Embedding Curves in Projective Spaces

George Cooper

Hilary Term 2021

Conventions

A curve means a complete, non-singular curve over an algebraically closed field k; fix once and for all such a field k. A point means a closed point, unless otherwise specified.

Aims

Theorem

Any curve can be embedded in \mathbb{P}^{3}.

Theorem

Any curve is birationally equivalent to a plane curve whose singularities are at worst nodes.

We will also introduce the canonical embedding (time permitting).

Projection from a Point

Fix a curve X of genus g and fix a non-degenerate embedding $X \hookrightarrow \mathbb{P}^{n}$; such an embedding exists since any divisor of degree $\geq 2 g+1$ is very ample. Fix a hyperplane $H \cong \mathbb{P}^{n-1} \subset \mathbb{P}^{n}$ and fix a point $O \in \mathbb{P}^{n} \backslash(X \cup H)$. Define a morphism $\phi: X \rightarrow H$ by

$$
\phi: P \mapsto O P \cap H
$$

Observation

Suppose \mathfrak{d} is the (basepoint-free) linear system on X cut out by the intersection of X with all hyperplanes H^{\prime} containing O. Then one can check (e.g. by playing around with coordinates on \mathbb{P}^{n}) that ϕ is the morphism corresponding to the linear system \mathfrak{d}.

Question

When is ϕ a closed immersion?

Tangent and Secant Lines

Suppose $P, Q \in X$ are distinct points.

Definition

The secant line determined by P and Q is the line $P Q \subset \mathbb{P}^{n}$. The tangent line to X at P is the unique line $L \subset \mathbb{P}^{n}$ passing through P such that as subspaces of $T_{P} \mathbb{P}^{n}$, we have

$$
T_{P} L=T_{P} X
$$

Definition

The secant variety $\operatorname{Sec} X$ of X is the union of all secant lines of X, and the tangent variety $\operatorname{Tan} X$ of X is the union of all tangent lines of X.

Projection from a Point

$$
\phi: X \rightarrow H, \quad P \mapsto O P \cap H \quad \leftrightarrow \quad \mathfrak{d}=\left\{H^{\prime} \cap X: O \in H^{\prime}\right\}
$$

Proposition

ϕ is a closed immersion if and only if O is not contained on any secant line or any tangent line of X.

Proof.

Need to show that \mathfrak{d} separates points and separates tangent vectors. \mathfrak{d} separates points if and only if for any $P \neq Q \in X$ there exists H^{\prime} with $P \in H^{\prime}$ and $Q \notin H^{\prime}$; this is equivalent to O not being contained on any secant line of X. Similarly \mathfrak{d} separates tangent vectors if and only if there exists H^{\prime} containing the points O and P with $i(X, H ; P)=1$, if and only if O is not contained on any tangent line of X.

Projection from a Point

Remark

Similarly one can show that the morphism ϕ is ramified at $P \in X$ if and only if $O P$ is the tangent line to X at P (one way of seeing this is by playing around with local parameters after choosing suitable coordinates on \mathbb{P}^{n}).

Projection from a Point

Can we always find a point $O \in \mathbb{P}^{n}$ such that O is not contained on any tangent or secant line of X ?

First Observation

$\operatorname{Sec} X$ is a locally closed subset of \mathbb{P}^{n} with $\operatorname{dim} \operatorname{Sec} X \leq 3$ as locally it is the image of a morphism $(X \times X-\Delta) \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ sending the triple (P, Q, t) to the point on the line $P Q$ at time $t \in \mathbb{P}^{1}$.

Second Observation

Tan X is a closed subset of \mathbb{P}^{n} with $\operatorname{dim} \operatorname{Tan} X \leq 2$, as it is locally the image of a morphism $X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$.

Upshot

If $n \geq 4$ then $\operatorname{Sec} X \cup \operatorname{Tan} X \neq \mathbb{P}^{n}$, so such a point O always exists.

Any Curve Embeds in \mathbb{P}^{3}

Corollary

If X is a curve then there exists an embedding $X \hookrightarrow \mathbb{P}^{3}$.

Remark

Exercise III.5. 6 shows that there are non-singular curves of any genus g. However, the genus of a degree d curve in \mathbb{P}^{2} is $\frac{1}{2}(d-1)(d-2)$, and there are non-negative integers g not of the form $g=\frac{1}{2}(d-1)(d-2)$. Curves of such genera cannot be embedded in \mathbb{P}^{2}.

We now turn to showing that any curve is birational to a plane curve whose singularities are at worst nodes.

More Definitions

Definition

A node is a singular point of a plane curve of multiplicity 2 with distinct tangent directions.

Let $X \subset \mathbb{P}^{3}$ be a curve. If $P \in X$, let L_{P} be the tangent line to X at P.

Definition

A multisecant of X is a line in \mathbb{P}^{3} meeting X in at least 3 distinct points.

Definition

A secant with coplanar tangent lines is a secant of X joining distinct points P, Q with L_{P} and L_{Q} coplanar; equivalently L_{P} and L_{Q} intersect.

Projection from a Point Revisited

Suppose $X \subset \mathbb{P}^{3}$ is a curve, $O \in \mathbb{P}^{3} \backslash X$ is a point and $\phi: X \rightarrow \mathbb{P}^{2}$ denotes projection from O.

Proposition

ϕ is birational onto its image and $\phi(X)$ has at worst nodes as singularities, if and only if the following conditions are satisfied:
(1) O lies on finitely many secants of X;
(2) O does not lie on any tangent line of X;
(3) O does not lie on any multisecant of X; and
(4) O is not on any secant with coplanar tangent lines.

Projection from a Point Revisited

Proposition

ϕ is birational onto its image and $\phi(X)$ has at worst nodes as singularities, if and only if the following conditions are satisfied:
(1) O lies on finitely many secants of X;
(2) O does not lie on any tangent line of X;
(3) O does not lie on any multisecant of X; and
(1) O is not on any secant with coplanar tangent lines.

Proof.

$(1) \Longleftrightarrow \phi$ is $1-1$ a.e. $\Longleftrightarrow \phi$ is birational. If O lies on a secant line L, then (2), (3), (4) for L is equivalent to requiring that L meets X at distinct points P and $Q, L_{P} \neq L \neq L_{Q}$ and that L_{P} and L_{Q} are mapped to distinct lines in \mathbb{P}^{2}. In turn this is equivalent to $\phi(P)=\phi(Q)$ being a node of $\phi(X)$.

Projection from a Point Revisited

Proposition

ϕ is birational onto its image and $\phi(X)$ has at worst nodes as singularities, if and only if the following conditions are satisfied:
(1) O lies on finitely many secants of X;
(2) O does not lie on any tangent line of X;
(3) O does not lie on any multisecant of X; and
(1) O is not on any secant with coplanar tangent lines.

We will now show that we can always find a point $O \in \mathbb{P}^{3} \backslash X$ satisfying (1) - (4).

A Technical Result

Lemma

Let $X \subset \mathbb{P}^{3}$ be a non-denegerate curve. Suppose
(1) every secant of X is a multisecant; or
(2) for any two points $P, Q \in X$ the tangent lines L_{P} and L_{Q} are coplanar.
Then there exists a point $A \in \mathbb{P}^{3}$ which lies on every tangent line of X.

We break this proof into several stages.
Step 1: We show $(1) \Rightarrow(2)$. Fix a hyperplane $H \subset \mathbb{P}^{3}$. For each $R \in X \backslash(X \cap H)$ let $\psi_{R}: X \rightarrow H$ denote projection from R. (1) implies each ψ_{R} is many-to-one.

A Technical Result

To continue, we state without proof the following result from §IV.4.2.

Lemma

Suppose $f: X \rightarrow Y$ is a finite inseparable morphism of curves (meaning the field extension $K(Y) \hookrightarrow K(X)$ is inseparable). Then every point of X is ramified.

We now split into cases.
Case 1: If ψ_{R} is inseparable for some R, then every $P \in X$ is a ramification point of ψ_{R}, so $R \in L_{P}$ for all P.
Case 2: Suppose ψ_{R} is separable for all R. Fixing R, there exists a non-singular point $T \in \psi_{R}(X)$ which is not a branch point. Then for any two $P, Q \in \psi_{R}^{-1}(T), \psi_{R}$ takes the lines L_{P} and L_{Q} to the tangent line L_{T} to $\psi(X)$ at T. Then L_{P} and L_{Q} lie in the plane spanned by $R T$ and L_{T}.

A Technical Result

Case 2: (ctd.) Hence for any $R \in X$, for almost all $P, Q \in X$ with P, Q, R collinear, the lines L_{P} and L_{Q} are coplanar, so there is an open set of pairs $(P, Q) \in X \times X$ for which the lines L_{P} and L_{Q} are coplanar. But coplanarity is a closed condition. Hence for all $P, Q \in X$, the lines L_{P} and L_{Q} are coplanar.
Step 2: We have reduced the problem to establising the following lemma.

Lemma

Let $X \subset \mathbb{P}^{3}$ be a non-denegerate curve. Suppose for any two points $P, Q \in X$ the tangent lines L_{P} and L_{Q} are coplanar. Then there exists a point $A \in \mathbb{P}^{3}$ which lies on every tangent line of X.

A Technical Result

Lemma

Let $X \subset \mathbb{P}^{3}$ be a non-denegerate curve. Suppose for any two points $P, Q \in X$ the tangent lines L_{P} and L_{Q} are coplanar. Then there exists a point $A \in \mathbb{P}^{3}$ which lies on every tangent line of X.

Proof.

Take any two points $P, Q \in X$ with distinct tangents and set $A=L_{P} \cap L_{Q}$. If Π is the plane spanned by L_{P} and L_{Q} then by non-degeneracy $X \cap \Pi$ is a finite set of points. For any $R \in X \backslash(X \cap \Pi), L_{R}$ meets L_{P} and L_{Q} but is not contained in Π, so $A \in L_{R}$. Hence there is an open set of points $R \in X$ with $A \in L_{R}$. But this is a closed condition on X, so $A \in L_{R}$ for all $R \in X$.

Strange Curves

Definition

A curve $X \subset \mathbb{P}^{n}$ is strange if there is a point $A \in \mathbb{P}^{n}$ such that A lies on all of the tangent lines of X.

Example

(1) \mathbb{P}^{1} is strange, as for any $P \in \mathbb{P}^{1}$ we have $L_{P}=\mathbb{P}^{1}$.
(2) A plane conic in \mathbb{P}^{2} over a field of characteristic 2 is strange. For instance, all tangent lines to the curve $C=\mathbb{V}\left(x y-z^{2}\right)$ pass through the point $P=[0: 0: 1]$.

Theorem (Samuel)

These are the only examples of strange curves.

Proof of Samuel's Theorem

Suppose A lies on all tangent lines of $X \subset \mathbb{P}^{n}$. Without loss of generality assume $n=3$. Choose an $\mathbb{A}_{x, y, z}^{3} \subset \mathbb{P}_{x, y, z, w}^{3}$ such that:

- $A=[1: 0: 0: 0]$ is the point at infinity on the x-axis;
- if $A \in X$ then L_{A} is not contained in the $x z$-plane;
- the z-axis does not meet X; and
- if X meets the line at infinity of the $x z$-plane, namely $\mathbb{V}(y, w)$, then X must meet this line at the point A.

Proof of Samuel's Theorem

Figure 14. Proof of (3.9).

Let $\psi: X \rightarrow \mathbb{P}^{2}$ be the morphism given by projecting from A to the $y z$-plane. This is ramified everywhere, so it's image is either a point (in which case X is a line) or is inseparable (as separable morphisms have finitely many ramification points). Thus the restrictions of the functions y and z to X lie in $K(X)^{p}$, where $p=\operatorname{char} k>0$.

Proof of Samuel's Theorem

Figure 14. Proof of (3.9).
Let M be the line at infinity in the $x y$-plane and define $\phi: X \rightarrow M$ by setting $\phi(P)$ to be the intersection of the plane spanned by $O P$ and the z-axis with $M . \phi$ is a morphism of degree $d=\operatorname{deg} X$, ramified exactly at the points of $X \backslash\{A\}$ lying in $(x z-$ plane $) \cap \mathbb{A}^{3}$, since this is when the line $A P=L_{P}$ lies in the plane spanned by the z-axis and the line $O P$.

Proof of Samuel's Theorem

Idea: Apply Riemann-Hurwitz to the morphism ϕ.

Theorem (Riemann-Hurwitz)

Let $f: X \rightarrow Y$ be a finite separable morphism of curves of degree $n=\operatorname{deg} f$. Then

$$
2 g(X)-2=n(2 g(Y)-2)+\sum_{P \in X} \nu_{P}(d t / d u)
$$

where for each P, u is a local parameter at P and t is a local parameter at $f(P)$.

Proof of Samuel's Theorem

Suppose P is a ramification point with x-coordinate a. Take $u=x-a$ (where $a \in k^{\times}$) as a local coordinate at P on X and $t=y / x$ a local coordinate at A on M. We have $t=y(u+a)^{-1}$. As $y \in K(X)^{p}$ and char $k=p$, we know $d y / d u=0$, so

$$
\frac{d t}{d u}=-y(u+a)^{-2}
$$

But $u+a=x \in \mathcal{O}_{X, P}^{\times}$, hence $\nu_{P}(d t / d u)=\nu_{P}(y)$.
If P_{1}, \ldots, P_{r} are the ramification points of ϕ, then by
Riemann-Hurwitz

$$
2 g(X)-2=-2 d+\sum_{i=1}^{r} \nu_{P_{i}}(y)
$$

Proof of Samuel's Theorem

Key Formula

$2 g-2=-2 d+\sum_{i=1}^{r} \nu_{P_{i}}(y), d=\operatorname{deg} X, g=\operatorname{genus}(X)$.
Case 1: Suppose $A \notin X$. Then we can compute d as the number of intersection points of the $x z$-plane (defined by $y=0$) with X (with appropriate multiplicites), that is

$$
d=\sum_{i=1}^{r} \nu_{P_{i}}(y)
$$

Then $2 g-2=-d$, which implies $g=0$ and $d=2$. Consequently $X \cong \mathbb{P}^{1}$ as abstract curves, and is embedded by a divisor D of degree 2. By Riemann-Roch $\operatorname{dim}|D|=2$, so X is embedded as a conic in some \mathbb{P}^{2}. As X is strange then necessarily char $k=2$.

Proof of Samuel's Theorem

Key Formula

$2 g-2=-2 d+\sum_{i=1}^{r} \nu_{P_{i}}(y), d=\operatorname{deg} X, g=\operatorname{genus}(X)$.
Case 2: Suppose $A \in X$. As L_{A} is not in the $x z$-plane, the $x z$-plane meets X transversally at A, so computing d with the $x z$-plane gives

$$
d=\sum_{i=1}^{r} \nu_{P_{i}}(y)+1
$$

Hence $2 g-2=-d-1$, so $g=0$ and $d=1$, which implies X is a line. This completes the proof of Samuel's theorem.

Any Curve is Birational to a Plane Nodal Curve

Suppose $X \subset \mathbb{P}^{3}$ is a curve, $O \in \mathbb{P}^{3} \backslash X$ is a point and $\phi: X \rightarrow \mathbb{P}^{2}$ denotes projection from O.

Proposition

ϕ is birational onto its image and $\phi(X)$ has at worst nodes as singularities, if and only if the following conditions are satisfied:
(1) O lies on finitely many secants of X;
(2) O does not lie on any tangent line of X;
(3) O does not lie on any multisecant of X; and
(4) O is not on any secant with coplanar tangent lines.

Proposition

Such a point O always exists.

Any Curve is Birational to a Plane Nodal Curve

Proposition

Such a point O always exists.

Proof.

We may assume $X \subset \mathbb{P}^{3}$ is non-denegerate. Then X is not a conic or a line, so by Samuel's theorem cannot be strange, and so X has a secant which is not a multisecant and has a secant without coplanar tangent lines. Both of these are open conditions, hence there is a non-empty open subset of $X \times X$ consisting of pairs (P, Q) such that the secant line $P Q$ is not a multisecant and doesn't have coplanar tangent lines.
The complement of this set is proper of dimension ≤ 1, so the union of the corresponding secant lines in \mathbb{P}^{3} has dimension ≤ 2. We also have $\operatorname{dim} \operatorname{Tan} X \leq 2$, so there is an open subset of \mathbb{P}^{3} consisting of points O satisfying conditions (2), (3) and (4).

Any Curve is Birational to a Plane Nodal Curve

Proof (ctd).

We still need to show that O can be chosen to lie on finitely many secants of X. Recall that $\operatorname{Sec} X$ is locally the image of a morphism $(X \times X-\Delta) \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ sending the triple (P, Q, t) to the point on the line $P Q$ at time $t \in \mathbb{P}^{1}$. If the dimension of $\operatorname{Sec} X$ is <3 then we can choose O to lie on no secant. If $\operatorname{dim} \operatorname{Sec} X=3$ then we apply the following result to see that there is an open subset of \mathbb{P}^{3} consisting of points lying on finitely many secants of X.

Hartshorne Exercise II.3.7.

Let $f: X \rightarrow Y$ be a morphism of integral schemes which is dominant, of finite type and generically finite. Then there is an open dense subset $U \subset Y$ with $f^{-1}(U) \rightarrow U$ finite.

Any Curve is Birational to a Plane Nodal Curve

It seems natural to ask whether every plane nodal curve arises from projecting a non-singular curve in \mathbb{P}^{3}.

Hartshorne Exercise IV.3.7.

Assume char $k \neq 2$. Then the nodal curve $C=\mathbb{V}\left(x y z^{2}+x^{4}+y^{4}\right) \subset \mathbb{P}^{2}$ does not arise in this way.

Reason: Any (non-degenerate, non-singular) curve $X \subset \mathbb{P}^{3}$ projecting to C would be of degree 4 and genus 2 . Suppose D is a hyperplane divisor on X, so $\operatorname{deg} D=4$ and thus Riemann-Roch gives $h^{0}\left(X, \mathcal{O}_{X}(D)\right)=3$. But the non-degeneracy of $X \subset \mathbb{P}^{3}$ gives $h^{0}\left(X, \mathcal{O}_{X}(D)\right)=h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(1)\right)=4$, a contradiction.

The Canonical Embedding

Let X be a non-singular curve of genus g defined over an algebraically closed field. Here we always assume $g \geq 2$. We study in more detail the canonical linear system $|K|$.

Lemma

If $g \geq 2$ then $|K|$ has no base points.

Proof.

We need to show that for every $P \in X, \operatorname{dim}|K-P|=\operatorname{dim}|K|-1$. We know $\operatorname{dim}|K|=h^{0}\left(X, \omega_{X}\right)-1=g-1$. On the other hand, as X is not rational then $\ell(P)=1$, so Riemann-Roch gives
$|K-P|=g-2$.

More on Linear Systems

Definition

A g_{d}^{r} on X is a linear system of dimension r and degree d.

Example

Recall that X is said to be hyperelliptic if it admits a degree 2 morphism $X \rightarrow \mathbb{P}^{1}$. In the language of linear systems, X is hyperelliptic if and only if X has a g_{2}^{1}. With a bit more work, one can show that the g_{2}^{1} on a hyperelliptic curve is unique.

Example

Suppose X is a curve of genus 2. Then $|K|$ is a g_{2}^{1}, so X is hyperelliptic (this follows easily from Riemann-Roch).

The Canonical Embedding

Proposition

Suppose X is a curve of genus $g \geq 2$. Then $|K|$ is very ample if and only if X is not hyperelliptic.

Proof.

Recall that $|K|$ is very ample if and only if for any two points $P, Q \in X$ we have $\operatorname{dim}|K-P-Q|=\operatorname{dim}|K|-2=g-3$. By Riemann-Roch,

$$
\operatorname{dim}|P+Q|-\operatorname{dim}|K-P-Q|=3-g
$$

so the question becomes determining when $\operatorname{dim}|P+Q|=0$. If X is hyperelliptic then for any $P+Q \in g_{2}^{1}$ we have $\operatorname{dim}|P+Q|=1 \neq 0$. Conversely, if $\operatorname{dim}|P+Q|>0$ then there exists a non-constant section $f \in H^{0}\left(X, \mathcal{O}_{X}(P+Q)\right)$; as X is not rational then f must have poles at P and Q, so f gives a degree 2 map $X \rightarrow \mathbb{P}^{1}$, and hence X is hyperelliptic.

The Canonical Embedding

Definition

Let X be a non-hyperelliptic curve of genus $g \geq 3$. The embedding $X \rightarrow \mathbb{P}^{g-1}$ (defined up to the action of $\left.\operatorname{PGL}(g, k)\right)$ corresponding to $|K|$ is called the canonical embedding, and its image, a curve of degree $2 g-2$, is called a canonical curve.

Genus 3 Canonical Curves

Example

Let X be a non-hyperelliptic curve of genus 3 . The canonical map embeds X as a quartic in \mathbb{P}^{2}.
Conversely, if $X \subset \mathbb{P}^{2}$ is a non-singular plane quartic then by the adjunction formula, $\omega_{X} \cong \mathcal{O}_{X}(1)$, so X is a canonical curve.

Genus 4 Canonical Curves

Example

Let X be a non-hyperelliptic curve of genus 4 . The canonical map embeds X as a degree 6 curve in \mathbb{P}^{3}.

Let us explore this example in more detail. Suppose $X \subset \mathbb{P}^{3}$ is a canonical curve (so $\mathcal{O}_{X}(1)$ corresponds to the divisor K) with ideal sheaf \mathcal{I}. By twisting the ideal sheaf sequence by $\mathcal{O}_{X}(2)$ and taking cohomology, one sees that $h^{0}\left(\mathbb{P}^{3}, \mathcal{I}(2)\right) \geq 1$, so there is a degree 2 surface $Q \subset \mathbb{P}^{3}$ containing X. As X does not lie in any \mathbb{P}^{2} then Q must be irreducible and reduced. Moreover Q is the only such surface containing X; if $X \subset Q^{\prime}$ then $Q \cap Q^{\prime}$ is a curve of degree 4 containing the degree 6 curve X, a contradiction.

Genus 4 Canonical Curves

Example

Let X be a non-hyperelliptic curve of genus 4. The canonical map embeds X as a degree 6 curve in \mathbb{P}^{3}.

We also have $h^{0}\left(\mathbb{P}^{3}, \mathcal{I}(3)\right) \geq 5$; the subspace consisting of the preceding quadratic form times a linear form is of dimension 4, so X is also contained in an irreducible cubic surface F. It follows that $X=Q \cap F$ is a complete intersection.
Conversely, if X is the complete intersection of a quadric and a cubic in \mathbb{P}^{3} then X is a curve of genus 4 with $\omega_{X} \cong \mathcal{O}_{X}(1)$, by Exercise II.8.4.

The Canonical Map for Hyperelliptic Curves

Proposition

Let X be a hyperelliptic curve of genus $g \geq 2$.
(1) X has a unique g_{2}^{1} (let $f_{0}: X \rightarrow \mathbb{P}^{1}$ be the corresponding morphism).
(2) The canonical map f consists of f_{0} followed by the Veronese embedding $\nu_{g-1}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{g-1}$.
(3) Every effective canonical divisor on X is a sum of $g-1$ divisors in the unique g_{2}^{1}.

