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Throughout this document, HA refers to [Lur17] and HTT refers to [Lur06].

1 Prelude - Comparing Nerves with DG-Nerves

Recall from last week the construction of the dg-nerve of a dg-category. It will be useful in this talk to
be able to compare dg-nerves with the usual notion of a nerve. More specifically, let C be a dg-category
with underlying ordinary category C◦.1 Let σ be the following n-simplex of the nerve N(C◦), where
the fji ∈ MorC(Xi, Xj)0 are 0-cycles:

X0 X1 X2 · · · Xn
f10 f21 f32 fn,n−1

We may associate to σ an n-simplex U(σ) of Ndg(C) given by U(σ) = ({Xi}, {fI}), where

fI =

{
fji if I = {j > i},
0 otherwise.

This gives a monomorphism of simplicial sets U : N(C◦) → Ndg(C) whose image is the simplicial
subset of Ndg(C) spanned by those n-simplices ({Xi}0≤i≤n, {fI}) such that fI = 0 whenever |I| > 2.
In particular, U is bijective on 0 and 1-simplices.

2 Prelude - The Homotopy Category of a DG Category

Definition 2.1. Let C be a dg category. We define the homotopy category Ho(C) of C as follows: the
objects of Ho(C) are the same as those of C, and for X,Y ∈ Ob(C), we set

MorHo(C)(X,Y ) = ker(d : MorC(X,Y )0 → MorC(X,Y )−1)/ ∼,

where 0-cycles f and g are identified if there exists h ∈ MorC(X,Y )1 such that f−g = dh. Composition
of morphisms in Ho(C) is given by [f ] ◦ [g] = [f ◦ g].

On the other hand, the dg-nerve Ndg(C) is an∞-category, so we may form another homotopy category,
namely Ho(Ndg(C)). By the above construction, we have a map

C◦ ' Ho(N(C◦))→ Ho(Ndg(C))

which is bijective on objects and surjective on morphisms. Recall that a 2-simplex in Ndg(C) is given
by the data of f ∈ MorC(X,Y )0, g ∈ MorC(Y,Z)0 and j ∈ MorC(X,Z)0 such that df = dg = dj = 0,
together with h ∈ MorC(X,Z)1 such that dh = (g ◦ f) − j. Combining this with some definition
chasing, we have the following result.

Proposition 2.2 (HA 1.3.11). The natural map C◦ → Ho(Ndg(C)) induces an isomorphism Ho(C) '
Ho(Ndg(C)).

1Morphisms are given by 0-cycles in C.
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3 Prelude - Localisations of ∞-Categories

Definition 3.1. Let C be an ∞-category. A localisation of C is a full subcategory C0 of C such that
the inclusion C0 ↪→ C admits a left adjoint L.

4 Recap - Ch(A) as a DG Category

Recall that for an additive category A, the chain complex category Ch(A) has the structure of a
dg-category, where

MorCh(A)(M•, N•)p =
∏
n∈Z

MorA(Mn, Nn+p),

and differential

(df)(x) = dN (f(x)) + (−1)p+1f(dMx), f ∈ MorCh(A)(M•, N•)p.

In particular, 0-cycles correspond to chain maps, and 0-boundaries correspond to null-homotopies;
immediately from the definitions we see that

Ho(Ch(A)) = K(A)

is the homotopy category of chain complexes in A.

5 §1.3.4 - Inverting Quasi-Isomorphisms

Let A be an abelian category with enough projectives. The classical derived category D−(A) can be
described explicitly in terms of chain complexes of projectives or in terms of inverting Ch−(A) with
respect to the class of quasi-isomorphisms. We will now focus on the latter point of view.

Definition 5.1. Let C, D be ∞-categories and let W be a collection of morphisms in C. We say
that the morphism f : C → D exhibits D as the ∞-category obtained by inverting W if for every
∞-category E, the induced map

Fun(D, E)→ Fun(C, E)

is a fully faithful embedding whose essential image is the collection of functors F : C → E sending each
morphism in W to an equivalence in E.2 D is determined uniquely up to equivalence by C and W ; we
denote this ∞-category as C[W−1].

For C an ordinary category and W a collection of morphisms in C, we write C[W−1] = N(C)[W−1].

Proposition 5.2 (HTT §3.1). The ∞-category C[W−1] is always defined.

Proposition 5.3 (HTT 5.2.7.12). Let C be an ∞-category, and let C0 be a localisation of C. Let
W be the collection of all morphisms α in C such that L(α) is an equivalence; then the inclusion
C0 ↪→ C → C[W−1] is an equivalence of ∞-categories.

Our main result is the following.

Theorem 5.4 (HA 1.3.4.4). Let A be an abelian category with enough projectives, let A = Ch−(A),
regarded as an ordinary category, and let W denote the class of quasi-isomorphisms in A. Then there
is a canonical equivalence of ∞-categories A[W−1] ' D−(A).

This result is proven using the follwing two technical results.

2An equivalence in an ∞-category E is a 1-morphism in E whose image in Ho(E) is an isomorphism.
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Proposition 5.5 (HA 1.3.4.5). Let A be an additive category, let Ch′(A) be a full subcategory of
Ch(A) and let A′ be the underlying ordinary category of Ch′(A). Let W be the collection of chain
homotopy equivalences in A′. Assume that Ch′(A) is closed under taking tensor products with N•(∆

1),
that is Ch′(A) is closed under taking mapping cylinders3 of identity morphisms. Let

θ : N(A′)→ Ndg(Ch′(A))

denote the natural inclusion. Then θ induces an equivalence of∞-categories A′[W−1] ' Ndg(Ch′(A)).

The proof of this proposition is quite involved, requiring several preliminary results; let me instead
give some very brief intuition as to why such a result should hold. Recall from classical homological
algebra, if Cyl(M)• denotes the mapping cylinder of the identity of M , then there is a one-to-one
correspondence between morphisms Cyl(M)• → N• and pairs of maps f, g : M• → N• together with
a chain homotopy between f and g; this teels us that we always need to be able to form mapping
cylinders in Ch′(A) if we want to be able to localise with respect to all chain homotopy equivalences.
Suppose we have chain maps f : M• → N• and g : N• → M• such that their composite is chain
homotopic to the identity:

N•

M• M•

f g

idM

h

As g ◦ f need not equal idM , the 2-simplex in the ordinary nerve N(Ch(A)◦) corresponding to the
above data is nothing more than

M• N• M•,
f g

that is, we’ve forgotton about our choice of chain homotopy between g ◦ f and the identity, so f and g
in general fail to be equivalences when viewed in N(Ch(A)◦).4 However, in the dg-nerve N(Ch(A)◦),
this data corresponds to a 2-simplex, with h ∈ MorCh(A)(M•,M•)1 satisfying dh = (g ◦ f) − idM ;
passing to the homotopy category, the morphisms g ◦ f and idM get identified. In this way, f and g
are equivalences when viewed in the dg-nerve Ndg(Ch(A)).

The second result we need is given as follows.

Proposition 5.6 (HA 1.3.4.6). Let A be an abelian category with enough projectives.

1. The inclusion D−(A) ↪→ Ndg(Ch−(A)) admits a right adjoint G.

2. Let α be a morphism in Ndg(Ch−(A)). Then G(α) is an equivalence if and only if α is a
quasi-isomorphism of chain complexes.

3. Let W denote the collection of all morphisms in Ndg(Ch−(A)) which are quasi-isomorphisms.
Then there is a canonical equivalence of ∞-categories

Ndg(Ch−(A))[W−1] ' D−(A).

Sketch proof. The first assertion is a consequence of HTT 5.2.7.8 along with the fact that for any object
N• ∈ Ch−(A), there exists a quasi-isomorphism M• → N• with M• ∈ D−(A). The “if” direction
of the second assertion relies on the result that any quasi-isomorphism M• → N• of chain complexes
induces, for any P• ∈ D−(A), a quasi-isomorphism

3If f : M• → N• is a chain map then Cyl(f)• is the complex with degree n term Mn ⊕Mn−1 ⊕Nn and differential

dCyl(f) =

(
dM 1M 0
0 −dM 0
0 −f dN

)
.

4Whose homotopy category is canonically isomorphic to Ch(A)◦.
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MorCh(A)(P•,M•)→ MorCh(A)(P•,M•).

The “only if” direction follows by staring at the diagram

G(M•) G(N•)

M• N•

G(α)

q.is. q.is.

α

(the vertical arrows are quasi-isomrphisms by construction). The final assertion then follows by (a
suitable adaptation of) Proposition 5.3.

Proof of Theorem 5.4. Let A denote the ordinary category underlying Ch−(A), let W denote the set
of quasi-isomorphisms in A and let W0 ⊂W denote the set of chain-homotopy equivalences. Then we
have equivalences of ∞-categories

Ndg(Ch−(A))
1.3.4.5' A[W−10 ] and D−(A)

1.3.4.6' A[W−1],

from which we obtain an equivalence D−(A) ' A[W−1].

6 §1.3.5 - Grothendieck Abelian Categories

We begin by introducing a special class of abelian categories.

Definition 6.1. Let A be an abelian category. We say A is Grothendieck if the following hold:

• A is presentable; in particular there is a small collection of objects Xi ∈ A which generates A
under small colimits.

• the collection of monomorphisms in A is closed under small filtered colimits.

Example 6.2. The following are all examples of GAC’s:

• Mod(R) for any ring R;

• QCoh(X) for any scheme X;

• Ab(C,S) for any small site (C,S).

We are interested in studying the category of chain complexes Ch(A), where A is a GAC.

Proposition 6.3 (HA 1.3.5.3). Let A be a GAC. Then Ch(A) admits a (left, proper, combinatorial)
model structure, given as follows:

• Cofibrations: (degree-wise) monomorphisms in Ch(A).

• Weak equivalences: quasi-isomorphisms.

• Fibrations: maps satisfying the right lifting property with respect to acyclic cofibrations:

A• M•

B• N•

q.is. f
∃

4



In particular, every object of Ch(A) is cofibrant. We can also say something about the fibrant objects:

Proposition 6.4. If M• is a fibrant object of Ch(A) then each Mn is injective. Conversely, if each
Mn is injective and if Mn ' 0 for n� 0 then M• is a fibrant chain complex.

Proof. For the first statement, for any X ∈ A form the chain complex E(X,n)• consisting of idX :
X → X supported in degrees n and n − 1. For any monomorphism X → Y in A, the induced map
E(X,n)• → E(Y, n)• is an acyclic cofibration; the right lifting property applied to the square

E(X,n)• M•

E(Y, n)• 0

shows that Mn is injective.

For the second statement, suppose we are given an acyclic cofibration u : A• → A′• and a chain map
f : A• →M•; we need to construct a lift of this map to A′•. We introduce the following notation:

• Zn(A) = ker(An → An−1);

• Bn(A) = im(An+1 → An);

• A(n)• = (· · · → An+2 → An+1 → Bn(A)→ 0→ 0→ · · · );

• fn = f |A(n)•.

For n � 0 we have fn = 0, so there is an extension f ′n : A′(n)• → M•. Fix this n. It suffices (by
taking limits) to show that given i ≤ n and an extension f ′i : A′(i)• →M• of fn, there is a chain map
f ′i−1 : A′(i− 1)• →M• extending both f ′i and fi−1. As u is a quasi-isomorphism then

Bi(A) Zi(A)

Bi(A
′) Zi(A

′)

is a pushout square, so f |Zi(A) and f ′i |Bn(A′) determine a unique map g : Zi(A
′) → Mi. We

have g(Zi(A)) ⊂ ker(d : Mi → Mi−1) and g(Bi(A
′)) ⊂ im(d : Mi+1 → Mi). However Bi−1(A

′) ∼=
A′n/Zn(A′), so we conclude that we are done if we can find a map ḡ : A′i →Mi extending g, such that
the composite of this map with u : Ai → A′i is equal to f . But Mi is injective, so such a lift exists if
we can show that the map

θ : Ai tZi(A) Zi(A
′)→ A′i

is a monomorphism. To do this, we apply the snake lemma to the diagram of short exact sequences

0 Zi(A
′) Ai tZi(A) Zi(A

′) Bi−1(A) 0

0 Zi(A
′) A′i Bi−1(A

′) 0

=

and note that the right-most vertical arrow is a monomorphism since u is a cofibration.

Corollary 6.5. If A is a GAC then A has enough injectives.
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Proof. If X ∈ A, pick an acyclic cofibration X[0] → Q• with Q• fibrant. The induced map X → Q0

is then a monomorphism into an injective object.

Definition 6.6. Let A be a GAC. We let Ch(A)f denote the full subcategory of Ch(A) spanned by
the fibrant objects. Then the derived ∞-category of A is the dg-nerve D(A) = Ndg(Ch(A)f ).

Proposition 6.7. D(A) is a stable ∞-category.

Proof. We know from last week that Ndg(Ch(A)) is stable, so it is enough to show that D(A) is
a stable subcategory of Ndg(Ch(A)). By HA 1.1.3.3 and the observation that D(A) is evidently
invariant under translation, it suffices to show that D(A) is closed under taking cofibres. This will
follow if we can show that for any map f : M• → N• between fibrant complexes, the mapping cone
C•(f) is also fibrant; as M•[1] is fibrant then it is enough to show that the map C•(f) → M•[1] is a
fibration. Suppose we have a diagram

A• C•(f)

B• M•[1]

i

where i is an acyclic cofibration. The induced map j : C•(i) → C•(idB) is an acyclic cofibration.
As N• is fibrant, the induced map C•(i) → N•[1] admits a lift to C•(idB); this in turn gives a lift
B• → C•(f).

Remark. As A has enough injectives, we can form the ∞-category D+(A) = Ndg(Ch+(Ainj)). Our
characterisation of the fibrant objects of Ch(A) gives that D+(A) is a full subcategory of D(A).

Proposition 6.8 (HA 1.3.5.13). D(A) is a localisation of the ∞-category Ndg(Ch(A)).

Sketch proof. We need to show that the inclusionD(A) ↪→ Ndg(Ch(A)) admits a left adjoint. However,
given M• ∈ Ch(A), we may pick an acyclic cofibration f : M• → Q•. HA 1.3.5.12 then tells us that for
any fibrant chain complex Q′•, the image of f under the functor MorCh(A)(·, Q′•) is a quasi-isomorphism
of chain complexes, so f exhibits Q• as a D(A)-localisation of the complex M•.

As one would hope for, D(A) can be regarded as the∞-category obtained from the ordinary category
of chain complexes over A by inverting all quasi-isomorphisms. To fix notation, let A be a GAC and
let A denote Ch(A) regarded as an ordinary category. Let L denote a left adjoint to the inclusion
D(A) ↪→ Ndg(Ch(A)). We then have the following result.

Proposition 6.9 (HA 1.3.5.15). The composite map N(A) → Ndg(Ch(A))
L→ D(A) induces an

equivalence of ∞-categories N(A)[W−1] ' D(A), where W is the collection of all quasi-isomorphisms.

This result is related to (but doesn’t quite follow from)5 a result known as the Dwyer-Kan theorem
(see HA 1.3.4.20). This result needs some preliminaries before it can be fully stated, but in summary
the theorem states that if A is a simplicial model category and if W denotes the collection of weak
equivalences in Ac, then there is a natural equivalence of∞-categories Ac[W−1] ' N(Afc). Again, the
proof of this result is fairly technical, but the following intermediary proposition should help clarify
that we are in fact looking at the right thing with D(A):

Proposition 6.10 (HA 1.2.5.14). Let A be a GAC and let f : M• →M ′• be a map of chain complexes.
If f is a quasi-isomorphism and Q• is a fibrant complex, then the image of f under MorCh(A)(·, Q•)
is a quasi-isomorphism. In particular,6 if f is a quasi-isomorphism between fibrant complexes, then f
is a chain homotopy equivalence, so induces an equivalence in D(A).

5As Ch(A) is not a simplicial model category.
6Read: by Yoneda, after first passing to the homotopy category of Ch(A)f .
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For each integer n, we can consider the full subcategory Ndg(Ch(A))≥n (resp. Ndg(Ch(A))≥n)
spanned by complexes M• whose homology is concentrated in degrees ≥ n (resp. Ndg(Ch(A))≤n).
Let D(A)≥n = D(A) ∩Ndg(Ch(A))≥n and similarly define D(A)≤n = D(A) ∩Ndg(Ch(A))≤n.

Proposition 6.11 (HA 1.3.5.21). (D(A)≥0,D(A)≤0) determines a (right-complete, accessible) t-
structure on D(A), which is compatible with filtered colimits, in the sense that D(A)≤0 is closed
under small filtered colimits in D(A).

To end the talk, suppose A is a GAC with enough projectives (eg. A = Mod(R) for some ring R).
Then we can form D−(A) by considering complexes of projectives, or we can form D(A) by considering
fibrant complexes (ie. complexes of injectives). Ideally we’d like to be able to somehow relate these
two constructions. Fortunately we are in luck.

Proposition 6.12 (HA 1.3.5.24). Let A be a GAC with enough projectives, and let L : Ndg(Ch(A))→
D(A) be a left adjoint to the inclusion. Then the composite

F : D−(A) ↪→ Ndg(Ch(A))
L→ D(A)

is a fully faithful embedding, whose essential image is the subcategory
⋃
n≥0D(A)≥−n ⊂ D(A).
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