Stable ∞ -Categories Week 8

George Cooper

Michaelmas Term 2021

Throughout this document, HA refers to [Lur17] and HTT refers to [Lur06].

1 Prelude - Comparing Nerves with DG-Nerves

Recall from last week the construction of the dg-nerve of a dg-category. It will be useful in this talk to be able to compare dg-nerves with the usual notion of a nerve. More specifically, let \mathcal{C} be a dg-category with underlying ordinary category $\mathcal{C}^{\circ,1}$ Let σ be the following *n*-simplex of the nerve $N(\mathcal{C}^{\circ})$, where the $f_{ji} \in \operatorname{Mor}_{\mathcal{C}}(X_i, X_j)_0$ are 0-cycles:

$$X_0 \xrightarrow{f_{10}} X_1 \xrightarrow{f_{21}} X_2 \xrightarrow{f_{32}} \cdots \xrightarrow{f_{n,n-1}} X_n$$

We may associate to σ an *n*-simplex $U(\sigma)$ of $N_{dg}(\mathcal{C})$ given by $U(\sigma) = (\{X_i\}, \{f_I\})$, where

$$f_I = \begin{cases} f_{ji} & \text{if } I = \{j > i\}, \\ 0 & \text{otherwise.} \end{cases}$$

This gives a monomorphism of simplicial sets $U : N(\mathcal{C}^{\circ}) \to N_{\mathrm{dg}}(\mathcal{C})$ whose image is the simplicial subset of $N_{\mathrm{dg}}(\mathcal{C})$ spanned by those *n*-simplices $(\{X_i\}_{0 \leq i \leq n}, \{f_I\})$ such that $f_I = 0$ whenever |I| > 2. In particular, U is bijective on 0 and 1-simplices.

2 Prelude - The Homotopy Category of a DG Category

Definition 2.1. Let C be a dg category. We define the homotopy category Ho(C) of C as follows: the objects of Ho(C) are the same as those of C, and for $X, Y \in Ob(C)$, we set

$$\operatorname{Mor}_{\operatorname{Ho}(\mathcal{C})}(X,Y) = \ker(d:\operatorname{Mor}_{\operatorname{C}}(X,Y)_{0} \to \operatorname{Mor}_{\operatorname{C}}(X,Y)_{-1})/\sim,$$

where 0-cycles f and g are identified if there exists $h \in Mor_{\mathcal{C}}(X,Y)_1$ such that f-g = dh. Composition of morphisms in Ho(\mathcal{C}) is given by $[f] \circ [g] = [f \circ g]$.

On the other hand, the dg-nerve $N_{dg}(\mathcal{C})$ is an ∞ -category, so we may form another homotopy category, namely Ho $(N_{dg}(\mathcal{C}))$. By the above construction, we have a map

$$\mathcal{C}^{\circ} \simeq \operatorname{Ho}(N(\mathcal{C}^{\circ})) \to \operatorname{Ho}(N_{\operatorname{dg}}(\mathcal{C}))$$

which is bijective on objects and surjective on morphisms. Recall that a 2-simplex in $N_{dg}(\mathcal{C})$ is given by the data of $f \in Mor_{\mathcal{C}}(X,Y)_0$, $g \in Mor_{\mathcal{C}}(Y,Z)_0$ and $j \in Mor_{\mathcal{C}}(X,Z)_0$ such that df = dg = dj = 0, together with $h \in Mor_{\mathcal{C}}(X,Z)_1$ such that $dh = (g \circ f) - j$. Combining this with some definition chasing, we have the following result.

Proposition 2.2 (HA 1.3.11). The natural map $\mathcal{C}^{\circ} \to \operatorname{Ho}(N_{\operatorname{dg}}(\mathcal{C}))$ induces an isomorphism $\operatorname{Ho}(\mathcal{C}) \simeq \operatorname{Ho}(N_{\operatorname{dg}}(\mathcal{C}))$.

¹Morphisms are given by 0-cycles in \mathcal{C} .

3 Prelude - Localisations of ∞ -Categories

Definition 3.1. Let C be an ∞ -category. A localisation of C is a full subcategory C_0 of C such that the inclusion $C_0 \hookrightarrow C$ admits a left adjoint L.

4 Recap - Ch(A) as a DG Category

Recall that for an additive category \mathcal{A} , the chain complex category $\mathbf{Ch}(\mathcal{A})$ has the structure of a dg-category, where

$$\operatorname{Mor}_{\mathbf{Ch}(\mathcal{A})}(M_{\bullet}, N_{\bullet})_{p} = \prod_{n \in \mathbb{Z}} \operatorname{Mor}_{\mathcal{A}}(M_{n}, N_{n+p}),$$

and differential

$$(df)(x) = d_N(f(x)) + (-1)^{p+1} f(d_M x), \quad f \in \operatorname{Mor}_{\mathbf{Ch}(\mathcal{A})}(M_{\bullet}, N_{\bullet})_p.$$

In particular, 0-cycles correspond to chain maps, and 0-boundaries correspond to null-homotopies; immediately from the definitions we see that

$$\operatorname{Ho}(\mathbf{Ch}(\mathcal{A})) = \mathbf{K}(\mathcal{A})$$

is the homotopy category of chain complexes in \mathcal{A} .

5 §1.3.4 - Inverting Quasi-Isomorphisms

Let \mathcal{A} be an abelian category with enough projectives. The classical derived category $\mathbf{D}^{-}(\mathcal{A})$ can be described explicitly in terms of chain complexes of projectives or in terms of inverting $\mathbf{Ch}^{-}(\mathcal{A})$ with respect to the class of quasi-isomorphisms. We will now focus on the latter point of view.

Definition 5.1. Let \mathcal{C} , \mathcal{D} be ∞ -categories and let W be a collection of morphisms in \mathcal{C} . We say that the morphism $f : \mathcal{C} \to \mathcal{D}$ exhibits \mathcal{D} as the ∞ -category obtained by inverting W if for every ∞ -category \mathcal{E} , the induced map

$\mathbf{Fun}(\mathcal{D}, \mathcal{E}) \to \mathbf{Fun}(\mathcal{C}, \mathcal{E})$

is a fully faithful embedding whose essential image is the collection of functors $F : \mathcal{C} \to \mathcal{E}$ sending each morphism in W to an equivalence in $\mathcal{E}^2 \mathcal{D}$ is determined uniquely up to equivalence by \mathcal{C} and W; we denote this ∞ -category as $\mathcal{C}[W^{-1}]$.

For \mathcal{C} an ordinary category and W a collection of morphisms in \mathcal{C} , we write $\mathcal{C}[W^{-1}] = N(\mathcal{C})[W^{-1}]$.

Proposition 5.2 (HTT §3.1). The ∞ -category $\mathcal{C}[W^{-1}]$ is always defined.

Proposition 5.3 (HTT 5.2.7.12). Let C be an ∞ -category, and let C_0 be a localisation of C. Let W be the collection of all morphisms α in C such that $L(\alpha)$ is an equivalence; then the inclusion $C_0 \hookrightarrow C \to C[W^{-1}]$ is an equivalence of ∞ -categories.

Our main result is the following.

Theorem 5.4 (HA 1.3.4.4). Let \mathcal{A} be an abelian category with enough projectives, let $\mathbb{A} = \mathbf{Ch}^{-}(\mathcal{A})$, regarded as an ordinary category, and let W denote the class of quasi-isomorphisms in \mathcal{A} . Then there is a canonical equivalence of ∞ -categories $\mathbb{A}[W^{-1}] \simeq \mathcal{D}^{-}(\mathcal{A})$.

This result is proven using the following two technical results.

²An equivalence in an ∞ -category \mathcal{E} is a 1-morphism in \mathcal{E} whose image in Ho(\mathcal{E}) is an isomorphism.

Proposition 5.5 (HA 1.3.4.5). Let \mathcal{A} be an additive category, let $\mathbf{Ch}'(\mathcal{A})$ be a full subcategory of $\mathbf{Ch}(\mathcal{A})$ and let \mathbb{A}' be the underlying ordinary category of $\mathbf{Ch}'(\mathcal{A})$. Let W be the collection of chain homotopy equivalences in \mathbb{A}' . Assume that $\mathbf{Ch}'(\mathcal{A})$ is closed under taking tensor products with $N_{\bullet}(\Delta^1)$, that is $\mathbf{Ch}'(\mathcal{A})$ is closed under taking mapping cylinders³ of identity morphisms. Let

$$\theta: N(\mathbb{A}') \to N_{\mathrm{dg}}(\mathbf{Ch}'(\mathcal{A}))$$

denote the natural inclusion. Then θ induces an equivalence of ∞ -categories $\mathbb{A}'[W^{-1}] \simeq N_{\mathrm{dg}}(\mathbf{Ch}'(\mathcal{A})).$

The proof of this proposition is quite involved, requiring several preliminary results; let me instead give some very brief intuition as to why such a result should hold. Recall from classical homological algebra, if $\operatorname{Cyl}(M)_{\bullet}$ denotes the mapping cylinder of the identity of M, then there is a one-to-one correspondence between morphisms $\operatorname{Cyl}(M)_{\bullet} \to N_{\bullet}$ and pairs of maps $f, g: M_{\bullet} \to N_{\bullet}$ together with a chain homotopy between f and g; this teels us that we always need to be able to form mapping cylinders in $\operatorname{Ch}'(\mathcal{A})$ if we want to be able to localise with respect to all chain homotopy equivalences. Suppose we have chain maps $f: M_{\bullet} \to N_{\bullet}$ and $g: N_{\bullet} \to M_{\bullet}$ such that their composite is chain homotopic to the identity:

As $g \circ f$ need not equal id_M , the 2-simplex in the ordinary nerve $N(\mathbf{Ch}(\mathcal{A})^\circ)$ corresponding to the above data is nothing more than

$$M_{\bullet} \xrightarrow{f} N_{\bullet} \xrightarrow{g} M_{\bullet}$$

that is, we've forgotton about our choice of chain homotopy between $g \circ f$ and the identity, so f and gin general fail to be equivalences when viewed in $N(\mathbf{Ch}(\mathcal{A})^{\circ})$.⁴ However, in the dg-nerve $N(\mathbf{Ch}(\mathcal{A})^{\circ})$, this data corresponds to a 2-simplex, with $h \in \operatorname{Mor}_{\mathbf{Ch}(\mathcal{A})}(M_{\bullet}, M_{\bullet})_1$ satisfying $dh = (g \circ f) - \operatorname{id}_M$; passing to the homotopy category, the morphisms $g \circ f$ and id_M get identified. In this way, f and gare equivalences when viewed in the dg-nerve $N_{\mathrm{dg}}(\mathbf{Ch}(\mathcal{A}))$.

The second result we need is given as follows.

Proposition 5.6 (HA 1.3.4.6). Let \mathcal{A} be an abelian category with enough projectives.

- 1. The inclusion $\mathcal{D}^{-}(\mathcal{A}) \hookrightarrow N_{\mathrm{dg}}(\mathbf{Ch}^{-}(\mathcal{A}))$ admits a right adjoint G.
- 2. Let α be a morphism in $N_{dg}(\mathbf{Ch}^{-}(\mathcal{A}))$. Then $G(\alpha)$ is an equivalence if and only if α is a quasi-isomorphism of chain complexes.
- 3. Let W denote the collection of all morphisms in $N_{dg}(\mathbf{Ch}^{-}(\mathcal{A}))$ which are quasi-isomorphisms. Then there is a canonical equivalence of ∞ -categories

$$N_{\rm dg}(\mathbf{Ch}^{-}(\mathcal{A}))[W^{-1}] \simeq \mathcal{D}^{-}(\mathcal{A}).$$

Sketch proof. The first assertion is a consequence of HTT 5.2.7.8 along with the fact that for any object $N_{\bullet} \in \mathbf{Ch}^{-}(\mathcal{A})$, there exists a quasi-isomorphism $M_{\bullet} \to N_{\bullet}$ with $M_{\bullet} \in \mathcal{D}^{-}(\mathcal{A})$. The "if" direction of the second assertion relies on the result that any quasi-isomorphism $M_{\bullet} \to N_{\bullet}$ of chain complexes induces, for any $P_{\bullet} \in \mathcal{D}^{-}(\mathcal{A})$, a quasi-isomorphism

 $[\]overline{{}^{3}\text{If } f: M_{\bullet} \to N_{\bullet} \text{ is a chain map then } \text{Cyl}(f)}_{\bullet} \text{ is the complex with degree } n \text{ term } M_{n} \oplus M_{n-1} \oplus N_{n} \text{ and differential}} d_{\text{Cyl}(f)} = \begin{pmatrix} d_{M} & 1_{M} & 0 \\ 0 & -d_{M} & 0 \\ 0 & -f & d_{N} \end{pmatrix}}.$

⁴Whose homotopy category is canonically isomorphic to $\mathbf{Ch}(\mathcal{A})^{\circ}$.

 $\operatorname{Mor}_{\mathbf{Ch}(\mathcal{A})}(P_{\bullet}, M_{\bullet}) \to \operatorname{Mor}_{\mathbf{Ch}(\mathcal{A})}(P_{\bullet}, M_{\bullet}).$

The "only if" direction follows by staring at the diagram

(the vertical arrows are quasi-isomrphisms by construction). The final assertion then follows by (a suitable adaptation of) Proposition 5.3. $\hfill \Box$

Proof of Theorem 5.4. Let \mathbb{A} denote the ordinary category underlying $\mathbf{Ch}^{-}(\mathcal{A})$, let W denote the set of quasi-isomorphisms in \mathbb{A} and let $W_0 \subset W$ denote the set of chain-homotopy equivalences. Then we have equivalences of ∞ -categories

$$N_{\mathrm{dg}}(\mathbf{Ch}^{-}(\mathcal{A})) \stackrel{1.3.4.5}{\simeq} \mathbb{A}[W_{0}^{-1}] \text{ and } \mathcal{D}^{-}(\mathcal{A}) \stackrel{1.3.4.6}{\simeq} \mathbb{A}[W^{-1}]$$

from which we obtain an equivalence $\mathcal{D}^{-}(\mathcal{A}) \simeq \mathbb{A}[W^{-1}].$

6 §1.3.5 - Grothendieck Abelian Categories

We begin by introducing a special class of abelian categories.

Definition 6.1. Let \mathcal{A} be an abelian category. We say \mathcal{A} is Grothendieck if the following hold:

- \mathcal{A} is presentable; in particular there is a small collection of objects $X_i \in \mathcal{A}$ which generates \mathcal{A} under small colimits.
- the collection of monomorphisms in A is closed under small filtered colimits.

Example 6.2. The following are all examples of GAC's:

- $\mathbf{Mod}(R)$ for any ring R;
- $\mathbf{QCoh}(X)$ for any scheme X;
- $\mathbf{Ab}(\mathcal{C}, \mathcal{S})$ for any small site $(\mathcal{C}, \mathcal{S})$.

We are interested in studying the category of chain complexes $\mathbf{Ch}(\mathcal{A})$, where \mathcal{A} is a GAC.

Proposition 6.3 (HA 1.3.5.3). Let \mathcal{A} be a GAC. Then $Ch(\mathcal{A})$ admits a (left, proper, combinatorial) model structure, given as follows:

- Cofibrations: (degree-wise) monomorphisms in $Ch(\mathcal{A})$.
- Weak equivalences: quasi-isomorphisms.
- Fibrations: maps satisfying the right lifting property with respect to acyclic cofibrations:

In particular, every object of $Ch(\mathcal{A})$ is cofibrant. We can also say something about the fibrant objects:

Proposition 6.4. If M_{\bullet} is a fibrant object of $Ch(\mathcal{A})$ then each M_n is injective. Conversely, if each M_n is injective and if $M_n \simeq 0$ for $n \gg 0$ then M_{\bullet} is a fibrant chain complex.

Proof. For the first statement, for any $X \in \mathcal{A}$ form the chain complex $E(X, n)_{\bullet}$ consisting of $\operatorname{id}_X : X \to X$ supported in degrees n and n-1. For any monomorphism $X \to Y$ in \mathcal{A} , the induced map $E(X, n)_{\bullet} \to E(Y, n)_{\bullet}$ is an acyclic cofibration; the right lifting property applied to the square

shows that M_n is injective.

For the second statement, suppose we are given an acyclic cofibration $u: A_{\bullet} \to A'_{\bullet}$ and a chain map $f: A_{\bullet} \to M_{\bullet}$; we need to construct a lift of this map to A'_{\bullet} . We introduce the following notation:

- $Z_n(A) = \ker(A_n \to A_{n-1});$
- $B_n(A) = \operatorname{im}(A_{n+1} \to A_n);$
- $A(n)_{\bullet} = (\dots \to A_{n+2} \to A_{n+1} \to B_n(A) \to 0 \to 0 \to \dots);$
- $f_n = f | A(n)_{\bullet}$.

For $n \gg 0$ we have $f_n = 0$, so there is an extension $f'_n : A'(n)_{\bullet} \to M_{\bullet}$. Fix this *n*. It suffices (by taking limits) to show that given $i \leq n$ and an extension $f'_i : A'(i)_{\bullet} \to M_{\bullet}$ of f_n , there is a chain map $f'_{i-1} : A'(i-1)_{\bullet} \to M_{\bullet}$ extending both f'_i and f_{i-1} . As *u* is a quasi-isomorphism then

is a pushout square, so $f|Z_i(A)$ and $f'_i|B_n(A')$ determine a unique map $g: Z_i(A') \to M_i$. We have $g(Z_i(A)) \subset \ker(d: M_i \to M_{i-1})$ and $g(B_i(A')) \subset \operatorname{im}(d: M_{i+1} \to M_i)$. However $B_{i-1}(A') \cong A'_n/Z_n(A')$, so we conclude that we are done if we can find a map $\overline{g}: A'_i \to M_i$ extending g, such that the composite of this map with $u: A_i \to A'_i$ is equal to f. But M_i is injective, so such a lift exists if we can show that the map

$$\theta: A_i \sqcup_{Z_i(A)} Z_i(A') \to A'_i$$

is a monomorphism. To do this, we apply the snake lemma to the diagram of short exact sequences

and note that the right-most vertical arrow is a monomorphism since u is a cofibration.

Corollary 6.5. If \mathcal{A} is a GAC then \mathcal{A} has enough injectives.

Proof. If $X \in \mathcal{A}$, pick an acyclic cofibration $X[0] \to Q_{\bullet}$ with Q_{\bullet} fibrant. The induced map $X \to Q_0$ is then a monomorphism into an injective object.

Definition 6.6. Let \mathcal{A} be a GAC. We let $\mathbf{Ch}(\mathcal{A})^f$ denote the full subcategory of $\mathbf{Ch}(\mathcal{A})$ spanned by the fibrant objects. Then the derived ∞ -category of \mathcal{A} is the dg-nerve $\mathcal{D}(\mathcal{A}) = N_{\mathrm{dg}}(\mathbf{Ch}(\mathcal{A})^f)$.

Proposition 6.7. $\mathcal{D}(\mathcal{A})$ is a stable ∞ -category.

Proof. We know from last week that $N_{dg}(\mathbf{Ch}(\mathcal{A}))$ is stable, so it is enough to show that $\mathcal{D}(\mathcal{A})$ is a stable subcategory of $N_{dg}(\mathbf{Ch}(\mathcal{A}))$. By HA 1.1.3.3 and the observation that $\mathcal{D}(\mathcal{A})$ is evidently invariant under translation, it suffices to show that $\mathcal{D}(\mathcal{A})$ is closed under taking cofibres. This will follow if we can show that for any map $f: M_{\bullet} \to N_{\bullet}$ between fibrant complexes, the mapping cone $C_{\bullet}(f)$ is also fibrant; as $M_{\bullet}[1]$ is fibrant then it is enough to show that the map $C_{\bullet}(f) \to M_{\bullet}[1]$ is a fibration. Suppose we have a diagram

where *i* is an acyclic cofibration. The induced map $j : C_{\bullet}(i) \to C_{\bullet}(\mathrm{id}_B)$ is an acyclic cofibration. As N_{\bullet} is fibrant, the induced map $C_{\bullet}(i) \to N_{\bullet}[1]$ admits a lift to $C_{\bullet}(\mathrm{id}_B)$; this in turn gives a lift $B_{\bullet} \to C_{\bullet}(f)$.

Remark. As \mathcal{A} has enough injectives, we can form the ∞ -category $\mathcal{D}^+(\mathcal{A}) = N_{dg}(\mathbf{Ch}^+(\mathcal{A}_{inj}))$. Our characterisation of the fibrant objects of $\mathbf{Ch}(\mathcal{A})$ gives that $\mathcal{D}^+(\mathcal{A})$ is a full subcategory of $\mathcal{D}(\mathcal{A})$.

Proposition 6.8 (HA 1.3.5.13). $\mathcal{D}(\mathcal{A})$ is a localisation of the ∞ -category $N_{dg}(\mathbf{Ch}(\mathcal{A}))$.

Sketch proof. We need to show that the inclusion $\mathcal{D}(\mathcal{A}) \hookrightarrow N_{\mathrm{dg}}(\mathbf{Ch}(\mathcal{A}))$ admits a left adjoint. However, given $M_{\bullet} \in \mathbf{Ch}(\mathcal{A})$, we may pick an acyclic cofibration $f: M_{\bullet} \to Q_{\bullet}$. HA 1.3.5.12 then tells us that for any fibrant chain complex Q'_{\bullet} , the image of f under the functor $\mathrm{Mor}_{\mathbf{Ch}(\mathcal{A})}(\cdot, Q'_{\bullet})$ is a quasi-isomorphism of chain complexes, so f exhibits Q_{\bullet} as a $\mathcal{D}(\mathcal{A})$ -localisation of the complex M_{\bullet} .

As one would hope for, $\mathcal{D}(\mathcal{A})$ can be regarded as the ∞ -category obtained from the ordinary category of chain complexes over \mathcal{A} by inverting all quasi-isomorphisms. To fix notation, let \mathcal{A} be a GAC and let \mathbb{A} denote $\mathbf{Ch}(\mathcal{A})$ regarded as an ordinary category. Let L denote a left adjoint to the inclusion $\mathcal{D}(\mathcal{A}) \hookrightarrow N_{\mathrm{dg}}(\mathbf{Ch}(\mathcal{A}))$. We then have the following result.

Proposition 6.9 (HA 1.3.5.15). The composite map $N(\mathbb{A}) \to N_{dg}(\mathbf{Ch}(\mathcal{A})) \xrightarrow{L} \mathcal{D}(\mathcal{A})$ induces an equivalence of ∞ -categories $N(\mathbb{A})[W^{-1}] \simeq \mathcal{D}(\mathcal{A})$, where W is the collection of all quasi-isomorphisms.

This result is related to (but doesn't quite follow from)⁵ a result known as the *Dwyer-Kan theorem* (see HA 1.3.4.20). This result needs some preliminaries before it can be fully stated, but in summary the theorem states that if \mathbb{A} is a simplicial model category and if W denotes the collection of weak equivalences in \mathbb{A}^c , then there is a natural equivalence of ∞ -categories $\mathbb{A}^c[W^{-1}] \simeq N(\mathbb{A}^{fc})$. Again, the proof of this result is fairly technical, but the following intermediary proposition should help clarify that we are in fact looking at the right thing with $\mathcal{D}(\mathcal{A})$:

Proposition 6.10 (HA 1.2.5.14). Let \mathcal{A} be a GAC and let $f : M_{\bullet} \to M'_{\bullet}$ be a map of chain complexes. If f is a quasi-isomorphism and Q_{\bullet} is a fibrant complex, then the image of f under $\operatorname{Mor}_{\mathbf{Ch}(\mathcal{A})}(\cdot, Q_{\bullet})$ is a quasi-isomorphism. In particular,⁶ if f is a quasi-isomorphism between fibrant complexes, then f is a chain homotopy equivalence, so induces an equivalence in $\mathcal{D}(\mathcal{A})$.

⁵As $\mathbf{Ch}(\mathcal{A})$ is not a simplicial model category.

⁶Read: by Yoneda, after first passing to the homotopy category of $\mathbf{Ch}(\mathcal{A})^f$.

For each integer n, we can consider the full subcategory $N_{dg}(\mathbf{Ch}(\mathcal{A}))_{\geq n}$ (resp. $N_{dg}(\mathbf{Ch}(\mathcal{A}))_{\geq n}$) spanned by complexes M_{\bullet} whose homology is concentrated in degrees $\geq n$ (resp. $N_{dg}(\mathbf{Ch}(\mathcal{A}))_{\leq n}$). Let $\mathcal{D}(\mathcal{A})_{\geq n} = \mathcal{D}(\mathcal{A}) \cap N_{dg}(\mathbf{Ch}(\mathcal{A}))_{\geq n}$ and similarly define $\mathcal{D}(\mathcal{A})_{\leq n} = \mathcal{D}(\mathcal{A}) \cap N_{dg}(\mathbf{Ch}(\mathcal{A}))_{\leq n}$.

Proposition 6.11 (HA 1.3.5.21). $(\mathcal{D}(\mathcal{A})_{\geq 0}, \mathcal{D}(\mathcal{A})_{\leq 0})$ determines a (right-complete, accessible) tstructure on $\mathcal{D}(\mathcal{A})$, which is compatible with filtered colimits, in the sense that $\mathcal{D}(\mathcal{A})_{\leq 0}$ is closed under small filtered colimits in $\mathcal{D}(\mathcal{A})$.

To end the talk, suppose \mathcal{A} is a GAC with enough projectives (eg. $\mathcal{A} = \mathbf{Mod}(R)$ for some ring R). Then we can form $\mathcal{D}^-(\mathcal{A})$ by considering complexes of projectives, or we can form $\mathcal{D}(\mathcal{A})$ by considering fibrant complexes (ie. complexes of injectives). Ideally we'd like to be able to somehow relate these two constructions. Fortunately we are in luck.

Proposition 6.12 (HA 1.3.5.24). Let \mathcal{A} be a GAC with enough projectives, and let $L : N_{dg}(\mathbf{Ch}(\mathcal{A})) \to \mathcal{D}(\mathcal{A})$ be a left adjoint to the inclusion. Then the composite

$$F: \mathcal{D}^{-}(\mathcal{A}) \hookrightarrow N_{\mathrm{dg}}(\mathbf{Ch}(\mathcal{A})) \xrightarrow{L} \mathcal{D}(\mathcal{A})$$

is a fully faithful embedding, whose essential image is the subcategory $\bigcup_{n\geq 0} \mathcal{D}(\mathcal{A})_{\geq -n} \subset \mathcal{D}(\mathcal{A})$.

References

[Lur06] Jacob Lurie. Higher topos theory. arXiv preprint math/0608040, 2006.

[Lur17] Jacob Lurie. Higher algebra (2017). Preprint, available at https://people.math.harvard. edu/~lurie/papers/HA.pdf, 2017.