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Today's Talk

Today: we'll cover the following things.
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Today's Talk

Today: we'll cover the following things.
@ Introduce and define toric varieties.

@ Explain why studying toric varieties naturally leads to convex
geometry.

@ Explain how to construct toric varieties from fans.

@ Organise speakers for the following talks!
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Conventions

@ We always assume our schemes are defined over the field C,
so for us “scheme” means C-scheme.
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Conventions

@ We always assume our schemes are defined over the field C,
so for us “scheme” means C-scheme.

@ A variety X is an integral, separated scheme of finite type
over C; X is complete if the structure morphism X — SpecC
is proper.
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Conventions

@ We always assume our schemes are defined over the field C,
so for us “scheme” means C-scheme.

@ A variety X is an integral, separated scheme of finite type
over C; X is complete if the structure morphism X — SpecC
is proper.

e If X is a variety then a point of X always means a closed
point, i.e. an element of X(C).
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Conventions

@ We always assume our schemes are defined over the field C,
so for us “scheme” means C-scheme.

@ A variety X is an integral, separated scheme of finite type
over C; X is complete if the structure morphism X — SpecC
is proper.

e If X is a variety then a point of X always means a closed
point, i.e. an element of X(C).

e A" =SpecClx,...,xy| and P" = ProjC|xo, . . ., Xp]-
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Algebraic Groups

Definition

An (affine) algebraic group G is an (affine) scheme G with
morphisms e : SpecC — G (identity element), m: G x G — G
(group multiplication) and ¢ : G — G (group inversion) satisfying
the expected group axioms.
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Algebraic Groups

An (affine) algebraic group G is an (affine) scheme G with
morphisms e : SpecC — G (identity element), m: G x G — G
(group multiplication) and ¢ : G — G (group inversion) satisfying
the expected group axioms.

G = G, := SpecC[t, t ], with
o e :C[t,t7 ] = C,tr1
o m*:C[t,t7 1] » C[t,t Y ®@cC[t,t 7, t >t t
o *:C[t,t7Y = C[t,t7 ], t >t L.
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Algebraic Groups

An (affine) algebraic group G is an (affine) scheme G with
morphisms e : SpecC — G (identity element), m: G x G — G
(group multiplication) and ¢ : G — G (group inversion) satisfying
the expected group axioms.

G = G, := SpecC[t, t ], with

o e :C[t,t7 ] = C,tr1

o m*:C[t,t7 1] » C[t,t Y ®@cC[t,t 7, t >t t

o *:C[t,t7Y = C[t,t7 ], t >t L.
Can show: for any C-algebra A, G,,(A) is a group and is naturally
isomorphic to A*. In particular G,,(C) = C*.
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Affine Group Actions

Let X be a variety and let G be an algebraic group.
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Affine Group Actions

Let X be a variety and let G be an algebraic group.

An algebraic (left) group action of G on X is given by a morphism
of schemes o : G x X — X satisfying the following conditions:
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Affine Group Actions

Let X be a variety and let G be an algebraic group.

An algebraic (left) group action of G on X is given by a morphism
of schemes o : G x X — X satisfying the following conditions:

@ X — SpecC % X CEX G X % X is the identity on X.
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Affine Group Actions

Let X be a variety and let G be an algebraic group.

An algebraic (left) group action of G on X is given by a morphism
of schemes o : G x X — X satisfying the following conditions:

@ X — SpecC x X U G X % X is the identity on X.

@ The morphisms G x G x X Gx X3 X and
GXGXXledXGXX—>XareequaI.

1dG Xo
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Affine Group Actions

Let X be a variety and let G be an algebraic group.

An algebraic (left) group action of G on X is given by a morphism
of schemes o : G x X — X satisfying the following conditions:

@ X — SpecC x X U G X % X is the identity on X.

o The morphisms G x G x X 57 G x X % X and
GxGxX™EXG %X % X are equal.

The usual action of G7, = Spec C[t{™, ..., tF!] on A" given by

(t1y-voytn) - (X1y.e oy xn) = (B1X15 - -y EnXn)

is algebraic.
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Definition of a Toric Variety

An (algebraic) torus is any algebraic group of the form T = G/..
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Definition of a Toric Variety

An (algebraic) torus is any algebraic group of the form T = G/..

A toric variety is a normal variety X containing a copy of a torus T

as a dense open subset, such that the usual multiplication map
T x T — T extends to a group action T x X — X.
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Definition of a Toric Variety

An (algebraic) torus is any algebraic group of the form T = G/..

A toric variety is a normal variety X containing a copy of a torus T

as a dense open subset, such that the usual multiplication map
T x T — T extends to a group action T x X — X.

Some authors don't require toric varieties to be normal; we do.
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Definition of a Toric Variety

An (algebraic) torus is any algebraic group of the form T = G/..

A toric variety is a normal variety X containing a copy of a torus T

as a dense open subset, such that the usual multiplication map
T x T — T extends to a group action T x X — X.

Some authors don't require toric varieties to be normal; we do.

The embedding T < X is part of the data of a toric variety!
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Examples of Toric Varieties

Definition

A toric variety is a variety X containing a copy of a torus T as a
dense open subset, such that the usual multiplication map

T x T — T extends to a group action T x X — X.
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Examples of Toric Varieties

A toric variety is a variety X containing a copy of a torus T as a

dense open subset, such that the usual multiplication map
T x T — T extends to a group action T x X — X.

The following are examples of toric varieties:
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Examples of Toric Varieties

A toric variety is a variety X containing a copy of a torus T as a

dense open subset, such that the usual multiplication map
T x T — T extends to a group action T x X — X.

The following are examples of toric varieties:
e Tori GJ.
o Affine n-space A".
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Examples of Toric Varieties

A toric variety is a variety X containing a copy of a torus T as a

dense open subset, such that the usual multiplication map
T x T — T extends to a group action T x X — X.

The following are examples of toric varieties:
e Tori GJ.
o Affine n-space A".

@ Products of toric varieties.
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Examples of Toric Varieties

A toric variety is a variety X containing a copy of a torus T as a

dense open subset, such that the usual multiplication map
T x T — T extends to a group action T x X — X.

The following are examples of toric varieties:
e Tori GJ,.
Affine n-space A".

o
@ Products of toric varieties.
o

Projective n-space P": give P” homogeneous coordinates
[x0 : -+ : xp]. A dense open torus is given by identifying

T={[1:t1:--:ty):each tj e G} C P".
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Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the
point that it can be studied using combinatorics!
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The geometry of a toric variety is sufficiently constrained to the
point that it can be studied using combinatorics! As we'll see later,
toric varieties X can be described using fans ¥ C R".
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Why Study Toric Varieties?
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point that it can be studied using combinatorics! As we'll see later,
toric varieties X can be described using fans & C R". For instance,
the fan X contains information about the following:
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Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the
point that it can be studied using combinatorics! As we'll see later,
toric varieties X can be described using fans & C R". For instance,
the fan X contains information about the following:

@ orbits of the torus action of T on X;
@ whether X is non-singular and/or complete;

@ blow-ups and desingularisations of X;
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Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the
point that it can be studied using combinatorics! As we'll see later,
toric varieties X can be described using fans & C R". For instance,
the fan X contains information about the following:

orbits of the torus action of T on X;
whether X is non-singular and/or complete;
blow-ups and desingularisations of X;

the topology of X;

torus-invariant (Weil /Cartier) divisors and associated sheaf
cohomology groups;
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Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the
point that it can be studied using combinatorics! As we'll see later,
toric varieties X can be described using fans & C R". For instance,
the fan X contains information about the following:

orbits of the torus action of T on X;
whether X is non-singular and/or complete;
blow-ups and desingularisations of X;

the topology of X;

torus-invariant (Weil /Cartier) divisors and associated sheaf
cohomology groups;

the Picard group of X;
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Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the
point that it can be studied using combinatorics! As we'll see later,
toric varieties X can be described using fans & C R". For instance,
the fan X contains information about the following:

orbits of the torus action of T on X;
whether X is non-singular and/or complete;
blow-ups and desingularisations of X;

the topology of X;

torus-invariant (Weil /Cartier) divisors and associated sheaf
cohomology groups;

the Picard group of X;
Chow groups of X;
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Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the
point that it can be studied using combinatorics! As we'll see later,
toric varieties X can be described using fans & C R". For instance,
the fan X contains information about the following:

orbits of the torus action of T on X;
whether X is non-singular and/or complete;
blow-ups and desingularisations of X;

the topology of X;

torus-invariant (Weil /Cartier) divisors and associated sheaf
cohomology groups;

the Picard group of X;
Chow groups of X; and

the intersection product on X.
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Two of our Main Characters

Definition

A homomorphism of algebraic groups G — H is a morphism of the
underlying schemes which is compatible with the group structure
maps.
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Two of our Main Characters

Definition

A homomorphism of algebraic groups G — H is a morphism of the
underlying schemes which is compatible with the group structure
maps.

We now introduce two very important lattices we will use
frequently:
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Two of our Main Characters

Definition

A homomorphism of algebraic groups G — H is a morphism of the
underlying schemes which is compatible with the group structure
maps.

We now introduce two very important lattices we will use
frequently:
o M = Homuig ¢1p(GJ,, Gm) = Z", the character lattice.
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Two of our Main Characters

Definition

A homomorphism of algebraic groups G — H is a morphism of the
underlying schemes which is compatible with the group structure
maps.

We now introduce two very important lattices we will use
frequently:
o M = Homuig ¢1p(GJ,, Gm) = Z", the character lattice.
o N = Homuig orp(Gm, G,) = Z", the cocharacter lattice.
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Two of our Main Characters

Definition

A homomorphism of algebraic groups G — H is a morphism of the
underlying schemes which is compatible with the group structure
maps.

We now introduce two very important lattices we will use
frequently:
o M = Homuig ¢1p(GJ,, Gm) = Z", the character lattice.
o N = Homuig orp(Gm, G,) = Z", the cocharacter lattice.

There is a natural pairing (-,-) : N x M — Z; identifying M and N
with Z", this pairing is the usual Euclidean inner product on Z".
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Toric Varieties Give Fans

Suppose X is a toric variety with torus T = G, and lattices M
and N. Suppose we are also given A € N, so a morphism
AN:G,—TCX.
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Toric Varieties Give Fans

Suppose X is a toric variety with torus T = G, and lattices M
and N. Suppose we are also given A € N, so a morphism
AN G,—>TCX.

Question

Does lim¢_,0 A(t) exist? If so, what is this limit?
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Toric Varieties Give Fans

As an example, take X =P2 and T = {[1: t; : t2]}, so N = Z? via

(M, A2) € Z2) & (t = [1: 81 2 12)).
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Toric Varieties Give Fans

As an example, take X =P2 and T = {[1: t; : t2]}, so N = Z? via

(M, A2) € Z2) & (t = [1: 81 2 12)).

We have 7 cases:

Q@ )\, >0: limitis [1:0:0].

@ A\ > Xyand A\ <0 limitis [0:0:1].
© M < Xand A\; <O0: limitis [0:1:0].
Q@ M =0and A\ >0: limitis [1:1:0].
@ M =0and A\; >0: limitis [1:0:1].
Q@ M =X <0 limitis [0:1:1].

@ M\ =X=0: limitis[1:1:1].
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Toric Varieties Give Fans

These 7 cases give the following picture in N ®7 R = R?, which is
an example of a fan:

P*
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Toric Varieties Give Fans

Some more pictures:

IP'
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Toric Varieties Give Fans

Some more pictures:

IP'

A .
N
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Toric Varieties Give Fans

Any toric variety X determines a fan ¥ C Ng = N ®z R in this way.
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Toric Varieties Give Fans

Any toric variety X determines a fan ¥ C Ng = N ®z R in this way.

There are two questions to answer here:
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Toric Varieties Give Fans

Any toric variety X determines a fan ¥ C Ng = N ®z R in this way.

There are two questions to answer here:

@ What do we actually mean by a fan?
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Toric Varieties Give Fans

Any toric variety X determines a fan ¥ C Ng = N ®z R in this way.

There are two questions to answer here:
@ What do we actually mean by a fan?

@ Can this construction be reversed?
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A Word from our Sponsor: Convex Geometry

Let M and N be our (co)character lattices from before, with the
natural pairing (-, -).
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A Word from our Sponsor: Convex Geometry

Let M and N be our (co)character lattices from before, with the
natural pairing (-, -).

Definition

A (rational convex polyhedral) cone in Ng is the non-negative span
of a finite subset S C N.
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A Word from our Sponsor: Convex Geometry

Let M and N be our (co)character lattices from before, with the
natural pairing (-, -).

Definition

A (rational convex polyhedral) cone in Ng is the non-negative span
of a finite subset S C N.

Definition

Let o C Ng be a cone. The dual cone is the subset of Mg given by
oV={me Mg :(v,m)>0Vv o} A faceof o is any subset of
the fom 7 =oNut ={veo: (v,u) =0} for some u € oV. A
facet of o is a face of o of codimension one.
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A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):
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A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):

o (0V)V =o0.
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A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):
o (0V)V =o0.

@ Any face of a cone is a cone.
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We have the following basic properties (see Fulton §1.2):
o (0V)V =o0.

@ Any face of a cone is a cone.

@ Cones have finitely many faces.
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A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):
(aV)Y =o0.
Any face of a cone is a cone.

Cones have finitely many faces.

Any face of a face is a face.
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A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):
(aV)Y =o0.

Any face of a cone is a cone.

o
o
@ Cones have finitely many faces.
@ Any face of a face is a face.

o

Any intersection of faces is a face.
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A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):
(aV)Y =o0.
Any face of a cone is a cone.

Cones have finitely many faces.

°

°

°

@ Any face of a face is a face.

@ Any intersection of faces is a face.
°

Any proper face is the intersection of all facets containing it.
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A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):
(aV)Y =o0.
Any face of a cone is a cone.

Cones have finitely many faces.

Any intersection of faces is a face.

°
°

°

@ Any face of a face is a face.

°

@ Any proper face is the intersection of all facets containing it.
°

(Farkas' Theorem) the dual of a cone is a cone.
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A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):
(aV)Y =o0.

Any face of a cone is a cone.

Cones have finitely many faces.

Any face of a face is a face.

Any intersection of faces is a face.

Any proper face is the intersection of all facets containing it.

(Farkas' Theorem) the dual of a cone is a cone.

Definition

A fan in N is a collection X of cones in Nk that is closed under
taking faces of cones and intersections, such that the intersection
of any two cones 0,0’ € ¥ is a face of each.
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Affine Toric Varieties from Cones

Suppose o is a cone in Ng. Define S, = oV N M.
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Affine Toric Varieties from Cones

Suppose o is a cone in Ng. Define S, = oV N M.

Lemma (Gordon)

The semigroup S, is finitely generated.
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Affine Toric Varieties from Cones

Suppose o is a cone in Ng. Define S, = oV N M.

Lemma (Gordon)

The semigroup S, is finitely generated.

Consequently the “group algebra” C[S,] is a finitely generated
C-algebra, so U, = Spec C[S,] is an affine scheme of finite type
over C. As a complex vector space C[S,] has basis x™, where m
ranges over S,, and has multiplication x - X’”/ = X’"+m/.
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Affine Toric Varieties from Cones

Example

Take o C R? to be the cone spanned by e» and 2e; — ep. The
semigroup S, is generated by e], ef + €5 and e + 2e3, so
C[S,] = Cla, ab, ab’] = C[x, y,2]/(y* — x2).
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Affine Toric Varieties from Cones

Example

Take 0 C R? to be the cone spanned by e» and 2e; — ep. The
semigroup S, is generated by e], ef + €5 and e + 2e3, so
C[S,] = Cla, ab, ab’] = C[x, y,2]/(y* — x2).
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Affine Toric Varieties from Cones

U, = Spec C[S,] is an integral affine toric variety.
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Affine Toric Varieties from Cones

U, = Spec C[S,] is an integral affine toric variety.

As S; — M = S;py then C[S;] — C[M].
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Affine Toric Varieties from Cones

U, = Spec C[S,] is an integral affine toric variety.

As S; = M = Sypy then C[S;] — C[M]. But
C[M] = C[tf, ..., tF] (where M = Z"), so Spec C[M] = G, is a
torus, which is dense in U,
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Affine Toric Varieties from Cones

U, = Spec C[S,] is an integral affine toric variety.

As S; < M = Sy then C[Ss] — C[M]. But
C[M] = C[tf, ..., tF] (where M = Z"), so Spec C[M] = G, is a
torus, which is dense in U, (we'll come back to density shortly).
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Affine Toric Varieties from Cones

U, = Spec C[S,] is an integral affine toric variety.

As S; = M = Sypy then C[S;] — C[M]. But

C[M] = C[tf, ..., tF] (where M = Z"), so Spec C[M] = G, is a
torus, which is dense in U, (we'll come back to density shortly).
The natural multiplicative structure on Spec C[M] extends to an
action on U, via the map C[S,] — C[M] ®c C[S,] given by

X" X @ x™.
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Affine Toric Varieties from Cones

U, = Spec C[S,] is an integral normal affine toric variety.
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Affine Toric Varieties from Cones

U, = Spec C[S,] is an integral normal affine toric variety.

Proof (continued).

To show that U, is normal, it suffices to show that C[S,] is
integrally closed.
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Affine Toric Varieties from Cones

U, = Spec C[S,] is an integral normal affine toric variety.

Proof (continued).

To show that U, is normal, it suffices to show that C[S,] is
integrally closed. If o is generated by vy, ..., v, and if 7; is the ray
spanned by v;, then C[S,] = (_; C[S;].
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Affine Toric Varieties from Cones

U, = Spec C[S,] is an integral normal affine toric variety.

Proof (continued).

To show that U, is normal, it suffices to show that C[S,] is

integrally closed. If o is generated by vy, ..., v, and if 7; is the ray
spanned by v;, then C[S,] = (/_; C[S;,]. But

C[S,] = Clty, 5, . .., tF!] is integrally closed, and an intersection
of integrally closed domains is integrally closed. [
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Gluing Toric Affines Along Faces

Suppose T is a face of a cone 0 € £.. Choose m € S, such that
T=0cnNm-=on{{v,m) =0}
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Gluing Toric Affines Along Faces

Suppose T is a face of a cone 0 € £.. Choose m € S, such that
T=0cnNm-=on{{v,m) =0}

Exercise

Show that we have an equality S; = S, N (Z<o - m).
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Gluing Toric Affines Along Faces

Suppose T is a face of a cone 0 € £.. Choose m € S, such that
T=0cnNm-=on{{v,m) =0}

Exercise

Show that we have an equality S; = S, N (Z<o - m).

Upshot: C[S,] < C[S;] corresponds to inverting x™, so U; is a
basic affine open of U,. Moreover, G, = Spec C[M] — U, factors
through the inclusion U, C U,.
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Gluing Toric Affines Along Faces

Suppose ¥ is a fan in Ng. We construct the scheme X5 by gluing
the affine schemes U,, U, along the common basic open U,
whenever 7 is a face of both ¢ and o’.
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Gluing Toric Affines Along Faces

Suppose ¥ is a fan in Ng. We construct the scheme X5 by gluing
the affine schemes U,, U, along the common basic open U,
whenever 7 is a face of both ¢ and o’.

Exercise
Show that S, = S, + S,» whenever 7 = o N o”.
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Gluing Toric Affines Along Faces

Suppose ¥ is a fan in Ng. We construct the scheme X5 by gluing
the affine schemes U,, U, along the common basic open U,
whenever 7 is a face of both ¢ and o’.

Exercise

Show that S, = S, + S,» whenever 7 = o N o”.

Xs is a toric variety.
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Gluing Toric Affines Along Faces

Suppose ¥ is a fan in Ng. We construct the scheme X5 by gluing
the affine schemes U,, U, along the common basic open U,
whenever 7 is a face of both ¢ and o’.

Exercise

Show that S, = S, + S,» whenever 7 = o N o”.

Xs is a toric variety.

As the gluing morphisms are compatible with the G/ -actions then
Xy is toric. It thus remains to show that Xy is separated, that is
the diagonal A : Xy — X5 X¢ Xz is a closed immersion.
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Gluing Toric Affines Along Faces

Xs is a toric variety.

Proof (continued).

Being a closed immersion is affine-local on the target and
Xs xc Xs = U, rex Us Xc Uz, so it suffices to show that
A U: — Uy, Xc Uy, is a closed immersion whenever 7 = 01 N 0».
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Gluing Toric Affines Along Faces

Xs is a toric variety.

Proof (continued).

Being a closed immersion is affine-local on the target and

Xy X¢ Xy = U(mEz U, x¢ U;, so it suffices to show that

A U: — Uy, Xc Uy, is a closed immersion whenever 7 = 01 N 0».
This will follow if the map C[S,,] ®c C[Ss,] — C[S;] is surjective,
since closed immersions of affine schemes correspond to surjective
ring maps.
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Gluing Toric Affines Along Faces

Xs is a toric variety.

Proof (continued).

Being a closed immersion is affine-local on the target and

Xy X¢ Xy = U(mEz U, x¢ U;, so it suffices to show that

A U: — Uy, Xc Uy, is a closed immersion whenever 7 = 01 N 0».
This will follow if the map C[S,,] ®c C[Ss,] — C[S;] is surjective,
since closed immersions of affine schemes correspond to surjective

ring maps. But surjectivity follows from S; = S,, + S,,. O
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