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Today’s Talk

Today: we’ll cover the following things.

Introduce and define toric varieties.

Explain why studying toric varieties naturally leads to convex
geometry.

Explain how to construct toric varieties from fans.

Organise speakers for the following talks!
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Conventions

We always assume our schemes are defined over the field C,
so for us “scheme” means C-scheme.

A variety X is an integral, separated scheme of finite type
over C; X is complete if the structure morphism X → SpecC
is proper.

If X is a variety then a point of X always means a closed
point, i.e. an element of X (C).

An = SpecC[x1, . . . , xn] and Pn = ProjC[x0, . . . , xn].
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Algebraic Groups

Definition

An (affine) algebraic group G is an (affine) scheme G with
morphisms e : SpecC→ G (identity element), m : G × G → G
(group multiplication) and ι : G → G (group inversion) satisfying
the expected group axioms.

Example

G = Gm := SpecC[t, t−1], with

e∗ : C[t, t−1]→ C, t 7→ 1

m∗ : C[t, t−1]→ C[t, t−1]⊗C C[t, t−1], t 7→ t ⊗ t

ι∗ : C[t, t−1]→ C[t, t−1], t 7→ t−1.

Can show: for any C-algebra A, Gm(A) is a group and is naturally
isomorphic to A×. In particular Gm(C) = C×.
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Affine Group Actions

Let X be a variety and let G be an algebraic group.

Definition

An algebraic (left) group action of G on X is given by a morphism
of schemes σ : G × X → X satisfying the following conditions:

X → SpecC× X
e×idX→ G × X

σ→ X is the identity on X .

The morphisms G × G × X
idG×σ→ G × X

σ→ X and

G × G × X
m×idX→ G × X

σ→ X are equal.

Example

The usual action of Gn
m = SpecC[t±1

1 , . . . , t±1
n ] on An given by

(t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn)

is algebraic.

G. Cooper Toric Varieties Week 1



Affine Group Actions

Let X be a variety and let G be an algebraic group.

Definition

An algebraic (left) group action of G on X is given by a morphism
of schemes σ : G × X → X satisfying the following conditions:

X → SpecC× X
e×idX→ G × X

σ→ X is the identity on X .

The morphisms G × G × X
idG×σ→ G × X

σ→ X and

G × G × X
m×idX→ G × X

σ→ X are equal.

Example

The usual action of Gn
m = SpecC[t±1

1 , . . . , t±1
n ] on An given by

(t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn)

is algebraic.

G. Cooper Toric Varieties Week 1



Affine Group Actions

Let X be a variety and let G be an algebraic group.

Definition

An algebraic (left) group action of G on X is given by a morphism
of schemes σ : G × X → X satisfying the following conditions:

X → SpecC× X
e×idX→ G × X

σ→ X is the identity on X .

The morphisms G × G × X
idG×σ→ G × X

σ→ X and

G × G × X
m×idX→ G × X

σ→ X are equal.

Example

The usual action of Gn
m = SpecC[t±1

1 , . . . , t±1
n ] on An given by

(t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn)

is algebraic.

G. Cooper Toric Varieties Week 1



Affine Group Actions

Let X be a variety and let G be an algebraic group.

Definition

An algebraic (left) group action of G on X is given by a morphism
of schemes σ : G × X → X satisfying the following conditions:

X → SpecC× X
e×idX→ G × X

σ→ X is the identity on X .

The morphisms G × G × X
idG×σ→ G × X

σ→ X and

G × G × X
m×idX→ G × X

σ→ X are equal.

Example

The usual action of Gn
m = SpecC[t±1

1 , . . . , t±1
n ] on An given by

(t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn)

is algebraic.

G. Cooper Toric Varieties Week 1



Affine Group Actions

Let X be a variety and let G be an algebraic group.

Definition

An algebraic (left) group action of G on X is given by a morphism
of schemes σ : G × X → X satisfying the following conditions:

X → SpecC× X
e×idX→ G × X

σ→ X is the identity on X .

The morphisms G × G × X
idG×σ→ G × X

σ→ X and

G × G × X
m×idX→ G × X

σ→ X are equal.

Example

The usual action of Gn
m = SpecC[t±1

1 , . . . , t±1
n ] on An given by

(t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn)

is algebraic.

G. Cooper Toric Varieties Week 1



Definition of a Toric Variety

Definition

An (algebraic) torus is any algebraic group of the form T = Gn
m.

Definition

A toric variety is a normal variety X containing a copy of a torus T
as a dense open subset, such that the usual multiplication map
T × T → T extends to a group action T × X → X .

Remark

Some authors don’t require toric varieties to be normal; we do.

Warning

The embedding T ↪→ X is part of the data of a toric variety!
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Examples of Toric Varieties

Definition

A toric variety is a variety X containing a copy of a torus T as a
dense open subset, such that the usual multiplication map
T × T → T extends to a group action T × X → X .

Example

The following are examples of toric varieties:

Tori Gn
m.

Affine n-space An.

Products of toric varieties.

Projective n-space Pn: give Pn homogeneous coordinates
[x0 : · · · : xn]. A dense open torus is given by identifying

T = {[1 : t1 : · · · : tn] : each ti ∈ Gm} ⊂ Pn.
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Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the
point that it can be studied using combinatorics!

As we’ll see later,
toric varieties X can be described using fans Σ ⊂ Rn. For instance,
the fan Σ contains information about the following:

orbits of the torus action of T on X ;

whether X is non-singular and/or complete;

blow-ups and desingularisations of X ;

the topology of X ;

torus-invariant (Weil/Cartier) divisors and associated sheaf
cohomology groups;

the Picard group of X ;

Chow groups of X ; and

the intersection product on X .
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Two of our Main Characters

Definition

A homomorphism of algebraic groups G → H is a morphism of the
underlying schemes which is compatible with the group structure
maps.

We now introduce two very important lattices we will use
frequently:

M = Homalg grp(Gn
m,Gm) ∼= Zn, the character lattice.

N = Homalg grp(Gm,Gn
m) ∼= Zn, the cocharacter lattice.

There is a natural pairing 〈·, ·〉 : N ×M → Z; identifying M and N
with Zn, this pairing is the usual Euclidean inner product on Zn.
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Toric Varieties Give Fans

Suppose X is a toric variety with torus T ≡ Gn
m and lattices M

and N. Suppose we are also given λ ∈ N, so a morphism
λ : Gm → T ⊂ X .

Question

Does limt→0 λ(t) exist? If so, what is this limit?
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Toric Varieties Give Fans

As an example, take X = P2 and T = {[1 : t1 : t2]}, so N ≡ Z2 via

((λ1, λ2) ∈ Z2)↔ (t 7→ [1 : tλ1
1 : tλ2

2 ]).

We have 7 cases:

1 λ1, λ2 > 0: limit is [1 : 0 : 0].

2 λ1 > λ2 and λ2 < 0: limit is [0 : 0 : 1].

3 λ1 < λ2 and λ1 < 0: limit is [0 : 1 : 0].

4 λ1 = 0 and λ2 > 0: limit is [1 : 1 : 0].

5 λ2 = 0 and λ1 > 0: limit is [1 : 0 : 1].

6 λ1 = λ2 < 0: limit is [0 : 1 : 1].

7 λ1 = λ2 = 0: limit is [1 : 1 : 1].
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Toric Varieties Give Fans

These 7 cases give the following picture in N ⊗Z R = R2, which is
an example of a fan:
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Toric Varieties Give Fans

Some more pictures:
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Toric Varieties Give Fans

Proposition

Any toric variety X determines a fan Σ ⊂ NR = N⊗ZR in this way.

There are two questions to answer here:

1 What do we actually mean by a fan?

2 Can this construction be reversed?
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A Word from our Sponsor: Convex Geometry

Let M and N be our (co)character lattices from before, with the
natural pairing 〈·, ·〉.

Definition

A (rational convex polyhedral) cone in NR is the non-negative span
of a finite subset S ⊂ N.

Definition

Let σ ⊂ NR be a cone. The dual cone is the subset of MR given by
σ∨ = {m ∈ MR : 〈v ,m〉 ≥ 0 ∀v ∈ σ}. A face of σ is any subset of
the form τ = σ ∩ u⊥ = {v ∈ σ : 〈v , u〉 = 0} for some u ∈ σ∨. A
facet of σ is a face of σ of codimension one.
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A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):

(σ∨)∨ = σ.

Any face of a cone is a cone.

Cones have finitely many faces.

Any face of a face is a face.

Any intersection of faces is a face.

Any proper face is the intersection of all facets containing it.

(Farkas’ Theorem) the dual of a cone is a cone.

Definition

A fan in NR is a collection Σ of cones in NR that is closed under
taking faces of cones and intersections, such that the intersection
of any two cones σ, σ′ ∈ Σ is a face of each.
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Affine Toric Varieties from Cones

Suppose σ is a cone in NR. Define Sσ = σ∨ ∩M.

Lemma (Gordon)

The semigroup Sσ is finitely generated.

Consequently the “group algebra” C[Sσ] is a finitely generated
C-algebra, so Uσ = SpecC[Sσ] is an affine scheme of finite type
over C. As a complex vector space C[Sσ] has basis χm, where m
ranges over Sσ, and has multiplication χm · χm′

= χm+m′
.
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Affine Toric Varieties from Cones

Example

Take σ ⊂ R2 to be the cone spanned by e2 and 2e1 − e2. The
semigroup Sσ is generated by e∗1 , e∗1 + e∗2 and e∗1 + 2e∗2 , so
C[Sσ] = C[a, ab, ab2] = C[x , y , z ]/(y2 − xz).
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Affine Toric Varieties from Cones

Proposition

Uσ = SpecC[Sσ] is an integral affine toric variety.

Proof.

As Sσ ↪→ M = S{0} then C[Sσ] ↪→ C[M]. But

C[M] = C[t±1
1 , . . . , t±1

n ] (where M ∼= Zn), so SpecC[M] = Gn
m is a

torus, which is dense in Uσ (we’ll come back to density shortly).
The natural multiplicative structure on SpecC[M] extends to an
action on Uσ via the map C[Sσ]→ C[M]⊗C C[Sσ] given by
χm 7→ χm ⊗ χm.
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Affine Toric Varieties from Cones

Proposition

Uσ = SpecC[Sσ] is an integral normal affine toric variety.

Proof (continued).

To show that Uσ is normal, it suffices to show that C[Sσ] is
integrally closed. If σ is generated by v1, . . . , vr and if τi is the ray
spanned by vi , then C[Sσ] =

⋂r
i=1 C[Sτi ]. But

C[Sτi ]
∼= C[t1, t

±1
2 , . . . , t±1

n ] is integrally closed, and an intersection
of integrally closed domains is integrally closed.
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Gluing Toric Affines Along Faces

Suppose τ is a face of a cone σ ∈ Σ. Choose m ∈ Sσ such that
τ = σ ∩m⊥ = σ ∩ {〈v ,m〉 = 0}.

Exercise

Show that we have an equality Sτ = Sσ ∩ (Z≤0 ·m).

Upshot: C[Sσ] ↪→ C[Sτ ] corresponds to inverting χm, so Uτ is a
basic affine open of Uσ. Moreover, Gn

m = SpecC[M] ↪→ Uσ factors
through the inclusion Uτ ⊂ Uσ.
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Gluing Toric Affines Along Faces

Suppose Σ is a fan in NR. We construct the scheme XΣ by gluing
the affine schemes Uσ, Uσ′ along the common basic open Uτ ,
whenever τ is a face of both σ and σ′.

Exercise

Show that Sτ = Sσ + Sσ′ whenever τ = σ ∩ σ′.

Proposition

XΣ is a toric variety.

Proof.

As the gluing morphisms are compatible with the Gn
m-actions then

XΣ is toric. It thus remains to show that XΣ is separated, that is
the diagonal ∆ : XΣ → XΣ ×C XΣ is a closed immersion.
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Gluing Toric Affines Along Faces

Proposition

XΣ is a toric variety.

Proof (continued).

Being a closed immersion is affine-local on the target and
XΣ ×C XΣ =

⋃
σ,τ∈Σ Uσ ×C Uτ , so it suffices to show that

∆ : Uτ → Uσ1 ×C Uσ2 is a closed immersion whenever τ = σ1 ∩ σ2.

This will follow if the map C[Sσ1 ]⊗C C[Sσ2 ]→ C[Sτ ] is surjective,
since closed immersions of affine schemes correspond to surjective
ring maps. But surjectivity follows from Sτ = Sσ1 + Sσ2 .
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