Ψn+1/2)‖Hs+3

γ (ΩT )
+ εθ

(s+2−α)+
n

)}
(8.54)

for all integers s ∈ [3, α̃]. Using Lemma 8.9, (8.31) and (8.35), we obtain from
(8.54) that

‖(δVn, δΨn)‖Hs
γ (ΩT ) + ‖δψn‖Hs+1

γ (ωT )

� CΔn
{
θ2−αn (‖ f a‖Hα+1

γ (ΩT )
+ ε2)+ ε2θ9−2α

n

}(
εθ

(s+3−α)+
n + εθ s+4−α

n

)

+ CΔn
{
θ s−α−1
n (‖ f a‖Hα+1

γ (ΩT )
+ ε2)+ ε2θ L(s+1)−1

n

}
. (8.55)

Exactly as in [19], we can obtain the following inequalities:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L(s + 1) � s − α,

(s + 3 − α)+ + 2 − α � s − α − 1,

(s + 3 − α)+ + 9 − 2α � s − α − 1,

s + 6 − 2α � s − α − 1,

s + 13 − 3α � s − α − 1,

for α � 7 and s ∈ [3, α̃]. Thus, (8.55) yields
‖(δVn, δΨn)‖Hs

γ (ΩT ) + ‖δψn‖Hs+1
γ (ωT )

� C
(‖ f a‖Hα+1

γ (ΩT )
+ ε2

)
θ s−α−1
n Δn,

and (8.49) follows by taking ε + ‖ f a‖Hα+1
γ (ΩT )

/ε small enough. ��

Estimate (8.49) is inequality (a) of (Hn). We now prove the other inequalities
in (Hn).

Lemma 8.11. Let α � 7. If ε > 0 and ‖ f a‖Hα+1
γ (ΩT )

/ε are sufficiently small, and

if θ0 � 1 is sufficiently large, then, for all integers s ∈ [3, α̃ − 2],
‖L(Vn, Ψn)− f a‖Hs

γ (ΩT ) � 2εθ s−α−1
n . (8.56)
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Moreover, for all integers s ∈ [4, α],
‖B(Vn|x2=0, ψn)‖Hs

γ (ωT ) � εθ s−α−1
n (8.57)

and

‖E(Vn, Ψn)‖H3
γ (ΩT )

� εθ2−αn . (8.58)

Proof. From (8.25), we have

‖L(Vn, Ψn)− f a‖Hs
γ (ΩT ) � ‖(I − Sθn−1) f

a‖Hs
γ (ΩT )

+ ‖(Sθn−1 − I )En−1‖Hs
γ (ΩT ) + ‖en−1‖Hs

γ (ΩT ).

For s ∈ [α + 1, α̃ − 2], using (8.1a) and (8.28), we obtain

‖(I − Sθn−1) f
a‖Hs

γ (ΩT ) � θ s−α−1
n−1 (‖ f a‖Hs

γ (ΩT ) + C‖ f a‖Hα+1
γ (ΩT )

)

� εθ s−α−1
n

(
1 +

C‖ f a‖Hα+1
γ (ΩT )

ε

)
,

while, for s ∈ [3, α + 1], applying (8.1b), we have

‖(I − Sθn−1) f
a‖Hs

γ (ΩT ) � Cθ s−α−1
n−1 ‖ f a‖Hα+1

γ (ΩT )
� Cθ s−α−1

n ‖ f a‖Hα+1
γ (ΩT )

.

Lemma 8.8 and (8.1b) imply

‖(I − Sθn−1)En−1‖Hs
γ (ΩT ) � Cθ s−α−2

n−1 ‖En−1‖Hα+2
γ (ΩT )

� Cε2θ s−α−1
n

for 3 � s � α + 2 = α̃ − 2. It follows from (8.44) that

‖en−1‖Hs
γ (ΩT ) � Cε2θ L(s)−1

n−1 Δn−1 � Cε2θ L(s)−2
n � Cε2θ s−α−1

n .

By virtue of the above estimates, we choose ε and ‖ f a‖Hα+1
γ (ΩT )

/ε sufficiently
small to obtain (8.56). Similarly, using decompositions (8.26)–(8.27), we can prove
estimates (8.57)–(8.58). ��

In view of Lemmas 8.10–8.11, we have obtained (Hn) from (Hn−1), provided
that α � 7, α̃ = α + 4, (8.28) holds, ε > 0 and ‖ f a‖Hα+1

γ (ΩT )
/ε are sufficiently

small, and θ0 � 1 is large enough. Fixing constants α, α̃, ε > 0 and θ0 � 1, we
now prove (H0).

Lemma 8.12. If ‖ f a‖Hα+1
γ (ΩT )

/ε is sufficiently small, then (H0) holds.

Proof. Recall from assumptions (A-1)–(A-3) that (V0, Ψ0, ψ0, g0,G
±
0 ) = 0 and

f0 = Sθ0 f
a . Then it follows from (8.7) that (V1/2, Ψ1/2) = 0. Thanks to (8.28) and

the properties of the approximate solution in Lemma 7.2, we may apply Theorem
6.1 to obtain (δV̇0, δψ0) as the unique solution of (8.5) for n = 0, which satisfies

‖δV̇0‖Hs
γ (ΩT ) + ‖δψ0‖Hs+1

γ (ΩT )
� C‖Sθ0 f a‖Hs+1

γ (ΩT )
.
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Then we find δΨ±
0 from equations (8.16)–(8.17) with n = 0. The standard energy

estimates yield

‖δΨ0‖Hs
γ (ΩT ) � C‖δV̇0‖Hs

γ (ΩT ) for s ∈ [3, α̃],
which, combined with (8.6) and (8.28), implies

‖(δV0, δΨ0)‖Hs
γ (ΩT ) + ‖δψ0‖Hs+1

γ (ΩT )

� C‖Sθ0 f a‖Hs+1
γ (ΩT )

� Cθ(s−α)+0 ‖ f a‖Hα+1
γ (ΩT )

.

If ‖ f a‖Hα+1
γ (ΩT )

/ε is suitably small, then we can obtain inequality (a) of (H0).

The other inequalities of (H0) can be shown to hold by taking ‖ f a‖Hα+1
γ (ΩT )

small
enough. ��

From (8.12) and Lemmas 8.10–8.11, we derive that (Hn) holds for every n ∈ N,
provided that the parameters are well-chosen and that f a is sufficiently small. We
are now in a position to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. We consider the initial data (U±
0 , ϕ0) satisfying all the

assumptions of Theorem 2.1. Let α̃ = μ− 2 and α = α̃ − 4 � 7. Then the initial
dataU±

0 and ϕ0 are compatible up to order μ = α̃+ 2. From (7.14) and (7.16), we
obtain (8.28) and all the requirements of Lemmas 8.10–8.12,

provided that (Ũ±
0 , ϕ0) is sufficiently small in Hμ+1/2(R2+) × Hμ+1(R) with

Ũ±
0 := U±

0 − �U±. Hence, for small initial data, property (Hn) holds for all integers
n. In particular, we have

∞∑
k=0

(
‖(δVk, δΨk)‖Hs

γ (ΩT ) + ‖δψk‖Hs+1
γ (ωT )

)
� C

∞∑
k=0

θ s−α−2
k < ∞

for s ∈ [3, α − 1]. Thus, sequence (Vk, Ψk) converges to some limit (V, Ψ ) in
Hα−1
γ (ΩT ), and sequence ψk converges to some limit ψ in Hα

γ (ΩT ). Passing to
the limit in (8.56)–(8.57) for s = α − 1 = μ− 7, and in (8.58), we obtain (7.17).
Therefore, (U, Φ) = (Ua+V, Φa+Ψ ) is a solution onΩ+

T of the original problem
(2.20) and (2.23). This completes the proof. ��

Acknowledgements. The research of Gui-Qiang G. Chen was supported in part by the UK
Engineering and Physical Sciences Research Council Award EP/E035027/1 and EP/L015
811/1, and the Royal Society–Wolfson Research Merit Award (UK). The research of Paolo
Secchi was supported in part by the Italian research projects PRIN 2012L5WXHJ-004 and
PRIN 2015YCJY3A-004. The research ofTaoWangwas supported in part by NSFCGrants
#11601398 and #11731008, and the Italian research project PRIN 2012L5WXHJ-004. Tao
Wang warmly thanks Prof.Alessandro Morando, Prof. Paolo Secchi, and Prof. Paola
Trebeschi for support and hospitality during his postdoctoral stay at University of Brescia,
and also expressesmuchgratitude toProf. HuijiangZhao for his continuous encouragement
and constant support.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.



690 Gui-Qiang G. Chen et al.

Appendix A: Symmetrization of the Relativistic Euler Equations

Under assumption (2.6),Makino–Ukai [33] showed that there exists a strictly con-
vex entropy function for the relativistic Euler equations (2.4), which yields a sym-
metrizer for (2.4) by following Godunov’s symmetrization procedure in [23]. By
contrast, the symmetrizable hyperbolic system (2.18) is deduced by using a purely
algebraic symmetrization of the relativistic Euler equations (2.4); see Trakhinin
[48] for a different algebraic symmetrization.
In order to derive (2.18), we need to recover another conservation law (that is,
conservation of particle number) from equations (2.4). Denoting by N the particle
number density and by e the specific internal energy, then

ρ = N (1 + ε2e). (A.1)

The particle number density N was introduced by Taub [46]. For a perfect fluid, N
and e are functions of the two thermodynamic variables ρ and S (specific entropy).
According to the first law of thermodynamics, the following differential relation
holds:

T dS = de + p dN−1, (A.2)

where T is the absolute temperature. By virtue of (A.1)–(A.2), we have

∂(ln N )

∂ρ
= 1

ρ + ε2 p
,

∂(ln N )

∂S
= −ε2NT . (A.3)

In the case of barotropic fluids where pressure p depends solely on ρ, it is natural
to introduce the “mathematical” particle number density N as a function of ρ only
such that the first relation in (A.3) holds. This motivates us to define N = N (ρ) as
(2.11).
Let (ρ, v) be a C1–solution to (2.4). It follows from (2.4a) and h = (ρ + ε2 p)/N
that

−hΓ {∂t (NΓ )+ ∂k(NΓ vk)} = NΓ {Γ (∂t + vk∂k)h + h(∂t + vk∂k)Γ } − ε2∂t p.

In view of (2.13) and (2.4b), we obtain

NhΓ (∂t + vk∂k)Γ = NhΓ ε2v j (∂t + vk∂k)w j

= −ε2N |w|2(∂t + vk∂k)h − ε2hΓ −1|w|2 {∂t (NΓ )+ ∂k(NΓ vk)} − ε2v j∂ j p,

which implies

hΓ −1(ε2|w|2 − Γ 2) {∂t (NΓ )+ ∂k(NΓ vk)}
= N (Γ 2 − ε2|w|2)(∂t + vk∂k)h − ε2(∂t + vk∂k)p.

Thanks to (2.11) and (2.13), N (ρ)h′(ρ) = ε2 p′(ρ) and Γ 2 − ε2|w|2 = 1. Then
we obtain the conservation of particle number

∂t (NΓ )+ ∂k(NΓ vk) = 0. (A.4)
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Equations (2.14) then follow from (2.4b) and (A.4). Using the identities: Γt =
ε2v · ∂tw and N ′(p) = N ′(ρ)

p′(ρ) = 1
h(ρ)c2(ρ)

, we see from (A.4) that

Γ (∂t + v · ∇x )p + Nhc2
(
ε2v · ∂tw + ∇x · w

)
= 0.

We use the relations: h′(p) = ε2/N and w = Γ v to deduce

Γ (1 − ε4c2|v|2)∂t p + Γ (1 − ε2c2)v · ∇x p

+ Nc2
(
ε2v · ∂t (hw)+ ∇x · (hw)

)
= 0. (A.5)

Set U := (p, hw1, hw2)
T. Then equations (2.14) and (A.5) can be written as

B0(U )∂tU + B1(U )∂1U + B2(U )∂2U = 0, (A.6)

where the coefficient matrices are given by

B0(U ) :=
(
Γ (1 − ε4c2|v|2) ε2c2NvT

0 Γ I2

)
, (A.7)

Bj (U ) :=
(
Γ v j (1 − ε2c2) Nc2eTj

N−1e j Γ v j I2

)
, j = 1, 2. (A.8)

Here we have set e j := (δ1 j , δ2 j )
T and I2 := (δi j )2×2 with δi j being the Kronecker

symbol. Let us define

S1(U ) :=
(
1 ε2Nc2Γ −1vT

0 I2 − ε2v ⊗ v

)
. (A.9)

Multiplying (A.6) by S1(U ) and using the identity Γ 2 − ε2c2Γ 2 + ε2c2 = Γ 2(1−
ε4c2|v|2), we obtain system (2.18). Conversely, we can also deduce system (2.4)
from (2.18) so that we derive the equivalence of these two systems in the region
where the solutions are in C1.
It remains to show that system (2.18) is symmetrizable hyperbolic in region {ρ∗ <
ρ < ρ∗, |v| < ε−1}. Let us set the Friedrichs symmetrizer

S2(U ) :=
(
1 −2ε2Nc2Γ vT

0 N 2c2 I2

)
. (A.10)

After straightforward calculations, we derive that all matrices S2(U )A j (U ) are
symmetric, and the eigenvalues of S2(U )A0(U ) are

λ1 = Γ (1 − ε4c2|v|2), λ2 = Γ N 2c2, λ3 = Γ N 2c2(1 − ε2|v|2).
Assumption (2.6) yields that λ1, λ2, and λ3 are all positive. Consequently, S2(U )A0
(U ) is positive definite and system (2.18) is symmetrizable hyperbolic.
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