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Abstract

We are concerned with the nonlinear stability of vortex sheets for the relativistic
Euler equations in three-dimensional Minkowski spacetime. This is a nonlinear
hyperbolic problem with a characteristic free boundary. In this paper, we introduce
a new symmetrization by choosing appropriate functions as primary unknowns. A
necessary and sufficient condition for the weakly linear stability of relativistic vortex
sheets is obtained by analyzing the roots of the Lopatinskii determinant associated
to the constant coefficient linearized problem. Under this stability condition, we
show that the variable coefficient linearized problem obeys an energy estimate with
a loss of derivatives. The construction of certain weight functions plays a crucial
role in absorbing the error terms caused by microlocalization. Based on the weakly
linear stability result, we establish the existence and nonlinear stability of relativistic
vortex sheets under small initial perturbations by a Nash—Moser iteration scheme.
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1. Introduction

We are concerned with the nonlinear stability of relativistic vortex sheets for
the Euler equations describing the evolution of a relativistic compressible fluid.
Relativistic vortex sheets arise as a very important feature in several models of
phenomena occurring in astrophysics, plasma physics, and nuclear physics. Vortex
sheets are interfaces between two incompressible or compressible flows across
which there is a discontinuity in fluid velocity. In particular, across a vortex sheet,
the tangential velocity field has a jump, while the normal component of the flow
velocity is continuous. The discontinuity in the tangential velocity field creates a
concentration of vorticity along the interface. Moreover, compressible vortex sheets
are characteristic discontinuities to the Euler equations for compressible fluids and
as such they are fundamental waves which play an important role in the study of
general entropy solutions to multidimensional hyperbolic systems of conservation
laws (cf. CHEN—FELDMAN [7]).

It was observed in [21,36], by the normal mode analysis, that rectilinear vortex
sheets for non-relativistic isentropic compressible fluids in two space dimensions
are linearly stable when the Mach number M > /2 and are violently unstable
when M < +/2, while planar vortex sheets are always violently unstable in three
space dimensions. This kind of instability is the analogue of the Kelvin—Helmbholtz
instability for incompressible fluids. ARTOLA-MAJDA [3] studied certain instabili-
ties of two-dimensional supersonic vortex sheets by analyzing the interaction with
highly oscillatory waves through geometric optics. A rigorous mathematical the-
ory on the nonlinear stability and local-in-time existence of two-dimensional non-
relativistic supersonic vortex sheets was first established by COULOMBEL—SECCHI
[19,20] based on their linear stability results in [17] and a Nash—Moser iteration
scheme.

Motivated by the earlier results in [17,19,20], we aim to establish the nonlinear
stability of relativistic vortex sheets in three-dimensional Minkowski spacetime
under the necessary condition for the linear stability on the piecewise constant
background state. This problem is a nonlinear hyperbolic problem with a charac-
teristic free boundary. The so-called Lopatinskii condition holds only in a weak
sense, which yields a loss of derivatives.

We first reformulate the relativistic Euler equations into a symmetrizable hy-
perbolic system by choosing appropriate functions as primary unknowns. Our sym-
metrization is purely algebraic and different from those obtained by Makino—Ukai
in [33] and TRAKHININ [48]. As in Francheteau—Métivier [22], we straighten the
unknown front by lifting functions @7 that satisfy the eikonal equations (2.23a)
on the whole domain. Consequently, the original problem can be transformed into
a nonlinear problem in a half-space for which the boundary matrix has constant
rank on the whole half-space. This constant rank property is essential for deriving
energy estimates for the variable coefficient linearized problem by developing the
Kreiss’ symmetrizers technique from [15,17,27].
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Then we consider the constant coefficient linearized problem around the piece-
wise constant background state. By computing the roots of the associated Lopatin-
skii determinant, we deduce the necessary stability condition (cf. (2.25)):

V2
V1 + 232

where € ! is the speed of light and ¢ is the sound speed of the background state.
In the non-relativistic limit € — 0, this stability condition is reduced to M >
/2, the well-known fact studied in [17,36]. The critical Mach number M,. of the
relativistic stability condition is always strictly smaller than +/2, which means that
the relativistic vortex sheets are stable in a larger physical regime. Moreover, when
the sound speed ¢ is arbitrarily close to the light speed € ~!, the critical Mach number
M. approaches 1 so that the stability holds precisely for supersonic relativistic flows.
The symbol associated to the unknown front is elliptic, which enables us to eliminate
the front and to consider a standard boundary value problem. We prove that the
constant coefficient linearized problem obeys an a priori energy estimate, which
exhibits a loss of derivatives with respect to the source terms, owing to the failure
of the uniform Kreiss—Lopatinskil condition. Since the boundary is characteristic,
there exists a loss of control on the trace of the solution.

After that, we study the effective linear problem, which is deduced from the lin-
earized problem around a perturbation of the background state by using the “good
unknown” of Alinhac [1] and neglecting some zero-th order terms. The dropped
terms will be considered as the error terms at each Nash—Moser iteration step in
the subsequent nonlinear analysis. We first prove for small perturbations that the
solution satisfies the same a priori estimate as the constant coefficient case. The
energy estimate is deduced by the technique applied earlier to weakly stable shock
waves in [15] and isentropic compressible vortex sheets in [17]. It consists of the
paralinearization of the linearized problem, analysis of the Lopatinskii determinant,
microlocalization, and construction of the Kreiss’ symmetrizers. In particular, we
introduce certain weight functions, vanishing only on the bicharacteristic curves
starting from the critical set, to absorb the error terms caused by microlocalization.
Based on this basic energy estimate, we establish a well-posedness result for the
effective linear problem in the usual Sobolev space H*® with s large enough. This
is achieved by means of a duality argument and higher order energy estimates.
Although our problem is a hyperbolic problem with a characteristic boundary that
yields a natural loss of normal derivatives, we manage to compensate for this loss by
estimating missing normal derivatives through the equations of the linearized vor-
ticity. With the well-posedness and tame estimate for the effective linear problem in
hand, we prove the local existence theorem for relativistic vortex sheets (see Theo-
rem 2.1) by a Nash—Moser iteration scheme. We emphasize that our choice of new
primary unknowns is essential for three main reasons: the system becomes sym-
metrizable hyperbolic; it has an appropriate form for the analysis of the Lopatinskit
determinant; and, most of all, it is suitable for getting a vorticity-type equation.

Characteristic discontinuities, especially vortex sheets, arise in a broad range
of physical problems in fluid mechanics, oceanography, aerodynamics, plasma
physics, astrophysics, and elastodynamics. The linear results in [17] have been

M> M, :=
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generalized to cover two-dimensional nonisentropic flows [38], three-dimensional
compressible steady flows [50,52], and two-dimensional two-phase flows [42]. Tt
is worth mentioning that a key ingredient in all of these proofs is the constant
rank property of the boundary matrix. Recently, the methodology in [17] has been
developed to deal with several constant coefficient linearized problems arising in
two-dimensional compressible magnetohydrodynamics (MHD) and elastic flows;
cf. [5,10,49]. See also the very recent preprint [11] for the linear stability of elastic
vortex sheets in the variable coefficient case. For three-dimensional MHD, CHEN—
WANG [8,9] and TRAKHININ [47] proved independently the nonlinear stability of
compressible current-vortex sheets, which indicates that non-paralleled magnetic
fields stabilize the motion of three-dimensional compressible vortex sheets. More-
over, the modified Nash—Moser iteration scheme developed in [19,24] has been suc-
cessfully applied to the compressible liquids in vacuum [48], the plasma-vacuum
interface problem [44], MHD contact discontinuities [39], and vortex sheets for
three-dimensional steady flow [51] and two-dimensional two-phase flow [25].

Let us also mention some earlier works on the relativistic fluids. The global
existence of discontinuous solutions to the relativistic Euler equations in one space
dimension was first investigated by SMOLLER—TEMPLE [45]. Also, MAKINO—UKAI
[33] showed the existence of local smooth solutions in three space dimensions when
the initial data is away from the vacuum. The stability of relativistic compressible
flows with vacuum was addressed in [26,48]. Moreover, the blow-up in finite time of
smooth solutions for the relativistic Euler equations was shown in PAN—SMOLLER
[40]. Also see CHRIsTODOULOU [12,13] for the formation and development of
shocks in the multidimensional relativistic compressible fluids.

The plan of this paper is as follows: in Section 2, after introducing the free
boundary problem for relativistic vortex sheets, we reformulate the relativistic Euler
equations and reduce our nonlinear problem to that in a fixed domain. Then we
state the main result in this paper and introduce the weighted spaces and norms.
Section 3 is mainly devoted to proving Theorem 3.1, i.e. an energy estimate for
the constant coefficient linearized problem. More precisely, after some reductions,
we compute the roots of the associated Lopatinskii determinant and deduce the
criterion for weakly linear stability in Section 3.2. Then we adopt the argument
developed recently by CHEN—HU-WANG [10] to prove the energy estimate for the
constant coefficient case. In Section 4, we introduce the effective linear problem
and its reformulation. Section 5 is devoted to the proof of Theorem 5.1, the energy
estimate for the effective linear problem. After deriving a weighted energy estimate
with certain weights vanishing only on the bicharacteristic curves starting from the
critical set, we can absorb the error terms caused by microlocalization and complete
the proof of Theorem 5.1. In Section 6, we prove a well-posedness result of the
effective linear problem in the usual Sobolev space H*® with s large enough. In
Section 7, we obtain the smooth “approximate solution” by imposing necessary
compatible conditions on the initial data. Then the original problem (2.20) and
(2.23) is reduced into a nonlinear problem with zero initial data. In Section 8§, by
using a modification of the Nash—Moser iteration scheme, we show the existence
of solutions to the reduced problem and conclude the proof of our main result,
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Theorem 2.1. “Appendix A” concerns the motivation of introducing new primary
unknowns and the derivation of the new symmetrization.

2. Nonlinear Problems and the Main Theorem

In this section, we first introduce the free boundary problem for relativistic
vortex sheets, then reformulate the relativistic Euler equations and reduce our non-
linear problem to that in a fixed domain, and finally state the main theorem of this
paper and introduce the weighted spaces and norms.

2.1. Relativistic Vortex Sheets

We consider the equations of relativistic perfect fluid dynamics in the three-
dimensional Minkowski spacetime R2H! that is, the relativistic Euler equations
(see LicuNEROWICZ [30]):

3, T =0, (2.1

where T denotes the energy-momentum stress tensor with components

Taﬂ — <P+p672> uﬂtuﬁ _i_pgﬂtﬂ
Here p is the pressure, p is the energy-mass density, € ! is the speed of light,
g*F = diag (—1, 1, 1) is the flat Minkowski metric, and u = (u°, u', u?)T is the
flow velocity satisfying

g*Putuf = —1. (2.2)

The notation 9, denotes the differentiation with respect to variable x,, and the
Greek indices “«” and “B” run from O to 2. Throughout this paper, we use the
Einstein summation convention whereby a repeated index in a term implies the
summation over all the values of that index.

We introduce the coordinate velocity v = (v, vg)T = (ul, uz)T/(euo). By

virtue of (2.2), the physical constraint is
lv] <e L. (2.3)

We also introduce the spacetime coordinates (¢, x) with# := exp and x := (x1, x2).
Then system (2.1) can be equivalently rewritten as

3 ((p +Epr? - 62p> v, ((,0 n 62p)F2v> —o, (2.4a)
o ((p+EpI2) + Vo ((0+EPTv@v) +Vip =0, (24b)

where 0; = %, V, = (01, 82)T with 9; = %, matrix v ® v has (i, j)-entry v;v;,
and
1

=T (@) := 2.5)
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is the Lorentz factor. The fluid is assumed to be barotropic, which means that
pressure p is given by an explicit function of p. We also assume that p = p(p) is
a C™ function defined on (p, p*) and satisfies

0<pp)<e? forall p e (ps p*), (2.6)
where p, and p* are some constants such that 0 < p, < p* < oo. Consequently,
density p is a strictly increasing function of p defined on (p(p4), p(p*)), and system
(2.4) is closed with three unknowns (p, vy, v2). Barotropic fluids arise in many
physical situations such as very cold matter, nuclear matter and ultrarelativistic
fluids (cf. [2, Chapter II], [ 14, Chapter IX], and [45, Section 1]).

Let (p, v)(t, x) be smooth functions on either side of a smooth hypersurface
X (t) := {xp = ¢(t,x1)}. Then (p, v) is a weak solution of (2.4) if and only if
(p, v) is a classical solution of (2.4) on each side of X' () and satisfies the Rankine—
Hugoniot conditions at every point of X'(¢):

dr [(p +eip)rr — 6217] - [(p +ep)v- V] =0,
2.7
oo [0+ pr?v] = [0 +Epriw-vw| - [plv =0, =

where v := (—9d;1¢, 1) is a spatial normal vector to X (¢). As usual, for any function
g, we denote by gi the value of g in {£(x2 — ¢(¢, x1)) > 0}, and [g] := g+|;;(,) —
& | =) the jump across X (t).

In this paper, we are interested in weak solutions (p, v) of (2.4) such that
the tangential velocity (with respect to X'(¢)) is the only jump experienced by
the solution (p, v) across X (¢). Then the Rankine—Hugoniot conditions (2.7) are
reduced to

do=vr-v=v"-v, pT=p~  onX(). (2.8)

A piecewise smooth weak solution (p, v) of (2.4) with discontinuities across X' (¢)
is called a relativistic vortex sheet if its trace on X' (¢) satisfies (2.8).

We note that system (2.4) admits trivial vortex-sheet solutions that consist of
two constant states separated by a rectilinear front:

( ) ) (p,v,0) if xo > 0, 2.9)
, U s X1, X = - _ . .
p PERIT (5 —5,0)  ifxs <0,

where p and v are suitable positive constants. Every rectilinear relativistic vortex
sheet is of this form by changing the observer if necessary. In view of (2.3) and
(2.6), we may assume without loss of generality that

p € (px, p%), Ve, (2.10)

The aim of this paper is to study the local-in-time existence and nonlinear
stability of relativistic vortex sheets with initial data close to the piecewise constant
state (2.9).
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2.2. Reformulation and the Main Theorem

Let us first reformulate the relativistic Euler equations (2.4) by choosing appro-
priate functions as primary unknowns. To this end, we define the particle number
density N = N(p), the sound speed ¢ = c(p), and i = h(p) by

o P ds T __p+erp(p)
N(p) := exp (/p . +€2p(s)> . c(p):==+/p'(p), hip):= N

@2.11)

‘We also introduce

wi=lyv= —o (2.12)

V1=’

so that

r=Ji+ewpk, v=-—=>2 . 2.13)
J1 1 w2

Then we discover that smooth solutions to system (2.4) satisfy

@ +v-Vo)(hw)+ N 'vp=0. (2.14)

Let us take U := (p, hw, hws)' as primary unknowns and define the following
matrices:

F(l—e4c2|v|2) 2¢2Nc2v; 2€XNc*,

Ao(U) == 0 rd-—ewd) —ervuv |, (2.15)
0 —e2Tvivy T'(1—€%v3)
I'vi(l— 64C2|U|2) N1+ ezvf) e2vjvuNe?
AlU):=[ N1 -} Tv(l—e*v?) —€eTvivy |, (2.16)
—eZyu N1 —ezl"v%vz I'vi(l — ezvg)
I'vy(1 — e4c2|v|2) e2vjvaNe? ch(l + ezvg)
A (U) == —2vu N~ T —e2d) —rv? | @217

N~la - ezvg) —ezl“vlv% I'vy(1 — e2v§)
When the solution is in C!, system (2.4) equivalently reads
Ao(U)o:U + A1 (U)o1U + A2(U)d U = 0. (2.18)

We postpone proving the equivalence of systems (2.4) and (2.18) to “Appendix A”.
The choice of the new unknowns U has several advantages. First, system (2.18)
is symmetrizable hyperbolic in region {p, < p < p*, |v] < 6_1} (see “Appendix
A” for the precise expression of the Friedrichs symmetrizer). Second, we will see
in the sequel that the form of (2.18) is appropriate for computing the roots of the
Lopatinskii determinant. Third, equations (2.14) will enable us to obtain the lin-
earized vorticity equation through which the loss of derivatives can be compensated
in the higher-order energy estimates.
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Note that the first two identities in (2.8) are the eikonal equations
g+ 20U, 019) =0, g+ 20U, 019) =0,

where Ay (U, &) := v1& — vy, and & € R is the second characteristic field of (2.18)
with the corresponding eigenvector:

-
U, &) = (0, 1-— ezv% + ezvlvzé, (1— 62v12)E + 62v1v2)

It follows from (2.11) and (2.13) that Vy A (U, &) - rp(U, &) = 0, i.e. the charac-
teristic field A; is linearly degenerate in the sense of Lax [28]. As a consequence,
a relativistic vortex sheet is a characteristic discontinuity.

Function ¢ describing the discontinuity front is a part of the unknowns, and thus
the relativistic vortex sheet problem is a free boundary problem. To reformulate this
problem in a fixed domain, we replace unknowns U, which are smooth on either
side of X (¢), by

U (1, x) = Ut x1, @51, %)), (2.19)
where @ are smooth functions satisfying the constraints
DE(1,x1,0) = @(t, x1), £Hh®(1,x) >k >0 if x2>0.

Then the existence of relativistic vortex sheets amounts to constructing solutions
Uﬁi, which are smooth in the fixed domain {x, > 0}, to the following initial-
boundary value problem:

LU*, %) =0 if x, > 0, (2.20a)
BUT, U, 9)=0 if x =0, (2.20b)
(U*, 9)li=0 = (U, ¢0), (2.20¢)

where index “fi” has been dropped for notational simplicity. According to transfor-
mation (2.19), operators . and B take the forms

L(U, ®) = L(U, ®)U o)
with LU, @) := Ag(U)d; + A1(U)d1 + Az (U, @)y, '
[vi]d1g — [v2]
BWUY, U, @)= |de+v]dip—0v]|. (2.22)

pT—p”
where A;(U), j =0, 1, 2, are defined by (2.15), (2.16), (2.17), respectively, and

~ 1
Ay(U, @) := 82_¢> (A2(U) — 0;PAp(U) — 012A1(U)).

As in FRANCHETEAU-METIVIER [22], we choose the change of variables ol
such that

yE + v 0T —vF =0 ifxp >0, (2.23a)
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+ ot >k >0 if xo > 0, (2.23b)
Pt =9 =9 if x = 0. (2.23¢)

Not only does this choice simplify much the expression of system (2.20a), but it
also implies that the boundary matrix for problem (2.20):

diag (~A (U, 1), —A (U, @7)),

has constant rank on the whole closed half-space {x; > 0}. This will play a crucial
role in deriving the energy estimates for the variable coefficient linearized problem
by developing further the Kreiss’ symmetrizers argument from [15,17,27].

In the new variables, the rectilinear vortex sheet (2.9) corresponds to the fol-
lowing stationary solution of (2.20a)—(2.20b) and (2.23):

U* = (p, hw,0)", 7:=0, @ :=x), (2.24)

where p := p(p), h := h(p), and W —Fvw1thF L= /1 — €292,

Imposing the smooth initial data (UO , ) close to (2.24), we aim to show
the existence of solutions to the nonlinear problem (2.20) and (2.23) under the
necessary condition for the linear stability on the background state (2.24). The
main result is stated as follows:

Theorem 2.1. Let T > 0 be any fixed constant and € N with pu > 13. Assume
that the background state (2.24) satisfies the physical constraints (2.10) and the
necessary stability condition

|| V2 o _
Mi=—>——— with ¢:=c(p). (2.25)
c V14 €2¢? g

Assume further that the initial data Uo and @y satisfy the compatibility conditions
up to order u (see §7), and that (UO —U*, 99) € HHT2(RT) x HAT (R) has
a compact support. Then there exists a positive constant € such that, if ||UO
ﬁillel/z(Ri) + llgoll gut1r) < &, problem (2.20) and (2.23) has a solution
(Ui, o, @) on the time interval [0, T] satisfying

(U -U*, 05— 05 e H*((0,T) xR%), ¢ e H°(0,T) x R).

Remark 2.1. In the non-relativistic limit ¢ — 0, from (2.25), one obtains the
classical stability condition M > /2 for compressible vortex sheets. The critical
Mach number

V2
V14 €e2c?

of the relativistic stability condition is always strictly smaller than /2, which means
that the relativistic vortex sheets are stable in a larger physical regime of the param-
eters. When ¢ is arbitrarily close to the light speed € ~!, the critical Mach number M,.
approaches 1 so that the stability holds precisely for supersonic relativistic flows.

M, =
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2.3. Weighted Sobolev Spaces and Norms

We are going to introduce certain weighted Sobolev spaces in order to prove
Theorem 2.1. Let §2 denote the half-space {(¢, x1, x2) € R3:xy > 0}. Boundary
92 is identified to R%. For all s € R and y > 1, the usual Sobolev space H* (Rz)
is equipped with the following norm:

/H;Z APV EDE) e, A (E) = 2+ IEP)?,

2 .
IWIy = Gy

where 7 is the Fourier transform of v. We equip space L*>(R; H*(R?)) with the
norm

2 . 2
I, = [ oo, o
Ry

We will abbreviate the usual norms of L2(R?) and L2(£2) as
-1 :=1"-1o, and [I-ll:=1I"lo,y-
The scalar products in L?(R?) and L%(£2) are denoted as

(a,b) = / a()b(y)dy,  (a.b) = / a(y)b(y) dy,
R2 2

where b(y) is the complex conjugation of b(y).
Fors € Rand y > 1, we introduce the weighted Sobolev space H; (R?) as

H(R?) = [u eD'R?) : e ult, x) € HS(RZ)] ,

and its norm ||”||H;,‘(1R<2) = lle " ulls,,. We write L)Z,(Rz) = HB(R2) and
el 2 ey 1= lle™""ull.

We define L2(R; ij (R?)), briefly denoted by LZ(H;), as the space of distri-
butions with finite LZ(H}f)—norm, where

2 . 2 —yt 2
I = [ 32 gy 2 = el

We set L7 (2) := L*(H)) and el L2 2y = lle=" ul|.
Forall k € Nand y > 1, we define the weighted Sobolev space H)’f(.Q) as
HE@) = [ueD'(@) : e ue H @)

Throughout the paper, we introduce the notation A < B (B = A)if A < CB
holds uniformly for some positive constant C that is independent of y . The notation,
A ~ B, means that both A < B and B < A. Then, for k € N, one has

lulley ~ Y v 1 0%ul  forallu e H*(R?). (2.26)
o <k
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For any real number 7', we introduce wr := (—00, T) xRand 27 := wr xR,..
For all k € Nand y > 1, we define the weighted space H)’j (£27) as

HE(27) = [u eD(Qr) e ue Hk(QT)} .
In view of relation (2.26), we introduce the norm on H)'j(.QT) as

R k—|al o=yt qo
lull s = D v e 8%ull 2oy - 2.27)
| <k

The norm on H)’j (wr) is defined in the same way. For all k € Nand y > 1, we
define space LZ(R+; H)’,‘ (wr)), briefly denoted by LZ(H)’,‘ (wr)), as the space of
distributions with finite Lz(H)’j (wr))-norm, where

2 — . 2
”uHLz(H)];(a)T)) = \/1%4— ||M( P x2)”H§(a)T) dx2

k—0tg—ay || o=t 200 40
Yo T ul 2o -
ooty <k

This is an anisotropic Sobolev space for measuring only the tangential regularity
(with respect to boundary 9£2). We write L}z, (27) = LZ(H)(,) (w7)) and ||u ||L§(QT)

= Ml 2 k9 wry)-

3. Constant Coefficient Linearized Problem

In order to deduce the necessary condition for the linear stability of the back-
ground state (2.24), in this section, we consider the following linearized problem
of (2.20) and (2.23) around (2.24):

= f* ifx, >0, (3.12)
6=0

_ d _
B/(V+7 Vv ) W) = @B(UQJ’_’ U@ 5 9‘79)

d
LVE = @L(Uei» o)

—¢ ifxn =0, (3.1b)
6=0

where UejE = UT4+0VE, dﬁét = @F4+0v* and @g (resp. ¥) denotes the common
trace of dbgt (resp. ¥T) on the boundary {x, = 0}. The differential operators L.
and I”_ are given by

L, = Ag(T%)d; + A1 (TF)d1 £ A (T) s,

which are both constant coefficient differential operators. It follows from (2.6) and
(2.11) that

NP =1, ¢=c(p)e0,eh. (3.2)
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To derive the boundary operator B’, we infer from (2.13) that

JrUD? + U3 + 03

rw = vy = —JH i1 (33
h(U1) C rU)hUy’ N
Utilizing the identity &' (U;) = €2/NUy) yields
v, ey dv;  1—€vi gu,  au v 3.4)
U, NhI'*’ 3Ujz1  hl 7 U, 9Us kI '

for j = 1, 2. The second component of]B%(Ug“, Uy, 99) 18 0(0: + vy (U9+)81 ) —
vz(Ug'). Then we use (3.4) to obtain

d(]B(U Uy.00),| =dv+itay—Gr) vy
do 9> UYg »Po 970— t 1 3 .

After a similar argument as to that regarding the other components of IBS(U;' Uy s
©p), we have

B'(VY, V™, ¢) =B/(V™, ¢) :=bVy + BV™,

where Vi := (9, 019) T, V™ := (V;F, V+ Vi, V3 )T denotes the “noncharac-
teristic part” of V := (V*, V™ )T, and coefficients b and B are given by

020 o-(hr)~" o (kD)™
b:=|1v], B:= 0_(;,,=)—1 0 0 . (3.5)
00 1 0 -1 0

We are now ready to state the main result for the constant coefficient case.

Theorem 3.1. Assume that the stationary solution defined by (2.24) satisfies (2.10)
and (2.25). Then, forally > 1 andforall (V, ) € H}(2)x H}(R?), the following
estimate holds:

J/||V||L2(_Q) + ”VnL'xz 0||L2(R2 + ||¢||H1(1R2

< y_3||1LiVi||L2(H}}) + 92 |B (V™4 —0, I/f)llﬁ,yl(Rz). (3.6)
2 o
Remark 3.1. In the case of M < M, := NiFvereh the relativistic vortex sheet

(2.24) is violently unstable, i.e. the Lopatinskii determinant admits the roots in the
interior of frequency space. On the other hand, when M > M, all the roots of
the Lopatinskii determinant are localized on the boundary of frequency space. In
particular, if M = M, the only root of the Lopatinskii determinant is a triple one,
which leads to the following weaker estimate than (3.6):

VIVIZ2 @) + IV lo=0lZ @) + 1V 1 22,
=7 +2 —6 2
5 14 ”L;:V ”LZ(H)}) + Y ”]B%/(Vnc|x2:0, I/I)HH;(RZ)’ (37)
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forall y > 1 and (V,v) € H;‘(Q) X H;‘(RZ). See Remarks 3.2-3.4 for more
details. This latter case corresponds to a transition between a weakly stable zone
and a violently unstable zone (cf. COULOMBEL—SECCHI [ 18] for the non-relativistic
case).

The rest of this section is devoted mainly to proving Theorem 3.1.

3.1. Some Reductions

Before proving Theorem 3.1, we first make some reductions of problem (3.1).

3.1.1. Reformulation of Theorem 3.1 We first transform our problem (3.1) into
the one with diagonal boundary matrix. For this purpose, we calculate the eigen-
values and corresponding eigenvectors of AQ(U jE). The eigenvalues of

_ _ 0 0 &
AUT)=4U")=10 0 0
1 0 0

are A| = 0, A = —c, and A3 = ¢, with the corresponding right eigenvectors:

' '
— T — —
ri _(09170) ) rp = (1701_:> ) r3 = (1701 :) .
C C

Set R := (r1 r» r3). Then R™'A>(U*)R = diag (0, —¢, ¢). We thus perform the
linear transformation W= := R~1V= with

wit = vsE owif = 1(viE v, wit =L (viE+evs).

Let us multiply (3.1a) by SR~ with § := diag (1, 2/¢2, 2/&%). Then problem (3.1)
becomes equivalent to

{LW = Agd W+ A1 W+ AW =f ifxy>0, a8)

B(W", ) := bV + BW™ =g ifx, =0,
with new f and g, where W™ := (W2+ , W3+ Wy, Wy )T denotes the “noncharac-

teristic part” of W := (W, W™)T. The coefficient matrices .A ; = diag (A;L, A;),
j =0, 1,2, are block diagonal with

AL :=SR'AqUHR

(1 —€e%?) 0 0
_ TQ—e*? —
2 4 2
— :i:2€ v 5—2 —€ FU , (39)
. T _ 43252
12625 _A TR %

A :=SR7'A(UH)R
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+I(1 — €20H)D 1 — €292 1 — €292
} T2 —e*c?v?) —_
2-2 4 3
_ T+efn? t—a—r Fe'l'v ., (3.10)
_ Fo@2—e*cv?
1 + €22 AT ez ec) - )
&
and
+ SRl A TTEV R ; 22
A = +SR'Ay(UF)R = diag (0, —=, = ). (3.11)
C

We notice that (2.18) is a symmetrizable hyperbolic system with the Friedrichs
symmetrizer S;(U) defined in (A.10). Consequently, operator £ is symmetrizable
hyperbolic with the Friedrichs symmetrizer S3 defined by

Sy := diag (RTS»(UH)RS™", RTSH(U )RS ™). (3.12)
Regarding the boundary coefficients, b is given in (3.5), and B is defined by
(Feh)y™' —(eh)y™' —(eh)=' (réeh)~!
B := | (I'¢ch)y™' —(I'¢h)~! 0 0 : (3.13)
1 1 —1 -1

For y > 1, we define
LY :=L+yAy, B (W' y):=b (V‘[’ST;’W) + BW"™.

It is easily shown that Theorem 3.1 admits the following equivalent proposition.

Proposition 3.1. Assume that the stationary solution (2.24) satisfies (2.10) and
(2.25). Then, forall y > 1and (W, ¥) € H>(§2) x H*(R?), the following estimate
holds:

- 2 _ _
YIWIP+ [ W Lp=o "+ 111, Sy LY WIT, +y 2187 (W =0, ¥IT -

3.1.2. Partial homogenization In order to prove Proposition 3.1, we show that
it suffices to study the homogeneous case £ W = 0. Given (W, /) € H2(£2) x
H?%(R?), we set

f=L'WeH (2), g:=B(W"q=0.v¥)eH R,
and consider the following auxiliary problem:

LYW, = if 0,
{ 1=f ifx > (3.14)

BY™W =0 ifx;=0,

where

01
aux .__
B '_(oo

00
10)°
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The boundary matrix for problem (3.14) (i.e. —.Aj3) has two negative eigenvalues
and is nonnegative on ker B = {W3+ = W, = 0}. Thus, the boundary conditions
in (3.14) are maximally dissipative. From Lax—Phillips [29], there exists a unique
solution W; € L2(R+; H'(R?)) to problem (3.14) such that the trace of W; on
{x> = 0} is in H'(R?), and

yIWil> Sy~ AR W =0T, S v I, (3.15)
It is clear that W, := W — W, satisfies

LYW, =0 ifx, > 0, (3.16a)
BY(W' y)=5§ ifx=0, (3.16b)

where g := g — EWIHC. By virtue of (3.15), we obtain

IEIT, < leli, + v~ IfIg, - (3.17)

Multiplying (3.16a) by the symmetrizer S3 (cf. (3.12)), then taking the scalar prod-
uct of the resulting equations with W5, and employing integration by parts yield

VW22 < W5 Lo—oll?. (3.18)
The next lemma follows directly from (3.15) and (3.17)—(3.18).
Lemma 3.1. [f the solution of (3.16) satisfies the estimate
IW5Lp=oll> + 1117, < ¥ 22T, -

then Proposition 3.1 holds.

3.1.3. Eliminating the front We perform the Fourier transform of problem (3.16)
in (¢, x1), with dual variables denoted by (8, n). Setting T = y + 1§, we have

_ dw

(t Ao +inA) W + Azd— =0 ifxp >0, (3.19a)
X2

b(r,m¥ + BWe =3¢ if xp =0, (3.19b)

where we write g for g and W for W, for simplicity when no confusion arises. The
coefficient

b(z,n) :=b(t, in)' = Qivn, T +ivn, 0)"

ishomogeneous of degree 1 in (7, 1). In order to take this homogeneity into account,
we define the hemisphere

g = {(r,n) eCxR: |‘L’|2+772= 1,Ret 20},
and the set of “frequencies”

Z:={(tr,nN eCxR :Ret >0, (r,n) # (0,0} =(0,00) - &.
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Notice that symbol b(z, 1) is elliptic, i.e. it is always different from zero on Z.

We set k := +/|7|? + 12, and define

| 0 0 k
O(t,n) = % T +ivnp —2ivp O for (z,n) € E,
—2ivn T —1ivn O
where T denotes the complex conjugation of 7, so that Q € C* (&, GL3(C)) is
homogeneous of degree 0 in (7, 1) and satisfies

Q(r. mb(r.n) = (0,0,0(x, )T with&(z, n) =k~ '|b(z. n)I*.

Since v # 0, and Z is compact, we obtain that min( yez, [0(t, n)| > 0. Multi-
plying (3.19b) by Q(z, n) yields

O P
0 w<a,n>+(

B(z, n)>/\
0(t,n)

ey ) V@00 = 0@ g, (3.20)

where g is the 2 x 4 matrix given by the first two rows of Q(z, n)B, and ¢ is the
last row of Q(z, n)B. Both 8 and £ are C*° and homogeneous of degree 0 on &.
In view of (3.13), symbol 8 satisfies

1 1 -1 -1
B(t,n)=| t—ivnp —t+ivn —1—ivn T4ivy on Z;. (3.21)
I'ch I'ch rech r'ch

The last component in (3.20) reads

(T, MV + £(x, PW™(S, 1, 0) = Q3(7, ),

where Q3(t, n) is the last row of Q(z, n). Hence, it is homogeneous of degree 0.
Thanks to the homogeneity of 6 and ¢, we obtain

~ Eye 2~ S
1912 < W0l + 187 in &,
from which we employ Plancherel’s theorem to deduce
2 -
Wi, S W™ ka=o|” + v 2llgli,- (3.22)

After eliminating the front function i, we have

N dw

(tAp +inA) W + AZJ =0 ifxp >0, (3.23a)
2

B(x, W™ =G if xp = 0, (3.23b)

where G consists of the first two rows of Q(z, n)g. From (3.9)—(3.10), we have

TAS +in AT
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arT'(1 — €29%) in(1 — €292 in(1 — 272
T — A2 B
_ v oen TEEE e dTa | o
C
— T — a2
in(l+ ) £26%0  —e*TiPay L CCV)
C

where a4 := t % iv7. Recalling that formula (3.11) defines the boundary matrix
Azi, we write the first and fourth equations of (3.23a) as

ar TWE +inW;f +inWi = 0. (3.25)

Then we utilize (3.25) to express WljE interms of W2i and W3i, and plug the resulting
expressions into the other four equations of (3.23a). As a consequence, we obtain

a system of ordinary differential equations for W in the following form:

d — —
—Wne = A(t, n)Wne if xo > 0,
dxs (3.26)

Bt mW™ =G if xp = 0.
Here matrix A(t, n) is given by

py —my 0 0
my —py 0 0

A m =", 0o —u m | (3.27)
0 0 —-m_- pu-
where
Tay €2c02Ta% + iné(in(1 + €20%) + 2€207)
Mt = —— —mx, My = = .
c 2lay
Using the relation I' "2 = 1 — €247 yields
[(t +ivn) &I (in £ €v7)? ¢l (in + €2071)?
M+ = = - — , my =————-——. (3.28)
c 2(t £ivny) 2(t £ivny)

The reader may recognize the form of the symbol in (3.27) given also by [17,
Page 957, (4.12)]. The poles of symbol A(t, ) on & are exactly the points (t, ) €

Z| with t = Fivn, where the coefficient of W1+ or W in (3.25) vanishes.

By virtue of (3.22) and Lemma 3.1, we infer that, in order to prove Proposi-
tion 3.1, it suffices to study problem (3.26). More precisely, we have the following
lemma:

Lemma 3.2. If the solution of (3.26) satisfies the estimate
. 2 _
W™ lu=o|” S ¥ 2IGIT, . (3.29)

then Proposition 3.1 holds.
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3.2. Lopatinskit Condition

In this subsection, we show that the Kreiss—Lopatinskii condition (or briefly
the Lopatinskii condition) holds only in the weak form under assumption (2.25) by
computing the Lopatinskii determinant associated to problem (3.26).

We first calculate the stable subspace of the coefficient matrix A(z, 1), that is,
the sum of eigenspaces of A(t, n) corresponding to the eigenvalues of negative real
parts.

Lemma 3.3. The following properties hold:

(a) If (t,n) € &1 withRe T > 0, then the eigenvalues of A(t, n) are roots w of

.
Wt =yl — 2_F_( +ind)? — P2(in + €201)?
= Ui m+_52r inv i+ €“vt
=C§(C(x +iCan)? + 1?), (3.30a)
2
2 2 2 _ 4

—(t — ind)> — I (in — €*01)?
C
=C3(CE(x —iCan)® +n?), (3.30b)

where C i, J =0, 1,2, are positive constants defined by

_ I'(l—e%%) — 1 —e*e?p? — (1 —€23h)p
g=—--—"=-, Ci=— -, Cri=-———"—. (33])
V1 — 4322 (1 —€20?)¢ 1 — e4c292

Moreover, (3.30a) (resp. (3.30b)) has a unique root w4 (resp. w_) of negative
real part. The other root of (3.30a) (resp. (3.30b)) is —w (resp. —w_);
(b) If (r,n) € E| withRe t > 0, then the stable subspace £~ (t, n) of A(t, n) has
dimension two and is spanned by
Eq(t, 1) = ((r +immy, (t + i)y —01),0,0)7,  (332a)
E_(r,n):=(0,0,(tr —ivn)(u- —w-), (t — iﬁn)m_)T; (3.32b)
(¢) Both w4 and w_ admit a continuous extension to any point (t,n) € E1 with
Re v = 0. In particular, if T = i§ € iR, then
w+ (T, 1)

— = . = \2
— Co\/n? - CR6 £ To)? i > CHo + Tan)?,

— isan(3 = Cy)Coy[CR6 £ Com? — n?  if n” < T (5 £ Can)™
(3.33)

(d) Vectors EL(t, n) do not vanish at any pointin E1. Both E.(t,n) and E_(t, n)
can be extended continuously to any point (t,n) € E1 with Ret = 0. These
two vectors are linearly independent of the whole hemisphere Z1;

(e) Matrix A(z, n) is diagonalizable as long as eigenvalues w4 do not vanish, i.e.
when t # i(FC, £ (_?1_1)77. Apart from these points, A(t, ) has a C* basis
of eigenvectors.
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Proof. The relations in (3.30) and assertions (b)—(c) and (e) can be deduced from
straightforward calculations and the implicit functions theorem.

It follows from (2.10) and (3.2) that C j 1s positive. We now show that root w of
(3.30a) is not purely imaginary when Re r > 0. If this were not true, there would
exist o € R such that ic would be a root of (3.30a). Then we would have

CoCi(t +iCon) = +iJo? + C3n? € iR,
which would imply Re v = 0. This concludes assertion (a).
It remains to prove assertion (d). \_Ve see from (3.28) that, if T + ivn = 0, then
(t +ivpmy = —en*(1 — €2v%)/(2T7) # 0. Hence, when (t 4 ivn)my = 0,

T#—itn, my =0, py=T(+ion/c#0, pui=ol.

Using the relations Re 1y = I" Re /¢ > 0 and Re w,. < 0, we have
(T +ion)(pny —wg) =2(z +ivnu4 # 0.

Therefore, E4 (T, n) defined by (3.32a) does not vanish. We can also show in a
similar way that E£_(t, ) does not vanish. Assertion (d) then follows. O

As in Majda—Osher [32], we define the Lopatinskif determinant associated with
problem (3.26) by

Az, ) i=det [B(z, ) (E+(z, ) E_(z, )], (3.34)
where 8 and E1 are given in (3.21) and (3.32), respectively. We say that the
Lopatinskii condition holds if A(t,n) # O for all (r,n) € Z with Ret > 0.
Furthermore, if A(z, ) # Oforall (7, n) € Z, we say that the uniform Lopatinskit
condition holds. To deduce the energy estimate, we need to study the zeros of

A(z, n). For this, we have

Lemma 3.4. Assume that (2.10) and (2.25) hold. Then, for any (7, n) € &1,
A(t,n) =0 ifandonlyif t € {0, £izin}, (3.35)

where z1 is some positive constant satisfying
0<z1<C-C'l<C<i<C+Cph (3.36)

Moreover, each of these roots is simple in the sense that, if ¢ € {0, —z1, 21}, then
there exists a neighborhood V' of (iqn, n) in &1 and a C*°—function hy defined on
¥ such that

AT, n) = (t —ignhy(t,m), hy(z,n) #0 forall (v,n) V. (3.37)
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Proof. We divide the proof into seven steps.
1. According to (3.21) and (3.32), we have

B(z,n) (Ex(r,n) E_(T,1m))

(r +ivn)(my + p4 — w4) —(r—ivm(m-+p- —w-)
=\ T2 i ens — s o) e — i — e+ )
e My — g+ o4) —— mm— — p— + o
(3.38)
By using (3.28) and Lemma 3.3 (a), we have
N FTEIn cwl (3.39)
m = , m4i — = = ——"". .
AL c =TT TR i)
It then follows that
Ale. ) 1 { +id Ew+}{ . Ew,]
T, =—7 wn — — T—1nN — —
1 czh " r 1 r
x {w_(t +ion)? + wp(t — iﬁn)z} . (3.40)

We will check the zeros of each factors in this expression separately.

2. We show in this step that both I'(t 4 ion) — ¢wy and I'(t — ivn) — cw_ do
not vanish at any point (7, 7) € &. By contradiction, we assume without loss of
generality that there exists a point (g, 7o) € &1 such that

T (7 + ivno) = cwy (10, no)- (3.41)
From (3.30a), we have
[P (w +idm0)* — S (r0, m0)* = T (ing + €7970)> = 0,

which implies 79 = i§g € iR with g = —621_)50. Since (g, n9) € &y, we see
that both 19 and §y are nonzero real numbers. If ’7_3 > 512(80 + Czno)z, then
w4 (70, No) € R due to (3.33). Then ¢ w4 (10, no) # I (to + ivno), since

I (to +ivno) =il (1 — €25%)8 € iR\ {0}.

According to (3.41), n(z) < 5%(80 + 52770)2 so that 512(1 —€2CH0)? > €*v?2. Tt then
follows from (3.33) that

w4 (10, o) = —isgn(8o) sgn(l — 62625)60\/(612(1 — €2C10)? — €402)83

— —i80Co\/CH(1 — 2C20)? — 47,

where we have used that 1 — €2Ch0 = (1 — 62132)/(1 — €*%32) > 0 from (3.2).
Consequently, we have

I (o + ivno) — ¢ (t0, No)

=ido {F(1 — 2% + 560\/@(1 — 2Cy0)? — 64,—)2} £0.
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This contradicts (3.41).
3. From the above analysis, we know that A(z, n) = 0 if and only if factor w_(t +
v n)2 +wi(r—1iv 77)2 vanishes. We first prove that this factor does not vanish when
n=0.

If n = 0, then we see from (3.30) that co_%E = 2212 (1 — €433292). Using
(3.2) and noting Re T > 0, we find that . = —¢~ ' T't+/1 — €422, which yields

w_(t +in)* + w4 (r —ivn)* = =207 ' TP (1 — ')/ £ 0.
We thus assume that  # 0. Introducing z := t/(in), we find from (3.30) that
cw? (v +ion)*
I2(im)°
ol (r —ivn)*
2 (im)®
Define

=+ {(z — 92— - 6251)2} — Pi(2), (3.42)

= (z— ) {(z + 02—+ ezﬁz)z} = Py(z). (3.43)

P(z) == P1(z) — P2(2). (3.44)

Then A(z, n) = 0holds only if w? (T +ivn)* = w_%_(t —ivn)*, which is equivalent
to P(z) = 0. A straightforward calculation yields

P(2) = —4z0Py(z),  Po(z) := E1z* + E2z* + E3,
where E| = 2¢*3202 — €232 — 1, E» = 2€%3%20% — 6€28%92 + 292 + 222, and
Esy = 22%0% — 23%0* — o*. (3.45)

It is trivial that z = 0 is one zero of P(z). Function Py(z) is a polynomial one of

z2 with the following zeros:
E> £ \/E5 — 4E\E3

_ 3.46
2, (3.46)
By virtue of (2.10) and (3.2), we have
Ei = —(1 — *&®0%) — 28%(1 — €%9°) < 0,
Ey = 20%(1 — €28%) 4+ 28%(1 — €25%) > 0,
E3 —4EE;3 (3.47)

=43% (et — D)2 (ed + 1)2 (6454174 — 2623 0% 4 40 + 52) >0,

which yields that the zeros in (3.46) are real and distinct. If (2.25) holds, then
E3 < 0, which immediately implies that the zeros in (3.46) are also positive. Let
us denote these zeros by z% and z% with 0 < z1 < z3 so that

2 2
2_E2—,/E2—4E1E3 2_E2—‘,—,/E2—4E1E3
1 .

a= —2F; ’ 2= —2F;

(3.48)
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Consequently, the Lopatinskii determinant vanishes only if z € {0, +z;, +z5}.
4. In this step, we show that the Lopatinskii determinant vanishes when z = 0, i.e.
when t = 0. We note that ¢ < v by combining (2.25) and (3.2). Then

(0= 01 + €%ev)

= =1
C-Cl=— s >0 (3.49)

It then follows directly from (3.33) that

0+ (0, ) = —isgn(£C2n)Coy/ C1Can? — 11 = FinCoy/CC3 — 1.

Then we infer

[o-@ +iom? + 040 — i50?| L= =00 @20, +0_(0.7) =0,

T=

and hence A(0, n) = 0.
5. We prove that w_(t + ifm)2 + wi(t — il"m)2 # 0 when z = %z, i.e. when
T = =+izon. To this end, we need to show that

2 + 52 > 70 — 62 > El_l (3.50)

The first inequality is trivial, so it suffices to prove the second one. From (3.31) and

(3.48), we have
, Bt \/m ((1 — 2)i+(1 — 2))p)°

2E (1 — e*c?v2)?

(1 — *c02)2 (2 — 4E\ E3 + E2)+2E; ((1 — 2i2)é+(1 — 28)0)

2E (1 — €422¢2)2
_2e(1 = €20%)(1 — €2¢0)*(Ry — Lo)
B 2E1(1 — e*c2¢2)2 ’

Z% - (El_l + Ez)

where Ry := (1 4 €2¢0)2Ve4c20% — 226202 + 402 + &2 and
Ly = e30* + 2643707 — 26*F 0% + 4€%c0” + 20 + €28,
Then
we obtain from (3.2) that
Ry — L} = &(e¢ — 1)(ec 4 1)(ed — D*(eb + 1)?2e*E?0* — 2% — 1) > 0,

which, combined with (3.2) and (3.47), implies that z3 > (C, ! +Ez)2. Then (3.50)
follows.
In view of (3.50), we see from (3.33) that, for T = izo7,

wi(t,n) = —isgn(zzni@nfo\/E%(zz + )02 —

—in 60\/@(@ +Cy)2—1.
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Therefore, we obtain that

-z +i0m)? + 01 (0 = i0)? = =0 (012 = D+ 0- (22 +9)?)

— iy {60\/612@2 + T — 1 (2= 0%+ Coy/TH2 — T — 1 (22 + 5)2} ,

which is away from zero. Applying a similar argument and using (3.50) imply that
the Lopatinskii determinant A does not vanish either for the case: z = —z5.

6. Let us now show that w_(t + i0n)? + w4 (1 — ivn)? = 0if z = +zy, i.e. if
T = =iz n. For this purpose, we first prove

a+G>C', -G <-Ch (3.51)

The first inequality in (3.51) follows from (3.49). For the second in (3.51), it suffices
to derive that z% < (Cy — Cl_l)z. From (3.31) and (3.48), we have

-9\ - _he 2 2
— (1 —e2eD)p — (1 — €20?)é Ey — \JE} —4E E;3
(CZ_Cll)z—Zz—( ) +

= (1 — €43292)2 2E,

(1 — AP0 (Ey — || E3 — 4E\ E3) 4 2E) ((1 — 21 — (1 — 202)é)°
2E (1 — 43222
2¢(1 — €20?)(1 + €2¢v)>(Ry + Ly)
- T2E (1 — 4222

’

where Ry := (1 — €260)2Ve3¢20% — 2622202 + 402 + &2 and
Ly = 033 0* — 26*320° — 264302 + 4€260% — 20 + €287
We compute that RZ — Lﬁ = R% — L% > (. Hence, we deduce the second inequality

in (3.51).
By virtue of (3.33) and (3.51), we derive that, for T = iz;7,

w4 (t.n) = =inCoy/Chz1 + 82 — 1, w_(r.n) =inCoy/Chzt — T — L.

Since z = z; solves P(z) = 0, if T = izyn, it follows from the definition of P(z)
that w2 (7 4 ivn)* = a)i(r — ivn)*. Hence, the Lopatinskii determinant vanishes
for z = z1 (i.e. T = iz1n). The same argument can be applied to show that the
Lopatinskif determinant A(t, n) also vanishes for z = —z1, i.e. for T = —izyn.
7. We obtain from (3.2) by a direct computation that C; < v < C; + C ! which,
combined with (3.51), yields (3.36).

It remains to show that the roots of the Lopatinskil determinant are simple. By
introducing 2+ := w+/(in), we find that, for n # 0,

w_(t +ivn)?
(in)3

w4 (t —ivn)?

Gy =G0 = 020,

=2_(z+1)> = 01(2),
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It follows from (3.36) and Lemma 3.3 that wy (7, n) # 0 and n # 0 when (7, 1)
are near any root of the Lopatinskil determinant. Hence, §21 are analytic functions
of z only and satisfy

2} =2 (@£ - &0 £ E12)?).

Since A(z, ) = 0if and only if w_(t + ivn)? + w4 (t — ivn)? = 0, it suffices to
prove

d(Q1+ 02)

#0  forallg € {0, —z1, z1}.
dz

z=q
Using (3.42)—(3.44) and the fact that Q1(q) = —Q2(q) # 0 forq € {0, —z1, 21},
we derive that, for g € {0, —z1, 21},
d(Qi+0y| _ 1 d(ei-0)
dz = 201(@) dz
r?
- 201

Using the factorization property of holomorphic functions, we obtain

01@) + 02z) =(z—q)Hy(z)  forallg € {0, —z1, 21},

where H, is holomorphic near g and H,(gq) # 0. This yields that the Lopatinskii
determinant A has a factorization as follows

. Ir* ar
_, 0@ dz

7=q

{—25P0(q) —45¢*(2E 9% + Ez)} # 0.

A(t,n) = (t —ignhg(zr,n)  forallg € {0, —z1, z1},

where h, (7, n) is C* and does not vanish near (ign, n) € &. The proof is com-
pleted. O

Remark 3.2. If M = M, then both E3 and z; defined by (3.45) and (3.48) van-
ish. Employing a similar argument, we can show that the Lopatinskii determinant
A(t, n) has only one triple root T = 0. On the other hand, if M < M, then
E3 > 0. In the latter case, the Lopatinskii determinant A(z, 1) vanishes if and only
if t/(in) € {0, =z} with nonreal number z; given by (3.48). Therefore, the rela-
tivistic vortex sheet (2.24) is violently unstable, which means that the Lopatinskit
condition does not hold.

3.3. Proof of Theorem 3.1

The following lemma relies heavily on the fact that each root of the Lopatinskii
determinant is simple (see Lemma 3.4):

Lemma 3.5. For every point (19, n9) € &1, there exists a neighborhood V" of
(10, no) in &1 and a positive constant ¢ depending on (1o, ng) such that

|B(x, M(Ex(x,m) E_(t,n)Z| > cy|Z|  forall(x,n) € ¥, Z € C*. (3.52)
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Proof. The proof is divided into two steps.

1. Let (19, n0) € &1 with A(to,n9) # 0. Since the Lopatinskii determinant
A(t, n) is continuous in (z, 1), then there exists a neighborhood ¥ of (g, 19) in
Z| such that A(t, ) # 0 for all (r, n) € 7. It follows from definition (3.34) that
B(t,n)(EL E_) is invertible in #". We combine this with the fact that y < 1 to
obtain (3.52).

2. Let (10, n0) € &1 such that A(tg, 7o) = 0. We see from Lemma 3.4 that
79 = igno for some g € {0, —z1, z1}. Let us write (3.38) as

&1 &
EL E_ )= ,
B(E4+ E-) ( & {4)
where the upper left corner ¢; is given by

. T+ivn  — . _
G = —ivn)my + gy —wy) = z (I (z +ivn) — coy).

From (3.36) and the proof of Lemma 3.4 (especially, Step 2), we know that
T # —ivn and I'(t +i0n) # ¢ w, when (z, n) is close to (g, no). Hence, there
exists a neighborhood 7" of (g, 1) in & such that ¢1(z, n) # O0forall (z,n) € 7.
Using the identity (cf: [15, Page 439])

/¢ 0 B(E. E.) I =&\ (1 0 (3.53)
—a/ies) Yes) T T 0 o ) T \0 (@i — 00t /g '

with ¢5 = 1, and noting A(z, n) =det[B (Ex E_)] = £184 — £2¢3, we have
|B(t. M(E+ (T, n) E_(r, m)Z| = cmin(L, [A(r, n)DI|Z| (3.54)

for all (r,n) € ¥, Z € C2. It thus remains to show that |A(t, )| > ¢y for all
(t,n) € ¥.Employ Lemma 3.4 and shrink ¥ if necessary to find that factorization
(3.37) holds. Thus, we have

3y AT, ) = hy(t,n) + (x —ign)d, hy(z,n)  forall (r,n) € ¥.  (3.55)

Let (i, ) € ¥ so that (i8, ) € ¥ is close to (igno, no)-. It follows from (3.36)
that C?(8 + Ezn)z > 12, which, combined with (3.33), implies

w4+ (18, n) € iR\{0}. (3.56)
Then we obtain from (3.37) and expression (3.40) that
hg(d,m) #0, 16 —gmhy (8, n) = AGS, n) € iR,
from which we have
hq(@8, n) € R\{0}. (3.57)

Since 19 # i(+Cs + 61_1)7]0, eigenvalues w4 depend analytically on (z, n) in a
neighborhood of (zg, 179) by the implicit function theorem. We then use (3.30) to
obtain that, for (z, ) near (9, 7o),

w1 (1, My oy (1, 7) = CFCT (T +iCan). (3.58)
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From (3.56) and (3.58), we infer that the derivative, 9, w4 (i, 1), isreal by shrinking
¥ if necessary. Employ (3.40) to derive 9, A(i8, 7) € R. We then deduce from
(3.55) and (3.57) that

3, hy(i8. ) € iR. (3.59)

Using (3.37) and the Taylor formula for 4, we find that, for (z, n) € 7,

Ar,m) = (y +i6 = qm) (g @8, m) + 3, kg (8, ) + 00
= i(6 = g (8, n) + (g (8, m) + 10, hy (8, )6 — g} ¥
+0(?) (r = 0),

where we have used the Landau symbol f = O(g) (x — xp), which means that
there exists a constant C such that | f(x)| < C|g(x)]| for all x sufficiently close to
x0. We can conclude from (3.57) and (3.59) that

Re A(z, 1) = [hy (8, n) +idyhy (8, )6 — qm)}y + 0 (v — 0).
Shrinking 7 if necessary, we derive from (3.57) that
|[A(t,n)] = |Re A(r,n)| = cy forall (z,n) € V.
Plug this into (3.54) to complete the proof of this lemma. 0O

Remark 3.3. Inthecase of M = M., we know from Remark 3.2 that the Lopatinskif
determinant A(t, 1) has only one triple root T = 0. In a similar way, we can find
neighborhoods 74 of (0, £1) in & and a positive constant ¢ such that

1B(t, M(E4(x,m) E_(x, M) Z| > cy’|Z| forall (z,n) € %, Z € C*. (3.60)

We now adopt the argument developed recently by CHEN—-HU-WANG [10] to
avoid constructing the Kreiss’ symmetrizers in the derivation of energy estimates
for the constant coefficient case. To this end, we need the following lemma:

Lemma 3.6. Foreach point (1o, no) € E1, there exist aneighborhood ¥V of (to, no)
in E1 and a continuous invertible matrix T (t, ) defined on V" such that

w4 T4 0 0
0 —wt O 0
0 0 w- 2z-
0 0 0 —w_

T VAT (1, ) = (3.61)

forall(z,n) € V\{t = Livn}, wherez+ = z+(t, n) are complex-valued functions
defined on V'\{t = =Livn}. Moreover, the first and third columns of T (t, n) are
E (t,n) and E_(t, n), respectively.
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Proof. We set a4 (7, n) := t £ ivn and define the following vectors on a neigh-
borhood ¥ of (19, no):

0.1,0,007  ifaymy(z9.10) #0,
(1,0,0,0)T  ifay (uy — w4)(z0.70) #0.
0,0,1,00"  ifa_m_(10,n0) # O,
0,0,0, DT ifa_(u— — w_)(t0. no) #O.

Yi(r,n) = {

Y_(r,n) = {

Recall that E4 (7, ) defined by (3.32) are continuous and never vanish on Zj.
Hence, one can define the following continuous and invertible matrix on ¥

T(r,n) = (Eq(r,n) Ye(r,n) E_(r,n) Y_(T,n).
When t # =i vn, by a direct computation and using (3.30), we obtain (3.61) with

1

ax+(t,n)
m+

ag(pe — w1) (T, 1)

if azm (7o, no) # 0,
z+(T, ) =

if ax(u+ — w+)(70, no) # 0,

which are well-defined apart from the poles of A, i.e. from 7 = +ivn. O

Proof of Theorem 3.1. According to Lemma 3.2, it suffices to show estimate
(3.29) in order to prove Theorem 3.1. Using Lemmas 3.5-3.6, for each point
(10, no) € &1, there exists a neighborhood ¥ of (79, ng) in & and a continuous
invertible matrix 7' (t, ) defined on ¥ such that (3.52) and (3.61) hold. Thanks to
the compactness of hemisphere =, there exists a finite covering {#1, ..., ¥j} of
&1 by such neighborhoods with corresponding matrices {7 (z, 1), ..., T7(t, n)},
and a smooth partition of unity {;(t, n)}jj.: | such that

J
xj € CZ()), ijz =1 on &].
=1

We now derive an energy estimate in I1; := {(z,n) € & : s-(1,n) €
¥; for some s > 0} and then patch them together to obtain (3.29). We first ex-
tend y; and T to the conic zone I1; as homogeneous mappings of degree 0 with
respect to (7, 7). Note that both 7 (z, n) and its inverse are bounded on I7;, and
identity (3.61) holds for all (t, n) € I1; with T # =%ivn. Define

W(t, 0, x2) := x,; Tj(z. n) " W™ (x, 5, x2)  forall (r,n) € I1;.

Assume that (t,n) € IT; with Ret > 0. In light of (3.26), we obtain that W
satisfies
dw

aw _ . ~1 A7,
5 Ti(zr,n) "AT;(z, n)W.



618 GUI-QIANG G. CHEN ET AL.

Since (3.61) holds when (t, n) € IT; with Re 7 > 0, the equations for W, and Wy
read

dw. dw.
2 oWy, —2 — W, (3.62)
dx; dx;

Recall from Lemma 3.3 (a) that Re w+ (7, n) < 0 whenever Re t > 0. Integration
by parts for (3.62) yields

Wa(z, n, ')||L2(R+) = [[Wa(z, n, ')||L2(R+) =0,
from which we immediately deduce
Wa(z, n, x2) = Wy(t, 1, x2) =0 (3.63)

forall x € Ry and (z, n) € I1; withRe 7 > 0, where we have used the continuity
of W, and W4. Using the boundary equations in (3.26) yields

Wi(z, 1,0

x;G = B(x, )Tj(x, HW(z, n,0) = B(z, n)(E4 E_) (W3(‘c 1, 0)

) (3.64)

for all (r,n) € II; with Ret > 0. By the homogeneity of T; and 8, we obtain
from (3.52) that

(Il + mDIB(T. M(EL(t, ) E_(x,n)Z| > c;y|Z| forall (r,n) € ITj, Z € C*.
Combine this with (3.64) to deduce

Iz] + Il
Cj)/

|((Wi(z,n,0), W3(z, n,0)] < %Gz, (3.65)

for all (7, n) € I1; with Re t > 0. Combining (3.63) and (3.65) yields

Izl + Inl
Cj)/

W(z, 5, 0)| < |Xj6(r, n|  forall (r,n) € I1; withRe T > 0.

We then obtain from the definition of W and boundedness of T (z, 1) that

Izl + [nl

| W (z, 0, 0)] <
ij/

1x; G, n

for all (z,n) € II; with y = Ret > 0 and new positive constants c;. Adding
the above estimates for all j € {1, ..., J} and integrating the resulting estimate
over R? with respect to (8, 1), we can derive the desired estimate (3.29) from the
Plancherel theorem. This completes the proof of Theorem 3.1. O

Remark 3.4. In the case of M = M., we can derive the energy estimate (3.7) by
using (3.60) and employing a completely similar argument as above.
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4. Variable Coefficient Linearized Problem

In this section, we derive the linearizeg prci)lem of (2.20) around a basic state
(U +, <Di) that is a small perturbation of (U + <Di) given in (2.24). More precisely,
we assume that the perturbations VE = U —U* and ¥+ = ¢+ — o+ satisfy

supp (V%) C (=T =+ <27, x2 > 0, x| < R), .0
VE e WO (R), F e W(R),

|‘°/iH W2.00(82) + ||‘1’iU W3:00(£2) <K,
4.2)

where T, R, and K are positive constants. Moreover, we assume that (lol =, CZ%i)
satisfies constraints (2.23) and the Rankine—Hugoniot conditions (2.20b), i.e.

Bt +0500F —0F =0 ifxp >0, (4.3)
+ 3t >k >0 ifx; >0, (4.3b)
PT=0d"=¢ ifx, =0, (4.3¢)
B(UT,U,¢)=0 ifx, =0, (4.3d)

where k( is a positive constant. We will use V= (\°/+, ‘O/_)T and ¥ := (lf/+, lf/_)T
to avoid overloaded expressions.

4.1. Linearized Problem

Let us consider the families, U(jt = U +0v*and (bgﬂE = d* 4+ oW E, with a
small parameter 8. The linearized operators are given by

L' (0%, &F)(vE vF) = %L(Uei, o)

’

0=0

’

. . d _
B (UF, &%)(V, y) = B Uy s 00)
6=0

where V = (V*, V)T, and @g (resp. ) denotes the common trace of dﬁét
(resp. ¥T) on boundary {x, = 0}. A standard computation yields the following
expression for I

1
LU, ®)(V,¥)=LU,®)V+CWU, D)V — 8_¢>L(U’ D)W U, (4.4)
2
where C(U, @) is the zero-th order operator defined by
CU,®)V = (BU,.AO(U)atU + dy; A1 (U)o U + 8Ul.gz(U, ¢)82U)V,~. 4.5)

We notice that matrices C(lofi, (lo)i) are C>®—functions of (VE, VV*, Vlf/i) van-
ishing at the origin.
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We recall that the ﬁrstcomponentofIB%(U;, Uy, 9e)is[v1(Ug)] 01909 —[v2(Up)].
Ignoring indices “+” and “—" for the moment, it follows from (3.4) and (4.3a) that

d _ . ) . .
@(B(U;, Uy . 96)), =001y +919Vyvi(U) -V — Vyun(U) - V
0=0
2 oo ° o 202 20 o
) €= 019V — U 019(1 — €“v?) + €V 02
= 0101y — ( l:ﬂolo 2)V1+ ¢ olo Va
NhI? hl’
NGe2D10 + (1 — €263)
— s V3
hl
. €20, NG+ €2018,¢ 1 —€2020,¢
= 0101 + = Vi+ — Vo — — V3 on {x; =0},

NI hr hr

where 0; = vj(l?), N := NWU)), h := h(Uy), and I" := ['(U). Performing a
similar analysis to the other components of IB%(UQ+ Uy, @p) implies

B (0%, &%) (V, ¥) := bV + BV 4,0, (4.6)
where Vi := (8,9, 9v)T. Coefficients b and B are defined by

0 (3 =6 )|xa=0

b(ta x]) = 1 lo)i|>|x2:0 ) (47)
0 0
€209 or =& —€dp  —b- &
. Nyhy I'? hyly hyly N_h_I'? h_I'_ h_I-
B(t, x1) = ezatgz") 0+ —Zy 0 0 0 4.8)
1{74_};_;_19‘_‘2_ il.;.f‘.;. E+ﬁ+
1 o0 -1 o 0 /|

In expression (4.8), we have set 0+ := Q(Lo/i, qgi) and ¢y = g(l}i, qgi), where
oU, @) := )@ +€v10,P, (U, ®):=1—€00,P. 4.9)

In particular, if gt = 0, then ¢+ = 0 and ¢4 = 1. Moreover, b is a C®°—function
of V|x,=0, and B is a C*°—function of (V|y,—0, V).

We simplify expression (4.4) as ALINHAC [1] by employing the “good un-
known”

azﬁi

e (4.10)
hHhd*

yt.—y*

After some direct calculation, we find (¢f. METIVIER [34, Proposition 1.3.1]) that

L/(ﬁi, g5:|:)(‘/:|:’ lI/:t)
+
W(LO*, &H)0F). @.11)

o e o e v
= LWU*, d5HVE+CUF, dHVE + —
h ot
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In view of the nonlinear results obtained in [1,19,22], we neglect the zero-th order
term in ¥* and consider the following effective linear problem:

L, (0%, #*)VE = L(U*, *)VE +C(U*, ¢F)VE = £, x>0, (4.12a)
B, (0%, &%) (V, ¥) := bV + by + BV |—0 = g, x2 =0, (4.12b)
Ut =v =y, x =0, (4.12)

Vyhere C(Ui, Qgi), I;, and B are defined by (4.5), (4.7), and (4.8) respectively,
Vi:=wt,v)T, and

0 lof 0 ﬁ
2 2
) |x2_—0- (4-13)

by(t, x1) := B(t, x1) (82(1054“’ P
Note that by is a C*°—function of (f/le:o, 82‘7|x2=01 Vo, N4 |x,=0) that vanishes
at the origin. By virtue of (4.2), it follows that CUE, &%) € WI(£2), and the
coefficients of operators L(f] * (lo)i) are in W2°(£2). We observe that the trace
of vector BV involved in boundary conditions (4.12b) depends solely on the traces
of PH(¢)V* and P~ () V™~ on {x2 = 0}, where P*(¢) are defined as

5 o o T
PE@)V = (V1, Exli=0Vs — dxl=0V2) (4.14)

with ¢4 and ¢4 defined by (4.9). We will consider the dropped term in (4.11) as an
error term at each Nash—Moser iteration step in the subsequent nonlinear analysis.

4.2. Reformulation

It is more convenient to transform the linearized problem (4.12) into a problem
with a constant and diagonal boundary matrix. This is possible because the boundary
matrix for (4.12) has constant rank on the whole closed half-space {x, > 0}.

Let us calculate the eigenvalues and the corresponding eigenvectors of the
l%)undary matrix for (4.12). Using constraint (4.3a) reduces the coefficient matrices
A ((} * s b j:) to

0 —N*&or N & &
A (U*, 0%F) = — | —6x/N* 0 0 : (4.15)
0P=\ g, /NE 0 0

After a direct calculation, we obtain that the eigenvalues are

éryJol+ ¢k ; éx 8L + 1
CERETAE L, TEVEE T

)\1 = O, )\2 - — . ) o
0D hd*

’

with corresponding eigenvectors
0 Véi+éi Véi+ ¢k
=k 2= pn/(NEer) |0 BT | -6/ (NEEL)
0+ —&4/(NFéy) &r/(NFés)
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Define the matrices

Lo o JBrra ez
R(UZ, @%) := ér O4/(N%éy) —pi/(NFéw) |- (4.16)
O —Sx/(N*éw) &r/(N*éy)
and Ag(UF, &%) := diag (1, A, ', A3"). Then it follows that
AR ALR(UF, &%) = I = diag (0, 1, 1).
We thus perform the transformation

W= R7(U*, %)V, (4.17)

Multiplying (4.12a) by matrices AgR~' (U, &%) yields the equivalent system of
(4.12a):

ATHWE + ATHWE + Lo, W™ + CEW* = F*, (4.18)
where F* := XOR_I(lO]i, qgi)fi, and
AT = AoR"AGR(U*, &%), AT := AgR™'AR(U*, &%), (4.19)
C* = Ay (R—lea,R +R7'A101R + R A200R + R—ICR) (U*, &%).
Matrices Ag and Af belong to W2>°(£2), while matrices C* are in W1°(£2).

Moreover, Aac and Af are C*°—functions of their arguments (\o/i, Vlf/i), and C*

are C*°—functions of their arguments (\Q/i, VVE VEE, V2 +). Under transfor-
mation (4.17), the boundary conditions (4.12b)—(4.12¢c) become

BY(W,¢) := bV + by + BW = g ifxp =0, (4.20a)
yt=y =y ifx, =0, (4.20b)

where b and b are given by (4.7) and (4.13) respectively, W := (W, W_)T, and

) oh o
B(t, x1) ::B(R(U > 2T _O °_)
0 RU-,®7) =0
0 mT—I—m}' mT—m; 0 —m| —m; —m| +my
— 10 m?’—i—m; m'l"—m;' 0 0 0 . (421

0 Jt+el Jhvd o —J2+ )|

In the last expression, for notational simplicity, we have introduced mjc as

L _Setavd L a+d
my = 27 < s my = ——— 5 - (4.22)
FihiNi I'yéihyN*
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It is clear that matrix B is a C*°—function of (‘°/|X2=o, V@). According to (4.14)

and (4.17), we have
, %+ W + Wi
PE@)VFn—0= | 83 +¢&2 : (4.23)

(W = Wy
N :tC + x2=0
We find that the trace of vector BW involved in boundary conditions (4.20) depends

only on the traces of the noncharacteristic part of vector W, i.e. sub-vector W"® :=
(W5, Wi, Wy, wi)T.

5. Basic Energy Estimate for the Linearized Problem

In this section, we are going to prove the following theorem, which provides
the basic energy estimate for the effective linear problem (4.12):

Theorem 5.1. Assume that the stationary solution (2.24) satisfies (2.10) and (2.25).
Assume further that the basic state (U + @i) satisfies (4.1)—(4.3).

Then there exist constants Ko > 0 and yo > 1 such that, if K < Ko and
y = yo, then, for all (V, V) € H)%(.Q) X Hf(Rz), the following estimate holds:

VIVIZ2 @) + IPE@Vo=0l7 o) + W I g2,

S NLUO*, F)VE Loy + 2 IBAT*, 65) V=0 ) [y
(5.1)

Remark 5.1. Since the Lopatinskii determinant associated with problem (4.12)
admits the roots on the boundary of frequency space, the energy estimate (5.1) has
a loss of regularity of the solution with respect to the source terms. Furthermore,
there is a loss of control on the traces of the solution in (5.1), which is mainly owing
to the fact that (4.12) is a characteristic boundary problem.

We notice that systems (4.12a) are symmetrizable hyperbolic with the Friedrichs
symmetrizers S, (U i) for operators IL/e (U +, @bi) , where function S (U) is defined
in (A.10). By virtue of (4.3a), we compute

SH U A (U*, &%)

1 o o o o o o
= So(UF)(A(UF) — 8B Ag(UF) — 810FA1(U))

b+
! 0 —N*&os N*&iés
= — —~N*éL oy 0 0 ,
NPE\ Nre2e 0 0
16+

where 0+ and ¢4 are defined in (4.9). Multiplying (4.12a) by the Friedrichs sym-
metrizers S»(U™) and employing integration by parts yield the following lemma:
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Lemma 5.1. There exists a constant yy > 1 such that, forall y > vy, the following
estimate holds:

. _ ° ° ST) 0N 1
YIVEIL ) S v (T, 4) V5[ 13 o) + IPE@VF =0l ra)-

To prove Theorem 5.1, it remains to deduce the desired energy estimate for the
discontinuity front y and the traces of P*(¢) VEon {x2 = 0} in terms of the source
terms in the interior domain and on the boundary.

Introducing W =e VW, system (4.18) equivalently reads

cLw=*
= yATWE + AT, WE + ATHWE + Lo, WE + CEWE =e V' FE,
(5.2)

We also introduce W := (V~V+, VT/’)T, Ut = e 7'@E, and 1; := e 7"4. Then
the boundary conditions (4.20) are equivalent to

B (W, ¥) = yboy + bV + by + BW =e"'g  ifx; =0, (5.3a)
Tt=y- =y ifx;=0, (5.3b)

where by := (0, 1, O)T. In view of (4.23), we obtain the estimate

IP@)VF Lo=ollz @) S [W™la=ol 2 @) < | W, (54

where Wn¢ = (VT’;, W;, W{, V~V37)T By virtue of (5.4) and Lemma 5.1, we
obtain that Theorem 5.1 admits the following equivalent proposition:

Proposition 5.1. Assume that the stationary solution (2.24) satisfies (2.10) and
(2.25). Assume further that the basic state (U +, dﬁi) satisfies (4.1)—(4.3).

Then there exist some constants Ko > 0 and yo > 1 such that, if K < Ko and
Y = yo, then the following estimate holds: for all (W, y) € H*>(2) x H*(R?),

2 _ _
[W™lazo |+ 10015, S vy NEEWHIR, + ¥ 2 I1BY (W™ =0, I,
(5.5)

where operators LY. and BY are given by (5.2) and (5.3a), respectively.

In the rest of this section, we give the proof of Proposition 5.1.

5.1. Paralinearization

We now perform the paralinearization of the interior equations and the boundary
conditions.
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5.1.1. Some results on paradifferential calculus For self-containedness, we list
some definitions and results about paradifferential calculus with a parameter that
will be used in this paper (see [4, Appendix C] and the references cited therein for
the rigorous proofs).

Definition 5.1. For any m € R and k € N, we define the following:

(i) Afunctiona(x, &, y) : RZxR2x[1, 00) — CN*V iscalled a paradifferential
symbol of degree m and regularity k if a is C* in & and, for each & € N2,
there exists a positive constant C,, such that

10gaC. & V)llwroe ey < Cat™ 7€)  forall (5, y) € R* x [1, 00),

where 157 (£) := (y2 + |£]%)*/? for s € R;

(ii) I'}" denotes the set of paradifferential symbols of degree m and regularity k.
We denote by «;, a generic symbol in the class I'}";

(iii) We say that a family of operators { P?}, > is of order < m, if, forevery s € R
and y > 1, there exists a constant C(s, m) independent of y such that

1P ullyy < Clsom)ullssmy —forallu e HH™.

We use R, to denote a generic family of operators of order < m;
(iv) For s € R, operator A*Y is defined in such a way that

AYYu(x) =

)2 [l; R @) (e)de

for all u in the Schwartz class S;
(v) To any symbol a € I'[)', we associate the family of paradifferential operators
(1 }y>1 defined in such a way that

1

T u(x) = )

/Rz /Rz MKV (x — v.& v)a(y, & y)u)dyds

for all u € S. In the last expression, K l”(-, &, y) is the inverse Fourier trans-
form of ¥ (-, &, y) with ¢ given by

Y, Ey) =y x @k, 00p(27%,27y),

geN

where ¢ (£, y) = x(271&,271y) — x(&, y), and x is a C®—function on R?
such that

. 1 | < 4,
x(@) = x@) iflzl <12, x(@2) = 2
0 | >1

Lemma 5.2. The following statements hold:
() Ifa € WH°(R?), u € L2(R?), and y > 1, then

yllau — T u)l + llad;ju — Tig,.aull +llaw = T ully S llallweg)llul;
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(i) Ifa € W»*(R?), u € L>(R?), and y > 1, then
yllau =T ully + lladju — T,g iy S llallwzeo g llull;

(iii) Ifa € T, then T} is of order < m. In particular, ifa € L™ (R?) is indepen-
dent of &, then

173 wlls.y S llallpcomeyllulls, — foralls € R, u € H* (R?);

(iv) Ifa e T" and b € F’I"/, then product ab € F’I""'m/,family (1) Tby — Ta};y}V>l
is of order < m +m’ — 1, and family {(T))* — T, T)}y>1is of order <m —1;
V) Ifa el and b € F;”/, then {T,] Tby — Ta);, Ty Y, 0 a b}V>1 is of order

<m+m —=2;
(vi) Garding’s inequality: If a € T %’” is a square matrix symbol that satisfies

Rea(x,&, ) = c(y> + €™ forall (x,&,v) € R* x [1, 00)

for some constant c, then there exists yo > 1 such that
Re (Tyu u) —||u|| forallu € H"(R*) and y > yo;

(vii) Microlocalized Gdrding’s inequality: Let a € F%’" be a square matrix symbol
and y € F(l). If there exist a scalar real symbol ¥ € 1"(1) and a constant ¢ > 0
suchthat ¥ >0, xX = x, and

X(x, &, y)Rea(x, &, y) = X2 (x, &, v)¥* + 1EH"]

forall (x,&,y) € R* x [1, 00), then there exist yy > 1 and C > 0 such that

C
Re (1Y TJu. T}u) > 1T}l , = Cllull_,

forallu € H*(R?), y > yo.

Here we have used the notation Re B := (B+ B*) /2 for any complex square matrix
B with B* being its conjugate transpose.

The reader may find the detailed proof of Lemma 5.2 (vii) in METIVIER—
ZUMBRUN [35, Theorem B.18].

5.1.2. Paralinearization of the interior equations In view of (4.2) and (4.3b),
we have the following estimate for the coefficients of EV given in (5.2):

IAF . AD w22 + 1CE Iwie@) < C(K. ko).
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It then follows from Lemma 5.2 (ii) that
+ 2 > + 2
+ Y + _ + 14 +
lyagw* =17 Wy, = /0 Iy AGWT Cox2) = T WEC ) Ao

< /0 b IAG G x2) 00 oy W (- 22) [z
< C(K, ko) [[WH2.
Similarly, we derive from Lemma 5.2 (i)—(ii) that
l|Aga.w* — M+W+|||1 L SIAT 2@ Wl < CKL k) IIW I,
llatow =77 W, S AT lwzse @) IW I < CK k)WL

lcTwr -1k, W+|||l.,y S ICT lyreo ) W < CK, k) W)
Combining these estimates yields

Ieiw* —naw* =170 WL, < CR I WHIL (5.6)

where T = y + 16, and Ll is the linearized operator defined by (5.2). We can also
obtain the following estimate for the equations on W™

IeZw™ = LW =77 e W, < CE kIWTIL (5.7

The paralinearization for the interior equations is thus given as follows:

14 + + _ T+ :
T gt sinatocx W™ TROWE =F= ifx > 0. (5.8)

Note that the above paralinearized equations do not involve the discontinuity func-
tion ¢.

5.1.3. Paralinearization of the boundary conditions According to (5.3a), we
define

o o o T
=(0,1,00T, bi(t,x1) := (5 = 8 )lxa=0, 0} 120, 0) ",
b(t,x1,8,n,y) == tho + inb (t, x1) = (in(d] — 67), 7 + 01, 0)T[x,=0.

Since by, b; € W (R?), we obtain from Lemma 5.2 (iii) that

lybow +bVy — T/ ¥l
= llyboy + bod ¥ + b1y — T ¥y
S o, b)) 2@ IV < CEIYI < CK)y vy - (5.9)

It follows from (4.2), (4.3b), and (4.13) that || b || yy1, wor2) S C(K, ko). Employing
Lemma 5.2 (ii)—(iii) yields
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sy < b = TLW Iy + ITLW Iy
S bzl 19+ 1Bl s ey 111
< CK. k)Y 1.y (5.10)

In light of (4.21), we find that || B||y2.0R2) < C(K, ko), and B acts only on the
noncharacteristic part W"¢ of vector W. Hence, we deduce

||BW|x2_o — Ty Wlen=ol1,,
Bl [Wlo=o| < C(K k0)y ™" [W* =0l . (5.11)

Combine (5.9)—(5.11) together to find
IBY (Wlxy=0, ¥) = Ty ¥ — Ty Wle,=oll1.y
< CK,k0) (10115 + v [Wlmo ). (5.12)
The paralinearization of the boundary conditions (5.3a) is then given as follows:

T)Yy+TgW =G ifxy=0. (5.13)

5.1.4. Eliminating the front We can eliminate front ¥ from the paralinearized
boundary conditions (5.13) as in the constant coefficient case. For this purpose, we
first notice that symbol b is elliptic, which means that, for any (¢, x1,8,1n,y) €
R* x (0, 00),

b(t, x1, 8,0, VI* = c(K)(y* + 8% + ). (5.14)

To show this estimate, by observing that b is homogeneous of degree 1 with respect
to (t, n) and that & is compact, we only need to prove

b(t,x1,8,n,7))> >0 on&|.

This estimate follows from the similar property for the constant coefficient case,
by taking the perturbation, V, small enough in L*°(£2).
Using (5.14) and the Géarding inequality (Lemma 5.2 (vi)), we have

Re (T, 0. ) = c(K)lly|lT,  forally >y,
where yp depends only on K. Since b € I‘%, the operator
Tyep = ()T =Ty = Ty T + {sz - (Tby)*} T,
is of order < 1. Then
113, < &) (1T Wi+ 1l 1) < Coo (1T wIP +y~ vk, )
from which we take y sufficiently large to derive

1l < CENTY VI
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Since the first and fourth columns of B € W2 (R?) vanish, we apply Lemma 5.2
to obtain

Wiy < CED (1T, ¥ + Ty Wla=oll + W™ u=oll)
<CE) (y T + T Wihomolhy + W lmoll). (5:15)

Combine this estimate with (5.12) and let y large enough to deduce

11y < CEK) (7 1B Wlazo, Wiy + IW™lamoll) . (5.16)

This last estimate indicates that it only remains to deduce an estimate of W"|,,—o
in terms of the source terms.
To eliminate v in the boundary conditions (5.13), we define the matrix

0 0 1
O, x1,8,n,y) = ( )

. .. o for all (z,n) € Z].
T+ 17;vfr —117(1)1+ -v) 0

x2=0
Then we extend Q as a homogeneous mapping of degree 0 with respect to (z, 1)
on &. It follows that Q € Fg and Qb = 0. We define symbol g as

B(t,x1,8,m,y) = Q(t,x1,8,1,y)B(t,x1) €Y

for all (¢, x1,68,n,y) € R* x R,. After a direct calculation, we find that the first
and fourth columns of 8 vanish, so that we consider 8 as a matrix with only four
columns and two rows. More precisely, for all (z, n) € &1, symbol B is given by

B(t,x1,6,1m,%)

:<\/@1+§i Ja+e e+ —,/@%+§3)

&_(m'li_ + m;) L"z_(m'f_ — m;') —ay(m +my) —aq4(my —my)

x2=0
(5.17)
where ¢4 and ¢4 are given in (4.9), mf and m2i are given in (4.22), and
Gy =T 07, 0. (5.18)

Since B € I‘g, b e F%, and Qb = 0, we find from (5.12) and Lemma 5.2 that

ITg W™ l,=oll1,y
= ITHpWlo=0 =TT Wlo=0 + Ty (T Wl=o + Ty ¥) = Ty Ty Wiy
S W™ Lo=oll + 1 Tg Wle=o + Ty ¥lliy + 1THTy ¥ = Thy¥lly
S W™ Lol + 1BY (Wlxp=0. ¥y + ¥4, - (5.19)

In view of (5.8) and (5.13), we obtain the following paralinearized problem with
reduced boundary conditions:

Y + + _ 0+
TrA§+inAT+C+W + LW =F if xo > 0, (5.20a)
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y - - _ — .
TTAW”AHC?W + LW =F if x, > 0, (5.20b)
Tﬂy wh =G if xo =0. (5.20¢)

We can deduce the following proposition for problem (5.20) by using the error esti-
mates (5.6)—(5.7), (5.12), (5.15)—(5.16), and (5.19) (see also [17, Proposition 5.3]).

Proposition 5.2. [fthere exist constants Ko > 0 and yy > 1 such that solution W
to the paralinearized problem (5.20) satisfies

W™ =0ll> Sy IFFIR, + ¥ 2IGIT, (5.21)

for K < Ko and y > yy, then Proposition 5.1 holds.

5.2. A Reduced Problem
In order to derive the energy estimate (5.21), we now derive a problem for the
noncharacteristic variables W"¢ from (5.20). This is possible since the coefficient

matrix I = diag (0, 1, 1) has constant rank. For convenience, we write

TAT +inAT = (bi) erl, (5.22)
where Aki = (Af{];i), k =0, 1, are defined by (4.19). In particular, we compute

(& df + 647)?
&t +6%

A}Ii—vliAOf AO:&:— i{l— } = F} eR, (523)

from which we obtain
b, = tAYL +inAlly = FY (x +idin). (5.24)

In view of (4.9), F{ = I'(1 — €29%) > 0 when (V*, ¥*) = 0 (¢f 3.24). We
use the continuit_y of IF?E and take K in (4.2) small enough to derive that IF?E >0
for all (¢, x) € £2. As a consequence, we have

b, =0 ifandonlyif &s =1t +idin=0. (5.25)

To represent the characteristic variables WlﬂE in terms of W™, the singular points
(t, x, T, n) that are given by (5.25) should be excluded. We thus introduce two
C°°—functions x4 and ¥ defined on £ x & such that

— both x4 and ¥ are homogeneous of degree zero with respect to (z, ) € &
— forall (t,x,7,n) € 2 x &,

0< x4+t x,7,m) < Xt x,7,m) < (5.26)
X+=1 onsupp x4, supp x4 C {a+(r,x, 7, n) # 0}. (5.27)
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Since TAj +inA] €T}, CT e T'), and x4 € I} forall k € N, we find from
Lemma 5.2 (iv)—(v) that

v v T —I—Ty

T =17 T).T) -
X+ TA +inAf+CH TA +inA] T X+ 7i{x+,rA0++inAT}+ c+ T + Rt

+

where {a, b} denotes the Poisson bracket of a and b:

dadb da Ib da 0b da 0b
fa,pyp=——+——-— —— — — —. (5.28)
206 ot an oxy at 36  dxy on

Setting
wh =T W+
T
and applying operator T{ . t0(5.20a), we obtain

Y + Vot +_ Yyt v gt +
Tt s @'+ TEwt + b = VW T FY 4+ RWT, (5.29)
where r = i{ x4, Al +inAT} + d2x4 1. We will employ letter 7 to denote a
generic symbol that belongs to F? and vanishes on {4+ = 1} U {x4+ = 0}. Since
b}, # 0 on supp X, we infer that ]’% el and

+_T1Y g TJ_I w;r + R,2W+.

77 TV w! Y LW
b Kby /bt

X+ /bt

Applying operator T)%’ e to the first equation in (5.29) yields
+/7911

T wh+ 717 wi + 717 wy
X+ 1 X+b1+2/b?'1 2 X+b1+3/b?'1 3

3
=Y T} wh+ T WH+T) T) FF+ R oW, (5.30)

| a1 x+

By virtue of (5.27) we have the identities X+ x4+ = x4+ and

X+ OX+ | OX+ Ix+

AT ATy AT AT ),
as ot dx; dn
which imply

T, w =T T W\ =T W +RoW =w +R W

+ X+ X+

Plug this identity into (5.30) to obtain

+ _ _ v + _ v +
W= Dt ™2 T Tt 3
3
+y T w4+ T WH+T) T) FF+R oW (5.31)
j=1

The second equation of (5.29) reads

3
Yorhwh Y Trwl +dw) =T W+ T) F R WY
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Since b;rl € F% and )7+b1+j /b1+1 € Fg, we then apply operator Tb);’l to expression
(5.31) and obtain

T/ wi=-T17 wi — T wi
by ! Tablibla/bli "2 by b /b 3
3
+ Y Trw + T W+ RT), FT+ R W
Jj=l1
Consequently, we have

77 ot Y ot
hw, =T, wy + T, w3
pas X+

3
+ Y Thwl + T W+ RoT) FH+ R WY, (5.32)
=1
where
11 + oo bt 12 I T R
Az, = —by + X4by by /by AF = —by3 + x4by bi3/by,-

Note that wfr appears in a zero-th order term in (5.32). We thus apply TOZ) to
expression (5.31) and deduce

pw! =Trwy +TJwy + T WH+RAT) FT+R W,
which, together with (5.32), implies the following equation for w;‘ :

+ _ 7V + 14 +
82")2 = TAU w, + TALZ W,
X+ X+

3
+ ) Thwl + T W+ ReT) FF+ R W, (5.33)
j=2

In this equation, the first and zero-th order terms in wa have been eliminated.
Performing a similar computation to the third equation of (5.29), we obtain the
following equations for w'® := (w;, w3+)T:

hw' = Tgﬂ W TLwE + T W + ReT) FT+ROWT,  (5.34)

where E* € T'), symbol r € I'{ vanishes on region {x4 = 1} U {x+ = 0}, and

11 12
o X+ X+ 1 ij _ + > pt + +
Az, = ( ) €l Ay = =bly T X050 161 /b1

21 22

A)?+ A)?Jr
Let us define x_ and x_ as x4 and x4 by changing index “+” into “—". We
setw™ := T, W~ and employ a similar analysis to find that w™ := (wy , wy )T

satisfies the same system as (5.34) with index “+4” replaced by “—”. Applying the
rule of symbolic calculus (Lemma 5.2iv) to (5.20c) yields the boundary condition
for w™ := (w), wi, wy, wy)":

TﬂV w|,—0 =G +R_| W™,
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We combine this last relation with the systems for w’ to obtain the reduced problem

FWM=@WM+%WWH7W+mQT+RIWiupw,ﬁﬁ)

qw“=G+R4W“ ifx, =0,

where § is given by (5.17) for (z, n) € Z;. The symbol matrix A, € F% is given
by

Az, 0 -
A= < 0 Az)’ Az = (A%,),

. ij gk ~ o+ o+ +
with Ay, = b1 ja1 T XD DY /b1

(5.36)

Matrices E and r both belong to l"(l) and have the same block diagonal structure as
A,. Moreover, symbol r vanishes on region {x+ = x— = 1} U {x+ = x— = 0}.

5.3. Microlocalization

We now construct the degenerate Kreiss’ symmetrizers that are microlocal (i.e.
local in the frequency space) in order to derive our energy estimate. The whole
space £2 x & will be divided into three disjoint parts according to the poles of the
“non-cutoff” symbol A and the zeros of the associated Lopatinskii determinant,
where

A+ 0 + + + +
= ( 0 A) , AT = (aij) 1] bt+1 Jj+1 +bz+11 1]+1/b11‘ (5.37)

Notice that Ay, = A¥ in region {¥+ = 1}. In light of (5.25), we obtain that the
poles of A belong to the set 7, := T[j‘ U7, , with

Tpi = {(t,x, LNENRXE 1= —ini’)li(t,x, T, r;)}.

For the eigenvalues and the stable subspace of A(¢, x, t, ), we have the fol-
lowing lemma:

Lemma 5.3. Assume that (V, Vllof) is sufficiently small in W>>°(82). Then we
have that:

(@) If (t,n) € By withRet > 0, then the eigenvalues of A* (¢, x, T, ) are roots

w of

+ +
ai; +ay\2 o N2 [/ o2 s 2
(0= 52) = (G {E) i) +). 638)
where CJjE Jj =0, 1, 2, are positive smooth functions of(“}i, VlIo/i) such that
C]jE = fj when (‘c/i, 'Jo/i) =0, with 6]- given by (3.31). Moreover, A* has a
unique eigenvalue w4 (resp. ') of negative (resp. positive) real part;
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() If (r,n) € Z| with Ret > 0, then the stable subspace £ (t, x,t,n) of
A(t, x, t, n) has dimension two and is spanned by

;
Ex(t,x ) = (=( + v majy. (2 + it n)afy — w4),0,0)

— — eo— — T
E_(t,x,T,n) = (O, 0, (r + iy M(ay, —w-), —(r +id; n)a21) ;

(5.39)

(c) Both w4 and w_ admit a continuous extension to any point (t,n) € &1 with
Retr =0.If(tr,n) € &1 witht = i§ € iR, then

+ +
~ a;; +a
oL(t,x,t,n) =ws(t,x,T,n) — AL 722 5 22(t,x,t, n)

—CE R = EERE R i > EEPe 50

—isgn(s & é;n)éoi\/ CEH2EECFN2—n2  elsewise;

(d) Both E4(t,x,t,n) and E_(t,x, T,n) can be extended continuously to any
point (t,n) € &1 with Ret = 0. These two vectors are linearly independent
on the whole hemisphere Z1;

) If(t,x,t,n) & Yya, where Y, q is given by

Yoy = {1: e li=CF £(CH ™, i(=C5 £ (é;)—l)n}} , (5.41)
then matrix A(t, x, t, n) is diagonalizable.

Proof. We just need to deduce that relations (5.38) hold and that aljt1 + aéﬁz are
well-defined for any point (7, n) € &1, since the other assertions can be proved
similarly to the proof of Lemma 3.3.
By definition, we know that the eigenvalues of A* are roots w of
w? — (ali1 + aziz)a) + alilazjt2 — alizazil =0, (5.42)

from which we have

at —at at — ot
a)i=< 112 22 +a]+2)< 112 22_a1+2)+a1+2(a1+2+a;)’ (5.432)
~ Ann — A _ Ann — A1 _ B B B
602_ = (—22 > 11 +a21>< 2 ) U _azl) + ay(ap, +ay)). (5.43b)

We now deduce the expressions for alil - aziz - 2a1i2 and czli2 + azil. Recall that
aij; and bij; are given by (5.37) and (5.22), respectively. Entries A(l)} . and A}l , are
given by (5.23). For notational simplicity, we ignore indices “£” and “°” in the
following expressions. We calculate coefficients A% defined in (4.19) by using the
computer algebra system “Maxima” to obtain the following relations:

AP =0 AP, AP = AP, AT — AP = v (AP - AP, (5.44a)
AP — AP = v (A2 — AP, AT+ A = v (A + AT, (5.44b)
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A2 (Al — Al — ABA2! 4 A3
= {A%l(A(l)z — ARy A2y A31>} , (5.44¢)
A%?’(A(Z)l + A(3)1) + A?I(A(l)z _ A(1)3)
= v {AF A3 + 43H + A3 A - 4P} (5.44d)
Then it follows from (5.44a) that
—by + b3z + 2by3 = (—AF + AP + 248 (¢ +ivin).
By virtue of (5.44b)—(5.44c¢), we obtain
b21b12 — b31b13 — 2b21b13 = bo1(b12 — b13) — b13(b21 + b31)
= {pn a8 — AP = bis! + 43D} @ v
- {Agl (A(l)2 — A(1)3> — Al (Agl + Agl>} (t +ivm)>.
Then
apy —axp —2app = Fa(t +ivyn), (5.45)
where
Fr = ()™ [adl (a8 + a3 + 2435 + a3 (A - af) - AP ag! + a3h)
202 (57 +0)' (@) = D + e(svr — v

— . (5.46)
c(€2(ova + sv)? — g2 — 0?)

In particular, 5 = +217/¢ # 0 when the perturbation (V*, ¥*) vanishes. As a
consequence, IF;E never vanish by taking K in (4.2) small enough. Using (5.44a)—
(5.44b) and (5.44d), we can deduce from a similar calculation that

aiz +az = F3(r +ivny), (5.47)
where
Fs3 = (A)H™! {A(l)l(—A%3 — AP+ AV AP + ASIA(I)Z}

20,Pe? —
S L Pe (gvzz .szl) = (5.48)
e“(ovr +6v1)* — ¢ —0

Relations (5.38) follows by plugging (5.45) and (5.47) into (5.43a)—(5.43b).
We now show that aﬁ + ai are well-defined. Use (5.44b) to derive

b21b12 + b31b13 = b12(b21 + b31) + b31(b13 — b12)
= {bad + 43) + ba g — A | @ + v,
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which implies

by1b1a + b31b .
ai +axp = —by — b33+ 22T BIL _Fr 4 inlFs, (5.49)
Fi(t +ivin)

where [F4 and [F5 are some smooth functions of (‘0/, VlIG/) that vanish when ( \Q/, lI/) =
0 (c¢f (3.27) with alil = +u4 and ai = Fu+). The proof of the lemma can be

completed by using the fact that A(T and Af are smooth with respect to (VE, Vi),
O

As in the constant coefficient case, we define the Lopatinskii determinant as-
sociated with A and B as

A(t, x1, T, ) :=det [B(t, x1. T, ) (E4(t, x1,0, T, ) E_(t,x1,0,7,1)],
(5.50)

where B and E4 are given by (5.17) and (5.39), respectively. For the zeros of
A(t, x1, T, n), we have the following lemma:

Lemma 5.4. Assume that (V VlI/) is sufficiently small in W>*°(82). Then
A(t,x1,t,n) =0 ifandonlyif (t,x1,7t,n) € 1,
where T, := Tc_l U TCO U Tcl is called the critical set with

7= e R x 8 =ity x0),

where %o and %+, are real-valued functions of (V¥| x,=0, V@) satisfying
YN ((Mha UTp) N{xy =0}) = 2.

Moreover, each of these roots is simple in the sense that, if g € {0, £1}, then there
existaneighborhood v of (iZ4n, ) in 1 and a C*°—function h, defined on RZx ¥
such that

A(t,.x],f, n)z(f_iiqn)hq(t,xl’fv '7)5 hq(t,.x],f, 77)5&0 (551)
forall (t,n) € V.
Proof. Thanks to (5.17) and (5.39), we obtain that, for (z, ) € &,

Bt x1, 1. (E4(t, 21,0, 7, 1) E—(t.x1,0,7.7)) = (9 ‘§2> . (552)
68/l ,—0
where
{1 = a4/0% + E1(af, —ath —wy), &= =iy + E2(ay —ay — w-),
&y = aya {—afymf +m3) + @fy — o) (mf —m])},

Ly = aya— {—(a;2 —w_)(m] +my) +ay (m| —mg)}.

Recall that a4 and mjt are defined by (5.18) and (4.22), respectively.
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Thanks to (5.45), we have

+ +
o ./ S /a; —a,, —2a -
b =agyJ02 + &3 (H 2" +)
./ S/Fiay .
—a, gi+gi( 22+—w+). (5.53)

Using (5.45) and (5.47) yields

. F; + 2F7
0r=a_,/0* +&* (%&_ + a_). (5.54)

It follows from (5.43a) that

+ + + ~ + o+ +
aj; —ay +2a),  20i —2ay(a); +ayp)
= + _ T +
2 ajy —ay — 2ay,
By virtue of this last identity, we obtain

+ + +
o a; —a, +2a
o o ~ 11 22 12 + + + +
{3 =aya_ {<w+— +> (my —m|") —2a,m| }

20

o o (ot y +

= a+a_(m2 —my )a)+ 1-— [ T ——
ayy — ay —2ap,

2&4_601_(1+

12 + et + + .+ + +
S {(m2 —my)(ajy +ay) —mi(a); —ay — 2"12)} .
aj} —ay, —2ay,

Use (5.45) and (5.47) to deduce
(m; — m;r)(af'z + a;]) — m?‘(ai”1 — “;2 — ZaTZ)
=ay (mJFy —m{ (Fy +F7)) =0,

which, combined with (5.45), yields

25+ )
aF /7
Similar to the derivation of (5.55), we can infer from (5.43b), (5.45), and (5.47)
that

& = v (nf —mHa (1 - (5.55)

. 20
By =ava(my +m)a (14 —2= ). (5.56)
2 a_(Fy +2F3)

Therefore, we find that A = A1 Ay A3|y,—0, Where

~

+ o
IFZ ay
= — W4, AQ :

2

_]F2_+ZIF3_&

Aq e
! 2

— —>

a4/0% + &2 a_,/6% +¢&2
Asi=det | 2(mf —m}), . 2(my +m]),
- a_w4y — —da

F} F, + 2F;

~

+
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If (VE,¥F) = 0, then FY = £2I'/¢, Fy = 0, mi = 0, and my = 1/(I'¢h).
Thus,

Al gy = 't +ion) — oy, 2] gy = — ' —im +ow_,
1
A3l =0 = “ T {w (t +i0n)? + wy(z — ivn) }

Recalling the proof of Lemma 3.4 and using the continuity of Ay with respect to
(V, VU), we find that, if perturbation (V, VlI/) is suitably small in W22(£2),
then A and A, never vanish on R? x &, and A3(, x1, T, n) # 0forn = 0.
Consequently, A(z, x1, T, n) = 0 if and only if A3(z, x1, 7, 7) = 0and n # 0.
Let n # 0. Setting z := 7/(in), we obtain that A3/(in)® = 01(z) + 02(2),

where
2(my +my) a2 -

Fy +2F5 >in

)
s 2mf —mY) [, akBy
02(2) := —IFEL Vo< +¢= FSER

As in the proof of Lemma 3.4, we define
P(2) = h*T*(01(2)* — 02(2)%).

When (V W) =0, P(2)is exactly a polynomial P (z) of degree 5, given by (3.44).
As aconsequence, if K in (4.2) is suitably small, then IS(z) is a polynomial function
with degree 5 or 6, and there are functions Zx, k € {0, &1, +2, £3}, of (V, lI/) such
that

01(z) ==

&% +¢3

Py =G+ DA, P@=:3 [] G-,

ke{0,£1,42)
where %3 and P (2) satisfy that

8=0, Pix)=P(x) when(V,¥)=0.

Under condition (2.25), we can compute that the discriminants of %, j €
{0, 1, 2, 3} are all positive. Since the discriminant for a polynomial is continuous
with respect to the coefficients of the polynomial, we take K suitably small to

conclude that the discriminants of & Pl (Z), j €10, 1, 2,3}, are all positive. Conse-

quently, roots Zg, k € {0, £1, £2}, of P1 (z) are real and distinct.

Noting that the coefficients of p (z) are all real, we obtain that 3 are both real.
Since Zi, k € {0, £1, £2}, are all different, we infer that Z;, k € {0, =1, £2, +3},
can be expressed as continuous functions of the coefficients of p (z). Choosing K in
(4.2) sufficiently small, we see that Z_3 is always nonzero, 3 and Z( are in a small
neighborhood of 0, and Zx, k € {£1, 42}, are respectively in a small neighborhood
of £zyx with z1 and z; given by (3.48).

We then use (5.40) and employ an entirely similar argument as in the proof of
Lemma 3.4 to conclude the result as expected. O
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In view of Lemma 5.4, we can obtain the following result by using the continuity
of A,f and the fact that the perturbation (V, ¥) has a compact support (see [15,
Page 423] for the proof of Proposition 5.3 (c¢)):

Proposition 5.3. Assume that (V, &) satisfies (4.1)—(4.2) with K being sufficiently
small. Then we can find neighborhoods V.' of Y, q € {0, %1}, in 2 x & such
that

@ ¥ N (U Tha) = 2;
(b) Matrix A defined by (5.37) is diagonalizable on ¥ . In particular, there exist
matrices Qg € Fg such that

0F (A% (2) 0E(2)™! = diag (w+(2), @, (2)) =: Df (5.57)

forallz = (t,x,t,n) € ¥, where w, (z) # o/, (2) and w_(z) # &’_(2);
(c) Let h be Im w4 or Im w—. Then the solution of the system

dt Bﬁ(t o) dxy 8h(t o

- = <, x1,x2, 7, ) —— = —U,xX1,xX2, T, )

dea 98 AR B g T ey e e

das oh dn oh (5.58)
-— =—-——1, ) s by ) -— =—-——, i s by ) ’
s ar (1 X1, X2, T.10) ds 8xl( X1, X2, T, 1)

(t,x1,y +i8, M=o € ¥4 N{xy =0}

defines a curve (t, x1,y + i8, n) for all xo > 0, which remains in Y4 and is
called the bicharacteristic curve.

In order to absorb the error terms caused by microlocalization, as in [15,17],
we will construct the weight functions that vanish on the bicharacteristic curves
originating from 77 and that are nonzero far from these curves.

We define the complex-valued functions: for all z = (¢, x1, 7, 1) € R2 x &,
with 7 = y + 1,

04(2) = —iy +04(2), 04(2) =8 —nze(t,x1), q€{0,£1}, (5.59)

and we extend oy to R? x & as a homogeneous mapping of degree 1 with respect to
(t, n). Functions Zo(z, x1) and z4 (¢, x1) are given by Lemma 5.4 and correspond
to the points where the Lopatinskii determinant vanishes. Symbol o, thus belongs
to F% such that

e = {z:(t,xl,t,n)eRz X 5 : aq(z)=0}.

In view of Proposition 5.3(c), we can construct solutions O':({: of the linear trans-
port equations

820’_({_ + {03_, Imwi} =0 if xo > 0,
9ol +{o?, Imw_} =0 if x > 0, (5.60)

q q :
o, =0l =0y if x, =0,
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where o, is givenin (5.59), and {-, -} is the Poisson bracket defined by (5.28). Then
we infer that 01 (resp. o) is constant along each bicharacteristic curve defined by
(5.58) with i = Im w4 (resp. h = Im w_). In particular, function oj{ (resp. o)
vanishes only on the bicharacteristic curves originated from 7,/ with i = Im w,.
(resp. h = Imw_). By shrinking 7/ if necessary, we may assume that o are
defined in the whole set #.7. We will see that functions o are appropriate to deal
with the error terms appearing in the energy estimates.

From the above analysis, the whole space £2 x Z is naturally divided into three
disjoint subsets: 7, 7¢, and 2 x E\(T, U7,), where ¥ := ”I/C_l U ”//CO U ”I/Cl. To
derive our energy estimate (5.21), we introduce smooth cut-off functions according
to this division. More precisely, we introduce nonnegative functions ;,t and y!
(with values in [0, 1]), g € {0, 1}, such that

- X;E and xJ are C™ and homogeneous of degree 0 with respect to (z, 1) so that
they belong to F,? for all integer k;

— suppxd c #7 and x! = 1 in a neighborhood of the bicharacteristic curves
originated from the critical set 1/;

- lef = 1 in a neighborhood of Y, supp X, Nsupp x, = @, and supp lef N
supp xd = @ forall ¢ € {0, £1}.

Since aff and o7 vanish only on the bicharacteristic curves originated from TJ] s
there exists a constant ¢ such that
loll>c>0 in {xd <1}n¥%’ (5.61)
We also define
o ++ - R | 0 1 =1 — _ 5.62
Xp=Xp tXp» Xe =X FtXct X Xu=1l—Xp—Xe. (5.62)

Then x, has support far from the poles and the bicharacteristic curves originated
from 7. We observe that the Lopatinskii determinant does not vanish on supp y, N
{x2 = 0}. This enables us to apply the standard Kreiss’ symmetrizers to derive the
energy estimate for T{u Wn¢, which will be shown in Section 5.4. After that, we
will show how the traces of T, , W' and Ty W™ can be estimated. At the end of
this section, we will complete the proof of Theorem 5.1 by using a weighted energy
estimate with the weight functions 0':?: given by (5.60). In particular, we will prove
that the microlocalization error terms can be absorbed by such a weighted estimate.

5.4. Estimate at Good Frequencies

In this subsection, we show how the solutions of problem (5.20) can be estimated
for the frequencies that are far from both the poles 7}, and the critical set T,.. We
define

-
— + + - -
Whe = (T)g’u Wi T Wi TY Wy, T) W, )
and introduce a smooth cut-off function %, with values in [0, 1] such that

Xu=1on supp x,, suppxuNYp =9, GuppxuNi{x2=0)N7T. =g,
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where y, is given by (5.62). Employing the same analysis as in Section 5.2, we
derive that W}° satisfies

(5.63)

TYWN =G+ R W™, x2 =0,

{ RW =T, W+ T Wi + T/ W + RoT) F + R1W, x2 >0,
B

where 8 € I‘g is given by (5.17) for (7, n) € &1. The symbol matrices A, is defined
as A, in (5.36) with X4 replaced by ¥,,. Both E and r have the same block diagonal
structure as A, and belong to F?. We note that A, = A on region {X,, = 1}, and r
is identically zero on region {x, = 1} U {x, = 0}.

In view of Lemma 5.4, we find that the Lopatinskif determinant never vanishes
on supp x» N {x2 = 0}. Note that the perturbation, (V, Ef/), is assumed in (4.1) to
have a compact support. In the next lemma, we construct the Kreiss’ symmetrizers
that are microlocalized at all frequencies in the compact set K, where

K:=suppy, N{—T <t <2T, x 20, |x| <R, (t,n) € &1}.
Lemma 5.5. Assume that (4.1)—(4.2) hold for a sufficiently small positive constant

K. Then, for each zo € K, there exist a neighborhood ¥V of zo in K and C*°—
mappings r(z) and T (z) defined on V" such that

(a) Matrix r(z) is Hermitian, and T (2) is invertible for all z € V'
(b) There exists ¢ > 0 so that

Re (r(z)T(z)A(z)T(z)_l> >cyl forallz € ¥V withy =Ret; (5.64)
(©) If zo € KN {xo = 0}, then there exists a positive constant C so that
r@)+C(B@T@ )BT =1 (5.65)
forall z € ¥ N {x; =0},
where A and B are given by (5.37) and (5.17), respectively.

To prove Lemma 5.5, we first establish the following result:

Lemma 5.6. Let zo = (ty, x0, 70, N0) € 2 x By so that Retg = 0 and 7 *
i( — C; + (Cf’)’l)no. Assume that K given in (4.2) is sufficiently small. Then
there exists a neighborhood ¥V of zo in 2 x &y such that

Rewy(z) S —y. Reo,(2) 2y (5.66)

forall z = (t,x,t,m) € ¥V withy = Ret. A similar result holds for w_ and '
near zo = (1o, X0, 70, N0) € 2 x &y so that Retg = 0 and 19 # i( — ¢y +
(€~ )no.
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Proof. This proof is divided into two steps.
1. If Re w4 (zp) < 0O, then one uses the identities

~ a)) + a3, ~ . af +ay
w0y =wy — ————, —w+:w+—T,

5 (5.67)

and (5.49) toinfer that Re a)ﬁ|r (zo) > Ofor sufficiently small K. Sincey = Ret < 1
for (r, n) € Z, estimates (5.66) follow directly from the continuity of w, (z) and
o/, (z) with respect to z.

2. Assume that Re wy(zg9) = 0. It follows from Retp = 0 and (5.49) that
Re @4 (z0) = 0. Thanks to (5.40), 12 < (C}")?(80 + € 1p)? for 89 = Im 7 so that
8o # —Cn‘;rno. For all (i8, n) with (Co‘fr)z(ﬁ + (i‘;rn)2 > 2, we apply (5.40) again
to derive that

8§ #—Cin, @y(t,x,i8,m) = —isgn(s + é‘;mé’g\/(éi)?(a +CFm? =2
(5.68)

Since 19 # i(—Co’;r + (Ce'f’)_l)no, @4 depends analytically on (z, ) by applying
the implicit functions theorem to (5.38). In particular, we obtain that, for z near z,

By (t, x, T, )y @y (1, x, T, m) = (CF C)(x +iCFn). (5.69)
From (5.68)—(5.69), 9, & (t, x,18, n) is real and negative for (z,x,i8,n) in a

suitable neighborhood ¥ of zg. Using the Taylor expansion yields that, for all
(t,m) e,

Gi(t,n) = 138, n) + 8,418, My + O(¥?) (v — 0).

Then we deduce that Re w < —y, up to shrinking ¥". In view of (5.49) and (5.67),
estimates (5.66) follow by taking K small enough. O

Proof of Lemma 5.5. The proof is divided into two cases.
Case 1. Let zg € K\ 7,4 with 75,4 given in (5.41). In light of Lemmas 5.4 and
5.6, we can find a neighborhood 7 of z¢ in K such that
Rewi(z) S —y, Rewl(z) 2y forallze?, (5.70)
and

A(z) #0 forallz € ¥ N{x, =0} (5.71)

According to Lemma 5.3, matrix A is diagonalizable in 7. Indeed, a smooth basis
of the eigenvectors is given by

- .o T
Ei(2), Y4(2) = ((r +ibm)(=aj, + o)), (v +i0n)aj;, 0,0),  (5.72)

E_(2). Y_(2):= (0.0, (r +ibymapy. (t +idbym(—ay + @ )) . (5.73)
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where E are given by (5.39). Notice that £ and Y4 are linearly independent in 7.
We can thus define the smooth and invertible matrix 7(z) := (E4 E_ Y y_)~!
in ¥ so that

T(2)A@)T(z)"" = diag (wy, w_, 0, @) forallz e V.
Construct the symmetrizer r(z) as
r(z) :=diag(—1,—1,K',K’) forallz € ¥, (5.74)

where K’ > 1 is a constant to be chosen. Then we can obtain (5.64) from (5.70)
directly.
Thanks to (5.71), we have

IB(E+(2) E_(2)Z7| 2127 | forallze ¥ Nix, =0}, Z~ € C2. (5.75)
This implies that
1Z72 < Co(1ZTP +1BR)T ()" Z7)

forall Z = (Z—, ZH)T € C* with Z* € C2, where Cy is some positive constant
independent of z € #'. Then we have

(r@ +2C(BQT@ ™) BT @) )2, Z)eu
= 127+ KIZVP 4260 |BoT o 2|
>|Z7P 4+ (K —2C0)| 2T > |z

by choosing K’ > 2C¢ + 1, which implies (5.65).

Case 2. Let zop € K N 7},4. Then symbol A is not diagonalizable at zg. We
consider without loss of generality that zo = (fo, X0, 70, 70) € K satisfies 7y =
—i(CQ’;r + (C.‘fr)’l)no. The case 19 = —i(Cc’{ + ((i‘f)’l)no can be dealt with in
an entirely similar way. Using (3.36) and the continuity of C"f in (f/i, Vlf/i), we
take K sufficiently small to find '

w0 +ibin0 £0, 10 # —i(Cy £ (€)M,
which, combined with (5.38) and (5.45), implies
(af} — a3y — 2a3) (z0) = F3 (z0)at(20) # 0. @_(z0) # ' (20).

Since @ (z9) = 0, we use (5.43a), (5.45) and (5.47) to obtain

(ay] — ay,)(z0) 253 (zo0) n
EE S e ] .
> + ]FZ_(ZO) a5 (zo), (5.76)

and hence

+ _ + _ 2F+
(a}; — wp)(z0) = %(Zo) — w4 (z0) = — (1 + Ff(i?;) ah(z0) # 0.
2
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In view of (5.39) and (5.72)—(5.73) we find that the vectors
Ey = (=afy, —=(F§ +2F)af,/F5,0,0)T, ¥y := (1,0,0,0)7, E_(2), Y_(2)

form a smooth basis in neighborhood 7. Define T (z) ::(E+ ﬁr E_ Y_)_l. Then

a 0 O
TARDTE@ ' '=[0 w_ 0 forallz e ¥,
0 0 o
where a, is the 2 x 2 matrix with (i, j)—entry aij (2)
+ +y 4 + 4 + o+
i, _ CF5 +F))ay, +Fyay, 1, —Fyaji
ar (Z) - -+ -+ ’ ar (Z) - -+ -+ ’
2F; + T, 2F5 +Fy))ay,
n,. QFf +F)af| —Fyaj o, ahat'(2)
a, (Z) - + + ) a, (Z) = At | bt
2F + T, QF3 +Fy)F;i

with
a2l (2) :=Ff QFF + F)(af, — a; — 2ay) — 4(FD)aly + @D (afy + a)).
By virtue of (5.45) (5.47) and (5.76) we derive
2FF ai(z0) = —2F1 al (z0) + 2F7 (), — afy — 2a;5)(z0)
= (2F] + F)(af| — a3y (z0),
a'(z0) = 4FT (F + Fajy (zo) + (F) (af, + ai))(z0)
= 4FF (F + F)afy(z0) + F3 FY (af) — a3y — 2a75) (z0).
= 0’

which implies
at'(z0) — a?(z0) = a?' (z0) = 0. (5.77)

We now look for a symmetrizer » with the form

s(z) 0 O
r(z) = 0O —-101,
0 0 K’

where K’ > 1 is some real constant, and s is some 2 x 2 Hermitian matrix,
depending smoothly on z. Both K’ and s are to be fixed such that (5.65) holds for
z € ¥ N{xy =0} when zg € {xo = 0} and (5.64) holds forall z € ¥

We recall that A(z) # 0in ¥ N {x; = 0} so that (5.75) holds. Noting that the
first and third columns of T'(zo)~! are E. (z0) and E_(z0), we can find a positive
constant Cg such that, if zyg € KN {x, = 0}, then

1212 +1231 < Co (122 + 124 + 180T 20) "' 2P)
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forall Z = (Z), Z, Z3, Z4)" € C*. Assume that the Hermitian matrix s satisfies

5(z0) = <O el) —: E, (5.78)

€] ez

where e; and e; are some real constants to be fixed. Then we have

((rzo) + C'Co(BGz0) T (z0) ") BT (20) ") Z. Z) s
=201 Re(Z1. Zalc + 2| 2o — |23 + K'\Zaf +C'Co [Beo) T o) ' 2]
> (€' = max{ler], 1) (121 +123P)
+ (e2 = le1| = C'Co)| Za|* + (K" — C'Co)| Zal*.

We choose C' = max{|ei|, 1} +2, ex = |e1| + C'Cy+2,and K’ = C'Cy + 2 to
obtain

r(z0) + C'Co(B(z0) T (z0) ') B(z0) T (z0) " =21

Using the continuity and shrinking ¥ if necessary, we derive estimate (5.65) for
C =C'Cy.

It remains to choose a suitable Hermitian matrix s(z,n) and e; € R such
that both (5.64) and (5.78) hold. Since 19 # —i(Co‘z_ + (él_)_l)no, we find that
Rew_(z) < —y andRe o’ (z) = y forall z € ¥ from Lemma 5.6. Consequently,
it suffices to find e; € R and a Hermitian matrix s(z) satisfying (5.78) and

Re (s(z)ar(z)) = yI forallz € 7. (5.79)
To this end, we let
s(2) =E+F()+yG()

for some smooth 2 x 2 Hermitian matrices F' and G satisfying F(zp) = 0, where
E is defined by (5.78). In light of Taylor’s formula, we may write

ar(2) = a;(t,x,y +18,n) = a,(t, x,i8, n) + yd,a, (1, x,18, ) + y>N1(2)

for a suitable continuous function N;. Noting from (5.22) and (5.37) that aij (t, x,
i6, n) are purely imaginary, we may choose

F(z) := diag (f(2), 0)
with

er(al! —a?)(t, x,i8,n) + e2a?'(t, x,i8, )
al2(t,x,i8, n)

f) =

9

so that matrix (E 4 F(z))a, (¢, x, 18, n) is symmetric and purely imaginary for all
z € V. It follows from (5.77) that F(z9) = 0. Therefore, we have
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Re (s(2)a, (2))
— Re {y(E + F@)dyar(t, x,18, 1) + ¥ G(@)ar (1, x,i8, 1) + y2N2(z)}
=y Re{Edyar(t, x,18, 7)) + G(2)a (¢, x,18, ) + N3(2)}

for some continuous functions N, and N3 satisfying N3(zp) = O, where we have
used F(zg) = 0. According to (3.28), we see that, for T = —i(Cy £ C1 )no,

dya;" (10, X0, T, 10),( ry—g = Oy (2imy(my — )}, 1m0)
_2il%(ino + €707)
(T +ivn)’

x {262525(5 i) (ino + €257)2 — E(ino + €297)° — €25(F + ifmo)3}
2 . 2_,.,

_ 1Mo + €“vt
62112) 77()( no )

=2I%(1 - ——
T +1vno

€ R\{0},

where we have used ¢2(ing + €20%)? = (7 + ivng)? and condition (2.10). Then
8yar21 (zo) is always non-zero by choosing K sufficiently small and using the con-
tinuity of A/i and C/jE In order to obtain (5.64), we choose

1 0 i
€1 = (ayafl(zo)) . G() = <_ig ‘3’)

for some positive constant g. This choice of ¢; and G yields

0 iga,22(zo) )

—iga!l(z0) —iga'*(zo0)

1
Re {Edya,(20) + G(2)ar(z0)} = <* *> " (

where the entries with = are the coefficients that depend only on zg, e1, and e
(which have been fixed earlier). Notice that, if (V, ¥) = 0, then

at'(z0) = —aP*(z0) = (4 —m)(F,n0) =0,  a*(z0) =1i

for T = —i(C, £ Ef ! )no. Then we can take K sufficiently small, g suitably large,
and shrink ¥ to conclude (5.64). This completes the proof. O

Thanks to Lemma 5.5, one can deduce the following lemma by using a partition
of unity (we refer to [4, Theorem 9.1] and [52, §4.7.3] for a detailed derivation of
the following “global” symmetrizer S):

Lemma 5.7. Assume that (4.1)—(4.2) hold for a sufficiently small positive constant
K. Then there exists a mapping

S 2 x (R? x Ry \{0}) = My4(C)

that satisfies the following properties:
(a) Forall z € 2 x (R? x R \{0}), matrix S(z) is Hermitian and S € r2;
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(b) Forallz = (t,x1,8,n,y) € 982 x (R? x R \{0}),
%u(2)28(2) + CRu(2)* 22V B(2)*B(2) = cXu(2)* 2>V 1,

where NV = (y2 +68%+ nz)m/z;
(c) There exists a finite set of matrix-valued mappings V;, H;, and E; such that

Re (S(2)A,(2)) = Z Vi)* <)/H6~ (2) EJ'O(Z)) Vi(2),
J

where V; and E; belong to F%, Hj e Fg, and the following estimates hold:

D Vi V@) = A X Hjx) >cl.  Ej(x) =AMl
J

With Lemma 5.7 in hand, we can choose S as a symmetrizer for problem (5.63)
to show the energy estimate as in [15, §3.5], for which we only give the result
here for brevity. We just recall that the components T{M WljE are given in terms of
T{u Wf3 by relations similar to (5.31). The estimate for T)Z, W reads

2 2
yINTLWIR, + 1T, W™ oll?,

SIGIT, + 1W™ =0l + ¥ (|||F|||%,y + W+ |||TJW|||%,V) . (5.80)

where symbol r € I‘(l) vanishes on region {x, = 1} U {x, = 0}.

5.5. Estimate near the Poles

This subsection is devoted to deriving the energy estimate near poles 1, =
T; U7, . Matrix A is not defined at points in 77, while the stable subspace &~
of A admits a continuous extension at these points, due to Lemma 5.3. We show
the estimate near T; without loss of generality. For this purpose, we define two
cut-off functions ¥ and ) with values in [0, 1] that are both C° and homogeneous
of degree 0 with respect to (z, n) and satisfy that

X =1 onsupp X;L, X1=1onsuppy, suppxiNsuppxc =<, (5.81)

where X;r and y. are introduced at the end of Section 5.3. As in [17], we go back
to the original problem (5.20) and set

+ ._ 7Y + —._ 7Y —
Wy =TI W W =T W (5.82)

Then we employ the argument in the derivation of (5.29) to obtain

v + Y Wt +_ Vwt TV gt +
17 e ne Wi+ TEWS + WS =TV WE 17 FY RO WF, (583)
where r = i{xl‘f, TAS + inATL} + 02x, I, € TY. The equation for W, is the

w_

same as (5.83) with index “+” replaced by
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Let us introduce symbols R, and L7, both belonging to 'Y, such that, for
(t.n) € &1,

1 ki ko 1 0 0
Ri:=|0 —da, O], Lf=|0 1 0
0 ay(af; —oy) 1 L L Iz

Recalling from (5.22) and (5.24) that (b)) = tAy +inA} and b}, = F{ay, we
choose '

= (FT)_I {b;rzaﬁ —bi5(a; — o)}, k= ~b35 /b3
I = —(IET)_1 {b;‘l(af'1 —wy) + b_;flafrz}, b= a+(a11 —wy), I3= &+afL2,
so that L} L RT = diag (0, —aa},, drafy) and
b11 0 kabi, + b]3
LT (A +inADRT = | b, 4 0 :
0 dz dy
where
dy = bjiki — bjaraf, + bidi(af) —wi), do =1j(kab}, +b73) = 1;b5,
dz =1; (klb b+2a+a12 +b 3aJr(a11 a)+)>
= l ( b,2a+a12 + bj3a+(a11 — a)+))

We have used the relation: [ b;fl = 0. From (5.24) and definition (5.37) of A, we
have

= ()~ {05,b]; — b3, Fapaf, + (=5, b, + b3y Fia) (af; — o)}
F+)_1 {bliafafy = bjialy (@), — 0} = drafyou,
dr = D) (@], — o) (=b3, b, + FFa b)) + afy (—b3, b5 + Ff ap b))}
= =)™ (@, — wpbfiafy +ahbliah} = dafy s —afy —ajy),
and
Fids = (a]; — o) (=bF a4 by + FFaibsy) + (afy)?ar (bhbd, — Ffaibsy)
+ (af} — wp)atyar (bhHbY, — bsbY, — Ffa b, +]F+a+b33)
= — c°1+b1+1afr2 [(a11 —wy)? — afrzagl — (afrl — a)Jr)(a11 — a22)} =0.

We have used (5.42) for deriving the last identity. We notice from (3.27)—(3.28)
that

arapl g jy—o = — (¢ +ivmmy = Fé(in + €201)%/2
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does not vanish on supp x| by shrinking supp ¥ if necessary. Since Z’z+a1+2 is
smooth in (z, ) and (V, V¥), matrix L} := diag (1, —(aa}y) ", (arah)™")
is a smooth and invertible mapping on supp x. We then derive

LibRi =L, Li:=LjL], (5.84)
Li(tAf +inADRy
b, 0 kbl + b
= | —b3,/(Graly) —wy 0 = Al (5.85)
0 0 wy-— arl — ai"z

We also introduce symbols R_ and L] that belong to Fg and satisfy that, for
(t.n) € &1,

1 ki ky
R_:=10a(ay, —w) a_ap,

0 —d_a; a_(— a“—i—a) )

1 0
Ly =\l a(a;; —o") a—ay,
w-)

Iy a—ay, a—(a,, —
with
ki = F)) " {— (a5 — w-)bp, + a5, b5},
ky = (F)) " {—apby, + (a); — o )bys ),
Iy =@~ (a;1 — /)by, —apby, ),
I, =Ty, )~ { ay by — (ay, — w—)b3_1}’

sothat L| b R_ = diag (0, dy4, —dy4) and
b;; 00
L (tAy +inA)DR_=| 0 ds ds |,
0 dy dg
where dy = 42 {(a}; — @) (a5, — w_) — apya5, } and
ds = a_(aj; — ") {by ki + bypa_(ayp — w_) — byyd_as, }
+ d_ap {by kT + byna_(ay — w_) — bya_az ).

We omit the expressions for d;, j € {6, 7, 8}, since they are quite similar to that of
ds. By virtue of the identity: a,, — w_ = —a| + o’ and (5.42), we deduce

(ay, — ) (ay —w_) —apay = —(ay, — w_)? — apay,
= (0- —ay)(—2w_ +a +ay), (5.86)
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which yields ds = a2 (w_ — ay)(—2w_ +ay; +ay,). Using (5.22), (5.24) and the
identity a5, — w_ = —aj; + w’_, we compute
ds = &> {al_l (ay, — a)_)2 —2a,a5,(ay —0-) + a1_2a2_1a2_2] ,
which, combined with (5.42) and (5.86), implies
ds = &% w_(w_ — ay)Rw_ —aj| —ay) = —w_dy.

Performing the similar calculations to d; for j = 6,7, 8, we can discover that
de = d7 = 0 and dg = w’_d4 so that

Ly (tAy +inA7)R_ = diag (0, —w_dy, o’_dy).

Note that d4 does not vanish in neighborhood supp ¥ of T; up to shrinking supp X .
Setting L, := diag (1, d4_1, —d4_1) and L_ := L, L, we obtain

L_LR_ =1,
L . _ , d (5.87)
L _(tA, +inA])R_ =diag(b||, —w_, —w_) =: AZ.
Let us define
zt.=1" Wf, 2z =T W,
XR; XRZ P
Applying operator T)%/ L, 1o (5.83) and using (5.84) yield
Y + Y + 4 +
T;?L+<rAg+inAl+)Wp + T—'Z}:o 3 (XL1)dy; (1A3+1,,A1+)WP + T;?L+C+ Wy

__7Y + Y Yt Y 7Y g+ +
= T)?LJrIzaZWp +T5(‘L+Tr W +T%L+TX;F +R—1W

- _ + Y + Y rYwt Y Y g+ +
=—-0hoZ" + leaz()YR;l)W” + T;?L+ W™+ T)YL+ TX;F +R_W™,
where xg :=t, & := §, and &; := n to avoid overloaded equations. On the other

hand, it follows from (5.82) and (5.85) that

TV, Zt =T wWiH+T17
+

2 . . L WFH+R_ W,
L (tAf+inAD) " P — ijoag_iAiaxj(XRg) P

Then we have

L»HZ" + ng Zt+ T]D{,, Zt=T/Wt + ROTXV+ Ft4+R_WT (5.88)
+ + I3

for new r € F(l) vanisEing on {Xp =1}U {Xp = (0}, where Zi is an extension of
A4 to the whole set 22 x &, and D] € T') is given by
DY := YL+CTRy — La(XRTHR;

+i Z {9, A0, (RRTY) — 8g, (XL1)dy, (TA +inA) | Ry
j=0,1
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Similarly, we have

L»Z™ + ng Z + T]Dfp Z-=T'W + ROTXZF* +RW™,  (5.89)
- - P

where r € 1"0 vanishes on {Xp =1}U {X[) = 0}, A4 is an extension to the whole
set 2 x & of A4 ,and D? € F?. According to the definitions of R, we have

Zne — T)%’E_l TXV; whe, (5.90)

where 2" := (23, Z7, Z; Z3_)T and

—acal, 0 0 0
R ap(af, —wp) 1 0 0
’ 0 0a(ay;, —wo) a_ay,
0 0 —a-a;, a_(—aj+al)

Note from (5.39) that the first and third columns of R are E4 and E_. By virtue of
(5.20c), we obtain the following boundary conditions in terms of Z"¢:

y Z+ zf e .
Tﬁ(E+E ) + Ro z =RoG+R_1W if x, = 0. (5.91)
For problem (5.88)—(5.89) and (5.91), we obtain the following energy estimate:

Lemma 5.8. There exists constants Ko < 1 and yy > 1 such that, if y > yo and
K < Ky for K given in (4.2), then

yIIZENT, + 1025 Z3) m=ollT,,
SIGIT, + W™ lo=ol® + ¥~ (IT), FIT, + IWIE + T WIIL,),
(5.92)

where symbol r € F(l) vanishes in region {x ;7 = 1} U {x; = 0}.

Proof. We divide the proof into five steps.
1. Estimate for Z;r . According to the form of Ai given by (5.85), the third
equation in (5.88) for Z7 reads

hz{=T1" LZI+T) Z++TVW++R0TV FF+ R Wt (5.93)

—oitafi+ay,
Take the scalar product in L2(£2) of (5.93) with A%Y Z;‘ to obtain

4
+ 2 Ly 7+ Ly v + .
125 lo=ollf,, +2Re (A Z3, AMTY L Z3) = Z}H” (5.94)
J:
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where each term 7 ; in the decomposition is defined in the following:
Hy = —2Re (A" ZF AV TY ZV) SNZTIE
1
Hy = —2Re (A" 2E, AV TY W) S eyllZF IR, + J”'Try wHIZ,
1
H3 = —2Re (A" ZT, AV RoTV . F) S eyl ZTIR, + —IT/ F5FIIT
Xp ey Xp
1
My = —2Re (A" Z{ AV ROWT) S evllZTIR, + gmwﬂnz.

For the second term on the left-hand side of (5.94), we employ Lemma 5.2 (iv) to
deduce

Re (Al z Alvr? zh)

—w4 +al+1 +a;r2

1, 1, 2
>Re (A" ZT, waﬁama;z/x rZE) - CNZSI, -

Thanks to (5.49), Re(afr1 +a2+2) = IFZ{ y, where IFI is a smooth function of ( \O/, Vlf/)
that vanishes at the origin. We then employ Lemma 5.6 and take K in (4.2) suffi-
ciently small to obtain that Re(—w4 + aT] + ajz) = y. Apply Garding’s inequality
(Lemma 5.2vi) to obtain

Re (a7 Zf, 17 LAY ZE) 2y IAY ZEIP Z v IZE I,

7w++a1+1 +ay,
from which we have

Re (AT, AlTY Z5) 2 (v = ONZTIR,, -

—wy +ai*'1 +a;’2
Choosing ¢ small and y large, we derive from (5.94) that

+112 + 2
YIZEIR, + 1125 ool

SNZEWL, + v~ (T WAL, + 0T BT, + IWEIE). (5.99)

2. Estimate for Z f’ The equation for Z fr in (5.88) is as follows:

TV ZF+T) . L ZI=T)Z"+ /W + RoT . FF + RO W™, (5.96)
by kabyi+by3 Xp

Recall from (5.24) that Re le = Ff‘y and Re(kgbi"l + bE) = yap. Similar to
Step 1, we take the scalar product in L?(£2) of (5.96) with A%Y ZfL and use (5.95)
to obtain

2
vIlZEg,
SWZEIE, +VUZTNE, + v~ (T WEIR, + 0T FFIT, + W)

SNZEWR, + v~ T WA, + 0T T, + W) (5.97)

for y sufficiently large.
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3. Estimate for Z; . The equation for Z; in (5.88) reads

0z =T LZT+ Ty 2+ Tz

+N—
dpajy) by,

+ T/ Wt + ROT;’;F; +ROWH.

We note that Rewy < —y and Re((&+afr2)’lb2+1) = yap. Employing a similar
analysis as to that in Step 1 and using (5.97) yield

vIZTIIE, = ClIZS 1x=ollf,,
SNZEE, +vNZEIE, + v~ (N WL, + 0T BT, + W)

SNZEWE, + v~ T WAL, + 0T FEIE, + W) (5.98)
4. Combine estimates (5.95) and (5.97)—(5.98), and take y suitably large to find

yIZTNT, + 125 1n=ollT,
SN2 =0l + v T WHIR, + T FEIRE, + IWFIR). (5.99)

The derivation for the estimate of Z~ is entirely similar so that
YIZEIE, + 125 1n=ollf
SN2 a=oll}, +y T T WIR, +IT-FIR, +IWIP). (5.100)

5. Estimate on the boundary. It remains to make an estimate for ||Z§E| x=0ll1,y-
Using the boundary conditions (5.91), we have

1T} Zaloo=o0llf , S 125 la=0llT ,, + IGIT, + 1W™ =0l (5.101)

where E = B(E4 E_) and Z, := (Z7, Zz_)T. Setting V* := TI%CI T;+ W, we
4
see from (5.90) that

Zy =TIVi + R W™ (5.102)
Since E € F(z)’ we apply the rule of symbolic calculus (Lemma 5.2iv) to find that

TEVR_I =R_1, (ALVTEV)*AWTZ -1

§ = Lorgg =Rt

Thus, we have
IT5 Zalvo=oll? ,
2 Re((AM T AW TITE Vilio=o, T Vilra=0) = CIW™|p=oll*
2 Re(T), ,5.5T¢ Vilo=0. Ty Vil=o)
= CITY Vila=oll1.y 1T Vil=oll = CIW™|p=ol?
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for Vi := (V;*, V;))T, which, combined with (5.101), implies

Re(T”,

ey it I Vili=0, T3 Vilw,=o0)

SZ5 ln=ollt, + IGIT, + ¥ 123 =0T, + IW™nm=0l*.  (5.103)

Recall from Lemma 5.4 that the Lopatinskii determinant A does not vanish on
supp X1, owing to (5.81). It then follows from definition (5.50) of A that

XL Re(WV B*B) 2 XAV 1.

Then we can employ the localized Garding’s inequality (Lemma 5.2 (vii)) and
utilize (5.102) to derive

Y
Re (TAZ Vﬁ*ﬂ X Vl |x2 =0, T"‘ Vl |x2—0>
2T Vilo=olli , = CllVilu=0ll* 2 1 Z2lx=0llT , — CIW™ =0l
(5.104)
Combine (5.103) with (5.104) and take y small to infer that
Ay <\zs G wre 2 5.105
125 |xy=oll} Sl la=oll} M I3 oy T IWE =oll”. (5.105)

We combine (5.105) with (5.95) to eliminate the first term on the right hand side
of (5.105), and then use (5.100) to conclude estimate (5.92). This completes the
proof. 0O

Recall that x, = x, X, , and supp X+ Asupp x,, = . Shrinking the support
of xp if necessary, we obtain the followmg result from Lemma 5.8:

Proposition 5.4. There exist constants Ky < 1 and yo > 1 such that, if y >
and K < K for K given in (4.2), then

yIITY W, + 177 W™ lo=ollT,
SIGIT, + 1W Lol + ¥~ (1T, FIIT, + IWIZ + T WII ),
(5.106)

where symbol r € F? vanishes in region {x, = 1} U {x, = 0}.

5.6. Estimate near Bad Frequencies

We now show the energy estimate near the points in 7. = qu{o,ﬂ}’fcq, ie.
near the zeros of the Lopatinskii determinant. We consider the case near set TCO,
without loss of generality. To this end, we introduce two smooth cut-off functions
x1 and y with values in [0, 1] such that

— x1 = 1 on the support of X?, X2 = 1 on the support of Xf-), and supp x2 C ”//CO;
— x1 and xp are both C*° and homogeneous of degree 0 with respect to (z, 1),
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where x? is given at the end of Section 5.3. Defining
wt = T;'?Wi, Wl = (wi, w)',
we perform similar calculations as we have done in Section 5.2 to obtain the fol-
lowing system:
Hw' = TA{E Wi+ TLwl + TV W™ + ROTXVPFi +ROWE, (5.107)
where E* ¢ I‘(l), A;EZ € I‘% is given in (5.36) with x4 replaced by x», and r € I‘?
vanishes in region {x;, = 1} U {x/ = 0}.

Since matrix Ai = AL in region {x» = 1}, we obtain from Proposition 5.3
that

05A;, =Dy 0y in{x2=1} (5.108)
More precisely, we have
+ -1
(QOO QO_> =(ELY,E_Y.), (5.109)
0

where E4, Y, and Y_ are defined by (5.39) and (5.72)—(5.73), respectively. Then
the following lemma can be proved as in [15, Page 425] by using (5.108):

Lemma 5.9. There exist symbols Qfl € Ffl and diagonal symbols Dg € F?,
which are defined in region {x, = 1}, such that

(0 + 0T DAL + E5) — (Df + D) (QF + 0%) + 105
— i(35 Qg A%, + 9y Oy 0x, AT, — D79, Q5 — 8,D7 0y, Q) € Iy
We now prove the estimates for

zZt .= T;(Q§+Qi:l)wi°, (5.110)

which will be shown to satisfy the paradifferential equations with diagonal principle
symbols.
In fact, using Lemmas 5.2 and 5.9, we see from (5.107) that

HZt = T}%TZJ“ + TH%ZJr + T/ W+ ROTXV?F+ +R_WT, (5.111)

where ]I~)1+ (resp. ]INJDS ) is an extension of ID)I+ (resp. ]D)ar ) to the whole set 2 x 5.
Thanks to Lemma 5.6, these extension can be chosen such that

~r (o 0\ _ (veq+ihy 0 S ,
= (5 ) = (0™ e L) B = e i
(5.112)

where e, ¢/, € I'Y and hy, i, € I'} are real-valued symbols, and d, d’, € T
such that

exy S—1, € =21

We obtain the following result for functions Z* that are given in (5.110):
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Lemma 5.10. There exist constants Ko < 1 and yo > 1 such that, if y > yo and
K < Ko for K given in (4.2), then

VNZUP + v Z2llT, + 1 Z2l=0lT, + ¥ 1 Z1 =0l + 1T Z1]xp=olI®
Sy T WIR, +ITLFIT , + W) + G, + W™ Ln=oll®,
(5.113)

where Z; = (Zz*T, Z]._)T, j = 1,2, 0 is the scalar real symbol given by (5.59),
andr € F? vanishes in region {)(g =1}uU {x? = 0}.

Proof. The proof is divided into two steps.

1. Estimate in domain §2. The first equation in (5.111) reads

WZ{ =T} Z{ + TLZT + T/ Wt + ROT)(Vg,F+ +RWT. (5.114)

Recalling that Re w+ = yey < —y, we choose the identity as a symmetrizer and
obtain the L? estimate

VIZEIP S 1Z =0l + ¥~ I WH RoT/ F*. R W2

SNZf =0l + v I WHIT, + T FEIR, + IWFIP) - (5.115)

for sufficiently large y .
The second equation in (5.111) reads

nZi = TwV,+z2+ + TdZZ; +T/WH + ROTXV?F+ +R_WT.

Recalling that Rew/, = ye/, 2 y, we perform a similar calculation as Step 1 in
the proof of Lemma 5.8 to deduce
yIZ3 T, + 125 1=0llT,
Sy T WEIR, + 0T FHIR, + W2 (5.116)
for sufficiently large y.
A similar analysis enables us to deduce the energy estimates for Z|” and Z, as
(5.115) and (5.116). The combination of all these estimates is
v NZUP + y I Z2llT, + 1 Z2liy=0llT,
SV Zila=ol? +y T NT W, +ITLFIR, +IWIP). (5.117)
2. Estimate for the boundary terms. We now estimate the traces of the incoming

modes Z in terms of the outgoing models Z; and the source term G. Using the
boundary condition (5.20c) yields

Tﬂyw“c =G+R_ W' ifx, =0.
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From the proof of Lemma 5.4, we find that 21 # 0, and

(&184 — E83) =0 = A = (x — iZomho(t, x1, T, 1), ho(t,x1,7,17) #0

in a neighborhood of (iZgn, n) € &]. According to identity (3.53), we define the
following invertible matrices in a suitably small neighborhood of TCO:

P = 01/4'01 0 . p= 1—052 ’
—¢3/(¢1¢5) 1/8s 0 &

with {5 = ho(¢, x1, T, n) such that P; and P, belong to 1"(2). Shrinking 7/C° if
necessary, we have

o e 0 0
Bin := PIB(E. E_)P, = <0 1y +i80)> in 70, (5.118)

where 6y = § — Zon is the scalar real symbol in l"%. We recall from (5.59) that
op = —iy + 00.
We then fix the four cut-off functions x¢;, X¢,, X¢;»> and xc, such that
—  Xe¢ = 1in aneighborhood of supp x1 N {x2 = 0};
—  Xc; = 1 inaneighborhood of supp x¢; , for j = 2,3, 4;
—supp X, € #0 N {x2 = 0}.

As in [15, §3.4.3], the following estimate can be obtained by using the localized
Garding’s inequality:

Y y 77
” TXc'z)\l'yﬂin TXC] TXC4 PZ*I Z] |X2=0 ”
S Gy + 1 Z2]m=0ll1.y + W™ ]xm=oll- (5.119)

Now we utilize the special structure of S, to derive a lower bound for the term on
the left-hand side of (5.119). Setting

i, v)"=T" _ Zily=o, (5.120)
Xey P

we obtain from (5.118) that
v v Y 5
” TXCZAI'Vﬂin TXC] TX(_4 P{l Zl |X2:0 ”

=7 ., Ty vl + 1T}

y 2
ey 7 Ty 02()/+150)qu v ||~ (5.121)

Use Lemma 5.2 (iv) and apply the localized Garding’s inequality (Lemma 5.2 (vii))
to obtain
Y 2 _ (1Y kY
” TXL'Q)\I’V T)Z‘] U] ” - ((TXQ)‘I’V) TXCZ)\I'V T)z/c‘] U] 9 T;/El Ul>

> Re(T)éz)\lVT){clUl’ T{qvl)— C||T)3’C1 vl || ”T)Z:l U1 “1.,)/
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2 2 2
> el T v}, = Cllvil? = CITY, vl
2

luilli, = CllZilg=ol* Z ¥ llvi 1> + ITZ vill* = Cll Zi | =oll®
for large enough y . Similarly, we obtain that, for sufficiently large y,

14 2 2 2 14 2 2
IT) s T, 212 2 202l + I T vall? = CllZi Lol

Plug the above two estimates into (5.121) to infer

T’ TY 17 AN
“ )(cz},lvVﬂin Xey XC4P{1 1|X2_O”

Z V2l v)? + 1T (i v)II* = Cl1Z1|xy=ol*- (5.122)
Since x¢, x1 = x1, we see from (5.110) and (5.120) that

T)g’q Tgozl =TITY Z +RoZ = TE’:)ZI +RoZi,

a0~ Xe3

so that

% % y
Tz (v, v2) = 115, Z115=0 + RoZilx,=0
Xeg Py

=TV _\TY T Z\|x—0 + RoZilx,=0-

XL'4P{] Xc3 — 00

Thanks to the ellipticity of (P, hyx P2_1 on the support of x.,, we apply the localized
Garding’s inequality to obtain

2
IT% (v1, v2) |
*

> (T T TY TY Zilye0, TV T Zilo—0) — C11 Z1|xr=0I?
> (( x04P{‘) you P 13 To0 =0, T3, T3, 11x,=0) = ClI Z1 | x,=oll

2T T Zilo=ol* = CITE Zilxy=ol 2,
~ CIT} T} Zilo=0l21 = Cll Ztl=ol?
for large enough y. Then we take y sufficiently large to deduce
1T W1, v)I* 2 1T Zi =0l = ClI Z1|xy=0ll*. (5.123)
Similarly, we have
lwi, v)I* Z 1 Z1lxy=0l* = Cll Zil=0l%,,

C
> 1 Z1 1=l — ﬁnzmzzouz. (5.124)

Combining estimates (5.117), (5.119), and (5.122)—(5.124), we take y large
enough to derive (5.113) and conclude the proof. O
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Recall that vectors Z* are defined by (5.110) and that matrices Q(jf € Fg are

invertible in a neighborhood of the support of x; and Qj_t1 € Fl_l. It then follows
from Lemma 5.10 that

VT [ WU + v 21 T3 W =0l + 1 TH T W Lap=ol?

Sy T WIR, +NTLFIE, + W) + 1GIT, + IW™Ly=oll*.
(5.125)
Noting that components T;g WljE are given in terms of T;p W;E and T)Zg W3i by
relation (5.31), we can deduce an L? estimate for TV W]i, that is, we can add the

terms, y |||T” W12, on the left-hand side of (5. 125)

The followmg proposition then follows by combining the estimates for the three
cases 7 with ¢ € {0, £1}:

Proposition 5.5. There exist constants Ky < 1 and yo > 1 such that, if y >
and K < Ko for K given in (4.2), then

VITLWIP + v 1T W lomol* + D 1T T W™ =0l
qe{0,%+1}
Sy (|||TJW|||%,V +ITLFIG, + |||W|||2) +1GIT, + W™ =0l
(5.126)

where o, € l"% is givenin (5.59)andr € F? vanishes in region {x, = 1}U{x. = 0}.

5.7. Proof of Theorem 5.1

We now patch the microlocalized energy estimates (5.80), (5.106), and (5.126)
together to deduce estimate (5.21). Since x, + xp + xc = 1,

Y IWIZ 4+ 2 IW™ p=oll®
SyITyw, T, WllT, + v IT, WP
T W, T W) g0llf,, + V2T W™ u=ol®. (5.127)

Adding estimates (5.80), (5.106), and (5.126), we use (5.127) and take y large
enough to deduce

yITY W, T WIIT, + I(T), W™, T} W)l o0ll7,
+ Y NTLWIP + 2T W =0l
SIGIT, + v~ FIG, + v~ I WIR,- (5.128)
In order to absorb the microlocalization error term |||T,VW|||1,),, we decompose

symbol r in terms of x,, xp, and o, (g € {0, &1}). Notice that symbol r € I‘?
vanishes in the region

xe=1N0{p=0N{xu =0} = {xc = 1}.
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Inregion {x. < 1/2}, xu + xp = %, so that we can write
F=0oyXu+%Xp,

where matrices o, and «;, belong to F? and have the same block diagonal structure
as A. In region {% < xe < 1}, we can utilize (5.61) to write

q
— Z g (043 0 q
r= ac( 0 0,213 Xc»
gel0, 1)

where a? € Fl_l has the same block diagonal structure as A, and 01 are solutions
to (5.60). Thus we obtain

14 Y 7Y
T Wil S T W, T Wiy + {Ozﬂ}uwggxgwm. (5.129)
g€,

We now make the estimate for the last term in (5.129) in the following lemma:

Lemma 5.11. There exist constants Ko < 1 and yo > 1 such that, if y > yo and
K < K for K given in (4.2), then, for g € {0, £1},

VITL T WIP S yIWIE + v~ (I W, + 0T FIIE )
+1GIT, + V2 IW™ Lu=oll?, (5.130)
where r € 1"(1) vanishes in region {x = 1}.

Proof. Let us show an estimate for T:O Zi" with Z?‘ defined by (5.110). Recall
+

from (5.60) that symbol 02 satisfies the transport equation

hol +{0, Imw;} =0 ifxy >0,

0

- (5.131)
o), = —iy + 00 if xo = 0.

Setting S := (T;'O )*T:O , we take the scalar product in L2(£2) of (5.114) with SZ |
+
and apply integr;tion by parts to derive

6
(730 Z ) a0 >+ >z =0, (5.132)
j=1

where each term Z; in the decomposition will be defined and estimated below. First,
: 0 1 Y ¥ _ gV oY .
noting that o} € I'; and Tag Td+ = Td+ Toﬁ + R, we obtain

T, =2 Re((TUV2 T Z{, T;’S: zZH)

SUTLZEWP + NZFINTL ZE0 S T ZEP + 0z e, (5.133)
+ + +
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Moreover, we have
1) = 2Re<(T:$ T/ W, T;/Je zh)
SeEn T WL, + ey|||Tj$zl+|||2, (5.134)
I3 = 2Re<(TGy$R0T;’?F+, T;’JEZFL»
S e THTLFEIT, + ey T, Z1 I, (5.135)
Iy = 2Re<(T;’$R_1W+, Ti’ngr))
S e TIWEIR + evlIT}, Al (5.136)
For the terms
Ts :=Re((:92Z]. Z1).,  Ts:=2Re(STY z{.Z).

1 1 — Y 7Y Y \xTY .
we use the identity 02§ = (Taz(72 ) Taﬂ +(T7)) Tazl72 to obtain

ot
14 + 14 + YV 7+
Is+ 1 = 2Re(<T8202Z1 + TJJ?TJ)’+Z1 , T(L?Z1 ). (5.137)

We write wy = yey + ihy with real-valued symbols e € Fg and hy € F% as in
(5.112). Employing the rule of symbolic calculus (Lemma 5.2), we have

Y oy _ .,V Y y
ngTm —7/T3+TUJ(3 +yT

—i{O’E,EJr}
14 Y 14
+ nyl + Tthr O‘_?_ + T{U_?_,ﬁ+} + RO.

It follows from (5.131) and (5.137) that

Y 7V Y Y Y + Y 7+
Is+Zs < Re <<()/T6+TH£ + nyi{rrJ?,eq.} + Tthr Ug)Z s T(Tng >>

+0ZINT Z -
+
Since GJ? S Fi and iy € iR, operators Ti’i
< 0. It then follows that

Re ((yT”

0,01}

0 and Re T’;L are both of order
{o}.e4} 1h4

Y Y + Y 7+
T, 1020 T 2 )
SYNZETL ZEN+ 0T, ZE 0P S e v NZEIP + ex T2 211,
+ + +
which implies
Ts+Ts SRe(yTLTL Z1, TH Z) + e Y IZ{IP + ey T ZTIIP.
(5.138)

Since e; < —c¢ < 0, we apply Garding’s inequality to deduce

—Re(yT/TH 2 TH 2 ) 2 I 2 1P (5.139)
+ + +
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for sufficiently large y. Plugging estimates (5.133)—(5.136) and (5.138)—(5.139)
into (5.132), we take ¢ small enough to deduce

yITLZEIP SITH ZH =0l
+ +

+y T WIR, +y T ITR AR, + v IWFIP. (5.140)

For the first term on the right-hand side, we use the fact that o_(,f lx,=0 = —iy + 60
to obtain

1T} ZDla=oll S Y12 lu=0ll + 175 Z{ La=oll- (5.141)
We plug (5.141) into (5.140) and use (5.113) to find
Y o7+2 —1 14 2 14 2
I ZE I Sy~ (I WL, + T, FIT,)
2
+yIWEIP +1GIT, + v | W™l=o| - (5.142)

Recall that Z?‘ is defined by (5.110) with Q¢ € 1"(2) being invertible. We then use
(5.116) and (5.31) to conclude (5.130). The proof is completed. O

Combining estimates (5.128)—(5.129) together, using (5.127), and taking y suitably
large, we obtain (5.21). In view of Proposition 5.2, estimate (5.1) also holds. This
completes the proof of Theorem 5.1.

6. Well-posedness for the Linearized Problem

In this section, we establish a well-posedness result for the linearized problem
(4.12) in the usual Sobolev space H® with s large enough. The essential point is
to deduce a tame estimate in H*. For a hyperbolic problem with a characteristic
boundary, there is a loss of derivatives in a priori energy estimates. To overcome
this difficulty, it is natural to introduce Sobolev spaces with conormal regularity,
where two tangential derivatives count as one normal derivative (see SECCHI [43]
and the references therein). However, for our problem (4.12), we can manage to
compensate the loss of derivatives and deduce a priori estimates in the usual Sobolev
spaces. This is achieved by employing the idea in [19] and estimating the missing
derivatives through the equation of the linearized vorticity.

The main result in this section is stated as follows:

Theorem 6.1. Let T > 0 and s € [3, @] N N with any integer & > 3. Assume
that the background state (2.24) satisfies (2.10) and (2.25), and that perturbations
(VE, &%) belong to HY3(27) for all y > 1 and satisfy (4.1)~(4.3), and

7+ 7+ 7+ 7+ 7+
(V= vo )||H}§(_QT)+||(V , 0V, VY )|x2=0||H;t(wT)<K‘ (6.1)

Assume further that the source terms (f, g) € H Y Q2) x HS Y (wr) vanish in the
past. Then there exists a positive constant Ko, which is independent of s and T, and
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there exist two constants C > 0 and y > 1, which depend solely on Ko, such that,
if K < Ko, then problem (4.12) admits a unique solution (VE, v) € HS(27) X
H' Y wr) that vanishes in the past and obeys the following tame estimate:
IVIlm@r) + IBE@)VE =0l wr) + 1V gsn
< C{||f||H;+1(QT) + ”g”H;Jrl(wT)
+ (I 1 s@p + 181 3@ 1VE E D) a0, }- (6.2)

(or)

We consider the case where the source terms f and g vanish in the past, which
corresponds to the case with zero initial data. The case of general initial data is
postponed to the nonlinear analysis which involves the construction of a so-called
approximate solution. Before estimating the higher order derivatives of solutions,
we first prove that the linearized problem (4.12) is well-posed in L?.

6.1. First Well-Posedness Result

In this subsection, we apply the well-posedness result in L? of COULOMBEL [16]
to the effective linear problem (4.12). We recall that system (4.12a) is symmetrizable
hyperbolic and observe that the coefficients of the linearized operators satisfy the
regularity assumptions of [16]. We also recall that problem (4.12) satisfies the
energy estimate (5.1), which exhibits a loss of one tangential derivative. According
to the result in [16], we only need to find a dual problem that obeys an appropriate
energy estimate.

Let us define a dual problem for (4.12). We introduce the following matrices:

00067 0 0 00000 0
Bi:=|éf oo & 0 o0 , Dy := 033099 ,
oy oy .. _ .
e A Y A 06, 6506, 65/ 1,0
(6.3)
and
R L e B
D = 0 F+ é+ —F+ 5°‘+ 0 0 0 ’
10 0 10 0 90
where
o 02 2 o o
e NTETE e b e S
ndt 7 INEdE P 2NE b
Thanks to (4.15), we compute that these matrices satisfy the relation
BI B+ DI D = diag (A2(U*, &), An(U~, ¢7))], . (6.4)



664 GUI-QIANG G. CHEN ET AL.

where B is defined by (4.8). Moreover, we infer from (4.2) that all matrices 1§, 1§1,
D, and D belong to W2 (R2), Following [34, § 3.2], we define a dual problem
for (4.12) as

]L’e(lo]i,d%i)*Uizf;, xp > 0,
DU =0, x =0, (6.5)
div(b"BiU) —b[B iU =0, x=0,

where b, by, By, and Dy are defined in (4.7), (4.13), and (6.3), div denotes the diver-
gence operator in R? with respect to (7, x1), and the dual operators L, (U £ qgi)*
are the formal adjoints of L, (f] £, qgi). More precisely, we have

LV, ¥)'U = — Ag(V)T8,U — A1 (V)"0 1U — Ay(V, W)U
+C(V, W)U — (3, Ao(V)T + 81 A1 (V)T + 9, A2V, ¥)T)U,

where C(V, ¥)*, the adjoint of C(V, W), is a zero-th order operator. We refer to
[34, §3.2] for the derivation of the dual problem by using integration by parts and
identity (6.4).

Since the first two rows of matrix D 1 given in (6.3) are zero, we see that the
number of the boundary conditions in (6.5) is exactly two. This is compatible with
the number of incoming characteristics, that is, the number of negative eigenvalues
of the boundary matrix for (6.5). In fact, the boundary matrix of operator L, (V, ¥)*
in the half-space 2 is ZQ(V, 'IJ)T. Then we infer from (4.15) that problem (6.5)
has two incoming characteristics and two outgoing characteristics.

We can define and analyze the Lopatinskii determinant associated with the
boundary conditions in (6.5) as we have done in Section 5. Then we have the
following result, which is an analogue of Lemma 5.4 by changing y into —y.

Lemma 6.1. Assume that (4.1)—(4.2) hold for a sufficiently small K > 0. Then
the dual problem (6.5) satisfies the backward Lopatinskii condition. Moreover; the
roots of the associated Lopatinskii determinant are simple and coincide with the
roots of the Lopatinskii determinant (5.50) for the original problem (4.12).

One can reproduce the same analysis as we have done in Section 5 to show that
the dual problem satisfies an a priori estimate that is similar to (5.1). The linearized
problem (4.12) thus satisfies all the assumptions (i.e. symmetrizability, regularity,
and weak stability) listed in [16]. We therefore obtain the following well-posedness
result:

Theorem 6.2. Let T > 0 be any fixed constant. Assume that the background state
(2.24) satisfies (2.10) and (2.25). Assume further that the basic state (\O/i, lI/i) sat-
isfies (4.1)—(4.3). Then there exist positive constants Ko > 0 and yy > 1, indepen-
dent of T, such that, if K < Ko, then, for the source terms fi € L2(R+; Hl(a)T))
and g € H' (wr) that vanish for t < 0, the problem

Lé,((yi,dc)i)\./izfi fort < T, x>0,
B,(0*, &*)(V,y) =g fort <T, x=0
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has a unique solution (V+, V._, v) € L2(27) x L2(27) x HY(w7) that vanishes
fort < 0 and satisfies P+ (@) v+ lx,=0 € L%(wr). Moreover, the following estimate
holds for all y > yo and forall t € [0, T]:

7112 + ovyrE 2 2
V||V||L%(QT) + ”P (‘p)v |x2=0”L%(w,) + “wnH)}(wt)
< =3 fE 12 241,112

Theorem 6.2 shows the well-posedness of problem (4.12) in L? when the source
terms ( f, g) belong to L2(H 1y x H'. We now turn to the energy estimates for the
higher-order derivatives of solutions.

6.2. A Priori Tame Estimates

To obtain the estimates for the higher-order derivatives of solutions to (4.12), it
is convenient to deal with the reformulated problem (4.18) and (4.20) for the new
unknowns W. Until the end of this section, we always assume that y > yp and
K < Ky, where yp and K¢ are given by Theorem 6.2. Then estimate (6.6) can be
rewritten as

IIWI2 20 + IWLa=0ll 22 @p) + 1V it o)
SYTPIFEI 2ty + 78 o) 6.7)

We first derive the estimate of the tangential derivatives. Let k € [1, s] be
a fixed integer. Applying the tangential derivative 3% = 9;°9]"" with |a| = k
to system (4.18) yields the equations for 8% W* that involve the linear terms of
the derivatives, 9% #9, W= and 9%~ #9; W=, with |8 = 1. These terms cannot be
treated simply as source terms, owing to the loss of derivatives in the energy estimate
(6.7). To overcome this difficulty, we adopt the idea of [ 19] and deal with a boundary
value problem for all the tangential derivatives of order equal to k, i.e. for W& :=
{07°0]" W=, ap+a; = k}. Suchaproblem satisfies the same regularity and stability
properties as the original problem (4.18) and (4.20). Repeating the derivation in
Section 5, we find that W®) obeys an energy estimate similar to (6.7) with new
source terms F% and G®. Then we can employ the Gagliardo-Nirenberg and
Moser-type inequalities (cf. [19, Theorems 8—10]) to derive the following estimate
for tangential derivatives (see [19, Proposition 1] for the detailed proof).

Lemma 6.2 (Estimate of tangential derivatives). Assume that the hypotheses of
Theorem 6.1 hold. Then there exist constants Cy > 0 and y; > 1, independent of
T, such that, for all y > vy and for all (W, ) € H;+2(QT) X H;+2(wT) that are
solutions of problem (4.18) and (4.20), the following estimate holds:

\/?||W||L2(H;(a,T)) + W™ Ly=oll b3 wr) + IVl s+t (o
< Cs{y M8l g oy + ¥ I 2tz oy
+ 7T W™ =0l (@) + 1 lwtoon)) [ (V2 82V, V) =0 | 141
+ )/_3/2||W||le°°(m) I (‘o/ﬂ Vj’) ||H-;+2(QT)}- (6.8)
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We recall that the boundary matrix for our problem (4.18) and (4.20) is not
invertible. Thus, there is no hope to estimate all the normal derivatives of W directly
from (4.18) by employing the standard argument for noncharacteristic boundary
problems as in [41]. Nevertheless, for our problem (4.12), we can obtain the estimate
of the missing normal derivatives through the equation of the “linearized vorticity”.

In view of the original equations (2.14), taking into account the change of
variables and linearization, we define the “linearized vorticity” as

. AT N\ .. 1 oy

= (0 - )V - Vs 6.9)
hot /P gt ?

where Vzi and Vf are the second and third components of the good unknown

(4.10), respectively. We notice that multiplying (A.6) by S1(U) leads to system

(2.18), where S1(U) is defined by (A.9). Thus, we multiply (4.12a) with matrices
S1(UF)~! to obtain

(Bo(UF)a, + B1(UH)d) + Bo(U*, dF)a0)VE + C(U*, d5)VE = f*,
(6.10)

where C~(l°]i, qgi) = Sl(lo]i)_IC(loli, qgi), fi = Sl(lo]i)_lfi, and matrices
B; are defined by (A.7)—(A.8). In light of (4.3a), we have

~ . 1 . . . . .
By(U, ®) := E(BZ(U) — 8P By(U) — P B (V))
2
nll pl12 P13
1 DBZ . BZ BZ
=—|-N"'9%® 0 o0 |,
P\ {1 o 0

where the explicit form of 132 is of no interest. Using the second and third com-
ponents of (6.10) yields the following equations for &*:

(3 + d701)EF

=hF — n (3145i32]'—2i + 82}?:) + AT VE 4 AT -V E,

6.11)

where vectors AT and A5 are C°°—funct10ns of (Vi VVE viE V2P E) that
vanish at the origin, and the source terms FE | and .7-'2 are given by

FE = PN (fE - CW* d5)VE),  FE = FLI(f* — EW0% 65)V%),.
Employing a standard energy estimate to the transport equations (6.11), we can

apply the Gagliardo—Nirenberg and Moser-type inequalities to derive the following
estimate of £+
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Lemma 6.3 (Estimate of vorticity). Assume that the hypotheses of Theorem 6.1
hold. Then there exist constants C; > 0 and y; > 1, independent of T, such that,
forall y > ys and for all (W, {) € H;+2(!27) X H)f"'z(a)T) that are solutions

of problem (4.18) and (4.20), functions £* defined by (6.9) satisfy the following
estimate:

V“éi”H;*‘(szT)
< 1 lagian + 17 imean 1099 Ly, + 17

14

+ ” Vi“W“’O(QT)( HyTN(2r) + Hth/

H;mr))}' (6.12)

We are going to make the estimate for all the normal derivatives by means of
estimates (6.8) and (6.12) for the tangential derivatives and the linearized vorticity.
To this end, we need to express the normal derivatives 3 W* in terms of the tan-
gential derivatives W=, 9,W=, and vorticity éi. Since I, = diag (0, 1, 1), the
normal derivatives dp Wzi and 0> W3i are directly given by (4.18) as

LhWE = L(F* — A7, W* — ATo,W* — C*w). (6.13)

The “missing” normal derivatives 9, WlﬂE can be expressed by £é* and equations
(4.18). From transformation (4.17) and definition (4.16), we have

nVy = cnWr + %%(Wz = W3) + 25 Wi + 02 <i> (W2 — W3),
N¢ N¢
. S , S
V3 =00W — ——0(Wy — W3) + 020W) — 02 ( 5 ) (W2 — W3),
N¢ N¢

where we have omitted indices “£”. By definition (6.9), we obtain

(01906 + &)W,
hbe -0

= 0P (HV3—E&)+ ————h(Wo— W3) + C(U, &)W,  (6.14)
where C(lol, qi) is a C*°—function of (\O/, VI°/, Vlf/, V2l1°f) that vanishes at the ori-
gin. According to (4.9), we see that 9;®9 + ¢ 2 1 by taking Ko > 0 sufficiently

small. Then we find from (6.13)—(6.14) that
HWE=ATFE 4 ATo,w*
. s
82¢:|: é

+ATowE+CFwE - —————— | 0 |, (6.15)
: ndtpt+e* \

where Z(jfl 5 are C*°—functions of (\Q/, V), and C=* are C®—functions of (\0/,

V\D/, Vllo/, Vzlf/) that vanish at the origin. Although the linearized problem (4.18)
and (4.20) is characteristic, we manage to express all the normal derivatives 3, W*
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by (6.15) as a linear combination of the tangential derivatives, vorticity, zero-th
order terms, and source terms. Then we can prove the following result (which is
similar to [19, Proposition 3], so we omit its proof):

Lemma 6.4 (Estimate of normal derivatives). Assume that the hypotheses of The-
orem 6.1 hold. Then there exist constants Cs > Qandys > 1, which are independent
of T, such that, for all y > vy, and solutions (W, ) € H)f”(.QT) X H;*z(a)T) of
problem (4.18) and (4.20), the following estimate holds for all integer k € [1, m]:

192 W1 a4y < C"{” (F= W) | g + 1V 2o
I ieian 1V V) o

+||(F=, w¥) V., V) (6.16)

“LOO(.QT)”( “H;(Qr)}‘

In light of definition (2.27), we see that, forall s € Nand 0 € H}f (£27),

N
_ k
16llmc2r = D 1500 2+ V10N oy < 10125521
k=0

By virtue of these identities, we combine Lemmas 6.2-6.4 and employ the Moser-
type inequalities to obtain the following a priori estimates on the Hj-norm of

solution V= to the linearized problem (4.12):

Proposition 6.1. Assume that the hypotheses of Theorem 6.1 hold. Then there exists
a constant Ko > 0 (independent of s and T ) and constants C; > 0 and y; > 1
(depending on s, but independent of T ) such that, if K < K, then, forall y > y;
and solutions (V, ) € H;+2(.QT) X H;”Lz (wr) of problem (4.12), the following
estimate holds:

VIV iy + IPE@VELo=0] gy + 1V g1

< cs{y‘” Vi PP S 2l Vi PP P e P

+ 7 IPEOVE Ly T 1 o) 1V 82V V) [ et

#6717 i |99 g |

6.17)

6.3. Proof of Theorem 6.1

Theorem 6.2 shows that the linearized problem (4.12) is well-posed for sources
terms (f*, g) € L2(H' (wr)) x H'(wr) that vanish in the past. Following [6,41],
we can use Proposition 6.1 to covert Theorem 6.2 into a well-posedness result of
(4.12) in H*. More precisely, we can prove that, under the assumptions of Theorem
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6.1,if (f*,g) € HT1(27) x H* ' (wr) vanish in the past, then there exists a
unique solution (Vi, V) € H*(27) x H s+l (wr) that vanishes in the past and
satisfies (6.17) for all y > y;.

It remains to prove the tame estimate (6.2). To this end, we first fix the value of
y such that y is greater than the maximum of ys, ..., Y. Using (6.17) with s = 3
and (6.1), we have

[VE] Hi@r T [P=(@) VE Lo | Hir) T IV 1l g o)
SK(|r* ||L°°(_QT) +| Vi”WI,oo(_QT) + | PE(@)VE =0 ||L°°(w7)
1Y lwo @)
1 s + 1830 (6.18)

Note that T > 0 and y have been fixed. Thanks to the classical Sobolev inequalities
that 0] L 27) S 101l m2(2p) and 101 Lo @wr) S 101 g2 we utilize (6.18) and
take K > 0 sufficiently small to obtain that || f* d

(o71)°

||L°°(.QT) S ”f:t”H;‘(QT) an

” Vi”wl»w(gr) + ||Pi(¢)vi|xz=0 ||L°°(w7) + |W”W‘~°°(wr)
< ” vE H H3(27) + Hpi(@vthOH H3 (wr) + ”w”H;‘(wT)
S ” fi “ H;t(_QT) + ”g”H;‘(wT)'

Plugging these estimates into (6.17) yields (6.2), which completes the proof of
Theorem 6.1.

7. Construction of the Approximate Solution

In this section, we introduce the “approximate” solution (U¢, @“) in order to
reduce the original problem (2.20) and (2.23) into a nonlinear problem with zero
initial data. We naturally expect to solve this reformulated problem in the space of
functions vanishing in the past, so that Theorem 6.1, which is the well-posedness
result in the same function space for the linearized problem, can be applied. We
need to impose the necessary compatibility conditions on the initial data (Uoi, ©0)
for the existence of smooth approximate solutions (U¢, @), which are solutions
of problem (2.20) and (2.23) in the sense of Taylor’s series at time t = 0.

Let s > 3 be an integer. Assume that f/(;—L = UgE —U* e H”l/z(Ri) and
9o € H*T(R). We also assume without loss of generality that (Uoi, ¢o) has the
following compact support:

supp U(;—L C{xx >0, xlz +x22 < 13, suppeo C [—1, 1]. (7.1)

We extend ¢p from R to Ri by constructing 43(‘)" = 430_ e HT3/ 2(R1), which
satisfies

Bflazo=vo. suppdi [0 d+d <2}, @2
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and the estimate
=+
” ®0 ” H.r+3/2(R2 ) < C”¢O”H«‘+1 (R)- (73)

By virtue of (7.3) and the Sobolev embedding theorem, we infer that, for (p() small
enough in H" s+1 (R), the following estimates hold for q§i = q§i + <D

iaq>i>7 for all x € R2 7.4
20/§ orall x € RY. (7.4)

For problem (2.23), we prescribe the initial data
oE| g = D (7.5)

Let us denote the perturbation by (U*, &%) := (U* — U*, @* — &F), and
the traces of the £-th order time derivatives on {t = 0} by

U =80 =0, & :=08{®F00, LeN.

To introduce the compatibility conditions, we need to determine traces U gt and
d Zt in terms of the initial data lNJ(;—L and qsét through equations (2.20a) and (2.23a).
For this purpose, we set W := (U*, V,U*, V, &%) € R!!, and rewrite (2.20a)
and (2.23a) as

3, UF =FiOVY),  8,8* = Fa(Wb), (7.6)

where F| and F; are suitable C°°—functions that vanish at the origin. After applying
operator Bf to (7.6), we take the traces at time t = 0. One can employ the generalized
Faa di Bruno’s formula (cf. [37, Theorem 2.1]) to derive

T ap+-+o + 4 Wi “

Uf, = > DY F1(W; )]_[ —=) . an
i N1, Jar [+ €lag = i1 ¥ i

ot ap+-Foy e Wi "

£i= > D F, (Wo)l—[ - 0
a; €N |y |4 +Llag|=E i=1 ¢ ’

where )/Vii denotes trace (ﬁii, Vy Uii, Vi (f)ii) att = 0. From (7.7)—(7.8), one can
determine (U ei, éli)g%) inductively as functions of the initial data USE and <1~>6t.
Furthermore, we have the following lemma (see [34, Lemma 4.2.1] for the proof):

Lemma Z.l. Assume that (7.1)—(7.4) hold. Then the gquations (7.7)—(7.8) de-
termine UEi € H‘YH/Z_((Ri) fort =1,...,s, and q)zi € H‘V+3/2_E(Ri) Sfor
L=1,...,5s + 1, such that

suppU C x>0, x}+x3 <1, suppcD C x>0, x}4+x3 <2}

In addition,

s s+1

HUe ”Hm/2 ¢RY) +Z ”djé HHH”2 (R2)
£=0 (=0
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rr+
C(” U() || HS+|/2(R3_) + ”‘PO”HH](R)),
where constant C > 0 depends only on s and ||(ljoi, <50i)||W1,OO(Rz+).

To construct a smooth approx1mate solution, one has to impose certain as-
sumptions on traces Ut ; and q) . We are now ready to introduce the following
terminology:

Definition 7.1. [ Compatibility conditions] Lets > 3 be an integer. Let 05 =
U — U5 € HY1/2(RY) and gy € H*T!(R) satisfy (7.1). The initial data U; and
@ are said to be compatible up to order s if there exist functions cﬁ = e H5T3/2 (R2 )

satisfying (7.2)—(7.4) such that functions Uli, R Usi, qift, R a+1 determined
by (7.7)-(7.8) satisfy
(B — B, )lw=0=0  forj,£eNwith j+£<s+1, (7.9a)
(P = P;)a=o =0  for j, £ e Nwith j+¢ <s, (7.9b)

and

S - d
fz 05T (B f — B)) | de—2 <00 for&=0,....5+1, (7.10a)
R

X2
s—{ 2 d.x2
|a (B — b;)| dx1— < o0 fort =0,...,s. (7.10b)
X2
It follows from Lemma 7.1 that ﬁgt, e, ﬁ;t_z, @(;—L, e, Clssi_l € H5/2(Ri) C

WI’OO(R%F). Then we can take the j-th order derivatives of the traces in (7.9).
In what follows, we employ €o(-) to denote a function that tends to 0 when its
argument tends to 0. Relations (7.9)—(7.10) enable us to utilize the lifting result in
[31, Theorem 2.3] to construct the approximate solution in the following lemma
(we refer to [19, Lemma 3] for the proof):

Lemma 7.2. Lets > 3 be aninteger. Assume that Uoi = Uoi—(_foi € HH]/Z(R%_)
and gy € HT'(R) satisfy (7.1), and that the initial data UOi and @g are compatible
up to order s. If USE and g are sufficiently small, then there exist functions U°F,
% and @? such that Ut = yst —U* ¢ HS'H(.Q), Q4E = @it _ p* ¢
HP2(2), ¢ € HST3/2(382), and

9,0 4 viEg 0 It =0 inQ, (7.11a)
LU, @) =0 forj=0,...,s—1, (7.11b)
@It = @I = ¢ onds2, (7.11¢)
BWUT, U, ¢%) =0 onds2. (7.11d)

Furthermore, we have

3
+ 0,0t > 1 forall (t,x) € 2, (7.12)
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supp (f]ai’ éai) C {t e[-T,T], xo >0, x12 +x22 < 3} , (7.13)
and

o= i) T | &= ||Hs+2(.Q) + eIl gs+322)

< e0(105 | o1z, + 190l st w)- (7.14)

Letus denote U? := (U, U%")T and @9 := (@9T, 7)1, Vector (U?, %)
in Lemma 7.2 is called the approximate solution to problem (2.20) and (2.23).
Relations (7.11c¢) and (7.13) immediately imply that ¢“ is supported within {—7 <
t<T, x12 < 3}. Since s > 3, it follows from (7.14) and the Sobolev embedding
theorem that

H UaiH W2.20(8) + ”qsai “ W3.20(2) < 80(” US'E ” HsH/2(R2) + ”‘pOHHS“(R))'
We are going to reformulate the original problem into that with zero initial data

by using the approximate solution (U?, @%). Let us introduce

{ — LU, %) ifr >0,
9= (7.15)

0 ift <O.

Since (U**, V@*) ¢ H¥+1(£2), taking into account (7.11b) and (7.13), we obtain
that f¢ € H*($2) and

suppf“c{O§t§T,x2>0,x12+x§<3}.

Using the Moser-type inequalities and the fact that f¢ vanishes in the past, we
obtain from (7.14) the estimate

17N < (105 | i@y + 190l st ay)- (7.16)

Let (U4, @%) be the approximate solution defined in Lemma 7.2. By virtue
of (7.11) and (7.15), we see that (U, ®) = (U%, &%) + (V, ¥) is a solution of
the original problem (2.20) and (2.23) on [0, T'] x RZ,if Vv = (vt,v)T and
¢ = (@, ¥)T solve the following problem:

LV, W) :=LU+V,®% +¥) —LWU* &*) = f*  in 27,
EWV, W) =¥ + 0 + )Y + 11010 —v, =0  in 27,

BV, y) :=BU*+V,¢"+¢) =0 onwr,  (7.17)
vt=y- =y on wr,
(V,¥) =0, fort < 0.

The initial data (2.20c) and (7.5) have been absorbed into the interior equations.
From (7.11a) and (7.11d), we observe that (V, ¥) = 0 satisfies (7.17) for ¢t < 0.
Therefore, the original nonlinear problem on [0, T'] x Ri is now reformulated as
a problem on 27 whose solutions vanish in the past.
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8. Nash—Moser Iteration

In this section, we prove the existence of solutions to problem (7.17) by a
suitable iteration scheme of Nash—Moser type (cf. HORMANDER [24]). First, we
introduce the smoothing operators Sy and describe the iterative scheme for problem
(7.17).

8.1. The Iterative Scheme

We first state the following result from [19, Proposition 4]:

Proposition 8.1. Let T > 0 and y > 1, and let m > 4 be an integer. Then there
exists a family {Sp}g>1 of smoothing operators

So+ Fo(R2r) x Fy(2r) — (| FL(&r) x Fl(&2r),
B23

where F)’?(QT) = {u € Hf(.QT) cu =0fort < 0} is a closed subspace of
Hf,g (8£27) such that

1S1l 0y < < CcoP- Dl gy foralla, p e (1, m], (8.1a)

|Sou — ullHﬁ(Q ) S < CcoP~ a”MHHDl(QT) foralll < B <o < m, (8.1b)

H—Sgu < COP MNiul ey foralle, B ell,ml, (8.1c)
HY (@)

and

1(Sou = S5v)xz=oll

< COPTI | — )| y=0ll He@r) foralla, B € [1,m], (8.2)

where a, B € N, (B — o)+ := max{0, B — «a}, and C > 0 is a constant depending
only on m. In particular, if u = v on wr, then Syu = Spv on wr. Furthermore,
there exists another family of smoothing operators (still denoted by Sy) acting on
the functions defined on the boundary wr and satisfying the properties in (8.1) with
norms | - ||H;}(w7)~

The proof of (8.2) is based on the following lifting operator (see [22, Chapter
5] and [19]):

Lemma8.1. Let T > Oand y > 1, and let m > 1 be an integer. Then there

exists an operator R, which is continuous from .7-'; (w7) to .7:;+1/2(.QT) for all
s € [1,m], such that, ifs > 1 andu € .7-"; (w7), then (Rru)|x,=0 = u.
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Now, following [19], we describe the iteration scheme for problem (7.17).

Assumption (A-1): (Vo, ¥y, ¥o) = 0 and, for k = 0,...,n, (Vk, W, Yx) are
already given and satisfy

(Vk» Wk, 1/fk)|t<0 = O, lI/k+|)C2=0 = lIlk_|xz=0 = ¢k~ (8-3)
Let us consider
Vn+l = Vn + SVn’ "pn+1 = lIjn + 3‘1/,1, I;l’n+1 = Wn + 5%, (8-4)

where these differences §V,,, SIII,?, and 8y, will be specified below.
First we are going to find (6V},, 8v,,) by solving the effective linear problem

Ly(U" + Vag1/2, D% + Y1208V = fa in 27,
BL(U* + Vos1/2, @ + Wus12) (8 Vi, 8Ym) = gn on wr, (8.5)
8V, 8Y) =0 fort < 0,

where operators L], and B/, are defined in (4.12a)—(4.12b),

U+ Viy12)

8V, =8V, —
0(D4 + Yyt12)

5, (8.6)

is the “good unknown” (cf. (4.10)), and (V;;+1/2, Wy +1/2) is a smooth modified state
such that (U9 + V41,2, ¢ + ¥y, 112) satisfies constraints (4.1)-(4.3). The source
term (f;, g,) will be defined through the accumulated error terms at Step n later
on.
We define the modified state as
+ . + + . +
Wi =S, vi(Vagy ) o= Se,u1(Vi),
pf+1/2 = 8p, pr:zt + %RT (S(-)n P;“xz:O — Sg, Pn_|xz=0)7
+ — + + + +
v (Vi) = 0¥ 0+ (0 + oV )i
+ i (anil/z)al >,

(8.7)

where Sg, are the smoothing operators defined in Proposition 8.1 with sequence

{6,} given by
O =1, 6, =,/62+n, (8.8)

and R is the lifting operator given in Lemma 8.1. Thanks to (8.3), we have

+ —_w— _.
'1/"+1/2|x2:0 = lI/n+1/2|xz:O = 1ﬂn+1/2a

Pn++1/2|xz=0 = Put1/20=0;
EWVng1/2, Wny12) =0,
(Vat1/2: Ynt125 Ynt12)li<0 = 0.

(8.9)
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It then follows from (7.11) that (U% 4 V1,2, ¢ + W, 11,2) satisfies (4.3a) and
(4.3¢)—(4.3d). The additional constraint (4.3b) will be obtained by taking the initial
data small enough.
The error terms at Step n are defined from the following decompositions:
E(Vn—i-l» lpn—i—l) - ‘C(Vn» lI/n)
=L/ (U 4 Vy, @4 + W) (8Vy, 8¥) + e;,
=L'"(U" + S, Vs, " + So,¥n)(8V,y, 8W) + €, + €
=L/ (U" + Var1/2, @“ + Ws12) Vi, 8W) + ¢, + €] + ¢}
=TLL(U" + Vut1/2, P + Wi12)8V, + €, + €l + e + Dyi128%, (8.10)
and
B(Vn—i-l |x2:07 1aﬁn+l) - B(Vn|x2:07 Wn)
= B/(Ua + Vru ol + lI/n)(5Vn|)cz=Ov 8‘/fn) + E;,
= B/(Ua + SQ,, Vn: @ + Sen ‘I’n)(5Vn|x2=m 31//n) + é; + é;/g/
=B,(U" + Vat1/2, D* + ¥1/2) (8 Valip=0, 8¥a) + &, + &, + &, (8.11)

where we have set

Dyi12 = HOLU* + Vig1y2, P4 + Wg1)2), (8.12)

0 (D4 + Yyt1,2)
and have used (4.11) to obtain the last identity in (8.10). Let us set

en =€, +e, e +Dpy1p8W,, é,=¢,+¢, +e). (8.13)
Assumption (A-2): fo := Sg, f¢, (eo, €0, g0) := 0, and (fk, gk, ek, k) are already
given and vanish in the past fork =0, ...,n — 1.

We compute the accumulated error terms at Step n, n > 1, by
n—1 n—1
Ey:=) e, En:=) &. (8.14)
k=0 k=0
Then we compute f, and g, for n > 1 from the equations
n n
> fet So,En = So, . D gk + So,En =0. (8.15)
k=0 k=0

Under assumptions (A-1)—(A-2), (Vi,11/2, Ynt1 /2) and ( f,,, g») have been spec-
ified from (8.7) and (8.15). Then we can obtain (8V},, §y,,) as the solution of the
linear problem (8.5) by applying Theorem 6.1.

Next we need to construct §¥,, = (8'1/,:r , SlI/n’)T satisfying 8 l,I/nﬂt|xZ:0 = 8vY,.

We use the boundary conditions in (8.5) (cf. (4.7)—(4.8), (4.13), and (8.6)) to derive
that 81, satisfies

29 5+ + +
< €0 P, ) Cnt1/2 —Sn+1/2 )

T T ¥ © T ¥ T ¥
Niophai @l ) b pn Dl byl lu=o
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; 02U, 12
XGWHJM—J;L> + 0 Y +v1(Uy41/0)] 1y 1 5¥n)

2®n+1/2 x2=0
:gl’l,27
( € 8t‘15n+1/2 Ont1)2 ~Snt1)2 )
N1l (4 +1/2) RS MY hn+1/2 n+172/ 1x2=0

+ 0 3vn) + 01 (Uyy o) 0?1 (39

x2=0

) LU
x (8\/,; T8 —”_“/2)
82¢n+1/2

= 8n,2 — 8n,1,

where we have set U~ ntl2 = = U + yE t1/20 n+1/2 = @E 4 Wn+1/27 and

+ +
(N +1/2’hn+1/2’Fn+1/2’Qn+1/2’§n+1/2) = (N, h, T 0, ) (U n+1/2° n+1/2)

with (N, h, I, 0, ¢) defined in (2.11), (3.3), and (4.9). Then we define §¥," and
8Y, as solutions to the following equations:

+ +
€ 8’(pn+l/2 Ont1)2 “Su+1/2
(It )% rt., ht.,rt
n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2
+82Un++1/2 + + +
x | 8w, —+3v + 0, (8w, )+v1(Un+1/2)81(6l1/ )
82¢n+1/2
=Rrgn2+ G, (8.16)
2 - - -
( €0 P, ) Q1,2 “Sut1)2 )
N1l o +1/2) R 20512 hn+1/2 nt1/2

U

_ +1/2 o — -

(8‘1’ #M +8Vn ) + 81(811/ ) U]( n+1/2)81(8l1/n )
n

=Rr(gn2 — gn1) + G, 8.17)

where the source terms G will be chosen by using a decomposition for operator
E.
We define the error terms: ¢, €/, and ¢, by

E(Vn+1, lIln+1) - E(Vn’ lpn) = g/(an lI'In)((SVn, 5‘1/,1) + é;,
= g/(SG,I Vi, S@,, Y,) (8 Vi, W) + é;z + é;{

=& (Vas172: Yng12) (8 Vi, 8¥n) + €, + €, + &), . (8.18)
and denote
n—1
bni=ey e te).  Eyi=) e (8.19)
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From (7.11a), we have
EV, W) =0, U+ V)+v1(U+ V)3 (@9 + &) — (U + V).
Similar to the derivation of (4.6) and (4.12b), we deduce that
6/(Vni+]/2’ ‘I’ril/z)(‘svjE 8,5

are equal to the left-hand sides of (8.16)—(8.17), respectively. Then it follows from
(8.16)—(8.18) that

Rrgn2+ Gl +éf )

EWnr, Ung1) = E(Vi, W) = <RT(gn 2—8n1) +G, + e
, , n n

Summing these relations and using £(Vy, ¥p) = 0 yields

Vi ¥y = Rr <Z(gk2 — 8k, 1)) +Y Gy +E,;,

k=0 k=0
On the other hand, we obtain from (8.5) and (8.11) that

8n = B(Vn—i-l |x2=0a 1pn-‘,—l) - B(Vn|xz=0» Yn) — én. (8.20)
In view of (7.17) and (2.22), one obtains the relations

(B(Vn+l|x2—09 wn—H))
- E(V +1|x2—0 Ipn+1)
= EWV,i1la=0s Vins1) + (BVitilr=0, ¥us1),- (8.21)

Summing (8.20) and using B(Vo|x,=0, Y¥0) = 0, we have
5( n+1° n_+1)

n
=Ry (5(Vn—+l|xzzo, Yns1) — Enti2 + En+1,1) +Y Gy +E; . (822

k=0
Similarly, we can also obtain
+
5( n+1’ n+1)
=R (E(V,slo=0s V1) = Buri2) + Z GH+Ef,. (823

k=0

Assumption (A-3): (G, Gy.e0) =0, and (G,‘:, G, . é) are already given and
vanish in the past fork =0,...,n — 1.

Under assumptions (A-1)-(A-3), taking into account (8.22)—(8.23) and the
property of R7, we compute the source terms G,jf from

So, (Ef — RrEy2) + Z G =0, (8.242)
k=0
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n

So,(Ey —RrEn2+RrEn1) + ) G =0. (8.24b)
k=0

From assumption (A-3) and the properties of Sp, it is clear that Gf vanish in
the past. As in [22], one can also check that the trace of G,jf on wr vanishes. Hence,
we can find Slllni, vanishing in the past and satisfying (Slllni|xZ:0 = 8y, as the
unique smooth solutions to the transport equations (8.16)—(8.17).

Once §Y, is specified, we can obtain 8V, from (8.6) and (V,, 11, Yy+1, ¥n+1)
from (8.4). The error terms: e, e, €)', €,, €., €., €,, €,, and &, are computed
from (8.10)—(8.11) and (8.18). Then e, é,, and ¢, are obtained from (8.13) and
(8.19).

Using (8.5) and (8.15), we sum (8.10) and (8.20) from n = 0 to m, respectively,
to obtain

m

E(Vm+lv lIlm—&-l) = Z fn + Em—H = SOm fa + (I - S@,,,)Em + em, (825)
n=0

m
B(Vit1lia=0: Yims1) = Y &n + Ems1 = (I = S,) Em + & (8.26)
n=0

Plugging (8.24) into (8.22)—(8.23), we utilize (8.21) to deduce
EVp it Y1) = Rr((BOVims1luy=0 Yt 1)y = (BVins1lx,=0: Yim+1));)
+ U = So,)(Epy = RT(Em2 — Em.1))
+ém =R (em2 — ém.1),
EV o ) = R (Bt lxy=0: ¥nt1)),)

+ (I = Sg ) Epfy —R1Ep2) + & — Rréma.
(8.27)

Since Sp,, — I as m — oo, we can formally obtain the solution to problem (7.17)
from

L(Vm+lv lIlm—Fl) - fav B(Vm+l|x2:Os ¢m+1) - Os E(Vm+la lIlm—kl) - O,

provided that the error terms (e, ém, €m) — 0.

8.2. Inductive Hypothesis

Given a constant ¢ > 0 and an integer & that will be chosen later on, we assume
that (A-1)—(A-3) are satisfied and that the following estimate holds:

” U ”Hﬁ”(.@r) + ”qsa”H;i”(sz) + ”?"Q ||H§+7/2(9T) + “ fe ||H5+2(9T) Sé.
(8.28)
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Given another integer «, our inductive hypothesis reads

(@) 16 Ve, 80 g () + 18Vl s,y < 86, A
forallk =0,...,n—1ands € [3,a] N N;

() 1LV, W) = [ llmg ) < 2667

(H,—1) forallk =0,...,n—lands € [3,ad —2]NN;

(©) IB(Vilxa=0, Yl a3 wp) < €64~
forallk =0,...,n—1lands € [4,x] N N;

(d) 11E(Vk, lI/k)||HV3(QT) < 89,3_“ forallk =0,...,n—1,

where Ay 1= 6y — 6 with 6; defined by (8.8). Notice that

1 1
— < Ar=.,02+1—6,<— forallk e N.
30, k P+ k 20k ora

In particular, sequence (Ay) is decreasing and tends to 0. Our goal is to show that,
for a suitable choice of parameters 6y > 1 and ¢ > 0, and for f¢ small enough,
(H,—1) implies (H,) and that (Hp) holds. Once this goal is achieved, we infer that
(Hy) holds for all n € N, which enables us to conclude the proof of Theorem 2.1.

From now on, we assume that (H,_1) holds. As in [19], hypothesis (H,—1)
yields the following consequences:

Lemma 8.2. If 0y is large enough, then, for each k = 0, ..., n and each integer
s €[3,a],
(Vi @l sy + 105 T s re g
ks Yk HS (2 Kkl s+t < .
H(827) Hy (wr) £ log 6 ifs = a,
1T = Sg) Vi, (I = Se )Wl g2y < Cedp . (8.30)
Furthermore, for eachk =0, ..., n, and each integer s € [3, @ + 4],
(s—a)+ .
Cef ifs #a,
1(Sa Ve S Wllscany < | °% /57 (8.31)
Celog 6 ifs =a.

Estimates (8.30)—(8.31) follow directly from (8.1) and (8.29).

8.3. Estimate of the Error Terms

To deduce (H,) from (H,_1), we need to estimate the quadratic error terms e,’{,

€, and ¢, the first substitution error terms ¢}/, &/, and ¢/, the second substitution
error terms ¢;”, &/, and €], and the last error term Dy 1,28 Recall from (8.10)

that

e = LVig1, Y1) — LVie, %) — L' (U + Vi, 4 + W) (8 Vi, W),
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which can be rewritten as

1
¢, =/ L(U% + Vi + t8Vi,
0
D9+ W + T8 ((0Vi, 89, (8Vi, 89)) (1 — 7) di, (832)

where operator I” is defined by

LU, @) ((V', ¥, (V" ¥")) := d—dT]L’(U +V", @ + ¥V, ¥ ,
=0
with operator I" given in (4.4). We can also obtain a similar expression for &},
(resp. ék) defined by (8.11) (resp. 8.18) in terms of the second derivative operator
B” (resp. £”).

To control the quadratic error terms, we need the estimates for operators I,
B”, and £” (see 8.32). These can be obtained from the explicit forms of L.”, B”,
and £” by applying the Moser-type and Sobolev embedding inequalities. Omitting
detailed calculations, we find that the explicit forms of operators £”(U, &) and
B”(U, @) depend on state (U, @), which make the next estimates for £” and B”
different from those obtained in [19, Proposition 5]. This difference is caused by
the introduction of new primary unknowns (p, hwy, hw,).

Proposition 8~.2. Let T > Qand s € N Xviz‘h~ s = 3. Assunle that (0 , CIS) €
Hy T (27), Plp=0 € Hy (), and (U, ®) |30, < K forally > 1.

Then there exist two _positive constants Ko and C, which are independent of T
and y, such that, if K + & < Ko, v = 1, (V1, W), (Vo, W) € HT(27), and
(Wi, ¥1), (Wa, ¥) € H) P (wr) x HyY!(wr), then

HL//(Ua + 0’ D + @)((Vl, ), (Va, WZ)) ”H;(QT)

+ €7, @) (V1. 91, (Va, ¥2) |

< C LIV Do (V2 )l | (0 + T, & + )| o g,

D NV )l s o 1V ¥ oo | -
i#]
|B"(U* + T, @ + ) (W1, ¥r1). (W2, ¥2)) ||H;-(wT)

< C WL YD s n [W2, Y2 oo [ (U + 0 @+ )| s,

+ D MW ¥l g1 (o [ Wi ) w1 o)
i#]

Using Proposition 8.2, we obtain
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Lemma 8.3 (Estimate of the quadratic error terms). Let « > 4. Then there
exist ¢ > O sufficiently small and 6y > 1 sufficiently large such that, for all k =
0,...,n—1, and all integers s € [3,a — 1],

/Al

ek el g c2r) + 18Iy @r) < Ce207 ™ A,
where L1(s) == max{(s +2 — o)y +4 — 2,5 + 3 — 2c}.
Proof. In light of (H,_1) and (8.29), we have

sup || (Vi + 78 Vie, Wi + 8% | 32y < Ce.
0<t<l1

For ¢ small enough, we can apply Proposition 8.2 and use the Sobolev embedding
inequality, (8.28), and (H,—1) to obtain

llexll a5 2r)
< C {2072 A (o + Vi Wi 8Vie 90 g ) + 2267272 A7

fors € [3,a — 1]. If s + 1 # «, then we obtain from (8.29) and the inequality
201k A < 1 that

||ek||HV(,QT) C82Ak(6(3+1 ) +4—"2a +95+2 2(1) < Ce 29L1(S) lAk.

If s + 1 = «, then using (8.29) and @ > 4 yields

leil o1 gy < Ce Ak{(8+elog9k+89 LA+ 0} “}
<Ce2A20)7 < cetol @V Ay

The estimates for ¢, and é;_are similar and follow by applying Proposition 8.2 and
the trace theorem. This completes the proof. O

Now we estimate the first substitution error terms e,’(’ s é,’{’ ,and ¢} givenin (8. 10)—

(8.11), and (8.18) by rewriting them in terms of I.”, B”, and £”. . For instance, &,
can be rewritten as

Al

1
& = f B"(U* + Sg, Vi + t(I — Sg) Vi, @ + Sg. Wi + t(I — Sg) W)
0
((8Vilxa=0, 8Y), (I = Sg) Viclxy=0, (I — Sg) Wikl x,=0)) dz.  (8.33)
Then we have the following lemma:

Lemma 8.4. [Estimate of the first substitution error terms] Let o > 4. Then there
exist ¢ > 0 sufficiently small and 6y > 1 sufficiently large such that, for all k =
0,...,n—1, and all integers s € [3,a — 2],

e 2, La(s)—1
lICex's @O ms 2y + 1€ 1 3 ) < Ce76; 291 4

where Ly(s) := max{(s +2 — )+ + 6 — 2c, 5 + 5 — 2 }.
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Proof. It follows from (8.30) and (8.31) that

sup |[(So, Vi + 7 = So) Vi, So, Wi + T = Sp)¥) 3 2p) < Ce
0<r<1

For ¢ sufficiently small, we can apply Proposition 8.2 to estimate B” in (8.33).
Employ the trace and embedding theorems to obtain

I8¢ 1| 15 (er)
S ” (5Vk’ ‘Slpk)”Hg(QT)”((I = So) Vi, (I — Sek)lpk)”Hg(QT)
x [(O* + Sg. Vi + 71 — Sg) Vie, ®* + Sp W + T(I — S )W)
+ ” (8 Vi ‘W’k)u H;+2(QT)”((I = o) Vie, (I — SGk)‘I’k)H H3(R27)
+ ”((1 = So) Vi, (I — Sf?k)l]'k)“H;“(QT) ” (6Vk’ SWk)Hyg(QT)'

“ Hy2(2r)

Using estimates (8.28), (H,—1), and (8.30)—(8.31), we obtain that, for s + 2 # «
ands +2 < a,

~I/
llex 1 a3 wr)

< C{aZg,f—Z“Ak(s 42000 4 sze,j+4—2“Ak} < Ce2plO71 4,
For s + 2 = «, we obtain
1 N z30r) < € {a%},f‘zmk(s +elogfr) + gze,f—mk}
< Ce? Ay (9,?72“ log 0 + 9,3”) < C829,(LZ(°‘_2)_1A/<,

owing to > 4. The estimate for ¢}’ and ¢’ can be deduced in the same way. O

Now we estimate the second substitution error terms ¢;’, &, and ¢} given in

(8.10)—(8.11) and (8.18) by rewriting them in terms of I.”, B”, and £”. For instance,

¢, can be rewritten as

1
& = /o E"(Vig172 + 1(So, Vi = View1/2) Wieg12) (8, 8%,
(So, Vie = Vi+1/2, 0)) dr. (8.34)

Here we have used relation ¥y 112 = S, Wi (cf. (8.7)). Then we have the following
result:

Lemma 8.5. [Estimate of the second substitution error terms] Let o > 4. Then
there exist ¢ > 0 sufficiently small and 6y > 1 sufficiently large such that, for all
k=0,...,n—1, and all integers s € [3,a — 1],

A ~ 25L -1
ey & s cr) + 18 s wr) < Ce26;° 7 A,

where L3(s) := max{(s +2 — )+ + 8 — 2c, s + 6 — 2¢}.
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Proof. Omitting detailed derivation, we can use the inductive assumption (H,,_1),
definition (8.7), and the properties of Sy and R to obtain

IS0 Vi = Vier1 72 g 2y < < Cegi ™ (8.35)

forallk =0, ...,n—1andallintegerss € [3, a+3]. Wereferto [19, Proposition 7]
for the proof of (8.35). It follows from (8.31) and (8.35) that

Wi 2l g < Ce8 ™ fors e [3,a +31. (8.36)
Thus, we have

(T + Vix12 + T(So, Vi — Vir12), D4 + Wk+1/2)||H;+1(_QT)
< CepSTImO (8.37)

For ¢ small enough, one may apply Proposition 8.2 and use (H,—1), (8.35), and
(8.37) to deduce

||ei/<”||H3(9r) C{ezelf_z"‘AstIE”l*“)”] +829§+4_2“Ak} < CSZQkLS(S)_lAk.

The estimate for ¢;” and ¢;”

theorem. 0O

can be deduced in a similar way by using the trace

We now estimate the last error term (8.12), which is

SV

Diy1p8W = ———— R

o (P4 + Yit1/2)

where Ry := (U + Viy1/2, @4 + Wiy1/2). This error term results from the
introduction of the good unknown in decomposition (8.10). Note from (8.7), (8.28),
and (8.31) that

l
02(D + Wir1/2)| = [02® + B2(P° + Wiey12)| > =

[\)

provided that ¢ is small enough. Then we have the following estimate:

Lemma 8.6. Let o > 5 and & > a + 2. Then there exist ¢ > 0 sufficiently small
and 6y > 1 suﬁ?ciently large such that, forallk =0, ...,n—1, and for all integers
s € [3,a — 2], we have

1D 41/20%ll iy r) < Ce07 " A, (8.38)

where L(s) ;= max{(s +2 —a)+ +8 — 2o, (s + | — )4 +9 — 2, s + 6 — 2x}.
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Proof. The proof follows from the arguments asin [1,19]. Let .Q;r =(0,T)x Ri.
Since §¥; vanishes in the past, using the Moser-type inequality, we obtain

| Drey1/28%k |l 15 (2) = IIDk+1/25WkIIH;(g;)
< C{”(quk||LOC(,Q]‘!')(”R1€”H~VY(QYT) + IIRkIILoc(g;)H‘f’” + Wk+1/2||H;+1(QT+))
+ 189 ) 1 Rel o | (8.39)
To estimate Ry, we introduce the following decomposition for r > 0:
LU 4+ Vig1y2, 4 + Wrv12) — LOVi, W) + f
=LWU" + Vig12, D + ¥iq12) — LU + Vi, @ + &)
= /01 L' (U + Vi + t(Vay12 — Vi),
D + W+ T(Wig1/2 — ) Vir12 — Vi, W12 — W) dt. (8.40)
If s < & — 3, the inductive assumption (H,—1) implies
LV, W) — f¢ IIH;+1(Q ) < < 26077 (8.41)

Since we can obtain an estimate for I” similar to that for I” (see Proposition 8.2),
using Lemma 8.2 and (8.35) leads to

LU + Vier172, @ + Wie12) = LU + Vi, 24+ WD)l o1
< Ce(fH3 o 4 g0, (8.42)
Plugging (8.41)—(8.42) into (8.40) yields
1 Rill s 27y < Ce(5 + Q,EHZWHHW) fors € [3,& —3]. (8.43)
If s =a —2 > «, then we use (8.31) and (8.36) to obtain
IRel a3 27y < NLCUS + Vip1y2, @4 + 1)l s o,
< CIU* + Vigrj2, D + Yicr 12 g2y
< Ceqi e,

Thus, we obtain estimate (8.43) for s € [3, @ — 2]. Thanks to (H,,_1) and (8.43),
we utilize the embedding inequality to find

18¥kll Lo (27) < CS@;? * A, [ RkllLe=(2r) < Csek6 “

Using these bounds and plugging (8.43), (H,—1),and (8.31) into (8.39) yield (8.38).
O

From Lemmas 8.3-8.6, we can immediately obtain the following estimate for
ek, e; and ¢y defined in (8.13) and (8.19):
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Lemma 8.7. Let @ > 5. Then there exist ¢ > 0 sufficiently small and 6y > 1
sufficiently large such that, for all k = 0,...,n — 1, and for all integers s €
[3, @ — 2], we have

A ~ o 71
lexll iy 2r) + ekl g 2r) + ekl as wr) < ceol V7 A, (8.44)
where L(s) is defined in Lemma 8.6.

Lemma 8.7 yields the estimate of the accumulated error terms Ej, Ek, and Ek
that are defined in (8.14) and (8.19).

Lemma 8.8. Let o > 7 and & = o + 4. Then there exist ¢ > 0 sufficiently small
and 6y > 1 sufficiently large such that

ICEn. E)ll g2y + 1 Enll a2y < CE%00n. (8.45)
Proof. Notice that L(a +2) < 1 if « > 7. From (8.44), we have

I (Ex, En)”H;tJrZ(QT) + ”En”H;‘/HZ(a)T)

|
—_

n

< {”(eka éx) ||H37+2(QT) + llex ”H)(}H'z(wr)}

il
—_ O

<Y ce?Ar < CE2o,,

~
Il
S

provided that @ > 7 and « 4+ 2 € [3, @ — 2]. Thus, the minimal possible & is o + 4.
O

8.4. Proof of Theorem 2.1

To prove our main result, we first derive the estimates of the source terms f;,,
gn, and G,‘l—L defined in (8.15) and (8.24).

Lemma 8.9. Let o > 7 and @ = a + 4. Then there exist ¢ > 0 sufficiently small
and 0y > 1 sufficiently large such that, for all integers s € [3, & + 1],

| ulltg@r < CAn {87201 g gy, + €D + 226507 (8.46)

lgnll s wr) < C&An (63777 +6,971), (8.47)
and for all integers s € [3, &],

1G s < Ce*A (6,7 + 6,07, (8.48)
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Proof. It follows from (8.15) that

n = Op — P01 - Op — PO n—1— gnenfl‘
Jn= (S S, ) [ — (S So,_)E S
Using (8.1a), (8.1c¢), (8.44) and (8.45), we obtain the estimates
(S8, = S, ). “Nrrgcry < COZE 1S a1 oy Anmts
(S, = Sou_) En—-1llH3(2r) < CQZ:‘f_SIIEn—l||H5+2(9T)An—1

< Ce0, 72 A,
L(s)—1
<Ce?0M A,

Il So, en—1ll 3 (27

Combining the above estimates with the inequalities: 6,—1 < 0, < \/59,1,1 and
An—1 < 34, we derive (8.46). Similarly, we obtain (8.47). To prove (8.48), we
use (8.24) to find

G} = (Sg, — Sen,l)(RTgfz—l,z - E,—f_l) + S5, (Rrén—12 — & ).

Then we obtain the estimate for G; by using (8.44)—(8.45) as above. The estimate
of G, is the same. O

We are going to obtain the estimate of the solution to problem (8.5) by employ-
ing the tame estimate (6.2).

Lemma 8.10. Leta > 7. Ife > Oand || f¢ ”H?“(QT)/S are sufficiently small, and
if 0y = 1 is sufficiently large, then, for all integers s € [3, a],

1@ Va, 8%l iy 2r) + 18l g1 () S 0,1 A, (8.49)

Proof. Let us consider problem (8.5), which can be solved, since U 4 V), 112 and
D + W, 112 satisty the required constraints (8.9). Constraint (4.1) can be obtained
by truncating the coefficients, U¢ + V,, 1,2 and @ 4+ ¥, ;| /5, by a suitable cut-off
function, while (4.3b) can be obtained by taking ¢ > 0 small enough. We can
consider the coefficients with a fixed compact support. In order to apply Theorem
6.1, we obtain (6.1) by using the classical trace estimate, (8.28), (8.31), (8.35) and
a > 7. Thus, we can employ the tame estimate (6.2) to obtain

18Vall g2y + 18Wnl s

(1)
< C{(”fn“H;}(.QT) + ”gn“H;}(wT))”(Ua + Vos1y2, @9 + Y120 g3+3 2
+ 1 fn ”H;'H(_QT) + llgn ”Hi;H(wT)}' (8.50)

The particular case s = 3 implies
18Vall 32y < C(ILfull gy + 18nll 3or)- (8.51)

Given 8, we can compute §¥, from equations (8.16)—(8.17). Performing the
energy estimates for §¥),, and using Lemma 8.2, (8.35), and the Sobolev embedding
theorem, we derive

Y 18l r5 2r)
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< C{llgnllmy@r) + 1Gullmy@r + 18Vallzy ) + 18Val a3 c2p)
~ S
L N P T PPERY (8.52)

for all integers s € [3, @] and & small enough. For s = 3, using (8.51), we have
18%nll 113 (2r) < C(||fn||H;}(.QT) + lgnll f2 wr) + ||Gn||H3(QT))- (8.53)

In view of (8.6), using estimates (8.50), (8.52)—(8.53), and the Moser-type inequal-
ity, we obtain

16 Ve, 8%l g 2r) + 18Yn l gy

< C{||fn||H;+I(QT) + Hg””H)fH(wT) + ”Gn”H}j'(.QT)

(or1)

+ ([l fa ||H;*(_QT) + ”gn”H;,‘(wT) + ”Gn”H;(_QT))
. - so_
X (1T + Va2, 8+ Vi1 )l gy + 6057 4)) 854)

for all integers s € [3, @]. Using Lemma 8.9, (8.31) and (8.35), we obtain from
(8.54) that

16 Va, 8%l g 2r) + 18ml g1
< CAfO S N et o) + D) + 676, 72) (67" 1 egytia)
+ CAOT T U N g o + €7 + 70, 0TV (8.55)

(o1)

Exactly as in [19], we can obtain the following inequalities:

Ls+1)<s—a,
s+3—a)++2—a<s—a—1,
+3—a)++9—-20<s—a—1,
s+6—-20<s—a—1,
s+13—-3a<s—a—1,

fora > 7 and s € [3, @]. Thus, (8.55) yields
1V 8113 2) + 18Wnll g1y < CUS N gty +7)00 7 An,
and (8.49) follows by taking & + || f¢|| Ao (@p)/€ small enough. O

Estimate (8.49) is inequality (a) of (H,). We now prove the other inequalities
in (Hy,).

Lemma 8.11. Leta > 7. Ife > O and || f* ”H;“'(QT)/S are sufficiently small, and
if 6o > 1 is sufficiently large, then, for all integers s € [3, & — 2],

1LV, @) = F Nl p) < 266, (8.56)
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Moreover, for all integers s € [4, o],

IB(Valt=0. ¥l g (r) < 67 (8.57)
and

IE Vs Ul 3 (2p) < €67 (8.58)
Proof. From (8.25), we have
1LV, &) — f¢ Iy 2r) < I — Senfl)fa”H;(.QT)
+11CS0,—1 = DEn-1llzy2r) + len—1ll g c2r)-
Fors € [ + 1, @ — 2], using (8.1a) and (8.28), we obtain
1 = Sa, ) “Nrgiry < 05 A Nagcan + CIL s )

C”f ”H;/XH(.QT))

< 89;—“—1(1 +
&

while, for s € [3, « + 1], applying (8.1b), we have
I = Sa,- ) g2 < COZFT S N et gy < CO IS gent -
Lemma 8.8 and (8.1b) imply

1T = So,_) En—1lli3c2r) < CO,Z5 2||En—1||H‘;+2(QT) <cetgy!

n—1

for3 <s < a+2=a — 2. It follows from (8.44) that
len—1llag2r) < < Ce20M) A, < CPOLO2 < et

By virtue of the above estimates, we choose ¢ and || f¢|| HeH (2p) /€ sufficiently
Y

small to obtain (8.56). Similarly, using decompositions (8.26)—(8.27), we can prove
estimates (8.57)—(8.58). 0O

In view of Lemmas 8.10-8.11, we have obtained (H,,) from (H,_1), provided
thato > 7, @ = a + 4, (8.28) holds, ¢ > 0 and ||f“||Ha+1(Q )/8 are sufficiently

small, and 6y > 1 is large enough. Fixing constants «, &, ¢ > 0 and 6y > 1, we
now prove (Hp).

Lemma 8.12. If | f¢ ||Ha+l(QT)/8 is sufficiently small, then (Hy) holds.
Y

Proof. Recall from assumptions (A-1)—-(A-3) that (Vo, ¥, Yo, go, G(“)—L) = 0 and
fo = Sg, f¢. Then it follows from (8.7) that (V} 2, ¥1,2) = 0. Thanks to (8.28) and
the properties of the approximate solution in Lemma 7.2, we may apply Theorem
6.1 to obtain (8Vy, Sp) as the unique solution of (8.5) for n = 0, which satisfies

“‘SVOHH‘(QT) + ”81//0||H§+|(QT) C||S9()f ”HH"(_QT)
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Then we find § llfojE from equations (8.16)—(8.17) with n = 0. The standard energy
estimates yield

16%0 | s (2r) < C||5V0||H»;(.QT) fors € [3, a],
which, combined with (8.6) and (8.28), implies
16 Vo, 80 my 2r) + 180l s+t (p
(s—0a)
< C”SGOfa”H;H(QT) < Ce()é o ”fa ”HV‘Y“(_QT)-

If || £ He+ (opy/€ is suitably small, then we can obtain inequality (a) of (Ho).
Y
The other inequalities of (Hp) can be shown to hold by taking || /|| e+ @7 small
Y
enough. O

From (8.12) and Lemmas 8.10-8.11, we derive that (H,) holds foreveryn € N,
provided that the parameters are well-chosen and that f¢ is sufficiently small. We
are now in a position to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. We consider the initial data (USE, @p) satisfying all the
assumptions of Theorem 2.1. Let & = u — 2 and « = & — 4 > 7. Then the initial
data USE and ¢g are compatible up to order u = & + 2. From (7.14) and (7.16), we
obtain (8.28) and all the requirements of Lemmas 8.10-8.12,

provided that (Ui, ¢o) is sufficiently small in H*+1/2(R2) x H**+!(R) with
l}gE = USE — U™ . Hence, for small initial data, property (H,) holds for all integers
n. In particular, we have

o0 o
> (16 Vi 890 g o + 18Ukl s ,y,) < € D672 < 00
k=0 k=0

for s € [3,a — 1]. Thus, sequence (Vi, ¥) converges to some limit (V, ¥) in
H}‘j‘_l (£27), and sequence Y converges to some limit i in H}‘j‘ (£27). Passing to
the limit in (8.56)—(8.57) fors = o — 1 = u — 7, and in (8.58), we obtain (7.17).
Therefore, (U, @) = (U4 V, @4+ ¥)isasolution on .Q}" of the original problem
(2.20) and (2.23). This completes the proof. O
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Appendix A: Symmetrization of the Relativistic Euler Equations

Under assumption (2.6), MAKINO-UKAI [33] showed that there exists a strictly con-
vex entropy function for the relativistic Euler equations (2.4), which yields a sym-
metrizer for (2.4) by following Godunov’s symmetrization procedure in [23]. By
contrast, the symmetrizable hyperbolic system (2.18) is deduced by using a purely
algebraic symmetrization of the relativistic Euler equations (2.4); see TRAKHININ
[48] for a different algebraic symmetrization.

In order to derive (2.18), we need to recover another conservation law (that is,
conservation of particle number) from equations (2.4). Denoting by N the particle
number density and by e the specific internal energy, then

o= N(1 +€e). (A.1)

The particle number density N was introduced by TauB [46]. For a perfect fluid, N
and e are functions of the two thermodynamic variables p and S (specific entropy).
According to the first law of thermodynamics, the following differential relation
holds:

TdS =de+ pdN~!, (A.2)

where T is the absolute temperature. By virtue of (A.1)—(A.2), we have

anN) 1 d(nN)

Pl 05 —€>NT. (A.3)

In the case of barotropic fluids where pressure p depends solely on p, it is natural
to introduce the “mathematical” particle number density N as a function of p only
such that the first relation in (A.3) holds. This motivates us to define N = N(p) as
(2.11).

Let (p, v) be a C'=solution to (2.4). It follows from (2.4a) and h = (p + ezp)/N
that

—hT{3;(NT) + Q(NTvp)} = NI {I"(3; + vedi)h + h(d; + v dp) '} — €20, p.
In view of (2.13) and (2.4b), we obtain
NhI (3 + vd) I = NhT€*v; (8 + vedp)w
= —N|w|* @ + vd)h — T w|* {3, (NT) + 8 (N Tvp)} — €*v;d; p,
which implies
RNl w]* = T {9(NT) + (N Ty}
= N(I? — 2\w|>) (@ + ved)h — €0 + vidi) p.

Thanks to (2.11) and (2.13), N(p)h'(p) = €?p'(p) and I'*> — €?|w|> = 1. Then
we obtain the conservation of particle number

(NI') + 0 (NT'vg) = 0. (A4)
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Equations (2.14) then follow from (2.4b) and (A.4). Using the identities: [} =

€2v - dwand N'(p) = % = m, we see from (A.4) that

I +v-V)p+ Nhe? (62v Opw + Yy - w) —0.
We use the relations: 4’ (p) = 62/N and w = I'v to deduce
ra—e'cpPop+ra—ecv-vep
+ N2 (€2 - 3, (hw) + Vi - (hw) ) = 0. (A5)
Set U := (p, hwi, hwz)T. Then equations (2.14) and (A.5) can be written as
Bo(U)o,U + B1(U)o U + Br(U)o U =0, (A.6)

where the coefficient matrices are given by

L (ra- e*c2|vl?) €2¢ENvT
Bo(U) := ( 0 rh , (A7)
Ivi(l —€2c¢?) Nc2el .
B;(U) := < jz(v—l ) ,) . j=1,2. (A.8)
ej I'vilp

Here we have sete; := (31}, 82j)T and I; := (8;j)2x2 with §;; being the Kronecker
symbol. Let us define

2a7.2 =1, T
1 e Nc°I” v>' (A9)

i) = (O L —e2v®v
Multiplying (A.6) by S;(U) and using the identity I'> — e?¢>I'* +€2¢> = I'*(1 —
6462|v|2), we obtain system (2.18). Conversely, we can also deduce system (2.4)
from (2.18) so that we derive the equivalence of these two systems in the region
where the solutions are in C'.
It remains to show that system (2.18) is symmetrizable hyperbolic in region {p, <
p < p*, |v| < €1}, Let us set the Friedrichs symmetrizer
1 —2e2Nc2ro’

SZ(U) (0 N26212 ( 0)
After straightforward calculations, we derive that all matrices S>(U)A;(U) are
symmetric, and the eigenvalues of S>(U)Ao(U) are

M= —e*PP?), rm=IN?*?  a=TNA1-eP).

Assumption (2.6) yields that A1, A, and A3 are all positive. Consequently, S2(U) Ao
(U) is positive definite and system (2.18) is symmetrizable hyperbolic.
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