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Recall the following theorem from lectures:

Theorem 1. Let X be a compact connected topological surface with a given cellular decom-
position. Then the Euler characteristic χ(X) is independent of the choice of decomposition.

This note aims to explain very roughly where this result comes from (for more details,
see C3.1 Algebraic Topology).

Let X be any topological space. You may have already come across the group π1(X,x0),
the fundamental group of (X,x0). There are other groups that can be attached to X,
the (singular) homology groups Hn(X), which have the property that if X and Y are
homeomorphic (or even homotopy equivalent) spaces then they have the same homology
groups.

The definition of the groups Hn(X) seems very unwieldy at first, but they are defined
in such a way that it’s clear they depend only on the homeomorphism class of X.1 For
each integer n ≥ 0, let ∆n be the standard n-simplex :

∆n =

{
(t0, . . . , tn) ∈ Rn+1 : each ti ≥ 0,

∑
i

ti = 1

}
.

For each i = 0, . . . , n let ∆n
i be the ith facet of ∆n:

∆n
i = {(t0, . . . , tn) ∈ ∆n : ti = 0}.

We identify ∆n
i with ∆n−1 via

(t0, . . . , tn−1) ∈ ∆n−1 ↔ (t0, . . . , ti−1, 0, ti+1, . . . , tn−1) ∈ ∆n
i ⊂ ∆n.

Definition 2. We let Cn(X) be the free Z-module with basis given by the set of all con-
tinuous maps σ : ∆n → X. Elements of Cn(X) are known as singular n-chains.

For all but the very simplest of spaces, Cn(X) is a group that’s far too big to work with
in practice. However, by construction Cn(X) depends only on the space X itself and not
on any additional choices, such as the choice of a cellular decomposition.

Next, we define the homomorphism ∂n = ∂Xn : Cn(X)→ Cn−1(X) by setting

∂nσ =

n∑
i=0

(−1)iσ|∆n
i

and extending Z-linearly. Here we use our identification ∆n
i ≡ ∆n−1 to view σ|∆n

i
as a

map ∆n−1 → X.
We now define two important subgroups of Cn(X).

Definition 3. The group of n-cycles is Zn(X) = ker(∂n : Cn(X) → Cn−1(X)), and the
group of n-boundaries is Bn(X) = im(∂n+1 : Cn+1(X)→ Cn(X)).

A very crucial property of the maps ∂n is that for all n, ∂n◦∂n+1 = 0, soBn(X) ⊂ Zn(X).

Definition 4. The nth (singular) homology group ofX is the group Hn(X) = Zn(X)/Bn(X).

It turns out that H0 and H1 admit nice descriptions:

• H0(X) is isomorphic to ZN , whereN is the cardinality of the set of path-components
of X.

1That they depend only on the homotopy class of X requires much more work.
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• If X is path-connected then H1(X) is isomorphic to the abelianisation2 of π1(X);
this is known as Hurewicz’s theorem. More generally, for each n ≥ 1 there is a
natural homomorphism πn(X)→ Hn(X), and Hurewicz’s theorem gives sufficient
conditions for this map to be an isomorphism.

Let’s ignore the question of how to actually compute homology groups in general, and
instead explain why Hn(X) is a homeomorphism invariant of X. Suppose f : X → Y
is a continuous map between topological spaces. Then we have induced homomorphisms
fn∗ : Cn(X) → Cn(Y ) given by setting fn∗ (σ) = f ◦ σ and extending Z-linearly. As an
exercise, try to prove the following result yourself:

Lemma 5. For each n, we have fn∗ ◦ ∂Xn+1 = ∂Yn+1 ◦ fn+1
∗ as maps Cn+1(X)→ Cn(Y ).

As a consequence of this lemma, we have fn∗ (Zn(X)) ⊂ Zn(Y ) and fn∗ (Bn(X)) ⊂ Bn(Y ),
so fn∗ descends to the quotient Hn:

fn∗ : Hn(X)→ Hn(Y ), [σ] 7→ [f ◦ σ].

Now, if f is a homeomorphism with inverse g : Y → X, then gn∗ = (fn∗ )−1, both as maps
Cn(Y ) → Cn(X) and Hn(Y ) → Hn(X). Therefore Hn(X) and Hn(Y ) are isomorphic
abelian groups.

From this point on, assume X is a finite CW-complex of dimension k.3 Then:

(1) Hn(X) = 0 if n < 0 or if n > k.
(2) Each Hn(X) is a finitely-generated abelian group, and in particular has a finite

rank bn(X) = rank(Hn(X)) = dimQHn(X)⊗ZQ. bn(X) is known as the nth Betti
number of X.

This allows us to define the Euler characteristic of X:

χ(X) :=
∑
i

(−1)ibi(X) = b0(X)− b1(X) + · · ·+ (±1)kbk(X).

As χ(X) depends only on the homology groups of X, it is a homotopy/homeomorphism
invariant of X.

Now suppose we are given a cellular decomposition of X, with mn-many n-cells for
0 ≤ n ≤ k.4 Then the groups Hn(X) can be computed using cellular homology.

Theorem 6. There exists a chain complex5

0 CCW
k (X) CCW

k−1(X) · · · CCW
1 (X) CCW

0 (X) 0
∂CW
k

∂CW
k−1 ∂CW

2 ∂CW
1

whose homology is isomorphic to the singular homology H•(X) of X. The group CCW
n (X)

is isomorphic to Zmn and is freely generated by the n-cells in X. Moreover

χ(X) =
∑
i

bi(X) =

k∑
n=0

(−1)nmn.

Unlike the group of singular n-chains, the groups CCW
n (X) and the morphisms ∂CW

n

can easily be computed from a given cellular decomposition, giving a much simpler way
to compute the homology H•(X) of X. In the case where X is a compact connected
surface with a cellular decomposition with V vertices, E edges and F faces, we recover
the well-known formula

χ(X) = V − E + F.

We end with listing the homology groups of compact connected surfaces.

2Gab := G/[G,G].
3Don’t worry about what this means - any “reasonable” compact space is homeomorphic to a finite

CW-complex, including all compact connected smooth manifolds as well as (the geometric realisation of)
any finite simplicial complex.

4The definition given in lectures for when k = 2 generalises in the way you’d expect it to.
5Meaning: each CCW

n (X) is a Z-module, each ∂CW
n is a homomorphism and ∂CW

n ◦ ∂CW
n+1 = 0.
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Proposition 7. Let X = #gT
2 be the compact orientable surface of genus g ≥ 0 and let

Y = #hRP2 be the compact non-orientable surface of genus h ≥ 1. Then

Hn(X) =


Z n = 0, 2,

Z2g n = 1,

0 otherwise,

Hn(Y ) =


Z n = 0,

Zh−1 ⊕ Z/2 n = 1,

0 otherwise.

Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
Email address: cooperg@maths.ox.ac.uk


