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Abstract

In this expository paper we introduce the concept of an n-category, an extension of ordinary
category theory where we allow for morphisms between other morphisms, and more generally
allow for k-morphisms between other (k − 1)-morphisms. We give two constructions; in the first
part we introduce strict n-categories, largely following the construction as presented in [Lei04]
using globular sets. In the second part, we give a definition of a weak n-category (one of many
competing definitions that exist in the literature) first given in [BD98], based off using opetopic
sets. We also present various examples showing how n-categories naturally arise in various branches
of mathematics. This document is the author’s broadening essay for the Oxford Part C course C2.7
Category Theory.
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1 Introduction

An ordinary category consists of a collection of objects together with a collection of morphisms be-
tween the objects, with composition of morphisms governed by a couple of axioms. Informally, a
2-category adds in a collection of “2-morphisms” between the morphisms of the underlying category
(or “1-category”), a 3-category adds in a collection of “3-morphisms” between the 2-morphisms of the
underlying 2-category, and so on, with the idea that n-morphisms allow us to make sense of the of
two (n − 1)-morphisms being isomorphic in an analogous way in how morphisms allow us to make
sense of two objects of a category being isomorphic (informally, “essentially the same”). This is best
illustrated with a few examples.

Example 1.1. Let Cat be the category of small categories; the objects of Cat consist of categories
C such that ob(C) and hom(C) are both sets, and the morphisms of Cat consist of functors between
categories. Cat is naturally a (strict) 2-category. We can compose the 2-morphisms in two different
directions, either along the objects (corresponding to horizontal composition of natural transforma-
tions) or along the morphisms (corresponding to vertical composition of natural transformations).
In this context, an isomorphism between 1-morphisms is exactly the same as a natural isomorphism
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between functors. The term strict here refers to the fact that vertical and horizontal compositions are
associative, for each functor F the corresponding identity natural transformation 1F is an identity for
both horizontal and vertical composition, and the two compositions are compatible in the following
sense. Consider the following diagram in Cat:

C

w�φw�φ′ D

w�ηw�η′ E

F

F ′′

F ′

G

G′′

G′ (1.1)

Then, if φ ◦ φ′ denotes vertical composition and φ ∗ η denotes horizontal composition, we have the
interchange law

(φ ◦ φ′) ∗ (η · η′) = (φ ∗ η) ◦ (φ′ ∗ η′),

which means that (1.1) defines an unambiguous composite 2-morphism.

�

Example 1.2. Let X be a topological space. We can form the fundamental ω-groupoid Πω(X) of
X as follows. The objects of Πω(X) are the points of X. The 1-morphisms of Πω(X) are paths
I = [0, 1] → X, the 2-morphisms are homotopies of paths relative to end-points, the 3-morphisms
are homotopies of homotopies of paths relative to end-points, and inductively the n-morphisms are
homotopies between (n−1)-morphisms relative to end-points. Composition is given by pasting together
paths and homotopies using double-speed reparametrisations. For example, the composition of paths
u : x→ y and v : y → z is the path

(u ∗ v)(t) =

{
u(2t) 0 ≤ t ≤ 1

2 ,

v(2t− 1) 1
2 ≤ t ≤ 1.

As defined, composition in Πω(X) is not associative nor unital; rather composition is only associative
and unital up to homotopy. In this sense Πω(X) is a weak ω-category.1 Were we to terminate our con-
struction after n stages, we instead obtain a weak n-category Πn(X), the fundamental n-groupoid of X.

One can play a similar game to define a weak ω-category structure on the category Top of topologi-
cal spaces, with 1-morphisms being continuous maps between topological spaces, 2-morphisms being
homotopies between continuous maps, 3-morphisms being homotopies of homotopies, and so on.

�

Example 1.3. We may define a weak ω-category of cobordisms, denoted Cbd, as follows. The
objects of Cbd are 0-manifolds,2 and for n ≥ 1 the n-morphisms of Cbd consist of all n-manifolds
with corners (we also allow the empty set). Composition is defined by gluing manifolds. For example,
the cobordism

1ω denotes the first infinite ordinal.
2Here “manifold” means a compact, smooth, oriented manifold.
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corresponds to the following diagram:

L L

M ′

M

N

Here L is the empty set, M is the disjoint union of the two copies of S1 on the left hand side, M ′ is
the copy of S1 on the right hand side, and N is the entire “pair of pants”.

The fact that Cbd is a weak n-category is due to there being no natural way to impose associativity
on the nose on the operation of gluing together manifolds.

�

2 Strict n-Categories

Strict n-categories, whilst encountered less often than their weak counterparts, are easier (and less
ambiguous) to define. Following [Lei04, Sections 1.3-1.4], we will present two equivalent constructions,
the first using enrichment of monoidal categories, and the second using globular sets.

2.1 Enriching Monoidal Categories

Throughout we fix a monoidal category (V,⊗, I).

Definition 2.1. A V-graph X is a set X0 together with a family (X(x, y))x,y∈X0 of objects of V. A
map of V-graphs f : X → Y consists of a function f0 : X → Y together with maps

fx,y : X(x, y)→ Y (f0(x), f0(y))

for all x, y ∈ X0. The category of V-graphs is denoted V-Gph.

Example 2.2. A Set-graph can be viewed as an ordinary directed graph, where the set X(x, y) is
viewed as labelling the set of directed edges from the vertex labelled x to the vertex labelled y.

�
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Definition 2.3. A V-enriched category consists of a V-graph A together with families of maps(
A(b, c)⊗A(a, b)

◦a,b,c→ A(a, c)
)
a,b,c∈A0

,
(
I
ia→ A(a, a)

)
a∈A0

in V, such that for all a, b, c, d ∈ A0 the following diagrams commute:

(A(c, d)⊗A(b, c))⊗A(a, b) A(c, d)⊗ (A(b, c)⊗A(a, b))

A(b, d)⊗A(a, b) A(a, d) A(c, d)⊗A(a, c)

◦b,c,d⊗idA(a,b) idA(c,d)⊗◦a,b,c

◦a,b,d ◦a,c,d

(2.1)

and

A(b, b)⊗A(a, b) A(a, b) A(a, b)⊗A(a, a)

I ⊗A(a, b) A(a, b)⊗ I

◦a,b,b ◦a,a,b

ib⊗idA(a,b) idA(a,b)⊗ia (2.2)

A V-enriched functor F : A→ B is given by a map of the underlying V-graphs which commutes with
the structure maps ia and ◦a,b,c. The category of V-enriched categories is denotes V-Cat.

Example 2.4. A (Set,×, ∗)-enriched category is an ordinary (small) category. An (Ab,⊗Z,Z)-
enriched category is a pre-additive category (in the sense of homological algebra). A Top-enriched
category is the same as an ordinary category whose hom-sets are all topological spaces.

�

We state the following useful proposition. Though we omit the proof, the proposition follows as a
straightforward consequence of the definitions.

Proposition 2.5. If V admits finite products then so does the category V-Cat.

2.2 Definition of a Strict n-Category

Definition 2.6. [Lei04, Definition 1.4.1] We define a sequence (Str-n-Cat)n∈N of categories induc-
tively by defining
Str-0-Cat = Set and Str-(n+ 1)-Cat = (Str-n-Cat)-Cat.

A strict n-category is an object of Str-n-Cat, and a strict n-functor is a map in Str-n-Cat.

Remark. By Proposition 2.5 each Str-n-Cat is monoidal, so our definition makes sense.

Example 2.7. Taking n = 2 and unwinding the definition, a strict 2-category consists of a set A0, a
category A(a, b) for each a, b ∈ A0, an identity object ia of A(a, a) for each a ∈ A0 and composition
functors ◦a,b,c for all a, b, c ∈ A0, all obeying the associativity and identity laws (2.1) and (2.2).

�
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Example 2.8. Let A0 denote the class of topological spaces, and for spaces X and Y let A(X,Y )
denote the category whose objects are continuous maps X → Y and whose morphisms are homotopy
classes of homotopies. This forms a (large) strict 2-category; the identity objects 1X ∈ A(X,X) and
the composition functors

A(Y,Z)×A(X,Y )→ A(X,Z)

are the obvious ones.

�

2.3 Strict n-Categories via Globular Sets

Though Definition 2.6 is reasonably concise, it is not at all explicit. Informally, a category can be
thought of a directed graph with extra structure. Morally speaking then, a strict n-category ought
to correspond to an n-dimensional analogue of a directed graph; this motivates the definition of a
globular set.

Definition 2.9. Let n ∈ N. Let Gn be the category generated by objects and arrows

n n− 1 · · · 0

σn

τn

σn−1

τn−1

σ1

τ1

subject to the relations

σm ◦ σm−1 = τm ◦ σm−1, σm ◦ τm−1 = τm ◦ τm−1, m ∈ {2, . . . ,m}.

An n-globular set X is then a Set-valued presheaf on Gop
m . Elements of X(m) are called m-cells, and

0-cells are called objects.

Remark. When drawing n-globular sets, one thinks of the elements of X(m) as labelling m-dimensional
discs.3 We will denote s = X(σ) : X(m) → X(m − 1) and t = X(τ) : X(m) → X(m − 1), and call
s(x) the source of x and t(x) the target of x.

Example 2.10. Let x ∈ X(3) be a 3-cell of a globular set. Then s(x) = α and t(x) = β are 2-cells
with common source f ∈ X(1) and common target g ∈ X(1); moreover f and g have common source
object a and common target object b. The 3-cell x corresponds to the following diagram:

�

Given an n-globular set X and 0 ≤ p ≤ m ≤ n, we denote

X(m)×X(p) X(m) = {(x, y) ∈ X(m)×X(m) : sm−p(x) = tm−p(y)}.

The set X(m)×X(p)X(m) is thought of as the set of all pairs of m-cells with the potential to be joined
along some p-cell.

We now formulate a second definition of a strict n-category.

3Viewed in this way, an n-globular set is realised as an n-dimensional CW-complex, which explains the topological
nomenclature.

5



Definition 2.11. [Lei04, Definition 1.4.8] Let n ∈ N. A strict n-category is an n-globular set A
equipped with the following structure morphisms:

� For each 0 ≤ p < m ≤ n we have a composition map ◦p : A(m)×A(m)→ A(m).

� For each 0 ≤ p < n we have a map i : A(p)→ A(p+ 1), x 7→ 1x.

These maps satisfy the following axioms:

1. For x, y ∈ A(m) we have s(x ◦m−1 y) = s(y), t(x ◦m−1 y) = t(x), and for p ≤ m − 2 we have
s(x ◦p y) = s(x) ◦p s(y), t(x ◦p y) = t(x) ◦p t(y).

2. If p < n then s(1x) = t(1x) = x.

3. If (x, y), (y, z) ∈ A(m)×A(p) A(m) then

(x ◦p y) ◦p z = x ◦p (y ◦p z).

4. If 0 ≤ p < m ≤ n and x ∈ A(m) then

im−p(tm−p(x)) ◦p x = x ◦p im−p(sm−p(x)) = x.

5. (Binary Interchange) If 0 ≤ q < p < m ≤ n and x, x′, y, y′ ∈ A(m) with

(y′, y), (x′, x) ∈ A(m)×A(p) A(m), (y′, x′), (y, x) ∈ A(m)×A(q) A(m)

then

(y′ ◦p y) ◦q (x′ ◦ x) = (y′ ◦ x′) ◦p (y ◦q x).

6. (Nullary Interchange) If 0 ≤ q < p < n and (x, y) ∈ A(p)×A(q) A(p) then

1x ◦q 1y = 1x◦qy.

If A and B are strict n-categories then a strict n-functor is a map F : A → B of the underlying
globular sets which commutes with compositions and identities. The m-cells of a strict n-category A
are also referred to as the m-morphisms of A, and the 0-cells are referred to as the objects of A.

Proposition 2.12. [Lei04, Proposition 1.4.9] The definitions of Str-n-Cat in Definitions 2.6 and
2.11 are equivalent.

Sketch proof. For each n ∈ N we define the category n-Gph of n-graphs by setting 0-Gph = Set
and (n + 1)-Gph = (n-Gph)-Gph. Then an (n + 1)-globular set X corresponds to the graph
(X(a, b))a,b∈X(0) of n-globular sets, where X(a, b) is the n-globular set given by

X(a, b)(m) = {x ∈ X(m+ 1) : sm+1(x) = a, tm+1(x) = b}.

By induction on n it follows that n-Gph ' Fun(Gop
n ,Set), so the underlying graph structures are

equivalent.

We now compare the respective structure morphisms. Suppose A is a strict (n + 1)-category in the
sense of Definition 2.11. Then for any a, b ∈ A(0) the maps ◦p and i : A(p) → A(p + 1), taken over
0 ≤ p < n, give a strict n-category structure on A(a, b), and hence (A(a, b))a,b∈A(0) is a graph of strict
n-categories. We can use the maps ◦0 and i : A(0)→ A(1) to give this graph the structure of a category
enriched over Str-n-Cat. With a little more work, one can show that every (Str-n-Cat)-enriched
category arises in this way, which by induction is enough to establish the proposition.
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Remark. Either Definition 2.6 or 2.11 can be used to define the category Str-ω-Cat of strict ω-
categories, by omitting the upper limit of n.

Example 2.13. Consider again Example 1.1. In the terminology of Definition 2.11, Cat is a strict
2-category with categories as 0-cells, functors as 1-cells and natural transformations as 2-cells. The
composition ◦1 on 2-cells corresponds to horizontal composition of natural transformations and ◦0
corresponds to vertical composition.

�

Example 2.14. Let C = Str-2-Cat. The objects of C are strict 2-categories and the 1-morphisms
are 2-functors between strict 2-categories. The 2-morphisms of C are given by (strict) 2-natural
transformations η : F ⇒ G between 2-functors. η sends objects of A to 1-morphisms in B and
morphisms in A to 2-morphisms in B, and satisfies the following commutativity condition for every
2-morphism α : f ⇒ g in A:

F (x) F (y)

x y

G(x) G(y)

F (f)

G(f)

η(f)

F (g)

G(g)

F

G

f

g

η(x) η(y)ηα

F (α)

G(α)

η(g)

In much the same way how Cat is naturally a strict 2-category, C is naturally a strict 3-category,
whose 3-morphisms consist of modifications µ : η V ξ between 2-natural transformations with the
same source and target. Here µ sends each object of A to a 2-morphism µ(x) : η(x)⇒ ξ(x), such that
for every 1-morphism f : x→ y in A the diagram

η(x) ξ(x)

η(y) ξ(y)

µ(x)

η(f)

µ(y)

ξ(f)

commutes. More generally, the category Str-n-Cat is naturally a strict (n + 1)-category for every
n ∈ N.

�

3 Weak n-Categories

Unlike with their strict counterparts, there are several proposed definitions in the literature of weak
n-categories, not all of which are known to be equivalent to each other. A good overview of many of
the proposed definitions can be found in Leinster’s paper [Lei01a], and a more up-to-date list can be
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found on nLab.4 We will give one construction due to Baez and Dolan [BD98] (see also [Bae97], which
is an exposition based on [BD98]), using the algebra of opetopes. This gives a more flexible model of
n-categories compared to the previous section; for example it allows us to consider diagrams of the
following form:

• •

• •

(3)

The model also allows for composites to be unique only up to some form of equivalence, where the
equivalence is given by a universal property. For a simple example explaining why such a notion is
useful, consider sets X,Y and Z. In terms of the set-theoretic (von Neumann) description of Cartesian
products, we have

(X × Y )× Z 6= X × (Y × Z),

and so the Cartesian product× is not naturally a product operation on Set. However, both (X×Y )×Z
and X × (Y × Z) satisfy the universal property of the (category-theoretic) product of the sets X,Y
and Z, and so should be considered as being “the same”.

3.1 Operads and Opetopes

An operad is a category-theoretic gadget used to describe k-ary operations and their compositions,
generalising many natural associativity properties found in many mathematical structures. A good
introduction to the theory of operads can be found in [Lei04]; for our purposes we only need the basic
definitions.

Definition 3.1. Let S be a set. An S-operad O consists of the following data:

1. For any elements x1, . . . , xk, x
′ ∈ S we have a set O(x1, . . . , xk;x

′), whose elements are known
as operations.

2. For any f ∈ O(x1, . . . , xk;x
′) and any collection of elements gj ∈ O(xj1, . . . , xj,ij ;xj), j =

1, . . . , k, there is an element

f ◦ (g1, . . . , gk) ∈ O(x11, . . . , x1,i1 , . . . , xk,ik ;x′).

3. For all x ∈ S there is an element 1x ∈ O(x;x).

4. For any permutation σ ∈ Sk = Sym({1, . . . , k}) there is a map

σ : O(x1, . . . , xk;x
′)→ O(xσ(1), . . . , xσ(k);x

′), f 7→ fσ.

The above data is required to satisfy the following conditions:

(a) We have

f ◦ (g1 ◦ (h11, . . . , h1,i1), . . . , gk ◦ (hk,1, . . . , hk,ik)) = (f ◦ (g1, . . . , gk)) ◦ (h11, . . . , h1,i1 , . . . , hk,ik)

whenever both sides make sense.
4See https://ncatlab.org/nlab/show/n-category.
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(b) For any f ∈ O(x1, . . . , xk;x
′) we have

f = 1x′ ◦ f = f ◦ (1x1 , . . . , 1xk).

(c) For any f ∈ O(x1, . . . , xk;x
′) and any σ, σ′ ∈ Sk we have f(σσ′) = (fσ)σ′.

(d) For any f ∈ O(x1, . . . , xk;x
′), σ ∈ Sk and any collection of elements gj ∈ O(xj1, . . . , xj,ij ;xj),

j = 1, . . . , k, we have

(fσ) ◦ (gσ(1), . . . , gσ(k)) = (f ◦ (g1, . . . , gk))ρ(σ),

where ρ is the obvious homomorphism Sk → Si1+···+ik .

(e) For any f ∈ O(x1, . . . , xk;x
′), any collection of elements gj ∈ O(xj1, . . . , xj,ij ;xj), j = 1, . . . , k,

and any collection of permutations σj ∈ Sij , j = 1, . . . , k, we have

f ◦ (g1σ1, . . . , gkσk) = (f ◦ (g1, . . . , gk))ρ
′(σ1, . . . , σk),

where ρ′ is the obvious homomorphism
∏k
j=1 Sij → Si1+···+ik .

The set S is referred to as the set of types of O. We denote the set of all operations of O by elt(O).

Operations in an operad are best visualised as trees, such as in the following diagram:

x1 x2 x3 · · · xk

• f

x′

Figure 1: An operation f ∈ O(x1, . . . , xk;x
′).

The operation f ◦ (g1, . . . , gk) is visualised in terms of trees as follows:

g1 • g2 • • g3

• f

Figure 2: A composition f ◦ (g1, g2, g3).
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The axioms governing operads can be summarised by saying that identity operations act as identities
for composition, composition is compatible with permuting the arguments of an operation, and that
composition is “associative” (in the expected sense).

Similarly to how abstract groups are best understood in terms of their representations, operads O are
best understood in terms of their corresponding O-algebras, where the operations of the operad are
represented as concrete functions.

Definition 3.2. Let O be an S-operad. An O-algebra A consists of the following data:

1. For each x ∈ S we have a set A(x).

2. For each operation f ∈ O(x1, . . . , xk;x
′) there is a function α(f) :

∏k
j=1A(xj)→ A(x′).

The above data is required to satisfy the following conditions:

(a) We have

α(f ◦ (g1, . . . , gk)) = α(f) ◦ (α(g1)× · · · × α(gk))

whenever both sides make sense.

(b) For all x ∈ S we have α(1x) = idA(x).

(c) For any f ∈ O(x1, . . . , xk;x
′) and any σ ∈ Sk we have

α(fσ) = α(f)σ,

where σ ∈ Sk acts on the function α(f) on the right by permuting its arguments.

Opetopes were first introduced in [BD98] as part of the construction of weak n-categories given in that
paper. In order to define opetopes, we need the following result.

Proposition 3.3. Let O be an S-operad. Then there exists a unique elt(O)-operad O+, called the slice
operad of O, such that an algebra of O+ is precisely an operad over O, that is an S-operad equipped
with an operad homomorphism to O.

Proof. See Section 3 of [BD98].

It is possible to give a more explicit description of O+, again due to Baez and Dolan:

� The types of O+ are the operations of O.

� The operations of O+ are the reduction laws of O, which are equations stating that some com-
posite of operations in O (possibly with the arguments permuted) equals some other operation.

� The reduction laws of O+ correspond to all possible ways of combining reduction laws of O to
get other reduction laws of O.

We can also iterate the slice construction n-times to obtain the operad On+. For convenience, we
denote O0+ = O.

Definition 3.4. [Bae97, Definition 4] [BD98, Definition 22] Let O be an S-operad. An n-dimensional
O-opetope is a type of On+; equivalently an O-opetope is an operation of O(n−1)+ in the case n ≥ 1.

We will only need to concern ourselves with one particular family of O-opetopes, namely the family
that arises when O = I is the simplest possible operad.
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Definition 3.5. [Bae97, Definition 5] The initial untyped operad I is the operad whose set of types
S = {x} consists of a single element, whose set of operations consists only of the unital operation
1x ∈ O(x;x), and consisting of all possible reduction laws.

An n-dimensional opetope is defined to be an n-dimensional I-opetope. A morphism between opetopes
is given by a face inclusion of their corresponding directed simplicial realisations (see the following
example). This defines a category denoted Ope.

Example 3.6. We list some examples of n-dimensional opetopes for n ≤ 3:

� There is only one 0-dimensional opetope, the set {x}, which we draw as •.

� There is only one 1-dimensional opetope, corresponding to the single operation of I. We draw
this as follows:

• •1

� The 2-dimensional opetopes are the types of I++, which correspond to the reduction laws of I.
There are k! distinct 2-dimensional opetopes with k ≥ 0 infaces and one outface, since Sk acts
freely on the set of k-ary operations of I+. Some examples of distinct 2-dimensional opetopes
are given below:

• • • •

• •

• • • • • •
1

1

a1 a2

1

a2 a1

1 1

a1

a2

a3

� The 3-dimensional opetopes are the types of I+++, which describe all possible ways of composing
2-dimensional opetopes to get another 2-dimensional opetope. An example of a 3-dimensional
opetope is given by the following diagram:

• •

• •

(3)

Geometrically, the diagram depicts a 3-dimensional object whose front consists of two 3-sided,
2-dimensional “infaces” and one 4-sided, 2-dimensional “outface”. The double arrows lie on the
infaces whereas the arrow labelled “(3)” points from the union of the two infaces to the outface.

�

In general, an n-dimensional opetope has any number of (n−1)-dimensional infaces, glued together in
a “tree-like” fashion, together with a single (n − 1)-dimensional outface. The opetopes of dimension
n+ 1 describe all possible compositions of n-dimensional opetopes.
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3.2 Weak n-Categories as Opetopic Sets

According to the construction of Baez and Dolan, a weak n-category is an opetopic set satisfying
certain properties.

Definition 3.7. An opetopic set S is a Set-valued presheaf on the category Ope. If s is an opetope,
we call S(s) the set of cells of S of shape s. If σ ∈ S(s), τ ∈ S(t) are cells, then we call σ a face of τ
if there exists a morphism f : s→ t in Ope such that σ = S(f)(τ).

If j ≥ 1, we can represent a j-dimensional cell x of an opetopic set via the diagram

(a1, . . . , ak) a′.x

Here a1, . . . , ak are the infaces of x and a′ is the outface of x; these are all cells of dimension (j − 1).
If instead

(a1, . . . , ak) a′?

is a configuration of (j − 1)-cells, satisfying all of the boundary relations satisfied by the boundary of
a cell, but with the corresponding j-cell missing, we call the configuration a j-dimensional frame. A
niche is a frame whose outface is missing:

(a1, . . . , ak) ??

A punctured niche is a niche that is also missing one inface:

(a1, . . . , ai−1, ?, ai+1 . . . , ak) ??

If one of these configurations (frames, niches or punctured niches) can be extended to a cell x, we call
x an occupant of that configuration. Occupants of the same frame are called occupant-competitors,
and occupants of the same niche are called niche-competitors.

Example 3.8. Consider the following configuration of cells of an opetopic-set S:

c

b d

a e

f

g h

k

?

?

This is an example of a 2-dimensional niche, with corresponding cell-diagram

(f, g, h, k) ??
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We now define the notion of universal niche-occupants and balanced punctured niches. Whilst their
definitions as stated call upon each other and themselves recursively, the reader can check that there
is no logical circularity.

Definition 3.9. Fix n ∈ N. A j-dimensional niche-occupant

(c1, . . . , ck) du

is said to be n-universal if any of the following conditions hold:

� j > n and u is the only occupant if its niche.

� j ≤ n and for every frame-competitor d′ of d, the (j + 1)-dimensional punctured niches

((c1, . . . , ck)
u→ d, d

?→ d′) (d
?→ d′, (c1, . . . , ck)

u→ d)

(c1, . . . , ck)
?→ d′ (c1, . . . , ck)

?→ d′

? ?

are n-balanced.

Definition 3.10. Fix n ∈ N. An m-dimensional punctured niche

(a1, . . . , ai−1, ?, ai+1 . . . , ak) ??

is said to be n-balanced if any of the following conditions hold:

� We have m > n+ 1.

� The following conditions both hold:

1. Any extension

(a1, . . . , ai−1, ?, ai+1 . . . , ak) b?

extends further to

(a1, . . . , ai−1, ai, ai+1 . . . , ak) bu

with u n-universal in its niche.5

2. For any extension

5This is best thought of as a generalisation of the notion of what it means for a functor to be essentially surjective.
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(a1, . . . , ai−1, ai, ai+1 . . . , ak) bu

with u n-universal in its niche, and for any frame-competitor a′i of ai, the (m + 1)-
dimensional punctured niches

((a1, . . . , ai−1, ai, ai+1 . . . , ak)
u→ b, a′i

?→ ai) (a′i
?→ ai, (a1, . . . , ai−1, ai, ai+1 . . . , ak)

u→ b)

(a1, . . . , ai−1, a
′
i, ai+1 . . . , ak)

?→ b (a1, . . . , ai−1, a
′
i, ai+1 . . . , ak)

?→ b

? ?

are n-balanced.6

Informally, a j-dimensional niche-occupant is n-universal if all of its niche-competitors uniquely factor
through it, up to equivalence; this equivalence is made precise in [BD98, Proposition 55]. Universality
allows us to define composition in opetopic sets.

Definition 3.11. If

(a1, . . . , ak) bu

is an n-universal occupant of a j-dimensional niche, we say that b is a composite of (a1, . . . , ak).

In Baez and Dolan’s model of weak n-categories, the j-cells with j ≤ n play the role of j-morphisms,
whereas the j-cells with j > n give equations, equations between equations and so on. Universal
occupants of a given niche are best understood as giving a “composition procedure” for that niche,
with the outface corresponding to the composite of the infaces of the niche. Note that for j ≤ n
there are possibly multiple n-universal occupants of a j-dimensional niche, though any n-universal
occupant will be unique up to equivalence. However, as part of the definition of a weak n-category, for
every j > n, every j-dimensional niche will have a unique universal occupant (which is automatically
universal). We may then think of the universal occupant of a j-dimensional niche with j > n as an
equation stating that the composite of the equations corresponding to the infaces equals the equation
corresponding to the outface.

We now arrive at Baez and Dolan’s definition of a weak n-category.

Definition 3.12. [Bae97, Definition 9] [BD98, Definition 41] A weak n-category is an opetopic set
such that every niche has an n-universal occupant, and composites of n-universal cells are n-universal.

Example 3.13. [BD98, Example 42] Let us see how the definition works in the case n = 1. Let C
be a weak 1-category. Let C(0) (resp. C(1)) denote the image under the presheaf C of the unique
0-dimensional (resp. 1-dimensional) opetope. In other words, C(0) is the set of all 0-cells and C(1) is
the set of all 1-cells. Given 0-cells x and y, we denote the set of all frame-occupants of the frame

x y?

6This generalises the notion of what it means for a functor to be fully faithful.
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as hom(x, y). The 2-dimensional niche

x x
?

?

has a unique occupant, which defines 1x ∈ hom(x, x):

x x
1x

u

If z is a third 0-cell, the 2-dimensional niche

(x
f→ y, y

g→ z)

x z
?

?

has a unique occupant, which defines f ◦ g ∈ hom(x, z):

(x
f→ y, y

g→ z)

x z
f◦g

u

One can check using the 3-cells of C that the operations x 7→ 1x and ◦ obey the usual axioms governing
morphisms in a category, and so we have a (small) category C with ob(C) = C(0) and hom-sets
hom(x, y).

�
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4 Conclusion and Further Reading

As mentioned in the previous section, in the literature there are several competing definitions of weak
n-categories, and it not settled on which definition is the “correct” one. The classical definition of a
weak 2-category, known as a bicategory, first appeared in a paper of Bénabou [Ben67]. Though we
have not given a definition thus far (as to define this notion properly requires more technical work),
it is possible to introduce functors between weak n-categories (in the sense of Baez and Dolan) as
being a map φ : C → C′ between the underlying opetopic sets, sending each cell x of C to a cell φ(x)
of C′ of the same shape, with φ compatible with all face inclusions of the faces of the opetope corre-
sponding to x. After modifying some of the details of the Baez-Dolan construction, in [Che03] Cheng
proved that in the case n = 2 the Baez-Dolan-Cheng construction of weak n-categories, together with
functors between weak n-categories, agrees with the category of bicategories together with lax functors.

Alternative opetopic-type constructions have been given by the work of Hermida-Makkai-Power [HMP00]
and Leinster [Lei01b]; the Hermida-Makkai-Power approach also covers the case when n = ω. Compar-
isons between these approaches are discussed in the papers [Che04a] and [Che04b]. As the reader may
have noted, very little has been discussed in the way of other approached to n-categories, including
the advantages and limitations the Baez-Dolan model has compared to other competing definitions.
We leave it to the interested reader to make this journey for themselves. As noted earlier, the survey
paper [Lei01a] is an excellent place to start for beginning to understand and compare the myriad
definitions that currently exist in the literature.
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