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Kahler Differentials

Let B be an A-module.

We set g/ 4 to be the quotient of the free B-module on the
symbols {db : b € B}, quotiented out by the relations

d(b+ b)) =db+db, d(bb') = bdb' + b'db and da =0 for a € A,
and call Qg4 the module of relative differential forms of B over A.

(2B/4, d) is universal amongst all A-derivations d’ : B — M, that
is given such a pair (M, d"), there is a unique homomorphism
f:Qpg/a— M such that d' = fod.
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Lots of Facts about Kahler Differentials

Suppose B is generated by elements x; subject to relations r;.
Then Qg 4 is generated as a B-module by the elements dx;,
subject to the relations dr; = 0.

If B =C[x,y]/(y? — x3) then

B dx @ B dy
2ydy — 3x%dx)’

QB/(C = (
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Lots of Facts about Kahler Differentials

Let u: B®a B — B be the multiplication map, and let / = ker .
Then /12 is naturally a B-module, and Q2g/a can be described as
1/1? together with the map

d:B—=1/I?, b—1®b—b®1 mod />

Suppose A’ is another A-algebra and B’ = B ®4 A’. Then
QB’/A’ = QB/A ®p B'.

Let S C B be a multiplicative system. Then Qg5-15/4 = S_IQB/A.
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Lots of Facts about Kahler Differentials

Let A— B — C be rings. Then there is a natural exact sequence
of C-modules

QB/A &® Cc - QC/A — QC/B — 0.

Suppose I is an ideal of B and C = B/I. Then there is a natural
exact sequence of C-modules

///zi}QB/A(X)B C—)QC/A—>0,
where § : b— db® 1.
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Lots of Facts about Kahler Differentials

Recall that a local ring (B, m) with residue field k is a regular local
ring if B is Noetherian and dim B = dimj m/m?.

Theorem

Let B be a local ring containing a local ring k isomorphic to its
residue field. Assume k is perfect and that B is the localisation of
a finitely-generated k-algebra. Then the following are equivalent:

@ B is a regular local ring;

® Qg is a free B-module (of rank equal to dim B).
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Sheaf of Differentials

Let f: X = Spec(B) — Y = Spec(A) be a morphism of affine
schemes. Let A — B be the induced ring homomorphism; we set

Qx/y = (2B/a)~-

Now let f : X — Y be a general morphism of schemes. Cover Y
with open affines U = Spec(A) and X with open affines

V = Spec(B), with the property that for any such V, f(V)is
contained in some U. Form the local sheaves Q/,y. One can
check using the compatibility of €2 with localisation that the Q¢
glue to give a sheaf of Ox-modules Q2x,y. Moreover the
derivations d : B — €1g /4 glue to give a map d : Ox — Qxy.

RENEILS

(d, QX/Y) satisfies the expected universal property. A global
construction can be found in Hartshorne.
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Q2x,y and Base Change

Proposition

Let f: X — Y and g: Y — Y be morphisms. Let
f': X'=X xy Y'"— Y’ be the morphism obtained by base
extension, and let 7 : X’ — X be the projection. Then

QX’/Y’ = TI'*Qx/y.
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Relative Cotangent and Conormal Sequences

Proposition (Relative Cotangent Sequence)

Let X & ¥V & Z be morphisms. Then there is an exact sequence
of sheaves on X,

f*Qy/Z = Qx/z = Qx/y — 0.

Proposition (Conormal Sequence)

Let f : X — Y be a morphism. Let Z be a closed subscheme of X

with ideal sheaf Z. Then there is an exact sequence of sheaves on
Z,

I/IZ i) Qx/y ®O0z — Qz/y — 0.

G. Cooper Differentials in Scheme Theory



Euler Sequence

Let A be a ring, let Y = Spec(A) and let X =P. Then there is
an exact sequence of sheaves on X,

0= Qx/y = Ox(~1)*"™) — Ox — 0.

Sketch Proof.

Set S = Alxo, ..., X, E = S[-1]®("*1) and give E the basis

€, ..., e, in degree 1. Let M = ker(E — S), where ¢; — x;. It is
enough to show M = Qx,y by the functoriality of *. But if

Ui = Dy (x;) then I\7I|Ui is a free Oy,-module generated by the
sections (1/x?)(x;ej — xje;) for j # i. The isomorphism M = Qx /vy
is then given over U; by associating to this section the element
d(xj/xi). O
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Nonsingular Varieties

Let X be an abstract variety over an algebraically closed field k.

Then X is nonsingular if all of the local rings of X are regular local
rings.

Useful Technical Result

Any localisation of a regular local ring at a prime ideal is a regular
local ring (hence it is enough to check the above condition at
closed points).
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Jacobian Criterion for Regularity

For finite type k-schemes, we have a linear algebraic
characterisation of regularity:

Suppose X = Spec(k[x1,...,xa]/(f1,.-.,fm)) has pure dimension
r. Then a closed point p € X is a regular point if and only if the
Jacobian matrix

of;
saex(p) = (5(0))
I i
has rank n —r.

Corollary

Sing(X) (set of non-regular points of X) is a closed subscheme of
X, cut out by the vanishing of all (n—r) x (n— r) minors of Jacx.
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Nonsingular Varieties

Let X be an irreducible separated scheme of finite type over an
algebraically closed field k. The following are equivalent:

e X/k is a nonsingular variety;

o Qx /i is a locally-free sheaf (of rank n = dim X).

Suppose x € X is a closed point. Then B = Ox  has dimension n,
residue field k and is a localisation of a k-algebra of finite type.
Moreover we have (Qx/k)x = Qp/. Hence by a previous result,
(2x/k)x is free of rank n if and only if B is a regular local ring.
The result now follows from the fact that the property of a
coherent sheaf on X being locally-free is stalk-local. [
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Subschemes of Nonsingular Varieties

Theorem

Let X /k be a nonsingular variety. Let Y C X be an irreducible
closed subscheme with ideal sheaf Z. Then Y is nonsingular if and
only if:

o Qv is locally-free, and,

@ the conormal sequence associated to Y C X — Spec(k) is a
short exact sequence.

In this case, T is locally generated by r = codimx(Y') elements,
and T/I? is a locally-free sheaf on Y of rank r.
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Bertini's Theorem

Theorem (Bertini)

Let X be a non-singular closed subvariety of P}, where k is an
algebraically closed field. Then there is a dense open subset

U C (PR)Y of the dual projective space such that for any closed
point [H] € U, H doesn’t contain any component of X, and the
scheme H N X is regular at every point.

The closed points of ()Y correspond to hyperplanes in P via the
usual projective duality.
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Proof of Bertini's Theorem

For simplicity assume X is irreducible. Let Z be the “bad” locus
Z={(pe X,[H € (P})Y):(p € H) and (p € Sing(HNX) or X C H)}.

Using the Jacobi criterion, Z can be described in terms of
polynomials on P} X (P})Y, so is a closed subscheme.

Claim
dmZ <n-1

For each closed point p, let
Z, ={[H]: (X C H)or(p € XNH and p € Sing(XNH))} C (P})".

Suppose dim X = r. The restrictions on the hyperplanes in Z,
correspond to r + 1 linear conditions, so Z, is a projective space of
codimension r+ 1, i.e. dmZ, =n—r — 1.
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Proof of Bertini's Theorem

Next, we apply the following result to the projection morphism
Z — X:

Proposition (Vakil 11.4.A)

Let f : X — Y be a morphism of locally Noetherian schemes and
suppose y = f(x). Then

codimy(x) < codimy(y) 4 codimx, (x).

This implies dim Z < n — 1 as claimed. To end the proof, use the
fact that the structure morphism P} — Spec(k) is universally
closed, so the image of Z in (P})" is a closed subscheme of
dimension at most n — 1, and so its complement is a dense subset
of (P})Y.
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Hypersurfaces in P} (Example of Bertini)

Let X C P} be a non-singular closed subvariety as before. Then a
generic degree d > 0 hypersurface intersects X in a regular
subvariety of codimension 1; to see this, replace X C [P} with the
embedding X — P} “ PkN, where vy is the dth Veronese
embedding and apply Bertini's theorem in IP’LV.

Taking X = P}, we get for free that there are nonsingular
hypersurfaces of degree d in P}, and the locus of nonsingular
hypersurfaces forms a dense open subset of the complete linear
system |O(d)|.
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Invariants from Differentials

Let X /k be a nonsingular variety. We can define the following
sheaves:

o The tangent sheaf Tx = Homo, (x/k, Ox);

© The canonical sheaf wx = det(Qx /).
Suppose in addition X is projective. Then we can define the
following invariants of X:

@ The plurigenera P, = hO(X,w;‘?”) for n > 1 (note Py = pg is

the geometric genus);
o The Hodge numbers hP9 = h9(X, APQx /).

G. Cooper Differentials in Scheme Theory



Invariants from Differentials

The plurigenera P,, and the Hodge numbers hP° are birational
invariants of X.

The Hodge numbers hP>9 for g # 0 need not be birational
invariants. For example, take k = C and consider blowing up a
smooth projective surface X at a point to obtain Y. Then X and
Y are birational, so have equal h'° (and hence equal h%!, as for
Kihler manifolds hP9 = h9P), but h1(Y) = AL1(X) + 1, since Y
is homeomorphic to X#P2 and hence by(Y) = bo(X) + 1 (by
Hodge theory we have by = 10 4 pb1 4 pO1),
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Proof that p, is a Birational Invariant

Suppose f : X -5 X' is a birational equivalence. Let V C X be
the largest open subset where f is defined. Then we have an
induced morphism of sheaves f*wx: /. — wy /x given by pulling
back forms, and thus a map F : HO(X’,wX//k) — HO(V,wV/k) on
global sections. The map F is injective (as f gives an isomorphism
between some open subset of V and some open subset of X’, and
a non-zero global section cannot vanish on a dense open subset).
If we can show HO(X,wx k) = H(V,wy k) then by symmetry we
are done.
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Proof that p, is a Birational Invariant

Claim
codimy (X \ V) >2

Suppose x € X is a point of codimension 1. Then Ox  is regular
and of dimension 1, so is a discrete valuation ring (as X is
nonsingular) with field of fractions K(X). If £ = Spec(K (X)) is
the generic point of X then we have a morphism

Spec(K(X)) — X', which by the valuative criterion for properness
extends to give a morphism of k-schemes Spec(Ox ) — X
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Proof that p, is a Birational Invariant

codimy (X \ V) > 2

Spec(Ox x) ——— Spec(k)

This gives a map of k-algebras A" — Ox , where Spec(A’) is an
open affine containing f(x). As Ox x and A’ are finitely-generated,
one can find an affine neighbourhood Spec(A) containing x and a
lift A" — A of A" — Ox «, giving a morphism Spec(A) — X’ which
agrees with f. Hence x € V.
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Proof that p, is a Birational Invariant

The restriction map HO(X,wX/k) — HO(V,wv/k) is an
isomorphism.

It is enough to assume wx /, = Ox s trivial (as this sheaf is locally
free). But this is then an immediate consequence of the following
result from commutative algebra:

If R is an integrally closed Noetherian domain then

R= ()] R

height(p)=1
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Sheaves Associated to Closed Subvarieties

Suppose Y is a nonsingular subvariety of a nonsingular variety X,
defined over k. Then we can define the following locally-free
sheaves on Y:

@ The conormal sheafI/IZ;
e The normal sheaf Ny ;x = Homo, (Z/1?,Oy).

Proposition (Adjunction Formula)

Suppose r = codimx(Y). Then

Wy = wy ®ArNy/X.

Proof: Take determinants in the conormal sequence.
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Canonical Sheaves of X = P} and Projective

Hypersurfaces (Example)

Recall we have the Euler sequence

0 = Qx/x = Ox(~1)*") - 0x — 0.

Taking determinants gives wx = Ox(—n — 1). In particular
peg(X) =0, and so any projective nonsingular rational variety must
have geometric genus 0.

Now suppose Y C X is a projective hypersurface of degree d.
Then by the adjunction formula

wy = Oy(d— n— 1).

In particular if n =3 and d = 4 then wy is trivial; that is quartic
surfaces in Pi are K3 surfaces.
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