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z Abstract

13

14 When aplane shock hits a wedge head on, it experiences a reflection-diffraction

5 process and then a self-similar reflected shock moves outward as the original shock
16 moves forward in time. Experimental, computational, and asymptotic analysis has
17 shown that various patterns of shock refiection may occur, including regular and
15 Mach reflection. However, most of the fundamental issues for shock reflection
12 have not been understood, including the global structure, stability, and transition
20 of the different patterns of shock reflection. Therefore, it is essential to establish
21 the global existence and structural stability of solutions of shock reflection in order
22 to understand fully the phenomena of shock reflection. On the other hand, there
23 has been no rigorous mathematical result on the global existence and structural
23 stability of shock reflection, including the case of potential flow which is widely
55 used in aercdynamics. Such problems involve several challenging difficulties in
26 the analysis of nonlinear partial differential equations such as mixed equations of
27 elliptic-hyperbolic type, free boundary problems, and corner singularity where an
2 elliptic degenerate curve meets a free boundary. In this paper we develop a rigor-
20 ous mathematical approach to overcome these difficulties involved and establish a
0 global theory of existence and stability for shock reflection by large-angle wedges
31 for potential flow. The techniques and ideas developed here will be useful for other
32 nonlinear problems involving similar difficulties.

20/>

33
?’ i. Introduction

5

g We are concerned with the problems of shock reflection by wedges. These

37 problems arise not only in many important physical situations but also are fun-
g damental in the mathematical theory of multidimensional conservation laws since
st their solutions are building blocks and asymptotic attractors of general solutions
40 (o the multidimensional Euler equations for compressible fluids (for example, see

101
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1 Courant-Friedrichs [16],4on Neumann [49], and Glimm-Majda {22]; also see {41,
v 275191, [21], {30], [44),445], [48]). When a plane shock hits a wedge head on, it
73 experiences a reflgétion-diffraction process and then a self-similar reflected shock
", moves outward a5 the original shock moves forward in time. The complexity of the
T reﬂection urdywas first reported by Ernst Mach [41] in 1878, and experimental,
5 computaticnal; and asymptotic analysis has shown that various patterns of shock
» reflection may occur, including regular and Mach reflection (cf. [4], [19}, [22],
"5 [25], [26], [27; 44}, [48], [49]). However, most of the fundamental issues for
"y shock reflection have not been understood, including the global structure, stabil-
1o ity, and transition of the different patterns of shock reflection. Therefore, it is
11 essential to establish the global existence and structural stability of solutions of
1z shock reflection in order to understand fully the phenomena of shock reflection,
132 On the other hand, there has been no rigorous mathematical result on the global
12 existence and structural stability of shock reflection, including the case of potential
15 How which is widely used in aerodynamics (cf. [5], [15], [22], [42], [44]). One
16 of the main reasons is that the problems involve several challenging difficulties in
17 the analysis of nonlinear partial differential equations such as mixed equations of
1s elliptic-hyperbolic type, free boundary problems, and corner singularity where an
19 elliptic degenerate curve meets a free boundary. In this paper we develop a rigorous
5o mathematical approach to overcome these difficulties and establish a global theory
201/2; of existence and stability for shock reflection by large-angle wedges for potential
22 How. The techniques and ideas developed here will be useful for other nonlinear
>3 problems involving similar difficulties.

24 The Zuler equations for potential flow consist of the conservation law of mass
25 and the Bernoulli law for the density p and velocity potential ©:

2 (1.1 ; p + divy (pVy®P) = 0,

27

= 1

= (12) 8@+ 2|V’ +i(p) = K,

29

-— where K 1s the Bernoulli constant determined by the incoming flow and/or bound-

30 ior

o ary conditions, and

o (o) = p' ()} p = c*(p}/p

32 with ¢(p) being the sound speed. For polytropic gas,

34 plpy=xp?’, ) =cyp’™!,  y>1, x>0
35

g Without loss of generality, we choose & = (y — 1)/y so that

57 ip=p"" @ =G-Dp,

38

o which can be achieved by the following scaling:
39Y/p—

0 x.t, K) = (@x.a?t,a”2K), o?=«xy/(y-1).
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1 Eguations (1. 1{}( 1.2) can be writteri as the following nonlinear”@ eqmtl(}n of sel ond -

1l
e 2 order:

= (13) afp

5
" where p(s) = S0 = =15y for s = 0.
P When a plane shock in the (x, ¢)-coordinates, x = {x1, x2) € R?, with left state , ; oS
& (o, Vx¥) = {p3,u1,0) and right state (00, 0,0), u3 > 0, po < p1, hits a symmetric W;
T wedge o
E W = {|x2]| < x1 tan Gy, x1 > 0}

11
2 head on, it experiences a reflection-diffraction process, and the reflection problem

—— can be formulated as the fellowing mathematical problem.

13
o Problem 1 (Imzzal boundary value problem). Seek a solution of systemny ;{1 D
— and (1.2) with K = Po the inttial condition at ¢ = 0: '
E {pg.0) for |xp| = xj tan Gy, x1 > 0,
5 (L0) (o ®)lemo = 2l v
= {p1.u1x1) for x; <0,
201/25 and the slip boundary condition along the wedge boundary ¢i/:
21
5{15) V@-vlaw =0,

23 where v is the exterior unit normal to 3 (see Fig. 1.1).

25 Ty
26 {3 ()

12

a0 V& y=0"

“a0 Figure 1.1. Initial-boundary value problem
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1 Notice that the initial-boundary value problem (1.1)—(1.5) is invariant under
- the self-similar scaling:

(x.1) = (ax,at), (p,P)— (p,D/w) for «#0.

llfz-
3

r

5 Thus, we seek self-similar solutions with the form

px.t)y=pE,m, O& ) =ty¥(En for (&.5) =x/1.

Then the pseudo-potential function @ = ¥ — (£ + 5?) satisfies the following
9 Euler equations for self-similar solutions:

|

3
7
8

% (1.6) div (p Dg) +2p = 0,

- 1 — -
2 (17) 51D+ o+ 07 =pp
13

15 where the divergence div and gradient D are with respect to the self-similar vari-
15 ables (&, 7). This implies that the pseudo-potential function (&, ) is governed by
1s the following potential flow equation of second order:

) div (p(1D¢?, 9) Do) +20(|1 Dgl*, ¢) = 0 1
15 with g {
0 . 1 {
202 (1.9) p(IDel*, 9) xé’(fp?{ ’—w——{le?&-
21 i} 2 f
22 Then we have
23
e - -1 1
2 (1.10) ¢ =c2(1Dpl 0.0 ) = (= D(eh ' = 5100l —0).
25
a6 (1.8) is a mixed equation of elliptic-hyperbolic type. It is elliptic if and only
o if
2 (11D IDel <Dl 0. 057").
29

s0 which is equivalent to

31

g (1.12) Dl < cxlp, po. ¥) :=\/

33

2-1), 1
v+ 1 (Po @).

3 Shocks are discontinuities in the pseudo-velocity De. That is, if Q1 and Q@7 :=
s Q \ﬁ‘r are two nonempty open subsets of @ C R and S := QTN Qisa C!
% curve where Dg has a jump, then ¢ € Whl(Q)n CHQTUSHINC2QE) isa
7 global weak solution of (1.8) in £ if and only if ¢ is in Wlécm(Q) and satisfies
il (1.8) in 2% and the Rankine-Hugoniot condition on S:

39Y/p—

w0 (1.13) [o(1Dg}?. @) Dg-v] s =0.

_,f
?ﬁ%% 2508
javentheses

: )
|

e ,,:,,
5 :*1"\ 5{/ ,é &f/\j
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14 X Incident
Shock

(1}

Sonic Circle

Shock

P Py
Figure 1.3. Regular reﬂection

17 containing the arc P1 P4 in Flgure 137 s0 thclt iz is the unique solution m thy

18 domain PoPi Pa, as argued in [93Y45]. In the domain 2, the solu ¢

19 to be pseudo-subsonic, smooth, and C!-smoothly matchmmro /{y
201/ 20 Py P; and to satisfy @y =0 on P2 P3; the gonic shock curve Py Py mat up

21 tg second-order with Py P and is orthtogonal to the £-axis at Lh oint P2 so that/’

£ the standard reflection about t ef’g:s(;:lds agl the wh}glc late

obal
23 Then the solution of Problem 2 can be shown to m of ProBlem

24

5; Main Theoremp (See §9 for the proo 5t B, = O:(pg.p17%) €

26 (0, 7/2) and & = al(po, p1.¥) € (0, 1/2) such that, when &, € =/ 2), there f{'ﬁ % )
27 exists a global self-similar solution 7

28

29

— with

31

32

5+ of Problem | (equivalently, Problem 2) for shock re[lecnon by the " wedge, which / 3 (/
45 satisfies that, for (&, n) = x/1. / ( ; 5%1!?;5 €
36 g e CRE@@NCH (), (w/

po T for £ > £g and 1 > £ tan by,
(120 ©=14 ¢ for £ < £g and above the reflection shock Py Py P2, '7{_2 Shomil 5‘?}%@ by

2] in P@P;P4, i s s
ik Cios 7‘&@ Vi b é)
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., ¢ is CV1 across the part Py P4 of the sonic circle including the endpoints Py and

o 2 Py, and the reflected shock PPy Ps is C?at Py and C® except P1. Moreover,

20 /'1

30/, —

3 ", the solution @ is stable with respect to the wedge angle in w b and converges in

loc
4 W1 ! {0 the solution of the normal reflection described in Section 3.1 as Oy, — 7/ 2.
One of the main difficulties for the global existence is that the eilipticity con-

dition (1.12) for (1.8} is hard to control, in comparison to our earlier work on stead

flow [10J[12]. The second difficulty is that the eliipticity L € sonic
circle PPy pundaryofthep E fiic low). Thethird difficulty is that,

5 on Pp P4, we need to match the solution in © with ¢ at least in C?, that is, the
o two conditions on the fixed boundary Py Py4: the Dirichlet and conormal conditions,
13 which are generically overdetermined for an elliptic equation since the conditions
12 on the other parts of the boundary have been prescribed. Thus we have to prove
13 that, if @ satisfies (1.8) in Q, the Dirichlet continuity condition on the sonic circle,
1 and the appropriate conditions on the other parts of 92 derived from Problem 2,
15 then the normal derivative D¢ -v automatically matches with Dy v along Pr Ps.
;5_ We show that, in fact, this follows from the structure of elliptic degeneracy of
7 (1.8) on Py P4 for the solution ¢. Indeed, {1 .8), written in terms of the function
13 i = @ — @, in the (x, y)-coordinates defined near P1 Py such that Py P4 becomes
19 asegment on {x = 0}, has the form:

o o]

20
L (121 {2x = (y + Duguxx + 1 —5Uyy — Uy = 0 in x > 0 and near x =0,
22 e

q3 plus the “small” terms that are controlled by 7/2—6y, in appropriate norms. (1.21)
2 is elliptic if uy < 2x/(y + 1). Thus, we need to obtain the €' LI estimates near
35 Py Py to ensure |ux| < 2x/(y + 1) which in turn implies both the ellipticity of the
26 equation in € and the match of normal derivatives D¢ -v = Dy, - v along P Py.
27 Taking into account the “small” terms to be added to (1.21), we need to make the
28 stronger estimate Juy| < 4x/(3(y + 1)) and assume that 7/2 — 0y is appropri-
29 ately small to control these additional terms. Another issue is the non-variational
30 structure and nonlinearity of this problem which makes it hard to apply directly
11 the approaches of Caffarelli [6] and Alt- Caffarelli-Friedman [1], [2]. Moreover,
32 the elliptic degeneracy and geometry of the problem makes it difficult to apply the
33 hodograph transform approach in Kinderlehrer-Nirenberg [28] and Chen-Feldman
34 [11] to fix the free boundary.

35 For these reasons, one of the new ingredients in our approach is to further
36 develop the iteration scheme in [10}4{12] to a partially modified equation. We
i modify (1.8) in Q by a proper cutoff that depends on the distance to the sonic
38 circle, so that the original and modified equations coincide for ¢ satisfying |ux| <
3 4vc/(3(y + 1)) and the modified equation N = 0 is elliptic in £ with elliptic
40 degeneracy on P Ps. Then we sol % a free boundary problem for this modified

53
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1 second-order nonlinear equation of mixedtype in a convenient form. In Section 5,
, we develop an iteration scheme, along {vith an elliptic cutoff technique, to solve the
75 free boundary problem and set up-the ten detailed steps of the iteration procedure.
5 Finally, we complete thefemaining steps in our iteration procedure in Sec-
5 tions 6-9: Step 2 for the éxistence of solutions of the boundary value problem
"¢ to the degenerate elliptic equation via the vanishing viscosity approximation in
7 Section 6; Steps 3-8 for the existence of the iteration map and its fixed point in
“a Section 7; and S#€p 9 for the removal of the eliipticity cutoff in the iteration scheme
" by usin? ‘Opriate comparison functions and deriving careful global estimates

12

1o for some.directional derivatives of the solution in Section 8. We complete the
11 proof of Main Theorem in Section 9. Careful estimates of the solutions to both the
1z “almost tangential derivative” and oblique derivative boundary value problems for
13 elliptic equations are made in the appendix, which are applied in Sectioas 6 and 7.

i4

1s 2. Self-similar solutions of the potential flow equation

» In this section we present the potential flow equation in self-similar coordi-
' nates and exhibit some basic properties of solutions of the potential flow equation

8 (also see Morawetz [44]).

19
g 2.1. The potential flow equation for self-similar solutions. (1.8) is a mixed
21 equation of elliptic-hyperbolic type. It is elliptic if and only if (1.12) holds. The
22 hyperbolic-elliptic boundary is the pseudo-sonic curve: |Dg| = ¢« (@, po, ¥). —
23 We first define the notion of weak solutions of (E.S): 1.9). Essentially, we_

24 require the equation to be satisfied in the distributional sense,™

Gl Definition 2.1 (Weak solutions). A function ¢ € Wl;c’l(/\) is called a weak "L
2 solution of (1.8&19) in a self-similar domain A if - -

w () ph ' —o—3|Dpl*=0ac. in A;

» (i) (o( Dyl @), p(Dpl?, )| Dol € (Lf, (M)

2 (iii) For every { € C2°(A),
31

20Y/2

) | (Dol 91D Dt~ 20D, %) ddy = 0.
33
34 It is straightforward to verify the equivalence between time-dependent self-

35 similar solutions and weak solutions of (1.8) defined in Definition 2.1 in the weak
36 sense. It can also be verified that, if @ € C 11 (A) (and thus ¢ is twice differentiable

37 ae. in A), then ¢ is a weak solution of (1.8) in A if and only if ¢ satisfies (1.8) a.e.

38 in A, Finally, it is easy to see that, if AT and A~ = A\ A+ are two nonempty open

"y 39 subsets of A C R? and § = 8AT N A is a C! curve where Do has a jump, then
w0 g e w2 (D)NCHATUS)NCHI(AZ) is a weak solution of (1.8) in A if and

o]
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. C 1,00 . . . .
1 only if ¢ is in W;™ (A) and satisfies (1.8) a.e. in AT and the Rankine-Hugoniot

~, condition {1.13) on §.
3 Note that, for g &€ C1(A* U S), the condition ¢ € W,2°(A) implies

2 loc
- @ lels = 0.

"¢ Furthermore, the Rankine-Hugoniot conditions imply
222 [pellope] = [pyllpey] =0 on§

8
5 which is a useful identity.
o A discontinuity of D satisfying the Rankine-Hugoniot conditions (2.1) and
77 (1.13) is called a shock if it satisfies the physical entropy condition: The density
w5 function p increases across a shock in the pseudo-flow direction. The entropy con-
13 dition indicates that the normal derivative function ¢y on a shock always decreases

1s across the shock in the pseudo-flow direction.

“15__ 2.2. The states with constant density. When the density p is constant, {1 8){2"
— (1 9) imply that ¢ satisfies

o 1

18 Ap+2=0, ~t1Dg|* + @ = const.

18 2

20 This implies (Ap)e =0, (Ap)y =0, and (g +1)* + gogn = 0. Thus, we have
21

va ¢gg=—1 @ep =0, @gp=-1

23 which yields

24 1 2 2

2 (23) gl =—sE +n7) +ak+bn+c,

20 where a, b, and ¢ are constants.

a2

28 2.3. Location of the incident shock. Consider state (0): (pg. ug, Vo) ={(00.0,0)

29 with pg > 0 and state (1): (p1, 41, v1) = (p3.u1,0) with py > pg > O and u; > 0.
30 The plane incident shock solution with state (0) and state (1) corresponds to a
31 continuous weak solution ¢ of (1.8) in the self-similar coordinates (£, 7) with form
32 (1.14) and (1.15) for state () and state (1) respectively, where § = £g > O is the
33 location of the incident shock.

34 The unit normal to the shock line is v = (1, 0). Using (2.2), we have

35
1
36 Uy = pp Eo > 0.

. Then (1.9) implies

1 1'02_ 2
- ph” 1“““§|JD§01|2—§91:—1 by

2
3 &p.

i
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: A
Ypp— AN,

2 g
- A W

3
2 (2} g _ 5”;)}/@

5 Reflected -7 Location of 4 P
- Shock Sonic Cirde |-~ Incident Shock . g .

° - b i § 1A
7 - -

’ ) - N/ BE—
- (1) I

8 -

) C .
10 - } ;/
11 - £ . S
12 3 o & -
13
14 Figure 3.1. Normal reflection
15

E Indeed, for fixed y > 1 and p1,u; > 0 and for F() that is the right-hand side of

17 (3.4), we have
i8

il 1
. lim F(s)= o L 202> pl 7l lim F(s) = o0,
19 Jim Fls)=pp "Fgui>e o (i (9) =00
20

201/ —em u?
2 F’(S):ww(mf?iwlii<0 for s > p1.
22 &=

#_ Thus there exists a unique o € (o1, oo) satisfying ,6;’“1 = F(pa), i.e., (3.4). Then
2! the position of the reflected shock & = § < 0 is uniquely determined by (3.3).

25

o Moreover, for the sonic speed é2 = +/(y — l)ﬁg_} of state {2), we have
7 (3.5) £ < &a.

28

59 This can be seen as follows. First note that

¥ (3.6) Ayt T = Bz — o).

31
g where § = {y — ])p,),:_2 > 0 for some p« € (p1, p2). We consider two cases,
33 rtespectively.

34

P Case 1. y = 2. Then

%337 O<(y-1pl P <p=y—Dpy %
v

5 Since > 0and pa > pi, we use (3.4) and (3.6} to find

1,39 - i 2
e P2~Pl+4ﬂ(ul+\/u1+l6ﬁpl),
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; and hence
ey 4p
2 z 1
- (3.8) F=— .
- U1+ /ui + 168p1
s Then by (3.7) and (3.8), /2 > p1 > 0, and 1y > 0 yields
5 : 48p1 e
7 HE < VBpri =y = 1)@y *pa =12
I’y uy -+ Jud + 168p
9

Case 2. 1 <y < 2. Then, since pp > p1 >0,

u (3 9) O<(y-Da 2 =p=(y—Dpl 7

== Since § = 0, (3.8) holds by the calculation as in Case 1. Now we use (3.8} and
. (3.9, p2>p1 >0,u; >0, and 1 <y <2 to find again

el Bl < VB < -l < - 0By = e

6
1+ This shows that (3.5) holds in general.

18 * * »
— 3.2. The von Neumann criterion and local theory for regular reflection. In

zﬁ this subsection, we first follow the von Neumann criterion to derive the necessary
201/2;; condition for the existence of regular reflection and show that, when the wedge an-

. gle is large, there exists a unique state (2) with two-shock structure at the reflected

— pomt which is close to the solution (3, iz, B2) = (2,0, 0) of normal reflection

;m for which 8y = /2 in §3.1,

;gm For a possible two-shock configuration satisfying the correspoading boundary

— condition on the wedge 1 = § tan 8,;, the three state functions ¢;, j =0, 1,2, must 7

S be of fcum([ 143, (1.15), and (1.19) (cf. (2 3. “

— with the angle 8; between the line and 7 = 0.
— Note that @ (£, 1) is defined by (1.13). The continuity

- 1 e i
2610 g =5 ) Fuk v+ € — o) —uaf)
3¢ v R —
35 Furthermore, g2 must satisfy the slip boundary condition at Py:
AYERT) vy = 1z tan Gy,
7
3 Also we have
39 - tan 6
392 — (3.12) E =& —Ep—r
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1 4.1, Shifting coordinates. It i8 ‘more convenient to change the coordinates in

v 27, the self-similar plane by shiftidg the origin to the center of the sonic circle of

IR

391/a

75 state (2). Thus we define

| -

CE, e == (€, 1) — (2, v2).

5
6 For simplicity of notationé; throughout this paper below, we will always work in the
7 new coordinates without changing the notation (£, n), and we will not emphasize
8 this again later.

8 In the new shifted coordinates, the domain € is expressed as
16
n (4D Q = Be, (0) N{n > —va} N {f () <& <ncotbu},

22 where f is the position function of the free boundary, i.e., the curved part of the
2% reflected shock Fahock := {&§ = f{n)}. The function f in (4.1) will be determined
2 below so that

15

1 (42) I/ =1l =Co
17
15 inan appropriate norm, specified tater. Here £ = I{n} is the location of the reflected

1o shock of state (2) which is a straight line, that is,

20

) 1) = eot O + &

1

- and

2 {(4.4) émé—u2+vzcot95<0,
24

2 if o =m/2— 8y > 0 is sufficiently small, since w2 and vy are small and £<0by
26 (3.3) in this case. Also note that, since uy = vz cotfy, = 0, it follows from (3.22)
o, that

27

% (4.5) E>e
29
30 Another condition on f comes from the fact that the curved part and straight

£ part of the reflected shock should match at least up to first-order. Denote by Py =
32 (E1,m1) with 77; > 0 the intersection point of the line § = /() and the sonic circle
33§24+ 4% =cZ, ie., (E1,m) is the unique point for small o > 0 satisfying

G 2 2 2
3 4.6) I(n1)" + 0y =c3, &1 = 1(m), 11 > 0.

*® The existence and uniqueness of such a point (&1, 71) follows from —¢z < § <0,

3 which holds from (3.22), (3.25), (4.4), and the smallness of uy and va. Then f

*_ satisfies

39

40 (4.7) SOm) =1m), Fm) =1"{m) =cotb;.
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L1 Note also that, for small o > 0, we obtain from (3.25), (4.4), (4- ), and {/(
Vi 2 cotfy > 0 that .

3 o~ ~ o
T —ey<E<f<ti<0" > 2

6 £,

% @ sausfymg (I 8 (1 9) in Q so that the equation i U1 andsansfymg
e the following boui 0T Tenock: the continuity of the pseudo-potential
o function across the shock:

g (4.9) @ = @] on Dypock

12
= and the gradient jump condition:

14 (4.10) (Do, ) Dg-vs = p1Dgr-vs  on Tenocks
16

5 where vy is the interior unit normal to §2 on Dghock.

e The boundary conditions on the other parts of 482 are

EICRY) o=¢s  on Tome = 82N 3Be,(0),
i;% (4.12) @ =0 on Dyegee = 8QN{n = Etan by},
202~ (4.13) ¢, =0  on 32N {n=—va}.
2
o5 Rewriting the background solutions in the shifted coordinates, we find
24 1
s (414)  pol€.n) = —-2-(5 + 1) - (quvzn)— f12=
26 1
o 415 @il m) =~ +07) + (w1 —u)f —van— 5,"‘1% iz~ o),
= 12 20 1, 2
2w 416)  @26m = —5E + ) -5+ —w)é uy(uz o),
30

- Where 43 = u3 + v3.
— Furthermore, substituting £ in (4.4) into (3.17) and using (3.11) and (3.14),

32
—- we find

33 s ,
34 A o (1 —u2)* +v;
= (4.17 = — 2 ]
= 4.17) P28 Pl(i" = )

3% which expresses the Rankine-Hugoniot conditions on the reflected shock of state

3T_(2)in terms of £. We use this equality below.

38

-y 39 4.2. The equations and boundary conditions in terms of ¥ = @ — 2. It is
“40 convenient to study the problem in terms of the difference between our solution
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"o Also, from (4.11), (4.12) and (4.16)-(4.18), we obtain
5@ Y=0 on Teonic = 092 M 48
< (4.25) Wy =0 on Tueage= 08 M {n = Etan by},
E (4.26) Yy = —uz~"" on IR N {n = —v2}.

ll Using (4.15@), the Rankine-Hugoniot conditions in terms of 1 take the

2 following form: The continuity of the pseudo-potential function across (49} is

12 written as

13

13 : )
Uo@2n llf—if]%"*“’é(lll —uz) +u1(uz2 — o)
15

v i

* ==E(u1—uz)—nv2w5q§+ul(u2—§o) on Tynocks
17

1z thatis,

19 Yy, n+v 2

— (4.28) g Y&t g

2013 —e Uy — Uz

21 ~
o, where £ is defined by {(4.4). The gradient jump condition (4.1{) is

o (4.29)
2% p(DY, ¥} (DY — (&, m)-vs = py (w1 —uz—& —v2—n)vs on Tsnocks

%_w where p(D+, ¥) is defined by (4.20) and vy is the interior unit normal to §2 on

26 oo, IF 1(ua, v2, DY) < 11 /50, the unit normal v can be expressed as
27

2 (4.30) by D@1=9) (w2 =Yg =)
g |D(§01_§0)! ﬁl_uz_w5)2+(v2+wn)2

z% where we have used (4.15), (4.16),and (4.18) to obtain t w/’%)

- Now we rewrite the jump condition (4.29) in a more convenient form for ¥
o satisfying (4.9) when o > 0 and [|[¢/]| o1 (g, are sufficiently small.

v We first discuss the smallness assumptions for o > 0 and [ || o1y By (2.4).
o (3.20), and (3.24), it follows that, if o is small depending only on the data, then

) 5¢n 6¢a 5pz 602 U1
36 2 2

M o(4.31 Tl s —, — < < ==, < .
( ) 3 a2z 5 6 ) 5 W us+ s 0

37
g We also require that |y || 015y be sufficiently small so that, if (4.31) holds, the
30 expressions (4.20) and (4.30) are well-defined in £2, and £ defined by the right-

39%p -

ao_hand side of (4.28) satisfies [E| < 7&2/5 for 1 € (—v2, ¢2), which is the range of
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e on Csnock. Since (4.31) holds and 2 C B, (0) by (4.1), it suffices to assume
12—
~y—1
. P . . U1
T3 (4.32) ¥l g = min (m,mm(l,cz)—ﬁ-ﬁ) =: 8%

For the rest of this section, we assume that {(4.31) and (4.32} hoid.
Under these conditions, we can substitute the right-hand side of (4.30) for v,
"into (4.29). Thus, we rewrite (4.29) as

(4'33) F(D'k[ﬂ 1}”: u2v Uzs Ev 77) = 0 on FShOCk’

10 where, with p = (p1, p2) € R* and z € R,

% @34) F(pzouzv2. &)= (p—E ) —p1 (41 —wa—& —va—1))-D
15 with §:= #(p,z,§,n) and ¥ := H(p, 1z, v2) defined by

ol |<folofefu]y

14 l

5 5 y—1 PP vl
5 (4.35) plpzEm=\p e tapp-—-—z)
16

i 9 (1 —uz = p1, —V2— p2)

7 (4.36) P(p, ug, vz} = .
il P ) V1 —uz— p1)? +(v2 + p2)?

19 From the explicit definitions of 7 and 9, it follows from (4.31) that
20
W2 = pe CP(Bgr 0y % (—8%,8%) x B2z, (0)), 1 € C%(Bs-(0) x By, 50(0)),

22 where Bp(0) denotes the ball in R? with center 0 and radius R and, for k € N (the
23 set of nonnegative integers), the C k_norms of § and ¥ over the regions specified
24+ above are bounded by the constants depending only on y, u1, 92, ¢2, and &, that is,
25 hy Section 3, the C k norms depend only on the data and k. Thus,

25
. 4.37) F € C(Bs+(0) x (=6*,8%) x By, ;50(0) x B2z, {0)),

2 with its C*-norm depending only on the data and k.
25 Furthermore, since ¥ satisfies (4.9) and hence (4.28), we can substitute the 5
30 right-hand side of (4.28) for § into {4.33). Thus we rewrite (4.29) as /“\“/
31

o (438 VDY, Y, uz.v2,m =0 on shack,

33 where

e (4 39) U(p,z,uz,v2,0) = F(p,z,u2,v2.(z + v2

361/ 31 COO(E) with E[\Dilcg ) éepending only on the datagrd k € N, where o = Bg* (0)x
10 (~8%,8%) % By, 150(0) X (~622/5,602/5).
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7
then v = ¢ — ¢y satisfies (4.9@(4.10)
5 on Dyex if and only if ¢ safisfies Conditifyﬁs (4.28) on anocks '
3 I N
A2 — P
[y

y (4.31)holds and ¥ € C1(Q) satisfies (4.32)/

@A) ple - Ee ( ~ 58 | oy — )
+ E1(Dy, . n) - Dy + Eo{ Dy, v,y = 0,
and the functions E;{p,z,n),i = 1,2, are smooth on

By« (0) % (—8*, 8%) x {—6&2/5,682/5)
i{" and satisfy that, for all (p, z, 7} € Bg«{0) x (—8%, 8%} x (—0652/5, 6C2/3),

[elef~]e]w

12 (443) |Ei(p,z,mI = C (ipl+1z|+0)
* and, for all (p,z,1) € Bs+(0) x (=5%,6%) x (—6¢2/5, 682/5),
14
g {444) ](D(p,z,n)Ei, D(zp,z’n)Ei)l S C9
* where we have used (3.24) in the derivation of (4.43) and C depends only on the
. data
. Denote by vg the unit normal on the reflected shock to the region of state (2).
¥ Then v = (sin &g, — cos 65) from the definition of 8;. We compute
20
22, P2 M 2
@45) (phe3 ~E (2L~ phbyn) - vo
22 231
23 Pe2 fan s Pz P g 9 1, 2 =
e =P2(62—5)Sm95—( ) —st)??CDS siipz(‘fz—é 1=0,

2 if /2 — By is small and n € Proj, (Tsock). From (3.14) and (4.30), we obtain
26 |lvs — vollLoo(Ty) = C]]D%,b[ic(ﬁ). Thus, if o > 0 and [EDWEC(“Q") are small
27 depending only on the data, then (4.42) is an oblique derivative condition on Igeck.
28

. 4.3. The equation and boundary conditions near the sonic circle. For the
20 shock reflection solution, (1.8} is expected to be elliptic in the domain £ and
51 degenerate on the sonic circle of state (2) which is the curve Ionie = 082N 3B, (0).

35 Thus we consider the subdomains:

B (4.46) Q' i=QN{(& ) ¢ dist((£, n), Teonic) < 26},

34 .

- Q" =QnN{(E, n) ¢ dist{(E, 7)., Tsonic) > £},

g (the small constant £ > 0 will be chosen later). Obviously, ' and £2” are open
357 subsets of 2, and 2 = QU Q". (1.8) is expected to be degenerate elliptic in &’

38 and uniformly elliptic in £ on the solution of the shock reflection problem.
39 In order to display the structure of the equation near the sonic circle where

40 the ellipticity degenerates, we introduce the new coordinates in €2’ which flatten
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1 Dsomc and rewrite (1.8) in these new coordinates. Specifically, denoting (r, 8) the

z polar coordinates in the (¢, )-plane, te., (§,7) = (rcosf, rsin ), we consider
"3 the coordinates:

— (447) X=camr, y=0—6y  ong.

5 By Section 3.2, the domain %’ does not contain the point (§,7) = (0,0) if ¢ is

_ small. Thus, the change of coordinates (£, n) — (x,y) is smooth and smoothly

B invertible on ©'. Moreover, it follows from the geometry of domain €2 especially m

¥ from (4.2)-(4.7) that, if ¢ > 0 is small, then, in the {x, y)-coordinates,
i0

1 Q' ={(x,y) : 0<x <2, 0<y<nx+arctan (7(x)/f(n(x
12 e
12 where 75(x) is the unique solution, close t

1 (e2—x)% e
15 We write the equation fori#~1n the (x, y)-coordinates. As discussed in Sec-
16 tion 4.2, ¥ satisfies (4.22)/44.23) in the polar coordinates. Thus, in the (x, v)-

17 coordinates in §’, the equation for ¥ is

15 (4.48)

e 1

9 (20— (p 4+ e+ O1)Yixx + Oxixyt (= + 03 ) ¥y = (14 00 = sy =0,
201/22i :

21 where

22

23 {(4.49)

2 _ox* oyl y—1 1 2

s OUDYx) = =k = e = (U + 50

28

i O2(DVY, ¥, x) = —m(lﬁx + 2 — XNy,

28

- _ 1 ) o N . l 2

2-3— O3(DY, ¥, x) = ca{ez —x)? (A Y 1)(1[, +(e2—x)yx + 2%‘)

31

A y+1 2

2 —2(02 —x)2 wy)’

33

L 0Dy Y0 = — _(xm R CRE A

; 0y — X cy 2 “

pry &‘,L -

P ol {y -+ 1)’1&3 ) .

g - 2(y — D{ea —x)? /
391/2;““(;" Os(Dyr, v, x) = — e ('g[ft +f;]{?2 —LX)Wy.

7 T = | ff‘{}_‘“’}i"!"g
i Cz{{‘zwk)g(q& } g
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; The terms Oy (D, ¢, x) are small perturbations of the leading terms of (4.48) if

et *75" the function ¢ is small in an appropriate norm considered below. In order to see
~, this, we note the following properties: For any (p, z, x) € R x Rx (0, ¢2/2) with

i<,
%(4-50) 101(p. 2. )| < C(Ip* + |z] + Ix[*),

= 103(p,z, x)| +10a(p, 2, x)| = C(|p| + |2] + x|},

B 102(p. 2. x)| +10s(p,z, x}| < C(lp|+ |x[ + D pl.

2 In particular, dropping the terms Oy, k =1,..., 5, from (4.48), we obtain the
D transonic small disturbance equation (cf. {44]):

i1

= 1

2 (4.510) (2x = (¥ + D) ¥ + oYy ¥ =0

13

4 Now we write the boundary conditions on Fsgnic, T'shock. and Dwegge in the
15 (x, y}-coordinates. Conditions (4.24) and (4.25) become

16

o (4.52) ¥ =40 on Donie = 092 N{x =0},

g (4.53) Y=y, =0 on Tyedee = 82N {y =0}

16

o It remains to write condition (4.42) on Dyyeex in the (x, y)-coordinates. Ex-
20Y/z . pressing ¢ and ¥, in the polar coordinates (7, @) and using (4.47), we write (4.42)
o on Tehock M {x < 28} in the form:

21 (4.54)

24 v 2 B2 p2— M I .2

w (-t 4on- ( - 48 (er =) sy ) )
26

o + sin(y + 8y) ( : —£%) + ( 2 —Pég) cos(y + Gw)) ¥y

28 - ) ¥ ﬁt@i—
20 _ (921“.01 2&') yr -} El (D(x,y)w W, x, y)}i M
30 i S— M

& (BanPF By #3309 =0, Ahoy shauld ke

* where E;(p.z,x,¥),i = 1,2, are smooth functions of (p, z, x, ¥) € RZ x RxR? ’f”ﬁjd{\?”/
. satisfying

3 .

3 |E(pzx, )= Cpl+zl+0)  for [p|+]z[ +x <eous, p2).

15

— We now rewrite (4.54) noting first that, in the (§, n)-coordinates, the point

2L Py = Pyomic M Tynock has the coordinates (£;,7,) defined by (4.6). Using (3.20),
;} (3.22), (4.3), and (4.6), we find

10 0<|E]-|&1] = Co.

3glyy
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1 In the (x, y)-coordinates, the point Py is (0, y1), where y; satisfies
1Has—

2 (4.55) czcos(yr + ) = &1, czsin(yy + 6y) =41,
3
“ from (4.6) and (4.47). Using this and noting that the leading terms of the coeffi-

5 cients of (4.54) near Py = (0, y)) are the coefficients at (x, y) == (0, y1), we rewrite
o (4.54) as follows:

7 (4.56)

g

; ﬁpz"flnwx—(p’z"—p;_cfl&)m% o bt
1 P2 = p1 2 . Y jm‘f‘ﬁ’“ fi}w'kﬁ

e -( —P}ﬁl)W+E1(D(x,y)‘/’=‘/’=x’yi M"’/

12 iy v
i3 ( YN E2(Dix ¥, ¥, %, ¥)¥ = 0 on Tynee N {x < 28},
% where the terms '. z,x,¥)i = 1,2, satisfy
2. (457) |Ei(p.z,x, )| < C(pl+ 1zl + x + |y = y1| +0)
% for(p,z,x,y)eT:={(p,2,x,¥) cR2xRxR?: |p| + |z| < £o(u1, p2)} and
2 (4.58) D p,zveiy E DYz vy EDlLos(y = C.
2052 We note that the lefi-hand side of (4.56) is obtained by expressing the left-

22 hand side of {4.42} on yecx N {2 —r < 2&} in the (x, y)-coordinates. Assume
23 € < C2/4. In this case, transformation (4.47) is smooth on {0 <cy—r <2¢}and
>+ has nonzero Jacobian, Thus, condition (4.56) is equivalent to (4.42) and hence to
o (4.29) on Tgpeek N {x < 2&} if o > 0 is small so that (4.31) holds, and if W[gc,@
2 is small depending only on the data such that (4.32) is satisfied.

27

o8 5. Tteration scheme

® In this section, we develop an iteration scheme to soive the free boundary
*_ problem and set up the detailed steps of the iteration procedure in the shifted co-
2% ordinates.

32

33 5.1. Iteration domains. Fix 0y < n/2 close to w/2. Since our problem is a
34 free boundary problem, the elliptic domain €2 of the solution is apriori unknown

35_and thus we perform the iteration in a larger domain
36
Py (5.1 G =Dy, = B, (0) N {n > —v2} N{I0n) <§ < ncosby},

g?_ where /() is defined by (4.3). We will construct a solution with £2 C%. Moreover,
39 the reflected shock for this solution coincides with {§ = {{n}} outside the sonic
; 40 circle, which implies 8% N 0B, (0) = 82N 3B, (0) =: Tsonic- Then we deconpose

38t
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L1 Oy (p1 —@2) = uysiny, and dy (g — (pz) —u1 (€2 — x)cos y, which imply (5.3).
v/ 277" Now, (5.4) is true since § = —&, sin( f[} ¢{0)) and thus

= g2 =101 (E2 sin( fo,0(0) ~ (&2~ %) sin y),

E and (5.5) follows from (3.3) since {g; — @2){xg, _ﬁ},g(ﬂ,’g)) =0 and

6 n ~

7 (fo,0lko) +7/2)/2~ fo,0lko) = C".

& Now let 8y, < 7r/2. Then, from (3.14)-(4.16) and (4.47), we have

9

1‘0“ @1~z = —(c2 — X) sin(y + O — 05) 1/ (1 — u2)? + vZ — (u1 —uz)é.

1— By Section 3.2, when 8y — /2, we know that {us, vz) = (0,0}, 8, — n/2,
o 'g‘ — £, and thus, by (4.4), we also have 5 — E. This shows that, if og > 0 is
? small depending only on the data, then, for all 8, € (x/2 — gy, 7/2)}, estimates
P (5 3)~(5.5) hold with € which is equal to twice the constant C from the respective

—- estimates (5.3)<(5.5) for 6, = 7/2.

% From (5.3)~(5.3) for 8,, € (7 /2 — 0y, 7/2) and since

B f 2

1? B N{er—r <kp}={E >paiN OEA‘EKQ,OE}’SJM ,
02 - 23 there exists fg = f{) /2By € € C®(R2) such that

— (5.6 BN {ez -1 < o} = {02 2 <kor—O-<y<foldh

2 (57) @ =pp)  CT=FEI=C onl0.xol,

2 (58) fo.000)/2 < fo(0) < folko) < (Fo,0lko) + 7/2)/2.

-:2_“7”: In fact, the line y = fg(x) is the Tine £ = () expressed in the (x, y)-coordinates,
28 and thus we obtain explicitly with the use of (3.14) that
29 ~

|€] sin By

g (5.9 fo(x) = arcsin ((62 i

31

) - 911; + 95 on [O,K{)].

32 .. .
— 5.2. Holder norms in Q. For the elliptic estimates, we need the Holder norms

3 in £ weighted by the distance 1o the comers Pz = Dapocr N {7 = —v2} and P2 =
o {—uz, —v2), and with a “parabolic” scaling near the sonic circle.
v More genelally, we consider a subdomain 2 C % of the form 2 =2 N{f >
o F(m} with f € C(R) and set the subdomains Q' :=Q N% and Q" :=QND"
e defined by (4.46). Let £ C 92" be closed. We now introduce the Holder norms in
~ Q" weighted by the distance to . Denote by X = (£, n} the points of 2" and set
b
oy Sy = dist(X, %), Sxy:=min@x.0y) for X,¥ e Q.
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1 ThenAor k € R, o € (0, I}, and m € N, deline

2 (5.10) ,

3 . [ -
— k,Z) . k, j .

4 £‘!Efn,0,)§an-: Z sup (8‘““"“‘6'“*“ D phy (X)!) oz } i? G s
5 - oslplsm ¥R & I
- m}? gmax(Om-tectk,0) | DBu(X) — DPu(Y)|
% \Bl=m XY €Q7, XAY oY |X-Y|* |
T By .z kE
o E I = el
10

£ where DF = 3?‘ 8’,?2, and B = (f1, B2) is a multi-index with 8; € N and |8} =

12 B1+ B2 We denote by Cgifs)y, the space of functions with finite norm |- I!,(f”f: ?QH.
13

14 Remark5.1. If m > —k = 1 and k is an integer, then any function u € Cr; azga”

15

v In €', the equation is degenerate elliptic, for which the Hoider /’2 with
(par)

— s Ckl-LI yp to X, but not necessarily
= pdrabohc scaling are natural. We define the norm ;WIEZ w38 follows; Denoting
E z={x,y)Yand Z = (%, §) with x, X & {0, 2g) and

20

a1 887 (z,2) = (jx — &% + min(x, )|y - 7

22
2 then, for u € C2(Q)NCHI(Q’) written in the (x, y)-coordinates (4.47), we define

24

)&/2

= (5.1

% [Eu]ig”gr’)g,:: Z sup (xk“Hfz 2|8k8!u(z)E)
27 o<k+i<2 7%

%

xYy

55 (z.2)

kool _qkql ¢z
29 [“]gpar}sz': Z sup (mm(x e U2[a dhyu(z) axay”(zn),
v R 12 G

30

(o) (pan) (o)
a e =l o + 1 e
32

5 To motivate this definition, especiaily the parabolic scaling, we consider a scaled

3+ version of the function u (x, v) in the parabolic rectangles:
; ,\/——
% (512 Rieyy={(s.) : ls—x] < -y [<—}rm for z=(x,y)e Q.

37
3 Denote 0 = (-1, 1)%. Then the rescaled rectangle (5.12) is

3%(5.13) 0 = {(S TYe 0 : (x+§3,y+l§T)esz}.
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1 Denote by (S, T) the followifg function in Q(za'

1%/

!
TG WIS, T) = ;liug X+= S y+—_70/ for (S, T) e Q1.

= Then we have

(nvb

Tt suwp U Sy < 0, < € sup @), —n,
ze'N{x<3s/2} c Q(Q( )) 2,82 el Ce (Qg ))

where C depends only on the domain Q and is independent of & € (0, kg/2).

efof~]a]

0 5.3. [reration set. We consider the wedge angle close to /2, that is, o =
11 5 — 0w > 0 is small which will be chosen below. Set g := 8% N { = —v2}.
_{" Let g, > ( be the constants from (5.2) and (3.1). Let M, M- = 1. We define
13 13 K=o, e My, M2) by

1a (5.15)

5 9= {qsec"“(i“%“)ncz(gb) N < M1 IG1S )™ < Ma0, 4= 0in D
16

17 fora € (0,1/2). Then ¥ is convex. Also, ¢ € % implies that

18

e lpilecr 1@y < M, l9lic. e @ < Mao,

a s0 that % is a bounded subset in C1(%). Thus, % is a compact and convex subset
21 of C1e/2(T),

2 We note that the choice of constants M, M> = 1 and ¢, 0 > 0 below will
23 guarantee the foliowing property:

zzw (5.16) omax(M1, Ma) + VM| + oMy /2 < €71

o

20%/2

26 for some sufficiently large C>1 depending only on the data. In particular, (5.16)
o7 implies that ¢ < € =1 since max{M;, M3) > 1, which implies /2 — 0y, < €™
25 from (3.1). Thus, if we choose € large depending only on the data, then (4.31)
29 holds. Also, for ¥ € %, we have

L DV < M2+ Mix in D, Wlorgn < Mao.
1

32 Furthermore, 0 < x < 2¢ in @' by (4.47) and (5.2). Now it follows from (5.16)

3 33 that [vler = 2/C. Then (4.32) holds if C is large depending only on the data.

3 3a Fhus, in the rest of this paper, we always assume that (4.31) holds and that ¥ € 3 P
35 implies (4.32). Therefore, (4.29) is equivalent to (4.43) _: 44) for V’ eX.

25 We also note the following fact.

37 LEMMA 5.1. There exist C and C depending only on the data such that, if

¥ g,e>0and My, M2 = 1in (5.15) satisfy (5.16), then, for every ¢ € ¥,
39 ) _
391/25 (517) ﬂ(p]ig:;’gbaszﬂursnmc) < C(M]SI o 4 MZO').
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1 Proof. In this proof, C denotes a universal constant depending g

' /2‘; data, We use definitions (5.10)(5.11) for the norms. We first § that

< (5.18) lplS gt < cmye!™e,
5 where 8¢y yy 1= dist{(x, ¥}, Tsonic} in (5.10). First we show (5 18) in the (x, y)-
i coordinates, Using (5.6), wehave @' = {0<x <26 0<y < fg(,x)} with Tonic =
T ix=00<y< fg(vc)} wherte | fgll1o0((0,2¢)) depends only the data, and thus
? dist({x, ¥}, [sonic) < Cx in @'. Then, since ||¢|§2P;r@, < M, we obtain that, for
2y ed,

n lp(x, ¥} < Mix® < Mie?,  |D(x.y)| < Mix < Mie,
12 — -
o By D?p(x, 1) = %' D (x, y)| < &' M.

*_ Furthermore, from (5.16) with ¢ > 16, we obtain ¢ < 1/2. Thus, denoting z =

B (x,y)and £ = (F, 7) with x, ¥ € (0, 2¢), we have

- 59 (z,2) 1= (|x = £? + min(x, ¥)|y — 5[2)*

- < (w—x2 4 2ely - 512)F < |z 2%,

a0t/ and min{dz, d3) = min(x, ¥), which implies

21

— 2 2 2 2005
= i s 27O 2 PO _ ¢ p1=2 ine, sy 2790 = D20
23 |z - 59 (2, 2)

% < Cel™% M.

26 Thus we have proved (5.18) in the (x, y)-coordinates. By (4.31) and (5.16), we
27 have e <¢p/301f Cis large depending only on the data. Then the change (&, ) —
2% (x,y)in % and its inverse have bounded C3-norms in terms of the data. Thus,
25 (5.18) holds in the (£, n)-coordinates.

30 Since ¢ € H, then Elqbi!g?;’;;f’z‘)) < Mzo. Thus, in order to complete the

jdi proof of Lemma 5.1, it suffices to estimate {min{d;,d )%__jéi_:ﬁ?fﬂ@i} in the
% case z € W\ D" and Z € "\ @’ for 8, = dist{z, [yonic U Tp). From z € G\ 3"
e and 7 € "\ D', we oblain 0 < ¢z —|z| < £/2 and ¢ —|2| = 2¢, which implies that
o [z—Z[ > 3g/2. We have ¢z —|z| <dist(z, Tsonic) < C(c2 —|7}]), where we have used
w (4.31) and (5.1). Thus, min(;, §3) < C{cz—|z|) < Cs. Also we have |D?¢(z)| <
;;— My by (5.11). If 8z > &;, then &3 > /2 and thus | D%¢(3)| < (£/2)" 1% Mo by
— {5.10}. Then we have

29 min{é;, iz )|D2¢7(2) _~D2¢(f)i SCEM; + ey Mo B
2 -2 (3e/2)=

391/-.

C(EI_HMI-%MzO').
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L1 If 83 <8, then dist(Z, o) < dist(Z, Tsopic), which imysfies by (4.8) that |z —Z| >
! /2—2_ 1/C if € is sufficiently small, depending only o the data, Then ID2p(5)] <

5 3;1+“M20 and

B D2p(z)y— D¢ (3 -
5 ]nln(gz,é’%)! gb([“) Ela ¢(Z)E C(SZMI"‘{"SE'SE 1+aM20)EC(€M1+M2U)
B ‘ o
7
'y 5.4. Construction/of the iteration scheme and choice af o, In this section, for

5 simplicity of notation§, the universal constant C depends only on the data and may
1o be different at each occurrence.

I By (3.24), it follows that, if ¢ is sufficiently small depending on the data, then

12
B (5.19) g2 <ui/10,

14

— where g = Ju2 +v2. Let ¢ € 90 From (4.15), (4.16) and (5.19), it follows that

5 where g2 = g + 03 Let ¢ (4.15), (4.16) N
%(5‘20) (pr—p2— P& M = u/2>0 in G

1z Since ¢ —¢2 = 0 on {£ = ln)} and ¢ > 0 in %, we have ¢ > @ — @2 on

o {E = 1(} N 83, where I(y) is defined by (4.3). Then there exists f5 € CY(R)

2o such that

201 —
A {5.21) =@~} ND={(fo(m).m) : n€(—v2, M2}
% It follows that fa(n) = [(y) for all 5 € [—v2, n2) and
= (5.22) QT (@)= (> oI NB={4 <p1 =2} N%.

25
- Moreover, 327 (¢) = Cshock U Csonic U Dwedge U Lo, where

27 (523) Taoe(@) =16 = fe(m}NBQT($),  Toonic = 19N 3B, (0),
= chdge:za@ﬂ{?}=§tan B} Zo(d) = 39+(¢)ﬂ{n:—vz}-

29

30 We denote by P;,1 < j < 4, the corner points of QT (¢). Specifically, P, =
51 DUshock{d) N Zo(g) and Py = (—up, —vy) are the corners on the symmetry line
32 {n=—va}, and Py = Cuonic M Dshock (¢) and Pa = Uyonic M Twedge are the corners on

535 the sonic circle. Note that, since ¢ € ¥ implies ¢ = 0 on Fyggie, it follows that Py is
o+ the intersection point (€7, 71) of the line £ = /(7)) and the sonic circle &2+ = ¢2,

35 where (£1,71) is determined by (4.6).

3% We also note that f5 = ! for 0 € %. From ¢ € ¥ and Lemma 5.1 with
37 @ €(0,1/2), we obtain the following estimate of fy on the inferval (—va, m}:

2524 - NSO < 0(Mie' 2+ Mao) <64
1,27 ~
* /‘4_9”" where the second inequality in (5.24) follows from (5.16) with sufficiently large C.
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1 We also work in the (x, y)-coordinates. Denote « := «g/2. Choosing C in

v *7, (5.16) large depending only on the data, we conclude from (5.3)-(5.5) that, for
every ¢ € I, there exists a function f = fp € C 2,403} ch that

E 2,0,(0,4)

&

S (5.25) QY@ N{ea—r<xl={0<x <k, 0<y<fp(x)}
L. with

< (5.26)

8 =2 o 2y r Fp(—1— -
= F©@=Fo)>0, f5>00n0.0) | fo-folls g <€ (Mie'~*+Mao),

10 where we have used Lemma 5.1. More precisely,
11

12 2 L
we2n Y sup (XFTDE(fy - o))
17 k___oxe((),za)

15
W F osup (min{xy, x2))*
— X1 Exoe{0,28)

g = DG =y = fDely _
X1 — xa]®
17

B with || f5 — follo.aez < CMa0.

1 Note that, in the (£, n)-coordinates, the angles 8p, and Op, at the corners P
20,20 and P3 of Q'+ () respectively satisty

21

A T

2 (5.28) IBPE—%lfﬁ fori =2.3.

23

e Indeeq: Op, = /2 — 0. The estimate for 6p, follows from (5.24) with (5.16) for
25 large C.
25 We now consider the following problem in the domain 7 (¢):

% (5.29) N(¥) = Ani¥ee + 241296y + A2V =0 in Q7(9),
o 630 A= B0+ (B —)

n { +E': (E,I])'DL’/“{“EZ (E.myr =0 on Daocx(g), )

— E

&

3z

B (5.31) ¥ =0 on Cyonie.

3 (5.32) Py =0 on Fyedges

35

= (5.33) Yp=-vz o AT ()N {n=—va},

3 where Aij = Aij (D, £, 1) (which will be defined below), and (5.30) is obtained
3 from (4.42) by substituting ¢ into E;,{ = 1,2, i.e.,

W
P (s.34) EP(E,m) = E(DO(En). $(E ). 7).
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gt Note that, for ¢_€ i alzci & ned, v;fe have (Do (&, n),_qﬁ(&, n}, n).e Bg+ () x
3 (—=8%,8%) x (—622/5,06¢2/5) by (4.31)514.32). Thus, the right-hand side of (5.34)
“5 is well-defined.
4 Also, we now fix @ in the definition of 3. Note that the angles 8p, and
"5 Op, at the corners Pz and P3 of Q7 (¢) satisfy (5.28). Near these corners, (5.29)
"s is linear and its ellipticity constants near the corners are uniformly bounded in
"7 terms of the data. Moreover, the directions in the oblique derivative conditions
“s on the arcs meeting at the corner Pz (resp. Pp) are at the angles within the range
s (Fx/16, 91 /16)}, since (5.30) can be written in the form ¥ +eyr, —dy =0, where
50 le]l = Co near P from 9(Pa) = —va, (3.24), (4.43}, (4.44), and (5.16). Then, by
11 [35], there exists ag € (0, 1) such that, for any e € (0, &), the solution of (5.29)-
> (5.33)isin C1¥ nearand up to P, and Ps if the arcs are in C 1** and the coefficients
13 of the equation and the boundary conditions are in the appropriate Holder spaces
14 with exponent o. We use @ = a9/ 2 in the definition of 3 for ep = ag(97/16, 1/2),
15 where wg(fg, €) is defined as in [35, Lemma 1.3}, Note that ¢ € (0, 1/2) since
15 op € (0, 1)

17 o e ; “m,

e 5.5. An elliptic cutoff and the equation for the iteration. In this subsection, 5e C—E/‘fv‘

18 PR,
M

o, we fix ¢ € I and define (5.29) such that

-y g (i) It is strictly elliptic inside the domain 7 (¢) with elliptic degencracy at the

21 sonic circle Typic = 02T (@) N 8B, (0);

2 (ii) For a fixed point ¥ = ¢ satisfying an appropriate smallness condition of | D |,
3 {5.29) coincides with the original (4.19).

24
P We define the coefficients A;; of (5.29) in the larger domain 9. More pre-

o Cisely, we define the coefficients separately in the domains %’ and 9” and then
o7 combine them.

s In %", we define the coefficients of (5.29) by substituting ¢ into the coeffi-

o cients of (4.19), ie.,
30 (5.35) AL (En) = P (D, ¢, £,y — (g — £)7,
31

; A%Z(é—’ 7;') = Cz(D¢=¢l§’ 77)—(@517 _’7)2,

= Al m = AL E ) =~ — Dy — 1),

34
35 where ¢, ¢¢, and ¢, are evaluated at (£, n). Thus, (5.29) in Q@ (¢)NS" is a linear

36 equation

% Al Vee + 241 Vey + Agp¥ny =0 in QF(@)IND".
39 From the definition of %", it follows that /£2 + 2 <ca—& in @”. Then calculating

1,00
9 a0 explicitly the eigenvalues of matrix (A}j) 1=i,j <2 defined by {5.35) and using (4.31)
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1 Note that, in the polar coordinates, 73,..., /4 have the following expressions:

2 1

B = (=r 4+ =0 (1o 510w - ) ) o,
£ = Ygg + rify,
= 2 2 2,

& Iy =r(|Dy] )r=27'§0r1ﬁrr+fw&wr9“jw€' _ i
_— 3 ; P I
‘l- 1 ] R .sk( Z § ﬁ%ﬁéi’*#\-g)é}
- —5 (#00y), + ve0Du ) P
] , N

w with [Dy[? =y + Syrg and Ay = Yoy + S ve + Y.
1 From this, by (4.47), we see that the dominating terms of (4.48) come only
12 from I, I, and the term 2r9, vy, of I3, ie., the remaining terms of f3 and /4
13 affect only the terms Oq,..., Os in (4.48). Morcover, the tefm (y + Dy 4 Aot
- the coefficient of ., in (4.48) is obtained as the lcad/ga‘r term in the sum-of the 'E,—E) £9 e Ly sf

15 coefficient (y — Dyrifr, of ¥y in /1 and the coefficient2r . of 1/1,, in-73, Thus we o l,ﬁ T

15 modify the terms /1 and 73 by cutting off the ¥y-component rst derivatives in Iy
17 the coefficients of second-order terms as fellows, Let C*(R) satisfy

L if |s| <4/(3(y + 1)),

15 337 G = { Ssign(s) A3y +1 vf, if |s|>2/(y + 1),

21 5o that ,

2 (5.38) £y =0, Li(—s) =—{1(s)lon R; A ———
- (5.39) £(s) < Olon {s = 0}

Emsm Obviously, such a smooth function ¢y € C SC(R) exists. Pmperly (5.39) will be used

26 only in Proposition 8.1. Now we note that ¥ = H Wr 7,!19 and ¥y, = g‘ffr +§2—1,1'f9, L
27 and define : g Bobathiies
Z s Et!f 0y i T

5 h= (L -r +(V—1)’(62—1)§‘ ,(i }”DL(V b(govte))on o o, N
i . 1,05 -+ 7}1#,1 B

a f3= (cz )& - (Evn N} ) Evree + ngy) r"”""_“(“"’?r
= + L () e A
. (;(6‘2— rm@ff(i jg" %@wq =) ) e+ ) 'S l
il ! { ot

"2"2“" The modified equation in the domain &, is { %;wmﬂ_{fvmim
£(5-40} hth+h+1=0. é ﬁ s

: bote

37
2 BY (5.37), the modified (5.40) coincides with the original (4.19) if /

n 4ca—r)
ARSI A 2y
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y Le if x| < 4x/(3(y + 1)) in the (x, y)-coordinates. Also, (5.40} is of form
' /‘T (5.29) in the (&, n)-coordinates.

3 Now we define (5.29) in &, by substituting ¢ into the coefficients of (5.40)
e Eve + iy

4 except for the terms involving & (——— Ry — ). Thus, we obtain an equation of

o1

Y form (5.29) with the coefficients:

7 (5.41)
%EWE + 77"11/'7

_ZM AL (DY E ) =fe3 — (v = 1) (f‘(Cz—‘f)é' P §D¢l2+¢)

10 <Y

n @éﬂz)ug( (c2 =) @W@LW(E% nrﬁg)) [

= S oV

5 AL(DY.E ) = %—(y—l)(r(cz—r)z;@gﬁ””z” 3100 +0) é“fii.ﬂm
T

. (¢n +7 )+2n( {ea — ) @MQ& > (Edy — ’?Qbé)) { o PZ&L{ES

3 {7{“@5 v A2(DY.Em) g}(¢s¢n+$n)

o b 13 22 ] - e
W -1 r(ij '?an/)+'§ (Edn —n¢ )) f[ f ()b ,
2[]i/22”(1L A%l (DV/, é’ 77) - A%Z(va,gs 77)’ é %./J__M_’_;Ciﬁ\;{%\m

22 where ¢, ¢g, and ¢, are evaluated at (£, n).
3 Now we write (3.40) in the {x, y)-coordinates. By calculation, the terms [y
24 and f3 in the polar coordinates are

=" [
26 I (cz—r +{y—-1 (r(cz - \g

8 13—2r(cz—r)€1£(
"

i

;E Thus, (5.40) in the (x, y)-coordmates in %7, has the form

@ { 5

2 (5.42) (2A~(y+1)\§'1 Qﬁo )Ufnwfwo Uy o
3 {,m_,_j%ﬁwwm;%i
3 +(~L% Of) Yy — (14 0¥ + 0Ly =0,

B 2
= with ¢’(p,x,y) defined by L
v Shasl(
38 (5.43) PV gL

1
iy 5}%’" ”‘"”*H 2 K_O; %)~ (¢+2(cz—x)2¢32’)’ 2p [aces
W
delele “lds”
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11/2i %Wl ¥}, x) Cgé{g/;‘g
Ep= . .Y
% b:?(nx,y) ca(e2— ‘)2 ( . m%% ’{,{[&{,&Z

. N
z%J)zczlx(x—yczl(tﬁ-i-(ﬁz—x)xé'l (%> / %%

I
1 ) 2 1 2

- ~r=D{e+ 2 -nxta (£) + %cbi)),

£

= 2 72y = Dlcz —x)? 2 p Jas
- ) T
2 where p = (p1, P2} apd-LTP) aik evaluated at {x,y). T %@;ﬁn 4.5 )
** the definition of thé cutofffunction 1, and ¢ % 16) imply
15 =
- &
16 (5.44) Jé(p,x,y)|§C§x[3/2, |0y (x, )| = Clx| for k=2,...,5,
17

15 forall pe R? and (x, y) € @y, Indeed, Wlatqb € ?Jf{ lmphes [Eqbllgp:ng < M,
12 we find that, for all p & d {x, y) EQ =

20 m

20%/3 e
(545 (0P mme D [ole
= 16}4&@ <Clx| for k=25, ete

2 y
(N wid ) y

24 |g§’(1),’~ y)i<C(| |+ ME[x[?) < Clx fopk =3, 4. i«ﬁ&‘

= i ——
25 )
; In order to obtain the corresponding estamate% mm 45\%25, we note that ! L.
: (—1-0,Z0) _ & plaws

27 e \Th, CB”. Since2e < x <4d¢ m%{’\?fﬂ’zs and ¢ € 9 implies |¢1l3 , o ﬁwwwww% R

68 Mzo‘ we find that, for an R? and (x,¥) € Dy, \ Dby, T
S Y

29

20 (5:46) |5@ é}mwewﬁwﬁ?%f:cm ,m&\(”” “\w/

3 109 (x Lt Mz0) M0 r 5 Cets Ol " for k=205,
32
. ¢(px W £ Cle + MPF +M20)<C£<CI).[ for k=3,4.

33
2. Estimates (5.45)7(5.46) imply (5.44).

E The estu?%s in (5.44) imply that, if ¢ € %gnd g is sufficiently small de- L
P pendmg only pn the data (which are goaranteed by {5.16) with suflicientlyTarge @
z% (542yisno umformiy elliptic in @'. First, in the (x, v)-coordinates, writing (3.42)

. *;'é" as
i /2; /\&
-/
/

LA &f,ﬁ

d11Yxx -+ 2012V xy + da2V¥yy + a1¥x + a2y =0,
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Proof. Property (i) follows from (5.3 nd, (5 47,4 J(5.48). Properties (ii) and

1
27, (ii1) follow from the explicit expressions (5.35Tand (5.41) with¢ €%, In estlmatmg
75 these expressions in property (iii), we use that [s¢T(s) < ™
"4 the smoothness of {; and (5.37).

fan

- Also, (5.29) coincides with (5.42) in the domain @', Assume that £ < /24,
° which can be achieved by choosing ¢ large in (5.16). Then, in the larger domain
L an {ea —r < 12¢}, (5.29) written in the (¥, y)-coordinates has form (5.42) with

2 the only difference that the term x{ ;(%"é) in the coefficient of vy of (5.42) and
,f;w in the terms Od’ O¢ and O¢ Ulvcn by (5.43) is replaced by

a (cx%@ D).,_ (1= G0k \C%—a

13 .
- From this, we have
4

15 LEMMA 5.3. There exist C and C depending only on the data such that the
16 following holds. Assume that My, M>. ¢, and o satisfy (5.16). Let ¢ € H. Then
17 equation (5.29) written in the (x, y)-coordinates in &N {co—r < 126} has the form
i8

19 -~ ~ ~ ~ ~
o {5.49) AnWax + 241205y + Aoy + A1 + A2y, =0,

2L where AU = A,J. (¥, x,y), A, = A; {(¥y,x, ), and Ayy = A2, Moreover, the
E coefficients Au (p.x,y) and A;(p,x,y) with p = (p1, p2) € R? satisfy

23

= () Forany (x,y) € 3 N{x < 12¢} and p, u € R?,

Gl

i

2 (5.50) zle Z Aij(p, x, iy < _—|u|
o7 i j=1

(i) For any (x,¥) € N {x < 12¢} and p € R?,

25

30 [(Aijs Dipox,yy Ain)| +1(Ai, Dipx oy Aid| < C;

3o~ n .
o (iil) A1, Azs, and Ay are independent of pa;

33 (iv) ffu, :4\21, and /fg are independent of p, and

— (iAo )@ )l = Clxle (DA, dar o), )] = C a2,
g The last inequality in Lemma 5.3(iv) is proved as follows. Note that
37 ~ a
- (Aiz. A2){x,¥) = (02, Os)(Dg(x, ), p(x, ¥}, x},
39%5{ where O and Os are given by (4.50). Then, by ¢ € ¥ and (5.16), we find that, for

a0 (x,y) €9, e, x €(0,2¢),
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. |D(A12, a1, A2)(x, ¥)| < C(1+ My)| Dy (x, p)| + (1 + M)y (x, ¥)]
.
< C(1+ Mie)Mx? + C(1+ MM 2% < CxV2,

3
-~ and, for (x, V) €D N{e <x <128} C D7, we have dist{x, Zg) = ¢2/2 = ¢2/4 50

5 ~ ~ »

o [D(A12, A21, A2)(x, )| = C(1 + Mao) Mo < Ce = Cx.

~ The next lemma follows directly from both (5.37) and the definition of 4;;.
&

LEMMA 54, Let @ C B, ¥ € C*(Q), and ¥ satisfy equation (5.29) with
9 =1 in Q. Assume also that W, written in the (x, y)-coordinates, satisfies |y | <
10 4x/(3(y + 1)) in Q1= QN {ca —r < de}. Then  satisfies (4.19) in Q.
i1

12 5.6. The iteration procedure and choice of the constants. With the previous

., analysis, our iteration procedure will consist of the following ten steps, in which
= Steps 2-9 will be carried out in detail in Sections 6-8 and the main theorem is

7= completed in Section 9.

10 Step 1. Fix ¢ € K. This determines the domain QT {(¢), (5.29), and condition
7 (5.30) on Tgoex (), as described iﬁgﬁ and 5.5 above.

13

19 Step 2. In Section 6, using the vanishing viscosity approximation 0%29)

o via a uniformly elliptic equation
203/~

2 N +8AY =0 for § € (0, 1)

55 and sending § — 0, we establish the existence of a solution ¥ € C(Q*1(¢)) N
ve CHQT )\ Tyonic) NC> (27 () to problem (5.29)-(5.33). This solution satisfies

25

% (5.51) 0=y =Co in Q)
27
25 where C depends only on the data.

= Step 3. For every s € (0, c2/2), set Q7 := QT (¢} N {c2 —r > s}. By Lemma
3 52, if (5.16) holds with sufficiently large € depending only on the data, then
31 (5.29) is uniformly elliptic in Q2§ for every s € (0, c2/2), the ellipticity constant
32_ depends only on the data and s, and the bounds of coefficients in the corresponding
*% _Holder nornis also depend only on the data and s. Furthermore, (5.29) is linear on
3% fey —r > 4e}, which implies that it is also linear near the corners Pz and Ps3.
3% Then, by the standard elliptic estimates in the interior and near the smooth parts of
330+ () N QY and using Lieberman’s estimates [35] for linear equations with the
37_ obligue derivative conditions near the corners (—u2,—v2)} and Tspock (@)N{n=—v2},

38 we have

012 (5 57 IR0 < O oo + [221)
o (5:52) v 2,880, = (S)(E!wll“x’(ﬂf) val),
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1 il Loogany + lva| < 1, where the second term on the right-hand side comes
Y27 from the boundary condition (5.33), and the constant C(s) depends only on the
75 ellipticity constants, the angles at the corners Py = Tinoek(p) N {n = —v2} and
"2 P3 = (~uz, —u3), the norm of Igeex () in Cl®, and s, which implies that C(s)
"5 depends only on the data and s.
B Now, using (5.51) and (3.24), we obtain |E¢”L°°(?E) +Jug] < 1if o is suffi-
7 ciently small, which is achieved by choosing C in (5.16) sufficiently large. Then,
& from (5.52), we obtain

K2 (-1-&,Z¢)
o (5.53) WIS = < Co)o

I forevery s € (0, c2/2), where C depends only on the data and s.
iz

" Step 4. Estimates of ¥ in '(¢) 1= Q1 (@) N{ca ~r < £}, We work in the
12 (¥, y)-coordinates, and then (5.29) is (5.42) in Q'

izw Step 4.1, L™ estimates of ¥ in Q7 (¢) N, Since ¢ € ¥, the estimates
1 ~

— in {5.44) hold for large C in (5.16) depending only on the data. We also rewrite
jm the boundary condition (5 30) in the (x, y)-coordinates and obtain (4.56) with £;
,.;__ replaced by E¢(x ¥): —E; (Dp(x, y),p{x, ¥), x, ¥). Using ¢ €, (4.57), (4.58),

— and (5.27) with f¢ (0) = fo {0) = y|, we obtain
201/1

2 (5.54) |E2(x,y)| s C(Mie+ Maa) <C/C, =12,
22
- for {x, ¥) € Nshock (¢} N {0 < x < 2¢}. Then, if C in (5.16) is large, we find that
. the function
- Wi = o5
25 X, —_—
= ST

= is a supersolution of {5.42) in '(¢) with the boundary condition (5.30) on Iinock ()
o M {0 < x < 2¢}. That s, the right-hand sides of (5.30) and (5.42) are negative on
v w(x, ¥) in the domains given above. Also, w(x, y) satisfies the boundary condi-

. tions (5.315.32) within £2/(¢). Thus,

> (555 0<¥(x,y)<———  in Q'(p).
= (5.55) =Y(x,y) < SGED in Q'(¢)
B ifwz=yonx=¢ By (5.51),w> 1y onx=¢if

a Co <g?,

35

36 where C is a large constant depending only on the data, i.e., if (5.16) is satisfied
37 with large C. The details of the argument of Step 4.1 are in Lemma 7.3.

38
LW Step 4.2. Estimates of the norm IWEI(F‘“ ey
391 7

fa 40 in the rectangle R; defined by (5.12) in whmh &' is replaced by Q'(¢). Note that

We use the parabolic rescaling
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R, C Q' forevery z = (x, y) € &’(¢). Thus, ¥ satisfics (5.42) in R;. For every

ERE & {¢), we define the functions @ and $& by (5.14) in the domain Q(z)
defined by (5.13). Then (5.42) for y yields the following equation for (& )(Sw—ﬁm-

in ng) : i
,/””M T

P

(5.56)

[ )\
((H{z) 2 (y+1)§1&-—4{4 57 !§)+x0‘¢z) w(z) x0P Iyl

1
+( b O(qb,z}) (Z}M(Eﬂog"””) b 12208y D — g

where the terms O,{f’ﬂ (S,7,pr, k=1,...,5, satisfy

(5.57) 1% <C(1+ MP).

cra(@fxry) =

Estimate (5.57) follows from the explicit expressions of O;(f’Z} obtained from both

17 (5.43) by rescaling and the fact that

{z) —
o+ ”Cz-‘*(QiZ)) <CM,,

which 1s true since Hr,bElsz)Q,w) M. Now, since every term O(d”z) in (5.56)

is mu]tlphed by x8 with 8; > 1 and x € (0, £}, condition (5.16) (possibly after
23 increasing C depending only on the data) implies that (5.56) is uniformly elliptic
in QE %) and has the C 1% bounds on the coefficients by a constant depending only

# on the data.

Now, if the rectangle R does not intersect Q21 (¢}, then Q(z) {1, where

27 05 = (—s,5)? for s > 0. Thus, the interior elliptic estimates in Theorem A.1 in
<8 the appendix imply

o (5.58) WDl eze@rs <€

1
32 Where C depends only on the data and HW(Z)“LDO(@“)- From (5.55), we have

33
3
35
36
37
3
1/.,?..9__
40

1Sl ey < 1/ + D

Therefore, we obtain (5.58) with C depending only on the data.

Now consider the case when the rectangle R intersects 321 (¢). From its
definition, R, does not intersect Tyonie. Thus, R intersects either [gpeer or the
wedge boundary [yedee. On these boundaries, we have the homogeneous oblique
derivative conditions (5.30) and (5.32). In the case when R; intersects Dwedges
the rescated condition (5.32) remains the same form, thus oblique, and we use the
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Step 7. With the constants g, &, M, and M3 chosen in Step 6, estimates (3.

Y2 (5.62) imply
—-1—-a,5
IIS2 < My, Wl agn ™ < Mo,

Thus, ¥ € ¥{a, &, M1, M2)}. Then the iteration map J : ¥ — ¥ is defined.

Step8. In Lemma 7.5 and Proposition 7.1, by the argument similar to [10]
_7_and the fact that J{ is a compact and convex subset of C 1%/2(%), we show that the ,
8 iteration map J is continuous, by unigueness of the solution ¥ € C ™ e :
9 of {5.29)—(5.33). Then, by the Schauder Fixed Point Theoren; there ex1sts a ﬁxed

10 point ¥ € 9. This is a solution of tl r@owbeumﬁ’[giicm

11

o Step 9 .Removal of the cutoff. By Lemma 5.4, a fixed point ¢ = ¢ satisfies

e the original{(4.19) in () if |¢| < 4x/(3(y + 1)) in QT (¥) N{er —r < 4&}.

13

72 We prove this estimate in Section 8 by choosing € sufficiently large depending

15 only on the data.

3 Step 10. Since the fixed point ¥ € 3 of the iteration map J is a sol 0T o

i (5 29)-{5.33) for ¢ = i, we conclude
g () ¥ € CHA@F [N N CH(QF (¥);
(iiy ¥ = 0 on Dyomic by (5.31), and o satisfies the Grlglml 1(4.19) in QT () by
2 Step 9;
2 (i) DY = 0 on Tuanc since ] For, < M

s (V) ¥ =¢1—¢20n Panoei (W) by (5.21)~(5.23) since ¢ = 1
25 (v) The Rankine-Hugoniot gradient jump condition (4.29) holds on Tgeek(¥).

|m\m|h|wtm -

201/~

26 Indeed, as we showed in {iv) above, the function ¢ = ¥ + @; satisfies (4.9)
27 on ok (W), Since ¥ € ¥, it follows that v satisfies (4.28). Also, ¥ on
28 Canock () satisfies (5.30) with ¢ = 3, which is (4.42). Since v € I satisfies

29 {4.28) and (4.42), it has been shown in Section 4.2 that ¢ satisfies (4. 10) Oﬂa

30 [shack (W), i.e., ¥ satisfies (4.29),

31 .
e Extend the function ¢ = ¥ + ¢ from wSZ'lr 0 the whole domain A

; by using (1.20) to define ¢ in A \ 2. Denote#g := {§ > £} N A, A the domain
e with § < £y and above the efectiomsshock Py Py Pa, and As i= A\ (Ag UAY).
- Set Sp := {£ == £} N A the incident shock and Sy 1= P Py P2 M A the reflected
v shock. We show in Section 9 that §; is a C%-curve. Then we conclude that the
“— domains Ag, A1, and Aj are disjoint, dAg M A = Sp, A1 N A = So U 8}y, and
3? A5 N A = 8. Properties (i)—(v) above and the fact that ¢ satisfies (4.19) in
i vl imply that
v 0 e Wh(A), ¢eC!@ANNChi(A) fori=0,1,2,

loc
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. ¢ satisfies (1.8) a.e. in A and the Rankine-Hugoniot condition (1.13) on the C2-
"5 curves Sp and 87, which intersect only at Py € dA and are transversal at the
75 intersection point. Using this, Definition 2.1, and the remarks after Definition 2.1,
~, we conclude that ¢ is a weak solution of Problem 2, thus of Problem 1. Note that
7 the solution is obtained for every o € (0. op], i.e., forevery 8y € [/2 — 69,7/ 2]
s by (3.1), and that op depends only on the data since C is fixed in Step 9.

6. Vanishing viscosity approximation and
existence of solutions of problem (5.29)-(5.33)

In this section we perform Step 2 of the iteration procedure described in Sec-
tion 5.6. Through this section, we keep ¢ € I{ fixed, denote by P:={ Py, P2, P3, P4}
2 the set of the corner points of Q1 (4), and use v € (0, 1/2) as defined in Section 5.4.

bt | et

2 We regularize (5.29) by the vanishing viscosity approximation via the uni-
® formly elliptic equations

15

6 N +8Ay =0 for 8¢ (0,1).

i— That is, we consider the equation
9 (6.1) Ng(¥) = (A1 +8)Ves +2412%5n + (A2 + )Py =0 in QT (9).

20
o In the domain £’ in the (x, v)-coordinates defined by (4.47), this equation has the
—— form

22

= s

o (62) (8 +2x—(y + 1)xc1&%‘! I+ 0?) Yex + 05 Yey

25 1 S 8

a5 —t———0? —(1-——+0¢ 0%y, =0

26 +(c +(02——x)2+ S)nyy ( cz—x+ 4)1"’3:"*“ s Wy

I

25 Dy use of (5.42) and with the Laplacian operator A in the (x, y}-coordinates. This

39 is easily derived from the form of A in the polar coordinates. The terms 0¢ in
o (6.2) are defined by (5.43).

- We now study (6.1} in Q1 (¢) with the boundary conditions (5.30)5.33).

31

4 We first note some properties of the boundary condition (5.30). Using Lemma

2 5.1 with @ € (0,1/2) and (5.16), we find [j|$ 4 o270 ) < C, where C de-
34 pends only on the data. Then, writing (5.30) as

% (6.3) MYIE. n) = b1 (E mMye +b2(E Yy + 036 MY =0 on Taoek(9)
37 and using (4.43)-(4.45), we obtain

3 (—,{P1,P2}) _
= (64) Ib 2P < ¢ for 1 =1,2,3,

zg where C depends only on the data.
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1 LEMMA 6.1. There exists C > 0 depending only on the data such that, if

Ve 2 0> 0 and My, My = ¥ in (5.15) satisfy (5.16), and § € (0,1), then, for any
s vec! A 2(QF(B)), equation (6.13) is uniformly elliptic in 2 (¢):

4 2

5 (615 Sl < Y ayE Mg <227 w2 for (g et (g), peR?,
5 ij=1

T where A is from Lemma 5.2. Moreover, for any s € (0, ¢a/2), the ellipticity con-
i stants depend only on the data and are independent of § in QF () = Q1 (¢) N
— {cz —r>sh
3 (6.16)

2
5 Mep=9)|plP = Y @G mpip; <207 P forz=(E ) eQf (@), neR?

13 i j=1 - Y

Y Furthermore, e g%/hf/{

Q@+ ().

g (6.17)
. Proof. Facts (6.15)5(6.16) directly follow from the definition of «¢;; and both
% the definition and propetties of A; 7 in Section 5.5 and Lemma 5.2,

s Since A4;;(p, £, 1) are independent of p in Q1 (¢) N {ea —r > 4e}, it follows

20 by FoE T
20%/2— from (5.35), (5.41), and ¢ € % that a; € cl(a‘jz o, g CCEQT@)ND).
09 To show a;; € C%2(Q+()), it remains to prove that ajj € CH2QUP) N D).

23 To achieve this, we note that the nonlinear terms in the coefficients A;; (p, &, n) are

»¢ only the terms ﬁ_: ‘ .
&l (c2— :-)zsl(g—w””? AL )N) &S maller
2 fr(ca—1ry1)]

27 Since {; is a bounded and € *-smooth function on R, and ] has compact support,
28 there exists C > 0 such that, forany s > 0, g € R,

29 o 4‘ .

- ) ' a 5 faces

st = (spmon)s [pas () <c 5

g Then it follows that the function - _WW_MVK_

e F(p.£.n) = (c2— r)gl@‘maé § §5 - i; o ?:

EL_ e Fr{cz —7) / %%wﬂ b’%:{)ﬁéffﬂ’{ﬁ JM
1

o satisfies |[F(p, & mI<||¢1)peemy(ca—r) forany (p.§, ) eR*x%, and | Dype y F|
57 is bounded on compact subsets of R? x %, From this and i € C1/2(Q+(4)),
35 we have a;; € C*2(Q+(¢)). -

39y Now we state some properties of (6.13) written in the (x, y)-coordinates,

40
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1 dgi(x, y) =i (0, 7)) g}lFfi(Dfﬁ(x!y),féf{xJ),x,J’)f%\

’ e .
= = Fii(D(0, §). 60, 7). 0. 7] —=)

' Ca ; T
v < Cx+ C(M1e ™ + Mr0)|(x, ) — 0, /)= CHc. 7 = (0.
_% where the last inequality holds since « € (0, I/2) and (5.16). If x = 0, the only
T difference is that the first term is dropped in the estimates. 1
8 ~
N LEMMA 6.3 (Comparison Principle). There exists C > 0 depending only on

. the data such that, if g, e > 0 and M1, Ma=1in (35 satisfy (5.16), and § € (0, 1),

o the following comparison principle holds: Le

12 vj EC(Q+(¢))HCE(Q+ )\Fsoni ﬂCz(Q"*'(qﬁ)),

B let the left-hand sides of (6.13), (5.30), gmd (5.32),1(5.33) be nonpositive for r, and
w fet v = 0 on Dgonie- Then

16 w0  in Q@)

s Proof. We assume that Cis large so that {5.19)—(5.22) hold. We first note that

% the boundary condition (5.30) on geck (), written as (6.3), satisfies
19

w0 (b1,b2)-v >0, by <0 on Dypgek (),

2 by (6.5) combined with é‘ < 0Qand p; > py. Thus, if ¥ is not a constant in 27 (),
22 a negative minimum of ¥ over 7 (¢) cannot be achieved:

23
2 (D) In the interior of ¥ (¢), by the strong maximum principle for ling

- eqguations;

26 (ii) In the relative interiors of Iuuer (@), IMyedge, and 352*“((,1)) ;
27 Hopf’s Lemma and the oblique derivative conditions (5.30) ( 5.33);

i (iii} In the comners P; and P, by the result in Lieberman [33,L1n 22 i

il standard argument as in [20, Th. §.19]. Note that we have to fatten the curve
bl [Cshoek 1n order to apply [33, Lemma 2.2] near P5, and this flattening can be
3t done by using the C 1% regularity of Ty

32

2z Using that ¥ = 0 on 'sopic, we conclude the proof. 0
34 LEMMA 6.4. There exists C > 0 depending only on the data such that, if

35 g,e> 0and My, Mz > 1 in (5.15) satisfy (5.16), and § € (0, 1}, then any solution
36y e C(QH (@) NCHRT (@) \ Teenic) N C2(QY () of (6.13) and (5.30)-(5.33)
37 _satisfies (6.9?6. 10} with the constant C depending only on the data.

38 p
» roof.

40

rst we note that, since QV () C {n < ¢2}, the function

w(§, m = —v2(n—c2)

<

Lf/g#jﬁ e;\\l}

ety

2 ;gjf:zcﬁ.s :
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1 for any s € (0, ¢2/2), where the constant C(s, 1/}) depends only on the data, s, and

1Y —
K2 !E’\iflfcl a/2(g+(¢))
2 Proof From (5.22), (5.24), (6.4), {6.5), (6.16), (6.17), and the choice of & in
.2 Section 5.4, it follows by [35, Lemma 1.3] that
= 6.24)
6 (= 1=et, BoUE shoar @)U Mwedge) T - ¢ : o,
R |2 pvon V< Co D le@in ) SCo.dI0 L™

_& where we have used (3.24) and Lemma 6.4 in the second inequality. "

k3 In deriving (6.24), we have used (5.24) and (6.4) only to infef that Tynock ()
0 i a Ch%curve and b; € C¥ (Fslmck(qb)) To improye 24) to (6.23), we use
11 the higher regularity of [yeex{¢) and &;, given. by (5.24) and (6.4) (and a similar
12 regularity for the boundary conditions (5.32),%(5.33), which are given on the flat
13 segments and have constant coefficients), combined with rescaling from the balls
1% Banp(z)NQT(g) foranyz € QT (@)\{ P2, P3} (with d = dist(z, { P5, P2} U X))
15 into the unit ball and the standard estimates for the oblique derivative prohlems for

1% linear elliptic equations. 0 ;W %\
r . . . , il
ia Now we show that the solution ¥ is C 2./2 near the corner P4 = Deonic [} _ g/g;@{ veys 9\/& }

F

1o Dweage(¢9). We work in @' in the (x, y)-coordinates.

29%2“ LEMMA 6.6. There exists C > 0 depending only on the data such that, if
2L g,g > 0and My, M2 = 1 in (5.13) satisfy (5.16), and & € (0, 1), any solution _
2 ¥ e C(9+(¢)) NCHQF @)\ Fsomc) ﬂC2(9+(¢)) Of(6 13) and (5.30)- is

2 _ ' '

7 P:oof In this proof, thej onstan{C depends only onthe e data, &, and;ﬁ?(au,a )§1CQ/2(Q+(¢))I
26 ifOI‘ i, fr=21,2,} C__l&,m gpenident of | Q L R, Authors: please
27.

reword to fix

Step 1. We“work in the (x, y)-coordinates. Then Py = (0,0) and Q7 (¢) M spacing
2 Bo,=1{x>0,y>0})N By, for p € (0, ). Denote
o ¥ 0

29

0 B :=By(0)N{x>0},  BfT:=B(0)Nn{x>0y>0}
*1_ Then v satisfies (6.19) in B3,* and

32

3 (6.25) Y =0 on TyucN Bap = BapN{x =0,y >0},

1 (6.26) Yy =Yy =0 on Nuedge N Bap= Bag N{y =0,x >0},

35
o Rescale ¢ by

P v(z) = {pz) forz={(x,y)¢e BQH'.

% Then v e C(BF T)NC (BT \[x = 0)) N C2(B;}*) satisfies

39 /,,* (6.27) HU“Loo(B;"P) - ih’f’lng{Bj;')r
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, and v is a solution of

wzw 628) @ @vey +289 00y +8%vy, +2Pv +89v, =0 i BT,
.

75 (6.29) v=0 on 38T n{x=0},

%(6.30) w=vy=0 on BB;_H'ﬂ{ymO},

*# where

g

w (6.3 (“’)(\ y) =éaijex.ay), @@ (x.y) = 0di(ox,0y)
11

12 for (x,¥) e BéH‘, i,j=12

13
1 1« Thus, a{ @) satisfy (6.21) with the unchanged constant A > 0 and, since p < 1,

15
w6 630 1@ 80 o 7T, W@y 2l cangrey — for hJ =12

17
Q Denote 0 :={z € B++ : dist(z, BB'H') > 1/50}. The interior estimates for the

9 elliptic (6.28) imply |§ vliea. w2y < Cllv ile(‘w - The local estimates for the

20 Dirichlet problem (6. 286‘0129) imply el
\

_(6 33) EIUHCM,Z(W) = Cllvlipes sy +y

23

o forevery z = (x,y) € {x =0,1/2 <y < 3/2}. The local estimates for the oblique

5o derivative problem (6.28) and (6.30) imply (6.33) for every z€{1/2<x<3/2, y=0}.

2 Then we have

= (634) vl ... w2 (BIRETD) =

25

=C i]UEle(B++)

Sl Step 2. We modify the domain B}+ * by mollifying the corner at (0, 1) and

3! denote the resulting domain by DF+. That is, D" denotes an open domain

#_ satisfying
33

W DT C BT, DA B e, 1) = BT\ Bije(0, 1),
35

5 . and

. aDYT N By 50 1) isa C2 2 curve,

38
36 Then we prove the following fact: For any g € C o/ 2(D‘H”) there exists a unique
40 solution w € C2%/2(D++) of the problem:
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it (6.35) &g‘i)wn —i—agz)wyy +d 5 Ywe =g in DT,

2 w=0 on oDttt Nn{x=0,y>0},

3

o wy=w, =0 on dDYTNi{x>0y=0}

B w=uv on dDTtN{x>0v>0}

6

— with

7

56360 [wleawngrr < CUV oty + 18l carziprsy)-

9

1 This can be seen as follows. Denote by D™ the even extension of D+~ from
1 {x,y = 0}into {x >0}, Le,

z DY = DT U{(x,0) : xe (0. 13UDYT,

13
w4 Where DF = {(x,y): (x,—~y) € DFT). Then B, € DT C B and 9D is a

15 C20/2cyrve. Extend F = (v, g, aﬁ),agg),af)) from B"’+ 1o B+ by setting
16

; F(x,—y) = F(x,y) for (x,y) € B++.

2 Then it follows from (6.29), (6.30) and (6.34) that, denotmg by ¥ the restriction of -

¥ (extended) v to AD Y, we have
20
20t/0 — ~
a1 (6.37) [0l c2erzonty < Cllpoo(pi+y:

IS
= — Also, the extended g satisfies g € C*/2(D+) with el par@ry = iIgHCWZ(Djrﬂ

ggm The extended (aggl), ag%), aig)) satisfy (6.21) and

25
= ~() A0} (o) — ke ~te) Ale)

% 1@y 433 . ay )ch,q(f) = (a7, a7 - 4; )"C&/z(B;“f“)
2 2

i = Z “(aij:ai)nca/Z(mY
ol ij=1

30

5, Then, by [20, Th. 6.8], there exists a unique solution w & C2e/2(PDHY of the

5, Dirichlet problem

B (6.38) 8Pu + 0wy, +aQuw, =g i DT,

3} (6.39) w="> on oDt
g and w salisfies

37

E (6.40) [wafcz “/Z(D“?‘) C(EI HCZ a/2(gp+) + E|gElCa/2(D—+ ))

39 From the structure of (6.38) and the symmetry of the domain and the coefficients

391/5—
/zﬂ and right-hand sides obtained by the even extension, it follows that &, defined by
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. W(x,¥)=w(x,—y)in D7, is also a solution of (6.38)

(6.38)6.39), we find e -
Ui X, = wlx, in DT,

Thus, w restricted to D ¥ is a solution of (6.35), where we use {6.29) to see thas
w=0onaD"t N{x =0,y >0} Morcover, (6.37) and (6.40) imply (6.36).
The uniqueness of the solution w & C>%/2(D++) of (6.35) follows from the
~Comparison Principle (Lemma 6.3).

(6.39). By uniqueness for

[w

4
e
B
7
8
B

Step 3. Now we prove the existence of a solution w € C2%/2(D++) of the
o problem:

12 (6.41)

13 . ) . N . ,

o ai‘?l)wxx + Zaﬁg) Wey + agg)wyy + agg)wx +a§9) wy, =0 in DTT,
5 w=10 on DT Nix =0,y >0},

16 wy =wy =0 on DTNy =0,x> 0},

E{;’ w=yv on ADTTN{x>0y>0}.

1% Moreover, we prove that w satisfies
20
n (642) “w”cz.au(_ﬁT) = C”UEILOO(B;+)'

22
P We obtain such w as a fixed point of map K : C2%/2(D++) —» C22/2(p++)
5o defined as follows. Let W € C2%/2(D++). Define

B (6.43) ¢ =-20 9w, —aPw,.

28

a By (6.22) and (6.31) with g € {0, I}, we find

28

o (6.44) 1@ ) oy < Co'2,

30

31

which implies

e 2 AR
= g CY2(DHF).

33 Then, by the results of Step 2, there exists a unique solution w € C>®/2(D++) of
3 (6.35) with g defined by (6.43). We set K[W] = w.

3 Now we prove that, if g > 0 is sufficiently small, the map X is a contraction
3 map. Let W@ e C24/2(DF+) and w® 1= KW for i = 1,2. Then w :=
37 ) — @ s a solution of (6.35) with

zzw g= _2&5%)(14/]5;)_ W)C(;))_&gg)(w}sl)_ Wy(Z))’

ry v=0.
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 Then g € C¥/2(D++) and, by (6.44),

el

5 ”glgcrxﬁ(m) <Co
Since v = 0 satisfies (6.29)(6.30), we can apply both (6.36) and the results of

Step 2 1o obtain

Elw(l) Mw(E)[

D WO s .

lc2arn@pF = Co'Zw ) — @ lezampir

I
< IWO =W o 7wy

4
5
o
2
D
o

29 where the last inequality holds if ¢ > 0 is sufficiently small. We fix such o. Then

I the map K has a fixed point w € C22/2(D++) which is a solution of (6.41).
12

o Step 4. Since v satisfies (6.28)~(6.30), it follows from the uniqueness of solu-

o tions in C(D+HHNCHDH\{x = 0))nC?(DH*) of problem (6.41) that w =v

5 in D Thus v e C2/2(D++) so that ¥ € C2#/2(Byn (PyNQH($). O

X Now we prove that the solution ¥ is C 1 near the comner P = Cyonic N Tanock (@)

Y if § is small.
18

19 LEMMA 6.7. There exist C > 0 and §; € (0, 1) depending only on the data
20 such thar, if 0,6 > 0 and M1, M2 > 1 in (5.15) satisfy (5.16), ard § € (0, 8g),
2 then any solution v € C(Q21 () N CHQH () \ Tonic) N C2(Q2F (&) of (6.13)
22 gnd (5.30)-(5.33) is in C Y2 (B,(P1) N QT () 0 C22/2(By(P1) N QT (g)), for

23 sufficiently small p > O depending only on the data and 8, and satisfies
24

e— _]m’P A
2 (645) W15t gy < €@ D)o,

26

o7 where C depends only on the data, 8, and Hﬁf” CLer2(GE @) Moreover, for § as
- above,

2 (6.46) I (x)] < CE)(dist(x, PO forany x € QT (¢),
30

g where C depends only on the data and §, and is independent of 1:[}
a2

i3 Proof. In Steps 1-3 of this proofl below, the positive constants C and L;, 1 <
34 1 =4, depend only on the data,

35 Srep 1. We work in the (x, y)-coordinates. Then the point £1 has the coordi-
36 mates (Ofyp, )

poy
I

f3(0) > 0,and f >/yp,’on Ry by (5.7) and (5.26).

witly’y p, 1= /2 + arctan (|§1|/9:1) — 6y > 0. From (5.25%75.26),  f~
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1 Step 2. We change the variables in_suCh a way that Py becomes the origin

5 and the second-order part of (6.13} 1 becomes the Laplacian. Denote

3 (6.47) = yan(P1)/axn(Py).

4 "
" Then, using (6.22) and@ =0, we have
% (6.48) V62872 < < 2e38.

"3 Now we introduce the variables

o (X, ¥) = e/ o)

10
11 Then, for g = &, we have

% (6.49) Qt ()N B, ={X >0, Y > F(X)}N B,

"{2‘{” where F(X)={y P}~ fp(1X). By (5.26), we have 0 < fd,(X) <Clorall X € [o 2¢]

5 if € is sufficien y l'lrge in s
}i and (6.48) to obtain

17 B

o (6.50) F(0) = —Liv8 < F/(X) <0

il We now write ¢ in the (X, ¥)-coordinates. Introduce the function
20

o WX 1) 1= (00 3) = (X R,

2 Since 1 satisfies (6.6) and the boundary conditions (5.32) and (6:19), the%v sat-
=2 isfies

24

o 1 . 2. - 1. . L
£ (651) Av:i= —sanvyy — —d12vxy +davyy + —divx —davy =07
26 " 23 73 .

o i {X>0,7>

28

1.~ . -
2e (6.52) Bv:z;—blv;(—bzvy—f-bg,vzo on {X»0, Y =

* (6.53)

3;

12 where

32 ) " ) g o

Z% G X, Y)y=a;j(uXfypj=Y), @&;(X.Yy=a;(uXjyp, +7),
ry bi(X, Y)mb(uX@—Y)

3 22 Tn particular, from (6.20), {6.22), and (6.47), we have

37

w5 (6.54) Gij,d; € CH2{X >0, Y > F(X)} N By),

39 _ 1 . . .
o (6.55) @22(0, 0} = Eall(oa 0). @12(0,0) =a(0,0) =0,
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. (6.56) lGir (X, ¥) = (0,0)] < Cl(X. V)% for i =1,2,

11/2
2 (6.57) |a12(X. V)| +|an (X, Y)| + (X, V) < C1X V2, g X, Y)| =C.

3
"+ From (6.8), there exists Ly > 00 such that

2 (658) —L7 <bi(X,¥Yys—La  forany (X,¥Y)e{X >0, ¥ =F(X)}NB,.

4]
I Moreover, (6.7) implies 4 ,\/"/"‘—* <

i (6.59) (51 by fup)>0  on {X >0, Y = F(X)}N B, \\\>§‘
m wher vpé = vp (X Y) is the interior unit normal at (X, ¥)e{X >0, ¥ = F(é’)& L}\
11 N BQ. 1S Cﬂﬂmﬂ‘{g S.r_j 18 ULL‘IEI.Lile

use the polar coordinates (r, 8) on the (X, ¥)-plane, ie.,

14 (X.Y)={(rcosf,rsinf).

: 3
-5 From (6.50), we have F, I <0 on (0, g), which implies that (X2+F(X)?Y >0 P(&@WS
;“““ on {0, @). Then it follows from (6.50) that, if § > 0 is a small constant depending

— only on the data and g is a small constant depending only on the data and &, there

18
- exist a function @ € C(RL) and a constant L3 > 0 such that

19

201/0_ (6.60) {X>0,Y>FX)NBy,={0<r<p, Op(r) <6 <m/2}

22 with

2»} (6.61) —L3vE < 6p(r) <0.

g Choosing sufficiently small §¢ > 0, we show that, for any & € {0, do}, a function
26

27 .
5 (6.62) w(r, 9) =r'"%cos G(8), with G(6) = & z a ke -

— is a positive Supe] SO]UUOH ge6.51)-(6.53) in {X >0, ¥ > F(X)}N BQ
— . , 1 (6.60),46.61), we find that, when 0 < § <§g < (M”—) ,

8(3+a)Lla

' l—w
» -3+ g TGl <5 - for all (r,8) € Q¥ (¢) N B,.

34 i
o In particular,
= (6.63) ~
i ] — 1 -
57 cos(G(B)) = sin/ | ;Ga ’{)/g 0 forall A e QTP NBN{X =Y =0},
35 which implies [
39%/— /

G
a0 y/>0 in {X >0,Y>F(X)}n B,.

%wm -

<<§ fw,.,i&/v ?@J?‘ﬁ-h‘!&éi@&"

Sonl) 5 Ao vopresentilio:
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+ By (6.00%76.61), we find that, for all r € (0, p) and & € (0, dp) with small §p > 0,
2
Y cos(Bp(r)) = 1—-Cép > 0, | sin(BF (r))] < C\/go.
by

Now, possibly further reducing 8o, we show that w is a supersoluticn of (6.52},
2 Using (6.48), (6.52), (6.58), the above estimates of (8F, G (9F)} derived above, and
° the fact that @ = A on {X >0, ¥ = F(X)}N B,, we have

;
% Bw < %r ((oz + 1) cos{@r) cos(G(Br)) + sin(GF) sin(G(E)F)))
G

+Cr¥ by ++ Crot i)

1
2 < r*l(1-C§ M—CL —C <o,
» =-r (( 0) CLavi 2 <

14

15 if 8o is sufficiently small. We now fix §g that satisfies all the smallness ass
16 made above,
7 Finally, we show that w is a supersolution of (6.5} {X, Y)e{X >0, ¥ >
s F({X)}N By if p is small. Denote by A4p the gperdtor obtained by fixing the co-
Lo efficients of A in (6.51) at (X,Y) = (0.03Then Ay = 422(0, 0)A by (6.55). By
o0 (6.22), we obtain @22(0,0) = d22(0,{yp,) > 1/(4¢2) > 0. Now, by an explicit
> calculation and using (6.48), (6.55)-(657), (6.60), and (6.63), we find that, for
o 0208y and (X, ¥)e{X >0,Y > F(X)}N B,

E o Aw(n 0) = a2(0, ) AW(r, ) + (A — Agyw(r, 6)

% < fiaa (0, 0)r* ! ((a + 12— (%) ) cos(G(6))

26

27 I

- 4o (ol (X, 1) = (0.0) + limaX

29

— C C . - -

w0 +Er“-1ga12(x, )|+ =rla (XY 5|+ Cr®

P H“

31 e -

2 1-a)(5+3 - L2

2 < e ( a)(+a)sm{’E ¢ "Cg——— <0
33 8&s /16 ) 8

34

2 for sufficiently small g > 0 depending only on the data and 4.

. Thus, all the estimates above hold for small 8¢ > 0 and g > 0 depending only
57 on the data,

- Now, since

39 .

o min w(X,¥Y)=1L4>0,

40 {Xz20,Y=F(X)NoB,
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We rescale z = {x, y) near zg:

[un

142

2 1
z Z=(X,V):= —j(x——xo,y—yg).

: Since B ;(zo) N (0Q () \ Fanock) = @, then, for p € (0, 1), the domain obtained
by 1esca11ng QF ()N B ;(zo0) is
- YR T
— . ~ X dX)— X

6 Q0= B,N{Y < F(X):= Joo 1 dX) = Jolxo) [
_?_ d
18 where f¢ 1s the function in (5.25). Note that yg = f¢ {(xp) since (xo, o) € [shock-

1 Since L > 1, we have

12
1z A 2o (—I—o,{0
= [ Fliczeqay < “f¢ﬁ2,a,ki{ »
™ and I f¢,||§_; ;f:’m}) is estimated in terms of the data by {5.26).
5 T
6 Define
17 - -
- (6.64) wWZ) = Wizg +dZ) for Z e Q7°.
¥ Then
w2 (6,65 <C
21 (6.65) HUiILm{QZQ)

2 by (6.46) with C depending only on the data.

33“ Since ¥ satisfies (6.19) in QT () N %, and the oblique derivative condi-
== tion (6.6) on [yhock M @45, then v satisfies an equamon and an oblique derivative
% condition of the similar form in Q 20 and on BQZO N{Y = F(X)}, respectively,
ﬁ whose coefficients satisfy proper| Ues (6.8) and (6 21} with the same constants as
-— for the original equations, where we have used d <1 and the C%/ 2-e:stlmates of
% the coefficients of the equation depending only on the data, 8, and 1,!f. Then, from .
o the standard local estimates for linear oblique derivative problems, we have

”UIECZ'O["IZ({ZT?Z) S C; :=

3
2
3 with C depending only on the data, §, and 3. -
5; We obtain similar estimates for cases (1),_;(1;) by using the interior estimates
35 for elliptic equations for case (i) and the locaYest1matcs for the Dirichlet problem
36 for linear elliptic equations for case (i).

37 Writing the above estimates in terms of ¥ and using the fact that the whole
3 domain 2% (¢)NB,(Py) is covered by the subdomains in (i)—(iii), we obtain (6.45)
39 by an argument similar to the proof of [20, Th. 4.8] (see also the proof of Lemma
w0 A3 below). O

392



PROOFS - PAGE NUMBERS ARE TEMPORARY

GLOBAL SOLUTIONS OF, {0CK REFLECTION BY LARGE-ANGLE WEDGES 163

L1 LEMMA 6.8. Therexist C > 0 and 8 € (0, 1) depending only on the data

! /2_2_ such that, if o, e > 0 gid My, My > 1 in {5.15) satisfy (5.16), and & € (0, 8y), there
'3 exists a unigue sojition € Cz( ai’Zizi)(ﬁb) of (6.13) and (5.30)-(5.33). The solution
4 Y satisfies (6.9 6.10).

5 Procf. In Eis proof, for simplicity, we write 2% for Q2+ (¢) and denote by

L.y, 'y, T'3, and Tp the relative interiors of the curves Cynock (@), Zo(@). Twedges
7 and Dyome respectively.

& We first prove the existence of a solution for a general problem & of the form
9

— 2

10 k

= a;j D3y = f in @ Zb‘ ')Div=gion T k=1,2,3; ¥ =00nTp,

— =1 Jrl

12

7= where the equation is uniformly elliptic in 2% and the boundary conditions on I'g,
1s & =1,2,3, are uniformly oblique; i.c., there exist constants A1, A2, A3 > 0 such

15 that
5 2 : -1),,12 + 2
T Ml ) ayE i < AT RP forall (£, € QT p e R,
s ij=1
1 - (k)
"y Y B E i = As,
204/ — i=1
— (k) 5 (k) (k=1) p{k—1)
22 (bl »bz ) (bi ’bz )
— gl (PR — s (P > Ay for k=2,3,
2 k k k—1 k—1
B e e T jeFY e
24
2% and IEaU“Cu(g+} + Hb J]Cl (T = < L for some L > 0.
2% First we derive an apriori estimate of a solution of problem %. For that, we
27 define the following normn for v € C58(Q1), k=0,1,2,...,and B € (0, 1):
2 5
' —_ —k+1— IB {Pt k+2 }9 {P:
D Wkt = D Wl g nacones + 2 MWlicg s hona
i f=2 i=1,4
31
= WV ces @i s,y
33 where o > 0 is chosen small so that the balls By, (7)) fori = 1,..., 4 are disjoint.

34 Denote C*F8 .= {y e C%B - ||yl 5 g < oc}. Then C**F with norm ||+ 4 x5
35 is a Banach space. Similarly, define
36

1-8.{F:}
= ||gk|5*,,8 Zl!gki}ﬁwzg@,mrﬁ > u;,klgﬁgw,m
Pw1,4

391/2

+ gkl s Gt FE Y
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sz{w Step 1. Since a solution ¥ € Cz(,:s;{i’?g) of (6.1), {5.30)-(5.32), and (6.70)

2 with g € [0, 1] is the solution of the linear problem for (6.13) with fb =¥ and
_3 boundary conditions (5.30)—(5.32) and (6.70). Thus, estimates (6.9} and (6.10)
_* with constant C depending only on the data follow directly from Lemma 6.4.

Step 2. Now, from Lemma 5.2(ii).(6.1) is linear in QT (¢)N{co—r > de}, ie.,
e (6.1 s (6.13Yin 2+ () e —r 3Ae}, With coefficients a;; (. n) = A}j (&, m+68;;
for A}; defined by (5.35). Th

oo

ajj £ CHQHP) N{ep —r > 4g})

13 with the-wse G he L™ estimates of  obtained in Step 1 of the present proof, we

cnlude that v € cl-t-adPs, sl

20,0+ (@) (eg —r 653 Wit

15 (—=1—0,{P2,P3})
(6.71) |W||2!a!g+(¢)n{@—r>65] =Co

17 for C depending only on the data.
Y 18
T . Step 3. Now we prove (0.11) for all ¥ € (0,¢2/2). If 5 = g, then (6.11) -
J op follows from (6.71). Thus, it suffices to consider the case 5 € (0, 6¢) and show that /\
20Y/2 P s ;

20

21

2 (6.72)
23 P
5. with C depending only on the data and 5. Indeed, (6.71&{6.72) mply {6.11).

- In order to prove (6.72), it suffices to prove the existence of C(s) depending

5 only on the data and s such that

7 (6.73) Wl c2e@ ey S CONYLeo(a, stz

28

20 forallz:= (£, 7)) e QV(P)N{s/2 <cy—r < 6e+s/4} with dist{z, 3R T () > /8

z¢  and such that

31w
— (679 Wlcre@mmmaran = COIVILow®, i @net @)

Wl cre @F@nprz<ea—r<estsap < CG)or

g forall z € (Fshock (@) U Nwedge) N {5/2 < c2—r < 6e-+5/4}. Note that all the domains
3¢ in (6.73) and (6.74) lie within Q)N {s/4 < ¢3 —r < 12e}. We can assume
35 that & < ¢p/24. Since (6.1) is uniformly elliptic in Qt (@) Nis/4 <co—r<12¢}
36 by Lemma 5.2(i), and the boundary conditions (5.30} and (5.32) are linear and
37 oblique with C Le_soefficients estimated in terms of the data, then (6.73) follows
38 from Theorem A.1 and (6.74) follows from Theorem A.4 (in Appendix A}. Since
£ 19 )| oo+ oy = 1 by (6.9), the constants in the local estimates depend only on

3ol/y
/ 40 the ellipticity, the constants in Lemma 5.2(ii), and, for the case of (6.74), also
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1 /‘I(g), and /f(g) satisfy the property in Lemma 5.3(iii}. The property in Lemma

2 5.3(iv) is now improved to

11/

3 (6.81) 7]

T (AR AR AP)(x,p)| < Colxl, DAY, .' AN (x, )| < Clox)'?
= Combining the estimates in Theorems A.],

R JR

T that has led to (6.34), we have

5 77 = C,

_z_ (6.82) vl ... w(BERETD =

¢  depends only on the data and § > 0 by (6.76), since Agj’) and satisfy
n (A 2¥/ A.3) with the constants depending only on the data and §. In particular, C

‘ .Y 12 in (6.82) is independent of .
/ E E 3 We now use the domain D introduced in Step 2 of the proof of Lemma
ey H 6.6. We prove that, for any g € C2(D*++) with Il garm < 1, there exists a

% unique solution w € C2®*(DT+) of the problem:

/fl(e)

7 (683) APwe+AQwy, + APuw, =g in DT,

(634 w=0 on DT N{x=0y> 0}

) 20 (6.85) wy =wy =0 on DT N{x>0y=0}
204>

21 (6 86) W=y on DT N{x>0y>0}

23 with (A(Q) Ag‘?)) (A{Q) A(lg))(Dw,x, y). Moreover, we show

ir i
; (687) Eiw“cz,a(m) =C
26 where C depends only on the data and is independent of p. For that, similar to

27 Step 2 of the proof of Lemma 6.6, we consider the even reflection D of the set
”8 Dt and the even reflection of (v, g, A(Q) Agg), A(Q)) from B 1o B, without

2z chanoc of notation, where the even reflection of (ASE;), Aggz), A(IQ)), which depends
Zoon{p,x,y), is defined by

1

3 AD(p.x,=y) = AP (px, ), AP (p,x,—y) = AP (p,x, 1)

33 -

32 for(x,y) e B;"".

P Also, denote by § the restriction of (the extended) v to 9D . Tt follows from
3 (6.78), (6.79) and (6.82) that § € C+*(dD ) with

73 (6.88) [llczaggpty = C.
36
39 dcpendmg only on the data and §. Furthermore, the extended g satisfies ¢ €

Whg ce(DF) with gl T, = I8l By < 1+ The extended AR, AQ), and
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1 ﬁf{le} satisfy (A.2) and (A.3) in D7 with the same constants as the estimates satis-

Ty —

Y27 fied by Aj; and A; in Q% (¢). We consider the Dirichlet problem
% (6.89) A@w o+ ADwyy + APy =g in DY,
,_,; (6.90) w=0 on aDt,

— with (Aff), A(lg)) (Ar(?)* A(lg))(Dw, X, ¥). By the Maximum Principle,

8 lwlleep+y < 10l Leo(n+y-

° Thus, using (6.88), we obtain an estimate of {jw|| Leo(p+). Now, using Theorems
12 A.1and A.3 and the estimates of ||g||ca{D—J;) and || #]]¢2.eqpp-+) discussed above,

% we obtain the a-priori estimate for the C2%-solution w of (6.89) and (6.90):

13 (6.91) ”wlicz.u("b_f?) =C,

% where C depends only on the data and . Moreover, for every e cChe (ﬁ),
s the existence of a unique solution w € C 2,@(D+) of the linear Dirichlet prob-
17 lem, obtained by substituting w into the coefficients of (6.89), follows from [20,
s Th. 6.8]. Now, by a standard application of the Leray-Schauder Theorem, there
15 exists a unique solution v € C22(D7) of the Dirichlet problem (6.89)x(6.90)
% Which satisfies (6.91). B
o1 From the structure of (6.89), especially the fact that A2, A2, and 4? are
T independent of p; by Lemma 5.3 (iif), and from the symmetry of the domain and ./
13 53 the coefficients and right-hand sides ob['uned by the even extension, it follows. =l
2 Sa that 1, defined by @(x, y) = wix, — -als H 6897, 16.00). By
5 uniqueness for problem (6.89):76 00), we ﬁnd w(x y)= w(x —y) in D¥. Thus,
os W restricted to D+ is a solation of (6.83)<(6.86), where (6.84) follows from
7 {6.78) and (6.90). Moreover, (6.91) implies {(6.37).

201/ —

2a The unigueness of a solution w € C2*({D++) of (6.83)-(6.86) follows from
20 the Comparison Principle (Lemma 6.3).

30 Now we prove the existence of a solution w € C>%(D++) of the problem:
% 692)  AQw+249uw0y + AQwyy + AP0 + APw, =0 in DFH,
e w == () on D T N{x=0,y>0},

3 wy=wy =0 on DT TN{y=0x>0}

= W= on ADTTN{x >0,y >0},

36

E where (Aff), A(g)) = (Al(f), AEQ))(Dw, X, y). Moreover, we prove that w satisfies
38

— (6.93) i]wncz.a(b-f——-i—) =C

39
30/ — .
f 0 for C > 0 depending only on the data and §.
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1 Since v is a solution of the linear equation (6.13) for ¥y = 3 and satisfies

the boundary conditions (5.30)-(5.33), it follows from Lemma 6.7 that v satisfies
(6.46) with constant C depending only on the data and §.

2

3

4 Now we follow the argument of Lemma 6.7 (Step 4): We consider cases i

"o ()=(i1) and define the functiWMm
"¢ nonlinear (6.2). We appl mtafes m Appendix A. From Lemma 5.3 and e

itz

3%

| ﬁ;@w{ /

:

€ Laplacian in polar coordinates, the coefficients of (6.2} satisfy
& {A2¥TA.3) with A depending only on the data and 8. It is easy to see that v defined
s by (6764) satislies an equation of the similar structure and properties (A.2(A.3) )
1o with the same A, where we use that 0 < d < 1. Also, v satisfies the same bothdame—"""
11 conditions as in the proof of Lemma 6.7 (Step 4). Furthermore, since ¥ satisfies

1z (6.46), we obtain the L% estimates of v in terms of the data and &, e.g., v satisfies

13 (6.65) in case {ii). Now we obtain the C*®-estimates of v by using Theorem A.1

14 Tor case (i), Theorem A.3 for case (ii), and Theorem A.4 for case (iii). Writing

15 these estimates i terms of 1, we obtain (6.96), similar to the proof of Lemma 6.7

16 (Step 4).

CL Step 6. Finally, we prove the comparison principle, assertion (iv), The func-

¥ tonu = Y1 —rz 1s a solution of a linear problem of form (6.13}, (5.30), (5.32), and
19 (5.33) with right-hand sides Ng (1) —N s (r2) and By (¥r))— By (W) fork =1,2,3,
201/23& respectively, and u > 0 on [yne. Now the comparison principle follows from

2 Lemma 6.3. M|
22 o

- Using Lemma 6.8 and the definition of map J in (6.12), and using Lemma 6.9
v and the Leray-Schauder Theorem, we conclude the proof of Proposition 6.1. £
25 Using Proposition 6.1 and sending § —» ,.awe establish the existence of a
26 solution of problem (5.29)—(5.33).

27 PROPOSITION 6.2. Leto, e, My, a

2B exists a solution y € C(QT (@) N

2% (5.29)-(5.33) s0 that the solution

. Proof Let§ € (0, 8). Let

31

o Ve C @@\ Tomo) N
s (D) 8§ =0

35

Mo be as in Proposition 6.1. Then there
(Q+ (‘;ﬁ) \ annic) n C2(9+(¢’)) Ofpr'oblem

® {ea—r1>5}

2"2”“ (ifi) 95, — ¥ in C*(
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LEMMA 7.2. A solution yr € C(QF (@) NCHQT () \ Teonic) N C 22T (p)
of (5.29)-(5.33) is unigue.

Proof. 1t y1 and 1o are two solutions, then we repeat the proof of Lemima
A 7.1 to show that ¥r; — 2 cannot achjeve a negative minimum in Q7 (¢) and in the
_® relative interiors of Igoex(¢8) and [wedge. Now (5.29) is linear, uniformiy elliptic
% near Zg (by Lemma 5.2), and the function v/; — 5 is C! up to the boundary in a
7 neighborhood of Zy. Then the boundary condition (5.33) combined with Hopf’s
£ Lemma yields that ; — ¥ cannot achieve a minimum in the relative interior of
% Zy. By the argument of Step (iii) in the proof of Lemma 6.3, ¥ — v, cannot
10 achieve a negative minimum at the points P; and Ps. Thus, ¥ = ¥ in QT (¢)

I and, by symmetry, the opposite is also true. 0
12

s LEMMA 7.3. There exists € > 0 depending only on the data such that, if
— o,e, My, and M> satisfy (5.16), the solution ¥ € C(QH (@NNCHQH () \ Tsonic)

14

= C2QT (D)) of (5.29)-(5.33) satisfies

Y2

1
2
3

16 , 3 2 . ’ . O+.2e
i(7’-1) OEW(A,Y)S———S(}/+I)X in (¢} = Q7 ().
* Proof. We first notice that ¥ > 0 in 7 (¢) by Proposition 6.2. Now we make
2 estimate (7.1). Set
201/2~2i w(x ) — 3 2
Z TS ED
= We first show that w is a supersolution of (5.29). Since (5.29) rewritten in the
= (x, y)-coordinates in £’ (¢} has form (5.42), we write it as
24
5 N1(0) + N2(9) = 0,
# where - .
. 5 %ﬁ b 1
8 Nl(w)m(2~’C_(}’+I)xgl§(f‘;—t§E)Wxx‘l';‘wyy*w»
g L ;‘ Xy 2
w Na() = O Vrex + OF vy % 0%y — 02y + 02
30 2(¥) 1 Vxx 2 Vxy 3 Yyy 4 Vx 5 vy
3! Now we substitute w(x, y). By (5.37),
32 % - i3 i
3 ¢ ifwxi}_ ¢ | 6 _ 6 . -
% l{gfﬁ?’ NS DY S 3(%
g thus 6
3 Ni(w) = —s———x.
37 25(y 1)
4s  Using (5.44), we have
39 6x
3ol N . O¢ Dw, x, O¢ Dw, x, <C ‘3/2<C 1/2
2‘_‘9“{ 2(w) 5(}’+_1) 1( w,x y)+5(}f+l) 4( w,x, ¥y} =Cx>==Ce"*x,
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L1 where the last inequality holds since x € (0, 2¢) in $2'{¢). Thus, if £ is small, we
Y27 find

5 Nw) <0 in Q'().

4 The required smallness of ¢ is achieved if (5.16) is satisfied with large c.

5 Also, w is a supersolution of (5.30): Indeed, since (5.30) rewritten in the
& (x, y)-coordinates has form (6.6), estimates {6.8) hold, and x > 0, we find
;
B
5

~ 6 - —
Mw) = bi{x, Y)————=x + ha(x, y) 2<0  on Tyux(p) N,

3
————X
5y+1) 5y +1)

10 Moreover, on lyegge, Wy = wy =0 =1, Furthermore, w = 0= on [youic
77 and, by (6.9), ¥ < w on {x = 2a} if
12 Co< 82,
-~ where ( is a large constant depending only on the data, i.e., if (5.16) is satisfied
— with large C. Thus, ¥ < w in Q'(¢) by Lemma 7.1. O
@ in the subdomain &’ (¢) := QF ()N
T dea—r <elof Q) = Q (@) N {ca —r < 2el.
. LEMMA 7.4. There exist C,C > 0 depending only on the data such that, if
 a,8 My, and M satisfy (5.16), the solution ¥ € C(QH (@D NCHQF () \Tyonic)N

16 We now estimate the norm ||y E[;par)ﬁ,
3

20
W2 C2HQY(¢)) of (5.29)-(5.33) sarisfies
:’;2M 2 (I-"al')‘ <.
2 (12) 111, o g = €
g Proof. We assume C in (5.16) 1s sufficiently large so that o, &, My, and My
25 satisfy the conditions of Lemma 7.3.
26

39l

o Step 1. We work in the (x, y)-coordinates and, in particular, we use (5.25)
:_; (5.26). We can assume £ < /20, which can be achieved by increasing C in (5.16).
= For z := (x, y) € Q'{¢) and p € (0, 1), define

= (13)
o Repi={on 1 ls=x<Exp-y<5VEL Repi=Repnt@).

31

% Since §(¢) = QT (¢) N {2 — r < 2¢}, then, for any z € &’ (¢) and p € (0, 1),

e 3 5

3 (7.4 Ryt (@)ni(s,0) : 7Y <s< Ex} C Q' (¢).

5

g Forany z € Q’(qﬁ), we have at least one of the following three cases:
37

= (1) Rz1/10= ﬁz,l/lo;
o (D z€ Rz 1y for 2y = (x,0) € Dwedges

fa— ... ~
40 (ii) z € Rz_\-,I/Z for zy = (x, fgb(t)) € Dshock ().
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1+ Thus, it suffices to make the local estimates of D and D2y in the following

1p,. .
1/ 5 rectangles with zg 1= (xg, yo):

3
(i) Rzq,1/20 for zg € Q'(¢p) and Rz 1710 = Rz,1/10

4

50 ..

o (i) Rzq.1/2 Tor 2o € Dyegge N{x < €}

7 (i) Ry 172 or 2o € Tynoes (9) N {x < 8},

8

5 T
w0 Step 2, We first consider case (i) in Step 1. Then . /"’"M 111
g Xg "_X{) ?z }}Mﬁ' ZZJI;/‘Z %
12 Reg1/10 = JCO-l"j:S,yo“}‘—21—7rw 8. T)e Qanog %{’
3 e ; fymw eses |
14 swhere Qp = (—p, p)? for p > 0. = Wjiwwmmwf“”‘ )
15 Rescale ¥ in Rz 1710 by deﬁnigg//

16 \ :
7 i VX0 N B
% (1.5) ¢3S, T) = ngg + 225, yo + _:" T ‘} for (S,7T)e f‘f"m}

9
oo Then, by (7.1) and (7.4},

201/2—

2 {zoy .
o (7.6) N ey < 1/ (v + 1.
2 Moreover, since ¥ satisfies (5.42) {5.43) in Rzy.1/10- then ¥ 0) satisfies

24

2 amn

26

7 ((1+ S)(

28

Gl L @z o 1 Az G0, 20,20, (z0)
10 + (;; +-\003 )I}'ITT — (Z +1004 ) 1!’5 + X5 05 lffT
3

32 in Q1/10, Where

Z

u 79

1+8/4)? 1 .
(+C/) }/2+( 6[¢(0)|)

; 4p %
(07p,5.7) =~ 20897 ) -

y—1 (za) 8xg (z0)42
(e (¢ +(C2—X0(1+S/4))2|¢ i )

(#x08 ¥ + 03 — xo(1 + S/4)) 987,

8

P ) = e T+ S/

(ij\




201z

39 /2
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B
(CZ—XO(1+S/4))2{(1+S/42%2/15‘,2/ (
[iﬁb;
S/4)/

E (=1 (//‘045(20}4-(62—xo(1+S/4))(1+S/4)§1 & xolgg! z?—)

k3 8(v + 1) N ]¢{Zo)|2}
5 (c2 — xo(1+ §/4n27°

—~1

{ 1+ 8/4 (xoqb(m) + 8xolp S 2

0 756 ) e
o N +8/4" (e —xo(L + S/H2 )
12 8 zp) (z )
2 8,7 = 4x00 T 4205 — 2x9(14+-5/4)) P50
o {(p ) Cz(Cz~xo(I+S/4))7-( ¥0¢ +2¢3 = 2x9 (145 /4)) o5
M where ¢} is the rescaled ¢ as in (7.5). By (7.4) and ¢ € 3, we have
15
6 3|¢(ZO)HC2,Q(W) = CMy,
e and thus e (\aﬁ.g._.,,‘,,,w
o &, 2 _
w (7.9) ;g@ncl STk = <CO+MYH, k=1,..,5
20

k

21 Now, since every lerm 07 iy (7.7) is multiplied by ,X'ﬂ with 85 > 1 and xp €
k P

22 {0, ), condition {5.16) (possibly after increasing C) depending only on the data . Wy P
% implies.that-77) satisfies conditions (A25(A.3) in Q1,10 with A > 0 depending &/5& &g[é@ 7[{.,{0{&

2-5nly on ¢z, i.e., on the data by (4.31). Therl, using Theorem A.1 and (7.6), we find

26

ar (1.10) v 2z < C-

28

2— Step 3. We then consider case (ii) in Step 1. Let zg € [Nyegge N {x < &}, Using
- {5 25) and assuming that o and & are sufficiently small depending only on the data,
— we have Rz,,1 NIQT(¢) C Tyedge and thus, for any p € (0,1],

5 /g

e RZU,ng(xg%- Syg-i-— ):(S,T)erﬂ{T>0}

34

~— The choice of parameters for that can be made as follows: First choose ¢ small so
® that lE—k] < |§i/10, where £ is defined by (3.3), which is possible since § — £
3 as 8y — /2, and then choose & < (|E|/10)2.

% Define ¥ &0(S, T) by (7.5) for (S, T) € Q1 N{T > 0} Then, by (7.1) and
— (7.4,

a0 (7.11) 1l earnrsop < 1/ + 1.
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o1 Moreover, similar to Step 2, %20) satisfie¢’(7.7) in @4 N {7 > 0}, and the terms

! /27 (5,?’20 satisfy estimate {7.9) in @3 AT > 0}. Then, as in Step 2, we conclude
~5 that (7.7) satisfies conditions (A2 ¥A3) in @1 N {T > 0} if {5.16) holds with
"2 sufficiently large €. Moreover, since Y satisfies (5.32), it follows that

£ dry@ =0  on{T =0}NQ;.
6
"7 Then, from Theorem A4,

% (7.12) 1 era@mnirsoy = C-

i Step 4. We now consider case (iii) in Step 1. Let zg € [aoek () N {x < &},
11 Using (5.25) and the fact that yg = f;g,(xo) for zg € Taneck(@) N {x < &}, and
12 assuming that o and ¢ ave small as in Step 3, we have Rz, 110 Q1 (@) C Cinock (D)
12 and thus, for any p € (0, 1],

1a

— X A X
5 Rpp= { (xg + IUS,yo + -7137*) D (8.T) e QpNi{T <& *Fip)(S)}
i6
7 with ) )
e Fou (S m4f¢(xo+%95)—f¢(xﬂ)
e (zo) ) 174/~ .
ﬁ & /X0
201/, 20 Then we use (5.27) and xg € (0, 2&) to obtain
21
—~ Fiz)(0) =0,
25 /3 lLoo (0,261 %0
o1 I F(z[]) ||C‘1([—1/2,1/2]) = —EIW)C_J_ =C(+ MIS)EIM,
25 - 3
— " 1L Lo 0,260 %8 + 1§ leroszi %6 T8
2 | Fegleea-1/2.1/2) = 1/4
27 dgiic [xg
2 < C(1 + Mpe™*,
% and thus, from (5.16),
1 (7.13) I Fepllcragoryayopy < C/C <1

E{j} if € is large. Define @0 (S,T) by (1.5) for (S, T) € Q1 N{T < '/* Eg (ST~
v Then, by (7.1) and (7.4),

5 (.14 v
38
3 Similar to Steps 25
£ ég"z" satisfy estimate (7.9) in @1 N{T < &'/ Fz,)(S)}. Then, as in Steps 263, we

conclude that (7.7) satisfies conditions (A.27(A.3) in Q1 N{T < &4 F,y(S)} if

g {5.16) holds with sufficiently large C. Mover, Y satisfies (5.30) on Fyhock (6).

]

{o
w

39l/a
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., which can be written in form (6.6) on Tghoek(¢p) N @', This implies that (o)

1 27 satisfies
% asw(m) =gl/* (328T¢(29)+B3¢r(20}) on {T :51/4F(ZO)(S)}HQ1/2, /.w»»“"“’"‘—*-«\’\
:EZ where ;S;M[M
5 ;o f - -
- A X ba it X /x A
! BZ(S’T):_ 1/2'\_25 }Y0+w25,yo+———07’§ %ﬁ o
s &b 4 4 . ?){wﬂw L5
9 X 5 fi\\. X rx ‘:t o i
. Bal($, 1) == :}/4"—3{(x}3+—03,y0+—0 /ja. =
n 4gt/4 {\f 4 4 /;éf//
. From (6.8), S~
12
E E|(B2s BB)IE]:Q’EH{T5£1/4F(ZD}(S)} = C81/4M1 < C/C < 1.
}:— Now, if ¢ is sufficiently small, it follows from Theorem A.2 that
E (715) ”'{//(20) ”Cz‘a(QI/Z“{T581/4F(ZO)(S)}) = C.
17

16 The required smallness of ¢ is achieved by choosing large € in (5.16).

¥ Step 5. Combining (7.10), (7.12), and (7.15) with an argument similar to the
a0t /ﬁi proof of [20, Th. 4.8] (see also the proof of Lemma A.3 below}, we obtain (7.2). [

21

2 Now we define the extension of solution ¥ from the domain Q1 (¢) to the

23 domain 9.

% LEMMA 7.5. There exist C,Cy > 0 depending only on the data such that, if
adl o,&, M1, and Mo satisfv (5.16), there exists Co(¢) depending only on the data and
2 ¢ and, for any ¢ € I, there exisis an extension operator

27

w P CHQFT(@)) N CHNQT(H) \ Toome U So) > CH4(@) N C*%()

2 satisfying the following two properties:

30

g M) IFy e CHEQH () NCH¥(QF(P) \ Tsonic U o) is a solution of problem
32 (5.29)-(5.33), then

33
— (1.16) 19401 ¥ < C1,

B (1.17) 1P ¥ 15 man ™ < Cale)o

36 J—

3 (1) Ler pe(0,a). If a sequence ¢y €% converges to ¢ in CLB (@), then ¢ € %K.

P Furthermore, if Yy, € C L+ () N C2*(QH ) \ Tsonic U Xo) and ¥ €
L ® CLeQT(g)) N C22(QH () \ Tuonic U Zo) are the solutions of problems
WV (520)(5.33) for ¢y and & respectively, then Pg, Yy — P in CHF (@),
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Furthermore, using the second estimate in (5.27), noting that Moo < 1 by
> (5.16), and using the definition of 9}’;5 and the fact that the change of coordinates
"3 (x,¥) > (£, 1) is smooth and invertible in @M {&/2 < x <k}, we find that, in the
"5 (&, m)y-coordinates,

-

I
WZ“ (7.26) “@éﬂ”|E62-“(§ﬂ{s/2502mr5x}) = C“"”fEcM(m(qs)n{e/zgcrrgx})'

z Step 3. Now we define an extension operator in the (&, )-coordinates. Let
8

B €2 CH0, 1] x [v2, M) NC2([0, 1] % (~v2, m])

0 = CHI=1, 1 % [=v2, ;D O C3 (=1, 1] x (=v2, m1])

11

g be defined by

B & X

1 Eau(X, Y)::ZﬂfU(-T,Y)

15 i=t L

6 where @1, a2, and «3 are the samfe as in (7.22).

17 Let Oy = QT (@) N 65 n < 11}. Define the mapping W : &5 —» (0, 1) x

i (—va,11) by
19
20

W, )= (
2 where fy(-) is the function from (S.ZE 5.22). Then the inverse of W is
22

2 WHX,Y) = (f3(Y) + X(Y cotly — f5(¥)), 1),

2 and thus, from (5.24),
25

— (—1=e§0,1] % {~vz.m:
26 (7.27) qulj2,a,ﬁ2

£ Jon) .

neot By —

—tp(=1=-e[0,1]x{—v2,m })
L PP At R
2t
- Moreover, by (5.24), for sufficiently small £ and o {which are achieved by choosing

o large € in (5.16)), we have N{—va <<y} CYI([~1, 1]x[—v2, m]). Define

2 @,;23‘!’ =P oW ow on BN{—ve <n<nh

31

32 Then @2y € CH(D) ] €@ \ Toonc U Zo) since T\ 21 (¢) C BN {~vz <
33 1 < n1}. Furthermore, using (7.27) and the definition of %%, we find that, for any
£ b E (_UZS T}l]}

35 o2 —1—w, Bo) N {(~1-e,{P2,P3})

e (7.28) E[g’gﬂl’i @I <s) = C(m S)ilw“:,l’a)g+(¢)n{nﬁs},

37 where C(n; —s) depends only on the data and 77 ~ 5 > 0.

38 Choosing C lagge in (5.16), we have & < «/100. Then (5.25) implies that

g there exists a unigug point P’ = Pyoe(p) N{cz —F =k /8}. Let P' = (¢'.9) in
a0 the (£, 77)~coordinat§s. Then %’ > 0. Using (7.18) and (7.20), we find

s o

b )
L ‘Walf e Ui =)
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1 @\QT(@) N{cz—r >k/8yCaN{n<7}
2 QT@)N{n<n}cQT@)N{ca—r>«/8}
3

— Also, k/C <n1—n' < Cx by (5.22}, (5.24), and (4.3). These facts and (7.28) with

4

— 5 =1 imply

6 2 4 {(—1-,Zp) (—1—o,{P2,P3}}
— {(7.29) ”@451”,“2a§bﬂ{c2 r>k/8} — CIIW“Z a,9+(¢§ﬂ{c2—r>r/8}'

= Step 4. Finally, we choose a cutoff function £ € C™(R) satisfying
v t=1on{—oc.k/4), =0on{3x/4,00), { <0 onR,
— and define

1 Potr = L2 —NPYY + (1 ={lea—r))Pgy  inD.

;5_ Since ¥ oV = W oon QF(¢) for k = 1,2, so is Py, Also, from the properties of
5 ?f”d, above, Pevr € CHEE@) NC2* (D) if
17 JR—

fre ¥ € CH(QT () NCH(QF () \ Taonic U To).
19 Ifsuch ¥ is a solution of {5.29)~(5.33), then we prove (7.16) {.17): P = @é,yff
° on @’ by the definition of ¢ and by & < «/100. Thus, since (7.16) has been proved in

% Step 2 for QP(},W, we obtain (7.16) for P4, Also, ¥ satisfies {6.11) by Proposition
6.2, Using (6.11) with s = £/2, (7.26), and (7.29), we obtain (7.17). Assertion (i) /,,,_.\\

2 _is then proved.
24

g Step 5. Finally we prove assertion (ii 7€ % converge to ¢ in C LA (@).

26 Then obviously ¢ € (. By (5.20(%(5.22), it follows that e
27 e,
— (7.30) Joe > fo i CVP (=2, m), '

- where fs,, fg € Cz( al(_“m n‘g’m}) are the function
30

P ﬁbk ¢, respectively. Let ¢, ¥ Qt (g C2(Q (g \ Tsonic U Zo) be
; the solutions of proble 29)-(5.33) for ¢, ¢b. Let {Y,, } be any subsequence

oo {Wi} By (7.16p7.17), it follows that there exist a further subsequence {¢y,, }

-7 and a function ¥ €C (@) N C>(%) such that

B P Yk, — ¥ D € 2:%/2 on compact subsets of % and in C %/2(%).

36

37 Then, using (7.30) and the convergence ¢ — ¢ in C 1.8 (@), we prove (by the
38 argument as in [10, p. 479]) that 1,lr is a solution of problem (5.29)-(5.33) for ¢.
3v By uniqueness in Lemma 7.2, ¥ = in Q7 (¢). Now, using (7.30) and the ex-

i (.21) corresponding to

&y plicit definitions of extensions %} and @3, it follows by the argument as in [10,
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Y %
. pp. 477(/478] thatE

= 7 wkmn C% Em@h} |
E (1 - )U)‘f’k” {Cl’[’kmn ;
Z Therefore, i = ' “Givergent subsequence § seexiracted '

o from any subsequence {Wy 1 of {1} and the limit W —1s mdependantof the.

c%ﬁvergeﬂg@ in C¥8(@). This completes the proof.

Now we denote by Co the constant in (5.16) sufﬁcrently large to satisfy the
conditions of Proposition 6.2 and Lemma 7.5. Fix ¢ > C() Choose M =
lfm max(2Cy, 1) for the constant C; in (7.16) and define & by (5.63). This choice
13 of ¢ fixes the constant Cz(g) in (7.17). Define My = max(Cz(g), 1}. Finally, let
14 o~
—_ C—I_S_Slfti-Ml )
= 70T S (M2 t 2 max(My. M3))

15

17 Then gy > 0, since ¢ 15 defined by (5.63). Moreover, gg, &, M1, and M> depend
18 only on the data and €. Furthermore, for any o € [0, 0p], the constants o, &, My,
19 and My satisfy (5.16) with C fixed above. Also, ¥ = 0 on 27 (¢) by (6.9) and

20 thus

9
10

1

-

20t

3gl/>

= (7.31) Ppy =0  ond

23 by the explicit definitions of #},P7, and 9. Now we define the iteration map J
25 by J(p) =Py By (7.16), (7.17) nd (7.31) and the choice of o, &, M|, and M>,
25 we find that J :  — ¥. Now, Eﬂ'%* A COMpact Znd convex subset-of C 1LE/2 -
26 The map J : % — ¥ is continuous in C12/2(@) by Lemma 7.5(ii). Thus, by the

27 Schauder Fixed Point Theorem, there exisis a fixed point ¢ € I of the map J. By
E definition of J, such v is a solution of (5.29)-(5.33) with ¢ = . Therefore, we
29 have

il PROPOSITION 7.1. There exists Co > 1 depending only on the data such that,

—«—«for any C > Gy, there exist ap,& > 0 and My, My = 1 satisfying (5.16) so that,
; for any o € (0, 0], there exists a solution ¥ € (o, e, My, Mz2) of problem (5.29)-
— (5 I with ¢ = (i.e., V¥ is a “fixed point” solution). Moreover, \r satisfies (6.11)
e for all 5 € {0, ¢2/2) with C(s) depending only on the data and s.

35
36

o 8. Removal of the ellipticity cutoff

38 In this section we assume that Cg > 1 is as in Proposition 7.1 which depends

39 only on the data, c > é{), and assume that g, & > 0 and My, M2 > 1 are defined
s0 by C as in Proposition 7.1 and ¢ € (0, op). We fix a “fixed point” solution ¥
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;1 with
11

2 814)  Oplx.y) =0l (DY(x,y)x.y)  for k=1,....5

= for O defined by (5.43) with ¢ = ¢. From (5.37), we have
{1(A)=4
Thus we can rewrite (8.11) in the form

(8 15) d11Vxx +a]2ny +a22Uyy +mb +cv= ”'""A((}}"‘ 1)14-1) +E(A y)

1, e
o th B ot

3816y bx,y)=1-(+D (i;;@A - —D%+ ¢ &}4 - _5;(; —v, —A

i4

B @17 ewn)=+)] (a@i - —Jj [ -5t )ds)

18 .

I’ where v and vy are evaluated at the p01'*t‘(r7my)* %Hﬁmww”"fﬂ’ é /

8 Since ¢ € ¥ and v is defined by (8.4), we have F ares

aij b,c € C(QF\ {x =0}).

pecl Combining (8.12) with (5.16), (5.37), {5.45), and (8.14), we obtain that, for
25 sufficiently large C depending only on the data,

e i 1
25 apy = -X, top > —, 1/2 Q.
25 1z 225~ la 12i_3\/— on €25,

X on Q;, which implies that {8.15) is eliiptic on

2. 2
;: Thus, 4aq1a22 — (@12)” = 5

o Q"‘ and uniformly elliptic on every compact subset of S2 e \ix =0}

‘3‘6" Furthermore, using (5.39) and (8.17) and noting A > O and x > 0, we have

2 (8.18) clx,y)<0 for every (x,y) e Qﬁ: such that v{x, y) < 0.

32

33 Now we estimate E(x, y). Using (8.14), (5.43), (4.50), and ¥ & 3, we find
% that, on Q3

35

g |0 01l<C(t+i¢r|+EDw+vlz!walwxwxxHEwywxyIHDWIz)<CM2r,

T 8, Op sl = C(1DY]+ DY + wywnw( + W Dy ) £ CMxY2(1 + My x),

38
L 034|<C(1+h!f|+J~¢1 =) L+ 1DYDID? Y|+ DY ?)
e < CMy(1 + Myx),
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3
1 5 —_ - . .
Y27 where we have used the fact that [s¢5(s)] < C on R. Combining these estimates

5 with (8.13), (8.14), (5.44), and ¥ € %, we obtain from (8.13) that
|E(x,y)| < CMEx(1 + Mix) < C/C on Q7.

From this and {(y + 1)A > 1, we conclude that the right-hand side of (8.15) is
strictly negative in Q;_rs if € is sufficiently large, depending only on the data.

We fix C satisfying all the requirements above {thus depending only on the
o data). Then we have

2819 anver tdnyf+anvyy Thucter <0 on Qf.; Xj
11 o

12 the equation is elliptic in Q;‘e and uniformly elliptic on compact subsets of £2,\

13 {x = 0}, and (8.18) holds. Moreover, v satisfies (8.5} and the boundary conditions
14 (8.6)—(8.8) and (8.10). Then it follows that

o]~ ||

108
g Uxy

,.E,
e v>0 on £2;,. S

E Indeed, let zg := (xp, Yo) € Q;e be a minimum point of v over Q;‘s and v{zp} < 0.
18 Then, by (8.6), (8.7).and (8.10), cither 2z is an interior point of Q;‘E or zg €
1 DwegeeNM{0<x < 28}%%@@@%% (8.19) is violated since -~

20 (8.19) is elliptic, v(zg) < 0, and ¢(zp) < 0 by (8.18). Thus, the only possibility is ™
21 20 € Pyedge MO < x <2e}, i€, 2g = (xg, 0) with xg > 0. Then, by (8.2), there exists
22 p > O such that B,(zg) N SZ;'S = Bp(zo} M {y = 0}. (8.19) is uniformly elliptic in
2 Bgalzo) N{y = 0}, with the coefficients a;;, b, c € C(B,/2(z0) N {y = 0}). Since
2% u(zp) < 0 and v satisfies (8.5), then, reducing p > 0 if necessary, we have v < 0in
2 Bplzg)N{y > 0}. Thus, ¢ <0 on Bp(zp) N {y > 0} by (8.18). Moreover, v(x, ¥)
?%_is not a constant in By i2{x0) N{y = 0} since its negative minimum is achieved at
2" (xp,0) and cannot be achieved in any interior point, as we showed above. Thus,
% 9,v(zo) > 0 by Hopf’s Lemma, which contradicts (8.8). Therefore, v > 0 on SZ;,_';

2 50 that (8.3) holds on ;. Then, using (8.9), we obtain (8.3) on Q7. O
30

3 Now bounding v, from below, we first prove the following lemma in the
22 (& m)-coordinates.

202

3 LEMMA 8.1. [fé in (5.16) is sufficiently large, depending only on the data,
34 then

35
o (8.20) Yy <0 QT

37 Proof. We divide the proof into six steps.

2. Step 1. Set w = yry. From ¥ € % and (8.1),

35
P g1 weCON(@F) N CHET\ T US) NC2 (27).
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L Since ¥ €%, we have ¥ € C2(2% \ Togno U Zg). Thus we can differentiate (8.27)
" in the direction tangential to I'wedge, 1.€., apply 8, :=cos 8y, d¢ +-sin &y 3y to (8.27).
73 Differentiating and substituting the right-hand side of (8.23) for Ve, we have
Tt (8.28)

1t/2

-~ ~

A 1 A
2 cos(@6y) + S22 sin(20,) | we + = sin(20,) [ 1+ 52 | wy =0 on Tyedge.
6 A1 2 A

This condition is oblique if ¢ is small: Indeed, since the unit normal on Dyedge 18
{—sin 8y, cos 8y}, we use (3.1) and (8.22) to find

]

—
—

-

; ~ -

1 Az . 1. Azz

Y (COS(?.QW) + AL sin(26y ), 5 sin(20y,)(1 + AA;} ))
13

I

o {—sinly,cos8,) )= 1 - Cao > 5

5 Step 5. In this step, we derive the condition for w on Dyheex. Since ¥ is a
17 solution of (5.29)-(5.33) for ¢ = 1, the Rankine-Hugoniot conditions hold on
2 aock: Indeed, the continuous matching of 1 with @7 — @2 across Dypeer holds
1¥ by (5.21)-(5.23) since ¢ = . Then (4.28) holds and the gradient jump condition
mlfz?fm {4.29) can be written in form (4.42}. On the other hand, ¢ on Tgyeck satisfies (5.30)
2! with ¢ = v, which is (4.42). Thus, V¥ satisfies (4.29).
2 Since ¥ € % which implies ¥ € C2(R " \ Toome U 5g), we can differentiate
2 (4.29) in the direction tangential to [yhecx. The unit normal vg on Typeck is given

% by (4.30). Then the vector
25

2% v + ¥ Ve

— (8.29 = (], 10) = T1-

51( ) T =0, 7) (ul—uz Uq— U2

gﬁm

2 s tangential to [gocx. Note that 7y 5 0 if ¢ in (5.16) is sufficiently large, since
30

31 (8.30) DY) <Clo+&) in QF,  |uzl+|vn) <Co,

32

33 and u; > 0 from ¥ € ¥ and Section 3.2. Thus, we can apply the differential
34 operator d, = 1) g + 720y to (4.29),

a5 In the calculation below, we use the notation in Section 4.2. We showed that
36 condition (4.29) can be written in form (4.33), where F(p, z, ua, v2, £, ) is defined
37 by (4.34)-(4.36) and satisfies (4.37). Also, we denote

38

391/22% (8.31) #(p.uz, v2) = (£, 1) (p,uz, v2) i= (

va't P2, P
u;—ug’ Ug — U ’
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, where p = (p1, p2) € R? and z € R. Then £ € C%(Bs~(0) x By, /50(0)). Now,

o ", applying the differential operator dz,, we obtain that ¥ satisfies
_Z_ (832) CD(DZW'D]I”‘ 1!/? ”2:1)2»5,7?) =0 on FShOCk! //\
2 2

7 . .

— O(R, p.zoug, v, Eny= Y #Fp Riy 2 (Fzpi+Fg,) for R=(Ryj)? .y,
- ij=t1 i=1

10 and, in both (8.33) and the calculation below, D, g,y F denotes as Degpy F,
i (Fp;, £z, Fe ) as (Fpy o Fz, Fe)(p.z, w2, 02,6, ), (Z,0) as (T, 1) (p.uz, v2), and
12 pas p(p,z,&n), with 6(-) and D(-) defined by (4.35) and (4.36), respectively. By
13 explicit calculation, we apply (4.34)-(4.36) and (8.31) to ohtain that, for every

15 (p,2,u2,v2,§,1),

15 2

¥ (8.34) Do (Fepi+ Fe) = (p1 =P -9 =0.
17

18

e We note that (4.28) holds on Dgeex. Using (8.32) and (8.34) and expressing
— £ from {4.28), we see that i satisfies

i=1

0% ”
2 (8.35) ®(D*y, DY, Y.uz,v2,) =0 on Tapock,
22
5, Where
24 y 2
2 (8.36) (R, pz,uz, v2,m) = Y ¥y (p, 2,49, 2, ) Ryj,
o fi=1

2T is defined by (4.39) and satisfies W € C*°(sd) with W | ¢ Ggy depending only
2% onthedataand k €N, and of = Bg«(0) x (8%, 8*) x By, 150(0) x(—6¢2/5, 6¢2/5).
29 Now, from (4.34)~(4.36), (4.39), and (8.31), we find

30
5 £((0,0),0,0) = (0, 1),
32 2 P2 — P1 -
S 200000 = (-8, (B2 o) ).
34
45 Thus, by (8.36), we obtain that, on R**2 x s,
5 . . - .
5 @37 D(R. p.z.uz, v2.7) = ph(c5 — §2) Ra1 + (pz o wp’zé) nRaa
% 2
391/23.“9_m + Z Eij(PaZsuz,Uz,U)Rij»

40 i.j=1
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. of w cannot be achieved in the interior of @7, unless w is constant on QF, by

v *77 the Strong Maximum Principle. Since w satisfies the chlique derivative conditions
3 (8.28) and (8.39) on the straight segment ['yaqe and on the curve lypocy that is € 20
", In its relative interior, and since (8.24) is uniformly elliptic in a neighborhood of
"5 any point from the relative interiors of I'yeqge and I'iock, it follows from Hopf's
"6 Lemma that the maximum of w cannot be achieved in the relative interiors of Iyeqge
7" and Tgock, Unless w is constant on 7. Now conditions (8.25);§8.26) imply that
"5 w <0on Q% This completes the proof.

9

" Using Lemma 8.1 and working in the (x, y}-coordinates, we have

}L PROPOSITION 8.2, If C in (5.16) is sufficiently large, depending only on the

1—‘ data, then

4
- (8.40 by > ————x in QYN {x < 4e).
E( ) Vy Z 3+ 1) {x = 4z}
% Proof. By definition of the {x, y)-coordinates in (4.47), we have
18 _ cosd
oy (841 Yy =—sindyy + ¥y,
20122 where (r, @) are the polar coordinates in the (£, i)-plane.
2 From (7.20), it follows that, for sufficiently small & and &, depending only on
z the data,
2% n=q" forall (£,9) €@ N {ca—r < 4de},

% where {({{n™), ") is the unique intersection point of the segment {(/(n),n) 1 €
- (0, n1]} with the circle 08¢, -4:(0). Let i be the corresponding point for the case

Q of normal reflection, L.e., ii* = \/ (¢2 — 4€)2 — &2, By (3.5), 7* > /&2 - £2/2 > 0if

29 € is sufficiently small. Also, from (4.3), (4.4)and (3.24), and using Lhe convcrgencc

w0 (Os,02,8) > (7/2,62,E) as By, — /2, W AT <

ﬁﬂ and ¢ are sufficiently small. Thus, we conclude that, if C' in (5.16) 1s sufficiently 3
a2 large depending only on the data, then, for every (£, 7) € @ N {cz —r < 4}, the

33 polar angle & satisfies

34 .
— , 1 3 8¢,

35 (8.42) sinf = ——xu—=>10, |cot€|='w < e < C
g Véz”i‘??z /55_&-2

37

T From (8.413, (8.42}{3nd Lemma 8.1, we find that, on Q1 N {3 —r < s},

1,39 1 cot@ cotf
” hiﬂ (8.43) Vx = “sing " + roY z

Yy = —Clry.
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. Note that 3 € ¥ implies |y (x, ¥)| < M1x3/2 for all (x, y) € QF N{ca—r < 2e}.
2 Then, using (8.43) and (5.16) and choosing large C, we have

4
— X
3(y+1)

iYa—

Yy = - in QFN{x<2el.

Also, ¥ € ¥ implies

Moo 2g on QY N{2e <x <del,
] < Moo < S22 (20 < x < de)
9 where the second inequality holds by (5.16) if ¢ is sufficiently large depending

10 only on the da[a.le]uS,—(&‘LQ)_llolﬂSmﬂrLﬂ+ —a O
11 P e $»%~_%

12 9. Proof of the Main Theorem

;4"“ ‘Let C be sufficiently large to satisfy the conditions in Propositions 7.1, gnd
. .2, Then, by Proposition 7.1, there exist gg,& > 0 and M, My > Tjsac
tha(i\ for any ¢ € (0, og], there exists a solation ¥ € ¥H(o, &, My, M3) of pro

(5 20)-(5.33) with ¢ = . Fix ¢ € (0,0¢] and the corresponding “fixed point” @
18

T solution i, which, by Propositions 8. 158.2, satisfies
19 4
= Vel < 5 G

20
201/2——

[l oo ]e]e]

S,

|

in Q7 Nix < 4el,

3 5.6. Then, extending the funcuon @ = W + @ from Q := QT () to the whole
= domain A by using (1.20) to define ¢ in A \ Q, we obtain
25

25 @ € W™ (AN (U ,CHA; U S)NCTAY)),

loc

jw where the domains A;, i = 0, 1,2, are defined in Step 10 of Section 5.6. From

= the argument in Step 10 of Section 5.6, it follows that ¢ is a weak ZEL‘%@LEL—\ 7 )
.. Problem 2, provided that the reflected shock Sy == Py Py Pa.-A-is8 T4 clitve: ?{3

3 Thus, it remains to show that S; = Py PyPy is a C2-curve.. Byﬁ@ﬁm[l(}n

#1 of ¢ and since ¥ € ?if((r &My, M, ,/thtﬂectcd shock 51 Bg PiPyNAdsgiven J7 T

2 by $1 = (£ = fs, 00 15 <0 <[npy}, whereffp) = —va, |§!:1§1{2,§T3;">0 il
ﬂ and / R ) Y
34 : * .

v = o Ty ) AR??P)

1Py /

s defined by (4.6), and@ posfne)
"_ ~ plicit expression OW
hps by — /2. T tion fy

fipi | ’2;92, 1

39 above and the fact that (93, ca, ’g) —i ""i 2,éa,

1
75 is defined by (5.21) for ¢ = v,
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i« e /
1 Thus we need to show that fg, € Cz([@é‘,@). By {Q\’%) and {3.24), it

142

2 suffices to show that fg, is twice differentiable at the peintsfip, andyp,/

Ty First, we consider fg, near@ We change the coordifiates. o the (x, v)- o
7, coordinates in (4.47). Then, for sulficiently small &1 > 0, the curve {§ =" \\
5 {ca—é&1 <r < a4} has the form {)%}j(ﬁ\.«.a < x < &1}, where
T o fa) = { Jy) iz e

w Solx}  ifx €(~£,0),

9 with fp and f defined by (5.9) and (5.25) for ¢ = . In order to show that f,

9 is twice differentiable at p,, it suffices to show that fg, is twice differentiable at

i1

= x=0

2 From (5.26), (5.27),and (5.9}, it follows that }qu € Cl((=¢y.£1)). More- L

3 over, from (5.3), (5.6), (5.22), and (5.27), we wiile @1, @2, and ¥ ia the (x, y)- \:@

i coordinates to obtain that

i5

fry WW@,.&@D if x € (0, 1),
i . P

S I T S|
— By —g2) 7!

19
. 20 and that fi(x) is given for x € (—&1, 1) by the second line of the right-hand side

o]

“21 0f (9.3). Using (5.3) and ¥ € X with (5.16) for sufficiently large C, we have

o Uf, ()= fo ()| S CID ¥ (x, fy)|  forall x € (0,ey).

24 Since ¥ satisfies (5.30) with ¢ = v, it follows that, in the {x, y)-coordinates, v
25 satisfies (6.6) on {y = fy(x) : x €(0, &)}, and (6.8) holds. Then it follows that

z. W, fy (D] < CW (x, eI+ [, fy G = €22,
-z where the last inequality follows from ¥ € H. Combining this with (9.2), (9.4},
2 and f3,, fo € C1((=¢1.€1)) yields

Sl |f& )= fy < Cx®® forall x € (—e1.61).

31 e

52 Then it follows that f§ (x) = fy(x) is differentiable at x = 0. Since /\\
g . o - i
R ,fO c COO .-

34

3B we Concl);dgt(ha.t/f [i5 twice differentiable at x = 0. Thus, fg, is twice differen-
3 tiable a@? . o

37 In oder to prove the C2-smoothness of fg, up to{npy=""7,, we extend
g the solution ¢ and the free boundary function fg, into §4< —va} by the even
3¢ reflection about the line g C {5 = —v2} so that Pz becomes an interior point of

39— . . . .
a0 the shock curve. Note that we continue to work in the shifted coordinates defined




1l

201/, —
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1+ in Section 4.1; that is, for (£, n} such that n < —v, and (§, —2v; —n) € QT (¥), we

“2 define (¢, ¢1)(¢. n) = (9, @1) (€, —2va—n) and fs, () = —2v2—7 for g1 given by
3 (4.15). Denote Q; (Pa) = B (Po) N{E > f5,(m} for sufficiently small &1 > 0.

s From ¢ € CLeQF(¢)) N C2(Q () and (4.13), we have
pe ChUQE (PN C2 Q) (P2)).

Also, the extended function ¢y is in fact given by (4.15). Furthermore, from (5.20)
and (5.22), we can see that the same is true for the extended functions and hence

(£ S0 By ()= o <1} B (P, Smaflor
&1

fecr(fln-t 2] oo

13 Furthermore, from (1.8), (1.9) and (4.13), it follows that the extended ¢ satisfies _/’mﬁ
¥ (1.8) with (1.9} in Q;':(Pz), TETE-We-h sed the form of equation, i.e., the
15 fact that there is no explicit dependence on (£, ) in the coeflicients
16 dependence of D¢ is only through |De|. Finally, the boundary conditions {4.9)
17_and (4.10) are satisfied on T'g, (P7) 1= {§ = f5,(n)} 0 Bg, (P2). (1.8) is uniformly

& elliptic in 2F - (P3) for ¢, which follows from ¢ = @2 + ¥ and Lemmas 5.2 and /’M‘“\\
¥ 54, Condmon (4.10) is uniformly oblique on [, (P2} for ¢, which follows from '

20 Section 4.2,
2 Next, we rewrite (1.8) in Q;“l (P2) and the boundary conditions (4.95(4.10)
22 _on [y, (P2) in terms of u 1= @ —¢. Substituting u +¢; for ¢ into (1.8) and (4.10),

22 we obtain that i satisfies
24
5 F(D%u, Du,u, £,y =0 in Q7 (P2),  u=G(Du,u, £ n) =0o0nTe(P2),

Eﬁ_ where the equation is quasilinear and uniformly elliptic, the second boundary con-

o dmon is oblique, and the functiens F and G are smooth. Also, from (5.20) which
2 holds for the even extensions as well, we find that aéu > 0 on I'g, (P2). Then,

= applymg the hodograph transform of [28, §3], i.e., changing (¢§,n) — (X, }Y) =

i (u{€, 0}, ), and denoting the inverse transform by (X, ¥)— (¢, n) ={(X.Y), ¥),

2! we obtain
32 —
o ve CHE(BF (0, —v2))) N C (B (0, —v2))),

% where B;’((O, —v7)) := Bg((0, —v2))N{X = 0} for small § > 0, v(X, Y) satisfies

35 a uniformly elliptic quasilinear equation

36

pos F(D%u,Dv,v, X, Y)=0  in B ((0,~v2))

(8] |= |~ o

e
b |

38 . - iy
— and the oblique derivative condition

40 G(Dv,v,¥)=0  ondB;((0,~v2)) N{X =0},
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; and the functions F and G are smooth. Ther; from the local-€stimates near the
E boundary in the proof of [32, Th. 2], v € £ 2’“(3‘;}2((0, ;:‘Ug))). Since fg;(m) = .
5 v(0,n), it follows that f, is C?% near/n p) K
4 It remains to prove the convergence 6t the-solutions to the ne fial reflection
s solution as 8y, —> 7/2. Let 8}, — /2 as i< oo, Denete By ¢ and 1 the corre-
E sponding solution and the free-boundgey functierfespectively, i.e., Po Py PoNA for
7 each i is given by {§ = Fim e (hpy.fipd). Denote by 9 and £%(n) =§ the
¢ solution and the reflected shock for thie normal reflection respectively. For each i,
s we find that ' — g} =y in the subsonic domain Q;", where ¥ is the correspond-
10 ing “fixed point solution” from Proposition 7.1 and y' € W (x /20, ', M, M3)
11 with (5.16). Moreover, f ! satisfies (5.24). We also use the convergence of state (2)
12 to the corresponding state of the normal reflection obtained in Section 3.2. Then we
13 conclude that, for a subsequence, fi— f*in Clic and ¢’ — @™ in C'! on compact
14 subsets of {£ > &} and {£ < £}. Also, we obtain ||(D¢’, 9" )||Leoxy < C(K) for
15 every compact set K C Ago 1= {£ <&, 5> 0}. Then ¢ — ¢oo in Wlicl (Aso) by the
16 Dominated Convergence Theorem. Since such a converging subsequence can be

17 extracted from every sequence Bfu — /2, it tollows that @g, — oo as 0y — /2.
18

= —-Uz

E w

19
o Appendix A. Estimates of solutions to elliptic equations

2012
= In this appendix, we make some careful estimates of solutions of boundary

39%/2

22 yalue probiems for elliptic equations in R?, which are appiied in Sections 6 and 7.
2% Throughout the appendix, we denote by {(x,y) or (X, V) the coordinates in R?,
# by Rﬁ_ :={y > 0}, and, for z = (x,0) and r > 0, denote B;"(z) := B,(z) N Ri
# and T,(z) := By (z) N{y = 0}. We also denote B, := B,(0), B;" := B} (0), and
2 3, =50,

7 We consider an elliptic equation of the form

28

% (A} A“uxx+2A12uxy+A22uyy—i—A1ux—i-A2uy:f,
30

3t where Aj; = A (Du, x, ), Ai = 4;(Du,x, ¥}, and f = f(x,y). We study the
32 following three types of boundary conditions: (i) the Dirichlet condition, {ii) the
33 oblique derivative condition, (iii) the “almost tangential derivative” condition.

3 One of the new ingredients in our estimates below is that we do not assume
35 that the equation satisfies the “natural structure conditions”, which are used in
:SE the earlier related results; see, e.g., [20, Ch. 15} for the interior estimates for the
37 Dirichlet problem and [37] for the oblique derivative problem. For (A.1), the natu-
32 ral structure conditions include the requirement that { p|| D pAij| < C forall peR?,
33 Note that equations (5.42) and (5.49) do not satisfy this condition because of the

40 term x¢§ l(fxi) in the coefficient of ¥... Thus we have to derive the estimates




1,

20%/2
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, for the equations without the “natural structure conditions”, We consider only the
"y two-dimensional case here.
T3 The main point at which the “natural structure conditions™ are needed is the
~; gradient estimates. The interior gradient estimates and global gradient estimates
"~ for the Dirichlet problem, without requiring the natural structure conditions, were
s obtained in the earlier results in the two-dimensional case; see Trudinger [47] and
~; references therein. However, it is not clear how this approach can be extended
% to the oblique and “almost tangential” derivative problems. We also note a related
75 result by Lieberman [34] for fully nonlingar equations and the boundary conditions
1o without obliqueness assumption in the two-dimensional case, in which the Holder
11 estimates for the gradient of a solution depend con both the bounds of the solution
12 and its gradient.
13 In this appendix, we present the C2%-estimates of the solution only in terins
1% of its C-norm. For simplicity, we restrict to the case of quasilinear (A.1) and linear
1s boundary conditions, which is the case for the applications in this paper. Below,
16 we first present the interior estimate in the form that is used in the other parts of
17 this paper. Then we give a proof of the C*®-estimates for the “almost tangen-
s tial” derivative problem. Since the proofs for the Dirichlet and oblique derivative
1s problems are similar to that for the “almost tangential” derivative problem, we just
s sketch these proofs.

wr

20

21

o THEOREM A.l. Let u € C2(Bz) be a solution of equation (A.1) in By. Let
2 Ai(p.x,y), Ailp,x, y), and f(x,y) satisfy that there exist constants A > 0 and
22 @ €(0,1) such that

25

n
2% (A2) Mpl® = Y Ayp; <ATHul? forall(x,y) € Bz, pop e R?,
g I,j=1
20 (A3) 1(Aijs ADllco ey + 100 (A, Al ey + 1 e <47
29
a0 Assume that |u|| ~zm= < M. Then there exists C = 0 depending only on (A, M
o C(B2} g Oniy
31 Such that

— (A4) Iullgzeqay < CClul

34 Proof. We use the ard interior Holder seminorms and norms as defined

*_in [20, Eqs. (4.17¥%(6.10)]. By [20, Th. 12.4], there exists § € (0, 1) depending

3¢ only on A such tha

37

2 15 5,5, < CO) (Iaclo, s + 1L = A1 Dyt = Az Dyu| )
ll 1,8,B; = 0,82 T I, 101 2Daully’p,
39

= < COLM(1+IF 15, + 10Ul )-




PROOFS - PAGE NUMBERS ARE TEMPCORARY

200 GUI-QIANG CHEN and MIKHAIL FELDMAN

1 Then, applying the interpolation inequality {20, (6.82)] with the argument similar
v ER that for the proof of [20, Th. 12.4], we obtain

”u”],ﬂ,gz < C(A, MY(1+ Hfﬂgﬂ;z)

5 Now we consider (A. 1) as a linear elliptic equation

n

> aij(xhux s +Za;(x)uxi =f(x) in B

i,j=1 i=1

— with coefficients a;; (x} = A;;(Du(x), x} and ¢; = A;(Du(x), x) in Cﬁ(B3/2)
— satl‘;fymg

— "(ﬂ;;,ﬂ;)”Cﬁ(Ba/z} C(A, M).

12
1z We can assume f < «. Then the local estimates for linear elliptic equations yield

- lliczs @z < COW M) Illesp + 17 lcamsrm)-

E With this estimate, we have |[{a;;, “f)“Cﬂ(“éa) < C{A, M). Then the local esti-

;m|~ll0\ ul|4=-i(.d

15

17 mates for linear elliptic equations in Bsy4 yield (A.4). O
% Now we make the estimates for the “almost tangential derivative” problem.
e THEOREM A.2. Let A >0, @ €(0, 1), and £ > 0. Let ® € C2*(R) satisfy
S;_ (A.5) Pl 2y <A™ L
"3 and dencte Q) := Bp N {y > e®(x)} for R > 0. Ler u { B ) CI(E)

24 satisfy (A1) in QF and _
? (A6) 1y =eh(x, y)uy—{—c(x e on To:= ByN{y = sd(x)}.

g Let Ajj (p.x, yh Ai (P X, ¥ ) ,¥) L) and f(x,y) satisfy that there exists

2  constant A > O such that

28 n

o (AN MplP s Y Ay A7THRE for (x,3) €95, popeR?,
31 i,j—=1

2 (AS8)

j% 1(Aij, Af)||ca(§;7x1{2) + 1 Dp(Aij, Az‘)ilc(ﬁ-z;sz) + ”f]icw(f) <1
5 (A9) 16O sy <27

;— Assume that ||u}| < M. Then there exist (A, M, e) >0and C(A, M,a) >0

c@h =
32 such that, if e € (0, 8(})

39 — _ e
ssi/2 2 (A.10) 0l r.army < € (Wl e, + 1/ louam)

&,
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! To prove this theorem, we first flatten the boundary part I'e by defining

Y277 the variables (X,Y) = W(x,y) with (X,Y) = (x,y — e®(x}). Then (x,y) =
S UTHX, Y)Y = (X, Y 4+ e®(X)). From (A.5), we have

et

4
— (A1D) I —1d| + et - Id)

—_— —_— <
Cz.um;) CZ-‘Y(B;‘) -

&
~ Then, for sufficiently small & depending only on A, the transformed domain QDZJF =

e 111(9;) satisfies

< (A12)

9

- Qb+ RZ . .
10 B;—ZS/A - ﬁ; - Bz_:-z;/)l’ 7 Chi = {Y >0}, Bﬁ-;f“ N{Y =0} =¥(Te);

i1 .
—- the function
12

13 o(X,Y) = ulx, ¥) = u(W X, ¥))

14

15 satisfies an equation of form (A.1) n @:{ with {(A.7), (A.8) and the corresponding

1 elliptic constants A /2; and the boundary condition for v by Iiei{aea%eniari'm‘%@
17 18 ’

15 (A13)
o vy =eB(UTHX,0) + D (X)vy +e(TTHX.0)v  on BT N{Y =0}
20 —

W2, it is of form (A.6) with (A.9) satisfied on @3 with elliptic constant A/4.
22 Moreover, by (A.11) and (A.12), it suffices for this thecrem to show the following
55 estimate for v(X, ¥ ):

24
2 » _
w D Wl g <COM (Wl sy, + 1S sy, )

26

o Thatis, we can consider the equation in B;mzs/,l and condition (A.13) on Za_5./2
28 or, by rescaling, we can simply consider our equation in B;}' and condition (A.13)
20 on Xp:= BaM{¥ = 0}. In other words, without loss of generality, we can assuine
30 ® =0 in the original problem,

3 For simplicity, we use the original notation (x, v, u(x, y)} to replace the no-
32 tation (X, Y, v(X, ¥)). Then we assume that & = 0. Thus, (A.1) is satisfied in the
33 domain B;’ , the boundary condition (A.6) is prescribed on X2 = Ba Ny = 0},
34 and conditions (A.7)—(A.9) hold in B; . Also, we use the partially interior norms
35 [20, Eq. 4.29] in the domain B;’ U X, with the related distance function d; =
g dist(z, 3}32+ \ £2). The universal constant C in the argument below depends only
37 on A and M, unless otherwise specified.

g As in [20, §13.2], we introduce the functions w; = D;u fori =1,2. Then we
39 conclude from (A.1) that w; and w; are weak solutions of the following equations

39Y/2 X
a0 of divergence form:
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15

16

17

18

19

20
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3

39
Ry —
" for B = min(#, &). Rescaling back and using (A.17), we have (A.20).

21

22

23
24

26

27

28

29

30
31
32
33
34

35

37

38
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(A15)
A 2412 f Ay
Dyl — Dy + Dowy |+ Dasurg = Dyl — - —D1u
1(A22 1 Ara 2u 22U 1 Aos Az 1
(A.16)
2412 Azz ! A1
Dijws + Dol ——==Dyun + —=Dqws | = Dz| — ——D1u
e 2( A1t At 24y An
From (A.6), we have
(A1) wy =g on Xa,
where
(A.18) g 1= ghwy + cu for By .

We first obtain the following Holder estimates of Du.

A
~ 2 Dpoul,
Aaz

LEMMA A.1. There exist f € (0, ] and C > O depending only on A such that,

forany zg € B;' U Za,

B
(A 19) dZU [wI]G"B,deoflé(ZO)nB;

B
< C(IDw. Nlo 5, ot + (810,6,245,2Gon32 )

Proof. We first prove that, for z; € Z» and B;‘R (z1) C B;,

g (A.20) Rﬁ [wE]O,ﬁ,B;}E(zl) = C(H(Dlt, Rf)HO,U,B;R(Zl) + Rﬁ[g]o,‘g,B;”R

We rescale u, w1, and [ in B;’“R(zl) by defining
1 n
(A21) ﬁ(Z)zﬁ;u(zl+2RZ), J(ZY=2Rf(z+2RZ)

and w; = Dz, {i. Then ) satisfies an equation of formAA.15) in
replaced by ## whose coefficients A;; and A; satisfy (A.7)5(A.8) wj

with u
2 D) unchanged
T2 constants (this holds for {A.8) since R < 1). Then, by the ellipti versio;ncﬂ/

(it can also be obtaingéd by using

Th. 6.33] stated in the parabolic setting

amd|

36,
(36,

Lemma 4.6] instead of [20, Lemma 8.23] in the proofs of [20, @ 8.2758.29] 0
36 achieve @ = ap in [20, Th. 8.29]), we find constants S(A) € (0, 1) and C(4) such

that

(1l .55, < C (1608 Dllgg g +inlos,m015-01)
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, Letpe CH(Bap(2)) and ¢ = n?(wy — g). Note that { € Wy (Bar(5) N BF ) by

2 (A.17). We use ¢ as a test function in the weak form of (A.15):

5 (A28) ,
1 .
i (—ZAI-DmH) Dy¢dz,

1
Ay Diung D dz_f
];F‘* A22 Z if 1 Jé' P

By

-

3

) £
7 and apply (A.7), (A.8),and (A.23) to obtain "”@6"0
+ S )
9 (A29) U | Dws [*9* dzl<Cfﬁ(rﬁ—{—a)llelz—i—eiDzui )

o NWWW,__«.—A—..WM

i1 B
- | (% + f) (DAl + 1) ws — )% + (Duf> + tut2+f2>n2))dz, %

E where C depends only on A, and the sufficiently small constant § > 0 will be chosen

5 i F
"1""6“"" below. Since :% /éq }&5
o (A30) Dy = (D11u)® + (D12u)?, T

18 it remains to estimate | Daau|?. Using the ellipticity property (A.7), we can express
19 Daqu from (A1) to obtain

22

23 Combining this with (A. ZQWO) yield

2 f |D2uidz < CG) f LD +1Doul® + | Dul + [z,

24

;A?)l f D222d4<Cf 8§y D? f
25( ) {D%ul™n (8+ ND*ul?n @é’fﬁ/‘;

i

% ‘% ( +1 ((|Dnf? +n2)(w1—g)2+(fDu[2+EuE2+f2)?72))d2- T

b ;.

& FA N
* Choose gp = § = (4C)™!. Then, when ¢ € (0, &), o AN 5’“’)
2 (A32) e
= f DhuPdzsC [ (D1 P = H(DuP 1) d
14
5 Now we make a more specific choice of #: In addition to 9 € CJ (Bar(2)),

35 we assume that n = 1 an Br(%), 0 < 7 < 1 on R?, and |Dn} < 10/R. Also,
3 since Bar(2YN I # @, then, for any fixed z* € Bar(2) N £z, we have {z—z%|
s < 2R for any z € Bap(3). Morcover, {w; — g){z*) = 0 by (A.17). Then, since
1 Bag(®) C Ba, 16 (z0), we find from (A.19), (A.24), and (A.27) that, for any z €

E Byr(2) N B,
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[(wy — ) (2)]
= l(wy — &)(z) — (w1 — ©E™)| < |wi(2) — w1 (") + |g{z) —g(z")]

i g B _ %8
<7 (D, D2, ozt + alslo p 5 miacinny )= 7]

]z—z*|'6

+[g10,ﬂ,3d20/2(20)ﬂ35€'

i : :
<C d—ﬁE!(D”ff)”o,o,de(,fz(fo)ﬂﬂi +5[Du]o,ﬁ,B@n/z{zo)ﬂB§“ v
; 5%: THwn
8
“i‘Hu”O,(}!deO/z(Zn)ﬂB;)R I

;" Using this estimate and our choice of i, we obtain from (A.32) that

13
= [ | D2u)?dz
“  Jppenat

15

1 2 2( 12 25
v =<C (P—EH(DL!’f)ﬁD,O,deO/l(zu)nB;' + [Du]eﬁﬁ,Bd:G”{ZU)nt) R
Zp

i7

18 2 2 28 z
19 +C (liunl,(},den,fz(zo}ﬂB;r + ”fHO,U,deO/z(Zu)ﬂB;) (R + R,

2% which implies (A.26) for case (i).

2 Now we consider case (ii): £ € B and R > 0 satisfy Br(£) C By, 32(20)

2’;; and Bzg(2) N S2 = @. Then Bar(2) C Ba, j16(z0) N BF . Let n € CJ(Bar(2))

- and { = (w1 — w1 (£)). Note that £ € W, *(BF) since B2r(2) C B . Thus we

o can use { as a test function in (A.28}. Performing the estimates similar to those

o that have been done to obtain (A.32), we have

— (A33)
® f _ID2uPidz <€) [B (DA +) w1~ w1 (2D +( Dul+ £ 2% dz.

—JB
29 2
30 Choose € C} (Bogr(2)) sothatp=10n Br(2),0<7<10nR? and |Dn| <10/R.

31 Note that, for any z € Bagr{Z),

FlElefeiv]eafefols]n

32 .
= ai<clllin J

e - < Cli— ,

m lwi(z) ~wi(E)| < aE 1D, fHlo,0,8,,, s2tz030BS L }fj
35

36 B

® iDu}ﬂ,ﬁ,Ba’zO/z(Zo)ﬂﬂj) R

37 ‘

% by (A.19) since Bar(2) € By, j16(20) M BF . Now we obtain (A.26) from (A.33)

39 Zo/ 2

*7. similar to that for case (i}, Then Lemma A.2 is proved. |

40
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Lt LEMMA A.3. Let 8 and eg be as in Lemma A.2. Then, for ¢ € (0, go), there
Ve exists C(A) such that

3
L0 W0, <0 (0 s L g, 1 Tunay )

5
— where [1* and || - ||* denote the standard partially interior seminorms and norms
— [20,Eq. 4.29].

8 Proof, Estimate {A.34) follows directly from Lemma A.2 and an argument
9 similar to the proof of [20, Th. 4.8]. Letzy, 22 € B;r with dy| S dg, (thus dz ;, =
10 d;)andlet |2y —z| £d; /64 Then zz € de()/32(20) N B; and, by Lemma A .2
i1 applied to zg = z1, we find

12

5 z].;.f | Du(z1) — Du(z2)]

v R

. 1+8 /

s =C zlHqu,G,delfz{Zl)ﬂB; +ed; [Du](?,ﬁ,de}/z(zl)ﬂB;r /- i
16 4

v 170,084, ez )

18

— * * §

o = o, W o)

20
201/3; where the last inequality holds since 2d; = d;, foraliz € del/z(zl) n B;. It

0 Z1,I2 € Bz‘" with d;, <dz, and |21 —z2| > dz, /04, then

= J1+B | Du(z1)—Du(z2)|

<64(dz, | Du(z1)|+dzy | Du(z2)) 64 [ul]

Yz 21— 22| 10,35 ULy
25 O
26

o Now we can complete the proof of Theoremn A.2. For sufficiently smail 8o > 0
w depending only on A, when £ € (0, &), we use Lemma A.3 to obtain

B9 s, <O (0 ppon, + 1 ooy )

2L We use the interpolation inequality [20, Eq. (6.89)] to estimate

2

- * *

34

5o for & > 0. Since § = p(&), we choose sufficiently small 6(A) > 0 to find

% . |
= (a3 117 5 p5a = €O (Il 3 + 17 0,5

g from (A.33). In particular, we obtain a global estimate m a smaller half-ball:

1,32
22 (A37) 111, ,55,, < €O (Il 0,55 + 1o 0,5 )
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4 We can assume 8 < «. Now we consider (A.15) as a linear eiliptic equation

11/2_

2

il 2
3 (A38) Y Dilaij(x,»)Djwi) = D1F  in B,
Pj=1
wherea;j (x, y) = (Aij /A22)(Dulx, y), x, yYfori+j <4, azp=1,and F(x, y) =
7 (A1D1u+ A2 Do+ f)/ Az with (A5, A7) = (Ai;. Ai)(Du(x, ¥), x, y). Then
{A.36), combined with (A.8), implies

elef=le -]

E(A.39) ||ajji]0)ﬁ}B;}5 < C(A, M).

il

= From now on, ¢, denotes the distance related to the partially interior norms in
o Bg/5 U X5, e, forz € B;}s’ dy .= dist(z, BBS;';S \ Zg/5). Now, similar (o the
7= proof of Lemma A.1, we rescale (A.38) and the Dirichlet condition (A.17) from
15 theballs B (z}) C 89/5 and Br(z1) C B;,;S with R < 1to B= B or B = By,
1z respectively, by defining

7 -
e (i, &, di i M Z) = (w1, g ai; W z1+RZ), F(ZY=RF(z1+RZ) for ZeB.

¥ Then 22 i1 Dildij(x, y)Djiy) = DiF in B, the ellipticity of this rescaled

207‘12g equation is the same as that for (A.38), and |4, |l g p = C for C = C(A, M) in

39/,

” — (A.39), where we have used R < 1. This allows us to apply the local C > LE interior
o and boundary estimates for the Dirichlet problem [20, Th. 8.32, Cor. 8.36] to the
2— rescaled problems in the balls B3d /3(26) and By, /s {zg)asinLemmaA.l. Then,

— scaling back and multiplying by dzO, applying the covering argument as in Lemma
— A.l, and recalling the definition of F, we obtain that, for any zp € B 9/5 U Zg/5,

27

2 (A40) A2 B wi)
29
30 =C

31

d? [w
1B, Bazys16(z0NB s T zol I]I,G,Bd,:n/ls(zu)ﬂB;}s

ZUIEDuHU,O,deU,fz(ZU)ﬂB;s + d [ ]l,ﬁ,deofz(Zo)ﬂBg}s

32

33 k+1
o Z d [g k,0,Bg, /0(20){739/5)
3“ k=0,1 ¢

35
36 where we have used d;, < 2. Recall that Dwy = (D1u, Disu). Expressing Daau
; from (A.1) by using (A7), (A.8)and (A 36) to estim

38 in terms of the norms of Dyqu; Doz, ‘and Du, and by using (A. 18) and

39 estimate the terms involving g in (A.40), we obtain from (A.40) that, for every '

fe]

- +
ﬂZOEBQﬁUEz,

¢ the Holder norms of Dzzu, _
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2+ 4 2
11/2L dzy " [D7uly B.Bazy 162000 B + dzﬂ [D* H]O 0,Buy, ne(za)NBY, 5
2
3 = ClHz, lfDltllc(deOp(zc;}nB s) +dzo Plu I BBy r2(z0) B 5
4 ¢ At
w;m dzo HUH lxoadeU/Z(ZO)ﬂB;:fs + H f”O,,B,BdZ /2(20)039,15 &: (?/M}
T 248 2 i
o (@D 5, oty T 40P 005, aeonss))
7

1

~, From this estimate, the argument of Lemma A.3 implies
““9“” (A41)

0 < .
10 s m, 5 (1905 5.5 ms 1005 5+ 1 Mo 5.
12 Thus, reducing gp if necessary and using {A.37), we conclude

13
Daa) Il e g, SCOMUy gr 417l g )

g Estimate (A.42) implies a global estimate in a smaller ball and, in particular,
16 [Eulg 8,55, <C(A, M)(ilulio B} +1| f'[EOﬂ B+) Now we can repeat the argument,

= whlch leads from (A.37) to (A.42) with g replaced by @, in Bs /s (and, in particular,
— further reducing &g depending only on {4, M, ¢)) to obtain
18

Mg 15 5 ms < OO M, (Il 5+ 1 o 5)
o7 which implies (A.[4) and hence (A.10) for the original problem. Theorem A.2 is
23 proved. O
il Now we show that the estimates also hold for the Dirichlet problem.
% THEOREM A3, Let A > 0andw € (0,1). Let & € C**(R) satisfy (A.5) and

27 Q% = Brn{y > ®(x)} for R > 0. Leru € CHQT) N C(Q7) satisfy (A1) in
22 Q23 and
EEW 2 an

i (A43) =g on I'g = Ba{y = ®x)},
31 31 where Ay = Aj; (Du,x,y) and A; = A (Du,x,y), i, ] =1,2, andf— —
32 3z satisfy (A, 7&’) and g = g(x, y) satisfies I _______ _ /»Mw,,z

=1

33
2 (Add) [T

3

g with (A, o) as defined above. Assume that E[uE[C(Q+) < M. Then
36 -

T (A4 — < C(LM — — — ).
A4 gy < C0 M) (e, + 1 e, 1€ )
39 Proof. By replacing u with ¥ — g, we can assume without loss of generality

: a0 that g = 0. Also, by flattening the boundary as in the proof of Theorem A.2, we
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., 1 can assume @ = 0. That is, we have reduced to the case when {A.1) holds in
! /.,___ B; and ¥ = 0 on X». Thus, uy = 0 on Zz. Then estimate (A.45) follows from
"3 Theorem A2, O

We now derive the estimates for the obligue derivative problem.

THEOREM A4, Let A > Qand o € (0,1). Let @ € C2¥(R) sarisfy (A.5) and
QF = BrN{y > ®(x)}for R > 0. Letu € CHQT) N CHQT ) satisfy

oo e lo]s o]

(A.46) Al1tixy +2A 1210y + Aoatlyy + Agitx + Aty =0 in Q7
5 (A47) biux +bauy +cu=0 on g = BN {y = d(x)},

— where Aij = Ay (Du,x,¥) and A; = Ai(Du,x,y), i, ] = 1,2, satisfy (A7
(A 8), and b; = b; (x, v),i=1,2, and ¢ = c(x, y) satisfy the following obliquenes
- condition and C V*-bounds:

15 (AA48) balx,yY= A for (x.y) € Ip,
(A4 bi.ba, ¢ — <il
- (A.49) (b1, b2 C)llci‘u(nﬂu)_
18 Assume that ||u| ¢ &1‘} < M, Then there exists C = C(A, M, &) > 0 such that
i
20, (450 ¥l g2 < CIl oy

21

;‘2" Proof. Step 1. First, we {latten the boundary "y by the change of coordinates

A (XY =Py =y — (D(x)) Then (x, y} = ¥~ (X, Y)Y = (X, Y + ®(X)).
20 From (A5), [i@;]czam ot 197 |\C2a@+}5€(l) where @3 := ¥(Q]) sat-

g (A7), (A8) @ . A 49) are satisfied with modified constant i>0 depend-
%ﬁgml—yen’l. Also, ¥l g4y < M. Thus, (A.50) follows from
A0 _
w (ASD) 100} g gt up, < O M@l g
32
o Next we note that, in order to prove (A.51), it sufficest0 prove

ﬂ\g T K and C depending only on (L, M, «) such that, if v
J — B and ¥4 1= By N{y = 0} respectively, (A.7), (A n_

(A.48), 9 hold in
o B+ and |v| < M in Bf, then

i (A.52)

38
39 Indeed, if {A.52) is proved, then, using also the interior estimates {A.4) in Theorem
20 A.1 and applying the scaling argument similar to the proof of Lemma A.1, we

Wl enaigis < CWlces)

39%/5—
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, obtain that, for any zg € @; U 3,
24-a s
2 [EvElcz.a(BdZO,(mK)(zU)ngb;) =C HI’HC(B%;z(zo}naj)‘

B

% From this, we use the argument of the proof of Lemma A.3 to obtain (A.51).
Thus it remains to show {A.52). First we make a linear change of variables to

—- normalize the problem so that
7

5 (A53) B(0) =0, h{(0)=1 /“ﬁ\)
for the modified problem. Let > 2 _

= i
(X, ¥)="¥(x,y):= w(bz(O)x —b10)y.y). -

o|w

- Then

5 ()= ) = (X OV ha@pr D +IDE < CO),

— where the estimate follows from (A.438 ( 493 Then the function w(X,Y) 1=
P v{x,y} = ng + b5 (MY, b2(0)Y) 15 8 sFélt' n of the equation of form (A.46) in
.5 the domain W(B 1+ } and the bougdary-etndition of form (A.47) on the boundary part
o \IJ(E}) such that (A.7), (A.8 (A.48),AA.49}) are satisfied with constant is0
5 depending only on A,and{A753} holds, which can be verified by a straightforward
%5 calculation. Also, ||w[£c(q,(3£p)) <M.

23 Note that ¥(B]) C R2 :={¥ > 0} and (Ty) = 8U(BHN{Y =0}
2+ Moreover, since | D]+ DY < C(A), there exists K1 = K1(L) > 0 such that,
s foranyr >0, Byyg, C (B C Bg,r. Thus it suffices to prove

206

a E[wHCla(a) = C”wHC(B;?)

28 . « .

o fOT some r € (0, 1/K;). This esti s {A.52y with K =2K/r.

0 Step 2. _Asatesult of the reduction performed in s{e“ﬁf?”ﬁm to prove

i the following: There exist & € (0, 1) and € depending only on (A, ¢, M) such

32 if u safijfies (A.46) and (A.47) in B;; and on X, respectively, if (A7), (A.8)land

33 (A.48),/{A.49) hold in B;;, and if (A.53) holds and [Eu[EO B, < M, then 7~
»M2e

34

» el g g+ < Clielly
36

a7 We now prove this claim. For £ > 0 to be chosen later, we rescale [rom B;"E
3 1o B; by defining

39

{A.54) vix, y) = é(u(sx,sy) —u(0,0)) for (x,y) e By.

40
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L1 Then v satisfies
1/ g

2 (A.55) gllvxx +2/’1~12ny + A}zvyy —1—/1'11),{ + sz?.)y = {in Bé{",

3 ~ -
W (A.56) vy = bivyx + bavy + Ev - cu (0,0fn 2a, /
& where
Ll

, Aij(p, x, ¥y = Aij(p,ex,y), Ai(p,x,y) = eAi(p,ex,ep),
8 bi(x,y)=—hi(ex,ey), ba(x,y) = —ba(ex,ey) +1, Elx

we have
12 (A5T) (b1, ba, E)”;,Q,Bj <Ce¢ for some C = C(4).

Now we follow the proof of Theorem A.2. We use the partially interior norms
7+ 120, Equation 4.29] in the domain B U X, whose distance function is d; =
1 dist(z, BB;' \ 25}, We introduce the fanctions w; = Djv, i = 1,2, to conclude
17 from (A.55) that wy and w, are weak solutions of equations

13 =~ - T T
® A 24 A A
19 (AS8) D (—A#Dlw1+ij}w2-D2wl)+D22w1=—D1 (A_—lDlv+~—2D2u) ,

20 22 22 22 Az
ey 24 i i i

i 12 22 1 2

— (AS59) Driws+Ds = D+ —=—Daws == Dy | == Djv+4—"-Dav

22 An An A1l A1l

23
ba N B; , tespectively. From (A.56), we have

2 (A.60) wp=§  onZ,
26

27 where 7 := byux +52L‘y + &v 4+ ¢u(0, 0} in B;"

"y Using (A.59) and the Dirichlet boundary condition (A.60) for w; and fol-
2 lowing the proof of Lemma A.1, we can show the existence of 8 € (0, ] and C
30 depending only on A such that, for any zg € B;” U s,

n

— B

£ {A61) dzo [wz]OJ.Bsdeojls(zo}nt"

a2 B 3

v = C(E[DU”O,B@OQ(ZU}HB;‘ -+ dzo{é]ﬂ!ﬁ,deDf,z(zO)ﬂB;).
35 Next we obtain the Holder estimates of Dv if ¢ is sufficiently small. We first
3 note that, by (A.57), 7 satisfies

37

& (A62) |Dgl<Ce (wzm L 1Dvl+ |+ i]u||0’B;+) in B},

39 =
9222 (AL63) Elo.p. 5o, 2ot = Ce (19155, ooty + Ielg 52 )
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; for C =C(A). The term | u "{) B, in (A. 62 {A.63) comes from the term cu (0, 0)

2 in the definition of g. We follow the proof of Lemma A.2, but we now use the

"5 integral form of {A.59) with test functions ¢ = n?(wp—§) and { = 1* (w2 — wa(2))
"2 to get an integral estimate of | Dwsz| and thus of |D;jv] for i + j > 2, and then
5 use (A.55) to estimate the remaining derivative D;v. In these estimates, we use
s {A.61)—(A.63). We obtain that, for sufficiently small £ depending only on A,

7 3
& (A.64) dZBU[DU]Q’MS C(HUHC1 (3420/2(20)083”}
9 %’/

1Y

B
o A edB (DL, g 5 ry el 5 )

11
1o forany zg € B;’ U %,, with € = C(A). Using (A.64), we follow the proof of

1, Lemma A.3 to obtain

g (A.65)

15

*
P1 g auz, = CURN o prus, 60005 pros, + el 5z

2{ Now we choose sufficiently small £ > 0 depending only on A to have
17

%*
) 017 5 5 g, <€) (IIvEIE,O’B;UEZ

19
20 Then we use the interpolation ;nequal:t i

201 /g —omm
21
2 (A66) ollf 5, Biuz, =
= By (A.54) with & = e{4) as chosen above (A.66) implies C{}‘)
,M
35, (A67) ilulli,,s,Bz““;uBQE =Clully py-
26

? Then problem {A.46) and (A.47) can be regarded as a linear oblique derivative

2 problem in B., /4 whose coefficients a;; (x, y):= Aij (Du(x,y),x,yyand a; {(x, y)

29 := A; (Du(x, ), x, y) have the estimate in C%# (B.f 574) by a constant depending
0 only on (A, M) from (A.67) and (A.8). Moreover, we can assume f < ¢ so that
. (A.49) implies the cstimates of (;, ¢} in C1E (BT ) with & = £(A). Then the

Te/
g standard estimates for linear oblique derivative problems [20, Lemma 6.29] imply
33
34
. <=C{A, M
5 (A.68) el pmg, < COMYully gy

36

37 In particular, the CO“(B /2) norms of the coefficients {a;;,a;) of the lmear

38 (A .46) are bounded by a constant depending only on (A, M), which implies
1,39
i el g, 5 < L M)t gy
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1 by again applying [20, Lemma 6.29]. Tllif implies the assertion of Step 2, thus
O
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