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Hyperbolic Systems of Conservation Laws

0

atu1+axﬂ(u1 Um) — 0

Dl + (U —

ot Ym Ox 1 Um) —
u—(ug.--- ,um)T c R™ conserved quantities

f(u) = (fA(u),--- . fm(u))’ fluxes



Euler equations of gas dynamics (1755)

( o+ (pv), =0 (conservation of mass)

(o) + (2 +p); =0 (conservation of momentum)

e

| (pE )i+ (pEv+pv), =0 (conservation of energy)

p = mMass density v = Velocity

E =e+v?/2 = energy density per unit mass (internal + kinetic)

p=ypl(p.e) constitutive relation



Hyperbolic Systems

u; + f(u), =0 u—u(t,x)eR"
u; + A(u)uy, =0 A(u) = Vf(u)

The system is strictly hyperbolic if each m x m matrix A(u) has real
distinct eigenvalues

,:\1 (l]) < ;\2([]) e <A m (U)
Right eigenvectors ri(u).--- .rp(u)  (column vectors)
Left eigenvectors li(u), - .In(u)  (row vectors)
AI’; — A;r; I;A — )\jlj

Choose the bases so that

1 if i =
li-rj = L
{O if 1 # |



Invariance of Hyperbolicity under Change of Coordinates

o Let u be a smooth solution of the strictly hyperbolic
system

u: + A(uju, =0 in Ry x R

o Assume ® : R — R"™ s a smooth diffeomorphism,
with inverse W

Then w := ®(u) solves the strictly hyperbolic system

w; + B(w)w, =0 in Ry xR

for B(w):=Vo(V(w)AV(wW)V¥(w) weR™ |




Dependence of Eigenvalues and Eigenvectors on u

Theoem . |

Assume that the matrix function A(u) is smooth, strictly
hyperbolic. Then

o [he eigenvalues )\ (u) depend smoothly on
ucR”" k=1---.m

o We can select the right eigenvectors v, (u) and left
eigenvector |, (u) to depend smoothly on u € R" and
satisfy the normalization

@) k(u) =1 k=1,---.m

*We are not only globally and smoothly defining the eigenvalues and
eigenspaces of A(u), but also globally providing the eigenspaces of
A(u) with an orientation.




Linear Hyperbolic Systems

u; + Au, =0 u(0. x) = ¢(x)

A1 < -+ < A, eignevalues ry.--- .r, eigenvectors

Explicit solutions: Linear superposition of travelling
waves

u(t,x) = Z bi(x — \it)r; bi(s) = 1; - ¢(s)
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Nonlinear Effects

ur + A(u)ux =0

eigenvalues depend on u — waves change shape

u(0)




eigenvectors depend on v

=

nontrivial wave interactions
t

linear

nonlinear



Loss of Regularity

u; + (42/2),, =0 us + uu, =0
f(u) = u?/2 characteristic speed: f'(u) = u
u(0) u(t)
ol NI 7 % o
,f"‘{ \ ~ r
/". ., T i ‘
}‘,/ /‘./ \ 1 g -~ l‘
/L/ N .
o \\_ N -

Global solutions only in a space of discontinuous functions



) > 3
{ % =, —> X=X +Ulg)t B

%‘-.:‘-,- =0—> U= u.(x) Jal2
)( - X1
K‘xt)’uo‘x’

kjgew 't’—" t.*- >0 u“‘ x) I$ Hdt V;uel/




Smooth Solutions — Evolution of Wave Components

u: = —A(u)u,
Ai(u) = i-th eigenvalue, [;(u), r;(u) = i-th eigenvectors

u’ :=1; - u, = [i-th component of u,| = [density of i-waves in u]

m
u, — Z u' ri(u) Z)\ u! ri(u
i—1

Differentiate the 1st equation w.r.t. t and the 2nd w.r.t x
— Evolution equation for scalar components 1/ :

(), + (), =Y (N — )\k)(l,- )

J>k



Source Terms

(% = M) (1 [, mid ) ul
—amount of /-waves produced by the interaction of
J-waves with k-waves

Aj — Ar =|difference in speed]

—[rate at which j-waves and k-waves cross each other]
u/ u"= [density of j-waves]x [density of k-waves]

v re] =(Vrg)ri — (Vrj)r,  (Lie bracket)
= [directional derivative of ry in the direction of r;]
—[directional derivative of r; in the direction of r]

l; - [rj. ri]= i-th component of the Lie bracket [r;. r]| along
the basis of eigenvectors {ry, -« ,r,}




Shock Solutions

u; + f(U)x — 0
u- f x < At . _
u(t,x) = | is a weak solution
u" if x> At

if and only if the Rankine-Hugoniot Equations hold:

AMum —u ] =f(u") —f(u)

[Speed of the shock]x[Jump in the state] = [Jump in the flux]



Derivation of the Rankine - Hugoniot Equations

gl = /./{uqzbt-i—f(u)(;')x} dxdt = ‘/./Q{_‘Q_ div (u¢, f(u)¢) dxdt

:/ n*-vds—i-/ n -vds
Jaq+ Joaq—

- / [A(u‘ —u) = (F(u") — f(u-))] o(t, \t) dt .




Alternative Formulation

AuT —u") = f(u™)—f(u)
= VE(u™ —u™) - (u” —u")dd
= lﬂ\(uJr ) - (uJr —u’)
A(u,v) = [ VF(Ou+ (1 —0)v) - (u—v)do
=[averaged Jacobian matrix]

The Rankine-Hugoniot conditions hold if and only if

A(u"—u )=Au",u)(u” —u’)

o The jump u™ — u™ is an eigenvector of the averaged
matrix A(u™.u")
o The speed \ coincides with the corresponding eigenvalue




The Rankine-Hugoniot condition for the scalar

conservation law u; + f(u), =

At

I

u’

u L}

\ — f(ut) —f(u™) _ 1 _ /“ (s) ds

ut —u— ut —u

[speed of the shock] = [slope of secant line through u—, u™ on the graph of f]

= [average of the characteristic speeds between v~ and u™]



Points of Approximate Jump

The function u = u(t, x) has an approximate jump at a point (7.&) if

there exists states u” = u™ and a speed \ such that, setting
u- if x < At
U(t,x) =< |
u if x> At

T+p pé+p
there holds: lim, o lf ’rf (

SR -

If u is a weak solution to the system u, + f(u), = 0, then the
Rankine-Hueoniot eauations hold at each point of approximate iump.



Construction of Shock Waves

Problem: Given u= € R™, find the states u™ € R™ which, for some

speed )\, satisfy the Rankine-Hugoniot equations:
AMum—u ) =f(u")—f(u)=A(u ,u)(u” —u)

Alternative Formulation: Fix i € {1,--- . m}. The jump u®™ —u~
is a (right) /-eigenvector of the avergaed matrix A(u~.u™) if and only

if it is orthogonal to all (left) eigenvectors |;(u™,u~) of A(u=.u™):

l(u ,u™)-(u"—u")=0  forall j#i

Implicit Function Theorem = For each /, there exists a curve
s — Si(s)(u™) of pints that satisfy (RH);.



Non-uniqueness of Weak solutions

Example: a Cauchy problem for Burgers' equation

. 1 if x>0
2 _ _ =
ur + (0°/2), =0 u([]._,:r:)—{ 0 £ =0
Each a € [0, 1] yields a weak solution
0 if x <at/2
u.(t.x) =14 o if at/2 <x < (1+a)t/2
1 if x> (14 a)t/2
x=0 t/2
p=u
I . u=10




Admissibility Conditions on Shocks

Uf + f(“)x — 0

o Solutions should be stable w.r.t. small initial
perturbations

o Solutions should be limits of suitable

approximations and/or physical regularisations
(Vanishing viscosity, relaxation, - - )

o Any convex entropy should not increase



Stability conditions: the scalar case

Perturb the shock with left and right states u—, u™ by inserting an intermediate
state u* € [u—, u™]

Initial shock is stable <—
[speed of jump behind] < [speed of jump ahead]

f(u*) — f(u™) - flu™) —f(u*)

€

u*r — u— - ut —u?

+
U u=
—_—
—
u*-
e
1 r—
_ - -+
u u-
X X




speed of a shock = slope of a secant line to the graph of f

Stability conditions:

@ when v~ < u™ the graph of f should remain above the secant line

@ when v~ > u™, the graph of f should remain below the secant line



General stability conditions

Scalar case: stability holds if and only if

f(u*) — f(u™) - flu™)—f(u™)

u* — u— - ut —u—

for every intermediate state u™ € [u™, u™]

i)
() e




Vector Valued Case: ut = S;(o)(u™) for some o € R

Admissibility Condition (T.-P. Liu)

The speed \(o) of the shock joining u™ with u™ must be
less or equal to the speed of every smaller shock, joining
u~ with an intermediate state u* = S5;(s)(u™),s € [0, o]:

AMu~.u") < A(u™,u")

o [he Liu condition singles out precisely the solutions which are
limits of vanishing viscosity approximations

u; -f(u’)y =cu, v —u asec—0



Admissibility Condition (P. Lax)

A shock connecting the states u™, u™, travelling with speed A = \;(v™, u™)
is admissible if

Ai(u™) = N(v—,u™) = N(u™)

x=Y(t)

@ Geometric meaning: characteristics flow toward the shock from both sides

@ The Liu condition implies the Lax condition




Mathematical Entropy — Entropy Flux

u; + f(U)X — 0

Definition: A function 7 : R™ — R is called an Entropy,
with Entropy Flux g : R — R if

Vi(u)VF(u) = Vg(u)
For smooth solutions u = u(t, x), this implies

n(u)e+q(u)e = Viy(u)u, + Vg(u)u,
= —(Vn(u)Vf(u))u, + Vg(u)u, =0

— 7)(u) is an additional conserved quantity,
with flux g(u)



Existence of Entropy — Entropy Flux Pairs

Vn(u) VE(u) = Vg(u).

on .. o

on Jn | duy O ( Jq dq )

E) Ul (:) u”] m . é} If”_‘ (i) U]_ (i) u”'}
duy O,

o A systems of m equations for 2 unknown functions:
)(u) and g(u)
o Over-determined if m > 2

o However, most of physical systems (described by

several conservation laws) are endowed with natural
entropies



Entropy Admissibility Condition

A weak solution u of the hyperbolic system
u; + f(u), = 0 is Entropy Admissible if

n(u)e + g(u), <0

in the sense of distributions, for every entropy-entropy flux
pair (17.q) with V?5)(u) >, i.e. convex.

// {:;(u);t + q(u);x} dxdt > 0 peCr p>0

o Smooth solutions conserve all entropies
o Solutions with shocks are admissible if they dissipate
all convex entropies



Consistency with Vanishing Viscosity Approximations

u; + f(u”), = cu; u"—u ase—0

XX

For any entropy-entropy flux pair
(7(u), g(u)) V(u) > 0,
multiply V7(u”) both sides of the system yields

Nu)e + qu) = en(u)n — e(uy) " Vo(uf)u,
=n(u®)y — 0

JA

In the sense of distributions.



Pressureless Euler Equations

Oep + O (pv) =0, Oe(pv) + E)X(pv2) —0

4 T = i
— p_, @< ot
Ir-:I — t-f:llﬁ_r_nl' + { P_l_., T } G_f
l: s TJ_}I (p by L'_!_)
=X
v_ > I‘+




Isentropic Euler Equations  Pressure Function p(p) = kp?

dep + O (pv) = 0, O:(pv) + Oy (pv? + p(p)) =0




Isentropic Euler Equations  Pressure Function p(p) = kp?

Oep+ 0 (pv) =0, de(pv) + A (pv? + p(p)) = 0




Global in Time Solutions to the Cauchy Problem

u, + f(u), =0, u(0, x) = u(x)

o Construct a sequence of approximate solutions {u”},-;

1
loc

o Show that (a subsequence) converges: u” — uin L
e Show that the limit u is an entropy solution.

I/

L
2
u’ u m

JJ|_L“-

Y
|

Need: a-priori bound on the total variation (J. Glimm, 1965)



Building Block: The Riemann Problem

u- x <0

u, + f(u), =0, u(0,x) = {
u’ x >0
e B. Riemann 1860: 2 x 2 Isentropic Euler equations

o P. Lax 1957: m x m systems (+ special assumptions)
o T.-P. Liu 1975: m x m systems (generic case)

*The Riemann solutions are also the vanishing viscosity limits
for general hyperbolic systems, possibly non-conservative



Solution to the Riemann problem

@ is invariant w.r.t. rescaling symmetry:  u”(t,x) = w(ft, 0x) 8 =0
@ describes local behavior of BV solutions near each point (tg, )

@ describes large-time asymptotics as t — +oo (for small total variation)



Riemann Problem for Linear Systems

u- if x < 0
ur + Aux =0 u(0,x) = .
I : (0.%) { ut if x>0
t x(t=],
x/t=h, xt=1,
[
IlIllI
.'I |'_|}3_I_I+
X
i
ut —u = Z Gl (sum of eigenvectors of A)
i=1
intermediate states : w; = u + Z G Ij
45l

i-th jump: wi —wi—1 = giri travels with speed A;



Scalar Conservation Law

Ur‘l'f{u}:f = 0 ue R

CASE 1: Linear fluxx:  f(u) = Au.

Jump travels with speed A (contact discontinuity)

£ (u)=A u” u(t)

] it




CASE 2: the flux f is convex, so that v~ f'(u) is increasing.

ut = u — centered rarefaction wave

f{uj ut o u(t)

_ flu)t Ve

———— u_ .l-..-'.-l-

0 X
ut < u —_ stable shock
- u(t)
f(u)

b
A

At _ _ fu")-flu

ut

u

—1



A class of nonlinear hyperbolic systems

ur+flu)y = 0
Alu) = Df(u) Alu)ri(u) = Ai(u)ri(u)

Assumption (H) (P.Lax, 1957): Each i-th characteristic field is

@ either genuinely nonlinear, so that VA; - r; = 0 for all u

@ or linearly degenerate, so that VA; -, =0 for all u



genuinely nonlinear — characteristic speed A;(uv) is strictly increasing along
integral curves of the eigenvectors r;

linearly degenerate — characteristic speed A;(u) is constant along integral
curves of the eigenvectors r;

112




Shock and Rarefaction curves

uy + flu)y = 0 Alu) = Df (u)

i-rarefaction curve through wy: o7 — Ri(o)(ug)

= integral curve of the field of eigenvectors r; through ug

%~ t(u) u(0) = u

i-shock curve through w: o+ 5i(7)(w)
= set of points v connected to wp by an i-shock, so that

U — ug is an i-eigenvector of the averaged matrix A(u. ug)




Elementary waves

ur+flu)y =0 u(0,x) = { 3; !f iig

CASE 1 (Centered rarefaction wave). Let the j-th field be genuinely nonlinear.

If ut = R;(7)(u—) for some o = 0, then

—
|:;:l
S

ISE [0, o]

— —
Lify
_l_"'l--"

=

ut it x> tA

is a weak solution of the Riemann problem

u- if X < tA
u(t,x) = { Ri(s)(u™) if  x =1\



A centered rarefaction wave




CASE 2 (Shock or contact discontinuity). Assume that
ut = Si(o)(u) for some i.o. Let A= Aj(u.u") be the shock speed.

Then the function

u- if X < AL,

ult,x) = { oyt

is a weak solution to the Riemann problem.

In the genuinely nonlinear case, this shock is admissible (i.e., it satisfies the Lax
condition and the Liu condition) iff &= < 0.

i
t X=Mt

1n=1u =11




Solution to a 2 x 2 Riemann problem




Solution of the general Riemann problem (P. Lax, 1957)

u- if x<0

ur+flu)y =0 u(0,x) = { - £ =0
Problem: Find states wqg.wy. -+ .w,, such that
Wwp=u Wy =uT

and every couple w;_1, w; are connected by an elementary wave (shock or

rarefaction) - |
either wi = Ri(oj)(wi-1) @20

or wj = 5;((?1')(&;;_1:1 ai < 0



Ri(o)(u) if =0
Si(a)(u) if <0

0

5] Ed

define: Vi(a)(u) = {

-

(71, 02,...,0,) = Wolap)o---oWs(aa) o Wi(ay)(u)

fniu_})

If |u™ — u™| is small, then the implicit function theorem yields existence and uniqueness

m{u_}‘

Jacobian matrix at the origin: J = (n{u_]l

always has full rank

of the intermediate states wy, wy, ..., W



General solution of the Riemann problem

Concatenation of elementary waves (shocks, rarefactions, or contact
discontinuities)




Global solution to the Cauchy problem

u, + f(u), =0, u(0,x) = 1(x)

Theorem (Glimm, 1965).
Assume:
@ system is strictly hyperbolic
@ each characteristic field is either linearly degenerate or genuinely nonlinear

Then there exists a constant & > 0 such that, for every initial condition
o e LY(R; B") with
Tot. Var(Oo) < 4,
the Cauchy problem has an entropy admissible weak solution u = u(t, x) defined
for all t = 0.




Construction of a sequence of approximate solutions

by piecing together solutions of Riemann problems

- on a fixed grid in t-x plane (Glimm scheme)

|
- k!
_.-'.-l- .\'-\.%'... r
.-. '-- .l'.
4 B 13
z 1:—' —_— i———_I—l'.':——-\. *'_——.I-_IE..-——_———
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| A % B= LZ
4L — e -—
! ry L &
....-l-. y hY :-:..- -:.\.{ I .Illr: :-'\.-
_-.-l. 1":'{(" b
i IAx A%

- at points where fronts interact [fr:::nt tracking)

tl -_..\l it j H\-\. I| .-.._._.--'
W L il '\'H. =
t—- ihl
e /
&

\ l/a/ g




Piecewise constant approximate solution to a Riemann

problem

replace centered rarefaction waves with piecewise constant rarefaction fans

u(t)
XK. .
t .-'.l- ..._,-"-l- LJ - u
m ra _.-" ._.-'.-
=, i
..__r'.l-_q_i F. ...__.-...__.-
I -~ .-:" :-?.':-""-
— 'I'.L'-I. '] I'_I% 3 ﬁ.{-’;_._-:’.-
L
1= T x x
X
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t
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1 W 'y yy
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., _.".- .-"__."- -'"'-.l:-l-'-- r
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g
A ™ .-.:-.:-:.:l"-l-l:-:l-." ’
A _.'-.:'..'-. _-"-...- !
h h 1 .-'::..:": ;l:-:.: ’ )
i . dr
0 . y Oy
", i
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Front Tracking Approximations

@ Approximate the initial data T with a piecewise constant function

@ Construct a piecewise constant approximate solution to each Riemann problem at
t=20

@ at each time t; where two fronts interact, construct a piecewise constant
approximate solution to the new Riemann problem . ..

- total variation remains small
- number of wave fronts remains finite

@ NEED TO CHECK: {



Interaction estimates

GOAL: estimate the strengths of the waves in the solution of a Riemann problem,
depending on the strengths of the two interacting waves o', "

Incoming: a j-wave of strength ' and an i-wave of strength "

Outgoing: waves of strengths ,.--- ,0,. Then

joi — | + oy — [+ D lok| = O(1) - |o'a”|
ki




o

s F
SuY

Incoming: two i-waves of strengths " and "

Outgoing: waves of strengths o¢,--- ,7,,. Then

o1 =0’ —a"|+ Y low| = O(1)-|o'a”|(|o'| + |o”)
ki



Glimm functionals

Total strength of waves: V(t) = Z 1T |

Wave interaction potential: Q1) = Z T s
(a.8)EA

A = couples of approaching wave fronts

t 5“'\-\'\.\._ 'U F |I /-_‘ 'G r
H‘x \ A o
™, - I
H“"\. I| I'I .__.-"'--
i H H\- I' II 'II _-'".-- i
H\'\-\. I. i i
.H"'\. 'II | .' .'"-
"x T Iy
S~ 0
, 7 |
.I __'r .\"\. III :
.-'- .\."' 9 1
__.-".. I|IG T '

/ Oy “‘*Gﬁ




Changes in V. @ at time 7 when the fronts . 75 interact:

AV(r) = O(1)|oacs]

AQ(r) = —loaog|+O(1)- V(r—)|oaog]|

Choosing a constant (p large enough, the map
t— V(1) + CoQ(1)

is nonincreasing, as long as V' remains small

Total variation initially small == global BV bounds

Tot.Var{u(t.-)} < V(t) < V(0)+ GQ(0)

Front tracking approximations can be constructed for all £ = 0



Keeping finite the number of wave fronts

At each interaction point, the Accurate Riemann Solver yields a solution, possibly
introducing several new fronts

The total number of fronts can become infinite in finite time

accurate Rismann solver simplified Riemann solver
", ] _.". i d
A ] NP
ey l‘l:..\.\.
* ",
™y ,
y ",
“.___ m ., u
P r
a o (5 (5

MNeed: a Simplified Riemann Solver, producing only one “non-physical” front



A sequence of approximate solutions

u+ f(u) = 0 u(0,x) = O(x)

(uy )u>1 sequence of approximate front tracking solutions

@ initial data satisty ||w.(0,:) —Ol|p < =, — 0
@ all shock fronts in W are entropy-admissible
@ each rarefaction front in u has strength < =,
@ at each time t > 0, the total strength of all non-physical fronts in w.(t.-) is < =o
3
g
t R NP
5
R

IE'

t -

1

iy




Existence of a convergent subsequence

Tot.Var.{u,(t,-)} = C

|u(t) — w(s)||. = (t—s)-[total strength of all wave fronts] - [maximum speed]

< L-(t—s)

Helly's compactness theorem — a subsequence converges

. 1
Uy — U in I—I'l:'E



Claim: wu= lim u, is a weak solution

M — OO

[f {q&:ru—l—n;hxf{u]} dxdt = 0 ﬁiEﬂ,}(]ﬂ_.:m[:w:R)

Meed to show:

lmf/l {{;':[uy—h;':xf{uy]} dxdt = 0



/I;w /:Ju {'?E'[trxjutfh._x}‘I‘i;L'I]'x{t,I}fl:uy{tjx}]} dxdt

I ¢, -nd
im sup ? o n do
< limsup Z [.irnl[t} At xa) — ﬁf{uul[t._xc.]l]l] B(t, xa(t))
YT laeSURLNP
< (max |¢rl[t._x}|) : Iimsup{ﬂ]{l}- Z svloa| + O(1) - Z |I5"a|}
X B —F o neER e NP

=0




The Glimm scheme

ug+ flu)e = 0 u(0.x) = @(x)

Assume: all characteristic speeds satisfy A;(u) £ [0, 1]

This is not restrictive. If A;(u) € [-M. M], simply change coordinates:

y = x + Mt, T = 2Mt

Choose:

e a grid in the t-x plane with step size At = Ax

¢ a sequence of numbers 81, 82,83, . .. uniformly distributed over [0, 1]
elj: 1<j< N, &c|0 A
Jim alk —*’—N' €0} _ ) for each A € [0,1].




Glimm approximations

Grid points : x5 =j-Ax, 1t = k- At

e for each k = 0, u(tg, -) is piecewise constant, with jumps at the points x;. The
Riemann problems are solved exactly, for &, < t < i1

¢ at time f;.1 the solution is again approximated by a piecewise constant
function, by a sampling technique

tl

2ALS

ﬂtl{




Example: Glimm's scheme applied to a solution containing a single shock

Ult,x) = { .

At |

ut if

T, if

X = At
x < At

AX

Fix T =0, take Ax =At=T/N

x(T) = #{:

1<j<N, 6[0,A] }-At

A} - . a7

N

as N—= =



Rate of convergence for Glimm approximations

Random sampling at points determined by the equidistributed sequence (#g )1

. #1j: 1<j<N, 8 ][0,A] }
lim —
N — oo N

A for each A € [0, 1].

Meed fast convergence to uniform distribution. Achieved by choosing:

=01, ... , fBwe=0957, ... , Hzgg22=0.22003,

. “ U{:]i""n{ T? _} . ucr}:acL( T‘- '}HLi
Convergence rate: lim = 0
As—0 vhx - |In Ax|

(A.Bressan & A Marson, 1998)

Bressan, A.: Hyperbolic Systems of Conservation Laws.
The One-Dimensional Cauchy Problem.
Oxford University Press: Oxford, 2000.



