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Today’s Talk

Today: we’ll describe how to compute the Chow ring of a
non-singular toric variety, and how this relates to the singular
(co)homology of the underlying analytic space.

Remark

In this talk many of the results are stated only for non-singular
toric varieties for ease of exposition and to simplify some proofs.
However many of today’s results have analogues for simplicial toric
varieties (i.e. orbifold toric varieties) which hold for Chow
groups/homology groups with rational coefficients.
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Chow Groups

Let X be a separated, finite-type scheme over C.

Definition

The group Zk(X ) of k-cycles on X is the abelian group of formal
linear combinations

∑
i ni [Vi ], where each Vi is a k-dimensional

subvariety of X .

Suppose W ⊂ X is a subvariety of dimension k + 1 and
r ∈ C(W )∗ is a rational function. We set
div(r) =

∑
V ordV (r) · [V ], where the sum is taken over all

k-dimensional varieties V ⊂W and where for a, b ∈ OV ,W we set

ordV (a/b) = `OV ,W
(OV ,W /(a))− `OV ,W

(OV ,W /(b)).

The subgroup of Zk(X ) generated by the divisors div(r) is denoted
Rk(X ).
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Chow Groups

Definition

The kth Chow group of X is Ak(X ) = Zk(X )/Rk(X ), the group of
k-cycles modulo rational equivalence. If n = dimX , we write
Ak(X ) = An−k(X ).

Example

If X is a normal variety then An−1(X ) = Cl(X ) is the group of
Weil divisors modulo linear equivalence.
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Some Properties of Chow Groups

Proposition

For all k ≥ 0, Ak(X ) = Ak(Xred).

Proposition

If Y is a closed subscheme of X then for any k ≥ 0 there is an
exact sequence

Ak(Y ) Ak(X ) Ak(X \ Y ) 0

with the maps given by inclusion and restriction respectively.

Proposition

Ak(An) = 0 for all 0 ≤ k ≤ n − 1, and An(An) ∼= Z with generator
[An].
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Chow Groups of Toric Varieties

Now let X = X (∆) be a toric variety. X is normal, so
An−1(X ) = Cl(X ).

Last Time

The toric Weil divisors generate the group An−1(X ).

Proposition

The Chow group Ak(X ) is generated by the classes of the orbit
closures V (σ) = X (star(σ)) of the (n − k)-dimensional cones
σ ∈ ∆.
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Chow Groups of Toric Varieties

Proposition

The Chow group Ak(X ) is generated by the classes of the orbit
closures V (σ) = X (star(σ)) of the (n − k)-dimensional cones
σ ∈ ∆.

Let Xi =
⋃

dimσ≥n−i V (σ), and give Xi the reduced subscheme
structure. Then we have a filtration by closed subschemes
X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X−1 = ∅ and

Xi \ Xi−1 =
⊔

dimσ=n−i
Oσ

using the orbit/orbit closure relations from Week 4. We argue by
induction on i . Consider the exact sequence

Ak(Xi−1) Ak(Xi )
⊕

dimσ=n−i Ak(Oσ) 0.
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Chow Groups of Toric Varieties

Ak(Xi−1) Ak(Xi )
⊕

dimσ=n−i Ak(Oσ) 0.

We have that each orbit Oσ is an open subscheme of Ai , so
Ai (Oσ) = Z[Oσ] and Ak(Oσ) = 0 for k 6= i . Moreover the map
Ak(Xi )→ Ak(Oσ) sends [V (τ)] to [Oσ] if τ = σ and to 0 if
τ 6= σ. By dimension considerations Ai (Xi−1) = 0 so the map
Ai (Xi )→

⊕
dimσ=n−i Ai (Oσ) is an isomorphism. On the other

hand, for k < i we have
⊕

dimσ=n−i Ak(Oσ) = 0, so Ak(Xi−1)
surjects onto Ak(Xi ). We are then done by induction.
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Intersection Cycles

Suppose D is a Cartier divisor on a variety X .

Definition

The support supp(D) of D is the union of the codimension one
subvarieties W of X such that ordW (D) 6= 0. If V is an irreducible
subvariety, we say D meets V properly if V 6⊂ supp(D).

Suppose D meets the irreducible subvariety V properly. We may
then form the intersection cycle

D · V := [D|V ] ∈WDiv(V ).
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Intersection Cycles on Toric Varieties

Now assume X = X (∆) is toric, D =
∑

aiDi is T -Cartier and
V = V (σ). Then D|V is also T -Cartier, so

D · V (σ) =
∑

bγV (γ),

where the sum ranges over all cones γ containing σ with
dim(γ) = dim(σ) + 1.

We can compute the bγ as follows. Suppose γ is spanned by σ and
a finite set of minimal edge vectors vi for i ∈ Iγ . The lattice
Nγ/Nσ is one-dimensional; let e be the generator of this lattice
such that the image of each vi is a positive integer multiple si of e.

Claim

bγ = ai/si for all i ∈ Iγ , where ai is the coefficient in D of vi ↔ Di .
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Intersection Cycles on Toric Varieties

Claim

bγ = ai/si for all i ∈ Iγ , where ai is the coefficient in D of vi ↔ Di .

Fix a cone γ containing σ as a facet and let u(γ) ∈ M/M(γ) be
the linear function on γ corresponding to D:

Γ(Uγ ,O(D)) = C[Sγ ] · χu(γ) ⇐⇒ D|Uγ = div(χ−u(γ)).

The condition that V (σ) 6⊂ supp(D) translates as
u(γ) ∈ M(σ)/M(γ). By passing to Star(σ) and using the formula
ordV (τ)(div(χu)) = 〈u, vτ 〉, we have

bγ = −〈u(γ), e〉.
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Intersection Cycles on Toric Varieties

Claim

bγ = ai/si for all i ∈ Iγ , where ai is the coefficient in D of vi ↔ Di .

On the other hand, we have

ai = −〈u(γ), vi 〉.

As u(γ) ∈ M(σ)/M(γ) and as the image of vi in Nγ/Nσ is siei , it
follows that

ai = −〈u(γ), sie〉 = sibγ

as claimed.
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Intersection Cycles on Toric Varieties

In the case where X is non-singular, there is only one element
i = i(γ) ∈ Iγ , and si = 1. Hence bγ = ai(γ). In other words,

Dk · V (σ) =

{
V (γ) if σ and vk span a cone γ ∈ ∆,

0 otherwise.

Fact

In the former case, Dk and V (σ) meet transversally. In the latter
case, Dk and V (σ) are disjoint.
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Intersection Cycles Revisited

Let D be a Cartier divisor on a variety X . Suppose this time V is
an irreducible subvariety contained in supp(D). We can still make
sense of D · V as an element of AdimV−1(V ), by first finding a
Cartier divisor E on V such that OV (E ) ∼= OX (D)|V , then setting
D · V to be the rational equivalence class of the cycle
corresponding to E .

If f ∈ C(X ) is such that V is not contained in the support of
D ′ = D + div(f ), then D · V is represented by the cycle D ′ · V
defined previously, since rationally equivalent divisors on X
determine rationally equivalent cycles on V .
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Intersection Cycles Revisited

If X = X (∆) is toric, but this time V (σ) is contained in the
support of the T -Cartier divisor D, one can check that
D ′ = D + div(χu) works, where u ∈ M is any element mapping to
u(σ) ∈ M/M(σ), where u(σ) is the linear function on σ
corresponding to D.
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Intersection Products

Let X be a non-singular quasi-projective variety over C.

Theorem

There exists a unique associative, commutative, graded ring
structure with identity on A•(X ), called the intersection pairing,
satisfying the axioms A1-A7 of Hartshorne Appendix A.
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Intersection Products

Let us state the axioms we will need for this talk:

If Y and Z are subvarieties of X which intersect properly,
meaning that every irreducible component of Y ∩ Z has
codimension equal to codim(Y ) + codim(Z ), then
Y · Z =

∑
i(Y ,Z ;Wj)Wj , where the sum runs over the

irreducible components Wj of Y ∩ Z and where the integer
i(Y ,Z ;Wj) depends only on a neighbourhood of the generic
point of Wj on X .

If Y is a subvariety of X and if Z is an effective Cartier divisor
meeting Y properly, then Y · Z is the cycle associated to the
Cartier divisor Y ∩ Z on Y .

In particular, if Y and Z are non-singular subvarieties intersecting
transversally (i.e. TpY + TpZ = TpX for all p ∈ Y ∩ Z ), then
each i(Y ,Z ;Wj) = 1.
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Intersection Products on Toric Varieties

If X = X (∆) is any toric variety, and if σ, τ ∈ ∆ are cones, then as
schemes V (σ) ∩ V (τ) = V (γ) if σ and τ span the cone γ, and
V (σ) ∩ V (τ) = ∅ if σ and τ do not span a cone; to see this, recall
that V (σ) has the affine open cover {Uρ(σ)}, where ρ varies over
all cones in ∆ containing σ as a face.

Fact

Assume X is non-singular, and σ ∈ ∆ has minimal generators
vi1 , . . . , vik . Then V (σ) is the transversal intersection of the
divisors Di1 , . . . ,Dik .

As a consequence, if V (σ) and V (τ) have non-empty and proper
intersection, then V (σ) · V (τ) = V (γ) in A•(X ). As the classes
V (σ) generate the Chow ring, this completely determines the
intersection pairing on X !
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Example: the Chow Ring of P2

Consider P2 with its usual fan. The orbit closure of the unique
0-dimensional cone is the whole of P2, so A0(P2) = Z[P2] ∼= Z.

A1(P2) is generated by the orbit closures of the three
1-dimensional cones; these orbit closures are the lines {x0 = 0},
{x1 = 0} and {x2 = 0}. But all of these lines are rationally (in fact
linearly) equivalent, so A1(P2) = Z[H] is generated by the class of
a line. Similarly the orbit closures of the three 2-dimensional cones
are rationally equivalent, so A2(P2) = Z[P] is generated by the
class of a point.
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Example: the Chow Ring of P2

It follows that the only non-trivial intersection product is [H] · [H].
But we can compute this by choosing two of the one-dimensional
cones σ and τ and using the formula

[H]2 = [V (σ)] · [V (τ)] = [V (γ)],

where γ is the unique 2-dimensional cone which has σ and τ as
faces. In other words we have [H]2 = [P], so

A•(P2) =
Z[H]

[H]3
, deg([H]) = 1.

This generalises: A•(Pn) = Z[H]/[H]n+1, with [H] ∈ A1(Pn) the
class of a hyperplane.
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Singular Homology of Toric Varieties

Let X = X (∆) be a complete non-singular toric variety of
dimension n. We say that ∆ is good if there exists an ordering
σ1, . . . , σm of the top-dimensional cones of X such that, if τi ⊂ σi
is the cone formed by intersecting σi with all σj such that j > i
and σj meets σi in a cone of dimension n − 1, then

τi ⊂ σj ⇒ i ≤ j .

Call such an ordering a good ordering.

Proposition

Any non-singular projective fan is good.
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Singular Homology of Toric Varieties

Proposition

Any non-singular projective fan is good.

Suppose X (∆) is projective, so admits a very ample divisor
D =

∑
aiDi corresponding to the strictly Fulton

convex/Ibáñez-Núñez concave function ψ. The u(σ), as σ ranges
over the n-dimensional cones in ∆, are the vertices of the polytope

PD = {u ∈ MR : 〈u, vi 〉 ≥ −ai = ψ(vi )}.

We may choose some v ∈ N such that the h(σ) = 〈u(σ), v〉 are all
distinct. We then order the cones σ by their heights:

h(σ1) < · · · < h(σm).
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Singular Homology of Toric Varieties

Proposition

Any non-singular projective fan is good.

On the other hand, the fan corresponding to the polytope PD is
exactly ∆ (exercise). In particular, there is an inclusion-reversing
correspondence between cones in ∆ and faces of PD , and one can
check that τi is the cone corresponding to the smallest face Fi of
PD containing u(σi ) and all edges connecting u(σi ) to u(σj) with
j > i . As this face contains no u(σj) with j < i then

τi ⊂ σj ⇒ i ≤ j .
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Singular Homology of Toric Varieties

Theorem

Suppose ∆ is good, complete and non-singular. Then the classes
[V (τi )] given by a choice of a good ordering of ∆ form a basis for
A•(X ) ∼= H2•(Xan,Z).

Pick a good ordering {σ1, . . . , σm} on ∆. The following properties
are straight-forward consequences of the definition of a good
ordering:

1 For each γ ∈ ∆ there exists a unique i = i(γ) such that
τi ⊂ γ ⊂ σi ; i(γ) is the smallest i such that γ ⊂ σi .

2 If γ is a face of γ′ then i(γ) ≤ i(γ′).
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Singular Homology of Toric Varieties

For 1 ≤ i ≤ m set

Yi =
⋃

τi⊂γ⊂σi

Oγ =
⋃

i(γ)=i

Oγ = V (τi ) ∩ Uσi

and

Zi =
⋃
j≥i

Yj .

Lemma

1 Each Zi is closed in X , Z1 = X and Yi = Zi \ Zi+1.

2 Each Yi
∼= An−ki , where ki = dim(τi ).
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Singular Homology of Toric Varieties

Lemma

1 Each Zi is closed in X , Z1 = X and Yi = Zi \ Zi+1.

2 Each Yi
∼= An−ki , where ki = dim(τi ).

From the first consequence of the good ordering property, X is the
disjoint union of the Yi . Each Zi is closed because of the second
consequence and because

Oγ =
⋃
γ⊂γ′
Oγ′ .

The first statement follows.
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Singular Homology of Toric Varieties

Lemma

1 Each Zi is closed in X , Z1 = X and Yi = Zi \ Zi+1.

2 Each Yi
∼= An−ki , where ki = dim(τi ).

For the second assertion, recall that any non-singular affine toric
variety Uσ is a product of affine space Adimσ with a torus

Gcodim(σ)
m . We have that Yi = V (τi ) ∩ Uσi is an affine open of

V (τi ) corresponding to a maximal (n − ki )-dimensional cone in
N(τi ) = N/Nτi ; consequently Yi

∼= An−ki .
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Singular Homology of Toric Varieties

To prove the theorem, we will use descending induction on i to
show that the canonical map A•(Zi )→ H2•((Zi )an,Z) is an
isomorphism, with these groups having as a basis the classes of the
V (τj) = Yj for j ≥ i .

We have a commutative diagram with exact
rows

where the bottom row is the LES in Borel-Moore homology
(singular homology with locally finite singular chains).
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Singular Homology of Toric Varieties

Yi is an affine space, so A•(Yi ) ∼= HBM
2• (Yi ,Z) = Z[Yi ] (in

particular this covers the base case Zm = Ym).

By the induction
hypothesis, the first vertical arrow is an isomorphism, A•(Zi+1) is
freely generated by the classes [V (τj)] for j ≥ i + 1 and
Hq(Zi+1,Z) = 0 for q odd. By a diagram chase, it follows that the
middle vertical arrow is an isomorphism, and that A•(Zi ) is freely
generated by the classes [V (τj)] for j ≥ i .
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Betti Numbers of Toric Varieties

Corollary

Let X (∆) be a non-singular projective toric variety. Let dk denote
the number of k-dimensional cones in ∆ and let
βk = rank(Ak(X )) = rank(H2k(Xan,Z)). Then

dk =
k∑

j=0

(
n − j

n − k

)
βn−j ;

equivalently

βk =
n∑

j=k

(−1)j−k
(
j

k

)
dn−j .
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Betti Numbers of Toric Varieties

It suffices to prove the first equation. Use the polytope PD from
before. Then specifying a k-dimensional cone γ with τi ⊂ γ ⊂ σi is
equivalent to specifying a (n− k)-dimensional face of PD contained
in the (n− ki )-dimensional face Fi and containing the vertex u(σi );
i.e., specifying (n − k) distinct vertices of Fi , all of which are
distinct from u(σi ). The number of such choices is

(n−ki
n−k
)
.

Then

dk =
m∑
j=0

∑
τj⊂γ⊂σj
dim γ=k

1 =
k∑

j=0

(
n − j

n − k

)
βn−j ,

as βq equals the number of τi with dim(τi ) = q (of course, by
Poincaré duality βq = βn−q).
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Singular Cohomology of Toric Varieties

It is possible to describe the cup-product/intersection pairing on
non-singular projective toric varieties:

Proposition

Let X = X (∆) be a non-singular projective toric variety. Then as
rings,

A•(X ) ∼= H•(Xan,Z) ∼=
Z[D1, . . . ,Dd ]

I
,

where the Di are the irreducible T -divisors (with corresponding
minimal generators vi ), and where I is the ideal generated by the
following elements:

1 Di1 · · · · · Dik for vi1 , . . . , vik not in a cone of ∆;

2
∑d

i=1〈u, vi 〉Di for each u ∈ M.
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