THE QUOTIENT SPACE $\mathcal{H}/PSL(2,\mathbb{Z})$

GEORGE COOPER

Notation. Let $\mathcal{H} = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$ be the complex upper half-plane. Let $\Gamma = PSL(2,\mathbb{Z})$ act on \mathcal{H} by Möbius transformations: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$.

 \mathcal{H}/Γ as a Riemann Surface. In this problem sheet you studied \mathcal{H}/Γ as a topological space. Ideally, we would like to give \mathcal{H}/Γ a complex structure inherited from the complex structure of \mathcal{H} . Away from points in the orbits of i and $e^{\pi i/3}$, the quotient map $q: \mathcal{H} \to \mathcal{H}/\Gamma$ is a local homeomorphism, so we may use the complex coordinate z on \mathcal{H} to give local complex coordinates on $\mathcal{H}/\Gamma - \Gamma \cdot \{i, e^{\pi i/3}\}$. However, at points in the orbits of i and $e^{\pi i/3}$, the quotient map q is no-longer a local homeomorphism (near i, q is a ramified 2:1 cover; near $e^{\pi i/3}$, q is a ramified 3:1 cover). This means that we can't use the coordinate z to define local complex coordinates at the corresponding points of \mathcal{H}/Γ .¹

What does turn out to work instead are the local coordinates $z^{1/2}$ and $z^{1/3}$ respectively. Suppose τ is one of the points i or $e^{\pi i/3}$. The matrix $\delta_{\tau} = \begin{pmatrix} 1 & -\tau \\ 1 & -\tau \end{pmatrix}$ sends τ to 0 and $\overline{\tau}$ to ∞ . The (conjugate of) the stabiliser of τ acts by Möbius transformations on $\mathbb{C}_{\infty} = \mathbb{CP}^1$ with fixed points 0 and ∞ , so must consist of maps of the form $z \mapsto a_{\tau} z$, where a_{τ} is a second or third root of unity, as appropriate. Let ψ_{τ} be the map $\rho_{\tau} \circ \delta_{\tau}$, where $\rho_{\tau} : \mathbb{C} \to \mathbb{C}$ is the map $z \mapsto z^2$ or $z \mapsto z^3$ as appropriate. Then for an appropriate open neighbourhood U of τ in \overline{D} , the closure of the fundamental domain (see Figure 1), the image V of U under ψ_{τ} is a small open disc in \mathbb{C} centred about 0, the image q(U) is an open neighbourhood of $q(\tau)$ in \mathcal{H}/Γ , and there exists a diagram of the following form:

We may then use the homeomorphism $V \cong q(U)$ to define a complex coordinate on the open subset $q(U) \subset \mathcal{H}/\Gamma$. One may then check that these local coordinates define a

¹This is suggesting that the quotient should really be viewed as the *orbifold* $[\mathcal{H}/\Gamma]$ - this latter space "remembers" that points in the orbits of i and $e^{\pi i/3}$ have non-trivial stabilisers. In fact $[\mathcal{H}/\Gamma]$ is non-singular as a complex orbifold, without needing to make any funny choices of coordinates.

FIGURE 1. Constructing a local complex coordinate at the point $q(i) \in \mathcal{H}/\Gamma$.

holomorphic atlas on \mathcal{H}/Γ , making \mathcal{H}/Γ into a Riemann surface which is biholomorphic to \mathbb{C} (see [DS05, Section 2.2] for more details).

In fact, there is more to this story. It turns out that to any finite-index subgroup Γ' of $SL(2,\mathbb{Z})$, there is an associated *compact* Riemann surface $X_{\Gamma'}$ (known as the *modular curve* associated to Γ') which contains the quotient \mathcal{H}/Γ' as a dense open subset. For example, we have $X_{SL(2,\mathbb{Z})} \cong \mathbb{CP}^1$, the Riemann sphere. The surfaces $X_{\Gamma'}$ play a key role in the theory of *modular forms*; indeed, modular forms $f \in M_k(\Gamma')$ of level Γ' and weight k are precisely the holomorphic differential k-forms on $X_{\Gamma'}$ (the holomorphic sections of the line bundle $\omega_{X_{\Gamma'}}^{\otimes k}$):

$$M_k(\Gamma') = H^0(X_{\Gamma'}, \omega_{X_{\Gamma'}}^{\otimes k}).$$

It is possible to compute the genus of $X_{\Gamma'}$, using the methods you've seen earlier in this course; that is, by taking a cellular decomposition of the closure of a fundamental domain and then computing the Euler characteristic. The *Riemann-Roch theorem* (which you'll come across if you go on to take *B3.3 Algebraic Curves*) can then be used to compute the dimension of the vector space $M_k(\Gamma')$, all without knowing any explicit modular forms beforehand! More on these ideas can be found in the course *C3.6 Modular Forms*.

The *j***-invariant, Briefly.** We end by discussing the following remarkable function. Recall that if $\tau \in \mathcal{H}$ has associated Weierstrass \wp -function $\wp = \wp_{\tau}$, then we have the relation

$$(\wp')^2 = 4\wp^2 - g_2(\tau)\wp - g_3(\tau),$$

where

$$g_2(\tau) = 60 \sum_{(m,n)\neq(0,0)} \frac{1}{(m+n\tau)^4}, \quad g_3(\tau) = 140 \sum_{(m,n)\neq(0,0)} \frac{1}{(m+n\tau)^6}.$$

Definition 1. The *j*-invariant is defined by $j(\tau) = 1728 \frac{g_2(\tau)^3}{g_2(\tau)^3 - 27g_3(\tau)^2}$.

The *j*-invariant is a holomorphic map $j : \mathcal{H} \to \mathbb{C}$, which is $SL(2,\mathbb{Z})$ -invariant. It turns out that *j* descends to give a (set-theoretic) bijection $\mathcal{H}/\Gamma \to \mathbb{C}$. In other words, the complex numbers \mathbb{C} classify all possible genus 1 Riemann surfaces via the map *j*. Even more strikingly, we have the following theorem.

Theorem 2. The *j*-invariant extends to give a biholomorphism of Riemann surfaces $X_{SL(2,\mathbb{Z})} \xrightarrow{\simeq} \mathbb{CP}^1$.

This result is proved by checking that j is holomorphic in local coordinates on $X_{SL(2,\mathbb{Z})}$ and \mathbb{CP}^1 respectively, then appealing to the result of Question 1 of this sheet, which states that a degree 1 map between compact connected Riemann surfaces is an isomorphism. For more on the basic properties of the j-invariant, see [DS05, Section 1.4].

In modern parlance, the *j*-invariant identifies \mathbb{CP}^1 with $\overline{M}_{1,1}$, the coarse moduli space of genus 1 stable curves with one marked point.

References

[DS05] Fred Diamond and Jerry Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, vol. 228, Springer, 2005.

MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD, OXFORD OX2 6GG, UNITED KINGDOM *Email address*: cooperg@maths.ox.ac.uk

²The coefficient 1728 is there to normalise the Laurent series expansion $j(\tau) = \frac{1}{q} + \sum_{n=0}^{\infty} a_n q^n$, where $q = e^{2\pi i \tau}$.