Embedding Curves in Projective Spaces

George Cooper

Hilary Term 2021

A curve means a complete, non-singular curve over an algebraically closed field k; fix once and for all such a field k. A *point* means a closed point, unless otherwise specified.

Theorem

Any curve can be embedded in \mathbb{P}^3 .

Theorem

Any curve is birationally equivalent to a plane curve whose singularities are at worst nodes.

We will also introduce the canonical embedding (time permitting).

Projection from a Point

Fix a curve X of genus g and fix a non-degenerate embedding $X \hookrightarrow \mathbb{P}^n$; such an embedding exists since any divisor of degree $\geq 2g + 1$ is very ample. Fix a hyperplane $H \cong \mathbb{P}^{n-1} \subset \mathbb{P}^n$ and fix a point $O \in \mathbb{P}^n \setminus (X \cup H)$. Define a morphism $\phi : X \to H$ by

 $\phi: P \mapsto OP \cap H.$

Observation

Suppose ϑ is the (basepoint-free) linear system on X cut out by the intersection of X with all hyperplanes H' containing O. Then one can check (e.g. by playing around with coordinates on \mathbb{P}^n) that ϕ is the morphism corresponding to the linear system ϑ .

Question When is ϕ a closed immersion? G. Cooper Embedding Curves

Suppose $P, Q \in X$ are distinct points.

Definition

The secant line determined by P and Q is the line $PQ \subset \mathbb{P}^n$. The tangent line to X at P is the unique line $L \subset \mathbb{P}^n$ passing through P such that as subspaces of $T_P \mathbb{P}^n$, we have

$$T_P L = T_P X.$$

Definition

The secant variety Sec X of X is the union of all secant lines of X, and the tangent variety Tan X of X is the union of all tangent lines of X.

 $\phi: X \to H, \quad P \mapsto OP \cap H \quad \leftrightarrow \quad \mathfrak{d} = \{H' \cap X : O \in H'\}$

Proposition

 ϕ is a closed immersion if and only if O is not contained on any secant line or any tangent line of X.

Proof.

Need to show that ϑ separates points and separates tangent vectors. ϑ separates points if and only if for any $P \neq Q \in X$ there exists H' with $P \in H'$ and $Q \notin H'$; this is equivalent to O not being contained on any secant line of X. Similarly ϑ separates tangent vectors if and only if there exists H' containing the points O and P with i(X, H; P) = 1, if and only if O is not contained on any tangent line of X.

Remark

Similarly one can show that the morphism ϕ is ramified at $P \in X$ if and only if OP is the tangent line to X at P (one way of seeing this is by playing around with local parameters after choosing suitable coordinates on \mathbb{P}^n).

Can we always find a point $O \in \mathbb{P}^n$ such that O is not contained on any tangent or secant line of X?

First Observation

Sec X is a locally closed subset of \mathbb{P}^n with dim Sec $X \leq 3$ as locally it is the image of a morphism $(X \times X - \Delta) \times \mathbb{P}^1 \to \mathbb{P}^n$ sending the triple (P, Q, t) to the point on the line PQ at time $t \in \mathbb{P}^1$.

Second Observation

Tan X is a closed subset of \mathbb{P}^n with dim Tan $X \leq 2$, as it is locally the image of a morphism $X \times \mathbb{P}^1 \to \mathbb{P}^n$.

Upshot

If $n \ge 4$ then Sec $X \cup \text{Tan } X \neq \mathbb{P}^n$, so such a point O always exists.

Corollary

If X is a curve then there exists an embedding $X \hookrightarrow \mathbb{P}^3$.

Remark

Exercise III.5.6 shows that there are non-singular curves of any genus g. However, the genus of a degree d curve in \mathbb{P}^2 is $\frac{1}{2}(d-1)(d-2)$, and there are non-negative integers g not of the form $g = \frac{1}{2}(d-1)(d-2)$. Curves of such genera cannot be embedded in \mathbb{P}^2 .

We now turn to showing that any curve is birational to a plane curve whose singularities are at worst nodes.

Definition

A *node* is a singular point of a plane curve of multiplicity 2 with distinct tangent directions.

Let $X \subset \mathbb{P}^3$ be a curve. If $P \in X$, let L_P be the tangent line to X at P.

Definition

A multisecant of X is a line in \mathbb{P}^3 meeting X in at least 3 distinct points.

Definition

A secant with coplanar tangent lines is a secant of X joining distinct points P, Q with L_P and L_Q coplanar; equivalently L_P and L_Q intersect.

Suppose $X \subset \mathbb{P}^3$ is a curve, $O \in \mathbb{P}^3 \setminus X$ is a point and $\phi : X \to \mathbb{P}^2$ denotes projection from O.

Proposition

 ϕ is birational onto its image and $\phi(X)$ has at worst nodes as singularities, if and only if the following conditions are satisfied:

- O lies on finitely many secants of X;
- **2** O does not lie on any tangent line of X;
- **O** does not lie on any multisecant of X; and
- O is not on any secant with coplanar tangent lines.

Proposition

 ϕ is birational onto its image and $\phi(X)$ has at worst nodes as singularities, if and only if the following conditions are satisfied:

- O lies on finitely many secants of X;
- **2** O does not lie on any tangent line of X;
- \bigcirc O does not lie on any multisecant of X; and
- O is not on any secant with coplanar tangent lines.

Proof.

(1) $\iff \phi$ is 1-1 a.e. $\iff \phi$ is birational. If O lies on a secant line L, then (2), (3), (4) for L is equivalent to requiring that Lmeets X at distinct points P and Q, $L_P \neq L \neq L_Q$ and that L_P and L_Q are mapped to distinct lines in \mathbb{P}^2 . In turn this is equivalent to $\phi(P) = \phi(Q)$ being a node of $\phi(X)$.

< ロ > < 同 > < 回 > < 回 >

Proposition

 ϕ is birational onto its image and $\phi(X)$ has at worst nodes as singularities, if and only if the following conditions are satisfied:

- O lies on finitely many secants of X;
- **2** O does not lie on any tangent line of X;
- **(3)** O does not lie on any multisecant of X; and
- O is not on any secant with coplanar tangent lines.

We will now show that we can always find a point $O \in \mathbb{P}^3 \setminus X$ satisfying (1) - (4).

Lemma

Let $X \subset \mathbb{P}^3$ be a non-denegerate curve. Suppose

- every secant of X is a multisecant; or
- ② for any two points P, Q ∈ X the tangent lines L_P and L_Q are coplanar.

Then there exists a point $A \in \mathbb{P}^3$ which lies on every tangent line of X.

We break this proof into several stages. **Step 1:** We show (1) \Rightarrow (2). Fix a hyperplane $H \subset \mathbb{P}^3$. For each $R \in X \setminus (X \cap H)$ let $\psi_R : X \to H$ denote projection from R. (1) implies each ψ_R is many-to-one. To continue, we state without proof the following result from IV.4.2.

Lemma

Suppose $f : X \to Y$ is a finite inseparable morphism of curves (meaning the field extension $K(Y) \hookrightarrow K(X)$ is inseparable). Then every point of X is ramified.

We now split into cases.

Case 1: If ψ_R is inseparable for some R, then every $P \in X$ is a ramification point of ψ_R , so $R \in L_P$ for all P.

Case 2: Suppose ψ_R is separable for all R. Fixing R, there exists a non-singular point $T \in \psi_R(X)$ which is not a branch point. Then for any two $P, Q \in \psi_R^{-1}(T)$, ψ_R takes the lines L_P and L_Q to the tangent line L_T to $\psi(X)$ at T. Then L_P and L_Q lie in the plane spanned by RT and L_T .

Case 2: (ctd.) Hence for any $R \in X$, for almost all $P, Q \in X$ with P, Q, R collinear, the lines L_P and L_Q are coplanar, so there is an open set of pairs $(P, Q) \in X \times X$ for which the lines L_P and L_Q are coplanar. But coplanarity is a closed condition. Hence for all $P, Q \in X$, the lines L_P and L_Q are coplanar.

Step 2: We have reduced the problem to establising the following lemma.

Lemma

Let $X \subset \mathbb{P}^3$ be a non-denegerate curve. Suppose for any two points $P, Q \in X$ the tangent lines L_P and L_Q are coplanar. Then there exists a point $A \in \mathbb{P}^3$ which lies on every tangent line of X.

Lemma

Let $X \subset \mathbb{P}^3$ be a non-denegerate curve. Suppose for any two points $P, Q \in X$ the tangent lines L_P and L_Q are coplanar. Then there exists a point $A \in \mathbb{P}^3$ which lies on every tangent line of X.

Proof.

Take any two points $P, Q \in X$ with distinct tangents and set $A = L_P \cap L_Q$. If Π is the plane spanned by L_P and L_Q then by non-degeneracy $X \cap \Pi$ is a finite set of points. For any $R \in X \setminus (X \cap \Pi)$, L_R meets L_P and L_Q but is not contained in Π , so $A \in L_R$. Hence there is an open set of points $R \in X$ with $A \in L_R$. But this is a closed condition on X, so $A \in L_R$ for all $R \in X$.

Definition

A curve $X \subset \mathbb{P}^n$ is *strange* if there is a point $A \in \mathbb{P}^n$ such that A lies on all of the tangent lines of X.

Example

- **①** \mathbb{P}^1 is strange, as for any $P \in \mathbb{P}^1$ we have $L_P = \mathbb{P}^1$.
- A plane conic in P² over a field of characteristic 2 is strange.
 For instance, all tangent lines to the curve C = V(xy z²) pass through the point P = [0 : 0 : 1].

Theorem (Samuel)

These are the only examples of strange curves.

Suppose A lies on all tangent lines of $X \subset \mathbb{P}^n$. Without loss of generality assume n = 3. Choose an $\mathbb{A}^3_{x,y,z} \subset \mathbb{P}^3_{x,y,z,w}$ such that:

- A = [1:0:0:0] is the point at infinity on the x-axis;
- if $A \in X$ then L_A is not contained in the xz-plane;
- the z-axis does not meet X; and
- if X meets the line at infinity of the xz-plane, namely $\mathbb{V}(y, w)$, then X must meet this line at the point A.

Proof of Samuel's Theorem

Figure 14. Proof of (3.9).

Let $\psi: X \to \mathbb{P}^2$ be the morphism given by projecting from A to the *yz*-plane. This is ramified everywhere, so it's image is either a point (in which case X is a line) or is inseparable (as separable morphisms have finitely many ramification points). Thus the restrictions of the functions y and z to X lie in $K(X)^p$, where $p = \operatorname{char} k > 0$.

Proof of Samuel's Theorem

Figure 14. Proof of (3.9).

Let M be the line at infinity in the xy-plane and define $\phi : X \to M$ by setting $\phi(P)$ to be the intersection of the plane spanned by OPand the z-axis with M. ϕ is a morphism of degree $d = \deg X$, ramified exactly at the points of $X \setminus \{A\}$ lying in $(xz - \text{plane}) \cap \mathbb{A}^3$, since this is when the line $AP = L_P$ lies in the plane spanned by the z-axis and the line OP. Idea: Apply Riemann-Hurwitz to the morphism ϕ .

Theorem (Riemann-Hurwitz)

Let $f : X \to Y$ be a finite separable morphism of curves of degree $n = \deg f$. Then

$$2g(X) - 2 = n(2g(Y) - 2) + \sum_{P \in X} \nu_P(dt/du),$$

where for each P, u is a local parameter at P and t is a local parameter at f(P).

Suppose *P* is a ramification point with *x*-coordinate *a*. Take u = x - a (where $a \in k^{\times}$) as a local coordinate at *P* on *X* and t = y/x a local coordinate at *A* on *M*. We have $t = y(u + a)^{-1}$. As $y \in K(X)^p$ and char k = p, we know dy/du = 0, so

$$\frac{dt}{du} = -y(u+a)^{-2}.$$

But $u + a = x \in \mathcal{O}_{X,P}^{\times}$, hence $\nu_P(dt/du) = \nu_P(y)$. If P_1, \ldots, P_r are the ramification points of ϕ , then by Riemann-Hurwitz

$$2g(X) - 2 = -2d + \sum_{i=1}^{r} \nu_{P_i}(y).$$

Key Formula

$$2g - 2 = -2d + \sum_{i=1}^{r} \nu_{P_i}(y), \ d = \deg X, \ g = \operatorname{genus}(X).$$

Case 1: Suppose $A \notin X$. Then we can compute *d* as the number of intersection points of the *xz*-plane (defined by y = 0) with *X* (with appropriate multiplicites), that is

$$d=\sum_{i=1}^r\nu_{P_i}(y).$$

Then 2g - 2 = -d, which implies g = 0 and d = 2. Consequently $X \cong \mathbb{P}^1$ as abstract curves, and is embedded by a divisor D of degree 2. By Riemann-Roch dim |D| = 2, so X is embedded as a conic in some \mathbb{P}^2 . As X is strange then necessarily char k = 2.

Key Formula

$$2g - 2 = -2d + \sum_{i=1}^{r} \nu_{P_i}(y), \ d = \deg X, \ g = \operatorname{genus}(X).$$

Case 2: Suppose $A \in X$. As L_A is not in the *xz*-plane, the *xz*-plane meets X transversally at A, so computing d with the *xz*-plane gives

$$d=\sum_{i=1}^r\nu_{P_i}(y)+1.$$

Hence 2g - 2 = -d - 1, so g = 0 and d = 1, which implies X is a line. This completes the proof of Samuel's theorem.

Any Curve is Birational to a Plane Nodal Curve

Suppose $X \subset \mathbb{P}^3$ is a curve, $O \in \mathbb{P}^3 \setminus X$ is a point and $\phi : X \to \mathbb{P}^2$ denotes projection from O.

Proposition

 ϕ is birational onto its image and $\phi(X)$ has at worst nodes as singularities, if and only if the following conditions are satisfied:

- O lies on finitely many secants of X;
- \bigcirc O does not lie on any tangent line of X;
- \bigcirc O does not lie on any multisecant of X; and
- *O* is not on any secant with coplanar tangent lines.

Proposition

Such a point O always exists.

Any Curve is Birational to a Plane Nodal Curve

Proposition

Such a point O always exists.

Proof.

We may assume $X \subset \mathbb{P}^3$ is non-denegerate. Then X is not a conic or a line, so by Samuel's theorem cannot be strange, and so X has a secant which is not a multisecant and has a secant without coplanar tangent lines. Both of these are open conditions, hence there is a non-empty open subset of $X \times X$ consisting of pairs (P, Q) such that the secant line PQ is not a multisecant and doesn't have coplanar tangent lines.

The complement of this set is proper of dimension ≤ 1 , so the union of the corresponding secant lines in \mathbb{P}^3 has dimension ≤ 2 . We also have dim Tan $X \leq 2$, so there is an open subset of \mathbb{P}^3 consisting of points O satisfying conditions (2), (3) and (4).

Proof (ctd).

We still need to show that O can be chosen to lie on finitely many secants of X. Recall that Sec X is locally the image of a morphism $(X \times X - \Delta) \times \mathbb{P}^1 \to \mathbb{P}^3$ sending the triple (P, Q, t) to the point on the line PQ at time $t \in \mathbb{P}^1$. If the dimension of Sec X is < 3then we can choose O to lie on no secant. If dim Sec X = 3 then we apply the following result to see that there is an open subset of \mathbb{P}^3 consisting of points lying on finitely many secants of X.

Hartshorne Exercise II.3.7.

Let $f : X \to Y$ be a morphism of integral schemes which is dominant, of finite type and generically finite. Then there is an open dense subset $U \subset Y$ with $f^{-1}(U) \to U$ finite. It seems natural to ask whether every plane nodal curve arises from projecting a non-singular curve in \mathbb{P}^3 .

Hartshorne Exercise IV.3.7.

Assume char $k \neq 2$. Then the nodal curve $C = \mathbb{V}(xyz^2 + x^4 + y^4) \subset \mathbb{P}^2$ does not arise in this way.

Reason: Any (non-degenerate, non-singular) curve $X \subset \mathbb{P}^3$ projecting to C would be of degree 4 and genus 2. Suppose D is a hyperplane divisor on X, so deg D = 4 and thus Riemann-Roch gives $h^0(X, \mathcal{O}_X(D)) = 3$. But the non-degeneracy of $X \subset \mathbb{P}^3$ gives $h^0(X, \mathcal{O}_X(D)) = h^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(1)) = 4$, a contradiction. Let X be a non-singular curve of genus g defined over an algebraically closed field. Here we always assume $g \ge 2$. We study in more detail the canonical linear system |K|.

Lemma

If $g \ge 2$ then |K| has no base points.

Proof.

We need to show that for every $P \in X$, dim $|K - P| = \dim |K| - 1$. We know dim $|K| = h^0(X, \omega_X) - 1 = g - 1$. On the other hand, as X is not rational then $\ell(P) = 1$, so Riemann-Roch gives |K - P| = g - 2.

Definition

A g_d^r on X is a linear system of dimension r and degree d.

Example

Recall that X is said to be *hyperelliptic* if it admits a degree 2 morphism $X \to \mathbb{P}^1$. In the language of linear systems, X is hyperelliptic if and only if X has a g_2^1 . With a bit more work, one can show that the g_2^1 on a hyperelliptic curve is unique.

Example

Suppose X is a curve of genus 2. Then |K| is a g_2^1 , so X is hyperelliptic (this follows easily from Riemann-Roch).

▲□ ▶ ▲ 三 ▶ ▲

The Canonical Embedding

Proposition

Suppose X is a curve of genus $g \ge 2$. Then |K| is very ample if and only if X is not hyperelliptic.

Proof.

Recall that |K| is very ample if and only if for any two points $P, Q \in X$ we have dim $|K - P - Q| = \dim |K| - 2 = g - 3$. By Riemann-Roch,

$$\dim |P+Q| - \dim |K-P-Q| = 3-g,$$

so the question becomes determining when dim |P + Q| = 0. If X is hyperelliptic then for any $P + Q \in g_2^1$ we have dim $|P + Q| = 1 \neq 0$. Conversely, if dim |P + Q| > 0 then there exists a non-constant section $f \in H^0(X, \mathcal{O}_X(P + Q))$; as X is not rational then f must have poles at P and Q, so f gives a degree 2 map $X \to \mathbb{P}^1$, and hence X is hyperelliptic.

Definition

Let X be a non-hyperelliptic curve of genus $g \ge 3$. The embedding $X \to \mathbb{P}^{g-1}$ (defined up to the action of PGL(g, k)) corresponding to |K| is called the *canonical embedding*, and its image, a curve of degree 2g - 2, is called a *canonical curve*.

Example

Let X be a non-hyperelliptic curve of genus 3. The canonical map embeds X as a quartic in \mathbb{P}^2 . Conversely, if $X \subset \mathbb{P}^2$ is a non-singular plane quartic then by the adjunction formula, $\omega_X \cong \mathcal{O}_X(1)$, so X is a canonical curve.

Example

Let X be a non-hyperelliptic curve of genus 4. The canonical map embeds X as a degree 6 curve in \mathbb{P}^3 .

Let us explore this example in more detail. Suppose $X \subset \mathbb{P}^3$ is a canonical curve (so $\mathcal{O}_X(1)$ corresponds to the divisor K) with ideal sheaf \mathcal{I} . By twisting the ideal sheaf sequence by $\mathcal{O}_X(2)$ and taking cohomology, one sees that $h^0(\mathbb{P}^3, \mathcal{I}(2)) \ge 1$, so there is a degree 2 surface $Q \subset \mathbb{P}^3$ containing X. As X does not lie in any \mathbb{P}^2 then Q must be irreducible and reduced. Moreover Q is the only such surface containing X; if $X \subset Q'$ then $Q \cap Q'$ is a curve of degree 4 containing the degree 6 curve X, a contradiction.

Example

Let X be a non-hyperelliptic curve of genus 4. The canonical map embeds X as a degree 6 curve in \mathbb{P}^3 .

We also have $h^0(\mathbb{P}^3, \mathcal{I}(3)) \ge 5$; the subspace consisting of the preceding quadratic form times a linear form is of dimension 4, so X is also contained in an irreducible cubic surface F. It follows that $X = Q \cap F$ is a complete intersection. Conversely, if X is the complete intersection of a quadric and a cubic in \mathbb{P}^3 then X is a curve of genus 4 with $\omega_X \cong \mathcal{O}_X(1)$, by Exercise II.8.4.

Proposition

Let X be a hyperelliptic curve of genus $g \ge 2$.

- X has a unique g₂¹ (let f₀ : X → P¹ be the corresponding morphism).
- ② The canonical map f consists of f_0 followed by the Veronese embedding $\nu_{g-1} : \mathbb{P}^1 \to \mathbb{P}^{g-1}$.
- Severy effective canonical divisor on X is a sum of g − 1 divisors in the unique g¹₂.