ORBIT-CONE CORRESPONDENCE

Andy Pollock

AIMS

To show there is one T_N -orbit of X_Δ for each cone $\sigma \in \Delta$. To describe the closure of an orbit as its own toric variety. Classify the open and closed T_N -stable subschemes of X_Δ .

ORBITS OF \mathbb{C}^n

The torus $(\mathbb{C}^*)^n$ acts on the toric variety \mathbb{C}^n by multiplication on coordinates as we expect.

Clearly the orbits are in bijection with subsets $I \subset \{1, ..., n\}$: $O_I = \{(z_1, ..., z_n) \in \mathbb{C}^n : z_i = 0 \text{ if } i \in I, z_i \neq 0 \text{ if } i \notin I\}.$

Each $O_I \cong (\mathbb{C}^*)^{n-|I|}$ via its components that are non-zero. Notice that O_J is contained in the closure of O_I if and only if $I \subset J$.

ORBITS OF \mathbb{C}^n

We can realise \mathbb{C}^n as the toric variety U_{σ} with σ generated by e_1, \ldots, e_n in \mathbb{Z}^n .

Then a subset $I \subset \{1, ..., n\}$ corresponds to a face of σ , namely τ_I generated by the e_i with $i \in I$.

Note $U_{\tau_{\emptyset}} = U_{\{0\}} = (\mathbb{C}^*)^n$ and $U_{\tau_{\{1,\dots,n\}}} = U_{\sigma} = \mathbb{C}^n$.

In general we get U_{τ_I} contained in $\overline{U_{\tau_I}}$ whenever $I \subset J$.

BACK TO BASICS

Consider an affine toric variety $U_{\sigma} = Spec(\mathbb{C}[S_{\sigma}])$.

A point $x \in U_{\sigma}$ is given by a semigroup homomorphism $x: S_{\sigma} \to \mathbb{C}, \quad x(0) = 1.$

The torus $T_N = Hom_{sg}(M, \mathbb{C}^*)$ acts on U_σ by $t \cdot x : S_\sigma \to \mathbb{C}, \quad u \mapsto t(u)x(u).$

If Δ is a fan N, then T_N acts on the toric variety X_{Δ} by acting on the covering opens $\{U_{\sigma}\}_{\sigma \in \Delta}$ as above.

POINTS OF
$$U_{\sigma}$$

If
$$x : S_{\sigma} \to \mathbb{C}$$
 defines a point in U_{σ} then we have
 $S_{\sigma} = x^{-1}(0) \sqcup x^{-1}(\mathbb{C}^*).$

We always have $x^{-1}(\mathbb{C}^*) = \tau^{\perp} \cap S_{\sigma}$ for some face $\tau \prec \sigma^{[1,\S5.3]}$.

Note also that $t \cdot x$ and x give the same decomposition. So we get a T_N -stable decomposition

$$U_{\sigma} = Hom_{sg}(S_{\sigma}, \mathbb{C}) \equiv \coprod_{\tau < \sigma} Hom_{sg}(\tau^{\perp} \cap S_{\sigma}, \mathbb{C}^{*})$$

ORBITS OF U_{σ} (AND X_{Δ})

Let
$$\tau \prec \sigma$$
 and $O_{\tau} = Hom_{sg}(\tau^{\perp} \cap S_{\sigma}, \mathbb{C}^*) \subset U_{\sigma}$. Notice
 $Hom_{sg}(\tau^{\perp} \cap S_{\sigma}, \mathbb{C}^*) \equiv Hom(\tau^{\perp} \cap M, \mathbb{C}^*).$

This is just the torus associated with the lattice N/N_{τ} where N_{τ} is the sublattice generated by τ .

Consider $x_{\tau} \in O_{\tau}$ defined by sending all $\tau^{\perp} \cap M$ to $1 \in \mathbb{C}^*$.

Given $x \in O_{\tau}$, the surjection $N \to N/N_{\tau}$ implies we can find $t \in T_N$ with $t \cdot x_{\tau} = x$. We therefore see that O_{τ} is an orbit of U_{σ} and X_{Δ} .

STABLE AFFINE OPENS OF X_{σ}

We have shown that there is bijection between cones in Δ and orbits of X_{Δ} via $\tau \mapsto O_{\tau}$.

The orbit decomposition of U_{σ} is $U_{\sigma} = \coprod_{\tau < \sigma} Hom_{sg}(\tau^{\perp} \cap S_{\sigma}, \mathbb{C}^{*}) = \coprod_{\tau < \sigma} O_{\tau}.$

One can show all T_N -stable affine opens have this form^[1,§5.8]. In particular X_Δ is affine if and only it has a unique maximal cone, i.e. Δ consists of a cone σ and all its faces.

THE ORBIT CLOSURE $V(\tau)$

Let τ be a cone in Δ . We saw that O_{τ} can be identified with the torus $T_{N/N_{\tau}}$.

In fact for each $\sigma \in \Delta$ with $\tau \prec \sigma$, let $\overline{\sigma}$ be its image in N/N_{τ} . Then $Star(\tau) = \{\overline{\sigma} : \tau \prec \sigma\}$ is a fan in N/N_{τ} .

Let $V(\tau)$ be the toric variety associated to this fan. Then the torus associated to the zero cone is O_{τ} and is dense in $V(\tau)$.

EMBEDDING $V(\tau)$ IN X_{Δ}

Note that $V(\tau)$ is covered by affine opens $\{Spec(\mathbb{C}[S_{\overline{\sigma}}])\}_{\tau < \sigma} \equiv \{Spec(\mathbb{C}[\tau^{\perp} \cap S_{\sigma}])\}_{\tau < \sigma}.$

For each $\sigma \in \Delta$ with $\tau \prec \sigma$ we have a surjection of rings $\mathbb{C}[S_{\sigma}] \to \mathbb{C}[\tau^{\perp} \cap S_{\sigma}]$ given by mapping any χ^{u} with u outside of τ^{\perp} to zero. This uses that $\tau \prec \sigma$.

These affine closed immersions glue to embed $V(\tau)$ as a closed subscheme in X_{Δ} . Then $\overline{O_{\tau}} = V(\tau)$.

ORBIT DECOMPOSITION OF $V(\tau)$

Treating $V(\tau)$ as a toric variety and thinking about orbits as we did for X_{Δ} , we see that

$$V(\tau) = \coprod_{\overline{\sigma} \in Star(\tau)} O_{\overline{\sigma}} = \coprod_{\sigma > \tau} O_{\tau}.$$

MORE ON $V(\tau)$

The ideal in $\mathbb{C}[S_{\sigma}]$ defining $V(\tau) \cap U_{\sigma}$ is the kernel of $\mathbb{C}[S_{\sigma}] \to \mathbb{C}[\tau^{\perp} \cap S_{\sigma}]$. Clearly this is $span_{\mathbb{C}}\{\chi^{u} : u \in S_{\sigma} \setminus \tau^{\perp}\}.$

Any T_N -stable closed subscheme of U_{σ} is defined by an ideal of the form above for some face $\tau^{[1,\S^{5,3}]}$.

AN APPLICATION

Removing a maximal cone from a fan (but retaining its faces) corresponds to removing the corresponding closed orbit from X_{Δ} .

This often gives an easier way to compute X_{Δ} if $\Delta \subset \Delta'$ for an already known $X_{\Delta'}$.

For example, see the exercises in §1.4, page 22. These are easier computed now as $\mathbb{P}^1 \times \mathbb{P}^1$ or \mathbb{C}^2 minus some orbits.

TOPOLOGY

AIMS

Compute the fundamental group of a toric variety.

Outline how one would explore the cohomology of a toric variety.

State some applications of knowing the cohomology (Euler characteristic and interpretation of second homology group).

ALGEBRAIC TORUS

The algebraic torus $T_N \equiv (\mathbb{C}^*)^n$ as an analytic space deformation retracts onto the *n*-torus $S^1 \times \cdots \times S^1$.

As such it has the topology of an *n*-torus, i.e. $\pi_1(T_N) \cong N$, $H^i(T_N; \mathbb{Z}) = \wedge^i M$.

We go from T_N to X_Δ by adding some smaller orbits, which intuitively may 'close' holes in T_N .

ONE-PARAMETER SUBGROUPS

If T_N is the torus corresponding to a lattice N with dual M, then the 1-parameter subgroups of T_N , i.e. algebraic morphisms $\mathbb{C}^* \to T_N$ form a group isomorphic to N. If $v \in N$, then remember $T_N = Hom(M, \mathbb{C}^*)$. Then $\lambda_v : \mathbb{C}^* \to T_N, \qquad z \mapsto \lambda_v(z),$

Is defined by $\lambda_{v}(z)(u) = z^{\langle u,v \rangle}$.

Let X be any normal variety and let $U \subset X$ be an open subvariety. Then there is a surjection $\pi_1(U) \to \pi_1(X),$

induced by the inclusion of U into X.^[2]

FULL DIMENSION FANS

We will argue that if Δ contains a full dimensional cone σ then it is simply connected.

First, by the previous fact, it suffices to show that any loop in T_N is contractible in U_{σ} and hence also X_{Δ} .

We have $N \cong \pi_1(T_N)$, with $v \in N$ corresponding to the loop $S^1 \subset \mathbb{C}^* \to T_N$, $z \mapsto \lambda_v(z)$,

where λ_{v} is the 1-parameter subgroup corresponding to v.

FULL DIMENSION FANS

We only need to show such a loop λ_v is contractible. Now if $v \in \sigma \cap N$ then the limit of $\lambda_v(z)$ as $z \to 0$ exists in U_{σ} .

Indeed if $x \in Hom_{sg}(S_{\sigma}, \mathbb{C})$, then for any $u \in S_{\sigma}$ we have $\lambda_{v}(z)(u) = z^{\langle u,v \rangle}$.

The limit as $z \to 0$ exists. It is 1 if $u \in \sigma^{\perp}$ and 0 otherwise.

We can therefore expand λ_v from \mathbb{C}^* to U_σ , and $\lambda_{v,t}(z) = \lambda_v(tz), \qquad z \in S^1, t \in [0,1],$

is a contraction of the loop λ_z to a point.

LOWER DIMENSION CONES

If σ is a k-dimensional cone in an *n*-dimensional lattice, then from earlier, the orbit O_{σ} of U_{σ} is identified with $T_{N/N_{\sigma}}$.

We know that if σ' is the cone σ considered in N_{σ} then $U_{\sigma} = U_{\sigma'} \times T_{N/N_{\sigma}}$.

Now σ' has full dimension in N_{σ} by definition so $\pi_1(U_{\sigma}) \cong N/N_{\sigma}$

FUNDAMENTAL GROUP

We now have $\pi_1(U_{\sigma}) \cong N/N_{\sigma}$ for any affine toric variety.

One can use van-Kampen's theorem on the open cover $\{U_{\sigma}\}_{\sigma\in\Delta}$ to proof that $= (V_{\sigma}) \approx N/\Sigma = N/N'$

 $\pi_1(X_{\Delta}) \cong N/\Sigma_{\sigma \in \Delta} N_{\sigma} = N/N'$

Where N' is the sublattice generated by all $\sigma \cap N$.

DEFORMATION RETRACTION

We can make our previous statements on the fundamental groups even stronger.

In fact an affine toric variety U_{σ} deformation retracts onto its unique closed orbit O_{σ} .

A homotopy is straightforward to construct.

COHOMOLOGY, AFFINE CASE

An affine toric variety U_{σ} deformation retracts onto its torus $O_{\sigma} \equiv T_{N/N_{\sigma}}$.

The dual of N/N_{σ} is $\sigma^{\perp} \cap M$, therefore the cohomology of U_{σ} is given by

 $H^i(U_{\sigma};\mathbb{Z})\cong \wedge^i(\sigma^{\perp}\cap M).$

COHOMOLOGY, GENERAL CASE

One can explore the cohomology of a general toric variety X_{Δ} using spectral sequences. There are two interesting facts this gives.

The first is that the topological Euler characteristic of X_{Δ} is equal to the number of full-dimensional cones in Δ .

SECOND COHOMOLOGY GROUP

If all maximal cones have full-dimension, such as when X_{Δ} is compact, then spectral sequences give the second cohomology group $H^2(X_{\Delta})$ as equal to the kernel of $\bigoplus_{i < j} (\sigma_i^{\perp} \cap \sigma_j^{\perp} \cap M) \rightarrow \bigoplus_{i < j < k} (\sigma_i^{\perp} \cap \sigma_j^{\perp} \cap \sigma_k^{\perp} \cap M)$.

The importance of this cohomology group is that it is isomorphic to the Picard group $Pic(X_{\Delta})$.

OTHER REFERENCES

- [1] T. Oda, *Lectures on Torus Embeddings and Applications*
- [2] W. Fulton and R. Lazarsfeld, *Connectivity and its applications in algebraic geometry*