ORBIT-CONE CORRESPONDENCE

Andy Pollock
\square

To show there is one T_{N}-orbit of X_{Δ} for each cone $\sigma \in \Delta$.
To describe the closure of an orbit as its own toric variety.
Classify the open and closed T_{N}-stable subschemes of X_{Δ}.

ORBITS OF \mathbb{C}^{n}

The torus $\left(\mathbb{C}^{*}\right)^{n}$ acts on the toric variety \mathbb{C}^{n} by multiplication on coordinates as we expect.
Clearly the orbits are in bijection with subsets $I \subset\{1, \ldots, n\}$: $O_{I}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: z_{i}=0\right.$ if $i \in I, z_{i} \neq 0$ if $\left.i \notin I\right\}$.
Each $O_{I} \cong\left(\mathbb{C}^{*}\right)^{n-|I|}$ via its components that are non-zero.
Notice that O_{J} is contained in the closure of O_{I} if and only if $I \subset J$.

ORBITS OF \mathbb{C}^{n}

We can realise \mathbb{C}^{n} as the toric variety U_{σ} with σ generated by e_{1}, \ldots, e_{n} in \mathbb{Z}^{n}.
Then a subset $I \subset\{1, \ldots, n\}$ corresponds to a face of σ, namely τ_{I} generated by the e_{i} with $i \in I$.
Note $U_{\tau_{\varnothing}}=U_{\{0\}}=\left(\mathbb{C}^{*}\right)^{n}$ and $U_{\tau_{\{1, \ldots, n\}}}=U_{\sigma}=\mathbb{C}^{n}$.
In general we get $U_{\tau_{J}}$ contained in $\overline{U_{\tau_{I}}}$ whenever $I \subset J$.

BACK TO BASICS

Consider an affine toric variety $U_{\sigma}=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$.
A point $x \in U_{\sigma}$ is given by a semigroup homomorphism

$$
x: S_{\sigma} \rightarrow \mathbb{C}, \quad x(0)=1
$$

The torus $T_{N}=\operatorname{Hom}_{s g}\left(M, \mathbb{C}^{*}\right)$ acts on U_{σ} by

$$
t \cdot x: S_{\sigma} \rightarrow \mathbb{C}, \quad u \mapsto t(u) x(u) .
$$

If Δ is a fan N, then T_{N} acts on the toric variety X_{Δ} by acting on the covering opens $\left\{U_{\sigma}\right\}_{\sigma \in \Delta}$ as above.

POINTS OF U_{σ}

If $x: S_{\sigma} \rightarrow \mathbb{C}$ defines a point in U_{σ} then we have

$$
S_{\sigma}=x^{-1}(0) \sqcup x^{-1}\left(\mathbb{C}^{*}\right)
$$

We always have $x^{-1}\left(\mathbb{C}^{*}\right)=\tau^{\perp} \cap S_{\sigma}$ for some face $\tau \prec \sigma^{[1,55.3]}$.

Note also that $t \cdot x$ and x give the same decomposition. So we get a T_{N}-stable decomposition

$$
U_{\sigma}=\operatorname{Hom}_{s g}\left(S_{\sigma}, \mathbb{C}\right) \equiv \coprod_{\tau<\sigma} \operatorname{Hom}_{s g}\left(\tau^{\perp} \cap S_{\sigma}, \mathbb{C}^{*}\right)
$$

ORBITS OF $U_{\sigma}\left(\right.$ AND $\left.X_{\Delta}\right)$

Let $\tau<\sigma$ and $O_{\tau}=\operatorname{Hom}_{s g}\left(\tau^{\perp} \cap S_{\sigma}, \mathbb{C}^{*}\right) \subset U_{\sigma}$. Notice

$$
\operatorname{Hom}_{s g}\left(\tau^{\perp} \cap S_{\sigma}, \mathbb{C}^{*}\right) \equiv \operatorname{Hom}\left(\tau^{\perp} \cap M, \mathbb{C}^{*}\right)
$$

This is just the torus associated with the lattice N / N_{τ} where N_{τ} is the sublattice generated by τ.

Consider $x_{\tau} \in O_{\tau}$ defined by sending all $\tau^{\perp} \cap M$ to $1 \in \mathbb{C}^{*}$.
Given $x \in O_{\tau}$, the surjection $N \rightarrow N / N_{\tau}$ implies we can find $t \in T_{N}$ with $t \cdot x_{\tau}=x$. We therefore see that O_{τ} is an orbit of U_{σ} and X_{Δ}.

STABLE AFFINE OPENS OF X_{σ}

We have shown that there is bijection between cones in Δ and orbits of X_{Δ} via $\tau \mapsto O_{\tau}$.
The orbit decomposition of U_{σ} is

$$
U_{\sigma}=\coprod_{\tau<\sigma} \operatorname{Hom}_{s g}\left(\tau^{\perp} \cap S_{\sigma}, \mathbb{C}^{*}\right)=\coprod_{\tau<\sigma} O_{\tau}
$$

One can show all T_{N}-stable affine opens have this form ${ }^{[1,85.8]}$. In particular X_{Δ} is affine if and only it has a unique maximal cone, i.e. Δ consists of a cone σ and all its faces.

THE ORBIT CLOSURE $V(\tau)$

Let τ be a cone in Δ. We saw that O_{τ} can be identified with the torus $T_{N / N_{\tau}}$.

In fact for each $\sigma \in \Delta$ with $\tau<\sigma$, let $\bar{\sigma}$ be its image in N / N_{τ}. Then $\operatorname{Star}(\tau)=\{\bar{\sigma}: \tau \prec \sigma\}$ is a fan in N / N_{τ}.

Let $V(\tau)$ be the toric variety associated to this fan. Then the torus associated to the zero cone is O_{τ} and is dense in $V(\tau)$.

EMBEDDING $V(\tau)$ IN X_{Δ}

Note that $V(\tau)$ is covered by affine opens

$$
\left\{\operatorname{Spec}\left(\mathbb{C}\left[S_{\bar{\sigma}}\right]\right)\right\}_{\tau<\sigma} \equiv\left\{\operatorname{Spec}\left(\mathbb{C}\left[\tau^{\perp} \cap S_{\sigma}\right]\right)\right\}_{\tau<\sigma}
$$

For each $\sigma \in \Delta$ with $\tau<\sigma$ we have a surjection of rings $\mathbb{C}\left[S_{\sigma}\right] \rightarrow \mathbb{C}\left[\tau^{\perp} \cap S_{\sigma}\right]$ given by mapping any χ^{u} with u outside of τ^{\perp} to zero. This uses that $\tau \prec \sigma$.

These affine closed immersions glue to embed $V(\tau)$ as a closed subscheme in X_{Δ}. Then $\overline{O_{\tau}}=V(\tau)$.

ORBIT DECOMPOSITION OF $V(\tau)$

Treating $V(\tau)$ as a toric variety and thinking about orbits as we did for X_{Δ}, we see that

$$
V(\tau)=\coprod_{\bar{\sigma} \in \operatorname{Star}(\tau)} O_{\bar{\sigma}}=\coprod_{\sigma>\tau} O_{\tau}
$$

MORE ON $V(\tau)$

The ideal in $\mathbb{C}\left[S_{\sigma}\right]$ defining $V(\tau) \cap U_{\sigma}$ is the kernel of $\mathbb{C}\left[S_{\sigma}\right] \rightarrow \mathbb{C}\left[\tau^{\perp} \cap S_{\sigma}\right]$. Clearly this is

$$
\operatorname{span}_{\mathbb{C}}\left\{\chi^{u}: u \in S_{\sigma} \backslash \tau^{\perp}\right\}
$$

Any T_{N}-stable closed subscheme of U_{σ} is defined by an ideal of the form above for some face $\tau^{[1,85.3]}$.

AN APPLICATION

Removing a maximal cone from a fan (but retaining its faces) corresponds to removing the corresponding closed orbit from X_{Δ}.
This often gives an easier way to compute X_{Δ} if $\Delta \subset \Delta^{\prime}$ for an already known $X_{\Delta^{\prime}}$.
For example, see the exercises in §।.4, page 22. These are easier computed now as $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or \mathbb{C}^{2} minus some orbits.

TOPOLOGY

\square

Compute the fundamental group of a toric variety.
Outline how one would explore the cohomology of a toric variety.
State some applications of knowing the cohomology (Euler characteristic and interpretation of second homology group).

ALGEBRAIC TORUS

The algebraic torus $T_{N} \equiv\left(\mathbb{C}^{*}\right)^{n}$ as an analytic space deformation retracts onto the n-torus $S^{1} \times \cdots \times S^{1}$.

As such it has the topology of an n-torus, i.e.

$$
\begin{aligned}
\pi_{1}\left(T_{N}\right) & \cong N \\
H^{i}\left(T_{N} ; \mathbb{Z}\right) & =\Lambda^{i} M .
\end{aligned}
$$

We go from T_{N} to X_{Δ} by adding some smaller orbits, which intuitively may 'close' holes in T_{N}.

ONE-PARAMETER SUBGROUPS

If T_{N} is the torus corresponding to a lattice N with dual M, then the 1-parameter subgroups of T_{N}, i.e. algebraic morphisms $\mathbb{C}^{*} \rightarrow T_{N}$ form a group isomorphic to N.
If $v \in N$, then remember $T_{N}=\operatorname{Hom}\left(M, \mathbb{C}^{*}\right)$. Then

$$
\lambda_{v}: \mathbb{C}^{*} \rightarrow T_{N}, \quad z \mapsto \lambda_{v}(z),
$$

Is defined by $\lambda_{v}(z)(u)=z^{\langle u, v\rangle}$.

FACT

Let X be any normal variety and let $U \subset X$ be an open subvariety. Then there is a surjection

$$
\pi_{1}(U) \rightarrow \pi_{1}(X),
$$

induced by the inclusion of U into X. ${ }^{[2]}$

FULL DIMENSION FANS

We will argue that if Δ contains a full dimensional cone σ then it is simply connected.

First, by the previous fact, it suffices to show that any loop in T_{N} is contractible in U_{σ} and hence also X_{Δ}.
We have $N \cong \pi_{1}\left(T_{N}\right)$, with $v \in N$ corresponding to the loop

$$
S^{1} \subset \mathbb{C}^{*} \rightarrow T_{N}, \quad z \mapsto \lambda_{v}(z)
$$

where λ_{v} is the 1-parameter subgroup corresponding to v.

FULL DIMENSION FANS

We only need to show such a loop λ_{v} is contractible. Now if $v \in \sigma \cap N$ then the limit of $\lambda_{v}(z)$ as $z \rightarrow 0$ exists in U_{σ}.
Indeed if $x \in \operatorname{Hom}_{s g}\left(S_{\sigma}, \mathbb{C}\right)$, then for any $u \in S_{\sigma}$ we have

$$
\lambda_{v}(z)(u)=z^{<u, v>}
$$

The limit as $z \rightarrow 0$ exists. It is 1 if $u \in \sigma^{\perp}$ and 0 otherwise.
We can therefore expand λ_{v} from \mathbb{C}^{*} to U_{σ}, and

$$
\lambda_{v, t}(z)=\lambda_{v}(t z), \quad z \in S^{1}, t \in[0,1]
$$

is a contraction of the loop λ_{z} to a point.

LOWER DIMENSION CONES

If σ is a k-dimensional cone in an n-dimensional lattice, then from earlier, the orbit O_{σ} of U_{σ} is identified with $T_{N / N_{\sigma}}$.

We know that if σ^{\prime} is the cone σ considered in N_{σ} then

$$
U_{\sigma}=U_{\sigma^{\prime}} \times T_{N / N_{\sigma}} .
$$

Now σ^{\prime} has full dimension in N_{σ} by definition so

$$
\pi_{1}\left(U_{\sigma}\right) \cong N / N_{\sigma}
$$

FUNDAMENTAL GROUP

We now have $\pi_{1}\left(U_{\sigma}\right) \cong N / N_{\sigma}$ for any affine toric variety.
One can use van-Kampen's theorem on the open cover $\left\{U_{\sigma}\right\}_{\sigma \in \Delta}$ to proof that

$$
\pi_{1}\left(X_{\Delta}\right) \cong N / \Sigma_{\sigma \in \Delta} N_{\sigma}=N / N^{\prime}
$$

Where N^{\prime} is the sublattice generated by all $\sigma \cap N$.

DEFORMATION RETRACTION

We can make our previous statements on the fundamental groups even stronger.
In fact an affine toric variety U_{σ} deformation retracts onto its unique closed orbit O_{σ}.
A homotopy is straightforward to construct.

COHOMOLOGY, AFFINE CASE

An affine toric variety U_{σ} deformation retracts onto its torus $O_{\sigma} \equiv T_{N / N_{\sigma}}$.
The dual of N / N_{σ} is $\sigma^{\perp} \cap M$, therefore the cohomology of U_{σ} is given by

$$
H^{i}\left(U_{\sigma} ; \mathbb{Z}\right) \cong \Lambda^{i}\left(\sigma^{\perp} \cap M\right)
$$

COHOMOLOGY, GENERAL CASE

One can explore the cohomology of a general toric variety X_{Δ} using spectral sequences. There are two interesting facts this gives.
The first is that the topological Euler characteristic of X_{Δ} is equal to the number of full-dimensional cones in Δ.

SECOND COHOMOLOGY GROUP

If all maximal cones have full-dimension, such as when X_{Δ} is compact, then spectral sequences give the second cohomology group $H^{2}\left(X_{\Delta}\right)$ as equal to the kernel of $\oplus_{i<j}\left(\sigma_{i}^{\perp} \cap \sigma_{j}^{\perp} \cap M\right) \rightarrow \bigoplus_{i<j<k}\left(\sigma_{i}^{\perp} \cap \sigma_{j}^{\perp} \cap \sigma_{k}^{\perp} \cap M\right)$.
The importance of this cohomology group is that it is isomorphic to the Picard group $\operatorname{Pic}\left(X_{\Delta}\right)$.

OTHER REFERENCES

[1] T. Oda, Lectures on Torus Embeddings and Applications
[2] W. Fulton and R. Lazarsfeld, Connectivity and its applications in algebraic geometry

