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Introduction

The aim of today’s talk is to summarise some of the concepts we’ve seen so far regarding
algebraic stacks in a concrete example. For simplicity, throughout we will work over an
algebraically closed field C of characteristic 0.

Theorem 1. Let C be a smooth connected projective curve. The moduli stack Bssr,d(C)

of semistable vector bundles1 of rank r and degree d over C is a smooth, irreducible,
universally closed algebraic stack of dimension r2(g−1) which if g ≥ 2 admits a projective
good moduli space.

Step 1 - Defining the Prestack

Whenever we have a tentative moduli stack, the first step is to write down what our
stack is as a prestack (category fibred in groupoids). This requires us to first understand
what objects we’re actually dealing with. If we wish to end up with a quasi-compact stack,
our objects should form a bounded collection. For vector bundles on a curve of a fixed
rank and degree, boundedness does not hold, so we need to limit ourselves to a special
class, the semistable bundles.

Example 2. Any bounded family (parametrised by a scheme of finite type, which in
particular is Noetherian) of vector bundles on a curve will have bounded h0, by the semi-
continuity of sheaf cohomology in flat families. However if n > 0 then OP1(n)⊕OP1(−n)
is a rank 2 vector bundle of degree 0 with h0 = n + 1. Hence the collection of rank 2
degree 0 vector bundles on P1 is unbounded.

Definition 3. A vector bundle F is (semi)stable if for all non-zero proper subbundles
G ⊂ F , µ(G) < (≤) µ(F), where µ(F) = deg(F)/ rank(F).

If 0 → F ′ → F → F ′′ → 0 is a short exact sequence of vector bundles, then
µ(F ′) ≤ µ(F) ≤ µ(F ′′). In particular, a direct summand of a semistable vector bun-
dle is a semistable vector bundle of the same slope. Any semistable vector bundle F
admits a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,
known as a Jordan-Hölder filtration, whose quotients Fi/Fi−1 are all stable of the same
slope as F ; the associated graded

⊕
iFi/Fi−1 does not depend on the filtration (up to

isomorphism).
The following lemma is needed to show that semistable vector bundles indeed form a

bounded family.

Lemma 4. Let F be a semistable vector bundle of degree d > r(2g − 1). Then

(1) H1(C,F) = 0.
(2) F is generated by its global sections.

Sketch proof. If H1(C,F) 6= 0 then be Serre duality there’s a non-zero homomorphism
f : F → ωC ; considering the kernel K ⊂ F of f then contradicts d > r(2g − 1). For
the second part, for any point p ∈ C one can show that H1(C,F(−p)) = 0 by the
same argument (twisting by a line bundle does not affect semistability), so the surjection
F → F ⊗ Cp remains surjective when passing to global sections. �

1For me, vector bundle means a locally free OC-module.
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We also need the following lemma on families of vector bundles.

Lemma 5. Let F → C ×C S be a flat family of vector bundles on C. Then there is an
open subscheme S′ ⊂ S whose points are {s ∈ S : Fs is semistable}.

Proof. See [HL10, Proposition 2.3.1]. �

Let us now define the prestack Bssr,d(C).

Definition 6. Define a prestack (category fibred in groupoids) Bssr,d(C) over SchÉt as
follows:

(1) If S is a scheme, the objects of Bssr,d(C)(S) consist of locally free sheaves F of rank
r on CS = C ×C S which are flat over S and of relative degree d.

(2) A morphism (F ′, S′) → (F , S) consists of a map of schemes f : S′ → S together
with a map F → (idC × f)∗F ′ whose adjoint is an isomorphism.2

Step 2 - Descent

In order to know that Bssr,d(C) is a stack (as opposed to a prestack), we need to know

that descent for objects and for morphisms holds. It does hold (over not only the étale
topology but even in the fppf3 and fpqc4 topologies), and follows from descent for quasi-
coherent sheaves together with the fact that being a vector bundle is an étale/fppf/fpqc-
open condition for a quasi-coherent sheaf. I don’t want to go into explaining why this
descent result holds, as it’s not particularly illuminating for our purposes.

Step 3 - Algebraicity

The next step is to show our stack Bssr,d(C) is an algebraic stack, in that there exists

a smooth presentation from a scheme. In order to show that Bssr,d(C) admits a smooth

presentation, we will show that Bssr,d(C) is isomorphic to a quotient stack [X/G] and then

appeal to the fact that X → [X/G] is always a smooth presentation. To do this, we
will use Grothendieck Quot schemes. As a consequence of our approach we will also get
boundedness for free.

Fix an ample line bundle OC(1) on C (one exists as we’re assuming C is projective).
By Lemma 4 there exists an integer m0 > 0 such that, for any m ≥ m0 and any semistable
bundle F of rank r and degree d, H1(C,F(m)) = 0 and F(m) = F ⊗ OC(m) is globally
generated. The latter statement implies that there is an exact sequence

H0(C,F(m))⊗OC(−m) F 0.

As H1(C,F(m)) = 0, by Riemann-Roch we have h0(C,F(m)) = χ(C,F(m)) = d+ rm+

r(1− g). Fixing an isomorphism H0(C,F(m)) ∼= V := Cd+rm+r(1−g), we get a point

[V ⊗OC(−m)→ F ] ∈ Q := QuotC(V ⊗OC(−m), P ), P (m) = d+ rm+ r(1− g).

Let
V ⊗OC×Q(−m) U 0

be the universal quotient. One can check that the locus of points q ∈ Q corresponding to
the map V → H0(C,Uq(m)) being an isomorphism forms an open subscheme (this follows
by cohomology and base change, by looking at the locus where H1(C,Uq(m)) 6= 0). In
turn, the properties of being locally free and being semistable are open in flat families,
so there is an open subscheme Q′ ⊂ Q whose points are precisely those q ∈ Q where
Uq is a semistable vector bundle such that the induced map V → H0(C,Uq(m)) is an
isomorphism.

There is a morphism f : Q′ → Bssr,d(C) given by sending [V ⊗OC(−m)→ Uq → 0] 7→ Uq
The group G = GL(V ) acts naturally on Q′ by precomposition, and with respect to

2That is, for every choice of pullback (idC×f)∗F , the adjoint map (idC×f)∗F → F ′ is an isomorphism
- this resolves any 2-categorical issues that may arise.

3Short for fidèlement plat et de présentation fini.
4Short for fidèlement plat et quasi-compact.
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this action the morphism f is invariant, so f factors through the quotient [Q′/G]. This
morphism is fully faithful, since any automorphism of a semistable vector bundle G over
C ×C S arising from a morphism S → Q′ induces an automorphism of the free5 sheaf

(prS)∗(G(m)) = OP (m)
S , which gives an element of GL(V )(S), which in turn acts on

V ⊗ OC×S(−m) in a way which preserves G. By construction f is essentially surjective,
and so is an isomorphic of stacks. This proves the following result.

Proposition 7. Bssr,d(C) is a Noetherian6 algebraic stack of finite type over C. �

Step 4 - Deformation Theory

We will make use of the following result.

Proposition 8 (Infinitesimal lifitng criterion for smoothness). Let f : X → Y be a finite
type morphism of Noetherian algebraic stacks. Consider 2-commutative diagrams

SpecA0 X

SpecA Y

f

of solid arrows, where φ : A→ A0 is a surjection of Artinian local rings with residue field
C such that kerφ = C and such that SpecC → SpecA0 → X is a finite type point. Then
f is smooth if and only if for every such diagram, there exists a lifting SpecA→ X .

Let [F ] ∈ Bssr,d(C)(C) and let φ be a surjection as above. To show that Bssr,d(C) is
smooth, we need to show that every vector bundle F0 on CA0 which restricts to F extends
to a vector bundle F ′ on CA. Results from deformation theory7 give an obstruction class
obF ∈ Ext2

C(F ,F) such that obF = 0 if and only if there is such an extension, but

Ext2
C(F ,F) = H2(C,F ⊗ F∨) = 0

by dimension reasons. Hence all deformations are unobstructed, and by the infinitesimal
lifting criterion Bssr,d(C) is smooth over C.

Results from deformation theory also give an identification

T[F ]Bssr,d(C) = Ext1
C(F ,F) = H1(C,F ⊗ F∨).

By Riemann-Roch

h1(C,F ⊗ F∨) = −χ(C,F ⊗ F∨) + h0(C,F ⊗ F∨) = r2(g − 1) + homC(F ,F).

In turn dim AutC(F) = homC(F ,F), so dimT[F ]Bssr,d(C) = r2(g − 1) + dim AutC(F). It

then follows from the following result that dimBssr,d(C) = r2(g − 1):

Proposition 9. If X is a smooth Noetherian algebraic stack over C and if x ∈ X (C) has
smooth stabiliser Gx, then

dimxX = dimTxX − dimGx.

Here dimxX := dimu U − dime(u)Ru, where U → X is a smooth presentation with corre-
sponding smooth groupoid U ⇒ R, and where u ∈ U is a preimage of x.

5Use cohomology and base change.
6Locally Noetherian, quasi-compact and quasi-separated - this follows as Q′ is a Noetherian scheme.
7See last term’s reading group.
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Step 5 - The Valuative Criterion

In order to determine whether a stack is separated or universally closed, we have the
valuative criterion.

Proposition 10 (The valuative criterion). Let f : X → Y be a finite type morphism of
Noetherian algebraic stacks with separated diagonals. Consider a 2-commutative diagram

SpecK X

SpecR Y

fα

where R is a DVR with fraction field K. Then:

(1) f is universally closed if and only if for every such diagram as above, there is
an extension of DVR’s R → R′, with the map on fraction fields having finite
transcendence degree, and a lifting

SpecK ′ SpecK X

SpecR′ SpecR Y

f

(2) f is separated if and only if any two liftings are uniquely isomorphic.
(3) f is proper if and only if f is universally closed and separated.

The result that Bssr,d(C) is universally closed then follows from the following result of S.

Langton [Lan75].

Proposition 11 (Langton). Let R be a DVR with field of fractions K, and let i : CK →
CR be the inclusion. If FK is a semistable vector bundle on CK , then there exists a
subbundle F of i∗FK whose restriction to CK is FK and whose restriction to the central
fibre is semistable.

Note that Bssr,d(C) cannot be proper if there are any strictly semistable sheaves. The
reason why is because any strictly semistable sheaf F will admit a non-trivial Jordan-
Hölder filtration by subsheaves whose associated graded gr(F) is also a semistable vector
bundle of rank r and degree d (and gr(F) 6∼= F if F is not polystable). On the other
hand it is possible8 to find a one-parameter degeneration from F to gr(F) whose general
member is F . This implies that Bssr,d(C) cannot be separated.

Conversely, if the only sheaves which appear are stable (for instance, if r and d are
coprime) then, modulo taking a rigidification by the Gm’s contained in the automorphism
group of any vector bundle, the stack Bssr,d(C)Gm is actually a projective scheme! This is

because AutC(F) = Gm for any stable vector bundle, so all objects of Bssr,d(C)Gm have

trivial automorphisms and so Bssr,d(C)Gm is an algebraic space (informally, a stack without

any stackiness). But this algebraic space admits a projective coarse moduli space (see
below), which by the uniqueness of coarse moduli spaces must be canonically isomorphic
to Bssr,d(C)Gm . In particular, Bssr,d(C)Gm is a scheme-theoretic fine moduli space for the

moduli functor parametrising families of vector bundles up to isomorphism.9

Step 6 - Existence of a Moduli Space

From now on, we will restrict attention to when C has genus g ≥ 2. In this case, it turns
out that Bsr,d(C) is non-empty (see [NR69, Lemma 4.3]) and so is a dense open substack

of Bssr,d(C).

8For instance, by using general theory coming from GIT.
9One of the functors introduced by Jakub the previous week.
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Recall that if X is an algebraic stack, a good moduli space of X is a quasi-compact
morphism q : X → X to an algebraic space X which is Stein and for which q∗ is exact on
quasi-coherent sheaves. Good moduli spaces are always unique up to unique isomorphism
if they exist. Over C, any coarse moduli space is a good moduli space.

The traditional way of both constructing the good moduli space Bss
r,d(C) of Bssr,d(C) and

showing that it’s a projective scheme involves using reductive GIT on the Quot scheme

Q = QuotC(V ⊗OC(−m), P )

with respect to the action of SL(V ); it turns out that GIT semistability (as characterised
via the Hilbert-Mumford criterion in terms of one-parameter subgroups of SL(V )) essen-
tially is the same as moduli semistability, and reductive GIT on projective schemes always
produces good quotients which are projective.10 A very accessible account of how the GIT
story goes can be found in [Hos15]. Let us instead sketch how the Beyond GIT programme
applies to Bssr,d(C), following the paper [ABB+22].

Θ-Reductivity. Recall that a Noetherian algebraic stack X is said to be Θ-reductive if
for every DVR R, any diagram

ΘR \ {0} = ΘK ∪K SpecR X

ΘR

of solid arrows can be filled in. Here Θ = [A1/Gm], SpecR is t 6= 0 and ΘK is $ 6= 0.
If A is a finitely-generated C-algebra, a morphism ΘA → Bssr,d(C) is the same as a ΘA-
flat semistable vector bundle of rank r and degree d on C × ΘA. By smooth descent,
this corresponds to an A1

A-flat vector bundle G on C × A1
A with a Gm-action, that is, a

Z-grading
⊕

i Gi which is compatible with multiplication by t: t(Gi) ⊂ Gi+1. Flatness
implies that G is t-torsion-free, or in other words that ×t : G → G is injective. The fibre
over SpecA ⊂ ΘA is

G ⊗A[t] A[t±1] = G ⊗A[t] colim(· · · → A
t→ A→ · · · )

= colim(· · · → G t→ G → · · · )

=
⊕
n∈Z

colim(· · · → Gn
t→ Gn+1 → · · · ),

with Gm-invariants F = colim(Gn). The fibre over 0 is G/tG =
⊕

i Gi/Gi−1 - this corre-
sponds to a point of Bssr,d(C), so each non-zero Gi/Gi−1 is a semistable vector bundle on

CA of slope d/r. By finite-generation, only finitely-many of the Gi/Gi−1 are non-zero. It
follows that giving a morphism ΘA → Bssr,d(C) is the same as giving an A-flat semistable
vector bundle F over CA of rank r and degree d and a filtration

· · · ⊂ Fn−1 ⊂ Fn ⊂ Fn+1 ⊂ · · ·

such that the quotients are 0 or A-flat semistable vector bundles of slope d/r, such that
F�0 = 0 and such that F�0 = F .

Θ-reductivity then translates to the statement that given an R-flat semistable vector
bundle F on CR of rank r and degree d and a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = FK
whose quotients are semistable vector bundles of slope d/r, the filtration extends to one
over R for the vector bundle F . The proof that such extensions exist boils down to the
fact that relative Quot schemes are proper; see [ABB+22, Proposition 3.8].

10If G acts on a linearised projective scheme (X,L) then the GIT quotient Xss(L)//G is always a good
moduli space for the quotient stack [Xss(L)/G].
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S-Completeness. If R is a DVR with uniformiser $ and fraction field K, recall that
STR is defined to be the stack

STR = [(SpecR[s, t]/(st−$))/Gm],

where Gm acts with weight +1 on s and −1 on t. This stack has a unique closed point
0 = BGm given by the vanishing of s and t. The loci s = 0, t = 0 give copies of Θκ (where
κ = R/$ is the residue field of R) and the loci s 6= 0, t 6= 0 give copies of SpecR. Recall
as well that a Noetherian algebraic stack X is said to be S-complete11 if for every DVR
R, any diagram

STR \ {0} = SpecR ∪K SpecR X

STR

of solid arrows can be filled in.
A morphism STR \{0} → Bssr,d(C) is the data of two R-flat semistable vector bundles on

CR (corresponding to s 6= 0 and t 6= 0 respectively) together with an isomorphism of their
restrictions over CK . Using the above description of morphisms ΘR → Bssr,d(C), it can be

checked (see [AHLH18, Corollary 7.13]) that a morphism STR → Bssr,d(C) is equivalent to
giving a diagram

· · · Fn Fn+1 · · ·
s

tt t

ss

with st = ts = $, s, t being injections (and the same being true for s : Fn−1/tFn →
Fn/tFn+1), s being an isomorphism in large positive degrees, t being an isomorphism in
large negative degrees and the two colimits

Fs = colim(· · · → Fn
s→ Fn+1 → · · · ), Ft = colim(· · · → Fn+1

t→ Fn → · · · )
obtained by restricting to s 6= 0 and t 6= 0 respectively being R-flat slope semistable vector
bundles on CR of rank r and degree d. The point (s, t) = (1, 0) corresponds to Fs, (0, 1)
to Ft and (0, 0) to gr(Fs) = gr(Ft).

A proof of S-completeness for Bssr,d(C) can be found in [AHLH18, Lemma 8.4]. S-

completeness for Bssr,d(C) implies the following statement ([AHLH18, Remark 3.38]): given
two families of semistable vector bundles over CR which are isomorphic over CK , the
bundles over the central fibre are S-equivalent, in the sense that they have isomorphic
associated graded sheaves.

By applying the machinery of the Beyond GIT programme, there exists a proper good
moduli space Bss

r,d(C) in the category of algebraic spaces. As objects of Bss
r,d(C) have

no automorphisms, the morphism Bssr,d(C) → Bss
r,d(C) factors through the rigidification

Bssr,d(C)→ Bssr,d(C)Gm (which is a Gm-gerbe)12 and so Bss
r,d(C) is also a good moduli space

for Bssr,d(C)Gm . In particular, the dimension increases by 1: dimBss
r,d(C) = r2(g − 1) + 1.

Step 7 - Projectivity of the Good Moduli Space

Let U be the universal vector bundle on C×Bssr,d(C) (which is easily seen to tautologically

exist, once the issue of interpreting coherent sheaves on algebraic stacks is dealt with).
For a vector bundle V on C, consider the determinantal line bundle

LV = (det R(prB)∗(pr∗CV ⊗ U))∨,

where if E ∼qis [K0 → K1] in the derived category Db(Coh(Bssr,d(C))), with each Ki locally

free, then det E := det(K0) ⊗ det(K1)∨. One can check that det E is independent of the
choice of resolution, and that such a resolution exists for E = R(prB)∗(pr∗CV ⊗ U).

11Short for Seshadri complete.
12Roughly speaking, a fibration whose fibres are BGm = [∗/Gm]; this is a stack of dimension −1.
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The strategy for establishing projectivity ([ABB+22, Theorem 5.1]) can be briefly sum-
marised as follows:

(1) For appropriate V, the line bundle LV descends to the good moduli space, and is
the pullback of a line bundle LV . This line bundle depends only on the rank and
degree of V.

(2) For appropriate choices of invariants such that rank(R(prB)∗(pr∗CV⊗U)) = 0, there
exists a tautological section sV (which does depend on V and not just its discrete
invariants) of LV , locally given by the determinant of K0 → K1. This section also
descends to a section of LV . The vanishing of this section at a particular vector
bundle can be cohomologically characterised.

(3) Enough sections sV of LV (given by varying V whilst keeping its numerical in-
variants fixed in an appropriate way) can be found such that, corresponding to a
suitably high power of LV , there is a quasi-finite morphism Bss

r,d(C)→ PN .

(4) As Bss
r,d(C) is proper, Bss

r,d(C) → PN is proper, hence finite, hence affine, hence

representable - this implies Bss
r,d(C) is a scheme. The pullback of OPN (1) gives an

ample line bundle on Bss
r,d(C), so this is a projective scheme.
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