Toric Varieties RG - Tentative Plan

George Cooper

Hilary Term 2022

All section references are for Fulton's book.

Week 2: Refinements of fans give rise to toric morphisms ($\S1.4$). The polytope construction for toric varieties ($\S1.5$). Describing when toric varieties are non-singular in terms of their fans, toric varieties are always Cohen-Macaulay ($\S2.1$).

Week 3: One-parameter subgroups and limit points ($\S2.3$). When morphisms between toric varieties are proper in terms of fans, toric blowups ($\S2.4$). Toric resolutions of singularities ($\S2.6$).

Week 4: The orbit-cone correspondence (§3.1). Fundamental groups of toric varieties, the integral cohomology of U_{σ} and computing $\chi(X_{\Sigma})$ (§3.2).

Week 5: *T*-Weil and *T*-Cartier divisors (§3.3). Computing $Pic(X_{\Sigma})$, relating line bundles on X_{Σ} to continuous piecewise linear functions on $|\Sigma|$ and convex polyhedrons and consequences of this in terms of computing global sections and amplitude (§3.4).

Week 6: Computing $H^i(X_{\Sigma}, \mathcal{O}(D))$ for D a T-Cartier divisor, the higher pushforwards of the structure sheaf of a refinement morphism $f: X_{\Sigma'} \to X_{\Sigma}$ all vanish and $f_*(\mathcal{O}_{X_{\Sigma'}}) = \mathcal{O}_{X_{\Sigma}}$ (§3.5). Canonical divisors and sheaves of differentials on toric varieties (§4.3).

Week 7: The Chow group of a toric variety, the intersection product on a toric variety (§5.1). The intersection ring on a toric variety, giving bases for $A_*(X_{\Sigma})$ and $H_*(X_{\Sigma}, \mathbb{Z})$ (§5.2).

Week 8: Using toric intersection theory and HRR to prove Pick's theorem (§5.3). Using toric intersection theory to prove Stanley's theorem (§5.6).