THE QUOTIENT SPACE $\mathcal{H} / P S L(2, \mathbb{Z})$

GEORGE COOPER

Notation. Let $\mathcal{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ be the complex upper half-plane. Let $\Gamma=$ $\operatorname{PSL}(2, \mathbb{Z})$ act on \mathcal{H} by Möbius transformations: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot z=\frac{a z+b}{c z+d}$.
\mathcal{H} / Γ as a Riemann Surface. In this problem sheet you studied \mathcal{H} / Γ as a topological space. Ideally, we would like to give \mathcal{H} / Γ a complex structure inherited from the complex structure of \mathcal{H}. Away from points in the orbits of i and $e^{\pi \mathrm{i} / 3}$, the quotient map $q: \mathcal{H} \rightarrow$ \mathcal{H} / Γ is a local homeomorphism, so we may use the complex coordinate z on \mathcal{H} to give local complex coordinates on $\mathcal{H} / \Gamma-\Gamma \cdot\left\{\mathrm{i}, e^{\pi \mathrm{i} / 3}\right\}$. However, at points in the orbits of i and $e^{\mathrm{i} / 3}$, the quotient map q is no-longer a local homeomorphism (near i, q is a ramified 2:1 cover; near $e^{\pi i / 3}, q$ is a ramified $3: 1$ cover). This means that we can't use the coordinate z to define local complex coordinates at the corresponding points of $\mathcal{H} / \Gamma \prod^{\top}$
What does turn out to work instead are the local coordinates $z^{1 / 2}$ and $z^{1 / 3}$ respectively. Suppose τ is one of the points i or $e^{\pi \mathrm{i} / 3}$. The matrix $\delta_{\tau}=\left(\begin{array}{cc}1 & -\tau \\ 1 & -\bar{\tau}\end{array}\right)$ sends τ to 0 and $\bar{\tau}$ to ∞. The (conjugate of) the stabiliser of τ acts by Möbius transformations on $\mathbb{C}_{\infty}=\mathbb{C P}^{1}$ with fixed points 0 and ∞, so must consist of maps of the form $z \mapsto a_{\tau} z$, where a_{τ} is a second or third root of unity, as appropriate. Let ψ_{τ} be the map $\rho_{\tau} \circ \delta_{\tau}$, where $\rho_{\tau}: \mathbb{C} \rightarrow \mathbb{C}$ is the $\operatorname{map} z \mapsto z^{2}$ or $z \mapsto z^{3}$ as appropriate. Then for an appropriate open neighbourhood U of τ in \bar{D}, the closure of the fundamental domain (see Figure 1), the image V of U under ψ_{τ} is a small open disc in \mathbb{C} centred about 0 , the image $q(U)$ is an open neighbourhood of $q(\tau)$ in \mathcal{H} / Γ, and there exists a diagram of the following form:

We may then use the homeomorphism $V \cong q(U)$ to define a complex coordinate on the open subset $q(U) \subset \mathcal{H} / \Gamma$. One may then check that these local coordinates define a

[^0]

Figure 1. Constructing a local complex coordinate at the point $q(\mathrm{i}) \in \mathcal{H} / \Gamma$.
holomorphic atlas on \mathcal{H} / Γ, making \mathcal{H} / Γ into a Riemann surface which is biholomorphic to \mathbb{C} (see DS05, Section 2.2] for more details).

In fact, there is more to this story. It turns out that to any finite-index subgroup Γ^{\prime} of $S L(2, \mathbb{Z})$, there is an associated compact Riemann surface $X_{\Gamma^{\prime}}$ (known as the modular curve associated to Γ^{\prime}) which contains the quotient $\mathcal{H} / \Gamma^{\prime}$ as a dense open subset. For example, we have $X_{S L(2, \mathbb{Z})} \cong \mathbb{C P}^{1}$, the Riemann sphere. The surfaces $X_{\Gamma^{\prime}}$ play a key role in the theory of modular forms; indeed, modular forms $f \in M_{k}\left(\Gamma^{\prime}\right)$ of level Γ^{\prime} and weight k are precisely the holomorphic differential k-forms on $X_{\Gamma^{\prime}}$ (the holomorphic sections of the line bundle $\omega_{X_{\Gamma^{\prime}}}^{\otimes k}$):

$$
M_{k}\left(\Gamma^{\prime}\right)=H^{0}\left(X_{\Gamma^{\prime}}, \omega_{X_{\Gamma^{\prime}}}^{\otimes k}\right)
$$

It is possible to compute the genus of $X_{\Gamma^{\prime}}$, using the methods you've seen earlier in this course; that is, by taking a cellular decomposition of the closure of a fundamental domain and then computing the Euler characteristic. The Riemann-Roch theorem (which you'll come across if you go on to take B3.3 Algebraic Curves) can then be used to compute the dimension of the vector space $M_{k}\left(\Gamma^{\prime}\right)$, all without knowing any explicit modular forms beforehand! More on these ideas can be found in the course C3.6 Modular Forms.

The j-invariant, Briefly. We end by discussing the following remarkable function. Recall that if $\tau \in \mathcal{H}$ has associated Weierstrass \wp-function $\wp=\wp_{\tau}$, then we have the relation

$$
\left(\wp^{\prime}\right)^{2}=4 \wp^{2}-g_{2}(\tau) \wp-g_{3}(\tau)
$$

where

$$
g_{2}(\tau)=60 \sum_{(m, n) \neq(0,0)} \frac{1}{(m+n \tau)^{4}}, \quad g_{3}(\tau)=140 \sum_{(m, n) \neq(0,0)} \frac{1}{(m+n \tau)^{6}}
$$

Definition 1. The j-invariant is defined by $\left.{ }^{2}\right]^{2} j(\tau)=1728 \frac{g_{2}(\tau)^{3}}{g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}}$.
The j-invariant is a holomorphic map $j: \mathcal{H} \rightarrow \mathbb{C}$, which is $S L(2, \mathbb{Z})$-invariant. It turns out that j descends to give a (set-theoretic) bijection $\mathcal{H} / \Gamma \rightarrow \mathbb{C}$. In other words, the complex numbers \mathbb{C} classify all possible genus 1 Riemann surfaces via the map j. Even more strikingly, we have the following theorem.

Theorem 2. The j-invariant extends to give a biholomorphism of Riemann surfaces $X_{S L(2, \mathbb{Z})} \stackrel{\simeq}{\leftrightarrows} \mathbb{C P}^{1}$.

This result is proved by checking that j is holomorphic in local coordinates on $X_{S L(2, \mathbb{Z})}$ and $\mathbb{C P}^{1}$ respectively, then appealing to the result of Question 1 of this sheet, which states that a degree 1 map between compact connected Riemann surfaces is an isomorphism. For more on the basic properties of the j-invariant, see [DS05, Section 1.4].

In modern parlance, the j-invariant identifies $\mathbb{C P}^{1}$ with $\bar{M}_{1,1}$, the coarse moduli space of genus 1 stable curves with one marked point.

References

[DS05] Fred Diamond and Jerry Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, vol. 228, Springer, 2005.

[^1][^2]
[^0]: ${ }^{1}$ This is suggesting that the quotient should really be viewed as the orbifold $[\mathcal{H} / \Gamma]$ - this latter space "remembers" that points in the orbits of i and $e^{\pi i / 3}$ have non-trivial stabilisers. In fact $[\mathcal{H} / \Gamma]$ is non-singular as a complex orbifold, without needing to make any funny choices of coordinates.

[^1]: Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
 Email address: cooperg@maths.ox.ac.uk

[^2]: ${ }^{2}$ The coefficient 1728 is there to normalise the Laurent series expansion $j(\tau)=\frac{1}{q}+\sum_{n=0}^{\infty} a_{n} q^{n}$, where $q=e^{2 \pi \mathrm{i} \tau}$.

