Reading Group on Toric Varieties

Exercise Sheet 0

Hilary Term 2022

Exercise 1: Let X be a scheme and A be a ring. Show that there are isomorphisms

 $\operatorname{Mor}_{\operatorname{\mathbf{Sch}}}(X, \operatorname{Spec} A) \cong \operatorname{Hom}_{\operatorname{\mathbf{Ring}}}(A, \Gamma(X, \mathcal{O}_X))$

which are natural in both A and X; that is, Spec and $\Gamma(\cdot)$ are adjoint functors.¹ Deduce the following:

- 1. Any scheme X admits a unique morphism to Spec \mathbb{Z} .
- 2. Any scheme X admits a natural morphism $X \to \operatorname{Spec} \Gamma(X, \mathcal{O}_X)$.

Exercise 2: The *affine communication lemma*² states that following. Let X be a scheme and \mathcal{P} is a property of affine open subsets of X which satisfies the following properties:

- if Spec $A \subset X$ has \mathcal{P} then for any $f \in A$, Spec $A_f \subset X$ has \mathcal{P} as well;
- if $A = (f_1, \ldots, f_n)$ and if each Spec $A_{f_i} \subset X$ has \mathcal{P} , then so does Spec $A \subset X$.

Then, if $X = \bigcup_i \operatorname{Spec} A_i$ and if each $\operatorname{Spec} A_i$ has property \mathcal{P} , then any other open affine of X has property \mathcal{P} .

- 1. Prove the affine communication lemma. Hint: you may want to first show that if Y is any scheme and if Spec A, Spec $B \subset Y$ are open affines, then Spec $A \cap$ Spec B can be covered by open sets which are simultaneously distinguised open subsets of Spec A and Spec B.
- 2. Let X be a scheme. Show that X admits a cover by open affines Spec A such that each ring A is Noetherian, if and only if for every open affine Spec $A \subset X$, A is Noetherian. Prove the corresponding statement when "Noetherian" is replaced with "domain".
- 3. Let $f: X \to Y$ be a morphism of schemes. Show that there exists an open cover of Y by open affines Spec B such that each $f^{-1}(\operatorname{Spec} B)$ can be covered by open affines Spec A, where A is a finitely-generated B-algebra, if and only if for every open affine Spec $B \subset Y$, $f^{-1}(\operatorname{Spec} B)$ can be covered by open affines Spec A, where A is a finitely-generated B-algebra. Show that there exists an open cover of Y by open affines Spec B such that each $f^{-1}(\operatorname{Spec} B)$ is affine, if and only if for every open affine Spec $B \subset Y$, $f^{-1}(\operatorname{Spec} B)$ is affine, if and only if for every open affine Spec $B \subset Y$, $f^{-1}(\operatorname{Spec} B)$ is affine.

¹Modulo taking an opposite category somewhere.

²Terminology due to R. Vakil.