Toric Varieties Reading Group - Week 1

George Cooper

Hilary Term 2022

Today's Talk

Today: we'll cover the following things.

Today's Talk

Today: we'll cover the following things.

- Introduce and define toric varieties.

Today's Talk

Today: we'll cover the following things.

- Introduce and define toric varieties.
- Explain why studying toric varieties naturally leads to convex geometry.

Today's Talk

Today: we'll cover the following things.

- Introduce and define toric varieties.
- Explain why studying toric varieties naturally leads to convex geometry.
- Explain how to construct toric varieties from fans.

Today's Talk

Today: we'll cover the following things.

- Introduce and define toric varieties.
- Explain why studying toric varieties naturally leads to convex geometry.
- Explain how to construct toric varieties from fans.
- Organise speakers for the following talks!

Conventions

- We always assume our schemes are defined over the field \mathbb{C}, so for us "scheme" means \mathbb{C}-scheme.

Conventions

- We always assume our schemes are defined over the field \mathbb{C}, so for us "scheme" means \mathbb{C}-scheme.
- A variety X is an integral, separated scheme of finite type over $\mathbb{C} ; X$ is complete if the structure morphism $X \rightarrow$ Spec \mathbb{C} is proper.

Conventions

- We always assume our schemes are defined over the field \mathbb{C}, so for us "scheme" means \mathbb{C}-scheme.
- A variety X is an integral, separated scheme of finite type over $\mathbb{C} ; X$ is complete if the structure morphism $X \rightarrow \operatorname{Spec} \mathbb{C}$ is proper.
- If X is a variety then a point of X always means a closed point, i.e. an element of $X(\mathbb{C})$.

Conventions

- We always assume our schemes are defined over the field \mathbb{C}, so for us "scheme" means \mathbb{C}-scheme.
- A variety X is an integral, separated scheme of finite type over $\mathbb{C} ; X$ is complete if the structure morphism $X \rightarrow \operatorname{Spec} \mathbb{C}$ is proper.
- If X is a variety then a point of X always means a closed point, i.e. an element of $X(\mathbb{C})$.
- $\mathbb{A}^{n}=\operatorname{Spec} \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $\mathbb{P}^{n}=\operatorname{Proj} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$.

Algebraic Groups

Definition

An (affine) algebraic group G is an (affine) scheme G with morphisms $e: \operatorname{Spec} \mathbb{C} \rightarrow G$ (identity element), $m: G \times G \rightarrow G$ (group multiplication) and $\iota: G \rightarrow G$ (group inversion) satisfying the expected group axioms.

Algebraic Groups

Definition

An (affine) algebraic group G is an (affine) scheme G with morphisms $e: \operatorname{Spec} \mathbb{C} \rightarrow G$ (identity element), $m: G \times G \rightarrow G$ (group multiplication) and $\iota: G \rightarrow G$ (group inversion) satisfying the expected group axioms.

Example

$$
\begin{aligned}
G & =\mathbb{G}_{m}:=\operatorname{Spec} \mathbb{C}\left[t, t^{-1}\right] \text {, with } \\
& \text { - } e^{*}: \mathbb{C}\left[t, t^{-1}\right] \rightarrow \mathbb{C}, t \mapsto 1 \\
& \text { - } m^{*}: \mathbb{C}\left[t, t^{-1}\right] \rightarrow \mathbb{C}\left[t, t^{-1}\right] \otimes \mathbb{C}\left[t, t^{-1}\right], t \mapsto t \otimes t \\
& \text { - } \iota^{*}: \mathbb{C}\left[t, t^{-1}\right] \rightarrow \mathbb{C}\left[t, t^{-1}\right], t \mapsto t^{-1} .
\end{aligned}
$$

Algebraic Groups

Definition

An (affine) algebraic group G is an (affine) scheme G with morphisms $e: \operatorname{Spec} \mathbb{C} \rightarrow G$ (identity element), $m: G \times G \rightarrow G$ (group multiplication) and $\iota: G \rightarrow G$ (group inversion) satisfying the expected group axioms.

Example

$$
\begin{aligned}
G & =\mathbb{G}_{m}:=\operatorname{Spec} \mathbb{C}\left[t, t^{-1}\right] \text {, with } \\
& \text { - } e^{*}: \mathbb{C}\left[t, t^{-1}\right] \rightarrow \mathbb{C}, t \mapsto 1 \\
& \text { - } m^{*}: \mathbb{C}\left[t, t^{-1}\right] \rightarrow \mathbb{C}\left[t, t^{-1}\right] \otimes_{\mathbb{C}} \mathbb{C}\left[t, t^{-1}\right], t \mapsto t \otimes t \\
& \text { - } \iota^{*}: \mathbb{C}\left[t, t^{-1}\right] \rightarrow \mathbb{C}\left[t, t^{-1}\right], t \mapsto t^{-1}
\end{aligned}
$$

Can show: for any \mathbb{C}-algebra $A, \mathbb{G}_{m}(A)$ is a group and is naturally isomorphic to A^{\times}. In particular $\mathbb{G}_{m}(\mathbb{C})=\mathbb{C}^{\times}$.

Affine Group Actions

Let X be a variety and let G be an algebraic group.

Affine Group Actions

Let X be a variety and let G be an algebraic group.

Definition

An algebraic (left) group action of G on X is given by a morphism of schemes $\sigma: G \times X \rightarrow X$ satisfying the following conditions:

Affine Group Actions

Let X be a variety and let G be an algebraic group.

Definition

An algebraic (left) group action of G on X is given by a morphism of schemes $\sigma: G \times X \rightarrow X$ satisfying the following conditions:

- $X \rightarrow \operatorname{Spec} \mathbb{C} \times X \xrightarrow{\text { exid } X} G \times X \xrightarrow{\sigma} X$ is the identity on X.

Affine Group Actions

Let X be a variety and let G be an algebraic group.

Definition

An algebraic (left) group action of G on X is given by a morphism of schemes $\sigma: G \times X \rightarrow X$ satisfying the following conditions:

- $X \rightarrow \operatorname{Spec} \mathbb{C} \times X \xrightarrow{\text { exid } X} G \times X \xrightarrow{\sigma} X$ is the identity on X.
- The morphisms $G \times G \times X \xrightarrow{\mathrm{id}_{G} \times \sigma} G \times X \xrightarrow{\sigma} X$ and $G \times G \times X \xrightarrow{m \times \text { id } X} G \times X \xrightarrow{\sigma} X$ are equal.

Affine Group Actions

Let X be a variety and let G be an algebraic group.

Definition

An algebraic (left) group action of G on X is given by a morphism of schemes $\sigma: G \times X \rightarrow X$ satisfying the following conditions:

- $X \rightarrow \operatorname{Spec} \mathbb{C} \times X \xrightarrow{\text { exid }} G \times X \xrightarrow{\sigma} X$ is the identity on X.
- The morphisms $G \times G \times X \xrightarrow{\text { id }} \underset{\rightarrow}{\times \sigma} G \times X \xrightarrow{\sigma} X$ and $G \times G \times X \xrightarrow{m \times i d_{X}} G \times X \xrightarrow{\sigma} X$ are equal.

Example

The usual action of $\mathbb{G}_{m}^{n}=\operatorname{Spec} \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ on \mathbb{A}^{n} given by

$$
\left(t_{1}, \ldots, t_{n}\right) \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right)
$$

is algebraic.

Definition of a Toric Variety

Definition

An (algebraic) torus is any algebraic group of the form $T=\mathbb{G}_{m}^{n}$.

Definition of a Toric Variety

Definition

An (algebraic) torus is any algebraic group of the form $T=\mathbb{G}_{m}^{n}$.

Definition

A toric variety is a normal variety X containing a copy of a torus T as a dense open subset, such that the usual multiplication map $T \times T \rightarrow T$ extends to a group action $T \times X \rightarrow X$.

Definition of a Toric Variety

Definition

An (algebraic) torus is any algebraic group of the form $T=\mathbb{G}_{m}^{n}$.

Definition

A toric variety is a normal variety X containing a copy of a torus T as a dense open subset, such that the usual multiplication map $T \times T \rightarrow T$ extends to a group action $T \times X \rightarrow X$.

Remark

Some authors don't require toric varieties to be normal; we do.

Definition of a Toric Variety

Definition

An (algebraic) torus is any algebraic group of the form $T=\mathbb{G}_{m}^{n}$.

Definition

A toric variety is a normal variety X containing a copy of a torus T as a dense open subset, such that the usual multiplication map $T \times T \rightarrow T$ extends to a group action $T \times X \rightarrow X$.

Remark

Some authors don't require toric varieties to be normal; we do.

Warning

The embedding $T \hookrightarrow X$ is part of the data of a toric variety!

Examples of Toric Varieties

Definition

A toric variety is a variety X containing a copy of a torus T as a dense open subset, such that the usual multiplication map $T \times T \rightarrow T$ extends to a group action $T \times X \rightarrow X$.

Examples of Toric Varieties

Definition

A toric variety is a variety X containing a copy of a torus T as a dense open subset, such that the usual multiplication map $T \times T \rightarrow T$ extends to a group action $T \times X \rightarrow X$.

Example

The following are examples of toric varieties:

Examples of Toric Varieties

Definition

A toric variety is a variety X containing a copy of a torus T as a dense open subset, such that the usual multiplication map $T \times T \rightarrow T$ extends to a group action $T \times X \rightarrow X$.

Example

The following are examples of toric varieties:

- Tori \mathbb{G}_{m}^{n}.

Examples of Toric Varieties

Definition

A toric variety is a variety X containing a copy of a torus T as a dense open subset, such that the usual multiplication map $T \times T \rightarrow T$ extends to a group action $T \times X \rightarrow X$.

Example

The following are examples of toric varieties:

- Tori \mathbb{G}_{m}^{n}.
- Affine n-space \mathbb{A}^{n}.

Examples of Toric Varieties

Definition

A toric variety is a variety X containing a copy of a torus T as a dense open subset, such that the usual multiplication map
$T \times T \rightarrow T$ extends to a group action $T \times X \rightarrow X$.

Example

The following are examples of toric varieties:

- Tori \mathbb{G}_{m}^{n}.
- Affine n-space \mathbb{A}^{n}.
- Products of toric varieties.

Examples of Toric Varieties

Definition

A toric variety is a variety X containing a copy of a torus T as a dense open subset, such that the usual multiplication map $T \times T \rightarrow T$ extends to a group action $T \times X \rightarrow X$.

Example

The following are examples of toric varieties:

- Tori \mathbb{G}_{m}^{n}.
- Affine n-space \mathbb{A}^{n}.
- Products of toric varieties.
- Projective n-space \mathbb{P}^{n} : give \mathbb{P}^{n} homogeneous coordinates [$\left.x_{0}: \cdots: x_{n}\right]$. A dense open torus is given by identifying

$$
T=\left\{\left[1: t_{1}: \cdots: t_{n}\right]: \text { each } t_{i} \in \mathbb{G}_{m}\right\} \subset \mathbb{P}^{n}
$$

Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the point that it can be studied using combinatorics!

Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the point that it can be studied using combinatorics! As we'll see later, toric varieties X can be described using fans $\Sigma \subset \mathbb{R}^{n}$.

Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the point that it can be studied using combinatorics! As we'll see later, toric varieties X can be described using fans $\Sigma \subset \mathbb{R}^{n}$. For instance, the fan Σ contains information about the following:

Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the point that it can be studied using combinatorics! As we'll see later, toric varieties X can be described using fans $\Sigma \subset \mathbb{R}^{n}$. For instance, the fan Σ contains information about the following:

- orbits of the torus action of T on X;

Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the point that it can be studied using combinatorics! As we'll see later, toric varieties X can be described using fans $\Sigma \subset \mathbb{R}^{n}$. For instance, the fan Σ contains information about the following:

- orbits of the torus action of T on X;
- whether X is non-singular and/or complete;

Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the point that it can be studied using combinatorics! As we'll see later, toric varieties X can be described using fans $\Sigma \subset \mathbb{R}^{n}$. For instance, the fan Σ contains information about the following:

- orbits of the torus action of T on X;
- whether X is non-singular and/or complete;
- blow-ups and desingularisations of X;

Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the point that it can be studied using combinatorics! As we'll see later, toric varieties X can be described using fans $\Sigma \subset \mathbb{R}^{n}$. For instance, the fan Σ contains information about the following:

- orbits of the torus action of T on X;
- whether X is non-singular and/or complete;
- blow-ups and desingularisations of X;
- the topology of X;
- torus-invariant (Weil/Cartier) divisors and associated sheaf cohomology groups;

Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the point that it can be studied using combinatorics! As we'll see later, toric varieties X can be described using fans $\Sigma \subset \mathbb{R}^{n}$. For instance, the fan Σ contains information about the following:

- orbits of the torus action of T on X;
- whether X is non-singular and/or complete;
- blow-ups and desingularisations of X;
- the topology of X;
- torus-invariant (Weil/Cartier) divisors and associated sheaf cohomology groups;
- the Picard group of X;

Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the point that it can be studied using combinatorics! As we'll see later, toric varieties X can be described using fans $\Sigma \subset \mathbb{R}^{n}$. For instance, the fan Σ contains information about the following:

- orbits of the torus action of T on X;
- whether X is non-singular and/or complete;
- blow-ups and desingularisations of X;
- the topology of X;
- torus-invariant (Weil/Cartier) divisors and associated sheaf cohomology groups;
- the Picard group of X;
- Chow groups of X;

Why Study Toric Varieties?

The geometry of a toric variety is sufficiently constrained to the point that it can be studied using combinatorics! As we'll see later, toric varieties X can be described using fans $\Sigma \subset \mathbb{R}^{n}$. For instance, the fan Σ contains information about the following:

- orbits of the torus action of T on X;
- whether X is non-singular and/or complete;
- blow-ups and desingularisations of X;
- the topology of X;
- torus-invariant (Weil/Cartier) divisors and associated sheaf cohomology groups;
- the Picard group of X;
- Chow groups of X; and
- the intersection product on X.

Two of our Main Characters

Definition

A homomorphism of algebraic groups $G \rightarrow H$ is a morphism of the underlying schemes which is compatible with the group structure maps.

Two of our Main Characters

Definition

A homomorphism of algebraic groups $G \rightarrow H$ is a morphism of the underlying schemes which is compatible with the group structure maps.

We now introduce two very important lattices we will use frequently:

Two of our Main Characters

Definition

A homomorphism of algebraic groups $G \rightarrow H$ is a morphism of the underlying schemes which is compatible with the group structure maps.

We now introduce two very important lattices we will use frequently:

- $M=\operatorname{Hom}_{\text {alg } \operatorname{grp}}\left(\mathbb{G}_{m}^{n}, \mathbb{G}_{m}\right) \cong \mathbb{Z}^{n}$, the character lattice.

Two of our Main Characters

Definition

A homomorphism of algebraic groups $G \rightarrow H$ is a morphism of the underlying schemes which is compatible with the group structure maps.

We now introduce two very important lattices we will use frequently:

- $M=\operatorname{Hom}_{\text {alg grp }}\left(\mathbb{G}_{m}^{n}, \mathbb{G}_{m}\right) \cong \mathbb{Z}^{n}$, the character lattice.
- $N=\operatorname{Hom}_{\text {alg } \operatorname{grp}}\left(\mathbb{G}_{m}, \mathbb{G}_{m}^{n}\right) \cong \mathbb{Z}^{n}$, the cocharacter lattice.

Two of our Main Characters

Definition

A homomorphism of algebraic groups $G \rightarrow H$ is a morphism of the underlying schemes which is compatible with the group structure maps.

We now introduce two very important lattices we will use frequently:

- $M=\operatorname{Hom}_{\text {alg } \operatorname{grp}}\left(\mathbb{G}_{m}^{n}, \mathbb{G}_{m}\right) \cong \mathbb{Z}^{n}$, the character lattice.
- $N=\operatorname{Hom}_{\text {alg } \operatorname{grp}}\left(\mathbb{G}_{m}, \mathbb{G}_{m}^{n}\right) \cong \mathbb{Z}^{n}$, the cocharacter lattice.

There is a natural pairing $\langle\cdot, \cdot\rangle: N \times M \rightarrow \mathbb{Z}$; identifying M and N with \mathbb{Z}^{n}, this pairing is the usual Euclidean inner product on \mathbb{Z}^{n}.

Toric Varieties Give Fans

Suppose X is a toric variety with torus $T \equiv \mathbb{G}_{m}^{n}$ and lattices M and N. Suppose we are also given $\lambda \in N$, so a morphism $\lambda: \mathbb{G}_{m} \rightarrow T \subset X$.

Toric Varieties Give Fans

Suppose X is a toric variety with torus $T \equiv \mathbb{G}_{m}^{n}$ and lattices M and N. Suppose we are also given $\lambda \in N$, so a morphism $\lambda: \mathbb{G}_{m} \rightarrow T \subset X$.

Question

Does $\lim _{t \rightarrow 0} \lambda(t)$ exist? If so, what is this limit?

Toric Varieties Give Fans

As an example, take $X=\mathbb{P}^{2}$ and $T=\left\{\left[1: t_{1}: t_{2}\right]\right\}$, so $N \equiv \mathbb{Z}^{2}$ via

$$
\left(\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{Z}^{2}\right) \leftrightarrow\left(t \mapsto\left[1: t_{1}^{\lambda_{1}}: t_{2}^{\lambda_{2}}\right]\right) .
$$

Toric Varieties Give Fans

As an example, take $X=\mathbb{P}^{2}$ and $T=\left\{\left[1: t_{1}: t_{2}\right]\right\}$, so $N \equiv \mathbb{Z}^{2}$ via

$$
\left(\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{Z}^{2}\right) \leftrightarrow\left(t \mapsto\left[1: t_{1}^{\lambda_{1}}: t_{2}^{\lambda_{2}}\right]\right) .
$$

We have 7 cases:
(1) $\lambda_{1}, \lambda_{2}>0$: limit is $[1: 0: 0]$.
(2) $\lambda_{1}>\lambda_{2}$ and $\lambda_{2}<0$: limit is $[0: 0: 1]$.
(3) $\lambda_{1}<\lambda_{2}$ and $\lambda_{1}<0$: limit is $[0: 1: 0]$.
(9) $\lambda_{1}=0$ and $\lambda_{2}>0$: limit is $[1: 1: 0]$.
(5) $\lambda_{2}=0$ and $\lambda_{1}>0$: limit is $[1: 0: 1]$.
(6) $\lambda_{1}=\lambda_{2}<0$: limit is $[0: 1: 1]$.
(3) $\lambda_{1}=\lambda_{2}=0$: limit is $[1: 1: 1]$.

Toric Varieties Give Fans

These 7 cases give the following picture in $N \otimes_{\mathbb{Z}} \mathbb{R}=\mathbb{R}^{2}$, which is an example of a fan:

Toric Varieties Give Fans

Some more pictures:

$$
\mathbb{P}^{\prime}
$$

Toric Varieties Give Fans

Some more pictures:

$$
\mathbb{P}^{\prime}
$$

Toric Varieties Give Fans

Proposition

Any toric variety X determines a fan $\Sigma \subset N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$ in this way.

Toric Varieties Give Fans

Proposition

Any toric variety X determines a fan $\Sigma \subset N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$ in this way.
There are two questions to answer here:

Toric Varieties Give Fans

Proposition

Any toric variety X determines a fan $\Sigma \subset N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$ in this way.
There are two questions to answer here:
(1) What do we actually mean by a fan?

Toric Varieties Give Fans

Proposition

Any toric variety X determines a fan $\Sigma \subset N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$ in this way.
There are two questions to answer here:
(1) What do we actually mean by a fan?
(2) Can this construction be reversed?

A Word from our Sponsor: Convex Geometry

Let M and N be our (co)character lattices from before, with the natural pairing $\langle\cdot, \cdot\rangle$.

A Word from our Sponsor: Convex Geometry

Let M and N be our (co)character lattices from before, with the natural pairing $\langle\cdot, \cdot\rangle$.

Definition

A (rational convex polyhedral) cone in $N_{\mathbb{R}}$ is the non-negative span of a finite subset $S \subset N$.

A Word from our Sponsor: Convex Geometry

Let M and N be our (co)character lattices from before, with the natural pairing $\langle\cdot, \cdot\rangle$.

Definition

A (rational convex polyhedral) cone in $N_{\mathbb{R}}$ is the non-negative span of a finite subset $S \subset N$.

Definition

Let $\sigma \subset N_{\mathbb{R}}$ be a cone. The dual cone is the subset of $M_{\mathbb{R}}$ given by $\sigma^{\vee}=\left\{m \in M_{\mathbb{R}}:\langle v, m\rangle \geq 0 \forall v \in \sigma\right\}$. A face of σ is any subset of the form $\tau=\sigma \cap u^{\perp}=\{v \in \sigma:\langle v, u\rangle=0\}$ for some $u \in \sigma^{\vee}$. A facet of σ is a face of σ of codimension one.

A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):

A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2): - $\left(\sigma^{\vee}\right)^{\vee}=\sigma$.

A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):

- $\left(\sigma^{\vee}\right)^{\vee}=\sigma$.
- Any face of a cone is a cone.

A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):

- $\left(\sigma^{\vee}\right)^{\vee}=\sigma$.
- Any face of a cone is a cone.
- Cones have finitely many faces.

A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):

- $\left(\sigma^{\vee}\right)^{\vee}=\sigma$.
- Any face of a cone is a cone.
- Cones have finitely many faces.
- Any face of a face is a face.

A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):

- $\left(\sigma^{\vee}\right)^{\vee}=\sigma$.
- Any face of a cone is a cone.
- Cones have finitely many faces.
- Any face of a face is a face.
- Any intersection of faces is a face.

A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):

- $\left(\sigma^{\vee}\right)^{\vee}=\sigma$.
- Any face of a cone is a cone.
- Cones have finitely many faces.
- Any face of a face is a face.
- Any intersection of faces is a face.
- Any proper face is the intersection of all facets containing it.

A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):

- $\left(\sigma^{\vee}\right)^{\vee}=\sigma$.
- Any face of a cone is a cone.
- Cones have finitely many faces.
- Any face of a face is a face.
- Any intersection of faces is a face.
- Any proper face is the intersection of all facets containing it.
- (Farkas' Theorem) the dual of a cone is a cone.

A Word from our Sponsor: Convex Geometry

We have the following basic properties (see Fulton §1.2):

- $\left(\sigma^{\vee}\right)^{\vee}=\sigma$.
- Any face of a cone is a cone.
- Cones have finitely many faces.
- Any face of a face is a face.
- Any intersection of faces is a face.
- Any proper face is the intersection of all facets containing it.
- (Farkas' Theorem) the dual of a cone is a cone.

Definition

A fan in $N_{\mathbb{R}}$ is a collection Σ of cones in $N_{\mathbb{R}}$ that is closed under taking faces of cones and intersections, such that the intersection of any two cones $\sigma, \sigma^{\prime} \in \Sigma$ is a face of each.

Affine Toric Varieties from Cones

Suppose σ is a cone in $N_{\mathbb{R}}$. Define $S_{\sigma}=\sigma^{\vee} \cap M$.

Affine Toric Varieties from Cones

Suppose σ is a cone in $N_{\mathbb{R}}$. Define $S_{\sigma}=\sigma^{\vee} \cap M$.

Lemma (Gordon)

The semigroup S_{σ} is finitely generated.

Affine Toric Varieties from Cones

Suppose σ is a cone in $N_{\mathbb{R}}$. Define $S_{\sigma}=\sigma^{\vee} \cap M$.

Lemma (Gordon)

The semigroup S_{σ} is finitely generated.
Consequently the "group algebra" $\mathbb{C}\left[S_{\sigma}\right]$ is a finitely generated \mathbb{C}-algebra, so $U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is an affine scheme of finite type over \mathbb{C}. As a complex vector space $\mathbb{C}\left[S_{\sigma}\right]$ has basis χ^{m}, where m ranges over S_{σ}, and has multiplication $\chi^{m} \cdot \chi^{m^{\prime}}=\chi^{m+m^{\prime}}$.

Affine Toric Varieties from Cones

Example

Take $\sigma \subset \mathbb{R}^{2}$ to be the cone spanned by e_{2} and $2 e_{1}-e_{2}$. The semigroup S_{σ} is generated by $e_{1}^{*}, e_{1}^{*}+e_{2}^{*}$ and $e_{1}^{*}+2 e_{2}^{*}$, so $\mathbb{C}\left[S_{\sigma}\right]=\mathbb{C}\left[a, a b, a b^{2}\right]=\mathbb{C}[x, y, z] /\left(y^{2}-x z\right)$.

Affine Toric Varieties from Cones

Example

Take $\sigma \subset \mathbb{R}^{2}$ to be the cone spanned by e_{2} and $2 e_{1}-e_{2}$. The semigroup S_{σ} is generated by $e_{1}^{*}, e_{1}^{*}+e_{2}^{*}$ and $e_{1}^{*}+2 e_{2}^{*}$, so $\mathbb{C}\left[S_{\sigma}\right]=\mathbb{C}\left[a, a b, a b^{2}\right]=\mathbb{C}[x, y, z] /\left(y^{2}-x z\right)$.

Affine Toric Varieties from Cones

Proposition
 $U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is an integral affine toric variety.

Affine Toric Varieties from Cones

Proposition

$U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is an integral affine toric variety.

Proof.

As $S_{\sigma} \hookrightarrow M=S_{\{0\}}$ then $\mathbb{C}\left[S_{\sigma}\right] \hookrightarrow \mathbb{C}[M]$.

Affine Toric Varieties from Cones

Proposition

$U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is an integral affine toric variety.

Proof.

As $S_{\sigma} \hookrightarrow M=S_{\{0\}}$ then $\mathbb{C}\left[S_{\sigma}\right] \hookrightarrow \mathbb{C}[M]$. But
$\mathbb{C}[M]=\mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ (where $M \cong \mathbb{Z}^{n}$), so Spec $\mathbb{C}[M]=\mathbb{G}_{m}^{n}$ is a torus, which is dense in U_{σ}

Affine Toric Varieties from Cones

Proposition

$U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is an integral affine toric variety.

Proof.

As $S_{\sigma} \hookrightarrow M=S_{\{0\}}$ then $\mathbb{C}\left[S_{\sigma}\right] \hookrightarrow \mathbb{C}[M]$. But
$\mathbb{C}[M]=\mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ (where $M \cong \mathbb{Z}^{n}$), so Spec $\mathbb{C}[M]=\mathbb{G}_{m}^{n}$ is a torus, which is dense in U_{σ} (we'll come back to density shortly).

Affine Toric Varieties from Cones

Proposition

$U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is an integral affine toric variety.

Proof.

As $S_{\sigma} \hookrightarrow M=S_{\{0\}}$ then $\mathbb{C}\left[S_{\sigma}\right] \hookrightarrow \mathbb{C}[M]$. But
$\mathbb{C}[M]=\mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ (where $M \cong \mathbb{Z}^{n}$), so Spec $\mathbb{C}[M]=\mathbb{G}_{m}^{n}$ is a torus, which is dense in U_{σ} (we'll come back to density shortly). The natural multiplicative structure on Spec $\mathbb{C}[M]$ extends to an action on U_{σ} via the map $\mathbb{C}\left[S_{\sigma}\right] \rightarrow \mathbb{C}[M] \otimes_{\mathbb{C}} \mathbb{C}\left[S_{\sigma}\right]$ given by $\chi^{m} \mapsto \chi^{m} \otimes \chi^{m}$.

Affine Toric Varieties from Cones

Proposition
 $U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is an integral normal affine toric variety.

Affine Toric Varieties from Cones

Proposition

$U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is an integral normal affine toric variety.

Proof (continued).

To show that U_{σ} is normal, it suffices to show that $\mathbb{C}\left[S_{\sigma}\right]$ is integrally closed.

Affine Toric Varieties from Cones

Proposition

$U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is an integral normal affine toric variety.

Proof (continued).

To show that U_{σ} is normal, it suffices to show that $\mathbb{C}\left[S_{\sigma}\right]$ is integrally closed. If σ is generated by v_{1}, \ldots, v_{r} and if τ_{i} is the ray spanned by v_{i}, then $\mathbb{C}\left[S_{\sigma}\right]=\bigcap_{i=1}^{r} \mathbb{C}\left[S_{\tau_{i}}\right]$.

Affine Toric Varieties from Cones

Proposition

$U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is an integral normal affine toric variety.

Proof (continued).

To show that U_{σ} is normal, it suffices to show that $\mathbb{C}\left[S_{\sigma}\right]$ is integrally closed. If σ is generated by v_{1}, \ldots, v_{r} and if τ_{i} is the ray spanned by v_{i}, then $\mathbb{C}\left[S_{\sigma}\right]=\bigcap_{i=1}^{r} \mathbb{C}\left[S_{\tau_{i}}\right]$. But
$\mathbb{C}\left[S_{\tau_{i}}\right] \cong \mathbb{C}\left[t_{1}, t_{2}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ is integrally closed, and an intersection of integrally closed domains is integrally closed.

Gluing Toric Affines Along Faces

Suppose τ is a face of a cone $\sigma \in \Sigma$. Choose $m \in S_{\sigma}$ such that $\tau=\sigma \cap m^{\perp}=\sigma \cap\{\langle v, m\rangle=0\}$.

Gluing Toric Affines Along Faces

Suppose τ is a face of a cone $\sigma \in \Sigma$. Choose $m \in S_{\sigma}$ such that $\tau=\sigma \cap m^{\perp}=\sigma \cap\{\langle v, m\rangle=0\}$.

Exercise

Show that we have an equality $S_{\tau}=S_{\sigma} \cap\left(\mathbb{Z}_{\leq 0} \cdot m\right)$.

Gluing Toric Affines Along Faces

Suppose τ is a face of a cone $\sigma \in \Sigma$. Choose $m \in S_{\sigma}$ such that $\tau=\sigma \cap m^{\perp}=\sigma \cap\{\langle v, m\rangle=0\}$.

Exercise

Show that we have an equality $S_{\tau}=S_{\sigma} \cap\left(\mathbb{Z}_{\leq 0} \cdot m\right)$.
Upshot: $\mathbb{C}\left[S_{\sigma}\right] \hookrightarrow \mathbb{C}\left[S_{\tau}\right]$ corresponds to inverting χ^{m}, so U_{τ} is a basic affine open of U_{σ}. Moreover, $\mathbb{G}_{m}^{n}=\operatorname{Spec} \mathbb{C}[M] \hookrightarrow U_{\sigma}$ factors through the inclusion $U_{\tau} \subset U_{\sigma}$.

Gluing Toric Affines Along Faces

Suppose Σ is a fan in $N_{\mathbb{R}}$. We construct the scheme X_{Σ} by gluing the affine schemes $U_{\sigma}, U_{\sigma^{\prime}}$ along the common basic open U_{τ}, whenever τ is a face of both σ and σ^{\prime}.

Gluing Toric Affines Along Faces

Suppose Σ is a fan in $N_{\mathbb{R}}$. We construct the scheme X_{Σ} by gluing the affine schemes $U_{\sigma}, U_{\sigma^{\prime}}$ along the common basic open U_{τ}, whenever τ is a face of both σ and σ^{\prime}.

Exercise

Show that $S_{\tau}=S_{\sigma}+S_{\sigma^{\prime}}$ whenever $\tau=\sigma \cap \sigma^{\prime}$.

Gluing Toric Affines Along Faces

Suppose Σ is a fan in $N_{\mathbb{R}}$. We construct the scheme X_{Σ} by gluing the affine schemes $U_{\sigma}, U_{\sigma^{\prime}}$ along the common basic open U_{τ}, whenever τ is a face of both σ and σ^{\prime}.

Exercise

Show that $S_{\tau}=S_{\sigma}+S_{\sigma^{\prime}}$ whenever $\tau=\sigma \cap \sigma^{\prime}$.

Proposition

X_{Σ} is a toric variety.

Gluing Toric Affines Along Faces

Suppose Σ is a fan in $N_{\mathbb{R}}$. We construct the scheme X_{Σ} by gluing the affine schemes $U_{\sigma}, U_{\sigma^{\prime}}$ along the common basic open U_{τ}, whenever τ is a face of both σ and σ^{\prime}.

Exercise

Show that $S_{\tau}=S_{\sigma}+S_{\sigma^{\prime}}$ whenever $\tau=\sigma \cap \sigma^{\prime}$.

Proposition

X_{Σ} is a toric variety.

Proof.

As the gluing morphisms are compatible with the \mathbb{G}_{m}^{n}-actions then X_{Σ} is toric. It thus remains to show that X_{Σ} is separated, that is the diagonal $\Delta: X_{\Sigma} \rightarrow X_{\Sigma} \times_{\mathbb{C}} X_{\Sigma}$ is a closed immersion.

Gluing Toric Affines Along Faces

Suppose Σ is a fan in $N_{\mathbb{R}}$. We construct the scheme X_{Σ} by gluing the affine schemes $U_{\sigma}, U_{\sigma^{\prime}}$ along the common basic open U_{τ}, whenever τ is a face of both σ and σ^{\prime}.

Exercise

Show that $S_{\tau}=S_{\sigma}+S_{\sigma^{\prime}}$ whenever $\tau=\sigma \cap \sigma^{\prime}$.

Proposition

X_{Σ} is a toric variety.

Proof.

As the gluing morphisms are compatible with the \mathbb{G}_{m}^{n}-actions then X_{Σ} is toric. It thus remains to show that X_{Σ} is separated, that is the diagonal $\Delta: X_{\Sigma} \rightarrow X_{\Sigma} \times_{\mathbb{C}} X_{\Sigma}$ is a closed immersion.

Gluing Toric Affines Along Faces

Proposition

X_{Σ} is a toric variety.

Proof (continued).

Being a closed immersion is affine-local on the target and $X_{\Sigma} \times_{\mathbb{C}} X_{\Sigma}=\bigcup_{\sigma, \tau \in \Sigma} U_{\sigma} \times_{\mathbb{C}} U_{\tau}$, so it suffices to show that $\Delta: U_{\tau} \rightarrow U_{\sigma_{1}} \times \mathbb{C} U_{\sigma_{2}}$ is a closed immersion whenever $\tau=\sigma_{1} \cap \sigma_{2}$.

Gluing Toric Affines Along Faces

Proposition

X_{Σ} is a toric variety.

Proof (continued).

Being a closed immersion is affine-local on the target and $X_{\Sigma} \times_{\mathbb{C}} X_{\Sigma}=\bigcup_{\sigma, \tau \in \Sigma} U_{\sigma} \times_{\mathbb{C}} U_{\tau}$, so it suffices to show that
$\Delta: U_{\tau} \rightarrow U_{\sigma_{1}} \times \mathbb{C} U_{\sigma_{2}}$ is a closed immersion whenever $\tau=\sigma_{1} \cap \sigma_{2}$. This will follow if the map $\mathbb{C}\left[S_{\sigma_{1}}\right] \otimes_{\mathbb{C}} \mathbb{C}\left[S_{\sigma_{2}}\right] \rightarrow \mathbb{C}\left[S_{\tau}\right]$ is surjective, since closed immersions of affine schemes correspond to surjective ring maps.

Gluing Toric Affines Along Faces

Proposition

X_{Σ} is a toric variety.

Proof (continued).

Being a closed immersion is affine-local on the target and $X_{\Sigma} \times_{\mathbb{C}} X_{\Sigma}=\bigcup_{\sigma, \tau \in \Sigma} U_{\sigma} \times_{\mathbb{C}} U_{\tau}$, so it suffices to show that
$\Delta: U_{\tau} \rightarrow U_{\sigma_{1}} \times \mathbb{C} U_{\sigma_{2}}$ is a closed immersion whenever $\tau=\sigma_{1} \cap \sigma_{2}$. This will follow if the map $\mathbb{C}\left[S_{\sigma_{1}}\right] \otimes_{\mathbb{C}} \mathbb{C}\left[S_{\sigma_{2}}\right] \rightarrow \mathbb{C}\left[S_{\tau}\right]$ is surjective, since closed immersions of affine schemes correspond to surjective ring maps. But surjectivity follows from $S_{\tau}=S_{\sigma_{1}}+S_{\sigma_{2}}$.

