A rapid introduction to schemes

Gilles Englebert

University of Oxford

January 14, 2022

(日)

э

Schemes are a simultaneous generalisation of varieties and (smooth) manifolds. **Key idea:** the geometry of these spaces is locally determined by their algebraic/continuous/smooth functions.

Schemes are a simultaneous generalisation of varieties and (smooth) manifolds. **Key idea:** the geometry of these spaces is locally determined by their algebraic/continuous/smooth functions.

Example

X, Y affine varieties with coordinate rings \mathcal{O}_X and \mathcal{O}_Y . A map of sets $f: X \to Y$ is a morphism of varieties iff the induced map $f^{\sharp}: \mathcal{O}_Y \to \mathcal{O}_X$ is an algebra morphism.

< D > < P > < P > <</pre>

Schemes are a simultaneous generalisation of varieties and (smooth) manifolds. **Key idea:** the geometry of these spaces is locally determined by their algebraic/continuous/smooth functions.

Example

X, Y affine varieties with coordinate rings \mathcal{O}_X and \mathcal{O}_Y . A map of sets $f: X \to Y$ is a morphism of varieties iff the induced map $f^{\sharp}: \mathcal{O}_Y \to \mathcal{O}_X$ is an algebra morphism.

Example

Let $X = Z(I) \subset \mathbb{C}^n$ be an affine variety with coordinate ring $\mathcal{O}_X = \mathbb{C}[x_1, \dots, x_n]/I$. Can recover X completely from \mathcal{O}_X .

Definition

A commutative ring. Maximal spectrum of A:

 $\operatorname{Specm}(A) = \{\mathfrak{m} \subset A : \mathfrak{m} \text{ is a maximal ideal}\}.$

э

Definition

A commutative ring. Maximal spectrum of A:

 $\operatorname{Specm}(A) = \{\mathfrak{m} \subset A : \mathfrak{m} \text{ is a maximal ideal}\}.$

Can recover $X \subset \mathbb{C}^n$ from \mathcal{O}_X as a set since $X \simeq \operatorname{Specm} \mathcal{O}_X$ via:

 $\phi:(a_1,\ldots,a_n)\mapsto (x_1-a_1,\ldots,x_n-a_n)=\{f\in \mathcal{O}_X: f(a_1,\ldots,a_n)=0\}.$

イロト イポト イヨト イヨト

э

Definition

A commutative ring. Maximal spectrum of A:

 $\operatorname{Specm}(A) = \{\mathfrak{m} \subset A : \mathfrak{m} \text{ is a maximal ideal}\}.$

Can recover $X \subset \mathbb{C}^n$ from \mathcal{O}_X as a set since $X \simeq \operatorname{Specm} \mathcal{O}_X$ via:

$$\phi:(a_1,\ldots,a_n)\mapsto(x_1-a_1,\ldots,x_n-a_n)=\{f\in\mathcal{O}_X:f(a_1,\ldots,a_n)=0\}.$$

Topology on Specm A : for every ideal $I \subset A$ there is a closed set:

$$V(I) = \{\mathfrak{m} \in \operatorname{Specm} A : I \subset \mathfrak{m}\}.$$

Definition

A commutative ring. Maximal spectrum of A:

 $\operatorname{Specm}(A) = \{\mathfrak{m} \subset A : \mathfrak{m} \text{ is a maximal ideal}\}.$

Can recover $X \subset \mathbb{C}^n$ from \mathcal{O}_X as a set since $X \simeq \operatorname{Specm} \mathcal{O}_X$ via:

$$\phi:(a_1,\ldots,a_n)\mapsto(x_1-a_1,\ldots,x_n-a_n)=\{f\in\mathcal{O}_X:f(a_1,\ldots,a_n)=0\}.$$

Topology on Specm A : for every ideal $I \subset A$ there is a closed set:

$$V(I) = {\mathfrak{m} \in \operatorname{Specm} A : I \subset \mathfrak{m}}.$$

E.g. for $f \in \mathcal{O}_X$: $V((f)) = \{\mathfrak{m} \in \operatorname{Specm} \mathcal{O}_X : f(\phi^{-1}(\mathfrak{m})) = 0\}$. With this topology, $\operatorname{Specm}(\mathcal{O}_X)$ is homeomorphic to X.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

A commutative ring. **Spectrum** of A:

 $\operatorname{Spec}(A) = \{ \mathfrak{p} \subset A : \mathfrak{p} \text{ is a prime ideal} \}.$

Gilles Englebert A rapid introduction to schemes

э

Definition

A commutative ring. **Spectrum** of A:

$$\operatorname{Spec}(A) = \{ \mathfrak{p} \subset A : \mathfrak{p} \text{ is a prime ideal} \}.$$

Definition

For $I \subset A$ ideal define the closed set

 $V(I) = \{ \mathfrak{p} \in \operatorname{Spec} A : I \subset \mathfrak{p} \}$ (all $f \in I$ vanish simultaneously).

For $f \in A$ define the **distinguished open**

 $D_f = \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}$ (points where $f(\mathfrak{p}) \neq 0$).

The D_f form a basis of the topology defined by the V(I).

Example

 $X = \operatorname{Spec} \mathbb{C} = \{\star\}, Y = \operatorname{Spec} \mathbb{C}[x]/(x^2) = \{\star\}$. These spectra consist of a points to which a ring is attached. Topologically they are the same, but the ring distinguishes them!

Example

 $X = \operatorname{Spec} \mathbb{C} = \{\star\}, Y = \operatorname{Spec} \mathbb{C}[x]/(x^2) = \{\star\}$. These spectra consist of a points to which a ring is attached. Topologically they are the same, but the ring distinguishes them!

Example

 $X = \operatorname{Spec} \mathbb{C}[x, y]/(x^2 - y) = \operatorname{Specm} \mathbb{C}[x, y]/(x^2 - y) \cup \{(0)\}.$ The point $\eta = (0)$ is called the **generic point**, since $\{\overline{\eta}\} = X$. It is "close to every point of X".

Example

 $X = \operatorname{Spec} \mathbb{C} = \{\star\}, Y = \operatorname{Spec} \mathbb{C}[x]/(x^2) = \{\star\}$. These spectra consist of a points to which a ring is attached. Topologically they are the same, but the ring distinguishes them!

Example

 $X = \operatorname{Spec} \mathbb{C}[x, y]/(x^2 - y) = \operatorname{Specm} \mathbb{C}[x, y]/(x^2 - y) \cup \{(0)\}.$ The point $\eta = (0)$ is called the **generic point**, since $\{\overline{\eta}\} = X$. It is "close to every point of X".

Think of (Spec A, A) as a topological space together with a set of functions describing its geometry. General schemes will be covered by charts of this type.

くロ と く 同 と く ヨ と 一

How do we keep track of rings of functions over each open set of a topological space X?

э

topological space X?

A presheaf of rings \mathcal{F} on X is a functor:

Definition

 $\mathcal{F}:\mathrm{Op}(X)^{\mathrm{op}} o\mathrm{Rng}\,.$

Here Op(X) is the category of open sets on X with inclusions as morphisms. It thus assigns to each open subset U a ring $\mathcal{F}(U)$, called the **sections**, and prescribes **restriction maps** $r_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$. We write $r_{UV}(s) = s|_V$.

How do we keep track of rings of functions over each open set of a

くロト く得ト くほト くほとう

Definition

A presheaf of rings \mathcal{F} is a **sheaf of rings** if the following hold for $\{U_i\}_{i \in I}$ open covering of open U:

- (gluing) If $s_i \in \mathcal{F}(U_i)$ and $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \forall i, j \in I$ then $\exists s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$.
- (locality) If $s, t \in \mathcal{F}(U)$ so that $s|_{U_i} = t|_{U_i} \forall i \in I$ then s = t.

< ロ > < 同 > < 回 > < 回 > .

Definition

A presheaf of rings \mathcal{F} is a **sheaf of rings** if the following hold for $\{U_i\}_{i \in I}$ open covering of open U:

- (gluing) If $s_i \in \mathcal{F}(U_i)$ and $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \forall i, j \in I$ then $\exists s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$.
- (locality) If $s, t \in \mathcal{F}(U)$ so that $s|_{U_i} = t|_{U_i} \forall i \in I$ then s = t.

Example

• Constant sheaf \mathbb{Z} sending $\emptyset \mapsto 0, U \mapsto \mathbb{Z}$.

• X topological/smooth manifold. Then $C^{(\infty)}(U)$ is a sheaf.

< ロ > < 同 > < 回 > < 回 > .

Motivation Sheafs Schemes Contructions	Motivation Motivation	
Schemes Contructions	Motivation Sheafs	
	Schemes Contructions	

Example

A commutative ring. Define sheaf on Spec A via:

$$\mathcal{O}_X(D_f) = A[f^{-1}] = A_f.$$

The sheaf condition fixes the value of \mathcal{O}_X for any other open set. The restriction maps are induced from the localisation maps. Think of $\mathcal{O}_X(U)$ as the rational functions on U.

Definition

 \mathcal{F} sheaf of rings over X. Let $x \in X$. The **stalk of** \mathcal{F} **at** x is:

$$\mathcal{F}_x = \varinjlim_{x \in U} \mathcal{F}(U).$$

э

- ₹ 🖬 🕨

Definition

 \mathcal{F} sheaf of rings over X. Let $x \in X$. The **stalk of** \mathcal{F} **at** x is:

$$\mathcal{F}_x = \varinjlim_{x \in U} \mathcal{F}(U).$$

Example

Consider \mathcal{O}_X over $X = \operatorname{Spec} A$. Then the stalks are given by:

$$\mathcal{O}_{X,\mathfrak{p}} = \varinjlim_{\mathfrak{p}\in D_f} A_f = \varinjlim_{f\not\in\mathfrak{p}} A_f = A[(A\setminus\mathfrak{p})^{-1}] =: A_\mathfrak{p},$$

which is local by commutative algebra.

Definition

A locally ringed space is a topological space X together with a sheaf of rings \mathcal{O}_X on it, which is called the **structure sheaf**. The stalk of \mathcal{O}_X is a local ring at every point.

< D > < A > < B > < B >

Definition

A locally ringed space is a topological space X together with a sheaf of rings \mathcal{O}_X on it, which is called the **structure sheaf**. The stalk of \mathcal{O}_X is a local ring at every point.

Example

 $\operatorname{Spec} A$ together with the sheaf of rings $\mathcal{O}_{\operatorname{Spec} A}$ is a locally ringed space.

< D > < A > < B > < B >

Definition

Let \mathcal{F} be sheaf over X, and $f : X \to Y$ continuous. The **push-forward sheaf** is a sheaf on Y defined as:

$$f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U))$$
 for $U \subset Y$ open.

э

Definition

Let \mathcal{F} be sheaf over X, and $f : X \to Y$ continuous. The **push-forward sheaf** is a sheaf on Y defined as:

$$f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U))$$
 for $U \subset Y$ open.

Definition

A morphism of locally ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a pair (f, f^{\sharp}) such that $f : X \to Y$ is continuous, $f^{\sharp} : \mathcal{O}_Y \to \mathcal{O}_X$ is a morphism of sheafs and the induced morphism on stalks $f_x^{\sharp} : \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is a morphism of local rings.

Definition

A commutative ring. We say that the locally ringed space $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ is an **affine scheme**. A **morphism of affine schemes** is a morphism of locally ringed spaces.

Definition

A commutative ring. We say that the locally ringed space $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ is an **affine scheme**. A **morphism of affine schemes** is a morphism of locally ringed spaces.

Example

• k field. Then Spec k is topologically a point.

イロト イヨト イヨト

э

Definition

A commutative ring. We say that the locally ringed space $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ is an **affine scheme**. A **morphism of affine schemes** is a morphism of locally ringed spaces.

Example

- k field. Then Spec k is topologically a point.
- Spec $\mathbb{Z} = \{(0)\} \cup \bigcup_{p \text{ prime}} \{(p)\}$.

< ロ > < 同 > < 回 > < 回 >

э

Definition

A commutative ring. We say that the locally ringed space $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ is an **affine scheme**. A **morphism of affine schemes** is a morphism of locally ringed spaces.

Example

- k field. Then Spec k is topologically a point.
- Spec $\mathbb{Z} = \{(0)\} \cup \bigcup_{p \text{ prime}} \{(p)\}$.
- $\mathbb{A}^n = \operatorname{Spec} A[x_1, \dots, x_n]$ is the affine plane, where A comm. ring.

Definition

A commutative ring. We say that the locally ringed space $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ is an **affine scheme**. A **morphism of affine schemes** is a morphism of locally ringed spaces.

Example

- k field. Then Spec k is topologically a point.
- Spec $\mathbb{Z} = \{(0)\} \cup \bigcup_{p \text{ prime}} \{(p)\}$.
- $\mathbb{A}^n = \operatorname{Spec} A[x_1, \dots, x_n]$ is the affine plane, where A comm. ring.
- Spec C[∞](ℝⁿ) is the affine scheme on which smooth manifolds are locally modeled.

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

Motivation	
Motivation	
Motivation	
Sheafs	
Schemes	
Contructions	
Properties	

A ring homomorphism $\phi : A \to B$ induces a map of locally ringed spaces between $\text{Spec } B \to \text{Spec } A$. Indeed:

Theorem

The functor Spec defines an anti-equivalence between the category of affine schemes and the category of commutative rings.

Definition

A **scheme** is a locally ringed space which is locally isomorphic to affine schemes. A **morphism of schemes** is a morphism of locally ringed spaces which acts between schemes.

Definition

A **scheme** is a locally ringed space which is locally isomorphic to affine schemes. A **morphism of schemes** is a morphism of locally ringed spaces which acts between schemes.

Example

Every scheme admits a unique morphism to $\operatorname{Spec} \mathbb{Z}$. This is because there is a unique ring homomorphism from \mathbb{Z} into any ring.

< D > < A > < B > < B >

How to construct non-affine schemes? By gluing!

Theorem

 $\{X_i\}_{i \in I}$ schemes and $\{U_{ij} \subset X_i\}$ open subsets with isomorphisms $\phi_{ij} : U_{ij} \to U_{ji}$. The ϕ_{ij} satisfy compatibility conditions:

• $\phi_{ij} = \phi_{ji}^{-1}$,

•
$$\phi_{jk} \circ \phi_{ij} = \phi_{ik},$$

•
$$\phi_{ij}(U_{ij}\cap U_{ik})=U_{ji}\cap U_{jk}.$$

Then \exists glued scheme X with open embedding $X_i \hookrightarrow X$ obtained from $\bigsqcup_{i \in I} X_i$ by identifying U_{ij} with U_{ji} .

くロト く得ト くほト くほとう

Example (Projective line and line with double origin)

Let $X_1 = \operatorname{Spec} \mathbb{C}[t], X_2 = \operatorname{Spec} \mathbb{C}[s]$ be two affine lines. Let $U_{12} = \operatorname{Spec} \mathbb{C}[t, t^{-1}] = \{t \neq 0\} \subset X_1$ and $U_{21} = \operatorname{Spec} \mathbb{C}[s, s^{-1}]$. Thus U_{ii} are affine lines with the origin removed.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example (Projective line and line with double origin)

Let $X_1 = \operatorname{Spec} \mathbb{C}[t], X_2 = \operatorname{Spec} \mathbb{C}[s]$ be two affine lines. Let $U_{12} = \operatorname{Spec} \mathbb{C}[t, t^{-1}] = \{t \neq 0\} \subset X_1$ and $U_{21} = \operatorname{Spec} \mathbb{C}[s, s^{-1}]$. Thus U_{ij} are affine lines with the origin removed. Can identify them in two ways:

• Via ϕ_{12} induced by $\operatorname{Spec} \mathbb{C}[t, t^{-1}] \to \operatorname{Spec} \mathbb{C}[s, s^{-1}]; t \mapsto s$. The glued scheme is a line with two origins.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example (Projective line and line with double origin)

Let $X_1 = \operatorname{Spec} \mathbb{C}[t], X_2 = \operatorname{Spec} \mathbb{C}[s]$ be two affine lines. Let $U_{12} = \operatorname{Spec} \mathbb{C}[t, t^{-1}] = \{t \neq 0\} \subset X_1$ and $U_{21} = \operatorname{Spec} \mathbb{C}[s, s^{-1}]$. Thus U_{ij} are affine lines with the origin removed. Can identify them in two ways:

- Via φ₁₂ induced by Spec C[t, t⁻¹] → Spec C[s, s⁻¹]; t → s. The glued scheme is a line with two origins.
- Via ϕ_{12} induced by $\operatorname{Spec} \mathbb{C}[t, t^{-1}] \to \operatorname{Spec} \mathbb{C}[s, s^{-1}]; t \mapsto s^{-1}$. The result is the projective line \mathbb{P}^1

ヘロト 人間 ト ヘヨト ヘヨト

What is the product of schemes X and Y? We want $\mathbb{A}^1 \times \mathbb{A}^1 \simeq \mathbb{A}^2$ as schemes, but this is not even the case as topological spaces! Can define the product of topological spaces X and Y as the limit of the diagram:

$$\Box \longrightarrow X$$

$$\downarrow$$

$$Y$$

• • • • • • • • • • • •

What is the product of schemes X and Y? We want $\mathbb{A}^1 \times \mathbb{A}^1 \simeq \mathbb{A}^2$ as schemes, but this is not even the case as topological spaces! Can define the product of topological spaces X and Y as the limit of the diagram:

$$\begin{array}{c} \Box \longrightarrow X \\ \downarrow \\ Y \end{array}$$

We can define the product of two schemes in the same way!

4日 > 4 回 > 4 回 > 4

More generally we define the **fibre product** $X \times_S Y$ of two schemes X, Y over S as the limit of the diagram:

This depends on the morphisms f and g. If $S = \operatorname{Spec} \mathbb{Z}$ we get the product $X \times Y := X \times_{\operatorname{Spec} \mathbb{Z}} Y$.

・ 同 ト ・ ヨ ト ・ ヨ ト

More generally we define the **fibre product** $X \times_S Y$ of two schemes X, Y over S as the limit of the diagram:

This depends on the morphisms f and g. If $S = \operatorname{Spec} \mathbb{Z}$ we get the product $X \times Y := X \times_{\operatorname{Spec} \mathbb{Z}} Y$.

Theorem

The fibre product always exists in the category of schemes.

(4月) (3日) (3日)

Definition

A morphism j : X → Y is an open immersion if the underlying continuous map is a homeomorphism of X with an open subset U of Y such that the sheaves j_{*}O_X and O_Y|_U are isomorphic.

(日)

Definition

- A morphism j : X → Y is an open immersion if the underlying continuous map is a homeomorphism of X with an open subset U of Y such that the sheaves j_{*}O_X and O_Y|_U are isomorphic.
- A morphism i : X → Y is a closed immersion if the underlying continuous map is a homeomorphism between X and a closed subset of Y and the sheaf homomorphism i[‡] : O_Y → O_X is surjective (meaning surjective on stalks).

Definition

A scheme (X, \mathcal{O}_X) is **integral** if $\mathcal{O}_X(U)$ is an integral domain (no zero divisors) for any open $U \subset X$.

This implies that X is irreducible as a topological space.

Definition

A scheme (X, \mathcal{O}_X) is **integral** if $\mathcal{O}_X(U)$ is an integral domain (no zero divisors) for any open $U \subset X$.

This implies that X is irreducible as a topological space.

Definition

A scheme (X, \mathcal{O}_X) is **separated** if the diagonal $\Delta : X \to X \times X$ is a closed immersion.

This is analogous to the Hausdorff property (\Leftrightarrow diagonal closed in product topology), but which schemes almost never have. The line with double origin is not separated!

(日)

Definition

A scheme over \mathbb{C} is a morphism $X \to \operatorname{Spec} \mathbb{C}$ with X a scheme.

Thus X is locally given by $\operatorname{Spec} A$ where A is a \mathbb{C} -algebra.

Definition

A scheme over \mathbb{C} is a morphism $X \to \operatorname{Spec} \mathbb{C}$ with X a scheme.

Thus X is locally given by $\operatorname{Spec} A$ where A is a \mathbb{C} -algebra.

Definition

The \mathbb{C} -**points** of a scheme *X* are given by:

$$X(\mathbb{C}) = \{ \text{morphisms } \operatorname{Spec} \mathbb{C} \to X \}.$$

(日)

Definition

A scheme over \mathbb{C} is a morphism $X \to \operatorname{Spec} \mathbb{C}$ with X a scheme.

Thus X is locally given by $\operatorname{Spec} A$ where A is a \mathbb{C} -algebra.

Definition

The \mathbb{C} -**points** of a scheme *X* are given by:

$$X(\mathbb{C}) = \{ \text{morphisms } \operatorname{Spec} \mathbb{C} \to X \}.$$

Definition

A scheme of finite type over \mathbb{C} is a \mathbb{C} -scheme $X \to \operatorname{Spec} \mathbb{C}$ such that there is a covering $X = \bigcup \operatorname{Spec} A_i$, where the restrictions $\operatorname{Spec} A_i \to \operatorname{Spec} \mathbb{C}$ are given by morphisms $\mathbb{C} \to A_i$. These homomorphisms then should induce finitely generated \mathbb{C} -algebra structures on A_i .