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Errata

• p. 14, The final equation should read

γ(i) := E[C(i)|κn+1] + β
∑

j

pκn+1

ij vj − E[C(i)|κn]− β
∑

j

pκn

ij vj.

• p. 15 The second equation should read

γ = (I − βPκn+1)(E[C∗|κn+1]− E[C∗|κn])

• p. 44, The argument for the expectation and variance of φ̂ is flawed. A better
argument is as follows:

S(φ) ≈ S(φ̂) + S ′(φ̂) · (φ− φ̂)

from a Taylor expansion around φ̂. As S(φ̂) ≡ 0, evaluating this at φ0 implies

φ̂ ≈ φ0 − I(φ̂)−1S(φ0).

Hence as E[S(φ0)] = 0, we know φ̂ has expectation φ0 and variance≈ I(φ̂)−1V I(φ̂)−1,
where V := V [S(φ0)]. We can then show that I(φ̂) → V as n → ∞, in some
sense, and the stated result follows.

• p. 53, The equation half way down the page, the β should be omitted. In other
words, it should read

log f(ξ, η) = φ(β1 + β2ξ) + φ(β3 + β4η).



iv

“OI KΥPIOI TO ∆IKAION KAI THN IΣOTHTA TOIΣ ∆OΥΛOIΣ
ΠAPEXEΣΘE EI∆OTEΣ OTI KAI ΥMEIΣ EXETE KΥPION EN OΥPANΩ”
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Chapter 1

Introduction

“ When I was One, I had just begun...”

A.A. Milne (1927)
The End from Now We are Six

In this thesis, we shall explore various mathematical and statistical problems associ-
ated with the regulation of Occupational Health and Safety (OH&S). This is a significant
area of economic thought, and is of importance in modern economic systems.

We shall in particular explore two key questions, namely:

• In what ways can a regulator optimally enforce the law with minimal effort? and

• When looking at records of injuries, how can we distinguish between differences in
detection and compliance?

This thesis can be loosely separated into the responses to each of these questions.
In Chapter 2 we shall outline some of the economic arguments surrounding this area of
research, and the theory behind the approach that shall be taken. Following on from
this, in Chapter 3, we shall discuss a model for targeted enforcement, and develop various
extensions, which better mimic observed systems.

After this, we shall move on to the second question, first pausing (in Chapter 4) to
discuss the general statistical theory and methodology needed to model and estimate
the detection of violations of the law. This leads directly into Chapter 5, where we will
discuss conditions under which estimation is possible, and improve on the conditions
available in the literature. In Chapter 6 we will then apply this work to a data set
obtained from the United States Department of Labor, and see what policy implications
could be drawn from it.
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2 CHAPTER 1. INTRODUCTION

We shall conclude in Chapter 7 with a brief summary of the results obtained and by
outlining possible avenues for future research.

1.1 Motivation

As a motivation for looking at these two questions, we raise the same question as dis-
cussed by Bartel and Thomas (1985). We observe that despite regulation, occupational
injuries are still common. Is the problem with regulation that it is ineffective at forcing
compliance (the “noncompliance hypothesis”), or is it that compliance with regulations
is not enough to prevent injury (the “inefficacy hypothesis”)? Answering this question
is very important to policy makers, as it determines whether the appropriate response
is to alter the regulations, the regulator, or both.

Understanding how regulation works from an economic perspective and developing
statistical methods with which to analyse the data available for such systems is crucial
in answering this question, and it is to this end that we consider the questions raised
above.

1.2 Previous Work

There has been a considerable variety of work done on this issue, streching through the
disciplines of Law, Economics, Statistics and Industrial Relations. For this reason, we
here outline only work particularly pertinent to the issues we shall address.

First, the economic discussion of the regulation began with Becker’s (1968) work on
the economics of crime and punishment. From this general framework (see Section 2.2
for details), the various aspects of regulation have been addressed from a game-theoretic
perspective, for example in Laffont and Tirole (1986) and Laffont and Tirole (1991).
The key model which we shall address in Chapter 3 was first developed by Harrington
(1988) to particularly address regulation of this type, where a regulator seeks to prevent
a firm from violating some law, and does so through the use of fines and inspections.

With regards to the particular situation of Occupational Health and Safety, Bartel
and Thomas (1985) discuss a model for regulation, given that workers are also able to
negotiate some of the conditions of their employment. Bartel and Thomas (1985) also
raise the question of the significance of indirect effects of regulation (if it is asymmet-
rically enforced between firms of different types) and discuss to what extent workplace
accidents are the fault of poor enforcement or poor regulations. These issues, and also
those of the inefficiency caused by regulation, are very significant economically – for
example Gray (1987) claims that approximately 30% of the slowdown in productivity
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growth in maufacturing industries in the US during the 1970’s can be attributed to
increased regulation.

From a statistical perspective, the main approach used to estimate parameters in these
types of models was discussed by Dempster, Laird and Rubin (1977). In particular, a
variant on this was developed by Feinstein (1989) and then further discussed in Feinstein
(1990) which applies more precisely to this situation.
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Chapter 2

The Economics of Injury

“ ... a class of labourers, who live only so long as they find work, and who
find work only so long as their labour increases capital. These labourers, who
must sell themselves piecemeal, are a commodity, like every other article of
commerce, and are consequently exposed to all the vicissitudes of competition,
to all the fluctuations of the market.”

Karl Marx and Friedrich Engels
The Communist Manifesto (1848)

Before we can develop any models of how firms will behave with respect to regulation
and occupational safety, we need to understand the basic principles of their behaviour.
The fundamental paradigm that we shall be using is that of classical economics. Fol-
lowing Adam Smith’s ‘The Wealth of Nations’ (1776), this sees production mainly as a
function of two key inputs: capital and labour. Since the industrial revolution, these two
factors have generally been separated, leading to the situation where the owner of a fac-
tory will hire workers to provide labour. In a modern economy, ownership is generally
further separated from the day to day running of the factory, as it is the stockhold-
ers who act as the primary providers of capital, but do not necessarily take an active
management role.

In general, it is agreed that it is better for society when work takes place in a safe
environment. All parties involved in industry have a duty to ensure this safety, however
as it is primarily the worker who suffers when accidents occur, and workers may have
little ability to dictate their environment, the focus of the law is on the duties of an
employer. In the U.K. and its colonies, since the institution of the “Health and Morals
of Apprentices Act” (1802), and various developments throughout the early to mid. 19th
Century, these duties have been explicitly stated. In particular, the“Factory Act” (1833)
provided for Salaried Inspectors to enforce regulations, thereby beginning the situation
discussed here. (For further historical discussion, see Innes (2002).)

5



6 CHAPTER 2. THE ECONOMICS OF INJURY

The exact details of the law vary between nations and states, however in Australia in
2007 they can be summarised under the following three aims (Sappey, Burgess, Lyons
and Buultjens, 2006):

1. The prevention of the occurrence of workplace injury, disease and death.

2. Providing compensation to workers who have suffered work-related illness and/or
injury, or to their relatives in the case of a fatal accident.

3. The rehabilitation of workers suffering from work-related injury or illness in order
to assist their return to work.

From an economic standpoint, this summary is incomplete. The prevention of injury
is a costly exercise, and so it is usually not optimal to attempt to prevent all injuries.
Instead, it is preferable to force all decision makers to internalise the costs of injury to
the community, thereby forcing them to take a position which is better for society. For
this reason regulations typically go beyond what a firm will do naturally, and so society,
acting through the government, creates regulatory bodies to enforce the law. These
regulators, through the use of fines, levies and other punishments or rewards, attempt
to alter the relative cost of (non-)compliance to the firm. It is the nature and practice of
this enforcement, and of the penalties and violations associated with it, that we intend
to investigate.

2.1 Firms, Workers and Regulators

Loosely following Guo (1999) we make the following comments on the interaction be-
tween workers, management and a regulator1. We shall first consider how management
and workers interact without the regulator.

In the absence of a regulator, it would first appear that management has few incentives
to provide a safe workplace. This is somewhat näıve, as workers will demand a premium
for working in an unsafe environment, and ‘downtime’, etc. can be costly. In most
economies, there is also the possibility of civil action being brought against a firm in the
case of negligence. Therefore, the firm will adopt a certain (typically low) level of safety.

At the same time, workers may undertake actions to decrease the risk of injury to
themselves2. When a firm’s management sees this, it may attempt to lower their own
efforts, as it can pass the costs of prevention on to the worker. Workers resist this, and

1For the purposes of this analysis, we disregard any possible agency costs between the stockholders
and management of a firm, or between government and a regulator.

2It is also possible that workers take actions which increase the risk to themselves, if doing so requires
less effort or allows them to negotiate higher wages.
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therefore we have a repeated/continuous time multi-person game. The solution to this
game gives an equilibrium level of wages, worker’s effort and workplace safety. Other
factors will affect what solution is chosen – for example the availability of appropriately
skilled labour3.

If a regulator now enters the arena, the presence of punishments and rewards will
result in a change in relative cost of safety – a firm’s management now has to negotiate
the risk of being fined, as well as the response of their workers. Simultaneously, workers
also gain the power to report violations to the regulator, giving them more bargaining
power when negotiating their position. It is therefore clear that the presence of an active
regulator will work to decrease the relative marginal costs of safety to the firm, and so
the firm will act to lessen the risk of injury.

Regulators may also fulfill other roles, by providing expertise in the area of workplace
safety and assisting employers with preventative measures and worker rehabilitation.

2.2 Crime & Punishment

In a seminal paper, Becker (1968) expanded the ideas of economic choice theory to apply
to criminal activity. The basic assumptions underlying this approach are:

• Obedience to law is not taken for granted.

• Conviction is not considered sufficient punishment in itself – for example the classic
criteria of vengeance, deterrence, compensation and rehabilitation may be consid-
ered important.

• Crime incurs a social cost which is to be minimised, however actions taken to
minimise it will also incur a social cost.

• The decision of an individual whether to commit an offence depends on their
opinion of the costs and benefits of doing so. In particular, this includes their
opinion of the probability that they will be caught, and the likely penalties that
will follow from this. This decision is rational.

At a simple level, a Government then has a few tools with which to attempt to control
criminal activity, for example:

• It can control the laws and regulations in place, determining what activities are
worthy of punishment.

3This fact is made abundantly clear in Horwitz’s (1994) Pulitzer prize winning article about the U.S.
chicken industry, and in many of the discussions about ‘third world sweatshops’.
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• It can control the level of funding given to policing and regulation.

• It can set the types of punishment (a fine, imprisonment, etc...) appropriate for
different types of offence.

• It can set the scale of punishment (fine quantity, length of prison term, etc...)
appropriate to each type of offence.

Each of these tools is double-edged – high levels of policing/regulation and certain
types of punishment (e.g. imprisonment) are costly to maintain; some effective punish-
ments (e.g. torture) may be considered inappropriate in themselves; overly restrictive
laws and totalitarian regimes incur further social and economic costs. In many ways,
these measures can best be seen as the lesser of two evils, and therefore governments
will not act indiscriminately to eliminate all crime, as the costs of doing so are too high.

In the context of OH&S, Mendeloff and Gray (2005), among others, have addressed the
question of whether Becker’s (1968) assumptions of utility maximisation are appropriate.
Mendeloff & Gray propose that firms react to the shock induced by fines by paying more
attention to all safety issues, leading to a higher responsiveness to enforcement. Weil
(1996) examines empirical evidence that enforcement is effective, despite low levels of
inspection (a phenomenon also noticed and modelled by Harrington (1988), to which we
shall return in Chapter 3). Becker’s (1968) conclusions have also been questioned more
generally under different modelling assumptions, for example by Boyer, Lewis and Liu
(2000), who model the regulations themselves as flexible.

2.2.1 Regulation Issues

In particular in this thesis we are looking at the regulation of Occupational Health and
Safety within industry. In this context, there are issues associated with possible ‘societal
agency costs’, arising from the situation with an independent regulatory and legislative
system (i.e. costs to society caused by the fact that government and regulators may act
in their own interests).

This can generally be summarised under the title of ‘regulatory capture’. This notion
was first proposed in some sense by Marx (1867), and was then developed by Stigler
(1971), in work for which he received the 1982 Nobel Prize in Economics. Stigler’s key
claim can be summarised as “regulation is acquired by the industry and is designed and
operated primarily for its benefit.” (p. 3) In other words, industry may interfere with
the regulator, to ensure that the regulator acts in the interests of industry. Therefore,
public protection and socially optimal outcomes may not be pursued by the regulator
as a primary goal.

Laffont and Tirole (1993) outline five methods through which various interest groups
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can influence a regulatory official: (1) monetary bribes, (2) making the offer of future
employment in regulated firms4, (3) personal relationships between regulators and mem-
bers of the interest group, (4) political collusion between the industry and the regulator,
where industry refrains from publicly criticising the regulator, and (5) through political
action including monetary contributions to political campaigns, with the aim of persuad-
ing sympathetic officials with influence over the agency (see Gordon and Hafer (2005)
for a particular discussion of this).

While this issue is worth bearing in mind, and may help with the interpretation of
some of our conclusions, the extent to which regulatory capture is present in the OH&S
setting is not a question which we further address here. A good summary of the area
can be found in Laffont and Tirole (1991) or Laffont and Tirole (1993, Ch. 11).

4This is a part of the so called ‘revolving door hypothesis’ (see for example, Gormley (1979)).
Here a regulator (particularly an individual) currently or previously employed by a regulated industry
acts (consciously or unconsciously) in a manner more or less favourable to the industry or company in
question. In the context of OH&S, this is probably not a major issue, as the possible scope for regulation
is large (there are many companies that can be regulated – unlike in, for example, the nuclear power
industry in the US); however if regulation were highly specialised this could reappear as a significant
concern.
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Chapter 3

The Regulatory Game

“ ‘You were present on the occasion of the destruction of these trinkets,
and indeed are the more guilty of the two, in the eye of the law; for the law
supposes that your wife acts under your direction.’

‘If the law supposes that,’ said Mr Bumble, squeezing his hat emphatically
in both hands, ‘the law is a ass – a idiot...’ ”

Charles Dickens
Oliver Twist (1837)

In this chapter, we shall outline models through which a regulator can enforce the
law with less effort. While these models have clear flaws, they can help us to understand
targeted enforcement and its consequences for compliance. To begin with, we need to
establish the following basic theory.

3.1 Dynamic Programming and Markov Decision Pro-

cesses

To solve these types of problems, we need to understand ‘Markov Decision Processes’.
These were developed in Howard (1960) and Bellman (1957).

We wish to model a system where there are a number of states that a firm can find
itself in. In each state it has a decision to make, which results in an immediate cost and
in altering the probabilities of moving to other states for the following period. We shall
assume that the transition probabilities and costs depend only on the firm’s decision at
this time (they are memoryless), and so we describe this as a ‘Markov Decision Process’.

11
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Formally, a Markov Decision Process (MDP) can be described by:

• A set of states S.

• An ‘action space’ Ki of possible actions κ(i) that can be taken when in state i.

• Each action κ(i) leads to transition probabilities p
κ(i)
ij .

• Each action κ(i) leads to an expected payoff/cost E[C(i)|κ(i)] in each state.

We assume that when in state i, firms wish to minimise the expected long run dis-
counted cost E[C∗(i)]. Let C(k) refer to the expected cost in k periods’ time and p

κ(i)
ij to

the transition probabilities from state i to state j under action κ(i). We can now write
(omitting κ(i) throughout for clarity)

E[C∗(i)] = E[C(i)] +
∞∑

k=1

βkE[C(k)]

= E[C(i)] + βE

[
C(1) +

∞∑
k=2

βk−1C(k)

]

= E[C(i)] + β
∑

j

pij

[
E[C(j)] +

∞∑
k=2

βk−1E[C(k)|j = state after one period]

]
= E[C(i)] + β

∑
j

pijE[C∗(j) after one period],

where β ∈ [0, 1) is a fixed discount rate. In other words, we can consider the expected
long run payoff from time zero to be the immediate payoff at time zero plus the (one-
period discounted) long run payoff from time one.

Hence, as a matrix-vector equation, (with Pκ = [pκ
ij(i)] being the transition matrix

under actions κ = (κ(1), κ(2), ...), and obvious notation elsewhere)

E[C∗|κ] = E[C|κ] + βPκ · E[C∗ after one period|κ]. (3.1)

We wish to find an optimal policy, that is, a decision rule to be followed in each state
which will minimise this expected cost. We shall follow Bellman (1957) in

Definition 3.1.1 (The Principle of Optimality). An optimal policy has the property
that whatever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision.

Next, we shall cite (without proof) a theorem from Puterman (1994, p. 154) which
states
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Theorem 3.1.1. Consider a Markov Decision Process with discrete state space. If, for
all i, the action space Ki is compact, and E[C(i)] and pij are continuous in κ(i) (for all
j), then there exists an optimal deterministic stationary policy.

We have also, from p. 153,

Proposition 3.1.1. When the state-space is discrete, an optimal stationary policy must
be optimal for every starting state.

Therefore, without loss of generality, we shall consider only stationary (time-invariant)
policies. Because of this, E[C∗] = E[C∗ after one period], and so we can immediately
rewrite (3.1) as

E[C∗|κ] = (I − βPκ)
−1E[C|κ]. (3.2)

We can characterise mathematically an optimal policy as one which satisfies the Bell-
man Equations

E[C∗(i)] = inf
κ(i)

{
E[C(i)|κ(i)] + β

∑
j

p
κ(i)
ij E[C∗(j)]

}

for all i, or in matrix-vector form,

E[C∗(i)] = inf
κ

{
(I − βPκ)

−1E[C|κ]
}
.

As pointed out by Howard (1960), for any policy κ, Pκ is a stochastic matrix and so it
has eigenvalues numerically less than one and therefore βPκ has eigenvalues numerically
less than one for any β ∈ [0, 1). Hence (I − βPκ)

−1 =
∑∞

j=0(βPκ)
j is well defined.

Moreover, as P is nonnegative, (I − βPκ)
−1 is a matrix with nonnegative elements, and

with elements at least as great as one on the main diagonal.

3.1.1 The Policy Improvement Algorithm

Given the above theory we now outline some useful methods and results for determining
optimal policies. The first of these is The Policy Improvement Algorithm1. This is an
iterative algorithm for determining the optimal policy for an arbitrary Markov Decision
Process.

To implement this Algorithm, first assume some initial policy κ0.

1This is taken directly from Howard (1960, p. 83ff.), with minor modifications.
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At stage n + 1, we have a policy κn from the previous iteration. We can determine
the expected present values v := E[C∗|κn] under this policy using (3.1).

Then, for each i, a better policy for each state can be found by choosing κn+1(i) such
that we minimise (cf. (3.1))

E[C(i)|κn+1(i)] + β
∑

j

p
κn+1(i)
ij vj.

Provided that our action space Ki is a compact set (like [0,1]), this is an attainable
objective. In general, if more than one minimum exists, then we shall choose one arbi-
trarily. Note that the immediate costs in state i depend only on κ(i), that is, E[C(i)]
and pij do not depend on κ(k) for any i 6= k, so conditioning only on κ(i) does not cause
any difficulty.

Choosing κn+1(i) in this way for each i defines a new policy, which we can use to
iterate this process. This process is known as the Policy Improvement Algorithm.

We now need to show that

Theorem 3.1.2. For any sub-optimal policy, the Policy Improvement Algorithm de-
creases the expected costs in all states.

Proof. We shall only show that the Policy Improvement Algorithm does not increase
the expected cost in any state, as this is sufficient for our purposes. Proving that it
converges to an optimal policy is difficult in full generality, as it requires the use of the
contraction mapping theorem. The interested reader is referred to Puterman (1994).

We know that

E[C∗(i)|κn+1] = E[C(i)|κn+1] + β
∑

j

pκn+1

ij E[C∗(j)|κn+1],

E[C∗(i)|κn] = E[C(i)|κn] + β
∑

j

pκn

ij vj

= E[C(i)|κn] + β
∑

j

pκn

ij E[C∗(j)|κn].

Now let γ(i) be the improvement the algorithm was able to achieve when in state i,
keeping v fixed, that is

γ(i) := E[C(i)|κn+1] + β
∑

j

pκn+1

ij vj − E[C(i)|κn] + β
∑

j

pκn

ij vj.

By construction, it is clear that γ(i) ≤ 0 for all i.
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We can now write

E[C∗(i)|κn+1]− E[C∗(i)|κn] = γ(i) + β
∑

j

pκn+1

ij (E[C∗(j)|κn+1]− E[C∗(j)|κn])

and hence in matrix-vector form

γ = (I − βPκn+1)−1(E[C∗|κn+1]− E[C∗|κn])

We noted above that (I−βPκn+1)−1 has all nonnegative elements. Therefore γ(i) ≤ 0
for all i implies

E[C∗(i)|κn+1] ≤ E[C∗(i)|κn]

as desired. Q.E.D

This allows us to state the following results

Theorem 3.1.3. For an optimal policy κ, when the assumptions of Theorem 3.1.1 are
satisfied,

E[C∗(i)|κ] = inf
λ

{
E[C(i)|λ] + β

∑
j

pλ
ijE[C∗(i)|λ]

}

and

E[C∗(i)|κ] = inf
λ

{
E[C(i)|λ] + β

∑
j

pλ
ijE[C∗(i)|κ]

}
.

Proof. The first of these statements is simply the definition of an optimal policy, the
second flows from it being a stationary point of the policy improvement algorithm.

Q.E.D

From this it is clear that

Lemma 3.1.4. Suppose the assumptions of Theorem 3.1.1 are satisifed. If E[C(i)|κ(i)]
and p

κ(i)
ij are both linear in κ(i) for all i and j, then an optimal policy must occur at a

vertex of the action space.

Proof. This follows immediately from the second statement of Theorem 3.1.3, recalling
that the minimum of any linear function on a compact space must occur at a vertex.

Q.E.D
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3.2 Harrington’s Markov Model

In a significant paper2, Harrington (1988) developed a model of ‘targeted’ enforcement
for violations of environmental regulations in discrete time. This work can equally be
applied to the OH&S situation. The basic model is as follows:

At each ‘play of the game,’ the enforcement agency faces a choice: to inspect or not
to inspect. Simultaneously, the firm faces a choice: to violate or not to violate. The
aim of the regulator is to have the firm in compliance as frequently as possible, subject
to some budgetary constraint. The aim of the firm is to minimise costs. We assume
that the firm faces a significant cost to compliance c, and that the agency can impose
a significant (but finite) penalty F , if violation is detected. It is clear that if F > c it
may not always be optimal for firms to be in non-compliance, and therefore we have a
nontrivial process.

Harrington then makes the following development. Instead of treating all firms the
same, the regulator can ‘target’ some firms based on their past performance3. In partic-
ular, firms are partitioned into one of two groups: G0 and G1. Each of these groups has
an inspection probability φi and a fine Fi, with φ1 ≤ φ0 and F1 ≤ F0. Violations in G1

are punished by exile to G0 with probability p, while compliance in G0 is rewarded by
possible return to G1 with probability g. (Note: this is a slight extension to Harrington’s
model, as he assumes that p = 1.) These dynamics are outlined in Figure 3.1.

The payoff to a firm is then dependent on its decision of when to violate. Let κ(i) be
the probability that a firm will violate when in state i. Then the one-period expected
cost to the firm is

E[C(i)|κ(i)] = κ(i)φiFi + (1− κ(i))c. (3.3)

There are two alternative interpretations of this equation: (1) The firm is choosing a
mixed strategy between violating and not violating, and the expected cost is therefore a
weighted average of the expected costs under each strategy, or (2) the firm is choosing
a strategy which gives a probability κ(i) of violation, and the cost of such a strategy is
linear in κ(i). We do not address which interpretation is better, but progress with (2)
in Section 3.4.

It is clear that given a policy κ, this entire process forms a Markov Chain, with state
space {0, 1} and transition matrix

Pκ =

[
1− (1− κ(0))φ0g (1− κ(0))φ0g

κ(1)φ1p 1− κ(1)φ1p

]
. (3.4)

2Much of the analysis in the following section follows that of Harrington’s original paper, however
with slight modifications to allow increased flexibility in the model, and to allow the notation to extend
more readily to some other cases.

3Friesen (2003) develops an optimal targeting system, based on steady-state dynamics rather than
past performance, however the results are quite similar.
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Figure 3.1: Harrington’s Model of Regulatory Dynamics

We assume that the firm has a constant one-period discount factor β ∈ [0, 1), and

that it is an expected cost minimiser. Hence, let C
(j)
κ (i) denote the cost at time j for a

given policy κ (which may be omitted for notational simplicity), when a firm starts (at
time 0) in group i. The firm will choose a policy to minimise

E[C∗(i)|κ] =
∞∑

j=0

βjE[C(j)(i)|κ] = E[C(i)|κ(i)] +
∞∑

j=1

βjE[C(j)(i)|κ]. (3.5)

To summarise, a firm selects a policy function

κ : {0, 1} → [0, 1]

and uses this to minimise E[C∗|κ] as defined in (3.5). The regulator has strategy space

0 ≤ φ1 ≤ φ0 ≤ 1,

0 ≤ F1 ≤ F0 ≤ F ∗

for some maximal fine F ∗, as it is not possible for an unbounded fine to be imposed on
a firm.

In a game-theoretic sense, these strategies are ‘pre-mixed’, so hopefully it should be
possible to find an optimal strategy within these spaces4. This is implicitly claiming
that firms are unable to perfectly collude, and therefore act as though the regulation
parameters are fixed. Under the various theories of regulatory capture, we would clearly
need to be more careful about this.

4It is not certain that we will find a truly optimal strategy this way, as the Von Neumann Minimax
Theorem applies only to convex/finite zero-sum games, which this clearly is not.
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To find a solution, we first determine the response of the firm to a given regulator-
strategy {φ0, φ1, F0, F1}, and then incorporate this response in considering the values to
be selected by the regulator.

3.2.1 Finding Optimal Policies

We now set about finding solutions to Harrington’s Model. To begin, we know from
Theorem 3.1.3 that

E[C∗(i)|κ] = inf
λ

{
E[C(i)|λ] + β

∑
j

pλ
ijE[C∗(i)|κ]

}
.

In this case, we know that E[C(i)|κ] and p
κ(i)
ij are linear in κ(i). Therefore by Lemma

3.1.4, we can see that an optimal policy must occur for

κ : {0, 1} → {0, 1},

that is, when a firm will simply choose whether to violate or not in each group, and will
never choose a policy of violating with some probability κ(i) ∈ (0, 1).

Hence, there are four possible strategies that a firm could have:

(κ(0), κ(1)) =


(0, 0)
(0, 1)
(1, 0)
(1, 1)

For each, it is easy to find the value of E[C∗|κ].

For (κ(0), κ(1)) = (0, 0), i.e. the policy of “Never violate,” we have

P(0,0) =

[
1− φ0g φ0g

0 1

]
and therefore

E[C∗|κ] = (I − βP )−1E[C|κ]

=

[ c
1−β

c
1−β

]
.

For (κ(0), κ(1)) = (0, 1), i.e. the policy of “Violate when in the Good Group only,”
we have

P(0,1) =

[
1− φ0g φ0g
φ1p 1− φ1p

]
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and therefore

E[C∗|κ] =

[
A0

A0+B0
· c

1−β
+ B0

A0+B0
· φ1F1

1−β

A1

A1+B1
· c

1−β
+ B1

A1+B1
· φ1F1

1−β

]
,

where A0 = 1− β(1− φ1p), B0 = βφ0g, A1 = βφ1p,B1 = 1− β(1− φ0g).

For (κ(0), κ(1)) = (1, 0), i.e. the policy of “Violate when in the Bad Group only,” we
have

P(1,0) =

[
1 0
0 1

]
and therefore

E[C∗|κ] =

[
φ0F0

1−β
c

1−β

]
.

Finally, for (κ(0), κ(1)) = (1, 1), i.e. the policy of “Always violate,” we have

P(1,1) =

[
1 0
φ1p 1− φ1p

]
and therefore

E[C∗|κ] =

[
φ0F0

1−β

A
A+B

· φ0F0

1−β
+ B

A+B
φ1F1

1−β

]
,

where A = βφ1p,B = 1− β.

To summarise:

Policy κ E[C∗(0)|κ] E[C∗(1)|κ]
(0, 0) c

1−β
c

1−β

(0, 1) A0

A0+B0
· c

1−β
+ B0

A0+B0
· φ1F1

1−β
A1

A1+B1
· c

1−β
+ B1

A1+B1
· φ1F1

1−β

(1, 0) φ0F0

1−β
c

1−β

(1, 1) φ0F0

1−β
A2

A2+B2
· φ0F0

1−β
+ B2

A2+B2

φ1F1

1−β

Here A0 = 1− β(1− φ1p), B0 = βφ0g, A1 = βφ1p,B1 = 1− β(1− φ0g), A2 = βφ1p and
B2 = 1− β are non-negative weights.

We can now see that (0, 1) is a suboptimal policy, as

• If c ≤ φ0F0, then we can see that E[C∗] is no larger under policy (0, 0).

• If φ0F0 > c, then as φ1F1 < φ0F0 we can see that E[C∗] is no larger under policy
(1, 1) or policy (0, 1).
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Therefore this policy is (weakly) dominated, and so will never be chosen.

As a result of this analysis, we have that there are 3 strategies that a firm might
pursue:

(κ(0), κ(1)) =


(0, 0)
(0, 1)
(1, 1)

3.2.2 Final Analysis

Consider the variety of firms. In the setting of this model, they differ on two main
counts: c and β. We investigate the effects of these on a firm’s optimal policy choice
and costs. Harrington’s original work considers only the effects of c (except for the case
β = 0); we shall see that β also determines significant differences.

To compare costs, note that a firm is indifferent between strategies (0, 0) and (0, 1)
when c = φ1F1 =: L0. Next, by comparing the costs for strategies (0, 1) and (1, 1), we
find that a firm is indifferent between them when

c = φ0F0 +
βφ0g[φ0F0 − φ1F1]

1− β[1− φ1p]
=: L1

and it is clear that higher costs will cause a firm to be more likely, on average, to violate.
This is shown in Figure 3.2. See C.2.3 for details of this graph5.

When c 6= φ1F1, a firm tends to indifference between strategies (0, 0) and (0, 1) if

βφ1p

1− β[1− φ0g]
→∞.

For φ1, g 6= 0, this will not occur for any β ∈ [0, 1). A firm will be indifferent between
strategies (1, 0) and (1, 1) if

β =
φ0F0 − c

[1− φ1p](φ0F0 − c)− φ0g[φ0F0 − φ1F1]
=: M1.

This is demonstrated in Figure 3.3. See C.2.4 for details.

It is informative to show the changes with respect to c and β simultaneously, as in
Figure 3.4 (details in C.2.5). In this image, a darker colour indicates a policy which
entails more frequent violation. Also, as β → 1, our expected costs increase without
bound, regardless of the policy chosen. We therefore also plot the cost multiplied by
(1− β) to give an alternative visualisation without this effect.

5In this figure and others like it, E[C∗(0)] is plotted for each policy, the optimal value is shown in
bold and the policy thus selected is given below.
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Figure 3.2: Indicative graph of E[C∗(0)] vs c
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Figure 3.4: E[C∗(0)] and E[(1− β)C∗(0)] vs c and β

The regulator has the aim of minimising the overall violation rate. This can be done
using two key steps: minimising the number of firms which adopt strategy (1, 1) and
maximising the time that (0, 1) firms spend in G0. Any (0, 0) firms are not a major
concern, as they can be treated like (0, 1) firms and will continue to not violate.

To find the amount of time that a firm spends, on average, in G0, we need to determine
the steady-state probabilities for this Markov Chain. To do this, note that only (0, 1)
firms are interesting in this regard – clearly (0, 0) firms have probabilities π = (0, 1) and
(1, 1) firms have probabilities π = (1, 0). Therefore, considering only (0, 1) firms, the
partial balance equation gives

φ1pπ1 = φ0gπ0,

so

π1 =
φ0g

φ1p+ φ0g
,

π0 =
φ1p

φ1p+ φ0g
,

or
π ∝ (φ1p, φ0g).

From this, we can see the following difficulty: to maximise the time that (0, 1) firms
spend in G0, then the regulator will set g low and p high. However, this will have the
effect of driving these firms to become (1, 1) firms, as this will imply a low value of L1
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and a high value of M1. Thus more firms will prefer to violate in both states. The
optimal solution will therefore depend considerably on the distribution of c and β within
the population of firms under regulation. Nevertheless, the following conclusions can be
made:

• F0 should be set as high as possible, as this has the effect of decreasing M1 and
increasing L1.

• Typically, p should be set high and g low, to maximise the time (0, 1) firms will
comply.

• As the regulator can force compliance by keeping (0, 1) firms in G0, they will
probably prefer to set F1 low, as this will increase L1 and decrease M1, rendering
more firms in this category. It will also drive most (0, 0) firms to become (0, 1)
firms, but as noted earlier, these can then be forced to usually remain in G0,
which will result in compliance. This can be done using a very small number of
inspections.

This analysis also confirms the following intuitive phenomena:

• Firms with higher costs are more likely to violate (as their costs are more likely to
exceed L0 and L1).

• Firms in distress are more likely to violate (as they become more myopic – that
is, their discount rate approaches zero – and therefore their discount rate is more
likely to be below M1).

3.3 An Insurance-Based System

When considering the OH&S situation in South Australia, we note that Harrington’s
model is not without flaws. In particular:

• Fines are very rare, as Harrington’s model predicts, however there is no evidence
of a ‘large’ fine for repeat offenders.

• The primary enforcement mechanism used is based on different insurance categories
– firms which violate have to pay a higher levy.

A summary of the system in force in South Australia can be obtained on the Work-
cover SA website, in particular in the documents Workcover SA (2006a), Workcover SA
(2007a) and Workcover SA (2007b). A few comments about this system are needed
before we proceed to developing a mathematical model.
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• The levies are proportional to the total payroll of the organisation, with the “Base
Levy” rate being determined by the industry grouping which a firm is in.

• In general, the size of fines is considerably lower than the cost of the Levy.

• Firms are required by law to report all incidents, and various schemes are in place
to encourage workers to report violations directly to the regulator (Safework SA).

• Schemes are in place to further penalise unusually bad workplaces (see Workcover
SA (2006b)) and to reward unusually good workplaces (see Workcover SA (2007c)).

In light of the above, we will build a new model of this enforcement system.

3.3.1 A Mathematical Model

We shall make the following simplifying assumptions:

• All incidents are reported (or at least, the probability of an incident being reported
is incorporated into the company’s choice of violation probability, rather than being
set by the regulator)6.

• All fines are incorporated into the levy imposed on a company.

• All violations are treated equally.

• We ignore the mechanisms in place to reward/penalise unusually good/bad work-
places, and model only the basic levy system.

With the above, we construct the following basic reward/penalty system:

• There are three groups: G−1, G0, G1. A firm violates when in group i with proba-
bility κ(i).

• A firm in G1 has a levy F1, a firm in G−1 or G0 has levy F0. For notational
simplicity, we may also write F−1 ≡ F0.

• Violations in G1 are punished with probability p by exile to G−1 in the following
period7.

6It is quite possible to build a model without this assumption, but the equations quickly become
intractable. Further, such a model simply obscures the primary qualitative results that we wish to
obtain.

7We ignore the one year of lag time present in the SA system, as this simply serves to complicate
the model, without providing significant qualitative results.
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• Compliance in G−1 is rewarded by return to G1 with probability g, however this
requires passing through G0 for one period, in which violation will be automatically
punished by a return to G−1.

Therefore, this gives a Markov chain with transition matrix8

P =

 1− (1− κ(−1))g (1− κ(−1))g 0
κ(0) 0 1− κ(0)
κ(1)p 0 1− κ(1)p

 .
We again assume that one-step costs are linear in the probability of violation, that is,

E[C(i)|κ(i)] = Fi + (1− κ(i))c

and that firms wish to minimise the long run discounted cost

E[C∗|κ] = E[C|κ] + βPκ · E[C∗|κ] = (I − βPκ)
−1E[C|κ]

for a constant discount rate β ∈ [0, 1).

3.3.2 Finding Optimal Policies

Under this model, p
κ(i)
ij and E[C(i)|κ(i)] are again linear in κ(i), therefore by Lemma

3.1.4, an optimal policy will occur at a vertex – that is, where κ(i) ∈ {0, 1} for all i.

It is intuitively clear that κ(0) will never equal 1 unless κ(−1) also equals 1. This is
because a firm would never go to the effort of compliance in G−1 only to deprive itself
of the reward of ending up in G1. Mathematically, this is because when κ(0) = 1 then
either {G−1, G0} is a recurrent class (when κ(−1) = 0), or G−1 is an absorbing state
(when κ(−1) = 1) which will be immediately reached from G0. In the former case,
E[C∗(0)] is a weighted average of F0

1−β
and F0+c

1−β
, in the latter case E[C∗(0)] = F0

1−β
, which

is clearly lower.

Therefore, we have 6 possible policies to consider:

(κ(−1), κ(0), κ(1)) =



(0, 0, 0)
(0, 0, 1)
(1, 0, 0)
(1, 0, 1)
(1, 1, 0)
(1, 1, 1)

8Where states are ordered as (G−1, G0, G1).
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We consider each in turn.

For (κ(−1), κ(0), κ(1)) = (0, 0, 0), we have

P(0,0,0) =

 1− g g 0
0 0 1
0 0 1


and therefore

E[C∗] = (I − βP )−1E[C]

=


1+βg

1−β(1−g)
F0 + β2g

1−β(1−g)
F1

1−β
+ c

1−β

F0 + c+ β F1+c
1−β

F1+c
1−β

 .

For (κ(−1), κ(0), κ(1)) = (0, 0, 1), we have

P(0,0,1) =

 1− g g 0
0 0 1
p 0 1− p


and therefore

E[C∗] =


(1+βg)(1−β(1−p))
(1+βp)(1+βg)−β

· F0+c
1−β

+ β2g
(1+βp)(1+βg)−β

· F1

1−β

β2p+(1−β(1−g))(1−β(1−p))
(1+βp)(1+βg)−β

· F0+c
1−β

+ β 1−β(1−g)
(1+βp)(1+βg)−β

· F1

1−β

β p(1+βg)
(1+βp)(1+βg)−β

· F0+c
1−β

+ 1−β(1−g)
(1+βp)(1+βg)−β

· F1

1−β

 .

For (κ(−1), κ(0), κ(1)) = (1, 0, 0), we have

P(1,0,0) =

 1 0 0
0 0 1
0 0 1


and therefore

E[C∗] =


F0

1−β

F0 + c+ β F1+c
1−β

F1+c
1−β

 .
For (κ(−1), κ(0), κ(1)) = (1, 0, 1), we have

P(1,0,1) =

 1 0 0
0 0 1
p 0 1− p


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and therefore

E[C∗] =


F0

1−β

β2p
1−β(1−p)

F0

1−β
+ F0 + c+ β F1

1−β(1−p)

βp
1−β(1−p)

F0

1−β
+ F1

1−β(1−p)

 .

For (κ(−1), κ(0), κ(1)) = (1, 1, 0), we have

P(1,1,0) =

 1 0 0
1 0 0
0 0 1


and therefore

E[C∗] =


F0

1−β

F0

1−β

F1+c
1−β

 .
For (κ(−1), κ(0), κ(1)) = (1, 1, 1), we have

P(1,1,1) =

 1 0 0
1 0 0
p 0 1− p


and therefore

E[C∗] =


F0

1−β

F0

1−β

βp
1−β(1−p)

F0

1−β
+ F1

1−β(1−p)

 .
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To summarise:

Policy κ E[C∗(−1)|κ] E[C∗(0)|κ]
(0, 0, 0) 1+βg

1−β(1−g)
F0 + β2g

1−β(1−g)
F1

1−β
+ c

1−β
F0 + c+ β F1+c

1−β

(0, 0, 1) A−1

A−1+B−1
· F0+c

1−β
+ B−1

A−1+B−1
· F1

1−β
A0

A0+B0
· F0+c

1−β
+ B0

A0+B0
· F1

1−β

(1, 0, 0) F0

1−β
F0 + c+ β F1+c

1−β

(1, 0, 1) F0

1−β
β2p

1−β(1−p)
F0

1−β
+ F0 + c+ β F1

1−β(1−p)

(1, 1, 0) F0

1−β
F0

1−β

(1, 1, 1) F0

1−β
F0

1−β

Policy κ E[C∗(1)|κ]
(0, 0, 0) F1+c

1−β

(0, 0, 1) A1

A1+B1
· F0+c

1−β
+ B1

A1+B1
· F1

1−β

(1, 0, 0) F1+c
1−β

(1, 0, 1) βp
1−β(1−p)

F0

1−β
+ F1

1−β(1−p)

(1, 1, 0) F1+c
1−β

(1, 1, 1) βp
1−β(1−p)

F0

1−β
+ F1

1−β(1−p)

where A−1 = β(1+βg)(1−β(1−p)), B−1 = β2g, A0 = β2p+(1−β(1−g))(1−β(1−p)),
B0 = β(1−β(1− g)), A1 = p(1+βg) and B1 = 1−β(1− g) are all nonnegative weights.

If (1, 0, 0) is optimal (in state G1), then by Proposition 3.1.1

F1 + c

1− β
≤ βp

1− β(1− p)

F0

1− β
+

F1

1− β(1− p)

⇔ c ≤ βp(F0 − F1)

1− β(1− p)

⇒ c ≤ β(F0 − F1)

⇔ F0

1− β
≤ F0 + c+ β

F1 + c

1− β

which implies (1, 1, 0) is at least as good a policy in state G0, and therefore we can ignore
(1, 0, 0).

Similarly, if (1, 1, 0) is optimal (in state G0), then

F0

1− β
≤ F0 + c+ β

F1 + c

1− β

⇔ β(F0 − F1) ≤ c

⇒ βp(F0 − F1)

1− β(1− p)
≤ c

⇔ βp

1− β(1− p)

F0

1− β
+

F1

1− β(1− p)
≤ F1 + c

1− β
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which implies (1, 1, 1) is at least as good a policy in state G1, and therefore we can ignore
(1, 1, 0).

3.3.3 Final Analysis

We now look only at the state G0, as it is in this state that the expected costs from all
the remaining policies are different.

Policy κ E[C∗(0)|κ]
(0, 0, 0) F0 + c+ β F1+c

1−β

(0, 0, 1) β2p+(1−β(1−g))(1−β(1−p))
(1+βp)(1+βg)−β

· F0+c
1−β

+ β(1−β(1−g))
(1+βp)(1+βg)−β

· F1

1−β

(1, 0, 1) β2p
1−β(1−p)

F0

1−β
+ F0 + c+ β F1

1−β(1−p)

(1, 1, 1) F0

1−β

Differentiation with respect to c gives

Policy κ ∂E[C∗(0)|κ]/∂c
(0, 0, 0) 1

1−β

(0, 0, 1) β2p+(1−β(1−g))(1−β(1−p))
(1+βp)(1+βg)−β

· 1
1−β

(1, 0, 1) 1
(1, 1, 1) 0

It is possible, (albeit tedious,) to show that this second term is non-increasing in g,

non-decreasing in p, and therefore must take values in the range
[
1, 1

1−β
− β

]
. Therefore

these policies are listed in order of decreasing slope with respect to c. Thus higher
costs will lead a firm to increase the number of groups in which they violate – first to
violating when in the Good group, then when in the Bad group, and finally when in the
Intermediate Group. An example of this is shown in Figure 3.6.

Similarly, we could differentiate with respect to β, however the outcome of doing so is
quite unmanageable. However, it is straightforward to plot the four policies for a range
of β’s, as is done in Figures 3.7 and 3.8.

Again, we shall plot the changes with respect to c and β simultaneously (code to do
this is in C.2.9), as in Figure 3.9. (Here a darker colour again indicates a policy which
entails more frequent violation.)

It is interesting to note that these figures display one significant difference between
the insurance-based model and Harrington’s Model – under the insurance-based model,
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Figure 3.6: Indicative graph of E[C∗(0)] vs c (see C.2.6 for details)
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Figure 3.7: Indicative graph of E[C∗(0)] vs β (see C.2.7 for details)
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Figure 3.8: Indicative graph of E[C∗(0)] vs β (see C.2.8 for details)
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it is possible for the discount factor to become significant enough that it will drive a
non-compliant firm into perpetual compliance. This makes intuitive sense, as in this
model the only punishment for violation today is the threat of a higher levy in the
future, therefore a completely myopic firm (one with β = 0) will have no incentive to
comply for any c > 0.

A related question is what happens as β → 1. Remembering that the discounted
cost converges (in some sense) as β → 1 to the ‘average’ cost (the cost in each state
multiplied by the steady state probabilities π), we can determine when this will happen
as follows:

The steady state probabilities under the four policies are:

• Under (0,0,0), π = (0, 0, 1).

• Under (0,0,1), π ∝ (p, pg, g).

• Under (1,1,1) or (1,0,1), π = (1, 0, 0).

Therefore the optimal policy as β → 1 will depend on which is the minimum of

F1 + c, p(1+g)
g+p(1+g)

(F0 + c) + g
g+p(1+g)

F1 and F0.

Hence, as β → 1,

• Policy (1,1,1) or (1,0,1) will be optimal if c ≥ max
{

g
p(1+g)

(F0 − F1), F0 − F1

}
,

• Policy (0,0,0) will be optimal if c ≤ min
{

p(1+g)
g

(F0 − F1), F0 − F1

}
,

• Policy (0,0,1) will be optimal otherwise.

Some policy implications are immediately clear:

• As in Harrington’s model, a larger difference between F0 and F1 encourages com-
pliance.

• A low value of g will make firms less likely to violate, and will encourage those
firms that do violate partially to do so less of the time. A high value of p will make
firms less likely to violate, as they will spend less time in G1, and are more likely
to choose to comply in G1 in the hope of staying there. However these will also
drive firms (particularly those with small values of β) to violate in all states.
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• Firms with high costs will be more prone to violate, as will myopic firms.

It is also clear that provided β � 0, it is possible to approximately replicate the com-
pliance profile under Harrington’s model using this levy system.

One possible consequence of this analysis is that it would appear that a more directly
punitive system (where firms pay dearly after violation) would entail higher levels of
compliance than a system based on an insurance levy. However, this may not be possi-
ble for political or economic reasons, as it may result in businesses becoming unviable
whenever a violation is detected. After all, as pointed out by Guo (1999, p. 47ff), the
sanctions imposed by a regulator are preventative in spirit, and penalties should only
be viewed as a ‘necessary evil’. Firms are often quite vocal about “excessive” penalties,
as these may prevent them from devoting adequate financial resources to abate real
hazards.

3.4 Capturing Diminishing Returns

Returning to Harrington’s (1988) original model, we now raise alternative objections.

• Violations are not binary

• Costs are not linear – there are diminishing marginal returns to effort

We can modify Harrington’s model to capture these effects.

We model the firm as having an action space {κ ∈ [0, 1]} (Note this set is compact).
The cost (c) of pursuing such a strategy is monotonically decreasing9 with κ, in particular
we shall suppose that it is of the form c = α/κ for some α > 0. (Note α may differ
between firms.)

As we shall see in Chapter 6, a geometric distribution appears to be a reasonable
approximation to the distribution of a firm’s violations. For this reason, we shall model
the number of violations V that occur as following the distribution

Pr(V = v) = (1− κ)κv,

which is a form of the geometric distribution with ‘failure probability’ κ. Thus, a high
value of κ implies a higher expected number of violations.

9This is because we assume that it costs less to have a higher rate of violation. A possible modification
to this model would be to consider c to be decreasing up to a point, after which it is increasing –
behaviour which corresponds to a firm having to pay a premium to employees if the risks of working
are too high.
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This model captures ‘diminishing marginal returns to effort in compliance’ – it be-
comes increasingly difficult for a firm to reduce the rate at which it will violate. In other
words, if a firm is already at a low level of violation, further preventative measures will
be significantly more costly than for a firm at a high level of violation. It also shows
that it is impossible for a firm to completely eliminate violations (κ = 0), as doing so
will require an infinite expenditure on safety (c = α/κ = ∞).

When in G0 a firm is inspected in such a way that each violation is detected inde-
pendently with probability φ0, when in G1 a firm is inspected in such a way that each
violation is detected independently with probability φ1. Therefore the number D of
violations detected follows the distribution

Pr(D = d|V = v) =

(
v

d

)
φd

i (1− φi)
v−d,

and so

Pr(D = d) =
∑

v

Pr(D = d|V = v) Pr(V = v)

=
∞∑

v=0

(
v

d

)
φd

i (1− φi)
v−d(1− κ(i))κ(i)v

=
(1− κ(i))φd

iκ(i)
d

(1− (1− φi)κ(i))d+1

=
1− κ(i)

1− (1− φi)κ(i)
·
(

φiκ(i)

1− (1− φi)κ(i)

)d

=: (1− λi)λ
d
i .

That is, D also follows a geometric distribution.

Now suppose that when the number of detected violations equals d, a firm in G1 will
be moved to G0 with a probability

1− (1− γ1)
d

and that a firm in G0 will be moved to G1 with a probability

(1− γ0)
d.

Large values of γ make firms more likely to be placed in G0, however (provided we define
00 = 1 when needed) a firm that does not violate will invariably be placed in G1 – this
scheme is very forgiving10. Also, as we would hope, the higher the value of d, the more
likely a firm is to be placed in G0. We shall assume 0 ≤ γ1 ≤ γ0 ≤ 1.

10In fact, γi can be interpreted as the probability that the regulator will not overlook a violation when
determining where to place a firm (that was in Gi) for the next period, when violations are considered
independently.
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If T denotes the event that a firm will be in G1 in the following period, then

Pr(T |D = d) = (1− γi)
d

Pr(T ) =
∑

d

Pr(T |D = d) Pr(D = d)

=
∑

d

(1− γi)
d(1− λi)λ

d
i

=
1− λi

1− (1− γi)λi

=
1− κ(i)

1− (1− φiγi)κ(i)
.

Thus we have a transition matrix

Pκ =

[
φ0γ0κ(0)

1−(1−φ0γ0)κ(0)
1−κ(0)

1−(1−φ0γ0)κ(0)

φ1γ1κ(1)
1−(1−φ1γ1)κ(1)

1−κ(1)
1−(1−φ1γ1)κ(1)

]
.

Finally, suppose that each detected offence is fined an amount Fi when in Gi, that is,
DFi is the total fine issued11. Then the expected fine is

E[D]Fi =

(
1− (1− φi)κ(i)

1− κ(i)
− 1

)
Fi =

κ(i)

1− κ(i)
φiFi.

Therefore the total immediate expected cost is

E[C(i)] =
κ(i)

1− κ(i)
φiFi +

α

κ(i)
.

This model has a nice symmetry to it, but it is non-linear (this is both its strength and
its weakness) and therefore we will not be able to exploit Lemma 3.1.4 in the same way as
earlier. However, it is clear that neither vertex (κ ∈ {0, 1}) will give an optimal solution,
as at these values the expected costs are infinite12. We can therefore immediately claim
that an optimal solution must be where the derivative of E[C∗] with respect to κ(i) is
zero.

11More generally, we can assume that the expected amount of a fine is Fi, and that the size of an
individual fine is independent of the number of violations detected.

12This also ensures that we will not have difficulties regarding manipulation of a ‘Geometric distri-
bution with failure probability 1’.
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We can now write

E[C∗] = (I − βP )−1E[C]

=

[
1− β φ0γ0κ(0)

1−(1−φ0γ0)κ(0)
−β 1−κ(0)

1−(1−φ0γ0)κ(0)

−β φ1γ1κ(1)
1−(1−φ1γ1)κ(1)

1− β 1−κ(1)
1−(1−φ1γ1)κ(1)

]−1

·

[
κ(0)

1−κ(0)
φ0F0 + α

κ(0)
κ(1)

1−κ(1)
φ1F1 + α

κ(1)

]
=

1

1− β
· 1

1 + β
(

φ1γ1κ(1)
1−(1−φ1γ1)κ(1)

− φ0γ0κ(0)
1−(1−φ0γ0)κ(0)

)
×

[
1− β 1−κ(1)

1−(1−φ1γ1)κ(1)
β 1−κ(0)

1−(1−φ0γ0)κ(0)

β φ1γ1κ(1)
1−(1−φ1γ1)κ(1)

1− β φ0γ0κ(0)
1−(1−φ0γ0)κ(0)

]
·

[
κ(0)

1−κ(0)
φ0F0 + α

κ(0)
κ(1)

1−κ(1)
φ1F1 + α

κ(1)

]
.

By Proposition 3.1.1, we can justifiably restrict our attention to E[C∗(1)], and so we
wish to select κ(0), κ(1) to minimise

E[C∗(1)] =
A

1− β
·
(

κ(0)

1− κ(0)
φ0F0 +

α

κ(0)

)
+

1− A

1− β

(
κ(1)

1− κ(1)
φ1F1 +

α

κ(1)

)
,

where A =
β

φ1γ1κ(1)
1−(1−φ1γ1)κ(1)

1+β
�

φ1γ1κ(1)
1−(1−φ1γ1)κ(1)

− φ0γ0κ(0)
1−(1−φ0γ0)κ(0)

� .

While analytically intractable, this equation is quite easy to solve numerically for
given values of φ1, F1, etc..., and we can plot the long term cost and the optimal policy
(κ(0), κ(1)) against α and β. This is done in Figures 3.10 and 3.11.

Some interesting observations can be made here. Generally the results resemble those
in Harrington’s model, in particular as α increases a firm will violate more, and as β
increases firms violate less. On the other hand, in this model we see that this may
happen even if it results in the β-adjusted long run cost E[(1 − β)C∗] to be increasing
in β.

3.5 Further extensions

A variety of further extensions to this model are possible.

One of these is by Stafford (2006), who incorporates the effects of self-policing into
Harrington’s model. Similar ideas are present in Livernois and McKenna (1999), who
incorporate self-policing into a simpler enforcement model. A good overview of the
economic literature on self policing can be found in Stafford (2005).

Friesen (2003) develops an alternative formulation of the targeted enforcement model,
based on random shifts between groups, and shows that this can lead to higher levels of
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compliance. Clark, Friesen and Muller (2004) then outline empirical evidence to show
the effectiveness of such a scheme in a controlled experiment.

Another extension is for the regulator to not inform the firm which group they are in,
and instead allow them to infer this from the regulator’s actions. Harrington mentions
this issue in passing, where he comments that some time may need to pass before a firm
realises which group it is in. In this case, we can model a firm as a Bayesian learner,
with some prior opinion as to which state they are in. This is updated in each period
depending on the actions of the regulator and results in the estimated probabilities of
being in each group following a Markov Chain with countably infinite state space. (Such
a situation is often referred to as a ‘Partially Observable Markov Chain’.) Unfortunately,
the resulting equations are quite difficult to manipulate, and will not be further explored
here.
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Chapter 4

Estimation with Missing
Information

“ ‘Other maps are such shapes, with their islands and capes!
But we’ve got our brave Captain to thank’

(So the crew would protest) ‘that he’s brought us the best –
A perfect and absolute blank!’ ”

Lewis Carroll
The Hunting of the Snark (1876)

We now move on from these simple economic models to investigating the efficiency
of a regulator. In particular we wish to determine empirically what types of firms are,
in practice, targeted for higher levels of enforcement, and what factors contribute to
a firm violating at a higher rate. In the previous chapter we disregarded these issues,
instead assuming that the regulator was not able to differentiate firms with high costs
and discount factors from others. Clearly, such information would allow us to determine
better models of enforcement, and to ensure that a regulator is acting efficiently.

To estimate parameters for models of regulatory systems is not a trivial task. This
is because it is not immediately apparent how to distinguish between firms which truly
violate more, and those who are simply detected more frequently. We will approach it
using the likelihood principle; as espoused by Fisher (1922) and others. To do this, the
following analysis (loosely following Dempster et al. (1977)) is needed.

41
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4.1 Maximum Likelihood Estimation

The general principle is this. Consider a set of data x with support in some space X .
This arises from a distribution with likelihood function Lc(φ) := f(x|φ, {ξi}), for some
(unknown) parameters φ in a space Φ, and known covariates {ξi} (which we can assume
to be fixed). We define the (complete-data) maximum-likelihood estimator to be

argmax
φ∈Φ

{Lc(φ)}. (4.1)

In general, we will have data which is assumed to be independent and identically
distributed (conditional on φ and ξi). We can therefore express the (complete-data)
likelihood in the form1

Lc(φ) = f(x|φ, {ξi}) =
∏

i

f̃(xi|φ, ξi) (4.2)

or alternately

lnLc(φ) = ln f(x|φ, {ξi}) =
∑

i

ln f̃(xi|φ, ξi). (4.3)

Note that the maximum-likelihood estimator in (4.1) is also the value which maximises
(4.3).

However, in our case, we do not observe x directly. Rather we observe some (mea-
surable) function of the data y := y(x),X → Y . Therefore, we instead define the
(incomplete-data) maximum likelihood estimator to be

φ̂ := argmax
φ∈Φ

{Lm(φ)} (4.4)

with

Lm(φ) := g(y|φ, {ξi}) =

∫
X (y)

f(x|φ, {ξi})dx (4.5)

where X (y) denotes the preimage in X of y. (Of course, this is integration with respect
to an appropriate ‘uniform’ measure on X , as will become important later, as much of
our data will be discrete2.)

1Where f̃ is the probability (density) function for an individual data point.
2This approach is prefered to the alternate approach of considering the missing data as parameters to

be estimated. Reasons for this are discussed in Little and Rubin (1983). However, our approach depends
on the assumption that there is no relationship between values of the missing data and the a priori
probability that the data will be missing. As in our example the missing data is simply unobservable
no matter what its value, this assumption holds trivially – as is pointed out by Little and Schluchter
(1985).
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Therefore, assuming appropriate continuity conditions, we can express the missing-
data likelihood function as

Lm(φ) = g(y|φ, {ξi}) =

∫
X (y)

f(x|φ, {ξi})dx

=

∫
X (y1)

∫
X (y2)

. . .

∫
X (yn)

∏
i

f̃(xi|φ, ξi)dx1dx2 . . . dxn

=
∏

i

∫
X (yi)

f̃(xi|φ, ξi)dxi,

and so we can write

lnLm(φ) = ln g(y|φ, ξi) =
∑

i

ln g̃(yi|φ, ξi) (4.6)

with

g̃(yi|φ, ξi) =

∫
X (yi)

f̃(xi|φ, ξi)dxi. (4.7)

Of course, the exact details of how this will appear will vary with the model used. The
estimators so defined are not necessarily unbiased or “minimum-variance” estimators,
however under reasonable conditions can be shown to be be consistent (converge in
probability to the true value) and efficient (their variance converges to the Cramér-Rao
lower bound) – see Lehmann (1983, p. 414) for details.

This immediately gives us a method of estimating the parameters – we simply find a
maximum of the likelihood function, which can be done using any number of numerical
techniques.

4.1.1 The EM Algorithm

The EM (Expectation-Maximisation) Algorithm is a method of finding maximum likeli-
hood estimates without having to calculate the missing data likelihood function (4.5). It
was proposed by Dempster et al. (1977), and is widely used in these situations. However,
for the following three reasons we will not use it here:

• In our current context, the incomplete data likelihood function often has a simple
closed form, and so the use of the EM algorithm is an unnecessary complication.

• As we will mainly be considering generalised linear models, which typically need
iterative numerical methods for estimation, we may as well leap directly to the
iterative method and avoid further complications.

• The EM algorithm has the drawback that it does not immediately give an indica-
tion of the errors associated with the estimates it produces, whereas these can be
estimated numerically as outlined in the following section.



44 CHAPTER 4. ESTIMATION WITH MISSING INFORMATION

4.1.2 Estimation of Errors

Using the above theory, we have a method of estimating the parameters of a general
model. We also need to have some idea of the errors associated with these estimates.
The fundamental entity that we shall use here is the Observed Information Matrix

I(φ̂) = −

[
∂2 lnLm(φ)

∂φi∂φj

∣∣∣∣
φ=φ̂

]
.

As Lm is smooth in the models we consider, this matrix is clearly symmetric (by
equality of mixed partial derivatives). We shall see that it can act as an estimate of the
inverse variance-covariance matrix of the estimates φ̂. The following is only an outline,
a full derivation with technical details can be found in Lehmann (1983, p. 125ff and p.
429ff).

First, we denote by φ0 the ‘true’ value of the parameters to be estimated. Provided
the model is well identified, i.e.

g̃(y|φ1) = g̃(y|φ2) a.e. ⇒ φ1 = φ2

then the weak law of large numbers implies (as the yi are independent conditional on
ξi) that

1

n
lnLm(φ) =

1

n

∑
i

ln g̃(yi|φ, ξi)

→ E[ln g̃(yi|φ, ξi)]

where convergence is with respect to an appropriate probability measure3 as n → ∞.
This is uniquely maximised by the true value of φ0 as it is with respect to the probabilities
defined by these parameters that the expectation is taken (this follows from Jensen’s
Inequality, see Lehmann (1983, p. 409)). Hence, as we are choosing φ̂ to maximise
lnLm, our estimators are consistent (converge in probability to the true value).

A key quantity is the ‘score’ function. This is a (vector-valued) function, and is
defined as

S(φ) =
d lnLm

dφ
.

We can take a (multivariate) linear Taylor approximation to the score function around
φ0. As our estimate is consistent, this will be a good approximation (at least asymptot-
ically) and has the form (considering φ as a column vector)

S(φ) ≈ S(φ0) + S ′(φ0) · (φ− φ0)

3It is easier to understand this if we consider a random effects model – i.e. where the ξi is also a
random variable. Otherwise, we need to be careful in how we define the concept of an infinite sample.
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where S ′ is a matrix of second derivatives of the log-likelihood, that is, −S ′(φ̂) = I(φ̂).

As our likelihood Lm is smooth, at its maximum value it will have zero derivative4

(that is, S(φ0) = 0). Therefore

φ = φ0 − I(φ0)
−1S(φ).

Taking expectations and variances, this indicates that asymptotically φ has expected
value φ0 and variance I(φ0)

−1V I(φ0)
−1 where V is the variance of S(φ). This can be

determined to be

V = E[S(φ)TS(φ)]

= E

[
∂ lnLm

∂φi

· ∂ lnLm

∂φj

]
which under appropriate regularity conditions can be shown to be equal to

−E
[
∂2 lnLm

∂φi∂φj

]
which is the ‘expected information matrix’. It is now possible to show that, asymptot-
ically, our observed information matrix will converge in some sense to its expectation
(through the law of large numbers), and that φ is asymptotically normally distributed
(through the central limit theorem) – see Lehmann (1983) for details. Therefore, it is
the case that (asymptotically)

φ̂ ∼ N(φ0, I(φ0)
−1) ≈ N(φ0, I(φ̂)−1).

4.2 Detection Controlled Estimation

Detection Controlled Estimation (DCE) is simply a special case of Missing-Data Esti-
mation. It was proposed by Feinstein (1990) as a means of accounting for imperfect
detection of violations of regulations. The model assumes that data is generated in the
following way:

• Stage 1: Violations of regulations occur.

• Stage 2: For each violation that has occurred, there is a chance that it will be
detected. Only detected violations are known by us.

Mathematically, we presuppose the existence of data x = (V,D) where V represents
violations and D represents detections (at this stage, both binary variables5). We know

4In general, our parameter space will be a manifold (and therefore open), and our likelihood will be
such that it has an attainable maximum with probability one.

5A simple generalisation of this model to account for partial detection would allow D to vary over
the range [0, 1]. Generalising for V is done in Section 4.4.
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Firm acts

No Violation 
Occurs

Violation 
Occurs

No Violation 
Detected

Violation 
Detected

Figure 4.1: The DCE Framework

that there exists a (stochastic) relationship between V and D. However, we observe only
D. Our aim is to determine properties of the random variables V and D. We proceed
to explore this model for a simple case.

4.3 Binary Choice Models

We consider the case where violation and detection is a binary variable – an ‘either-or’
situation. We shall define

Vi :=

{
1 if firm i has violated
0 otherwise,

Di :=

{
1 if firm i is detected
0 otherwise.

As above, we assume that the probabilities of these events depend on some covariates
ξi,ηi ∈ Ξ, where ξ and η may share values. We propose functions U and W which map
Ξ → [0, 1], and therefore propose the general model

Pr(Vi = 1) =: U(ξi),

Pr(Di = 1|Vi) =:

{
W (ηi) if Vi = 1

0 if Vi = 0.

We then have a series of observations {Di}. To find the likelihood function, we note
that, given there is no way for a false detection to arise in this framework, we can
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determine that

X (1) = {(1, 1)}
X (0) = {(0, 0), (1, 0)},

that is, a detection can only arise if a violation occurs and is detected, and no detection
can only arise either if a violation occurs and is not detected, or if no violation occurs.

Hence, we can express (4.7) as

g̃(Di) =

{
f̃((1, 1)) if Di = 1,

f̃((0, 0)) + f̃((1, 0)) if Di = 0.
(4.8)

Therefore, the (missing-data) maximum-likelihood estimator of parameters6 (φ̂) is

φ̂ = argmax
φ

{∑
i

ln g̃(Di|φ, ξi)

}

= argmax
φ

 ∑
{i:Di=1}

ln f̃((1, 1)|φ, ξi) +
∑

{i:Di=0}

ln(f̃((0, 0)|φ, ξi) + f̃((1, 0)|φ, ξi))

 .

Now considering f̃ , we find

f̃((1, 1)|φ, ξi) = Pr(Vi = 1, Di = 1)

= Pr(Vi = 1) Pr(Di = 1|Vi = 1)

= U(ξi)W (ηi),

f̃((0, 0)|φ, ξi) = Pr(Vi = 0, Di = 0)

= Pr(Vi = 0) Pr(Di = 0|Vi = 0)

= (1− U(ξi))× 1,

f̃((1, 0)|φ, ξi) = Pr(Vi = 1, Di = 0)

= Pr(Vi = 1) Pr(Di = 0|Vi = 1)

= U(ξi)(1−W (ηi)).

Hence (with U := U(ξi) and W := W (ηi) for simplicity)

φ̂ = argmax
φ

 ∑
{i:Di=1}

lnUW +
∑

{i:Di=0}

ln(1− U + U(1−W ))


= argmax

φ

 ∑
{i:Di=1}

lnUW +
∑

{i:Di=0}

ln(1− UW )

 .

6At this stage, φ represents some properties of U and W .
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4.3.1 Single Index Models

For the purposes of estimation, this model is still far too general7. A simple way of
reducing the generality of the model is to require U and W to be of a particular form.
For our purposes, we shall assume U(ξi) = F (ξiβU) and W (ηi) = G(ηiβW ) for some
real-valued vectors βU and βW , where F,G : R → [0, 1]. It is important to note that as
we have not yet restricted what can be included in ξi and ηi, this is still quite general.
(For example, a finite Taylor approximation to any function of some variable xj can be
estimated, simply by including appropriate powers of xj in ξi – similarly for Fourier or
other approximations.) A model with this assumption is called a single index model, as
the probability of violation depends on a single value ξiβU (and similarly for detection).

If we then specify F and G (typically these are cumulative distribution functions,
particularly logistic or normal) we have a model which we can attempt to estimate. In
this case, φ = (βU ,βW ), and so we try and find values to maximise∑

{i:Di=1}

lnF (ξiβU)G(ηiβW ) +
∑

{i:Di=0}

ln(1− F (ξiβU)G(ηiβW )) (4.9)

Given certain restrictions on F ,G, βU and βW , and certain properties of ξi and ηi,
this equation has a unique maximum. (See Chapter 5 for further details and discussion.)

As an aside, if we do not wish to restrict F and G to be of a certain form8, we can
follow the ideas of Carroll, Fan, Gijbels and Wand (1997) and assume that their product

F (ξiβU)G(ξiβW ) = logit−1(µF (ξiβF )) logit−1(µG(ηiβG))

for some locally linear function9 µF , µG. Using local quasi-likelihood methods (see Carroll
et al. (1997) for indications as to how this might work), we can then attempt to estimate
µF , µG,βF and βG. As will become clear through Chapter 5, we will have to be quite
careful when applying such techniques, as it is likely that we will not be able to determine
the required parameters uniquely.

4.4 Poisson Process Models

As discussed by Guo (1999), in the context of OH&S, this simple binary choice model
does not accurately reflect reality. There are typically multiple violations detected on

7This is another example of Bellman’s (1961) ‘curse of dimensionality’ – by using a ‘single index
model’, we lose some flexibility but significantly simplify the problem statistically. This is particularly
important if we choose to use a nonparametric or semiparametric variation on the themes explored here.

8That is, we wish to reintroduce the flexibility of a nonlinear relationship with ξi.
9This obviously restricts F and G to be continuous functions, however, in limit can approach any

function.
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a single inspection, and the number detected varies considerably. A more appropriate
model, in which we can still apply the DCE framework, is therefore a Poisson process
model10, where violations arise as the result of a Poisson process, and are then detected
independently.

Mathematically, the new model is as follows

Vi ∼ Po(U(ξi))

Di|Vi ∼ Bin(Vi,W (ηi))

where U : R → [0,∞). As earlier, we will proceed assuming that U and W can be
written in the form U(ξi) = λ(ξiβU) and W (ηi) = G(ηiβW ). This construction mimics
closely the simpler Binary-Choice model.

We now need to derive the incomplete data likelihood function, as this will allow us
to estimate the required parameters without the need for the EM Algorithm.

First we note that with complete data x = (V,D), we have

X (i) = {(j, i) : j ∈ {i, i+ 1, ...}}

(that is, the number of violations must be an integer that is at least as large as the
number of detected violations).

Hence we can express (4.7) (with λ := λ(ξiβU) and G := G(ηiβW ) for simplicity) as

g(Di) =
∑
j≥Di

Pr(Vi = j) Pr(Di|Vi = j)

=
∑
j≥Di

e−λλj

j!

(
j
Di

)
GDi(1−G)j−Di

=
e−λG(λG)Di

Di!
.

Hence, in the absence of information about Vi, we find Di is also Poisson distributed
with rate

λ(ξiβU)G(ηiβW ).

It is good to note that this product corresponds with the product of F and G in the
binary choice model.

10It is well known that this model could be derived as a limiting case of our above binary choice
model, however the justification for doing so would be tenuous at best here. We therefore propose the
following model as a separate, but related, case.
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4.5 Overdispersion

One of the key problems associated with using this model is that the data often may
not have the properties that are predicted by a Poisson Distribution. An easy way to
adapt our model to this is to include a further source of random variation. Typically, the
problem is that the variance of the data predicted by the Poisson distribution is smaller
than we observe – the data is overdispersed.

Guo (1999) follows Gourieroux, Monfort and Trognon (1984a) in using the canonical
logarithmic link function λ(x) = ex, and then including an error term in the viola-
tion process (i.e. replacing ξiβU with ξiβU + ε, where eε ∼ Gamma(1/r, r) for some
overdispersion parameter r. Alternatively, we could simply multiply the rate λG by
ε ∼ Gamma(1/r, r) or assume that the true rate used is sampled from a Gamma distri-
bution with shape parameter r and scale parameter λG/r. All of these models lead to the
conclusion that the probability function g(Di) is from a negative binomial distribution
with mean λG and ‘size’ r.

For example, if we model the true rate as being sampled from a Gamma distribution,

g(Di) =

∫ ∞

0

e−t(t)Di

Di!
× tr−1e−tr/(λG)

Γ(r)(λG/r)r
dt

=
1

Di!Γ(r)

(
λG

r

)−r ∫ ∞

0

tDi+r−1e−t(1+r/(λG))dt

=
Γ(Di + r)

Di!Γ(r)

(
λG

r

)−r (
λG

λG+ r

)Di+r

=
Γ(Di + r)

Di!Γ(r)

(
r

r + λG

)r (
1− r

r + λG

)Di

as desired.

We can now incorporate r into our likelihood function, and estimate it in exactly the
same way as previously outlined for other parameters.



Chapter 5

Parameter Identifiability

�Tous les géomètres seraient donc fins s’ils avaient la vue bonne, car ils
ne raisonnent pas faux sur les principes qu’ils connaissent; et les esprits fins
seraient géomètres, s’ils pouvaient plier leur vue vers les principes inaccou-
tumés de géomètrie.�

Blaise Pascal
Pensées: La �Rhétorique�de Pascal (1670)

As noted earlier, it is not immediately apparent that we will be able to distinguish
between the effects of regulation and violation. This problem (of not being able to
uniquely determine parameters given any amount of data) is termed non-identifiability.

Following the lead of Koopmans (1949), we shall attempt to further understand this in
the following way. We can consider estimation to be performed in two distinct steps: (1)
we attempt to infer from our data to the underlying joint distribution which generated
it, then (2) we attempt to calculate parameters of our model from the joint distribution.
It is this second step which Koopmans refers to as ‘identification’1. More formally, in
this second stage we assume that we know the values of the true probability function,
and use it to determine the parameters of the model.

It is this latter step which forms the main study of this chapter, as it is a significant
issue within our models. (To see this highlighted, for example, Feinstein’s (1990) original
paper or Gordon and Smith (2004), where this question is addressed rather through the
use of qualitative observations – a technique which is not considered here.)

1Koopmans’ method is closely related to ergodicity. In stage (1) we assume that our sample-
probabilities converge to the true state-probabilities, then in stage (2), we require that these state-
probabilities correspond with a unique parameter vector. In practice, stage (1) represents requirements
on the data available to us, while (2) represents requirements on the model to be fitted.

51
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In the analysis of this chapter, we assume that any categorical variables have been
expressed in a binary form, that is as a number of variables taking only the values zero
or one.

5.1 A Formal Definition

We shall first treat the simple binary choice model. We consider a collection of mappings
f from a point in the ‘data-space’ Ξ to the unit interval (0, 1). That is, f : Ξ → (0, 1).
This function gives a probability (of violation, detection or both) f(ξ,η) for a firm with
characteristics (ξ,η) ∈ Ξ. We shall term the set of these functions F . Confusingly, each
such f is, in this context, equivalent to a ‘joint distribution’ of outcomes as described
by Koopmans (1949)2.

Now we consider a ‘parameter-space,’ denoted B, coming equipped with a map m :
B → F . This map m is effectively the proposed ‘model’ for our data, and takes a
parameter vector β ∈ B to a function f describing the relationship between a firm’s
characteristics (ξ,η) ∈ Ξ and the probability of a detected violation.

We assume that there is a (unique) true value β∗ ∈ B such that the relationship
f ∗ = m(β∗) is what we observe. Our aim is to determine β∗ from our estimate of f ∗.
Because of this assumption, without loss of generality we shall assume that m(B) = F ,
that is, m is a surjection.

The problem of parameter-identifiability can now be formulated rigorously in this
context. The parameters of a model are called point-identifiable (at f) if the preim-
age of f contains only a single element. Generalising this statement, we shall call the
parameters of a model globally-identifiable if the parameters are point-identifiable for
every f ∈ F . (These are my own terms.)

While it is important for the sake of precision, the generality of the above discussion
is too great for our purposes, as only certain types of parameter spaces and models are
of any practical interest. We shall therefore focus our attention on a very small class of
models, namely those formed by the product of two generalised linear functions, where
B is an open subset of Rk, m is the obvious map from a parameter vector to the function
it generates, etc... A simple but illuminating example of this follows.

2This is because there is a bijection between the probability of an event p and the Bernoulli distribu-
tion with parameter p. Later, we shall extend this to other distributions, exploiting the fact that there
is typically a bijection between a distribution and the parameters which generate it.
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5.2 A Small Example

Suppose there are two covariates associated with each firm: ξ and η. Suppose further-
more that a firm violates with probability

P (Violates) = logit−1(β1 + β2ξ),

and is subsequently detected with probability

P (Detected|Violates) = logit−1(β3 + β4η).

Suppose η takes values from {0, 1} and ξ takes values from {0, 1, 2} (and that any of
these values for ξ can be taken when η = 0). We allow β = (β1, β2, β3, β4) ∈ B to take
any value in Rk. Hence, the functions f are of the form

f(ξ, η) = logit−1(β1 + β2ξ) logit−1(β3 + β4η)

where logit−1 = (1 + e−x)−1, the standard logistic cumulative distribution function.

Under the above paradigm for determining identification, the question that must
be answered is: “Given the known values for f , can the parameters β be uniquely
determined?”

To answer this we note that as logit−1(x) 6= 0 for any x, we can take a logarithmic
transformation – this simply works to make the algebra easier to follow, as if we write
φ := − log(1 + e−x) = log(logit−1(x)), then we know

log fβ(ξ, η) = φ(β1 + β2ξ) + φ(β3 + β4η).

In particular, as under Koopmans’ approach we can claim to know the value of f
(and hence of log f) at each of its values, we can claim to know


log f(0, 0)
log f(1, 0)
log f(2, 0)

· · ·

 =


φ(β1) + φ(β3)

φ(β1 + β2) + φ(β3)
φ(β1 + 2β2) + φ(β3)

· · ·

 =


1 0 0 1 0
0 1 0 1 0
0 0 1 1 0

· · ·




φ(β0)
φ(β1 + β2)
φ(β1 + 2β2)

φ(β3)
φ(β3 + β4)

 .

Now as we know each of these values, we can take any linear combination of them –
in other words we can do row operations on the matrix in the last of these terms. From
this, we can determine

φ(β1 + β2)− φ(β1) = k1,

φ(β1 + 2β2)− φ(β1) = k2,
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for some known values k1, k2. As φ is invertible, this pair of equations implies:

0 = 2φ−1(k1 + φ(β1))− φ−1(k2 + φ(β1))− β1 =: Γ(β1).

If this uniquely defines β1, then we can easily determine β2 = φ−1(φ(β1) + k1) − β1.
From here, we can determine β3, β4 by simply subtracting φ(β1 + β2ξ), which is now
known, from the known value of log fβ(ξ, η) and fitting using these points.

Therefore, we claim that:

Proposition 5.2.1. For this model to be locally identifiable it is sufficient that Γ(β1) = 0
have a unique solution. Furthermore, if this is the case for all k1, k2 6= 0 (with k2/k1 > 1
– required for a solution to exist), then our model is globally identifiable (apart from the
case where β2 = 0).

As here φ = − log(1 + e−x),

0 = Γ(β)

= 2φ−1(k1 + φ(β1))− φ−1(k2 + φ(β1))− β1

= −2 log[(1 + e−β1)e−k1 − 1] + log[(1 + e−β1)e−k2 − 1]− β1

⇒ eβ1 =
(1 + e−β1)e−k2 − 1

[(1 + e−β1)e−k1 − 1]2
.

From here, it is easy to follow through the algebra to find that

(1 + e−β1)2e−2k1 − 2(1 + e−β1)e−k1 + 1 = (1 + e−β1)e−β1−k2 − e−β1

and thus (provided k2/k1 > 1)

(1 + e−β1)e−2k1 − 2e−k1 = e−β1−k2 − 1

e−β =
e−2k1 − 2e−2k1 + 1

e−k2 − e−2k1

therefore

β1 = log

(
e2k1 − ek2

[ek1 − 1]2

)
− k2

is the unique solution to Γ(β1) = 0. Therefore, in this situation our model is globally
identifiable3.

While this would seem to solve the problem of identification, even for the relatively
straightforward case where our link functions are inverse normal distribution functions,
showing that Γ is injective is not a completely trivial problem. However it is easy to plot
Γ numerically for any pair k2, k1. Therefore, we recommend this plot as a diagnostic
when using other link functions in this context – if it is clear that there will be only one
solution, then an applied statistician can be confident that the model is well identified.

3It is possible to extend this result to when the known points are for any three distinct values of ξ.
See Appendix A.2 for details.
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5.3 Ein Gedankenexperiment

This above example leads us to the following gedankenexperiment (‘thought-experiment’),
which will highlight how we can distinguish between violation and detection.

Suppose we have a covariate η which contributes to detection but not to violation.
By comparing firms which differ only in η, we can determine the effect that η has, and
can attribute that effect to the detection process.

We now consider firms differing in other variables. The marginal impact of these
variables on our ‘control’ firm types can be estimated. We exploit the fact that if the
link function (logit−1 in the above example) is curved, then the marginal impact of other
variables on detection will differ depending where on the curve a firm is, and so we can
use this fact to determine a firm’s location along the curve.

Provided we have appropriate data and link functions, this should allow us to estimate
the parameters of the detection process. Given these, finding the parameters of the
violation process is straightforward.

5.4 A General Response

We will formalise this above idea, to allow us to determine if a model is identifiable. To
do so, we note the useful representation of the known points in the matrix above. In
general we suppose φ(β1ξ) gives the log of the probability of violation for a given ξ, and
ψ(β2η) the log of the probability of detection for a given η. Here the ξ,η are vectors
of covariates (which may share components), and the βi are real coefficient vectors such
that (β1,β2) ∈ B an open subset of Rk.

We can then express our knowledge, for each possible point (ξi,ηi), in the form

 log f(ξ1,η1)
log f(ξ2,η2)

...

 = M



φ(β1ξ1)
φ(β1ξ2)

...
ψ(β1η1)
ψ(β1η2)

...


for some matrix M of 0’s and 1’s.

In general, M will not be left-invertible4, as M will generally have more rows than

4By M being left-invertible, we mean that there exists a matrix N for which NM = I.
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columns, and the columns will be linearly dependent5. We will therefore consider working
on determining only one of our processes, and then using these results to determine the
other. (In the following discussion, without loss of generality we look at determining
the process denoted by φ.) We therefore consider performing row operations on M (and
possibly column operations, exchanging the variables in the final vector), to obtain a
matrix of the form 

−1 Il1 0 0 0 0
0 0 −1 Il2 0 0

0 0 0 0
. . . 0

...

 .
Here lj + 1 is, in some sense, the number of values ξ can take for a given ηj, and so∑

j(lj +1) is the number of covariate values determining the φ process. (For an example
of such a matrix, see the example of Section 5.6.) This matrix has sufficient zeros down
the right hand side to eliminate the ψ process from our equations, and allowing us to
focus our attention on estimation of the φ process only.

From this, it is clear that we can obtain an expression for every φ(β1ξi) as the sum
of φ(β1ξj) and a known value (denoted ki). If φ is invertible6, then we can obtain the
equation

β1ξi = φ−1(φ(β1ξj) + ki).

Expressing this in terms of a matrix of ξ values (and omitting the trivial value ξj),

Ξβ1 =

 ξT
2

ξT
3
...

β1 =

 φ−1(φ(β1ξj) + k2)
φ−1(φ(β1ξj) + k3)

...

 .
Now provided we have points which are not perfectly multicollinear, and at least one

variable which can take on at least three possible values7 which was not part of η, then
Ξ is left-invertible. Hence we know

β1 = (ΞT Ξ)−1ΞT

 φ−1(φ(β1ξj) + k1)
φ−1(φ(β1ξj) + k2)

...

 .
5An exception to this is if we allow one of our covariates to become unbounded, as then we may

have a point (or a limiting sequence of points) such that one of φ and ψ → 0 for any β. In this case
we may be able to exclude this value from our analysis, leaving M to be of full column rank. In such
a case, the question of identification becomes vastly simpler, as we can take a left-inverse of M and
obtain values of φ, ψ directly. However this assumption is often not a necessary one, as our models are
typically identifiable without such a requirement, and obtaining unbounded data is difficult in practice.

6If φ is not invertible, it may still be possible to consider the preimage of each point and draw some
conclusions. This however is not a case we will discuss here.

7More generally a combination of a variables not in η which can collectively take on a+ 2 values is
often enough, however problems arise if data is not available for every combination of covariates. See
Appendix A.3 for a discussion of this.
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Now, we need to show that this equation has only one solution. If we scale our data
such that ξj = (1, 0, 0, ..., 0) we can write the equation

β1 = (ΞT Ξ)−1ΞT

 φ−1(φ(β11) + k1)
φ−1(φ(β11) + k2)

...

 .
If we consider the first line of these vectors, we obtain a simple enough equation in one

variable. We simply wish to show that this has a unique solution β11 in B. Subtracting
β11 from both sides, we obtain (a scalar multiple of) the function denoted Γ in the
above example. Plotting this function on an arbitrary domain is easy enough (for ‘nice’
functions φ) and it is often quite clear by inspection that only one solution exists. We
can do this for each j to obtain a collection of functions Γj, each of which must have a
unique root.

Once we have a handle on our solution for the φ process, we can simply write

log f(ξ,η)− φ(β1ξ) = ψ(β2η).

We then proceed using these differenced data to ensure that we get identifiability. Pro-
vided ψ is invertible, it is now sufficient that the data making up η are not perfectly
multicollinear.

Note: We do not here require ψ to satisfy all the above conditions on φ – this will be
important when considering a Poisson process model, as the canonical link function in
this case is exponential, which fails the requirements above.

5.4.1 Extending to Non-Binary Models

When dealing with a Poisson or Negative Binomial8 model, we no longer wish to consider
f(ξ,η) as the probability of an event, but now rather as the rate at which events occur.
Of course f no longer gives values in (0, 1) but now in (0,∞). However, as there is no
part of this analysis which depends on the requirement that our functions be bounded
below one, the above carries directly over to this new setting.

5.4.2 A Geometric Observation

It is interesting to note that this problem boils down to a problem which is fairly straight-
forward to state in terms of geometry. We consider the curve defined by the points

8We will not prove that the overdispersion parameter r is well identified, as there is no difference
between a DCE model and a standard Generalised Linear Model in this regard.



58 CHAPTER 5. PARAMETER IDENTIFIABILITY

(x, φ(x) : x ∈ R). For this curve, is there a unique set of points such that the ‘vertical’
differences between the points are the values (k1, k2, ...) and the ‘horizontal’ differences
between the points are in a given ratio, determined by the matrix Ξ? A diagram of
this is given in Figure 5.1. In other words, we ask the question, “Is it possible through
translation and horizontal stretching to place the rectangle shown on the curve in more
than one way?”. If not, then our model is identifiable.

φ(x)

β1 β1 + β2 β1 + ξβ2

k1

k2

Figure 5.1: The geometric problem of identification

A solution to this geometric problem (that is, a list of the classes of curves φ for which
a unique solution exists) would immediately determine the class of functions for which
our parameters will be most often identifiable.

5.5 Examples of failure

There are a few simple examples where the identification fails. Feinstein (1990) claims
that of those functions representing the distribution functions of typical parametric fam-
ilies, only the exponential case fails. In particular he states the following theorem:

Theorem 5.5.1 (Feinstein’s Theorem A1 (pp271)). Assume that ξ and η contain only
continuous components (apart from intercepts) and that they have some elements in
common. If identification fails, the link functions must each belong to the exponential
family.

This claim is, in the absence of modification, incorrect9. We here present a few
counterexamples, including one where all the assumptions present in the theorem are
satisfied, but identification fails (for a non-exponential case) even up to a constant and

9See Appendix A.1 for a discussion of this theorem and the appropriate modifications which need to
be made.
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scalar multiple. Feinstein also fails (in our opinion) to appropriately outline the require-
ments on the data to be used in the parametric context, instead immediately moves to
semi-parametric estimation.

We need to distinguish between those cases where we can show that parameter iden-
tifiability will fail and those where this analysis simply cannot determine that parameter
identifiability holds. In general this section will illustrate the former, for this reason the
fact that they are not identifiable will be quite clear compared with the application of
the above analysis.

5.5.1 Uniform Distributions

Suppose we use a linear function as our link function, or even one which is linear on
an adequately large subsection (e.g. the uniform distribution distribution function).
In particular, consider the simple example where ξ and η take values from {−1, 0, 1}
‘independently’10 of each other. We now write the probability as

f(ξ, η) = (β1 + β2ξ)(β3 + β4η).

Suppose now that 0 < |β2| < β1 and 0 < |β4| < β3. Then let c∗ = max{β1±β2, β3±β4}.
For any c ≤ c∗, we can write

f(ξ, η) = (cβ1 + cβ2ξ)

(
β3

c
+
β4

c
η

)
and this function will represent identical probabilities. Hence this model is not identified
in this case.

From the perspective of our analysis, we note that on the relevant range, φ(x) =
log(x), and hence if we let ξ = (1, 0) we have:

B = {β1, β2, β3, β4 : 0 < |β2| < β1, 0 < |β4| < β3}

and also,
φ−1(φ(β1) + ki) = elog(β1)+ki = β1e

ki ,

Ξ =

[
1 −1
1 1

]
⇒ Ξ−1 =

1

2

[
1 1
−1 1

]
,

and similarly if we consider ψ.

Then we obtain the equation[
β1

β2

]
=

1

2

[
1 1
−1 1

] [
β1e

k2

β1e
k3

]
.

10In the sense of any combination of them being possible.
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Hence we wish to show that there is a unique solution to

Γ(β1) =
β1

2
[ek1 + ek2 ]− β1 = 0.

This is clearly not the case, as we have assumed that β1 > 0 and so either no β1, or any
β1, will satisfy Γ(β1) = 0.

5.5.2 Exponential Functions

Suppose that our probability (or our rate) is of the form

f(ξ, η) = eβ1+β2ξeβ3+β4η

and B = R4.

It is clear that we can rewrite this as

f(ξ, η) = eβ1+β3+β2ξ+β4η

and so for any c ∈ R
f(ξ, η) = eβ1+c+β2ξeβ3−c+β4η

and therefore our parameters are not identifiable11.

In terms of our model, φ(x) = x and so

φ−1(φ(β1) + ki) = β1 + ki

and similarly for ψ. Using the same data points as above we have:

Ξ−1 =
1

2

[
1 1
−1 1

]
and so wish to show that there is a unique solution in β1 to:

0 =
1

2
(β1 + k2 + β1 + k3)− β1 =

k2 + k3

2

which is obviously not the case.

11This case points out an interesting problem of determining what types of models have only some
parameters identified, a subtlety which we will not explore here. Feinstein’s (1990) paper discusses the
question of identification up to a constant and scalar multiple at length (particularly in the context of
semiparametric estimation), however makes further assumptions as to the nature of the data available.
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5.5.3 Insufficient Points

Consider the case when

f(ξ, η) = logit−1(β1 + β2ξ) logit−1(β3 + β4η)

but ξ and η can only take the values {0, 1} while B = R4. It is clear that we can choose
β1, β2, β3, β4 ∈ R such that the four points

logit−1(β1), logit−1(β1 + β2), logit−1(β3), logit−1(β3 + β4)

will take on any specified values in (0, 1). Taking a log transform, we claim to know
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1




log(logit−1(β1))
log(logit−1(β1 + β2))

log(logit−1(β3))
log(logit−1(β3 + β4))

 .

As the matrix here is clearly not invertible, and we have four free variables, our
solution space must be of dimension >0. Hence, it is impossible to identify the values
of logit−1(β1), ..., and hence it must be impossible to identify the values of β1, ..., β4.

In terms of our above approach, this corresponds to

Ξ =
[

1 1
]

which is clearly not left-invertible (it has non-full rank). A similar result will occur if
our data is perfectly multicollinear.

5.5.4 Insufficient Differences in data

Consider the case when

f(ξ) = logit−1(β1 + β2ξ) logit−1(β3 + β4ξ)

with B = R4. Then it is clear that we could simply swap the two processes over

f(ξ) = logit−1(β3 + β4ξ) logit−1(β1 + β2ξ)

and so we can never distinguish between the β1 and β3 values and the β2 and β4 values.
Except in the special case where β1 = β3, β2 = β4, i.e. when our detection and violation
processes are identical, this implies that our parameters are not identifiable.

In the context of the above model, this is because when we write out our M matrix,
we find that it is of the form [A|A] for some matrix A. This implies that no number
of row operations will be sufficient to separate out the two processes, therefore that our
above construction is impossible.
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5.5.5 A Peculiar Counterexample

We here present an example which does not allow for the parameters to be identified even
up to a constant and scalar multiple, when the link functions involved are not exponen-
tial, and all the assumptions of Feinstein’s theorem (without any further strengthening)
are satisfied. This example is clearly pathological, however it outlines the problems that
can be encountered – particularly if we allow our link functions to vary.

Let our rate of detected violation be of the form

f(ξ, η) = F (β1 + β2ξ + β3η)G(β4 + β5ξ)

where F (x) = ex and G(x) = ex+sin(log x) (which are not both exponential), ξ ∈ (0, 1)
and η ∈ R (which are both continuous) and

B = {(β1, β2, β3, β4, β5) ∈ R5 : β4 > 0.2, |β5| < β4}.

(Note, for x > 0.175 approx., G(x) is invertible.)

In this case, we can rewrite f in the form

f(ξ, η) = exp{(β1 + β4) + (β2 + β5)ξ + β3η + sin(log(β4 + β5ξ))}

and so if (β1, β2, β3, β4, β5) is a solution, then so is(
β1 + (1− e2nπ)β4, β2 + (1− e2nπ)β5, β3, e

2nπβ4, e
2nπβ5

)
,

for any n ∈ Z (and there are possibly other solutions as well). It is clear that the
constants are not identified here, but also that there is a rather peculiar relationship
between the values of β2 and β5 (in particular, they are not even identified up to scalar
multiples).

To apply the above analysis to this situation is difficult, as even though G(x) is
invertible, its inverse has no simple form. However it can be inverted numerically12, and
a plot of Γ is shown in Figure 5.2.

It is immediately clear that Γ has more than one root, and also that each of these
roots is isolated from the others. Hence our model is not well identified, even if we have
an invertible information matrix at this point.

5.6 And An Example of Success

To present a nontrivial example where identification does not fail, let us consider the case
where violations occur at a rate of eβ4+β5ξ1+β6ξ3 , and these violations are detected with

12The code to do this is in Appendix C.2.1, and is easily modifiable for any other invertible link
functions.
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Figure 5.2: An approximate graph of Γ vs β4 (Horizontal axis is log-scale)

probability Φ(β1 +β2ξ1 +β3ξ2). Here Φ is the normal distribution function, ξ2 ∈ {0, 1, 2}
and ξ1, ξ3 ∈ {0, 1} independently, and B = R6. Hence the rate of detected violations is
given by

f(ξ1, ξ2, ξ3) = Φ(β1 + β2ξ1 + β3ξ2)e
β4+β5ξ1+β6ξ3 .

Of course, if our data can take more values than this, that will not cause any problems
– we can simply ignore them, as these points are sufficient.

With φ(x) := log Φ(x), we know the points:



1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 1





φ(β1)
φ(β1 + β2)
φ(β1 + β3)

φ(β1 + β2 + β3)
φ(β1 + 2β3)

φ(β1 + β2 + 2β3)
β4

β4 + β5

β4 + β6

β4 + β5 + β6


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Performing row & column operations we get:


−1 1 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0

...





φ(β1)
φ(β1 + β3)
φ(β1 + 2β3)
φ(β1 + β2)

φ(β1 + β2 + β3)
φ(β1 + β2 + 2β3)

β4

β4 + β5

β4 + β6

β4 + β5 + β6


Now suppose we estimate this model using some method, and obtain estimates β1 = 1,

β2 = 2 and β3 = 1. Hence we have implicitly estimated the values

φ(β1 + β3)− φ(β1) = 0.1497409,

φ(β1 + 2β3)− φ(β1) = 0.1714030,

φ(β1 + β2 + β3)− φ(β1 + β2) = 0.001319138,

φ(β1 + β2 + 2β3)− φ(β1 + β2) = 0.001350523.

And so we must consider the two functions

Γ1(β1) = 2φ−1(φ(β1) + 0.1497409)− φ−1(φ(β1) + 0.1714030)− β1,

Γ2(β
∗
1) = 2φ−1(φ(β∗1) + 0.001319138)− φ−1(φ(β∗1) + 0.001350523)− β∗1 ,

where β∗1 := β1 + β2. Proving that these have unique roots is difficult analytically,
however plotting them is fairly straightforward13, as in Figure 5.3.

It is clear that both of these functions will have a unique root, and therefore that the
estimated values of β1 and β1 + β2 are the only ones which gives this relationship. From
this it follows that the estimated value of β3 is unique, and hence that the estimated
values of β4, β5 and β6 are also unique.

In other words, this relationship is (point) identified.

5.7 Some Heuristics

In practice, it would be useful to know a priori which models are at least likely to
be identifiable, and so the following rules of thumb are useful. In general, if these
assumptions are satisfied, identification will follow.

13See Appendix C.2.2 for the code used.
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Figure 5.3: A graph of Γ1,Γ2 vs β1, β
∗
1 . For this example, a logarithmic scale is used on

the vertical axis to highlight the positive nature of the graph.

1. We shall assume that at least one of our processes has a ‘nice’ link function – for
example those similar to logistic or probit regression work well, exponential and
linear functions do not work well.

2. We wish this process to be dependent on data which contains at least one covariate
which takes at least 3 distinct values (with non-zero probability). If higher-order
terms/piecewise linear terms in this covariate are also included in the model, then
we will require more than 3 points. Overall, we require one more point than we
would for ‘classical’ regression14.

3. The coefficient of this covariate must be non-zero.

4. This covariate must be independent of the other process.

5. We also require our covariates not to be perfectly multicollinear.

5.8 Semi-parametric estimation

We have looked here at using parametric methods for estimating the proposed rela-
tionship between detection, violation and observed covariates. Often these are quite
sufficient, as the distinction between parametric models is limited, and often our data
is quite discrete. On the other hand, we do not want to simply have our models being

14As noted earlier, if no such covariate is available, we can use generally a covariates which can take
on a+ 2 values, but this often causes our data to be insufficient for estimation.
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estimable purely because of our parametric assumptions. For an exploration of semipara-
metric regression methods that could very well be used here, see Horowitz and Hardle
(1996), or for an alternate approach, see Carroll et al. (1997). As mentioned earlier,
Feinstein (1990) discusses the question of parameter identifiability in this context at
length, albeit his results assume that continuous covariates are available.

5.9 Data Requirements

In this chapter we have focused on the question of ‘identifiability’ – the second stage of
Koopmans’ approach. Given this, it is appropriate to make a few comments about the
requirements on the data available for this to work.

Basically, the requirements on the data will look quite similar to the requirements for
identifiability above, where Ξ is replaced by the available covariate matrix. In the optimal
setting, this means that we would like at least one observation with each combination
of covariates. However, we also know that if our model is not well identified, then (by
the rank theorem of differential geometry) there will often exist a lower degree manifold
of parameters which explain the data equally well. In this case, we will essentially have
a ‘ridge’ in our likelihood function, and moving along such a ridge we will have zero
derivative. Conversely, the existence of such a ridge indicates that our data either (1)
fails to uniquely identify the joint distribution of the outcomes (a data-based problem)
or (2) that our model is unidentifiable and will always have a continuum of equally
plausible estimates (a model-based problem).

Such a ridge can be found empirically by looking at the eigenvalues of the observed
information matrix I. A negative eigenvalue indicates that we have not found the maxi-
mum likelihood estimates, a zero eigenvalue (possibly up to numerical error) indicates a
‘ridge’, with the associated eigenspace giving the direction of the ridge from our current
estimates. This acts as another useful tool in determining if our parameter estimates
are unique, particularly for a model which is identifiable in theory, but for which we are
unsure if we have sufficient data.

Given sufficient data, any identifiable model should have unique parameter estimates,
however such data may not be available, particularly not in sufficient quantities to give
accurate, stable estimates for our models.



Chapter 6

Data and Analysis

�J’avais entres tes mains déposé la justice,
�De peur que l’homme n’erre et ne se pervertisse

�Comme au temps de Japhet,
�Des âmes des vivants j’avais fait ton domaine,
�Je t’avais confié la conscience humaine.

�Réponds, qu’en as-tu fait? �

Victor Hugo
La Vision de Dante from Choix de Poèmes (1853)

The U.S. Department of Labor Occupational Safety and Health Administration (here-
after OSHA) publishes the results of all inspections freely on their website (OSHA, 2007).
Similar data for Australia not being available, we shall investigate the relationships be-
tween violation, detection and a firm’s profile within the Paper and Allied Products
sector in the U.S. The dataset used consists of the 6673 finalised inspections performed
on industries in the SIC Major Group 26 classification (Paper And Allied Products),
for which the inspection was started between 1 January 1995 and 31 December 2005.
Of these, 6132 inspections were actually carried out, and so this data set was used for
consideration (541 cases did not result in an inspection, the reasons for this included
the business no longer being active, entry being denied, the business having 10 or fewer
employees, etc...). The details of how these inspections were carried out are outlined in
the document OSHA (1993).

This industry classification (SIC Major Group 26) includes a variety of distinct types
of factories. These sub-categories can be seen in Table 6.1.

Other details were available for the firms inspected, namely the street address of the
site inspected and whether the workers were members of a union. Also given was

67
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SIC Description
2611 Pulp Mills
2621 Paper Mills
2631 Paperboard Mills
2652 Setup Paperboard Boxes
2653 Corrugated and Solid Fiber Boxes
2655 Fiber Cans, Tubes, Drums, and Similar Products
2656 Sanitary Food Containers, Except Folding
2657 Folding Paperboard Boxes, Including Sanitary
2671 Packaging Paper and Plastics Film, Coated and Laminated
2672 Coated and Laminated Paper, Not Elsewhere Classified
2673 Plastics, Foil, and Coated Paper Bags
2674 Uncoated Paper and Multiwall Bags
2675 Die-Cut Paper and Paperboard and Cardboard
2676 Sanitary Paper Products
2677 Envelopes
2678 Stationery, Tablets, and Related Products
2679 Converted Paper and Paperboard Products, Not Elsewhere Classified

Table 6.1: SIC Codes for Industries within the ‘26’ Major Classification

• the open and close dates of the case,

• whether the scope of the inspection was partial or complete,

• whether the inspection was focused on safety or health issues,

• whether the inspection was planned, based on an accident, based on a referral or
various other categories (and the planning guide used if appropriate),

• any particular emphasis to the inspection,

• whether advanced notice was given and

• whether the corporation was public or privately owned.

In terms of outcomes, most details were given, in particular the initial, current and
final numbers of violations within different categories (serious, repeat, willful, other and
unclassified) and the fines given within each category. If the inspection was due to an
accident, further details were also given.

Unfortunately, this does not include all significant details of the firms in question.
The empirical work of Gray and Shadbegian (2005) indicates that some of the most
crucial details in predicting the rate at which a firm violates air pollution regulations
are its size, age and technology, and it is reasonable to assume that these would also
affect its occupational hazard levels. We do not have these details – in fact Gray and
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Shadbegian (2005) were only able to access them using confidential survey data from
the U.S. Census Bureau.

Nevertheless, we will use this data to investigate whether different firm characteristics
are significant in determining the effectiveness of enforcement and violation. Of course,
our results are subject to possibly significant omitted variable bias, which must be taken
into account when drawing conclusions.

6.1 A Model of Violations

To prevent problems of ‘Reverse Causation’, we look at the number of serious violations
cited in random (‘Planned’) inspections (as opposed to investigations arising from com-
plaints or accidents), where the inspection was actually carried out. From our data set,
we have 1963 such inspections, of which 612 had no serious violations cited, the mean
number of serious violations cited was 2.75 and the standard deviation was 3.87. A
histogram of this data can be seen in Figure 6.1.

Histogram of Serious Violations
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Figure 6.1: Numbers of Serious Violations cited in inspections 1995-2005

As an initial model, we used

D ∼ NBinom(d, λG),

where D is the number of violations, d is an overdispersion parameter, λ is the rate
of violation and G is the probability of a violation being detected. (This uses the
‘n, µ’ parameterisation of the negative binomial distribution, that is, λG is the expected
number of detected violations.)
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The functional forms assumed for λ and G were

log λ = ξβ1,

logitG = ηβ2,

where ξ contains (indicator variables for)

• x1: Industry SIC Code

• x2: Inspection Scope (Complete/Partial)

• x3: Inspection Focus (Safety/Health)

• x4: Unionisation of Workplace

• x5: Whether advanced warning was given

and η contains x1, x2,..., x5 and

• x6: the length of time the case took to resolve.

In other words, we assume that violation depends on various factors, including the
inspection type and whether advanced warning was given (as these may be correlated
with underlying risk factors, and may indicate whether a firm is ‘cleaning up its act’
when it knows an inspection is coming). On the other hand we assume that detection
of violations does depend on whether advanced warning was given, and depends linearly
on the duration of the case1.

As the duration of the case can take more than 3 distinct values and we are including
it in a process which depends on the logistic link function, by the analysis of Chapter 5,
this model will hopefully be identifiable (we still do not know that its coefficient will be
nonzero).

This model was fitted in R, using a combination of the nlm and optim commands.
Code for this is given in Appendix C.1. These also allow a numerical Hessian matrix for
our likelihood function, i.e. the negative of the observed information matrix, to be given
directly. Estimated coefficients and their estimated standard errors (in parentheses) are
given in Table 6.2.

The overall log-likelihood of this data under this model was −3974.437. Looking at
Table 6.2, it is clear that many of the estimated parameters are insignificant, and also

1We also investigate the effects of changing this assumption from linearity to something else, however
the fundamental question of causation remains. Further discussion of this can be found in Section 6.2
below.
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Covariate Violation Detection

(Intercept) 0.40386 (0.29801) -1.58110 (1.00978)
x1=2621 0.80518 (0.30371) 0.41176 (1.00488)
x1=2631 0.45240 (0.33300) 1.26932 (1.06819)
x1=2652 0.32519 (0.39086) 2.43362 (1.20760)
x1=2653 0.31846 (0.30414) 1.80888 (1.00846)
x1=2655 -0.00258 (0.38030) 2.05759 (1.16534)
x1=2656 0.02209 (0.52810) 1.55868 (1.38559)
x1=2657 0.36380 (0.32430) 2.22429 (1.06458)
x1=2671 0.55970 (0.35400) 1.73142 (1.08820)
x1=2672 0.41755 (0.33882) 1.10096 (1.05849)
x1=2673 0.19483 (0.33148) 2.45957 (1.10553)
x1=2674 0.13923 (0.37332) 2.22313 (1.14232)
x1=2675 0.37309 (0.35929) 1.57518 (1.07942)
x1=2676 0.55338 (0.38821) 1.11874 (1.15924)
x1=2677 0.47976 (0.34586) 1.92858 (1.08364)
x1=2678 0.56911 (0.44693) 0.40959 (1.17624)
x1=2679 0.40428 (0.31210) 1.88396 (1.02590)
x2=Partial -0.69602 (0.14469) -0.48583 (0.31465)
x3=Safety 0.78895 (0.08585) -0.79726 (0.29320)
x4=Unionised 0.23080 (0.08125) -0.27975 (0.18898)
x5=Notice Given -0.85195 (0.46181) 1.07665 (1.22735)
x6 1.29194 (0.27152)

d 1.228149 (0.06799)

Table 6.2: Estimated Coefficients and Standard Errors for Full Model
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that many of the SIC categories are not significantly different from each other. To this
end, a model was fitted using only the first 3 digits of the SIC code, giving a slightly more
generic grouping of industries. The results of doing so are in Appendix B.1. This model
had a total of 21 parameters to be estimated, and gave a log-likelihood of −3988.568.
Comparing this with the 45 parameters above, and using a Likelihood ratio test (and the
asymptotic χ2

45−21 approximation) this indicated that there is no evidence of distinction
within the SIC subgroupings (P -value of 0.25).

Some qualitative results that can be seen from this analysis are that pulp mills appear
to have lower levels of serious violations than worksites further down the production line,
and also that pulp, paper and cardboard mills appear to have lower levels of violations
detected. Also, it appears that firms undergoing inspections with a ‘Safety’ emphasis
violate at a considerably higher rate (and are detected less) than those selected for
‘Health’ inspections. A Unionised workforce also corresponds to higher levels of violation
and lower levels of detection. A possible explanation for these results is that in these
workplaces, violations are more likely to be detected through accidents and complaints,
rather than through the results of random inspections.

Advanced notice of an inspection appears to be associated with lower levels of viola-
tions (but possibly with higher rates of detection), it is unclear from this data if this is
due to a selection bias in which firms are given notice or due to firms cleaning up possible
violations prior to the inspection taking place2. A partial inspection is associated with
considerably lower levels of violations, probably indicating that it is firms which behave
well which are selected for partial inspections. Nevertheless, there is weak evidence that
partial inspections are less effective at detecting violations than complete inspections, as
we would intuitively expect.

Also, the estimated dispersion parameter d = 1.228149 is quite small. This indicates
that the occurrence and detection of violations does not follow a Poisson process, and
indicates that a geometric distribution would possibly be better for modelling the number
of violations detected in a single inspection – supporting the model in Section 3.4.

Our key variable x6 has a strongly nonzero coefficient, and therefore the model is
well identified. However one matter of concern is that our estimates may depend too
much on the proposed functional form. In particular we would expect that the difference
between an inspection lasting zero days and one day would be far more significant than
between an inspection lasting 100 and 101 days. To model this, we can apply a nonlinear
transformation to the durations and use these transformed values to fit the model. Using
the transformation given by log(1 + x), we fit this model using the grouped SIC data.
The results of this can be seen in Appendix B.2. The qualitative results commented on
above are still clear under this analysis.

2Care must be taken with these estimates, as only 17 planned inspections with advanced notice are
actually recorded in this dataset.
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The estimated log-likelihood of these results is considerably higher, at −3976.193 (vs.
−3988.568 for the untransformed data), indicating a better fit overall.

Some interactive effects were also fitted to this model, however the estimates were all
insignificant. (See Appendix B.3 for details.)

6.2 Modelling Inspector Suspicion

In the analysis of our data, we use the duration of an inspection as a covariate in our
model. There are clear problems in doing this, as a long duration is possibly related to
significant numbers of violations being detected early on. Another problem is that the
duration of the case is not equivalent to the time spent on the inspection, but rather
involves administrative time and the possibility of appeals by the firm. We might then
decide that it is inappropriate to include duration as a covariate, however dropping it
results in our model ceasing to be identifiable.

We therefore propose the following adjustment to our model. An inspector, when
reaching a worksite, forms an opinion about the safety at the worksite, which will dictate
how much effort he will put into the case. This decision is made before any violations
are observed. We call this variable ‘suspicion’, and denote it by S. This suspicion is
clearly not observable, however we shall assume that it is linearly related to the true
expected number of violations λ and the ‘modified duration3’ of the case log(1 + x6).
Mathematically

S = γ1 + γ2λ+ γ3 log(1 + x6) + ε.

For simplicity, we shall assume that eε follows a Gamma distribution, as it can then be
incorporated into the scale factor in our negative binomial model. There are still some
questions regarding causation in this model, however we hope that these will not impact
too significantly on our results.

We clearly cannot observe S, however we can observe log(1 + x6) and estimate λ.
Therefore if our violation process depends linearly on S in some sense, then we can
include λ̂ and log(1 + x6) in our models4 in the place of S. The parameters estimated
for λ̂ and log(1 + x6) will then be the same as those for S (up to a scalar multiple), and
will allow us to have a well identified model.

Qualitatively this implies that a firm’s characteristics can affect detection in two ways:
by directly making violations easier to detect, and by raising an inspector’s suspicion

3We use the transformed duration rather than the duration to incorporate the fact that extremely
long inspections are probably more due to administrative time than to an inspector being suspicious.
This also gives a better fitting model empirically.

4This is the approach to missing data that is criticised in Little and Rubin (1983), however we shall
use it here simply for the sake of tractibility.
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about a worksite.

Fitting this model in R is fairly straightforward, and the estimated coefficients can
be found in Table 6.3. The maximum log-likelihood is considerably higher than in the
models above, at −3958.363.

Covariate Violation Detection

(Intercept) 1.21394 (0.35722) -3.63892 (1.15873)
x1=2621 0.19969 (0.34194) 0.90809 (1.20088)
x1=2631 -0.41099 (0.43047) 3.31043 (1.41716)
x1=2652 -0.62668 (0.50174) 4.70187 (1.63623)
x1=2653 -0.40963 (0.36960) 3.46873 (1.24931)
x1=2655 -0.94796 (0.45820) 4.68683 (1.49504)
x1=2656 -0.99357 (0.56361) 4.56433 (1.77182)
x1=2657 -0.55136 (0.40657) 4.35631 (1.33044)
x1=2671 -0.20680 (0.48458) 3.18581 (1.66932)
x1=2672 -0.15635 (0.45083) 2.26545 (1.51906)
x1=2673 -0.55741 (0.38216) 4.09633 (1.31785)
x1=2674 -0.61976 (0.58621) 4.22333 (1.79366)
x1=2675 -0.54914 (0.52213) 3.97976 (1.59508)
x1=2676 0.28024 (0.48262) 0.65588 (1.85475)
x1=2677 -0.39178 (0.40986) 3.78952 (1.36236)
x1=2678 -0.38314 (0.47354) 2.73703 (1.50284)
x1=2679 -0.36454 (0.38162) 3.51306 (1.25966)
x2=Partial -0.83042 (0.18746) 0.94168 (0.62141)
x3=Safety 1.07501 (0.14994) -2.37574 (0.64005)
x4=Unionised 0.30643 (0.11120) -0.85386 (0.46773)
x5=Notice Given -1.39948 (0.36903) 17.2514 (2097.16)
Suspicion:

log(1 + x6) 1.02060 (0.16229)

λ̂ 0.22072 (0.11355)

d 1.281470 (0.0726924)

Table 6.3: Estimated Coefficients and Standard Errors For Full Model with Suspicion

The qualitative results outlined above remain, however there is a problem with the
estimate of the effect of advanced notice on the detection process. Due to the very small
sample size, this parameter is not well identified under this model5. We therefore drop
it from the detection process – which is equivalent to assuming that inspectors do not
alter their behaviour based on whether a firm has been given advanced notice, but that
advanced notice will only be issued to firms with low levels of violations, or will result
in firms ‘cleaning up’ before the inspector arrives.

5The observed information matrix has a very small eigenvalue, with associated eigenvector in the
direction of the parameter in question.
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Another clear result is that, once again, many of the industries are very similar,
and so we can fit the model using only the first 3 digits of the SIC code, for a more
generic grouping. Doing so results in the parameters in Table 6.4 and a log-likelihood of
−3973.99. Testing if these models are significantly different (using a χ2

24 approximation)
results in a P -value of 0.1466, indicating no significant difference.

Covariate Violation Detection

(Intercept) 1.09435 (0.40525) -3.20129 (1.28831)
x1=262 0.22598 (0.40109) 0.92687 (1.34314)
x1=263 -0.24727 (0.47427) 2.73880 (1.57327)
x1=265 -0.50065 (0.41804) 3.80959 (1.38904)
x1=267 -0.33247 (0.41359) 3.34419 (1.36791)
x2=Partial -0.64932 (0.18526) 0.16737 (0.58655)
x3=Safety 1.08017 (0.13088) -2.35215 (0.72622)
x4=Unionised 0.37646 (0.11180) -1.00421 (0.48938)
x5=Notice Given -0.28346 (0.29484)
Suspicion:

log(1 + x6) 1.06433 (0.16233)

λ̂ 0.20291 (0.10488)

d 1.242076 (0.06959422)

Table 6.4: Estimated Coefficients and Standard Errors For Simplified Model with Sus-
picion

As a final note, these estimates of the violation and detection probabilities indicate
that, over our dataset, the mean rate of violation was 5.9805 with a standard deviation
of 3.047975, while the mean probability of detection was only 0.513835, with a standard
deviation of 0.2812096.
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Chapter 7

Conclusions

“ Wir müssen lernen, die Menschen weniger auf das, was sie tun und
unterlassen, als auf das, was sie erleiden, anzusehen.”

Dietrich Bonhöffer
Nach zehn Jahren (1943)

“One man’s death is a tragedy. The death of a million is a statistic.”

Anonymous (commonly attributed to Josef Stalin)

We now come to the end of this thesis, and we will summarise the results obtained in
three sections: Economic modelling results, Statistical results and finally some Practical
results.

7.1 Economic Models

We have seen that the presence of a regulator has a significant impact on a firm’s
compliance with OH&S regulations. Regulators can act in a variety of ways, and a
targeted enforcement system allows for higher levels of compliance with less effort. At
the same time, we also note that a regulator’s goals may go beyond compliance, as
political and macroeconomic concerns are also present.

We have shown that the results of Harrington (1988) depend on the distribution of
costs c and discount factors β through the population. In situations where compliance is
not a binary choice and where there are diminishing returns to effort, we see that firms
may not choose whether to ‘violate’ or ‘not violate’, but some intermediate policy. Even
so, some of the qualitative results of Harrington’s work appear to remain, namely that a

77
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firm will typically comply more when it is being targeted than otherwise. We have also
extended Harrington’s analysis to encompass the effects of the discount factor on a firm’s
decision making process, and have seen that under his model, a high discount factor can
only drive a firm from complete non-compliance to partial compliance, but never to full
compliance. We have also investigated this model in a nonlinear setting, and shown that
a high discount factor may entail higher long term costs, even after correcting for the
inevitable difference due to the discount factor.

We have also created a new model, in the spirit of Harrington’s, to investigate the
effects of using an unavoidable insurance levy as a regulatory tool. In such a situation
we can often still achieve very good levels of compliance. Also, under this model the
discount factor plays an even larger role in determining a firm’s actions, as it is only the
threat of future penalties that leads a firm to comply.

Comparing these models also allows us to see that increased costs of compliance do
lead to higher long term costs, however the ability to choose non-compliance implies
that the effects are less when costs are already high.

From a practical viewpoint, under the assumption that firms are expected discounted
cost minimisers, our results confirm that a system which is more punitive is more effective
at enforcing compliance. At the same time, it is quite reasonable for the fine/levy to be
very low for firms in the ‘good’ group, as this will not discourage compliance, but will
prevent regulation costs becoming too onerous, provided a firm complies.

7.2 Statistical Methods

We have looked at the DCE framework, under which we can attempt to distinguish
between a violation and a detection process, using only data on detected violations. We
have seen that this depends heavily on the existence of a covariate which contributes to
one of these processes and not the other. If violations are not binary, then it is critical
that the link function chosen to relate the covariates with the rate of detection is not
pathological, and we have developed a method to test this.

In this regard our results improve on the methods available in the literature, as they
do not depend on the existence of continuous covariates, let alone continuous covariates
with unbounded support. This makes these methods far more applicable to real data
problems, and can help a researcher in determining appropriate models that can be used.

We have also outlined a method by which the suspicion of violation can be incorpo-
rated into a DCE model.
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7.3 Practical Questions

We have applied this statistical methodology to a dataset obtained from OSHA (the
U.S. Occupational Safety and Health Administration), and can see that it indicates
some interesting phenomena. We find that firms undergoing safety inspections have
significantly higher underlying rates of violation than otherwise, but that these violations
are considerably less likely to be detected. Similarly, we notice that workplaces with
unionised employees generally have higher levels of violation – however causation is
unclear in this case.

Given more extensive data, these conclusions could be considerably strengthened. In
particular it would be good to have access to other non-binary variables, for example
plant size, age and mean employee income, as these may help to lessen our estimates’
dependence on inspection duration. Such data is available in certain circumstances (as
is discussed by Gray and Shadbegian (2005)), however is difficult to access outside of
the U.S.

It would be interesting to apply this methodology to data from other economies –
for example similar data from the U.K. is also available online, through the Health
and Safety Executive records websites http://www.hse.gov.uk/notices/ and http:

//www.hse.gov.uk/prosecutions/. Data for Australia is not easily available to the
public, however this methodology could quite reasonably be applied ‘in house’ by a
regulator.

Overall, there are still a variety of issues in the economics and statistics of regulation
that have not been addressed. This is a large and active area of economic thought, and
we have merely scratched the surface of the complexities that underlie the workings of
this system.

http://www.hse.gov.uk/notices/
http://www.hse.gov.uk/prosecutions/
http://www.hse.gov.uk/prosecutions/
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Appendix A

Further Derivations

“The method employed I would gladly explain,
While I have it so clear in my head,

If I had but the time and you had but the brain —
But much yet remains to be said. ”

Lewis Carroll
The Hunting of the Snark (1876)

A.1 Feinstein’s Theorems

Rephrased into the parametric case, Feinstein (1990) begins by claiming that as long
as each of ξ and η both contain at continuous components (and are not the same), the
condition for identification to fail is that there exists a point (ξ∗,η∗), a neighbourhood
of which posesses positive density, for which

F (ξ∗β1)G(η∗β2) = F (ξ∗β∗
1)G(η∗β∗

2)

for some β1 6= β∗
1 and β2 6= β∗

2, where β∗
1 and β∗

2 are the true values.

He states the following two theorems:

Theorem A.1.1 (Feinstein’s Theorem A1 (p. 271)). Assume that ξ and η contain
only continuous components (apart from intercepts) and that they have some elements
in common. If identification fails, the link functions must each belong to the exponential
family.

Theorem A.1.2 (Feinstein’s Theorem A2 (p. 271)). Assume that each of ξ and η
posesses at least one continuous component with unbounded support and that at least one
of each of these components enters only into ξ and only into η. Then our parameters
are identified up to a constant and scalar multiple, but the scalar multiples may differ.
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Without further strengthening, Theorem A1 is false. We can remedy this if we first
specify that ξ is not a linear function of η nor vice versa (this excludes the example
presented in Section 5.5.5) which implies that both our violation and detection processes
must contain (continuous) covariates that do not affect the other process. We then
change ‘identifiable’ to ‘identifiable up to a constant and scalar multiple’ (which excludes
the example presented in Section 5.5.1). With these changes, the theorem appears to be
valid. The interested reader is referred to Feinstein’s paper for a proof – there is little
point reproducing it here.

Even then, the requirement that all our data must be continuous is impracticable
for this context. Feinstein’s Theorem A2 loosens this requirement somewhat, requiring
that there must be at least one continuous component with unbounded support. This
has merit in that it also applies to a semiparametric estimation approach, however the
method proposed in our discussion may still be preferable, as typically a variable taking
only 3 values is sufficent.

A.2 Identifiability with Logistic regression

We wish to show that given any three distinct values of ξ, denoted ξ1, ξ2, ξ3, if we know
the values of

φ(β1 + β2ξ2)− φ(β1 + β2ξ1) = k1,

φ(β1 + β2ξ3)− φ(β1 + β2ξ1) = k2,

where φ(x) := − log(1 + e−x), then we can uniquely determine the value of β1.

To do so, we first note that it is sufficient to show that this is true for the points
ξ = (0, 1, x) for any x > 1. The general case then follows by scaling and translation. We
know from the analysis surrounding the example in Section 5.2 that when x = 2 this
can be done. (Provided k2/k1 > 1, which is required for a solution to exist.)

We now note that we are trying to show that for each value of x, the equation

0 = xφ−1(k1 + φ(β1))− φ−1(k2 + φ(β1))− (x− 1)β1

has a unique solution for β1. We can now take the total differential of this function (with
respect to x and β) to find

0 =
[
φ−1(k1 + φ(β1))− β1

]
dx+

[
x

φ′(β1)

φ′(φ−1(k1 + φ(β1)))
− φ′(β1)

φ′(φ−1(k2 + φ(β1)))
− x+ 1

]
dβ1

= [β1 + β2 − β1] dx+

[
x

φ′(β1)

φ′(β1 + β2)
− φ′(β1)

φ′(β1 + β2x)
− x+ 1

]
dβ1,
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and so
dβ1

dx
= − β2

x φ′(β1)
φ′(β1+β2)

− φ′(β1)
φ′(β1+β2x)

− x+ 1
.

For x > 1, this is continuous and finite. Continuity is clear, to see finiteness we note
φ′(x) = 1

1+ex , and therefore the denominator is

x
1 + eβ1+β2

1 + eβ
1

− 1 + eβ1+β2x

1 + eβ
1

− x+ 1.

Multiplying through by 1 + eβ1 (which is positive), we obtain

x(1 + eβ1+β2)− (1 + eβ1+β2x)− (x− 1)(1 + eβ1) = xeβ1+β2 − eβ1+β2x − (x− 1)eβ1 .

Now dividing through by eβ1 ,

xeβ2 − eβ2x − (x− 1) = x(eβ2 − 1)− (eβ2x − 1),

which is clearly zero for x = 1, and which has derivative (with respect to x)

eβ2 − 1− β2e
β2x,

which is less than zero for all x > 1 and β2. (Evaluate at x = 1, show this is at most
zero and then consider the fact that the derivative with respect to x is clearly negative.)

We therefore know that dβ1

dx
is continuous and is finite for all x > 1. Hence for any

x > 1, we can consider a compact interval I (the interior of which contains x and 2)
on which dβ1

dx
is clearly Lipschitz continous, and so we can apply Picard’s uniqueness

theorem to the differential equation given by dβ1

dx
with boundary condition given by the

unique solution for x = 2. Hence, there is a unique function relating β1 and x, and
therefore for any value of x > 1, we have shown there is a unique value of β1.

NB. Some modifications may be needed if k2/k1 ≤ 1, namely to show that we can
‘piece together’ solutions connecting x = 2 and x = ξ, each of which shows that locally
we have uniqueness for the appropriate collection of k2 and k1. Nevertheless, the general
argument should follow mutatis mutandis.

A.3 Left-invertibility and Covariates

Suppose that the vector of covariates ξ contains at least a variables which can take on
at least a + 2 values, which are not included in η. (See Section 5.4 for a definition of
this notation in context.) We assume that these values can be taken given any value of
η, and that they are linearly independent of the remaining covariates in ξ.
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For each value of η, we define our matrix of interest Ξ to be the matrix with rows
given by the values of ξ, omitting one reference case ξl and all covariates which are also
contained in η (or more generally are functions of η). By defining our matrix in this
way, we are essentially conditioning on the value of η, which corresponds with the logic
of Section 5.3. We wish to show that Ξ has a left-inverse.

We recall from the properties of linear regression, for a model of the form Y = Xβ,
a necessary and sufficient condition for X to have a left-inverse is that our predictors
are not perfectly multicollinear. This corresponds to the columns of X being linearly
independent, and in this case the left-inverse is given by (XTX)−1XT . We can apply
the same requirement to our matrix Ξ.

Consider the matrix A defined by only considering the a variables mentioned above
and an intercept term. These variables take on at least a + 2 values, and so even after
we have removed one, we have a+ 1 linearly independent rows in our (a+ 1)× (a+ 1)
matrix A, one corresponding to each remaining combination of covariates. Therefore the
columns of A cannot be linearly dependent.

Our matrix Ξ can then be decomposed into submatrices Ξ = [A|B], where A is
the matrix above and B corresponds to those covariates not in η and not in A. We
assumed linear independence between the covariates in A and B, and so we know that
the columns of A are not linearly dependent on those of B. Therefore we must still have
linearly independent columns in Ξ and so Ξ has a left-inverse.

Practically, we shall often take a = 1, and therefore the requirement is that the
process of interest (typically detection) has at least one covariate which takes at least
three values, and that this covariate does not affect the other process (typically violation).
Alternatively, we may take a = 2, in which case we simply need two binary variables
with no interactive effect, which affect the process of interest but not the other. This
is a considerably weaker requirement than requiring both processes to have continuous
covariates which do not affect the other process.



Appendix B

Further Results

“Errors using inadequate data are much less than those using no data at
all.”

Charles Babbage

B.1 Grouping Industries

If only the first three digits of the SIC code are used, the estimated coefficients are as
in Table B.1.

Covariate Violation Detection

(Intercept) 0.38108 (0.30031) -1.52745 (1.01655)
x1=262 0.80133 (0.30659) 0.40500 (1.01380)
x1=263 0.44214 (0.33589) 1.29271 (1.07606)
x1=265 0.29237 (0.30328) 1.93680 (1.01197)
x1=267 0.38876 (0.30191) 1.80386 (1.01160)
x2=Partial -0.67766 (0.14360) -0.54823 (0.30926)
x3=Safety 0.81832 (0.08472) -0.86702 (0.29366)
x4=Unionised 0.24472 (0.08085) -0.26658 (0.18455)
x5=Notice Given -0.86214 (0.45049) 0.93458 (1.17289)
x6 1.28919 (0.26786)

d 1.196393 (0.06560338)

Table B.1: Estimated Coefficients and Standard Errors

The minimum log-likelihood is −3988.568.
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B.2 Using Transformed Durations

Again to reduce the impact of very long inspections, an alternative model was fitted
using the transformed values

x′6 = log(1 + x6)

The results of this can be seen in Table B.2

Covariate Violation Detection

(Intercept) 1.08676 (0.54068) -2.86769 (0.97164)
x1=262 0.27948 (0.53008) 1.59345 (0.96748)
x1=263 -0.19704 (0.56939) 2.49056 (1.05188)
x1=265 -0.40900 (0.54085) 3.17134 (0.96913)
x1=267 -0.28067 (0.53662) 2.99798 (0.96609)
x2=Partial -0.60400 (0.19593) -0.60492 (0.35184)
x3=Safety 1.00109 (0.11313) -1.01612 (0.29315)
x4=Unionised 0.24477 (0.10169) -0.22328 (0.20221)
x5=Notice Given -0.99409 (0.48321) 1.12510 (1.19456)
x′6 = log(1 + x6) 1.20853 (0.17955)

d 1.235340 (0.06892)

Table B.2: Estimated Coefficients and Standard Errors

The minimum log-likelihood is −3976.193.

B.3 Incorporating Interactions

The model in Appendix B.2 was also fitted with interactions between some of the vari-
ables included, the results were as in Table B.3

The minimum log-likelihood is −3970.086.
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Covariate Violation Detection

(Intercept) 0.95055 (0.50696) -2.33475 (1.02066)
x1=262 0.35019 (0.49162) 1.49519 (0.93313)
x1=263 -0.11649 (0.52845) 2.41553 (1.02781)
x1=265 -0.34782 (0.49685) 3.16549 (0.93789)
x1=267 -0.22247 (0.49650) 2.97290 (0.94304)
x2=Partial -0.59916 (0.40484) 0.26201 (1.02627)
x3=Safety 1.04754 (0.13413) -1.53779 (0.48839)
x4=Unionised 0.37080 (0.15522) -1.19223 (0.59512)
x5=Notice Given -0.88939 (0.47508) 1.23368 (1.13542)
x2 and x3 0.21170 (0.43897) -0.85286 (1.02832)
x2 and x4 -0.33328 (0.37532) -0.65205 (0.71801)
x3 and x5 -0.14091 (0.19553) 1.11806 (0.63913)
x′6 1.28783 (0.19447)

d 1.235340 (0.06892)

Table B.3: Estimated Coefficients and Standard Errors
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Appendix C

Computer Code

“What of my dross thou findest there, be bold
To throw away; but yet preserve the gold.
What if my gold be wrapped up in ore?
None throws away the apple for the core.”

John Bunyan
The Pilgrim’s Progress (1678)

The methods used in this Thesis were all implemented using the R statistical com-
puting environment.

C.1 Code to implement DCE methods

We first read all the data, then reformat and extract the variables of interest.

#Further extract only Planned inspections where the

# inspection was completed, put the covariates into a matrix

(type==’Planned’)&(x2!=’No Insp’)->RelDat

Xi<-model.matrix(yFull~x1+x2+x3+x4+x5+x6)[RelDat,]

y<-yFull[RelDat]

Next, some generic methods to be used as link functions were installed

ilogit<-function(x){1/(1+exp(-x))}

logit<-function(x){log(1/((1/x)-1))}
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Then vectors to indicate which covariates are included in which process are generated

#Process 1 = Violation, does not depend on x6

#Process 2 = Detection, can depend on anything

m1<-c(rep.int(1,dim(Xi)[2]-1),0)

m2<-c(rep.int(1,dim(Xi)[2]-1),1)

We now define our log likelihood function:

llik<-function(y,Xi, beta1, beta2, disp, m1, m2){

rate<-exp(Xi%*%(beta1*m1))*ilogit(Xi%*%(beta2*m2))

sum(dnbinom(y,disp, mu=rate, log=T))

}

To simultaneously fit all the required parameters, we will create a vector beta which
contains the parameters for the first process, then for the second process, and then the
dispersion parameter. We will also create a version of the log likelihood which depends
only on these:

#Initialise beta to c(0’s,0’s,1)

betas<-c(m1*0, m2*0,1)

#Negative log likelihood function, based only on betas

fixednllik<-function(betas){

-llik(y, Xi, betas[1:((length(betas)-1)/2)],

betas[((length(betas)+1)/2):(length(betas)-1)],

betas[length(betas)], m1, m2)

}

We can now fit the model using the nlm and optim commands (two methods are used
to hopefully improve numerical stability)

nlm(fixednllik, betas, print.level=2,

iterlim=5000)->results

optim(results$estimate, fixednllik, control=list(trace=2,

reltol=1e-8, maxit=50000), hessian=T)->results

This gives estimates of the parameters and also of the observed information matrix,
from which we can extract standard errors
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results$par->betas

results$hessian->I

#Invert the observed information matrix, but only for ‘real’

# parameters, i.e. where the covariate is actually used

temp<-solve(I[mod==1, mod==1])

V<-matrix(0,nrow=length(betas), ncol=length(betas))

V[mod==1, mod==1]<-temp

s<-sqrt(diag(V))

Finally, we can output these results quickly using the following script

b1<-betas[1:((length(betas)-1)/2)]

b2<-betas[((length(betas)+1)/2):(length(betas)-1)]

s1<-sqrt(diag(V))[1:((length(betas)-1)/2)]

s2<-sqrt(diag(V))[((length(betas)+1)/2):(length(betas)-1)]

disp<-betas[length(betas)]

matrix(c(labels(Xi)[[2]],round(b1,5),paste("(",round(s1,5),")", sep="")

,round(b2,5),paste("(",round(s2,5),")", sep="")), nrow=length(b1))

and this final matrix can be directly written to LATEXusing the quantreg package.

C.2 Code used to generate graphs

C.2.1 Code used to generate Figure 5.2

To generate this figure, we first specify the link functions - note that these can be replaced
with any (invertible) link function, and the code will still function.

F<-function(x){exp(x)}

G<-function(x){exp(x+sin(log(x)))}

and define a function to invert the log of one of them

ilogG<-function(x){

temp<-function(y){sum(abs(log(G(y))-x))}

optimise(temp,c(0.2,1000))$minimum}
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We now fix some points at which we will assume we have data, and some estimates of
β1, ...β5

b1<-0.3; b2<-0.9; b3<-0.4; b4<-0.6; b5<--0.3

xi<-(0:9)/9; eta<-0:2

Xi<-matrix(nrow=30, ncol=3)

for(i in 1:30){

Xi[i,1]<-1

Xi[i,2]<-xi[(i-1)%%10+1]

Xi[i,3]<-eta[((i-1)-(i-1)%%10)/10+1]}

XX<-solve(t(Xi)%*%Xi)%*%t(Xi)

From here, we can find the ki values, and hence define the Γ function

k<-0

for(i in 1:30){

k[i]<-log(G(c(b4,b5,0)%*%Xi[i,]))-log(G(c(b4,0,0)%*%Xi[i,]))}

Gamma<-function(b){

temp<-0

for(i in 1:length(k)){temp[i]<-ilogG(log(G(b))+k[i])}

(XX%*%temp)[1]-b}

And so finally can plot Γ vs β as desired. (A small smoothing term is included to
dissipate numerical errors introduced by the numerical inversion procedure.)

b<-c((200:1500)/1000, (151:500)/100);q<-0

for(i in 1:length(b)){q[i]<-Gamma(b[i])}

plot(c(0.2,5), c(0,0), col=’grey’,’l’, xlab=expression(beta),

ylab=expression(Gamma), main=expression(Gamma * " vs. " * beta *

" over [0.2,5]"), ylim=c(min(q), max(q)), xlim=c(0.2,5), log=’x’)

lines(b,smooth(q))

C.2.2 Code used to generate Figure 5.3

To generate this figure, the following code was used. Changing the code to account for
different estimates of the β’s would be a trivial matter.

iphi<-function(x)

qnorm(x, 0,1, log.p=T)



C.2. CODE USED TO GENERATE GRAPHS 97

phi<-function(x)

pnorm(x, 0,1, log.p=T)

beta_1<-1; beta_2<-2; beta_3<-1

k1<-phi(beta_1+beta_3)-phi(beta_1)

k2<-phi(beta_1+2*beta_3)-phi(beta_1)

k3<-phi(beta_1+beta_2+beta_3)-phi(beta_1+beta_2)

k4<-phi(beta_1+beta_2+2*beta_3)-phi(beta_1+beta_2)

x<-(-2000:4000)/1000

G1<-2*iphi(phi(x)+k1)-iphi(phi(x)+k2)-x

G2<-2*iphi(phi(x)+k3)-iphi(phi(x)+k4)-x

plot(x, G2,’l’, ylim=c(1e-12,1), xlab=expression(beta),

ylab=expression(Gamma), main=expression(Gamma

* " vs. " * beta * " over relevant domain"), log=’y’)

C.2.3 Code used to generate Figure 3.2

To generate this figure, the following variables were set:

β = 0.5, φ0 = 0.75, φ1 = 0.5, F1 = 400, F0 = 700, p = 0.25, g = 0.8,

The following code was then used:

c<-0:1000; b<-0.5; phi0<-0.75; phi1<-0.5; F1<-400;

F0<-700; g<-0.8; p<-0.75

C1<-c/(1-b)

A<-1-b*(1-phi1*p)

B<-b*phi0*g

C2<-(1/(1-b))*(A*c+B*phi1*F1)/(A+B)

C3<-rep(phi0*F0/(1-b), length(c))

L0<-phi1*F1

L1<-phi0*F0+b*phi0*g*(phi0*F0-phi1*F1)/(1-b*(1-phi1*p))

plot(c,C1,’l’, xlab="c = Cost of Compliance", ylab="E[C*(0)] for

each policy", main="E[C*(0)] vs. c", col="grey",

ylim=c(-50,2000))
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C.2.4 Code used to generate Figure 3.3

To generate this figure, the following parameters were set:

c = 700, φ0 = 0.75, φ1 = 0.5, F1 = 0, F0 = 700, p = 0.25, g = 0.8,

The code used was similar to that in C.2.3, details are available from the author.

C.2.5 Code used to generate Figure 3.4

The parameters used were

φ0 = 0.75, φ1 = 0.5, F1 = 400, F0 = 700, g = 0.9, p = 0.3

and the surface is generated for c between 20 and 400, and β between 0.2 and 0.8.

The code used was similar to that in C.2.3, details are available from the author.

C.2.6 Code used to generate Figure 3.6

The parameters used were:

β = 0.8, F1 = 100, F0 = 700, g = 0.9, p = 0.3

The code used was similar to that in C.2.3, details are available from the author.

C.2.7 Code used to generate Figure 3.7

The parameters used were:

c = 270, F1 = 100, F0 = 900, g = 0.5, p = 0.3

The code used was similar to that in C.2.3, details are available from the author.
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C.2.8 Code used to generate Figure 3.8

The parameters used were:

c = 600, F1 = 100, F0 = 800, g = 1, p = 0.2

The code used was similar to that in C.2.3, details are available from the author.

C.2.9 Code used to generate Figure 3.9

The parameters used were

φ0 = 0.75, φ1 = 0.5, F1 = 100, F0 = 900, g = 0.9, p = 0.3

and the surface is generated for c between 20 and 400, and β between 0.2 and 0.8.

The code used was similar to that in C.2.3, details are available from the author.

C.2.10 Code used to generate Figures 3.10 and 3.11

The parameters used were

φ0 = 0.75, φ1 = 0.5, F1 = 400, F0 = 700, γ0 = 0.7, γ1 = 0.3

and the surface is generated for α between 20 and 400, and β between 0.2 and 0.8.

The code used was similar to that in C.2.3, details are available from the author.
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