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Kähler Differentials

Let B be an A-module.

Definition

We set ΩB/A to be the quotient of the free B-module on the
symbols {db : b ∈ B}, quotiented out by the relations
d(b + b′) = db + db′, d(bb′) = bdb′ + b′db and da = 0 for a ∈ A,
and call ΩB/A the module of relative differential forms of B over A.

Remark

(ΩB/A, d) is universal amongst all A-derivations d ′ : B → M, that
is given such a pair (M, d ′), there is a unique homomorphism
f : ΩB/A → M such that d ′ = f ◦ d .
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Lots of Facts about Kähler Differentials

Proposition

Suppose B is generated by elements xi subject to relations rj .
Then ΩB/A is generated as a B-module by the elements dxi ,
subject to the relations drj = 0.

Example

If B = C[x , y ]/(y2 − x3) then

ΩB/C =
B dx ⊕ B dy

(2ydy − 3x2dx)
.
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Lots of Facts about Kähler Differentials

Proposition

Let µ : B ⊗A B → B be the multiplication map, and let I = kerµ.
Then I/I 2 is naturally a B-module, and ΩB/A can be described as
I/I 2 together with the map

d : B → I/I 2, b 7→ 1⊗ b − b ⊗ 1 mod I 2.

Proposition

Suppose A′ is another A-algebra and B ′ = B ⊗A A′. Then
ΩB′/A′

∼= ΩB/A ⊗B B ′.

Proposition

Let S ⊂ B be a multiplicative system. Then ΩS−1B/A
∼= S−1ΩB/A.
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Lots of Facts about Kähler Differentials

Proposition

Let A→ B → C be rings. Then there is a natural exact sequence
of C -modules

ΩB/A ⊗ C → ΩC/A → ΩC/B → 0.

Proposition

Suppose I is an ideal of B and C = B/I . Then there is a natural
exact sequence of C -modules

I/I 2 δ→ ΩB/A ⊗B C → ΩC/A → 0,

where δ : b 7→ db ⊗ 1.
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Lots of Facts about Kähler Differentials

Recall that a local ring (B,m) with residue field k is a regular local
ring if B is Noetherian and dimB = dimk m/m

2.

Theorem

Let B be a local ring containing a local ring k isomorphic to its
residue field. Assume k is perfect and that B is the localisation of
a finitely-generated k-algebra. Then the following are equivalent:

B is a regular local ring;

ΩB/k is a free B-module (of rank equal to dimB).
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Sheaf of Differentials

Let f : X = Spec(B)→ Y = Spec(A) be a morphism of affine
schemes. Let A→ B be the induced ring homomorphism; we set
ΩX/Y = (ΩB/A)∼.

Now let f : X → Y be a general morphism of schemes. Cover Y
with open affines U = Spec(A) and X with open affines
V = Spec(B), with the property that for any such V , f (V ) is
contained in some U. Form the local sheaves ΩV /U . One can
check using the compatibility of Ω with localisation that the ΩV /U

glue to give a sheaf of OX -modules ΩX/Y . Moreover the
derivations d : B → ΩB/A glue to give a map d : OX → ΩX/Y .

Remark

(d ,ΩX/Y ) satisfies the expected universal property. A global
construction can be found in Hartshorne.
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ΩX/Y and Base Change

Proposition

Let f : X → Y and g : Y ′ → Y be morphisms. Let
f ′ : X ′ = X ×Y Y ′ → Y ′ be the morphism obtained by base
extension, and let π : X ′ → X be the projection. Then

ΩX ′/Y ′
∼= π∗ΩX/Y .
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Relative Cotangent and Conormal Sequences

Proposition (Relative Cotangent Sequence)

Let X
f→ Y

g→ Z be morphisms. Then there is an exact sequence
of sheaves on X ,

f ∗ΩY /Z → ΩX/Z → ΩX/Y → 0.

Proposition (Conormal Sequence)

Let f : X → Y be a morphism. Let Z be a closed subscheme of X
with ideal sheaf I. Then there is an exact sequence of sheaves on
Z ,

I/I2 δ→ ΩX/Y ⊗OZ → ΩZ/Y → 0.
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Euler Sequence

Proposition

Let A be a ring, let Y = Spec(A) and let X = Pn
A. Then there is

an exact sequence of sheaves on X ,

0→ ΩX/Y → OX (−1)⊕(n+1) → OX → 0.

Sketch Proof.

Set S = A[x0, . . . , xn], E = S [−1]⊕(n+1), and give E the basis
e0, . . . , en in degree 1. Let M = ker(E → S), where ei 7→ xi . It is
enough to show M̃ ∼= ΩX/Y by the functoriality of ·̃. But if

Ui = D+(xi ) then M̃|Ui
is a free OUi

-module generated by the

sections (1/x2
i )(xiej − xjei ) for j 6= i . The isomorphism M̃ ∼= ΩX/Y

is then given over Ui by associating to this section the element
d(xj/xi ).
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Nonsingular Varieties

Definition

Let X be an abstract variety over an algebraically closed field k .
Then X is nonsingular if all of the local rings of X are regular local
rings.

Useful Technical Result

Any localisation of a regular local ring at a prime ideal is a regular
local ring (hence it is enough to check the above condition at
closed points).
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Jacobian Criterion for Regularity

For finite type k-schemes, we have a linear algebraic
characterisation of regularity:

Proposition

Suppose X = Spec(k[x1, . . . , xn]/(f1, . . . , fm)) has pure dimension
r . Then a closed point p ∈ X is a regular point if and only if the
Jacobian matrix

JacX (p) =

(
∂fi
∂xj

(p)

)
i ,j

has rank n − r .

Corollary

Sing(X ) (set of non-regular points of X ) is a closed subscheme of
X , cut out by the vanishing of all (n− r)× (n− r) minors of JacX .
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Nonsingular Varieties

Theorem

Let X be an irreducible separated scheme of finite type over an
algebraically closed field k. The following are equivalent:

X/k is a nonsingular variety;

ΩX/k is a locally-free sheaf (of rank n = dimX).

Proof.

Suppose x ∈ X is a closed point. Then B = OX ,x has dimension n,
residue field k and is a localisation of a k-algebra of finite type.
Moreover we have (ΩX/k)x = ΩB/k . Hence by a previous result,
(ΩX/k)x is free of rank n if and only if B is a regular local ring.
The result now follows from the fact that the property of a
coherent sheaf on X being locally-free is stalk-local.
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Subschemes of Nonsingular Varieties

Theorem

Let X/k be a nonsingular variety. Let Y ⊂ X be an irreducible
closed subscheme with ideal sheaf I. Then Y is nonsingular if and
only if:

ΩY /k is locally-free, and;

the conormal sequence associated to Y ⊂ X → Spec(k) is a
short exact sequence.

In this case, I is locally generated by r = codimX (Y ) elements,
and I/I2 is a locally-free sheaf on Y of rank r .
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Bertini’s Theorem

Theorem (Bertini)

Let X be a non-singular closed subvariety of Pn
k , where k is an

algebraically closed field. Then there is a dense open subset
U ⊂ (Pn

k)∨ of the dual projective space such that for any closed
point [H] ∈ U, H doesn’t contain any component of X , and the
scheme H ∩ X is regular at every point.

Remark

The closed points of (Pn
k)∨ correspond to hyperplanes in Pn

k via the
usual projective duality.
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Proof of Bertini’s Theorem

For simplicity assume X is irreducible. Let Z be the “bad” locus

Z = {(p ∈ X , [H] ∈ (Pn
k)∨) : (p ∈ H) and (p ∈ Sing(H∩X ) or X ⊂ H)}.

Using the Jacobi criterion, Z can be described in terms of
polynomials on Pn

k ×k (Pn
k)∨, so is a closed subscheme.

Claim

dimZ ≤ n − 1

For each closed point p, let

Zp = {[H] : (X ⊂ H) or (p ∈ X∩H and p ∈ Sing(X∩H))} ⊂ (Pn
k)∨.

Suppose dimX = r . The restrictions on the hyperplanes in Zp

correspond to r + 1 linear conditions, so Zp is a projective space of
codimension r + 1, i.e. dimZp = n − r − 1.
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Proof of Bertini’s Theorem

Next, we apply the following result to the projection morphism
Z → X :

Proposition (Vakil 11.4.A)

Let f : X → Y be a morphism of locally Noetherian schemes and
suppose y = f (x). Then

codimX (x) ≤ codimY (y) + codimXy (x).

This implies dimZ ≤ n − 1 as claimed. To end the proof, use the
fact that the structure morphism Pn

k → Spec(k) is universally
closed, so the image of Z in (Pn

k)∨ is a closed subscheme of
dimension at most n − 1, and so its complement is a dense subset
of (Pn

k)∨.
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Hypersurfaces in Pn
k (Example of Bertini)

Let X ⊂ Pn
k be a non-singular closed subvariety as before. Then a

generic degree d > 0 hypersurface intersects X in a regular
subvariety of codimension 1; to see this, replace X ⊂ Pn

k with the

embedding X → Pn
k
νd→ PN

k , where νd is the dth Veronese
embedding and apply Bertini’s theorem in PN

k .

Taking X = Pn
k , we get for free that there are nonsingular

hypersurfaces of degree d in Pn
k , and the locus of nonsingular

hypersurfaces forms a dense open subset of the complete linear
system |O(d)|.
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Invariants from Differentials

Let X/k be a nonsingular variety. We can define the following
sheaves:

The tangent sheaf TX = HomOX
(ΩX/k ,OX );

The canonical sheaf ωX = det(ΩX/k).

Suppose in addition X is projective. Then we can define the
following invariants of X :

The plurigenera Pn = h0(X , ω⊗nX ) for n ≥ 1 (note P1 = pg is
the geometric genus);

The Hodge numbers hp,q = hq(X ,ΛpΩX/k).
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Invariants from Differentials

Theorem

The plurigenera Pn and the Hodge numbers hp,0 are birational
invariants of X .

Remark

The Hodge numbers hp,q for q 6= 0 need not be birational
invariants. For example, take k = C and consider blowing up a
smooth projective surface X at a point to obtain Y . Then X and
Y are birational, so have equal h1,0 (and hence equal h0,1, as for
Kähler manifolds hp,q = hq,p), but h1,1(Y ) = h1,1(X ) + 1, since Y

is homeomorphic to X#P2
C and hence b2(Y ) = b2(X ) + 1 (by

Hodge theory we have b2 = h1,0 + h1,1 + h0,1).
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Proof that pg is a Birational Invariant

Suppose f : X
'
99K X ′ is a birational equivalence. Let V ⊂ X be

the largest open subset where f is defined. Then we have an
induced morphism of sheaves f ∗ωX ′/k → ωV /k given by pulling
back forms, and thus a map F : H0(X ′, ωX ′/k)→ H0(V , ωV /k) on
global sections. The map F is injective (as f gives an isomorphism
between some open subset of V and some open subset of X ′, and
a non-zero global section cannot vanish on a dense open subset).
If we can show H0(X , ωX/k) ∼= H0(V , ωV /k) then by symmetry we
are done.
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Proof that pg is a Birational Invariant

Claim

codimX (X \ V ) ≥ 2

Suppose x ∈ X is a point of codimension 1. Then OX ,x is regular
and of dimension 1, so is a discrete valuation ring (as X is
nonsingular) with field of fractions K (X ). If ξ = Spec(K (X )) is
the generic point of X then we have a morphism
Spec(K (X ))→ X ′, which by the valuative criterion for properness
extends to give a morphism of k-schemes Spec(OX ,x)→ X ′:
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Proof that pg is a Birational Invariant

Claim

codimX (X \ V ) ≥ 2

Spec(K (X )) X ′

Spec(OX ,x) Spec(k)

f

This gives a map of k-algebras A′ → OX ,x where Spec(A′) is an
open affine containing f (x). As OX ,x and A′ are finitely-generated,
one can find an affine neighbourhood Spec(A) containing x and a
lift A′ → A of A′ → OX ,x , giving a morphism Spec(A)→ X ′ which
agrees with f . Hence x ∈ V .
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Proof that pg is a Birational Invariant

Claim

The restriction map H0(X , ωX/k)→ H0(V , ωV /k) is an
isomorphism.

It is enough to assume ωX/k = OX is trivial (as this sheaf is locally
free). But this is then an immediate consequence of the following
result from commutative algebra:

Proposition

If R is an integrally closed Noetherian domain then

R =
⋂

height(℘)=1

R℘.
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Sheaves Associated to Closed Subvarieties

Suppose Y is a nonsingular subvariety of a nonsingular variety X ,
defined over k . Then we can define the following locally-free
sheaves on Y :

The conormal sheaf I/I2;

The normal sheaf NY /X = HomOY
(I/I2,OY ).

Proposition (Adjunction Formula)

Suppose r = codimX (Y ). Then

ωY
∼= ωX ⊗ ΛrNY /X .

Proof: Take determinants in the conormal sequence.
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Canonical Sheaves of X = Pn
k and Projective

Hypersurfaces (Example)

Recall we have the Euler sequence

0→ ΩX/k → OX (−1)⊕(n+1) → OX → 0.

Taking determinants gives ωX
∼= OX (−n − 1). In particular

pg (X ) = 0, and so any projective nonsingular rational variety must
have geometric genus 0.

Now suppose Y ⊂ X is a projective hypersurface of degree d .
Then by the adjunction formula

ωY
∼= OY (d − n − 1).

In particular if n = 3 and d = 4 then ωY is trivial; that is quartic
surfaces in P3

k are K3 surfaces.
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