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Conventions

A curve means a complete, non-singular curve over an algebraically
closed field k ; fix once and for all such a field k . A point means a
closed point, unless otherwise specified.
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Aims

Theorem

Any curve can be embedded in P3.

Theorem

Any curve is birationally equivalent to a plane curve whose
singularities are at worst nodes.

We will also introduce the canonical embedding (time permitting).
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Projection from a Point

Fix a curve X of genus g and fix a non-degenerate embedding
X ↪→ Pn; such an embedding exists since any divisor of degree
≥ 2g + 1 is very ample. Fix a hyperplane H ∼= Pn−1 ⊂ Pn and fix a
point O ∈ Pn \ (X ∪ H). Define a morphism φ : X → H by

φ : P 7→ OP ∩ H.

Observation

Suppose d is the (basepoint-free) linear system on X cut out by
the intersection of X with all hyperplanes H ′ containing O. Then
one can check (e.g. by playing around with coordinates on Pn)
that φ is the morphism corresponding to the linear system d.

Question

When is φ a closed immersion?
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Tangent and Secant Lines

Suppose P,Q ∈ X are distinct points.

Definition

The secant line determined by P and Q is the line PQ ⊂ Pn. The
tangent line to X at P is the unique line L ⊂ Pn passing through P
such that as subspaces of TPPn, we have

TPL = TPX .

Definition

The secant variety SecX of X is the union of all secant lines of X ,
and the tangent variety TanX of X is the union of all tangent lines
of X .
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Projection from a Point

φ : X → H, P 7→ OP ∩ H ↔ d = {H ′ ∩ X : O ∈ H ′}

Proposition

φ is a closed immersion if and only if O is not contained on any
secant line or any tangent line of X .

Proof.

Need to show that d separates points and separates tangent
vectors. d separates points if and only if for any P 6= Q ∈ X there
exists H ′ with P ∈ H ′ and Q 6∈ H ′; this is equivalent to O not
being contained on any secant line of X . Similarly d separates
tangent vectors if and only if there exists H ′ containing the points
O and P with i(X ,H;P) = 1, if and only if O is not contained on
any tangent line of X .
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Projection from a Point

Remark

Similarly one can show that the morphism φ is ramified at P ∈ X
if and only if OP is the tangent line to X at P (one way of seeing
this is by playing around with local parameters after choosing
suitable coordinates on Pn).
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Projection from a Point

Can we always find a point O ∈ Pn such that O is not contained
on any tangent or secant line of X?

First Observation

SecX is a locally closed subset of Pn with dim SecX ≤ 3 as locally
it is the image of a morphism (X ×X −∆)× P1 → Pn sending the
triple (P,Q, t) to the point on the line PQ at time t ∈ P1.

Second Observation

TanX is a closed subset of Pn with dim TanX ≤ 2, as it is locally
the image of a morphism X × P1 → Pn.

Upshot

If n ≥ 4 then SecX ∪TanX 6= Pn, so such a point O always exists.
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Any Curve Embeds in P3

Corollary

If X is a curve then there exists an embedding X ↪→ P3.

Remark

Exercise III.5.6 shows that there are non-singular curves of any
genus g . However, the genus of a degree d curve in P2 is
1
2(d − 1)(d − 2), and there are non-negative integers g not of the
form g = 1

2(d − 1)(d − 2). Curves of such genera cannot be
embedded in P2.

We now turn to showing that any curve is birational to a plane
curve whose singularities are at worst nodes.
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More Definitions

Definition

A node is a singular point of a plane curve of multiplicity 2 with
distinct tangent directions.

Let X ⊂ P3 be a curve. If P ∈ X , let LP be the tangent line to X
at P.

Definition

A multisecant of X is a line in P3 meeting X in at least 3 distinct
points.

Definition

A secant with coplanar tangent lines is a secant of X joining
distinct points P,Q with LP and LQ coplanar; equivalently LP and
LQ intersect.
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Projection from a Point Revisited

Suppose X ⊂ P3 is a curve, O ∈ P3 \ X is a point and φ : X → P2

denotes projection from O.

Proposition

φ is birational onto its image and φ(X ) has at worst nodes as
singularities, if and only if the following conditions are satisfied:

1 O lies on finitely many secants of X ;

2 O does not lie on any tangent line of X ;

3 O does not lie on any multisecant of X ; and

4 O is not on any secant with coplanar tangent lines.
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Projection from a Point Revisited

Proposition

φ is birational onto its image and φ(X ) has at worst nodes as
singularities, if and only if the following conditions are satisfied:

1 O lies on finitely many secants of X ;

2 O does not lie on any tangent line of X ;

3 O does not lie on any multisecant of X ; and

4 O is not on any secant with coplanar tangent lines.

Proof.

(1) ⇐⇒ φ is 1-1 a.e. ⇐⇒ φ is birational. If O lies on a secant
line L, then (2), (3), (4) for L is equivalent to requiring that L
meets X at distinct points P and Q, LP 6= L 6= LQ and that LP
and LQ are mapped to distinct lines in P2. In turn this is
equivalent to φ(P) = φ(Q) being a node of φ(X ).
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Projection from a Point Revisited

Proposition

φ is birational onto its image and φ(X ) has at worst nodes as
singularities, if and only if the following conditions are satisfied:

1 O lies on finitely many secants of X ;

2 O does not lie on any tangent line of X ;

3 O does not lie on any multisecant of X ; and

4 O is not on any secant with coplanar tangent lines.

We will now show that we can always find a point O ∈ P3 \ X
satisfying (1)− (4).
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A Technical Result

Lemma

Let X ⊂ P3 be a non-denegerate curve. Suppose

1 every secant of X is a multisecant; or

2 for any two points P,Q ∈ X the tangent lines LP and LQ are
coplanar.

Then there exists a point A ∈ P3 which lies on every tangent line
of X .

We break this proof into several stages.
Step 1: We show (1)⇒ (2). Fix a hyperplane H ⊂ P3. For each
R ∈ X \ (X ∩ H) let ψR : X → H denote projection from R. (1)
implies each ψR is many-to-one.
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A Technical Result

To continue, we state without proof the following result from
§IV.4.2.

Lemma

Suppose f : X → Y is a finite inseparable morphism of curves
(meaning the field extension K (Y ) ↪→ K (X ) is inseparable). Then
every point of X is ramified.

We now split into cases.
Case 1: If ψR is inseparable for some R, then every P ∈ X is a
ramification point of ψR , so R ∈ LP for all P.
Case 2: Suppose ψR is separable for all R. Fixing R, there exists a
non-singular point T ∈ ψR(X ) which is not a branch point. Then
for any two P,Q ∈ ψ−1R (T ), ψR takes the lines LP and LQ to the
tangent line LT to ψ(X ) at T . Then LP and LQ lie in the plane
spanned by RT and LT .
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A Technical Result

Case 2: (ctd.) Hence for any R ∈ X , for almost all P,Q ∈ X with
P,Q,R collinear, the lines LP and LQ are coplanar, so there is an
open set of pairs (P,Q) ∈ X × X for which the lines LP and LQ
are coplanar. But coplanarity is a closed condition. Hence for all
P,Q ∈ X , the lines LP and LQ are coplanar.
Step 2: We have reduced the problem to establising the following
lemma.

Lemma

Let X ⊂ P3 be a non-denegerate curve. Suppose for any two
points P,Q ∈ X the tangent lines LP and LQ are coplanar. Then
there exists a point A ∈ P3 which lies on every tangent line of X .
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A Technical Result

Lemma

Let X ⊂ P3 be a non-denegerate curve. Suppose for any two
points P,Q ∈ X the tangent lines LP and LQ are coplanar. Then
there exists a point A ∈ P3 which lies on every tangent line of X .

Proof.

Take any two points P,Q ∈ X with distinct tangents and set
A = LP ∩ LQ . If Π is the plane spanned by LP and LQ then by
non-degeneracy X ∩ Π is a finite set of points. For any
R ∈ X \ (X ∩ Π), LR meets LP and LQ but is not contained in Π,
so A ∈ LR . Hence there is an open set of points R ∈ X with
A ∈ LR . But this is a closed condition on X , so A ∈ LR for all
R ∈ X .
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Strange Curves

Definition

A curve X ⊂ Pn is strange if there is a point A ∈ Pn such that A
lies on all of the tangent lines of X .

Example

1 P1 is strange, as for any P ∈ P1 we have LP = P1.

2 A plane conic in P2 over a field of characteristic 2 is strange.
For instance, all tangent lines to the curve C = V(xy − z2)
pass through the point P = [0 : 0 : 1].

Theorem (Samuel)

These are the only examples of strange curves.
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Proof of Samuel’s Theorem

Suppose A lies on all tangent lines of X ⊂ Pn. Without loss of
generality assume n = 3. Choose an A3

x ,y ,z ⊂ P3
x ,y ,z,w such that:

A = [1 : 0 : 0 : 0] is the point at infinity on the x-axis;

if A ∈ X then LA is not contained in the xz-plane;

the z-axis does not meet X ; and

if X meets the line at infinity of the xz-plane, namely
V(y ,w), then X must meet this line at the point A.
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Proof of Samuel’s Theorem

Let ψ : X → P2 be the morphism given by projecting from A to
the yz-plane. This is ramified everywhere, so it’s image is either a
point (in which case X is a line) or is inseparable (as separable
morphisms have finitely many ramification points). Thus the
restrictions of the functions y and z to X lie in K (X )p, where
p = char k > 0.
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Proof of Samuel’s Theorem

Let M be the line at infinity in the xy -plane and define φ : X → M
by setting φ(P) to be the intersection of the plane spanned by OP
and the z-axis with M. φ is a morphism of degree d = degX ,
ramified exactly at the points of X \ {A} lying in
(xz − plane) ∩ A3, since this is when the line AP = LP lies in the
plane spanned by the z-axis and the line OP.
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Proof of Samuel’s Theorem

Idea: Apply Riemann-Hurwitz to the morphism φ.

Theorem (Riemann-Hurwitz)

Let f : X → Y be a finite separable morphism of curves of degree
n = deg f . Then

2g(X )− 2 = n(2g(Y )− 2) +
∑
P∈X

νP(dt/du),

where for each P, u is a local parameter at P and t is a local
parameter at f (P).
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Proof of Samuel’s Theorem

Suppose P is a ramification point with x-coordinate a. Take
u = x − a (where a ∈ k×) as a local coordinate at P on X and
t = y/x a local coordinate at A on M. We have t = y(u + a)−1.
As y ∈ K (X )p and char k = p, we know dy/du = 0, so

dt

du
= −y(u + a)−2.

But u + a = x ∈ O×X ,P , hence νP(dt/du) = νP(y).
If P1, . . . ,Pr are the ramification points of φ, then by
Riemann-Hurwitz

2g(X )− 2 = −2d +
r∑

i=1

νPi
(y).
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Proof of Samuel’s Theorem

Key Formula

2g − 2 = −2d +
∑r

i=1 νPi
(y), d = degX , g = genus(X ).

Case 1: Suppose A 6∈ X . Then we can compute d as the number
of intersection points of the xz-plane (defined by y = 0) with X
(with appropriate multiplicites), that is

d =
r∑

i=1

νPi
(y).

Then 2g − 2 = −d , which implies g = 0 and d = 2. Consequently
X ∼= P1 as abstract curves, and is embedded by a divisor D of
degree 2. By Riemann-Roch dim |D| = 2, so X is embedded as a
conic in some P2. As X is strange then necessarily char k = 2.
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Proof of Samuel’s Theorem

Key Formula

2g − 2 = −2d +
∑r

i=1 νPi
(y), d = degX , g = genus(X ).

Case 2: Suppose A ∈ X . As LA is not in the xz-plane, the
xz-plane meets X transversally at A, so computing d with the
xz-plane gives

d =
r∑

i=1

νPi
(y) + 1.

Hence 2g − 2 = −d − 1, so g = 0 and d = 1, which implies X is a
line. This completes the proof of Samuel’s theorem.
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Any Curve is Birational to a Plane Nodal Curve

Suppose X ⊂ P3 is a curve, O ∈ P3 \ X is a point and φ : X → P2

denotes projection from O.

Proposition

φ is birational onto its image and φ(X ) has at worst nodes as
singularities, if and only if the following conditions are satisfied:

1 O lies on finitely many secants of X ;

2 O does not lie on any tangent line of X ;

3 O does not lie on any multisecant of X ; and

4 O is not on any secant with coplanar tangent lines.

Proposition

Such a point O always exists.
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Any Curve is Birational to a Plane Nodal Curve

Proposition

Such a point O always exists.

Proof.

We may assume X ⊂ P3 is non-denegerate. Then X is not a conic
or a line, so by Samuel’s theorem cannot be strange, and so X has
a secant which is not a multisecant and has a secant without
coplanar tangent lines. Both of these are open conditions, hence
there is a non-empty open subset of X × X consisting of pairs
(P,Q) such that the secant line PQ is not a multisecant and
doesn’t have coplanar tangent lines.
The complement of this set is proper of dimension ≤ 1, so the
union of the corresponding secant lines in P3 has dimension ≤ 2.
We also have dim TanX ≤ 2, so there is an open subset of P3

consisting of points O satisfying conditions (2), (3) and (4).
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Any Curve is Birational to a Plane Nodal Curve

Proof (ctd).

We still need to show that O can be chosen to lie on finitely many
secants of X . Recall that SecX is locally the image of a morphism
(X × X −∆)× P1 → P3 sending the triple (P,Q, t) to the point
on the line PQ at time t ∈ P1. If the dimension of SecX is < 3
then we can choose O to lie on no secant. If dim SecX = 3 then
we apply the following result to see that there is an open subset of
P3 consisting of points lying on finitely many secants of X .

Hartshorne Exercise II.3.7.

Let f : X → Y be a morphism of integral schemes which is
dominant, of finite type and generically finite. Then there is an
open dense subset U ⊂ Y with f −1(U)→ U finite.
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Any Curve is Birational to a Plane Nodal Curve

It seems natural to ask whether every plane nodal curve arises from
projecting a non-singular curve in P3.

Hartshorne Exercise IV.3.7.

Assume char k 6= 2. Then the nodal curve
C = V(xyz2 + x4 + y4) ⊂ P2 does not arise in this way.

Reason: Any (non-degenerate, non-singular) curve X ⊂ P3

projecting to C would be of degree 4 and genus 2. Suppose D is a
hyperplane divisor on X , so degD = 4 and thus Riemann-Roch
gives h0(X ,OX (D)) = 3. But the non-degeneracy of X ⊂ P3 gives
h0(X ,OX (D)) = h0(P3,OP3(1)) = 4, a contradiction.
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The Canonical Embedding

Let X be a non-singular curve of genus g defined over an
algebraically closed field. Here we always assume g ≥ 2. We study
in more detail the canonical linear system |K |.

Lemma

If g ≥ 2 then |K | has no base points.

Proof.

We need to show that for every P ∈ X , dim |K −P| = dim |K | − 1.
We know dim |K | = h0(X , ωX )− 1 = g − 1. On the other hand, as
X is not rational then `(P) = 1, so Riemann-Roch gives
|K − P| = g − 2.
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More on Linear Systems

Definition

A g r
d on X is a linear system of dimension r and degree d .

Example

Recall that X is said to be hyperelliptic if it admits a degree 2
morphism X → P1. In the language of linear systems, X is
hyperelliptic if and only if X has a g1

2 . With a bit more work, one
can show that the g1

2 on a hyperelliptic curve is unique.

Example

Suppose X is a curve of genus 2. Then |K | is a g1
2 , so X is

hyperelliptic (this follows easily from Riemann-Roch).
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The Canonical Embedding

Proposition

Suppose X is a curve of genus g ≥ 2. Then |K | is very ample if
and only if X is not hyperelliptic.

Proof.

Recall that |K | is very ample if and only if for any two points
P,Q ∈ X we have dim |K − P − Q| = dim |K | − 2 = g − 3. By
Riemann-Roch,

dim |P + Q| − dim |K − P − Q| = 3− g ,

so the question becomes determining when dim |P + Q| = 0. If X
is hyperelliptic then for any P + Q ∈ g1

2 we have
dim |P + Q| = 1 6= 0. Conversely, if dim |P + Q| > 0 then there
exists a non-constant section f ∈ H0(X ,OX (P + Q)); as X is not
rational then f must have poles at P and Q, so f gives a degree 2
map X → P1, and hence X is hyperelliptic.
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The Canonical Embedding

Definition

Let X be a non-hyperelliptic curve of genus g ≥ 3. The embedding
X → Pg−1 (defined up to the action of PGL(g , k)) corresponding
to |K | is called the canonical embedding, and its image, a curve of
degree 2g − 2, is called a canonical curve.
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Genus 3 Canonical Curves

Example

Let X be a non-hyperelliptic curve of genus 3. The canonical map
embeds X as a quartic in P2.
Conversely, if X ⊂ P2 is a non-singular plane quartic then by the
adjunction formula, ωX

∼= OX (1), so X is a canonical curve.
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Genus 4 Canonical Curves

Example

Let X be a non-hyperelliptic curve of genus 4. The canonical map
embeds X as a degree 6 curve in P3.

Let us explore this example in more detail. Suppose X ⊂ P3 is a
canonical curve (so OX (1) corresponds to the divisor K ) with ideal
sheaf I. By twisting the ideal sheaf sequence by OX (2) and taking
cohomology, one sees that h0(P3, I(2)) ≥ 1, so there is a degree 2
surface Q ⊂ P3 containing X . As X does not lie in any P2 then Q
must be irreducible and reduced. Moreover Q is the only such
surface containing X ; if X ⊂ Q ′ then Q ∩Q ′ is a curve of degree 4
containing the degree 6 curve X , a contradiction.
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Genus 4 Canonical Curves

Example

Let X be a non-hyperelliptic curve of genus 4. The canonical map
embeds X as a degree 6 curve in P3.

We also have h0(P3, I(3)) ≥ 5; the subspace consisting of the
preceding quadratic form times a linear form is of dimension 4, so
X is also contained in an irreducible cubic surface F . It follows
that X = Q ∩ F is a complete intersection.
Conversely, if X is the complete intersection of a quadric and a
cubic in P3 then X is a curve of genus 4 with ωX

∼= OX (1), by
Exercise II.8.4.
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The Canonical Map for Hyperelliptic Curves

Proposition

Let X be a hyperelliptic curve of genus g ≥ 2.

1 X has a unique g1
2 (let f0 : X → P1 be the corresponding

morphism).

2 The canonical map f consists of f0 followed by the Veronese
embedding νg−1 : P1 → Pg−1.

3 Every effective canonical divisor on X is a sum of g − 1
divisors in the unique g1

2 .
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