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Conventions

A curve means a complete, non-singular curve over an algebraically
closed field k; fix once and for all such a field k. A point means a
closed point, unless otherwise specified.
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Any curve can be embedded in P3.

Any curve is birationally equivalent to a plane curve whose
singularities are at worst nodes.

We will also introduce the canonical embedding (time permitting).
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Projection from a Point

Fix a curve X of genus g and fix a non-degenerate embedding

X < P"; such an embedding exists since any divisor of degree

> 2g + 1 is very ample. Fix a hyperplane H = P"~! c P” and fix a
point O € P"\ (X U H). Define a morphism ¢ : X — H by

¢: P OPNH.

Suppose 0 is the (basepoint-free) linear system on X cut out by
the intersection of X with all hyperplanes H' containing O. Then
one can check (e.g. by playing around with coordinates on P")
that ¢ is the morphism corresponding to the linear system 0.

When is ¢ a closed immersion?
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Tangent and Secant Lines

Suppose P, @ € X are distinct points.

The secant line determined by P and Q is the line PQ C P". The
tangent line to X at P is the unique line L C P” passing through P

such that as subspaces of TplP”, we have

Tpl = TpX.

The secant variety Sec X of X is the union of all secant lines of X,

and the tangent variety Tan X of X is the union of all tangent lines
of X.
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Projection from a Point

¢:X—>H P—OPNH « d={HNX:0ecH}

¢ is a closed immersion if and only if O is not contained on any
secant line or any tangent line of X.

Need to show that D separates points and separates tangent
vectors. 0 separates points if and only if for any P £ Q € X there
exists H' with P € H" and Q ¢ H’; this is equivalent to O not
being contained on any secant line of X. Similarly 0 separates
tangent vectors if and only if there exists H' containing the points
O and P with i(X, H; P) =1, if and only if O is not contained on
any tangent line of X. Ol
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Projection from a Point

Remark

Similarly one can show that the morphism ¢ is ramified at P € X
if and only if OP is the tangent line to X at P (one way of seeing
this is by playing around with local parameters after choosing
suitable coordinates on P").
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Projection from a Point

Can we always find a point O € P" such that O is not contained
on any tangent or secant line of X?

First Observation

Sec X is a locally closed subset of P” with dim Sec X < 3 as locally
it is the image of a morphism (X x X — A) x P! — P" sending the
triple (P, Q, t) to the point on the line PQ at time t € PL.

Second Observation

Tan X is a closed subset of P” with dim Tan X < 2, as it is locally
the image of a morphism X x P! — P".

If n > 4 then Sec X U Tan X # P", so such a point O always exists.
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Any Curve Embeds in P3

Corollary

If X is a curve then there exists an embedding X — P3.

Exercise 111.5.6 shows that there are non-singular curves of any
genus g. However, the genus of a degree d curve in P? is

2(d —1)(d — 2), and there are non-negative integers g not of the
form g = %(d —1)(d — 2). Curves of such genera cannot be
embedded in P?.

We now turn to showing that any curve is birational to a plane
curve whose singularities are at worst nodes.
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More Definitions

A node is a singular point of a plane curve of multiplicity 2 with
distinct tangent directions.

Let X C P3 be a curve. If P € X, let Lp be the tangent line to X
at P.

A multisecant of X is a line in P2 meeting X in at least 3 distinct
points.

A secant with coplanar tangent lines is a secant of X joining
distinct points P, Q with Lp and Lg coplanar; equivalently Lp and
Lq intersect.
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Projection from a Point Revisited

Suppose X C P3 is a curve, O € P2\ X is a point and ¢ : X — [P?
denotes projection from O.

Proposition

¢ is birational onto its image and ¢(X) has at worst nodes as
singularities, if and only if the following conditions are satisfied:

@ O lies on finitely many secants of X;
@ O does not lie on any tangent line of X;
© O does not lie on any multisecant of X; and

@ O is not on any secant with coplanar tangent lines.
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Projection from a Point Revisited

¢ is birational onto its image and ¢(X) has at worst nodes as
singularities, if and only if the following conditions are satisfied:

@ O lies on finitely many secants of X;
@ O does not lie on any tangent line of X;
© O does not lie on any multisecant of X; and

@ O is not on any secant with coplanar tangent lines.

(1) < ¢isl-1a.e. < ¢ is birational. If O lies on a secant
line L, then (2),(3), (4) for L is equivalent to requiring that L
meets X at distinct points P and Q, Lp # L # Lg and that Lp
and Lg are mapped to distinct lines in 2. In turn this is
equivalent to ¢(P) = ¢(Q) being a node of ¢(X). O
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Projection from a Point Revisited

Proposition

¢ is birational onto its image and ¢(X) has at worst nodes as
singularities, if and only if the following conditions are satisfied:

@ O lies on finitely many secants of X;
@ O does not lie on any tangent line of X;
© O does not lie on any multisecant of X; and

@ O is not on any secant with coplanar tangent lines.

We will now show that we can always find a point O € P3\ X
satisfying (1) — (4).
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A Technical Result

Lemma

Let X C P2 be a non-denegerate curve. Suppose
@ every secant of X is a multisecant; or

@ for any two points P, Q € X the tangent lines Lp and Lg are
coplanar.

Then there exists a point A € P2 which lies on every tangent line
of X.

We break this proof into several stages.

Step 1: We show (1) = (2). Fix a hyperplane H C P3. For each
R e X\ (XN H)let g : X — H denote projection from R. (1)
implies each ¥g is many-to-one.
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A Technical Result

To continue, we state without proof the following result from
8IV.4.2.

Lemma

Suppose f : X — Y is a finite inseparable morphism of curves
(meaning the field extension K(Y') — K(X) is inseparable). Then
every point of X is ramified.

We now split into cases.

Case 1: If YR is inseparable for some R, then every P € X is a
ramification point of ¥g, so R € Lp for all P.

Case 2: Suppose g is separable for all R. Fixing R, there exists a
non-singular point T € 1g(X) which is not a branch point. Then
for any two P, @ € 5 (T), v takes the lines Lp and Lq to the
tangent line L1 to ¢(X) at T. Then Lp and Lg lie in the plane
spanned by RT and Lt.
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A Technical Result

Case 2: (ctd.) Hence for any R € X, for almost all P, Q € X with
P, Q, R collinear, the lines Lp and Lq are coplanar, so there is an
open set of pairs (P, Q) € X x X for which the lines Lp and Lg
are coplanar. But coplanarity is a closed condition. Hence for all
P,Q € X, the lines Lp and Lg are coplanar.

Step 2: We have reduced the problem to establising the following
lemma.

Lemma

Let X C P2 be a non-denegerate curve. Suppose for any two
points P, Q € X the tangent lines Lp and Lg are coplanar. Then
there exists a point A € P3 which lies on every tangent line of X.
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A Technical Result

Let X C P2 be a non-denegerate curve. Suppose for any two
points P, Q € X the tangent lines Lp and Lg are coplanar. Then
there exists a point A € P3 which lies on every tangent line of X.

Take any two points P, @ € X with distinct tangents and set

A= LpNLg. If Nis the plane spanned by Lp and Lg then by
non-degeneracy X N1 is a finite set of points. For any

Re X\ (XNMN), Lg meets Lp and Lg but is not contained in I1,
so A € Lg. Hence there is an open set of points R € X with

A € Lgr. But this is a closed condition on X, so A € Lg for all

R e X. Ol
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Strange Curves

A curve X C P" is strange if there is a point A € P" such that A
lies on all of the tangent lines of X.

@ P! is strange, as for any P € P! we have Lp = P

@ A plane conic in P2 over a field of characteristic 2 is strange.
For instance, all tangent lines to the curve C = V(xy — z?)
pass through the point P =[0:0: 1].

Theorem (Samuel)

These are the only examples of strange curves.
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Proof of Samuel’'s Theorem

Suppose A lies on all tangent lines of X C P". Without loss of
generality assume n = 3. Choose an A3 c P3 such that:

xX,y,Z X,y,Z,Ww
@ A=[1:0:0:0] is the point at infinity on the x-axis;
o if A€ X then L4 is not contained in the xz-plane;
@ the z-axis does not meet X; and

o if X meets the line at infinity of the xz-plane, namely
V(y, w), then X must meet this line at the point A.
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Proof of Samuel’'s Theorem

Figure 14. Proof of (3.9).

Let ¥ : X — P? be the morphism given by projecting from A to
the yz-plane. This is ramified everywhere, so it's image is either a
point (in which case X is a line) or is inseparable (as separable
morphisms have finitely many ramification points). Thus the
restrictions of the functions y and z to X lie in K(X)P, where

p = chark > 0.
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Proof of Samuel’'s Theorem

Figure 14. Proof of (3.9).

Let M be the line at infinity in the xy-plane and define ¢ : X — M
by setting ¢(P) to be the intersection of the plane spanned by OP
and the z-axis with M. ¢ is a morphism of degree d = deg X,
ramified exactly at the points of X \ {A} lying in

(xz — plane) N A3, since this is when the line AP = Lp lies in the
plane spanned by the z-axis and the line OP.
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Proof of Samuel’'s Theorem

Idea: Apply Riemann-Hurwitz to the morphism ¢.

Theorem (Riemann-Hurwitz)

Let f : X — Y be a finite separable morphism of curves of degree
n=degf. Then

26(X) — 2 = n(2g(Y) —2) + 3, vp(dt/du),
PeX

where for each P, u is a local parameter at P and t is a local
parameter at f(P).
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Proof of Samuel’'s Theorem

Suppose P is a ramification point with x-coordinate a. Take
u=x— a (where a € k*) as a local coordinate at P on X and

t = y/x a local coordinate at A on M. We have t = y(u+ a)~ 1.
As y € K(X)P and char k = p, we know dy/du =0, so

dt
i —y(u+a)~2
But u+a=x € O p, hence vp(dt/du) = vp(y).
If P1,..., P, are the ramification points of ¢, then by

Riemann-Hurwitz

2g(X) —2=-2d+ > vp(y)
i=1
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Proof of Samuel’'s Theorem

Key Formula

26 —2=-2d+>_;vp(y), d=degX, g =genus(X).

Case 1: Suppose A € X. Then we can compute d as the number
of intersection points of the xz-plane (defined by y = 0) with X
(with appropriate multiplicites), that is

d= Zypl.(y).
i=1

Then 2g — 2 = —d, which implies g = 0 and d = 2. Consequently
X 22 P! as abstract curves, and is embedded by a divisor D of
degree 2. By Riemann-Roch dim|D| = 2, so X is embedded as a
conic in some P?. As X is strange then necessarily char k = 2.
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Proof of Samuel’'s Theorem

Key Formula
28 —2=-2d+>_,vp(y) d=degX, g = genus(X).

Case 2: Suppose A € X. As L, is not in the xz-plane, the
xz-plane meets X transversally at A, so computing d with the
xz-plane gives

d:ZVPi(Y)+1'
i=1

Hence 2g —2 = —d —1,so g =0 and d = 1, which implies X is a
line. This completes the proof of Samuel's theorem.
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Any Curve is Birational to a Plane Nodal Curve

Suppose X C P3 is a curve, O € P3\ X is a point and ¢ : X — P?
denotes projection from O.

¢ is birational onto its image and ¢(X) has at worst nodes as
singularities, if and only if the following conditions are satisfied:

@ O lies on finitely many secants of X;
@ O does not lie on any tangent line of X;
© O does not lie on any multisecant of X; and

@ O is not on any secant with coplanar tangent lines.

Such a point O always exists.
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Any Curve is Birational to a Plane Nodal Curve

Such a point O always exists.

We may assume X C P3 is non-denegerate. Then X is not a conic
or a line, so by Samuel’s theorem cannot be strange, and so X has
a secant which is not a multisecant and has a secant without
coplanar tangent lines. Both of these are open conditions, hence
there is a non-empty open subset of X x X consisting of pairs

(P, Q) such that the secant line PQ is not a multisecant and
doesn’t have coplanar tangent lines.

The complement of this set is proper of dimension < 1, so the
union of the corresponding secant lines in P3 has dimension < 2.
We also have dim Tan X < 2, so there is an open subset of P3
consisting of points O satisfying conditions (2), (3) and (4).
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Any Curve is Birational to a Plane Nodal Curve

Proof (ctd).

We still need to show that O can be chosen to lie on finitely many
secants of X. Recall that Sec X is locally the image of a morphism
(X x X — A) x P! — P3 sending the triple (P, Q, t) to the point
on the line PQ at time t € P!. If the dimension of Sec X is < 3
then we can choose O to lie on no secant. If dim Sec X = 3 then
we apply the following result to see that there is an open subset of
IP? consisting of points lying on finitely many secants of X. [

Hartshorne Exercise 11.3.7.

Let f : X — Y be a morphism of integral schemes which is
dominant, of finite type and generically finite. Then there is an
open dense subset U C Y with f~1(U) — U finite.
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Any Curve is Birational to a Plane Nodal Curve

It seems natural to ask whether every plane nodal curve arises from
projecting a non-singular curve in P3.
Hartshorne Exercise 1V.3.7.

Assume char k # 2. Then the nodal curve
C = V(xyz? + x* + y*) C P? does not arise in this way.

Reason: Any (non-degenerate, non-singular) curve X C P3
projecting to C would be of degree 4 and genus 2. Suppose D is a
hyperplane divisor on X, so deg D = 4 and thus Riemann-Roch
gives h°(X, Ox(D)) = 3. But the non-degeneracy of X C P gives
h%(X, Ox(D)) = hO(P3, Ops(1)) = 4, a contradiction.
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The Canonical Embedding

Let X be a non-singular curve of genus g defined over an
algebraically closed field. Here we always assume g > 2. We study
in more detail the canonical linear system |K]|.

Lemma

If g > 2 then |K| has no base points.

We need to show that for every P € X, dim |K — P| = dim|K| — 1.
We know dim |K| = h°(X,wx) — 1 = g — 1. On the other hand, as
X is not rational then ¢(P) = 1, so Riemann-Roch gives

K—Pl=g—2 O
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More on Linear Systems

A g/ on X is a linear system of dimension r and degree d.

Recall that X is said to be hyperelliptic if it admits a degree 2
morphism X — PL. In the language of linear systems, X is
hyperelliptic if and only if X has a g%. With a bit more work, one
can show that the g21 on a hyperelliptic curve is unique.

Suppose X is a curve of genus 2. Then |K]| is a g1, so X is
hyperelliptic (this follows easily from Riemann-Roch).
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The Canonical Embedding

Suppose X is a curve of genus g > 2. Then |K| is very ample if
and only if X is not hyperelliptic.

Recall that |K]| is very ample if and only if for any two points
P,Q € X we have dim|K — P — Q| =dim |K| —2 =g — 3. By
Riemann-Roch,

dim|P + Q| —dim|K - P - Q| =3 —g,

so the question becomes determining when dim |P + Q| = 0. If X
is hyperelliptic then for any P + Q € g} we have

dim|P + Q| =1 # 0. Conversely, if dim [P 4+ Q| > 0 then there
exists a non-constant section f € H%(X, Ox(P + Q)); as X is not
rational then f must have poles at P and Q, so f gives a degree 2

map X — P!, and hence X is hyperelliptic. OJ



The Canonical Embedding

Definition

Let X be a non-hyperelliptic curve of genus g > 3. The embedding
X — P81 (defined up to the action of PGL(g, k)) corresponding
to |K| is called the canonical embedding, and its image, a curve of
degree 2g — 2, is called a canonical curve.
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Genus 3 Canonical Curves

Example
Let X be a non-hyperelliptic curve of genus 3. The canonical map

embeds X as a quartic in P2.
Conversely, if X C P2 is a non-singular plane quartic then by the
adjunction formula, wx = Ox(1), so X is a canonical curve.
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Genus 4 Canonical Curves

Example

Let X be a non-hyperelliptic curve of genus 4. The canonical map
embeds X as a degree 6 curve in P3.

Let us explore this example in more detail. Suppose X C P3 is a
canonical curve (so Ox(1) corresponds to the divisor K) with ideal
sheaf Z. By twisting the ideal sheaf sequence by Ox(2) and taking
cohomology, one sees that h°(IP3,Z(2)) > 1, so there is a degree 2
surface Q C P3 containing X. As X does not lie in any P? then Q
must be irreducible and reduced. Moreover @ is the only such
surface containing X; if X C Q' then @ N Q' is a curve of degree 4
containing the degree 6 curve X, a contradiction.

G. Cooper Embedding Curves



Genus 4 Canonical Curves

Example

Let X be a non-hyperelliptic curve of genus 4. The canonical map
embeds X as a degree 6 curve in P3.

We also have h°(P3,Z(3)) > 5; the subspace consisting of the
preceding quadratic form times a linear form is of dimension 4, so
X is also contained in an irreducible cubic surface F. It follows
that X = Q@ N F is a complete intersection.

Conversely, if X is the complete intersection of a quadric and a
cubic in P2 then X is a curve of genus 4 with wx = Ox(1), by
Exercise 11.8.4.
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The Canonical Map for Hyperelliptic Curves

Let X be a hyperelliptic curve of genus g > 2.
@ X has a unique g1 (let fo : X — P! be the corresponding
morphism).
@ The canonical map f consists of fy followed by the Veronese
embedding v, : P! — ps—1
© Every effective canonical divisor on X is a sum of g — 1
divisors in the unique g21.

G. Cooper Embedding Curves



