Functors of Artin Rings and Schlessinger's Criterion

George Cooper

Michaelmas Term 2022

George Cooper Deformation Theory Week 6

- k is an algebraically closed field.
- C is the category of local Artin k-algebras with residue field k.
- *Ĉ*(⊃ *C*) is the category of complete local *k*-algebras with residue field *k*.
- We will follow Hartshorne's scheme-theoretic treatment for a stack-theoretic treatment, see Alper's notes.

Example: Deformations of the Node

Suppose we are looking at deforming the node xy = 0 in $\mathbb{A}^2 = \operatorname{Spec} k[x, y]$. Let $X = \{xy - t = 0\} \subset \mathbb{A}^3$ and $T = \operatorname{Spec} k[t] = \mathbb{A}^1$. Let X'/S be a flat deformation of the node over $S = \operatorname{Spec} k[[s]]$. Again for simplicity assume X' is defined by a single equation g(x, y, s) = 0, with $g \in k[[s]][x, y]$ and g(x, y, 0) = xy.

"Claim"

There exists a morphism $S \to T$ (given by a homomorphism $\phi: k[t] \to k[[s]]$, with $\phi(t) = R(s)$ satisfying R(0) = 0) such that $X \times_T S \cong X'$.

Strategy

Find P(x, y, s) and Q(x, y, s) reducing to x and y when s = 0, and a unit U(x, y, s) (all in k[[s]][x, y]) reducing to 1 when s = 0, such that g = U(PQ - R).

(1) マン・ション (1) マン・

Write
$$R = \sum_{i \ge 1} a_i s^i$$
, $P = x + \sum_{i \ge 1} b_i s^i$, $Q = y + \sum_{i \ge 1} c_i s^i$,
 $U = 1 + \sum_{i \ge 1} u_i s^i$, $g = xy + \sum_{i \ge 1} g_i s^i \in k[x, y][[s]]$ (where
 $a_i \in k, b_i, c_i, u_i, g_i \in k[x, y]$).
From the degree 1 part of $g = U(PQ - R)$:

$$xc_1 + yb_1 - a_1 + xyu_1 = g_1.$$

This uniquely determines a_1 , but there are several possibilities for b_1, c_1 and u_1 (fix such choices). Continuing inductively degree-by-degree, the a_i 's are always uniquely determined, but there are several possibilities for the other polynomials. In any case, this gives $P, Q, R, U \in k[x, y][[s]]$ such that g = U(PQ - R).

Example: Deformations of the Node

Unfortunately this isn't what we're after, as $k[[s]][x, y] \subsetneq k[x, y][[s]]$. That is, we haven't actually found an isomorphism (of S-schemes) between $X' = \{g(x, y, s) = 0\}$ and $X \times_T S$ - rather we have only found an isomorphism of their formal completions along the closed fibre over s = 0. In fact there is the following result:

Proposition

The deformation $X = {xy - t = 0}/T$ is miniversal in the following sense:

- For any other deformation X'/S with S the spectrum of a complete local ring, there is a morphism φ : S → T such that X' and X ×_T S become isomorphic after completing along the closed fibre over zero.
- **2** ϕ is not uniquely determined, but the induced map on Zariski tangent spaces is.

For the rest of today: we're interested in studying functors $F : \mathcal{C} \to \mathbf{Set}$.

Note that any functor $F : \mathcal{C} \to \mathbf{Set}$ admits a canonical extension \hat{F} to $\hat{\mathcal{C}}$ by setting $\hat{F}(R) = \lim_{n \to \infty} F(R/\mathfrak{m}^n)$.

Definition

 $F : \mathcal{C} \to \mathbf{Set}$ is pro-representable if it is isomorphic to $h_R := \operatorname{Hom}_{\operatorname{loc}_k}(R, -)$ for some complete local k-algebra R. Suppose we have a morphism $\phi : h_R \to F$ with R a complete local k-algebra. For each n, we have a map $\operatorname{Hom}(R, R/\mathfrak{m}^n) \to F(R/\mathfrak{m}^n)$. Let $\xi_n \in F(R/\mathfrak{m}^n)$ be the image of the quotient map $R \to R/\mathfrak{m}^n$. The ξ_n 's are compatible with respect to the natural maps $R/\mathfrak{m}^{n+1} \to R/\mathfrak{m}^n$, so $\xi = \{\xi_n\} \in \varprojlim F(R/\mathfrak{m}^n) = \hat{F}(R)$.

Definition

 ξ is known as a *formal family* of *F* over the ring *R*.

伺 ト イヨ ト イヨト

Suppose instead we have $\xi = \{\xi_n\} \in \hat{F}(R)$. For any $A \in C$ and $f \in h_R(A)$, the morphism f factors through some R/\mathfrak{m}^n (as A is Artinian). Letting $\phi(f)$ be the image of ξ_n under $F(R/\mathfrak{m}^n \to A)$, we obtain a homomorphism $\phi : h_R \to F$. This sets up a well-defined inverse construction:

Proposition

There is a natural 1-1 correspondence between formal families of F over R and morphisms of functors $h_R \rightarrow F$.

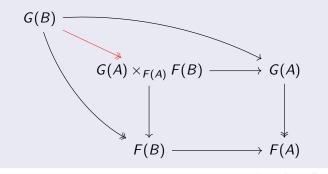
From now on: we use the notation (R,ξ) (where $R \in \widehat{C}$, $\xi \in \widehat{F}(R)$) to denote a formal family of F.

Smooth Morphisms

Definition

A morphism of functors $G \rightarrow F$ is *smooth* if:

- for every $A \in C$, $G(A) \to F(A)$ is surjective.
- ② For every surjection B → A in C, G(B) → G(A) ×_{F(A)} F(B) is surjective:



Definition

A morphism of functors $G \rightarrow F$ is *smooth* if:

- for every $A \in C$, $G(A) \to F(A)$ is surjective.
- Solution B → A in C, G(B) → G(A) ×_{F(A)} F(B) is surjective.

In the case where $G = h_R$, this says the following:

- Any $\eta \in F(A)$ is induced by some map $R \to A$.
- Given any map R → A inducing η ∈ F(A), any surjection B → A and any θ ∈ F(B) mapping to η, there exists a lift R → B of R → A which induces θ.

I ← Ξ ►

Fix $F : \mathcal{C} \to \mathbf{Set}$. Let $D = k[\varepsilon]/\varepsilon^2$.

Definition

 (R,ξ) is a:

- versal family if $h_R \to F$ is smooth;
- miniversal family (a.k.a. prorepresentable hull) if in addition h_R(D) → F(D) is a bijection;
- *universal family* if $h_R \rightarrow F$ is an isomorphism.

If (R, ξ) is a versal family (corr. to $\phi : h_R \to F$), then for any other formal family (S, η) there is a ring homomorphism $f : R \to S$ such that $\hat{F}(R) \to \hat{F}(S)$ sends ξ to η .

Sketch proof.

Use the surjectivity of ϕ to lift each $\eta_n \in F(S/\mathfrak{m}_S^n)$ to $f_n \in h_R(S/\mathfrak{m}_S^n)$ with the property that the induced map $F(R/\mathfrak{m}_R^n) \to F(S/\mathfrak{m}_S^n)$ sends ξ_n to η_n . Smoothness allows the choices of f_n 's to be made compatibly (arguing by induction on n), so they determine a homomorphism $f : R \to \varprojlim S/\mathfrak{m}_S^n \stackrel{S \in \widehat{C}}{=} S$, which by construction sends ξ to η .

/□ ▶ ◀ ⋽ ▶ ◀

If (R, ξ) is a versal family (corr. to $\phi : h_R \to F$), then for any other formal family (S, η) there is a ring homomorphism $f : R \to S$ such that $\hat{F}(R) \to \hat{F}(S)$ sends ξ to η .

Exercise

Show that if (R,ξ) is a miniversal family, then the induced homomorphism $\overline{f}: R/\mathfrak{m}_R^2 \to S/\mathfrak{m}_S^2$ is independent of f. Show also that any miniversal family is unique up to (not necessarily unique) isomorphism.

We write $t_F = F(D)$ and $t_R = h_R(D) = (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$. A small extension in C is a surjection whose kernel is a one-dimensional k-vector space.

If A' and A'' are local Artin k-algebras with morphisms to A, we set

$$\mathcal{A}' \times_{\mathcal{A}} \mathcal{A}'' = \{(a',a'') \in \mathcal{A}' \times \mathcal{A}'' : f'(a) = f''(a'')\} \in \mathcal{C}.$$

The Cartesian product $M' \times_M M''$ of modules is defined analogously.

If F has a versal family, then F(k) consists of a single element.

Proof.

 $\operatorname{Hom}(R,k) \to F(k)$ is surjective, and the domain has a single element.

伺 ト イヨ ト イヨト

If F has a versal family, then for any morphisms $A' \to A$ and $A'' \to A$ in C, the natural map

$$F(A' \times_A A'') \to F(A') \times_{F(A)} F(A'')$$

is surjective.

Proof.

Suppose $\eta' \in F(A')$, $\eta'' \in F(A'')$ map to $\eta \in F(A)$. These arise from homomorphisms $R \to A$, $R \to A'$ and $R \to A''$, and by smoothness these can be chosen to all be compatible, so that there is an induced homomorphism $R \to A' \times_A A''$. This defines an element $\xi \in F(A' \times_A A'')$ which restricts to η' and η'' .

If F has a miniversal family, then for any $A \in \mathcal{C}$, the natural map

$$F(A \times_k D) \to F(A) \times_{F(k)} F(D)$$

is bijective.

Proof.

Suppose θ_1 , $\theta_2 \in F(A \times_k D)$ lie over $(\eta, \xi) \in F(A) \times_{F(k)} F(D)$. Pick $u : R \to A$ inducing η ; as $A \times_k D = A[\varepsilon]/\varepsilon^2$ surjects onto A, we can lift u to $v_1, v_2 : R \to A \times_k D$ inducing θ_1 and θ_2 respectively. The projections of the v_i to D induce ξ so must coincide (since by hypothesis $t_R \xrightarrow{\sim} t_F$), and the projections to A are both u, so $v_1 = v_2$. Hence $\theta_1 = \theta_2$.

If F has a miniversal family, then t_F has the structure of a finite-dimensional k-vector space.

Proof.

Use the isomorphism $t_F \cong t_R = (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$.

Exercise

Show that it is possible to define the vector space structure on t_F intrinsically.

If *F* has a miniversal family, then for any small extension $p: A' \to A$ (with kernel *I*) and any $\eta \in F(A)$, the set $p^{-1}(\eta) \subset F(A')$ is acted on transitively by t_F .

Proof.

We have an isomorphism $A' \times_A A' \xrightarrow{\sim} A' \times_k k[I]$ given by $(x, y) \mapsto (x, x_0 + y - x)$, where $x_0 = x \mod \mathfrak{m}$. Hence $F(A' \times_A A') = F(A' \times_k k[I]) \cong F(A') \times t_F$, so we have a surjective map

$$F(A') \times t_F \to F(A') \times_{F(A)} F(A')$$

which is an isomorphism on the first factor. If $\eta' \in p^{-1}(\eta)$, this gives a surjective map $\{\eta'\} \times t_F \to \{\eta'\} \times p^{-1}(\eta)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

If *F* has a miniversal family, then for any small extension $p: A' \to A$ (with kernel *I*) and any $\eta \in F(A)$, the set $p^{-1}(\eta) \subset F(A')$ is acted on transitively by t_F . If *F* is pro-representable then this action is bijective and $p^{-1}(\eta) \neq \emptyset$.

Indeed, one can check that the maps $F(A' \times_A A'') \rightarrow F(A') \times_{F(A)} F(A'')$ are always bijective whenever F is pro-representable.

• • = • • = •

Theorem (Schlessinger, 1968)

F has a miniversal family if and only if:

(H0) F(k) has a single element.

- (H1) For all small extensions $A'' \to A$ (and any $A' \to A$), the map $F(A' \times_A A'') \to F(A') \times_{F(A)} F(A'')$ is surjective.
- (H2) The map of (H1) is bijective whenever A'' = D and A = k.
- (H3) t_F is a finite-dimensional k-vector space.

Moreover, F is pro-representable if and only if additionally:

(H4) For every small extension $p : A'' \to A$ and every $\eta \in F(A)$ with $p^{-1}(\eta) \neq \emptyset$, t_F acts bijectively on $p^{-1}(\eta)$.

Exercise

Show that (H4) implies that the map in (H1) is bijective. In particular, (H4) implies (H2).

Let A, A', A'' be rings with maps $A' \to A$, $A'' \to A$. Let M, M', M''be modules over A, A', A'' respectively, with compatible maps $M' \to M$ and $M'' \to M$. Assume that $M' \otimes_{A'} A \xrightarrow{\simeq} M$ and $M'' \otimes_{A''} A \xrightarrow{\simeq} M$. Let $M^* = M' \times_M M''$, a module over $A^* = A' \times_A A''$.

Lemma

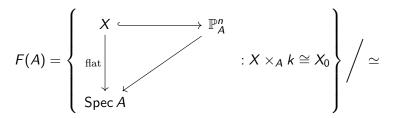
If $A'' \to A$ is surjective then $M^* \otimes_{A^*} A' \xrightarrow{\simeq} M'$.

Lemma

Assume $A'' \to A$ is surjective and has square-zero kernel J. Assume also M' and M'' are flat. Then M^* is flat over A^* and $M^* \otimes_{A^*} A'' \xrightarrow{\simeq} M''$.

Hilb is Pro-Representable

Let $X_0 \subset \mathbb{P}^n_k$ be a closed subscheme and let F be the corresponding Hilbert functor:



Proposition

The functor F is pro-representable.

Sledgehammer proof. Hilbert schemes are a thing!

The functor F is pro-representable.

(H0) $F(k) = \{X_0\}$ has one element.

(H1) Suppose we are given flat $X' \subset \mathbb{P}^n_{A'}$, $X'' \in \mathbb{P}^n_{A''}$, restricting to $X \subset \mathbb{P}^n_A$, where $A'' \to A$ is a small extension. Let X^* be X_0 with the sheaf of rings $\mathcal{O}_{X'} \times_{\mathcal{O}_X} \mathcal{O}_{X''}$. This is a closed subscheme of $\mathbb{P}^n_{A^*}$, where $A^* = A' \times_A A''$, is flat over A^* , and restricts to X', X'' respectively (by our earlier technical results).

(H3)
$$t_F \cong H^0(X, \mathcal{N}_{X_0/\mathbb{P}^n})$$
 is finite-dimensional.

→ < Ξ → <</p>

The functor F is pro-representable.

(H4) is a consequence of the following result (Hartshorne Theorem 6.2):

Theorem

Given an extension $X \subset \mathbb{P}^n_A$ of X_0 , the set of extensions of X in $\mathbb{P}^n_{A''}$ is a pseudotorsor under the action of the group $H^0(X_0, \mathcal{N}_{X_0/\mathbb{P}^n} \otimes_k J)$, where $J = \ker(A'' \to A)$.

Deformations of Schemes

Let X_0 be a scheme over k, and consider

$$F(A) = \left\{ \begin{array}{ccc} X \xleftarrow{i} X_{0} \\ (X,i): & \text{flat} \\ & \downarrow \\ & \text{Spec } A \xleftarrow{} \text{Spec } k \end{array} , i \otimes k: X_{0} \xrightarrow{\simeq} X \otimes_{A} k \right\} \Big/ \sim$$

Proposition

F admits a miniversal family if X_0 is projective, or X_0 is affine with isolated singularities.

Warning The functor F need not be pro-representable! Image: Comparison Theory Week 6

F admits a miniversal family if X_0 is projective, or X_0 is affine with isolated singularities.

- (H1) The argument is similar to that for the Hilbert functor.
- (H2) This follows from the fact that if A is a local Artin k-algebra and if $f : X_1 \to X_2$ is a morphism of finite-type flat A-schemes which is an isomorphism over the central fibre, then f is an isomorphism.

F admits a miniversal family if X_0 is projective, or X_0 is affine with isolated singularities.

(H3) We split into cases:

- if X = Spec B is affine, we have t_F = T¹(B/k, B), and this is supported in the singular locus of X. Hence dim_k t_F < ∞ if X additionally has isolated singularities.
- in general, there is an exact sequence

$$0 \rightarrow \underbrace{H^{1}(X_{0}, \mathcal{T}_{X_{0}})}_{\text{l.t. deformations}} \rightarrow \text{Def}(X_{0}/k, D) \rightarrow H^{0}(X_{0}, \mathcal{T}^{1}(X_{0}/k, \mathcal{O}_{X_{0}}))$$

As X_0 is projective, it follows that $t_F = \text{Def}(X_0/k, D)$ is of finite-dimension.

Theorem

With the same hypotheses as before, the functor F is pro-representable if and only if for each small extension $A' \rightarrow A$, and for each deformation X' over A' restricting to a deformation X over A, the natural map $\operatorname{Aut}(X'/X_0) \rightarrow \operatorname{Aut}(X/X_0)$ is surjective. In particular, if $H^0(X, \mathcal{T}_{X_0}) = 0$ then F is pro-representable.

Example

Let C be a non-singular curve of genus $g \ge 2$. Then $H^0(C, \mathcal{T}_C) = 0$ (as deg $\mathcal{T}_C < 0$), so the corresponding functor F is pro-representable. As the obstruction space $H^2(C, \mathcal{T}_C)$ vanishes by dimension reasons, this implies that the associated formal moduli space (coming from pro-representability) is smooth.

• • = • • = •

Let $X_0 = \{xy = 0\} \subset \mathbb{A}^2_k$, $X = \{xy - t = 0\} / \operatorname{Spec} k[t]/(t^2)$ and $X' = \{xy - t = 0\} / \operatorname{Spec} k[t]/(t^3)$. Automorphisms of X/X_0 all turn out to be of the form

$$x' = (1 + tf)x, \ y' = (1 + tg)y, \ f,g \in k[x,y].$$

If this lifts to an automorphism of X'/X_0 then

$$x' = (1 + tf)x + f't^2, y' = (1 + tg) + g't^2$$

for some $f', g' \in k[x, y]$, with x'y' - t = u(xy - t) for some unit $u \in k[x, y, t]/(t^3)$. A calculation shows that this can only happen if $f + g \in (x, y)k[x, y]$. Taking f = 1, g = 0, we see that the associated automorphism doesn't lift, so F is not pro-representable.