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Abstract. When cooling cells to preserve them during cryopreservation, cooling too quickly results in the formation of4
lethal intracellular ice, while cooling too slowly amplifies the toxic effects of the cryoprotective agents (CPA) added to slow5
down ice formation. We derive a mathematical model for cell cryopreservation to understand and quantify these observations.6
We assume that the system has a spherical geometry of three different regions: ice, extracellular liquid medium, and cell. The7
two interfacial boundaries separating the three regions can move and must be determined as part of the solution. The presence8
of CPA lowers the freezing point of the system, and the cell membrane moves due to the osmotic pressure difference across9
the membrane. We use a combination of numerical and asymptotic methods to determine how the temperature, the CPA10
concentration, and concentration of an ion species internal and external to the cell evolve during cooling for a range of cooling11
rates across different timescales. We introduce two metrics to characterize the cell damage caused by freezing, accounting for12
supercooling and CPA toxicity. Given cell properties and the operating protocol of the cryopreservation process, we show how13
the damage metrics can be used to predict an optimal cooling rate. Our asymptotic analysis provides a computationally efficient14
framework from which to determine this optimal rate.15
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1. Introduction. Cryopreservation is the process of preserving biological entities by cooling to tem-18

peratures low enough to halt biochemical processes such as metabolism [34, 37, 41]. This technology has19

a variety of uses, including fertility [31], tissue transplantation [25], food security [5], and the protection of20

endangered species [21]. While the exact details of cryopreservation protocols vary greatly between different21

cell types, unifying elements are the immersion of cells within a physiological liquid extracellular medium,22

and the subsequent cooling of this mixture [35]. It is imperative to be able to control and minimize intra-23

cellular ice formation during cryopreservation, which can be lethal to cells due to crushing or piercing of the24

cell from ice crystals [34, 39].25

To combat ice formation, cryoprotective agents (CPAs), such as dimethyl sulphoxide (DMSO) or glycerol,26

are often added to the cryopreservation medium before cooling [18]. CPAs lower the freezing point of the27

cytosol and the medium, by interfering with the process by which crystalline ice structures form. As such,28

these CPAs must be able to permeate through the cell membrane. At the same time, the addition of CPA29

is not a panacea since CPAs can be toxic to cells at warmer temperatures, before the cooling process is30

complete [17]. Since intracellular ice formation is observed for faster cooling rates [33], and CPA toxicity is31

observed for slower cooling rates [17], a careful balance between CPA addition and cooling rate is required32

if the frozen cells are to remain viable. Typically the balance between these experimentally controllable33

parameters will be application specific and protocols are determined empirically [35, 36]. Mathematical and34

computational methods to simulate the cryopreservation process offer a cost-effective way to understand,35

refine, and optimize these protocols [1, 49].36

The Kedem–Katchalsky (KK) equations are widely used in cryopreservation modelling to track cell37

volume and CPA concentration during cryopreservation [26, 29]. The KK equations consist of a system of38

coupled ordinary differential equations for the cell volume and the CPA concentration within the cell. The39

cell volume can vary during cryopreservation because osmotic pressures are generated across the membrane.40

This is caused by the concentrating of chemical species already present outside the cell as the available liquid41

volume decreases due to the growth of extracellular ice. However, as noted previously [1], the spatial variation42

of important physical quantities, such as the location of the freezing front and the CPA concentration through43

the system, are not typically taken into account in the KK equations. Although there are some exceptions44

(see, for example, [8, 16, 24]), most currently available spatial models only consider some aspect of spatial45

dependence, and rely on numerical simulations to solve them. The aim of this paper is to provide a model46

that accounts for the spatial dependence of temperature and chemical concentration and to systematically47

deduce the conditions under which simpler ODE models are applicable. This provides a mathematical48

framework in which optimal cooling rates for different cells can be deduced.49
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Fig. 1. A two-dimensional schematic of the three-dimensional spherically symmetric model geometry we consider in this
paper. The dimensionless variables in each phase are defined in Table 1. The cell membrane and freezing front, rc and rf ,
respectively, are moving boundaries and are shown in dashed lines.

Three recent papers have investigated similar models to the one we present here [2, 3, 4]. In [2], a general50

model for the heat and mass transport around a cell surrounded by a liquid medium containing multiple51

chemical species is developed, taking into account spatial variation. As the system is cooled, a freezing52

front advances towards the cell. In [3], a version of this system is solved numerically for the case with a53

dilute and ideal ternary solution in a spherical domain, including the effects of solute capture within the54

ice, a pressure-dependent freezing point depression, and a Gibbs–Thomson freezing point promotion. In [4],55

numerical methods for solving the model in [3] are presented, and the effect of partial solute rejection at56

the ice-water interface is investigated. The model we consider in this paper is similar to those considered57

in [3, 4], however our approaches to analysing the models are different. We focus on obtaining asymptotic58

solutions to our model, which allow us to derive reduced equations that effectively govern the system, and59

yield significant physical insight into the heat and mass transport processes.60

We consider the cryopreservation of a single cell in a liquid extracellular medium. The geometry, shown61

in Figure 1, consists of three different regions: ice, extracellular liquid, and cell liquid. The temperature62

of the external boundary is lowered at an operationally determined rate, and we solve for the temperature63

and concentrations of chemical species within the liquid medium and the cell. We track two representative64

species: one which can permeate the cell membrane, and one which cannot. As CPA is chosen for its ability to65

permeate cells, we refer to the permeable solute as CPA. As ions typically have a very low permeability across66

the cell membrane, we refer to the impermeable solute as the ion species. The concentration difference of67

these solutes across the membrane drives an osmotic liquid motion, and an associated change of cell volume.68

Additionally, as the exterior temperature decreases and ice forms, a freezing front will develop and propagate69

into the liquid phase. We therefore have two moving boundaries to track: the cell membrane and the freezing70

front.71

We solve the resulting model using a combination of numerical and asymptotic methods. The latter72

allows us to systematically reduce the complexity of the model through the method of matched asymptotic73

expansions [20, 27], by exploiting an inherent separation of the natural timescales in the problem. These74

timescales are associated with heat conduction (seconds), chemical diffusion (minutes), and cell membrane75

movement (hours). Our approach allows us to identify the operating regimes where specific spatial effects76

of the temperature and chemical concentration are important, resulting in a comprehensive understanding77

of the possible cooling behaviours. Our asymptotic results also unveil the flow of information through the78

system and inform how we implement the relevant boundary conditions in our numerical scheme of the full79

problem.80

Our asymptotically reduced model allows for a significant reduction in the computational complexity of81
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Dimensional variable Description Dimensionless variable

r̃ Radial coordinate r̃ = r̃br

t̃ Time t̃ = (ρ̃sc̃sr̃
2
b/k̃s)t

x̃c Intracellular CPA concentration x̃c = X̃0xc
ỹc Intracellular ion concentration ỹc = X̃0yc
x̃l Extracellular CPA concentration x̃l = X̃0xl
ỹl Extracellular ion concentration ỹl = X̃0yl

T̃l Water temperature T̃l = T̃f0 +
(
T̃f0 − T̃end

)
Tl

T̃s Ice temperature T̃s = T̃f0 +
(
T̃f0 − T̃end

)
Ts

r̃c Cell membrane r̃c = r̃brc
r̃f Ice-water interface r̃f = r̃brf
r̃b Exterior ice boundary

Table 1
Dimensional and dimensionless variable definitions.

determining cell damage, and hence optimizing operating conditions, such as the cooling rate. Benson and82

colleagues have investigated optimal control problems for CPA equilibration, introducing the concept of a83

CPA toxicity cost function that should be minimized [6, 7, 9, 13, 14]. We consider a similar toxicity cost84

function, and add a new cost function to characterize intracellular ice formation, in order to estimate cell85

damage as a function of cooling rate.86

The outline of our paper is as follows. In §2 we present the full model, nondimensionalize, and provide87

numerical solutions to illustrate the qualitative behaviours of the system. In §3 we perform an asymptotic88

analysis, exploiting the separation of the three natural timescales inherent to the problem. In §4 we explore89

how the general analysis of the previous section can be reduced in three distinguished limits of the system90

where the operationally imposed cooling rate matches each of the natural timescales. In particular, we show91

when it is important to account for spatial dependence, and when the system can be formally reduced to a92

system of ODEs similar to the KK model discussed above [26, 29]. We also validate our asymptotic results93

by comparison with numerical solutions of the full model. In §5 we introduce damage metrics to account94

for cell damage due to supercooling (where liquid is cooled to below its freezing point without solidification)95

and CPA toxicity. We conclude in §6 with a discussion of our results, and suggestions for further model96

extensions.97

2. Model description. We consider the problem of a cell immersed in a liquid medium containing98

two chemical species. One of the species, labelled x̃, is able to permeate the cell membrane but the other, ỹ,99

is not. As cryoprotective agents (CPAs) are partly chosen for their ability to permeate the cell, we refer to100

the permeable species as CPA, and refer to the impermeable species simply as the ion species. We assume101

that the concentration of both species is initially equal inside and outside the cell, with the entire system at102

the initial freezing point of the liquid. The system is cooled at the external boundary at a prescribed rate103

to a final temperature T̃end, after which we allow the system to equilibrate. The rate of the cooling is a key104

parameter we investigate. As the system cools, the formation of ice from the external boundary into the105

interior reduces the volume of the liquid phase, concentrating the chemical species. This changes the freezing106

point of the liquid phase, and also induces an osmotic pressure across the cell membrane, driving a change107

in cell volume. We provide a schematic of the dimensionless problem in Figure 1 and a list of variables in108

Table 1. For brevity, we will not discuss the parameter definitions in the main text, these are all contained109

in Table 2.110

We consider a spherically symmetric domain in which the cell centre is located at the origin, and r̃ is111

the radial coordinate. The cell domain is 0 < r̃ < r̃c, where r̃ = r̃c(t̃) defines the cell membrane position112

and t̃ denotes time. The fluid domain is r̃c < r̃ < r̃f , where r̃ = r̃f (t̃) defines the freezing front position.113

The ice domain is r̃f < r̃ < r̃b, where r̃ = r̃b defines the external boundary. The cell membrane and the114

freezing front are moving boundaries which must be determined as part of the solution. We note that while115

conservation of mass should result in a slight expansion of the exterior ice boundary as the water freezes,116

resulting in a third moving boundary, this effect is small and we therefore neglect it as a simplification.117
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Parameters Typical value Description

D̃x
c 2× 10−10 m2 s−1 [15] Intracellular CPA diffusivity

D̃y
c 4× 10−10 m2 s−1 [15] Intracellular ion diffusivity

D̃x
l 1× 10−9 m2 s−1 [15] Extracellular CPA diffusivity

D̃y
l 2× 10−9 m2 s−1 [15] Extracellular ion diffusivity

k̃l 0.6 W K−1 m−1 Thermal conductivity of water

k̃s 2.2 W K−1 m−1 Thermal conductivity of ice
ρ̃l 1× 103 kg m−3 Density of water
ρ̃s 9× 102 kg m−3 Density of ice
c̃l 4× 103 J kg−1 K−1 Specific heat capacity of water
c̃s 2× 103 J kg−1 K−1 Specific heat capacity of ice

L̃ 3.4× 105 J kg−1 Latent heat of freezing water
α̃ 4× 10−3 K m3 mol−1 [28] Cryoscopic constant of CPA
γ̃ 0 K m3 mol−1 Cryoscopic constant of ion species
r̃c0 5× 10−5 m [45] Initial cell radius
r̃b 5× 10−4 m [32] System radius
κ̃ 5× 10−15 m2 s kg−1 [15] Hydraulic conductivity of cell membrane
ω̃ 5× 10−14 s mol m−1 kg−1 [15] CPA permeability of cell membrane

R̃ 8.3 kg m2 s−2 K−1 mol−1 Universal gas constant
σ 0.65 [8] CPA reflection coefficient at cell membrane

X̃0 1× 103 mol m−3 [34] Initial CPA concentration (intra and extra)

Ỹ0 1× 102 mol m−3 [23] Initial ion concentration (intra and extra)

T̃0 = T̃f0 − α̃X̃0 269 K Initial temperature of system

T̃end 200 K [42] Final temperature of system

T̃f0 273 K Freezing temperature of water in absence of CPA

β̃ 10−3 – 105 K s−1 [38, 40] Cooling rate of exterior boundary
Table 2

Parameters from the full dimensional problem and their typical values. We estimate D̃x
c using the observation in Verkman

[47] that small molecules have a diffusivity of around five times less in cytoplasm than in water, and we estimate D̃y
c and D̃y

l
by the observation that ions tend to be much smaller molecules than CPA agents, and so ion diffusivity will be higher in a
given medium. We use the typical cell radius of the human oocyte.

We track the temperature in the cell and liquid, T̃l, and the ice, T̃s. We assume that heat conduction118

in the cell is the same as that in the liquid as the cell consists mainly of water, so we do not differentiate119

between these two regions for the heat flow problem. We also track the concentrations of the cryoprotective120

agent (CPA) and the ion species in the cell (x̃c, ỹc) and liquid (x̃l, ỹl). As discussed above, the freezing point121

of the liquid will be lowered by the presence of chemical species, and we define the freezing temperature T̃f122

as123

T̃f (x̃, ỹ) := T̃f0 − α̃x̃− γ̃ỹ,(1)124125

where we assume a linear relationship. For simplicity, we will consider the case where the freezing temperature126

depends on the CPA concentration only, so we take γ̃ = 0 K m3 mol−1. This means that the role of the ion127

species in this model is to impart an osmotic pressure across the cell membrane as the ice region grows and128

the extracellular liquid volume is decreased, resulting in a change in cell volume. The analysis could easily129

be extended to incorporate the dependence of the freezing temperature on the ion concentration.130

We assume that the chemical transport in the cell and liquid is due to diffusion. While we expect the131

chemical diffusivity and membrane parameters to depend on temperature in practice [15], we treat these132

parameters as independent of temperature for simplicity and to facilitate analytical progress. We provide133

justification of this assumption in Appendix A, where we show that the qualitative features of the problem134

do not change significantly when temperature dependence is taken into account.135
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The equations governing the temperature distribution in the liquid and ice are136

ρ̃lc̃l
∂T̃l

∂t̃
=
k̃l
r̃2

∂

∂r̃

(
r̃2
∂T̃l
∂r̃

)
for 0 < r̃ < r̃f (t̃),(2a)137

ρ̃sc̃s
∂T̃s

∂t̃
=
k̃s
r̃2

∂

∂r̃

(
r̃2
∂T̃s
∂r̃

)
for r̃f (t̃) < r̃ < r̃b,(2b)138

139

and those governing solute diffusion are140

∂x̃c

∂t̃
=
D̃x
c

r̃2
∂

∂r̃

(
r̃2
∂x̃c
∂r̃

)
for 0 < r̃ < r̃c(t̃),(3a)141

∂ỹc

∂t̃
=
D̃y
c

r̃2
∂

∂r̃

(
r̃2
∂ỹc
∂r̃

)
for 0 < r̃ < r̃c(t̃),(3b)142

∂x̃l

∂t̃
=
D̃x
l

r̃2
∂

∂r̃

(
r̃2
∂x̃l
∂r̃

)
for r̃c(t̃) < r̃ < r̃f (t̃),(3c)143

∂ỹl

∂t̃
=
D̃y
l

r̃2
∂

∂r̃

(
r̃2
∂ỹl
∂r̃

)
for r̃c(t̃) < r̃ < r̃f (t̃).(3d)144

145

We now consider appropriate boundary and coupling conditions. At the origin, we impose symmetry146

conditions147

D̃x
c

∂x̃c
∂r̃

= 0, D̃y
c

∂ỹc
∂r̃

= 0, k̃l
∂T̃l
∂r̃

= 0, for r̃ = 0.(4a)148
149

At the cell membrane, we impose the following conservation conditions:150

D̃x
c

∂x̃c
∂r̃

+ x̃c
dr̃c

dt̃
= D̃x

l

∂x̃l
∂r̃

+ x̃l
dr̃c

dt̃
= ω̃R̃T̃0 (x̃l − x̃c) for r̃ = r̃c(t̃),(5a)151

D̃y
c

∂ỹc
∂r̃

+ ỹc
dr̃c

dt̃
= D̃y

l

∂ỹl
∂r̃

+ ỹl
dr̃c

dt̃
= 0 for r̃ = r̃c(t̃),(5b)152

dr̃c

dt̃
= −κ̃R̃T̃0 [σ (x̃l − x̃c) + (ỹl − ỹc)] for r̃ = r̃c(t̃).(5c)153

154

Equation (5a) corresponds to continuity of CPA flux through the cell membrane, and that this flux is155

proportional to the concentration difference across the membrane. Equation (5b) corresponds to no ion flux156

across the membrane. Equation (5c) corresponds to the dynamic change in cell volume being proportional to157

the osmotic pressure difference across the cell surface. We use a reflection coefficient of 1 for the difference in158

ion concentration in (5c) since we assume that the cell membrane is impermeable to ions [29]. Additionally,159

we have neglected surface tension effects, as a simple dimensional analysis shows that typical surface tension160

values of around 0.01 − 0.1 mN m−1 for the animal cell membrane [11, 48] yield effects approximately six161

orders of magnitude weaker than osmotic forces.162

At the freezing front, we have the following conditions:163

T̃l = T̃s = T̃f (x̃l) for r̃ = r̃f (t̃),(6a)164

D̃x
l

∂x̃l
∂r̃

+ x̃l
dr̃f

dt̃
= 0 for r̃ = r̃f (t̃),(6b)165

D̃y
l

∂ỹl
∂r̃

+ ỹl
dr̃f

dt̃
= 0 for r̃ = r̃f (t̃),(6c)166

ρ̃sL̃
dr̃f

dt̃
= k̃s

∂T̃s
∂r̃
− k̃l

∂T̃l
∂r̃

for r̃ = r̃f (t̃).(6d)167
168

Here, (6a) corresponds to the temperature at the freezing front being continuous and depending on the CPA169

concentration as defined in (1), (6b) and (6c) ensure no flux of either solute across the freezing front, and170
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Dimensionless parameter Typical value

kl = k̃lρ̃sc̃s/(k̃sρ̃lc̃l) 1.2× 10−1

k = k̃l/k̃s 2.7× 10−1

S = L̃/
(
c̃s

(
T̃f0 − T̃end

))
2.3× 100

Dx
c = D̃x

c ρ̃sc̃s/k̃s 1.6× 10−4

Dy
c = D̃y

c ρ̃sc̃s/k̃s 3.3× 10−4

Dx
l = D̃x

l ρ̃sc̃s/k̃s 8.2× 10−4

Dy
l = D̃y

l ρ̃sc̃s/k̃s 1.6× 10−3

κ = κ̃R̃T̃0X̃0ρ̃sc̃sr̃b/k̃s 4.6× 10−6

ω = ω̃R̃T̃0ρ̃sc̃sr̃b/k̃s 4.6× 10−8

α = α̃X̃0/(T̃f0 − T̃end) 5.5× 10−2

β = β̃ρ̃sc̃sr̃
2
b/
(
k̃s

(
T̃f0 − T̃end

))
2.8× 10−6 – 2.8× 102

rc0 = r̃c0/r̃b 1× 10−1

Y0 = Ỹ0/X̃0 1× 10−1

Table 3
Dimensionless parameters, with typical values derived from Table 2. Note that σ is provided in Table 2.

(6d) corresponds to the Stefan condition, namely that latent heat is released as water is frozen, which results171

in the velocity of the interface being proportional to the difference in heat flux across the interface [19].172

Finally, at the exterior ice boundary, we prescribe the temperature in terms of a general function T̃p(t̃):173

T̃s = T̃p(t̃) for r̃ = r̃b.(7)174175

The initial conditions of the system are as follows176

x̃c(r̃, 0) = X̃0, x̃l(r̃, 0) = X̃0, ỹc(r̃, 0) = Ỹ0, ỹl(r̃, 0) = Ỹ0,177

T̃l(r̃, 0) = T̃0 := T̃f0 − α̃X̃0, r̃c(0) = r̃c0, r̃f (0) = r̃b.(8)178179

corresponding to a system where the CPA and ion concentration are the same within the cell and the liquid,180

and the entire system is at the initial freezing temperature of the liquid. The prescribed final temperature181

is T̃end, so the prescribed temperature change will be T̃f0 − α̃X̃0 − T̃end. For later use, we introduce a182

typical cooling rate β̃ (which can be experimentally controlled) and hence have a timescale for cooling,183

(T̃f0 − α̃X̃0 − T̃end)/β̃.184

Taken together, our system consists of equations (2)–(3), boundary conditions (4)–(7), and initial con-185

ditions (8).186

2.1. Dimensionless problem. We form the dimensionless variables specified in Table 1 and the di-187

mensionless parameters specified in Table 3. We choose our time scaling according to the fastest timescale188

in the problem, thermal conduction, which occurs over a few seconds in dimensional time.189

Using the nondimensionalization described above, the thermal diffusion problems (2) become190

∂Tl
∂t

=
kl
r2

∂

∂r

(
r2
∂Tl
∂r

)
for 0 < r < rf (t),(9a)191

∂Ts
∂t

=
1

r2
∂

∂r

(
r2
∂Ts
∂r

)
for rf (t) < r < 1,(9b)192

193

and the solute diffusion problems (3) become194

∂xc
∂t

=
Dx
c

r2
∂

∂r

(
r2
∂xc
∂r

)
for 0 < r < rc(t),(10a)195

∂yc
∂t

=
Dy
c

r2
∂

∂r

(
r2
∂yc
∂r

)
for 0 < r < rc(t),(10b)196
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∂xl
∂t

=
Dx
l

r2
∂

∂r

(
r2
∂xl
∂r

)
for rc(t) < r < rf (t),(10c)197

∂yl
∂t

=
Dy
l

r2
∂

∂r

(
r2
∂yl
∂r

)
for rc(t) < r < rf (t).(10d)198

199

At the origin, the symmetry conditions (4) become200

Dx
c

∂xc
∂r

= 0, Dy
c

∂yc
∂r

= 0, kl
∂Tl
∂r

= 0, for r = 0.(11a)201
202

At the cell membrane, the boundary conditions (5) become203

Dx
c

∂xc
∂r

+ xc
drc
dt

= Dx
l

∂xl
∂r

+ xl
drc
dt

= ω (xl − xc) for r = rc(t),(12a)204

Dy
c

∂yc
∂r

+ yc
drc
dt

= Dy
l

∂yl
∂r

+ yl
drc
dt

= 0 for r = rc(t),(12b)205

drc
dt

= −κ [σ (xl − xc) + (yl − yc)] for r = rc(t).(12c)206
207

At the freezing front, the boundary conditions (6) become208

Tl = Ts = Tf for r = rf (t),(13a)209

Dx
l

∂xl
∂r

+ xl
drf
dt

= 0 for r = rf (t),(13b)210

Dy
l

∂yl
∂r

+ yl
drf
dt

= 0 for r = rf (t),(13c)211

S
drf
dt

=
∂Ts
∂r
− k∂Tl

∂r
for r = rf (t),(13d)212

213

where the dimensionless freezing temperature Tf is214

Tf (xl) := −αxl.(14)215216

At the exterior ice boundary, the boundary condition (7) becomes217

Ts = Tp(t),(15)218219

where Tp(0) = −α. The dimensionless cooling rate is denoted β, and the final temperature is Tp = −1. We220

will mainly consider linear cooling in the numerics, so221

Tp(t) =

{
−α− βt for 0 < t < (1− α)/β,

−1 for t > (1− α)/β.
(16)222

223

Finally, from (8), the initial conditions of the system are now224

xc(r, 0) = 1, xl(r, 0) = 1, yc(r, 0) = Y0, yl(r, 0) = Y0, Tl(r, 0) = −α, rc(0) = rc0, rf (0) = 1.(17)225226

Our dimensionless system is thus defined by equations (9)–(10), with boundary conditions (11)–(15)227

and initial conditions (17). We now solve this system numerically to understand the qualitative behaviour,228

before undertaking an asymptotic analysis in §3.229

2.2. Numerical solutions. We solve this system numerically via the following steps. First, we move230

to new dependent variables of the form rf(r, t), where f represents any of the dependent variables in the231

system. This reduces the governing equations to one-dimensional diffusion in Cartesian coordinates. Then we232

impose the Landau transformation [30] to fix the moving boundary in each phase. We implement the method233

of lines with a discretization in space (focused near boundary layers if necessary), essentially converting our234

partial differential equations into a system of ordinary differential equations. We solve this system in time235

using the function ode15s in MATLAB. This procedure is outlined in more detail in Appendix B. One issue236
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Fig. 2. Numerical solutions for a slow dimensionless cooling rate (β = 2.8×10−7, corresponding to a dimensional cooling
rate of β̃ = 10−4 K s−1). From left to right, we show the temperature, CPA concentration, and ion concentration. The black
lines represent the position of the cell membrane and the freezing front, respectively. All processes occur over the osmotic
timescale here, roughly corresponding to t > 1000.

we face is that the ice region does not exist at t = 0. To circumvent this, we start our simulations at a small237

but finite time, using initial conditions that are consistent with the asymptotic early-time behaviour (see238

Appendix C).239

To explore different cooling rates via our numerical scheme, we use the functional form in (16), and240

interrogate the solution with different choices of cooling rate β. We emphasize that the asymptotic analysis241

presented in §3 is valid for a more general class of prescribed temperatures on the external boundary, including242

this simple case of linear cooling. It is the cooling rate that is important to the asymptotic analysis, not the243

exact form of the prescribed temperature.244

The system behaviour changes significantly as the cooling rate varies. The variables are approximately245

spatially homogeneous for lower cooling rates (Figure 2), but develop spatial gradients as the cooling rate246

increases: first occurring for the concentration (Figure 3), then also for the temperature (Figure 4) if the247

cooling rate is very rapid. While the final equilibrium state is the same for all cooling rates, the dynamics248

of how these states are reached differ with the cooling rate.249

The spatial gradients in solute concentrations in Figures 3–4 are restricted to the liquid phase; the solute250

concentrations within the cell always appear to be spatially homogeneous (Figures 2–4). While the change in251

solute concentration and temperature at the cell centre occur over the same timescale when the cooling rate252

is low (Figure 2), the change in solute concentration occurs over a slower timescale than for the temperature253

when the cooling rate is faster (Figures 3–4).254

The positions of the moving boundaries are highly dependent on the cooling rate (Figures 5–6). The255

cell membrane and freezing front reach a limiting behaviour in time as the cooling rate increases (Figures 5a256

and 6a). In addition, the positions of the moving boundaries also tend towards limiting behaviours as the257

cooling rate decreases. This is most evident when scaled against the external temperature (Figures 5b and258

6b), and it represents quasi-steady kinetics. These observations will be elucidated through our asymptotic259

analysis in §3.260

3. General asymptotic analysis.261

3.1. Asymptotic structure. Table 3 shows that there are several small parameters in the system, and262

that the difference in magnitude between these parameters can be extreme. In this section we use asymptotic263

techniques to investigate the impact of these differences on the system dynamics.264

We identify three natural timescales, associated with thermal conduction (t = O(1), given the nondi-265

mensionalization), solute diffusion (t = O(1/Dx
l )), and osmosis (t = O(1/κ)). The relative sizes of these266

This manuscript is for review purposes only.



A MATHEMATICAL MODEL OF CRYOPRESERVATION 9

Fig. 3. Numerical solutions for a moderate dimensionless cooling rate (β = 2.8 × 10−2, corresponding to a dimensional
cooling rate of β̃ = 101 K s−1). As in Figure 2, from left to right we show the temperature, CPA concentration, and ion
concentration. The black lines represent the position of the cell membrane and the freezing front, respectively. The solute
diffusion timescale roughly corresponds to 20 < t < 200, and the osmotic timescale to 200 < t < 3000.

Fig. 4. Numerical solutions for a rapid dimensionless cooling rate (β = 2.8 × 103, corresponding to a dimensional
cooling rate of β̃ = 106 K s−1). As in Figure 2, from left to right we show the temperature, CPA concentration, and ion
concentration. The black lines represent the position of the cell membrane and the freezing front, respectively. The thermal
conduction timescale roughly corresponds to t < 10, the solute diffusion timescale to 10 < t < 200, and the osmotic timescale
to 200 < t < 3000.

timescales are summarized in Figure 7. The imposed cooling timescale 1/β may overlap with any of these,267

as discussed in §4. To perform the asymptotic analysis, we assume the limit κ � Dx
l � 1 henceforth, so268

that the timescales outlined above are well separated. When we refer to ‘leading-order’ in the next sections,269

this is meant in the asymptotic limit 0 < κ < Dx
l → 0. We are motivated by the values in Table 3 to270

treat Dx
c , D

y
c , D

y
l all as the same (small) order as Dx

l , and to treat ω as the same (even smaller) order as κ.271

All other parameters (kl, k, S, α, rc0, Y0) are treated as O(1). In the next three subsections (§3.2–§3.4) we272

discuss each timescale in turn, from fastest to slowest. We start each subsection by summarising the physical273

implications of the results we will deduce in that subsection.274
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Fig. 5. The normalized radius of the cell rc(t)/rc0 during freezing, plotted against (a) time and (b) prescribed temperature
Tp(t) at the external boundary. The different solid lines correspond to different values of the cooling rate; we use β = 2.8×10k,
where k = {−7, . . . , 3} (corresponding to dimensional cooling rates ranging between 10−4 and 106 K s−1). Otherwise, we use
the parameter values in Table 3. The dashed line is the quasi-steady solution from (44). The arrows denote increasing cooling
rate.

3.2. Thermal conduction timescale: t = O(1). Over this timescale, the important process is heat275

conduction, and there can be a significant spatial temperature variation. The moving boundaries are static276

to leading order, and the chemical concentrations remain unchanged from their initial values except in a277

boundary layer near the freezing front, as seen in Figures 3–4. We see in §3.3 that this boundary layer278

problem is the early-time version of a broader diffusion problem that occurs at the later timescale. We will279

therefore relegate the details of the chemical boundary layer to Appendix D.280

To formalize the above statements, we note that the cell membrane velocity drc/dt = O(κ) and, as seen281

in Appendix D, the freezing front movement drf/dt = O(
√
Dx
l ), resulting in rc(t) = rc0 and rf (t) = 1 at282

leading order. Therefore, there is no ice phase at leading order. From (10), the dynamics of xc and yc are283

unimportant over this timescale; these concentrations remain unchanged from their initial values, as can be284

seen in Figures 2–4, resulting in xc = 1 and yc = Y0 to leading order.285

The only variable that evolves significantly on this timescale is the liquid temperature, Tl, which satisfies286

the reduced problem287

∂Tl
∂t

=
kl
r2

∂

∂r

(
r2
∂Tl
∂r

)
for 0 < r < 1,(18)288

289

with symmetry condition290

kl
∂Tl
∂r

= 0 for r = 0.(19)291
292

Since the ice region is very small and the temperature within the ice is essentially uniform, we have Ts = Tp(t)293

at leading-order (see Appendix D). This leads to the reduced boundary condition294

Tl = Tp(t) for r = 1.(20)295296

Finally, the initial condition is297

Tl(r, 0) = −α.(21)298299
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Fig. 6. The radius of the water–ice boundary rf (t) during freezing, plotted against (a) time and (b) prescribed temperature
Tp(t) at the external boundary. As in Figure 5, the different solid lines correspond to different values of the cooling rate; we
use β = 2.8× 10k, where k = {−7, . . . , 3} (corresponding to dimensional cooling rates ranging between 10−4 and 106 K s−1).
Otherwise, we use the parameter values in Table 3. The dashed line is the quasi-steady solution from (44). The arrows denote
increasing cooling rate.

t̃

Heat conduction

t̃ = O
(
ρ̃lc̃lr̃

2
b/k̃l

)t = O(1)
CPA/ion diffusivity

t̃ = O
(
r̃2b/D̃

x
l

)t = O(1/Dx
l )

Cell membrane movement

t̃ = O
(
r̃c/(κ̃R̃T̃0X̃0)

)t = O(1/κ)

Seconds Minutes Hours

Fig. 7. A schematic of the three natural timescales in the system. The prescribed timescale of cooling is t̃ = O(1/β̃)
(t = O(1/β)), which will range from seconds to hours.

The reduced temperature problem presented above contains no information about the velocity of the300

freezing front. In Appendix D, we show that on this timescale the temperature problem is decoupled from301

the initial motion of the freezing front, the latter being governed by the CPA concentration near the front.302

The reduced system for the liquid temperature (18)–(21) has the following analytic leading-order solution303

Tl = Tp(t) +
2

r

∞∑

n=1

(−1)n exp(−kln2π2t)

nπ

[∫ t

0

T ′p(s) exp(kln
2π2s) ds

]
sinnπr.(22)304

305

For many prescribed external temperatures (for example, piecewise linear), we can calculate the integral in306

(22) explicitly.307

The large-time behaviour of the temperature over this timescale is given by308

Tl → Tp(t), as t→∞,(23)309310

and so the spatial dependence of temperature vanishes over this timescale.311
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3.3. Solute diffusion timescale: t = O(1/Dx
l ). Over this timescale, the important process is solute312

diffusion within the liquid, and there are spatial variations in concentration. The solutes within the cell313

are still unchanged from their initial values at leading order, and the temperature is now spatially uniform314

through the entire system. The cell membrane is static and there is no solute transport through this boundary315

to leading order. However, the decrease in temperature will cause the freezing front to advance into the liquid.316

This motion is limited by the concentrating of CPA causing a reduction in the freezing temperature, and by317

how quickly CPA can be transported away from the front. This is the interesting behaviour on which we318

focus in this section.319

To formalize the above, we introduce the timescale τ = Dx
l t = O(1), over which the cell membrane320

velocity drc/dτ = O(κ/Dx
l ) is still small, so rc(τ) = rc0 at leading order. However, the freezing front321

movement is important, with drf/dτ = O(1). Over this timescale the thermal conduction is very quick, and322

it can be shown that the temperature of the entire system is prescribed by the external boundary, that is323

Ts = Tl = Tp(τ). From (10), the dynamics of xc and yc are unchanged from their initial conditions over this324

timescale, with xc = 1 and yc = Y0 at leading order.325

The important leading-order system is given by the solute diffusion problem326

∂xl
∂τ

=
1

r2
∂

∂r

(
r2
∂xl
∂r

)
,

∂yl
∂τ

=
Dy
l

Dx
l r

2

∂

∂r

(
r2
∂yl
∂r

)
for rc0 < r < rf (τ),(24)327

328

with the following conditions at the cell membrane329

∂xl
∂r

= 0,
∂yl
∂r

= 0 for r = rc0,(25)330
331

and the freezing front332

xl = −Tp(τ)

α
for r = rf (τ),(26a)333

∂xl
∂r

+ xl
drf
dτ

= 0 for r = rf (τ),(26b)334

Dy
l

Dx
l

∂yl
∂r

+ yl
drf
dτ

= 0 for r = rf (τ).(26c)335
336

The matching conditions for this system into the earlier timescale as τ → 0 are as follows337

xl(r, 0) = 1, yl(r, 0) = Y0, rf (0) = 1.(27)338339

We note that these ‘initial’ conditions may be inconsistent with the boundary conditions at the freezing340

front (26). This discrepancy is remedied by the early-time boundary layer near the freezing front (over the341

timescale t = O(1)) discussed in the previous section and outlined in Appendix D.342

Thus, the problem reduces to that of solute diffusion in the liquid domain, with one moving boundary343

with a prescribed solute concentration and no flux through either boundary. Moreover, we note that the344

freezing front movement is limited by how quickly CPA can diffuse away from the interface over this timescale;345

the problem for the ion concentration decouples.346

The effective no-flux conditions at each interface mean that we can obtain the following global constraints347

∫ rf (τ)

rc0

r2xl(r, τ) dr =
1− r3c0

3
,

∫ rf (τ)

rc0

r2yl(r, τ) dr = Y0
1− r3c0

3
,(28)348

349

valid over this timescale. If xl and yl become spatially uniform, which is typically the case for large τ , these350

expressions determine the limiting behaviour351

rf ∼
(
− α

Tp
+ r3c0

(
1 +

α

Tp

))1/3

, yl ∼ −
Y0Tp
α

as τ →∞.(29)352
353

We use these results as the large-τ matching conditions for the next timescale.354
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3.4. Osmotic timescale: t = O(1/κ). On the final timescale, the heat conduction and solute diffusion355

are very quick, so the temperature and concentration are spatially independent. This yields a significant356

reduction in the complexity of the system. The important processes are solute permeation through the cell357

membrane and the movement of this membrane. The freezing front can also advance into the liquid, and358

this is governed by two main effects. Firstly, as before, the CPA in the liquid medium is concentrated by the359

advancing freezing front shrinking the domain, this lowers the freezing point and slows the front movement.360

Secondly, as CPA permeates into the cell, the freezing front must advance more quickly to reduce the size361

of the liquid domain to conserve total CPA. This is because the liquid CPA concentration is at a constant362

level fixed by the freezing point of the liquid.363

To formalize the above, we introduce the slow timescale ζ = κt = O(1), from which we see that we364

can have drc/dζ = O(1) and drf/dζ = O(1). From (9), the thermal conduction is very quick and the365

temperature over this timescale is prescribed by the external boundary, resulting in Ts = Tl = Tp(ζ). From366

(10), solute diffusion is also very quick, leading to chemical concentration being independent of the spatial367

coordinate. Hence the freezing temperature at the freezing front (13a) tells us that within the liquid medium368

xl = −Tp(ζ)

α
.(30)369

370

To determine the remaining time-dependent concentrations, we integrate each concentration equation over371

its respective domain, with the knowledge that each variable is independent of space at leading order.372

This procedure results in the following governing equations373

d

dζ

(
r3cyc

)
= 0,(31a)374

d

dζ

((
r3f − r3c

)
yl
)

= 0,(31b)375

d

dζ

(
r3cxc

)
= −3ωr2c

κ

(
Tp(ζ)

α
+ xc

)
,(31c)376

d

dζ

((
r3f − r3c

) Tp(ζ)

α

)
= −3ωr2c

κ

(
Tp(ζ)

α
+ xc

)
,(31d)377

drc
dζ

= σ

(
Tp(ζ)

α
+ xc

)
+ yc − yl,(31e)378

379

for the five remaining variables, xc, yc, yl, rc, and rf , which are all solely functions of ζ. The matching380

conditions for this system into the earlier timescale as ζ → 0 are as follows:381

xc(0) = 1, yc(0) = Y0, yl(0) = lim
ζ→0

(
−Y0Tp(ζ)

α

)
,382

rc(0) = rc0, rf (0) = lim
ζ→0

(
− α

Tp(ζ)
+ r3c0

(
1 +

α

Tp(ζ)

))1/3

.(32)383
384

We are able to reduce this system from five ordinary differential equations to just two, for xc and rc,385

as we now describe. The equations (31c) and (31d) can be combined to eliminate the right-hand sides and386

integrated directly, yielding an expression for global CPA conservation387

r3cxc −
(
r3f − r3c

) Tp
α

= 1.(33)388
389

Rearranging (33) to obtain an expression for the position of the freezing front in terms of xc, rc, and Tp,390

and integrating the equations (31a) and (31b) directly, we obtain the algebraic relationships391

yc =
r3c0
r3c
Y0, yl =

1− r3c0
r3f − r3c

Y0, rf =

(
r3c −

α

Tp

(
1− r3cxc

))1/3

.(34)392

393

Therefore, we can reduce the system (31) to the following two ODEs for xc and rc394

d

dζ

(
r3cxc

)
= −3ωr2c

κ

(
Tp
α

+ xc

)
,(35a)395
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drc
dζ

= σ

(
Tp
α

+ xc

)
+ Y0

(
r3c0
r3c

+
Tp
α

1− r3c0
1− r3cxc

)
,(35b)396

397

with xc(0) = 1 and rc(0) = rc0. The system (35) is similar to other ODE models that have been used in398

the past to model cryopreservation (e.g. [6, 9, 13]), based on the Kedem–Katchalsky (KK) framework for399

the volume and intracellular solute concentration of cells during cryopreservation [26, 29]. Our asymptotic400

analysis shows that (35) is the relevant KK model for the set-up we consider over longer timescales once the401

temperature and concentration have become uniform in each domain. The differences between our model402

and the standard KK model are: (1) we consider an additional solute - the ion concentration, and (2) our403

model has systematically accounted for the CPA and ion concentrations both internally and externally to404

the cell, as well as their coupling to the prescribed temperature at the external boundary.405

Noting that Tp → −1 when the final freezing temperature is reached, the final equilibrium values are406

given by407

xc, xl =
1

α
, yc, yl =

Y0
α
, rc = rc0α

1/3, rf = α1/3,(36)408
409

as verified in Figures 2–4.410

3.4.1. Small rc0. We note that, in practice, the value of rc0 is fairly small, and hence r3c0 and r3c can411

be ignored relative to larger terms in (34)–(35). Making that simplification, we find412

yl = −TpY0
α

, rf =

(
− α

Tp

)1/3

,(37)413
414

and (35b) can be approximated by415

drc
dζ

= σ

(
Tp
α

+ xc

)
+ Y0

(
r3c0
r3c

+
Tp
α

)
.(38a)416

417

4. Distinguished limits for the cooling rate. Now that we have described the reduced models that418

hold on each timescale of the problem, we now consider how the behaviour depends on the cooling rate, β.419

The dimensionless cooling timescale is 1/β, and we consider three distinguished limits for β, where β = O(1),420

O(Dx
l ), and O(κ) in turn, proceeding from fastest to slowest cooling rate. We also consider the sub-limits421

of β � 1 and β � κ in their respective relevant distinguished limits.422

4.1. Rapid cooling: β = O(1). In the case of rapid cooling, where β = O(1), the temperature evolves423

on the conductive timescale t = O(1) and is outlined in §3.2. Analytic expressions for the temperature over424

this timescale are given in (22) and (71). The temperature tends to its uniform final value T = −1 by the425

end of this timescale.426

Later, when t = O(1/Dx
l ), the problem is governed by (24) – (27), with the general condition (26a)427

given the specific form428

xl =
1

α
for r = rf (τ).(39)429

430

This problem determines the diffusive evolution of the solute concentration and the freezing front evolu-431

tion. From the integral constraints (29), we have the following large-time behaviour of the reduced moving432

boundary problem:433

xl →
1

α
, yl →

Y0
α
, rf →

(
α+ r3c0 (1− α)

)1/3
as τ →∞.(40)434

435

Finally, on the osmotic timescale, outlined in §3.4, (30) and (34) give436

xl =
1

α
, yc =

r3c0
r3c
Y0, yl =

1− r3c0
α− r3cxc

Y0, rf =
(
α+ r3c (1− xc)

)1/3
.(41)437

438

This manuscript is for review purposes only.



A MATHEMATICAL MODEL OF CRYOPRESERVATION 15

Recalling the definition ζ = κt, the governing ODEs (35) for xc and rc can be simplified to439

d

dζ

(
r3cxc

)
=

3ωr2c
ακ

(1− αxc) ,(42a)440

α
drc
dζ

= −σ (1− αxc) + Y0

(
αr3c0
r3c
− 1− r3c0

1− r3cxc

)
,(42b)441

442

with xc(0) = 1 and rc(0) = rc0. Thus, the large-time dynamics for rapid cooling all collapse onto the443

solutions of (42), as predicted by the collapse of the faster cooling rates onto a single curve in Figures 5a444

and 6a.445

4.1.1. Very rapid cooling: β � 1. It is informative to note the simplifications that occur when the446

cooling timescale is much faster than the heat conduction timescale. In this asymptotic limit, the reductions447

occur over the first timescale where t = O(1), and T ′p(t) ≈ −(1 − α)δ(t), where δ(t) is the Dirac delta448

function. Hence Tl, given in (22), becomes449

Tl = −1− 2(1− α)

r

∞∑

n=1

(−1)n exp(−kln2π2t)

nπ
sinnπr.(43)450

451

Solutions for the chemical concentration in the boundary layer in this limit are given in Appendix D.1.452

4.2. Moderate cooling: β = O(Dx
l ). In the case of moderate cooling where β = O(Dx

l ), the thermal453

conductivity timescale t = O(1) (outlined in §3.2) is now fairly uninteresting, since the prescribed tempera-454

ture change is small on this timescale. To leading order, nothing happens until the t = O(1/Dx
l ) timescale455

on which both temperature and solute evolve.456

Over this timescale, the temperature is spatially uniform, with Tl = Ts = Tp(τ), and it decreases from457

its initial value of −α to its final value of −1. The reduced problem, given in (24)–(27), consists of a partial458

differential equation for xl with one moving boundary for rf . Since Tp(τ) reaches the final value of −1, the459

large-time state attained over this timescale is the same as for the rapid cooling case in §4.1, given in (40).460

From this point onwards the dynamics of the moderate cooling case are exactly the same as those in §4.1,461

as described by (41)–(42).462

4.3. Slow cooling: β = O(κ). In the case of slow cooling where β = O(κ), both the thermal con-463

ductivity and solute diffusion timescales (outlined in §3.2 and §3.3) are uninteresting. Over both of these464

timescales, the leading-order system is essentially solved by the initial conditions (17). The interesting465

timescale for this case is where ζ = κt = O(1), described in §3.4. Over this timescale, the system is governed466

by (30), (34)–(35).467

4.3.1. Very slow cooling: β � κ. Finally, it is also of interest to determine the further reduced468

system when the cooling rate is even smaller than in the distinguished limit of slow cooling, that is when469

β � κ. In this case the dynamics become quasi-steady. The solution is given parametrically in terms of Tp470

xc = xl = −Tp
α
, yc = yl = −TpY0

α
, rc = rc0

(
− α

Tp

)1/3

, rf =

(
− α

Tp

)1/3

.(44)471
472

The latter two solutions for the membrane and freezing front position are shown in Figures 5b and 6b by473

the dashed lines.474

4.4. Overview of asymptotic results. Our asymptotic solutions consist of the analytic results for475

the liquid temperature (22) and ice temperature Ts = Tp, the reduced partial differential equation for CPA476

concentration within the liquid medium with a moving boundary at the freezing front (24)–(27) over the477

intermediate timescale, and the heavily reduced system of a coupled set of ordinary differential equations for478

the chemical concentrations and moving boundaries (35) over the slow timescale.479

To summarize, the ice temperature is always spatially independent and equal to the external temperature480

for all cooling rates. The liquid temperature can be spatially dependent for fast cooling rates over the heat481

conduction timescale (22), but is spatially independent in all other cases. The chemical concentrations and482

motions of the moving boundaries are strongly coupled to one another. While these quantities are forced by483
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(a) (b)

Fig. 8. A comparison of our numerical and asymptotic solutions for (a) rc and (b) xc(0, t). We use a dimensionless
cooling rate of β = 1, and the remaining parameters from Table 3. The naive asymptotic solution is from (30), (34)–(35), the
modified asymptotic solution is from (45). The naive asymptotic solutions agree well with the numerical solution, whereas the
modified asymptotic solutions are almost indistinguishable.

the decrease in temperature, the movement of the freezing front dictates the chemical balance. The Stefan484

condition (13d) is more correctly interpreted for this problem as a statement about the small flux of heat485

from the freezing front to the ice phase, rather than a statement about the balance of heat fluxes with the486

front velocity. The cell membrane movement and the CPA concentration within the cell only vary from their487

initial values over the slow timescale, no matter what cooling rate is imposed. This means that faster cooling488

rates will result in significant differences in CPA concentration within the cell compared to at the freezing489

front. This will cause a difference in the freezing temperature at each location, and will therefore result in490

supercooling within the cell. This is discussed in more detail in §5.491

These asymptotic solutions provide fast and accurate approximations of the numerical solutions when492

compared with the size of the cell and the CPA concentration within the cell, as shown in Figure 8. These493

variables are the key quantities for determining cell damage, and we will exploit our asymptotic solutions494

in §5 to quantify cell damage in a computationally efficient manner. Such insights allow us to numerically495

implement boundary conditions in a manner that agrees with the flow of information in the system. There496

is a slight discrepancy between the asymptotic and numerical results for intermediate times in Figure 8, we497

discuss how to resolve this in the next section.498

4.5. Modified asymptotic solutions. We note that there is a discrepancy between the osmotic499

timescale for faster cooling predicted by the asymptotic analysis (t = O(1/κ) = O(2× 105)), and that seen500

in Figures 3–4, where the cell membrane movement occurs over t = O(103). In terms of the physics of the501

problem, this occurs because the extracellular solute concentration is not uniform during the early part of502

the osmotic timescale. However, we shall demonstrate in this section that a careful incorporation of the503

required spatial dependence does provide the required correction.504

In terms of the asymptotic methodology we use, this discrepancy occurs because, as is often the case505

with asymptotic methods, there are quantities we treat as O(1) that combine to become large in practice.506

For this problem, we can obtain a modified osmotic timescale directly from (12c). As the CPA concentration507

difference across the membrane can be up to 1/α and the cell size is O(rc0), a more accurate osmotic508

timescale is t = O(rc0α/κ) = O(103), which does agree with Figures 3–4. While the osmotic timescale509

should therefore start to merge with the solute diffusion timescale (t = O(1/Dx
l ) = O(103)), this does not510

occur completely since the diffusion timescale is itself shortened by the reduction in the liquid domain size,511

largely keeping these timescales separate. The practical effect of this is that there is a slight merging of512

these two timescales, and this causes the small difference between the numerical and asymptotic solutions513

in Figure 8. In essence, the cell motion is slightly slower than predicted by the asymptotic analysis. This514

is because the CPA concentration is actually lower at the cell membrane than at the freezing front early in515

the osmotic timescale. This results in smaller forcing of the cell motion than predicted by the asymptotic516

analysis which assumes a sharp separation of timescales leading to the CPA concentration being spatially517
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uniform throughout the osmotic timescale. We refer to the original set of asymptotic solutions as the ‘naive’518

asymptotic results.519

To fix the discrepancy, we can formulate an appropriate reduced composite equation using the fact that520

xc is approximately independent of space for all time. To do this, we first solve for xl(r, τ) over the medium521

time, using the reduced PDE system derived in §3.3. This allows us to determine xl(rc0, τ) at the cell522

membrane (noting that the cell membrane is stationary over this timescale), and we define this quantity as523

f(ζ) := xl(rc0, (D
x
l /κ)ζ). Then, we may derive the reduced ODE system524

d

dζ

(
r3cxc

)
= −3ωr2c

κ
(xc − f(ζ)) ,(45a)525

drc
dζ

= σ (xc − f(ζ)) + Y0

(
r3c0
r3c
− f(ζ)

1− r3c0
1− r3cxc

)
,(45b)526

527

with xc(0) = 1 and rc(0) = rc0, for the osmotic timescale. This is a direct modification of (35), replac-528

ing −Tp(ζ)/α with f(ζ), the pre-computed function described above. We refer to these as the ‘modified’529

asymptotic results. The system (45) can also be thought of as a modified Kedem–Katchalsky (KK) ODE530

model [26, 29], valid over the medium and long timescales, requiring the solution of the reduced PDE system531

derived in §3.3 as an input.532

Using (45), our modified asymptotic results show excellent agreement with the full numerical results533

(Figure 8), allowing us to be confident in both our numerical and asymptotic solutions. While this modified534

asymptotic solution is slightly more computationally intensive than simply obtaining the solution of the535

ODE (35), it remains around 500 times faster than a full numerical solution.536

5. Cell damage. In this section, we use our results to estimate the potential damage caused to cells537

during freezing. The two main mechanisms of damage are due to intracellular ice formation, and chemical538

toxicity. The former is triggered by supercooling, a quantity we are able to calculate directly from our539

model (Figure 9a). We observe that cells can experience significant levels of supercooling. Our first metric540

quantifies intracellular ice formation by integrating the total supercooling over time. As cytoplasm can541

tolerate a certain level of supercooling before freezing occurs, we build this into our metric by only counting542

supercooling above a specified level, T̃sup. In insects that cryogenically preserve themselves during cold543

weather, T̃sup ≈ 20◦C [50], and so we use this value here for definiteness, but we emphasize that this value544

can be varied if required.545

With the assumptions outlined above, our metric for cell damage due to supercooling is546

S :=

∫ ∞

0

4

3
πr3c [Tf (xc(0, t))− Tl(0, t)− Tsup]+ dt,(46a)547

548

where [f(x)]+ denotes the positive part of f(x) and Tsup = T̃sup/(T̃f0 − T̃end) ≈ 0.29 is the dimensionless549

level of safe supercooling within cytoplasm. We have integrated over the cell volume approximating the550

supercooling by its value at the cell centre, since our solutions show that the supercooling is essentially551

independent of space within the cell. As one might expect, the damage due to supercooling increases as the552

cooling rate increases (Figure 10a).553

To quantify cell damage due to chemical toxicity, we assume that toxicity accumulates over time at a554

rate proportional to CPA concentration and cell volume, but we note that a more general toxicity function555

could incorporate effects due to the increased concentration of the impermeable chemical species as well.556

We see that lower cooling rates lead to higher CPA concentrations at the cell centre for the same external557

temperatures (Figure 9b), which suggests that toxicity is likely to be more of a concern for slow cooling,558

agreeing with experimental observation. We assume that the rate of proportionality for toxicity satisfies an559

Arrhenius-type temperature dependence with activation energy Ẽa [14]. To this end, we use the following560

metric to quantify CPA toxicity561

T :=

∫ ∞

0

4

3
πr3cxc(0, t)e

−Ea/(1+νTl(0,t)) [Tl(0, t)− Tmet]+ dt,(46b)562
563

where Ea = Ẽa/(R̃T̃f0) is a dimensionless activation energy (we use Ea = 40, corresponding to Ẽa = 90.6 kJ564

mol−1), and ν = (T̃f0− T̃end)/T̃f0. While the introduction of this Arrhenius factor means that CPA toxicity565
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(a) (b)

Fig. 9. Proxies for cell damage at the cell centre. (a) Supercooling Tf (xc(0, t))−Tl(0, t) versus time. (b) CPA concentration

xc(0, t) versus external temperature. The different lines correspond to different values of the cooling rate; we use β = 2.8×10k,
where k = {−7, . . . , 3} (corresponding to dimensional cooling rates ranging between 10−4 – 106 K s−1). The solid lines are
numerical solutions and the black dashed lines are asymptotic solutions, using the analytic result for the temperature (22) from
the fast timescale and the naive asymptotic solution (30), (34)–(35) from the slow timescale. The arrows denote increasing
cooling rate.

(a) (b)

Fig. 10. The metrics for cell damage in our system, (a) S and (b) T , using Tsup = 0.29, Ea = 40, and Tmet = −0.9.

decreases as the temperature decreases, it is also helpful to impose that the CPA toxicity explicitly falls to566

zero when the temperature falls below a certain level, defined in dimensionless terms as Tmet. This ensures567

that we do not accrue infinite toxicity as t → ∞. We impose a value of Tmet = −0.9 here for definiteness,568

but again emphasize that this can be varied if required. We note that the metric T is similar to the569

temperature-dependent toxicity cost function used in Davidson et al. [14] to optimise operating conditions570

during cryopreservation, itself an adaptation of the toxicity cost function from [6, 7, 13], for example.571

However, we consider the integrand to be linearly proportional to CPA concentration rather than as a non-572

integer power, and we scale toxicity with the cell volume. We note that the damage due to CPA toxicity573

increases as the cooling rate decreases (Figure 10b), in agreement with physical intuition and experimental574

observation.575

When we compare the damage predicted by our asymptotic results to that predicted by our numerical576

solutions, we note that while there is excellent agreement for T , the asymptotic results for S systematically577

predict a lower damage from supercooling if we use the naive asymptotic results discussed in §4.4 (Figure578
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Fig. 11. The cell damage function D, defined in (47) with λ and µ chosen to normalize the maximum values of S and T
as described in the text, versus cooling rate β. We show results for different cytosol tolerances to supercooling (Tsup), which
lead to different optimal cooling rates which minimize D, denoted by a cross.

10). However, the modified asymptotic results show excellent agreement for both. In Figure 10, we also plot579

the damage predicted by using the model (35) (for the slow timescale) for all time. We refer to this as the580

Kedem–Katchalsky (KK) model. As one might expect, the results from this are very similar to those of the581

naive asymptotic results, which differ from the KK model by using the analytic solution for the temperature582

(22) over the fast timescale, in addition to (35) over the slow timescale. This is because even though there583

are significant differences between the KK and naive asymptotic results in the liquid and ice regions, the only584

difference between our naive asymptotic results and the KK equations at the cell centre is the temperature585

over the fast timescale for fast cooling rates. This explains the discrepancy in T for faster cooling rates; the586

KK equations over-estimate the rate of heat propagation to the cell centre at faster cooling rates.587

Hence, we are able to efficiently compute S and T as metrics for cell damage in the system. For given588

cell membrane permeability parameters and appropriate weightings of each metric, we can use these results589

to compute optimal cooling rates, using a combined damage function,590

D = λS + µT .(47)591592

For example, if we sweep between β̃ ∈ [10−3, 101] K s−1 and choose λ and µ to normalize S and T such593

that their highest values are equal to one, we see that our damage function predicts a minimum in D at an594

intermediate cooling rate (Figure 11). The optimal cooling rate increases as the tolerance to supercooling595

increases. The framework we have developed in this paper allows us to quantify the optimal cooling rate for596

given cell parameters.597

6. Discussion. We have derived and solved a mathematical model for the cryopreservation of a cell598

immersed in a liquid medium, using a combination of numerical and asymptotic methods. Our model599

accounts for spatial variation of temperature and chemical concentrations, and for the motion of a freezing600

front and cell membrane. The system is fully coupled, since the presence of cryoprotective agent (CPA) lowers601

the freezing point, and the membrane movement is generated by an osmotic force of chemical concentration602

difference across the membrane. Investigating this system has provided insight into how the coupled physical603

mechanisms underlying cryopreservation combine during the freezing process, and when they cause cell604

damage. To this end, we have introduced two different damage metrics to infer the implicit cell damage605

caused by freezing. The first quantifies the cumulative supercooling occurring within the cell as a proxy606

for intracellular ice formation. The second measures the cumulative CPA toxicity occurring within the cell.607

We note that it is impossible to globally optimize both of these metrics separately since it is observed that608

faster cooling has a greater chance of intracellular ice formation and slower cooling suffers from greater CPA609

toxicity. Our metrics allow us to quantify these observations, and show that there is an ‘optimal’ cooling610

rate, which will depend on the cell properties and the operating conditions of the cryopreservation process.611

These results are consistent with the well-known ‘two-factor hypothesis’ of freezing injury [39]. Our work612
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provides a computationally efficient framework from which to determine this optimal cooling rate.613

It would be straightforward to modify both the toxicity and supercooling metrics to account for different614

cell biology or sensitivity to the ion concentration, for example. For simplicity, we have not explicitly615

considered the mechanism of intracellular ice formation; we only allow ice to form from a nucleation surface616

at the external boundary. Explicitly accounting for the mechanism of supercooling and new crystal nucleation617

with an unstable freezing front could lead to mushy layers near the front, consisting of ice and water. This618

would be an interesting extension of the model we present in this paper.619

We have focused on the freezing process of cryopreservation here, but note that there are also interesting620

physical problems arising in the thawing stage. As our model is inherently nonlinear, a reversal of the621

freezing process will not result in a strict reversal of the dynamics, and would be an interesting problem in622

its own right.623

Moreover, we note that while this work is for a single cell, a significant application of cryopreservation is624

for biological tissue. Safely freezing larger tissues remains a current challenge in the field. Our model could625

be extended to a tissue comprising many cells using the mathematical technique of homogenization [10, 22].626

However, care must be taken in this upscaling procedure due to the moving boundaries in the problem - one627

could follow the methodology of [12, 44], for example.628

The higher cooling rates we consider in this paper start to touch on the realm of vitrification, where a629

liquid is cooled rapidly past its glass transition point so as to form a non-crystalline amorphous solid rather630

than a crystalline ice [43]. While vitrification is not a focus of this work, and we do not account for the631

mechanisms of vitrification in the model, we note that a drop in CPA diffusivity associated with lowering632

temperature can be accounted for using the results in Appendix A. In this Appendix, we provide system-633

atically reduced systems for the cryopreservation of a single cell where the cell parameters are temperature634

dependent. Although the solutions will vary due to this temperature dependence, the asymptotic structure635

of the problem remains the same.636

Finally, we note that this work has the potential to guide cryopreservation protocols for the freezing of637

single cells. Our methodology allows us to account for the spatial variations inherent to the system at faster638

cooling rates, and to systematically reduce the system over the different timescales. This approach allows us639

to derive asymptotic solutions which largely circumvent the issue of expensive parameter sweeps, resulting640

in a computationally efficient framework to compute the cell damage for given cell properties and operating641

conditions.642

Data deposition. The computational code we developed to solve this model (outlined in Appendix B)643

is openly available at https://github.com/m-dalwadi/Mathematical-model-cryopreservation.644

Appendix A. Temperature-dependent coefficients.645

In this Appendix we outline how the problem changes when we allow the following chemical transport646

parameters to depend on temperature: Dx
c , D

y
c , D

x
l , D

y
l , ω, κ. Though we carry out this analysis for gen-647

eral temperature-dependent coefficients, it may be helpful to think of the membrane coefficients having an648

Arrhenius-type dependence on the temperature. For the diffusivities, one may consider a modified Arrhenius-649

type dependence, using the Stokes–Einstein equation for diffusivity, and an Arrhenius-type dependence for650

the viscosity.651

In general, we expect all these parameters to decrease as the temperature decreases. Looking at activation652

energies [8, 15], we note that the activation energies for diffusivities are smaller than those for membrane653

permeability. Hence, the distinct timescales in §3 will separate rather than coalesce as the temperature654

decreases, maintaining the asymptotic structure that we identified in the main text. Hence, we are able to655

present the asymptotic solution to the generalized problem over the three important timescales identified in656

the main text as a simple extension of §3.657

A.1. Thermal conduction timescale: t = O(1). Over this timescale, the solution largely proceeds658

as in §3.2. For precision, we use the diffusivity of CPA in water at the initial temperature D0 := Dx
l (−α) as659

our small (constant) parameter, and this replaces the Dx
l in §3.2. In this case, the system is governed by the660

same temperature solutions (22) and (71). The chemical transport equations will be the early-time versions661

of those given in the next subsection.662

A.2. Solute diffusion timescale: t = O(1/D0). Over this timescale, the solution largely proceeds as663

in §3.3. We will again use the diffusivity of CPA in water at the initial temperature Dx
l (−α) as our small664
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(constant) parameter, replacing the Dx
l in §3.3. This means that we use τ = D0t = O(1) as our timescale.665

The temperature is given by Ts = Tl = Tp(τ), but now the chemical transport problem is governed by666

∂xl
∂τ

= ∇ ·
(
Dx
l

D0
∇xl

)
,

∂yl
∂τ

= ∇ ·
(
Dy
l

D0
∇yl

)
for rc0 < r < rf (τ),(48)667

668

instead of (24). At the cell membrane, we have the no-flux versions of (12a)–(12b), which are669

Dx
l

D0

∂xl
∂r

+ xl
drc
dτ

= 0,
Dy
l

D0

∂yl
∂r

+ yl
drc
dτ

= 0 for r = rc(τ).(49)670
671

At the freezing front, we have the Dirichlet condition for the CPA concentration (26a), and the following672

conditions673

Dx
l

D0

∂xl
∂r

+ xl
drf
dτ

= 0,
Dy
l

D0

∂yl
∂r

+ yl
drf
dτ

= 0 for r = rf (τ),(50)674
675

to replace (26b) and (26c). The matching conditions for this system into the earlier timescale as τ → 0 are676

the same as in §3.3, given by (27) away from the freezing front, and addressed in the next section when the677

matching conditions near the freezing front may become relevant.678

A.3. Osmotic timescale: t = O(1/κ0). Over this timescale, the solution largely proceeds as in §3.4.679

We now use the hydraulic conductivity of the cell membrane at the initial temperature κ0 := κ(−α) as our680

small parameter, replacing the κ in §3.4. This means that we use ζ = κ0t = O(1) as our timescale.681

The temperature of the system is given by Ts = Tl = Tp(ζ), and the CPA concentration in the water682

phase is given by (30). The procedure to determine a closed system for the remaining variables is similar to683

that in §3.4. This means that xc, yc, yl, and rf are given by (30) and (34), while the remaining generalized684

system is given by685

d

dζ

(
r3cxc

)
= −3ωr2c

κ0

(
Tp(ζ)

α
+ xc

)
,

drc
dζ

=
κ

κ0

[
σ

(
Tp(ζ)

α
+ xc

)
+ Y0

(
r3c0
r3c

+
Tp
α

1− r3c0
1− r3cxc

)]
,(51)686

687

for the variables, xc, yc, and rc, which are all solely functions of ζ. The ‘initial’ conditions for this system688

as ζ → 0 are xc(0) = 1 and rc(0) = rc0. Finally, we note that in the case where cooling occurs over a longer689

timescale than membrane movement (β � κ0), the temperature dependence of the parameters becomes690

irrelevant for the system dynamics.691

Appendix B. Landau transformation to three fixed domains.692

In this section we make a transformation to turn the Laplacian in our governing equations from an oper-693

ator acting on a spherical coordinate system to a Cartesian one, and we perform the Landau transformation694

[30] to map the moving-boundary problem into a fixed domain problem. Both of these transformations will695

facilitate a numerical solution.696

To transform the Laplacian in our governing equations, we introduce the new dependent variables697

(Tl, Ts, xc, yc, xl, yl) =
1

r
(Θl,Θs, Xc, Yc, Xl, Yl) .(52)698

699

In addition, we note that it is helpful for the numerical simulation to split Θl into Θl,c and Θl,l, which hold700

in the cell and liquid domain, respectively. At the cell membrane, we couple these two new variables by701

imposing continuity of temperature and heat flux. We note that if f = F/r, then f ′ = F ′/r − F/r2, and702

therefore our governing equations and boundary conditions must be adjusted accordingly. We outline them703

below, after one additional transformation.704

To transform the moving-boundary problem into three fixed domains, we introduce new independent705

variables based on the formulation706

ξ = g

(
r − a(t)

b(t)− a(t)

)
,(53)707

708
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Fig. 12. The nonlinear monotonic function g2(η;λ) (Table 4), used in the transformation of the domain rc(t) < r < rf (t)
to resolve the boundary layers near r = rf (t). The dotted line corresponds to g2(η; 0+) = η, and the solid lines correspond to
λ = 0.1, 1, 5, 10. Hence, we see that a uniform grid spacing of g2 corresponds to more grid points near η = 1, with this effect
being amplified as λ increases.

where r ∈ (a(t), b(t)), and g is a monotonic increasing function, with g(0) = 0 and g(1) = 1. The purpose709

of g is to allow a uniform discretization of ξ to provide a non-uniform discretization of r, allowing for finer710

resolutions near boundary layers. For our problem, we use711

ξ1 = g1

(
r

rc(t)

)
for 0 < r < rc(t),(54a)712

ξ2 = g2

(
r − rc(t)

rf (t)− rc(t)
;λ

)
for rc(t) < r < rf (t),(54b)713

ξ3 = g3

(
r − rf (t)

1− rf (t)

)
for rf (t) < r < 1.(54c)714

715

where ξj = 0 corresponds to the left-hand boundary of the respective domain, and ξj = 1 corresponds to the716

right, where j ∈ {1, 2, 3}. In (54), g1(η) = g3(η) = η, and g2(η;λ) = − log
[
1− η(1− e−λ)

]
/λ is a monotonic717

increasing function, with g2(0) = 0 and g2(1) = 1. Here, λ ∈ (0,∞) is a constant we choose, with a larger718

value of λ corresponding to a finer grid resolution near r = r−f with a uniform discretization of ξ2. The limit719

g2(η;λ)→ η is reached as λ→ 0+. We show g2(η;λ) in Figure 12.720

Under the transformations (54), the derivatives transform as follows721

∂

∂r
7→

g′j
[
g−1j (ξj)

]

bj − aj
∂

∂ξj
,

∂

∂t
7→ ∂

∂t
−
g′j
[
g−1j (ξj)

]

bj − aj

[
ȧj
(
1− g−1j (ξj)

)
+ ḃjg

−1
j (ξj)

] ∂

∂ξj
.(55)722

723

Therefore, the governing equations (9)–(10) are transformed as follows:724

∂cjij
∂t

=
g′j
[
g−1j (ξj)

]

bj − aj

[
ȧj
(
1− g−1j (ξj)

)
+ ḃjg

−1
j (ξj)

] ∂cjij
∂ξj

+Dj
ij

g′j
[
g−1j (ξj)

]

bj − aj
∂

∂ξj

(
g′j
[
g−1j (ξj)

]

bj − aj
∂cjij
∂ξj

)
,(56)725

726

on the domain 0 < ξj < 1. Here, i1 ∈ {1, 2, 3}, i2 ∈ {1, 2, 3}, and i3 ∈ {1}, and we note that g1(η) = g3(η) = η727

greatly simplifies (56) in the cell and solid domains. We specify aj(t), bj(t), c
j
ij

, and Dj
ij

in Table 4.728

The boundary conditions at the origin (11) become729

Xc = Yc = Θl,c = 0 for ξ1 = 0,(57)730731
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j gj(η) aj(t) bj(t) ij cjij Dj
ij

1 η 0 rc(t)
1 Xc Dx

c

2 Yc Dy
c

3 Θl,c kl

2 − 1

λ
log
[
1− η(1− e−λ)

]
rc(t) rf (t)

1 Xl Dx
l

2 Yl Dy
l

3 Θl,l kl
3 η rf (t) 1 1 Θs 1

Table 4
Definitions for the variables in (56).

The boundary conditions at the cell membrane (12) become732

Dx
c

(
∂Xc

∂ξ1
−Xc

)
+Xcrc

drc
dt

= Dx
l

(
rc
(
1− e−λ

)

λ (rf − rc)
∂Xl

∂ξ2
−Xl

)
+Xlrc

drc
dt

for ξ1 = 1, ξ2 = 0,(58a)733

Dx
c

(
∂Xc

∂ξ1
−Xc

)
+Xcrc

drc
dt

= ωrc (Xl −Xc) for ξ1 = 1, ξ2 = 0,(58b)734

Dy
c

(
∂Yc
∂ξ1
− Yc

)
+ Ycrc

drc
dt

= 0 for ξ1 = 1,(58c)735

Dy
l

(
rc
(
1− e−λ

)

λ (rf − rc)
∂Yl
∂ξ2
− Yl

)
+ Ylrc

drc
dt

= 0 for ξ2 = 0,(58d)736

drc
dt

= − κ
rc

[σ (Xl −Xc) + (Yl − Yc)] for ξ1 = 1, ξ2 = 0,(58e)737

Θl,c = Θl,l for ξ1 = 1, ξ2 = 0,(58f)738

∂Θl,c

∂ξ1
=
rc
(
1− e−λ

)

λ (rf − rc)
∂Θl,l

∂ξ2
for ξ1 = 1, ξ2 = 0.(58g)739

740

The boundary conditions at the freezing front (13) become741

Θl,l = Θs = −αXl for ξ2 = 1, ξ3 = 0,(59a)742

Dx
l

(
rf
(
eλ − 1

)

λ (rf − rc)
∂Xl

∂ξ2
−Xl

)
+Xlrf

drf
dt

= 0 for ξ2 = 1,(59b)743

Dy
l

(
rf
(
eλ − 1

)

λ (rf − rc)
∂Yl
∂ξ2
− Yl

)
+ Ylrf

drf
dt

= 0 for ξ2 = 1,(59c)744

Sr2f
drf
dt

=
rf

1− rf
∂Θs

∂ξ3
−Θs − k

(
rf
(
eλ − 1

)

λ (rf − rc)
∂Θl,l

∂ξ2
−Θl,l

)
for ξ2 = 1, ξ3 = 0.(59d)745

746

The boundary condition at the exterior ice boundary (15) becomes747

Θs = Tp(t) for ξ3 = 1.(60)748749

Finally, the initial conditions (17) are now750

Xc(ξ1, 0) = rc0ξ1, Yc(ξ1, 0) = Y0rc0ξ1, Θl,c(ξ1, 0) = −αrc0ξ1,751

Xl(ξ2, 0) = rc0 + (1− rc0)
1− e−λξ2
1− e−λ

, Yl(ξ2, 0) = Y0

(
rc0 + (1− rc0)

1− e−λξ2
1− e−λ

)
,752

Θl,l(ξ2, 0) = −α
(
rc0 + (1− rc0)

1− e−λξ2
1− e−λ

)
, rc(0) = rc0, rf (0) = 1.(61)753
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754

We discretize our spatial operators using a standard second-order accurate central-difference scheme755

with uniform grid spacing. We discretize our boundary conditions using forward- or backward-difference756

schemes where appropriate, with second-order accuracy (verified in the supplementary material). We use 80757

grid points in the cell and ice regions, and 300 grid points in the liquid region. For a given cooling rate, we758

choose λ such that there are at least 10 points in the initial boundary layer identified in Appendix C. This759

ranged from λ = 10−5 for low cooling rates to λ = 8.7 for the highest cooling rate of β̃ = 106 K s−1. For760

β̃ > 0.5 K s−1, we stop the simulation at t = 10, then restart it using λ = 0 on a re-meshed uniform grid.761

This procedure enables us to generate a solution more quickly. We found that this approach was sufficient762

to ensure that our solutions were well resolved for all time. The excellent agreement between our numerical763

and asymptotic solutions (Figures 8–9) gives us confidence in our results.764

Appendix C. Early-time asymptotics.765

In this section we derive the early-time solutions for a linear temperature drop. This will allow us to766

start our simulations at a small but finite time, thus side-stepping the issue of creating the ice phase at767

t = 0. While we have several natural small parameters in our system, the small parameters we use for this768

analysis are t and 1− rf (t), formally treating all other dimensionless parameters in the system as O(1). We769

also note that the early-time limit of §3.2, the first important timescale in the problem, is equivalent to the770

small-time limit of the full system (i.e. the limits of Dx
l → 0+ and t → 0+ commute), confirming that we771

have correctly identified the earliest interesting timescale t = O(1).772

For ease of numerical implementation, it is simpler to determine the early-time solutions to the trans-773

formed system derived in Appendix B. However, we can also use the results of §3.2 to guide our analysis,774

noting that for early-time the ice temperature is constant in r, xc = 1, yc = Y0, and rc(t) = rc0. In terms of775

the transformed variables776

Xc(ξ1, t) ∼ rc0ξ1, Yc(ξ1, t) ∼ Y0rc0ξ1, Θl,c(ξ2, t) ∼ −αrc0ξ1,777

Θs(ξ3, t) ∼ (rf (t) + (1− rf (t))ξ3)Tp(t), rc(t) ∼ rc0.(62)778779

The more interesting problems are for Xl, Yl, Θl,l and rf ; governed by (56), with boundary conditions780

(59a)–(59c) and initial conditions (61). At early time, Xl, Yl, and Θl,l are close to their initial values, with781

a boundary layer near ξ2 = 1. While we also have an analytic expression for Θl,l, we note that the infinite782

sum in (22) requires many terms to evaluate accurately as t → 0+. Therefore, it is helpful to obtain a783

simplified version in this limit. Although Euler-Maclaurin summation can be used for this purpose, the steps784

required are fairly involved. A simpler method is to note that there is an early-time boundary layer near785

the interface, and to solve the relevant equations for Θl,l in the small-t limit. Following this process, we786

note that the correct early-time scalings are 1 − rf = O(t3/2), 1 − ξ2 = O(t1/2), Xl − Xl(ξ2, 0) = O(t),787

Yl − Yl(ξ2, 0) = O(t), and Θl,l − Θl,l(ξ2, 0) = O(t). Seeking similarity solutions in the boundary layer, and788

noting that g′2(1) = (eλ − 1)/λ, the early-time (additive) composite solutions [46] are789

Xl ∼ rc0 + (1− rc0)
1− e−λξ2
1− e−λ

+
βt

α
F

(
λ (1− ξ2) (1− rc0)

(eλ − 1)
√

4Dx
l t

)
,(63a)790

Yl ∼ Y0
(
rc0 + (1− rc0)

1− e−λξ2
1− e−λ

)
+
βY0t

α

√
Dx
l

Dy
l

F

(
λ (1− ξ2) (1− rc0)

(eλ − 1)
√

4Dy
l t

)
,(63b)791

Θl,l ∼ −α
(
rc0 + (1− rc0)

1− e−λξ2
1− e−λ

)
− βtF

(
λ (1− ξ2) (1− rc0)

(eλ − 1)
√

4klt

)
,(63c)792

rf (t) ∼ 1− 4β

3α

√
Dx
l

π
t3/2,(63d)793

F (z) =
(
2z2 + 1

)
erfc z − 2z√

π
e−z

2

,(63e)794
795

where F (z) satisfies the following ODE796

F ′′ + 2zF ′ − 4F = 0, F (0) = 1, F (∞) = 0.(64)797

This manuscript is for review purposes only.



A MATHEMATICAL MODEL OF CRYOPRESERVATION 25

798

Although Yl satisfies a Neumann condition at the interface, its solution can be written in terms of F .799

We note that the early-time results we derive in this Appendix generalize to any nonlinear prescribed800

temperature drop with initial velocity T ′p(0) = −β, where 0 < β <∞.801

Appendix D. Boundary layer problems for t = O(1).802

To investigate the ice temperature and the concentration boundary layers over the timescale t = O(1),803

we must account for the position of the freezing front as a small perturbation from its initial value. To this804

end, we introduce R(t) = O(1), where805

rf (t) = 1−
√
Dx
l R(t).(65)806807

Due to the slow movement of the freezing front over this timescale, the solute concentrations in the liquid808

phase take their initial values, xl = 1 and yl = Y0, in most of the liquid domain except within a boundary809

layer near the freezing front whose width is similar to that of the ice region. Therefore, we introduce the810

boundary layer coordinate811

ρ = (1− r)/
√
Dx
l −R(t),(66)812813

where −R(t) < ρ < 0 corresponds to the ice region, ρ = 0 corresponds to the freezing front, and ρ > 0814

corresponds to the liquid region boundary layer. Due to the ice phase being asymptotically small over this815

timescale, the leading-order problem for the liquid temperature will hold over the domain 0 < r < 1.816

Using the coordinate transform (66) for the ice region, the leading-order versions of the governing817

equations for the thermal problem (9) are818

∂Tl
∂t

=
kl
r2

∂

∂r

(
r2
∂Tl
∂r

)
for 0 < r < 1, 0 =

∂2Ts
∂ρ2

for −R(t) < ρ < 0.(67)819
820

The relevant leading-order boundary conditions are as follows. At the origin, we have the symmetry condition821

kl
∂Tl
∂r

= 0 for r = 0.(68)822
823

At the freezing front, we require the following conditions824

Tl|r=1 = Ts|ρ=0,
∂Ts
∂ρ

= 0 for ρ = 0,(69)825
826

where the first condition is continuity of temperature, and the second condition is a significantly reduced827

Stefan condition, essentially telling us that the ice phase is insulated to leading order at the freezing front.828

At the exterior ice boundary, we have829

Ts = Tp(t) for ρ = −R(t).(70)830831

From the above system, we see that832

Ts = Tp(t),(71)833834

everywhere within the ice to leading order. Therefore, the coupling condition (69) yields the boundary835

condition (20).836

The leading-order versions of the governing equations for the solute concentration problems (10) in the837

liquid region are838

∂xl
∂t

=
dR

dt

∂xl
∂ρ

+
∂2xl
∂ρ2

,
∂yl
∂t

=
dR

dt

∂yl
∂ρ

+
Dy
l

Dx
l

∂2yl
∂ρ2

for ρ > 0,(72)839
840

recalling the boundary layer coordinate given in (66). The relevant boundary conditions are841

xl(1, t) = −Tp(t)/α,
∂xl
∂ρ

+ xl
dR

dt
= 0,

Dy
l

Dx
l

∂yl
∂ρ

+ yl
dR

dt
= 0 for ρ = 0.(73)842
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843

To match into the outer liquid region, we have the conditions844

xl → 1, yl → Y0 for ρ→∞,(74)845846

Finally, the initial conditions of the system are as follows847

xl(r, 0) = 1, yl(r, 0) = Y0, R(0) = 0.(75)848849

From the above, we see that the motion of the freezing front is governed by the CPA concentration near the850

front, rather than from the release of heat due to freezing as one may have expected.851

The reduced system for xl and yl near the freezing front is governed by (72)–(75). We note that the852

system for yl decouples from the problem for xl and R.853

D.1. Very rapid cooling: β � 1. Using the fact that Tp → −1 immediately for very rapid cooling,854

we can obtain analytic expressions for xl, yl, and R over the conduction timescale. Seeking a similarity855

solution, we deduce856

xl ∼ 1 +

(
1

α
− 1

) erfc

(
λ+

ρ

2
√
t

)

erfc(λ)
,(76a)857

yl ∼ Y0





1−
λ

√
πDx

l

Dy
l

exp

(
λ2
Dx
l

Dy
l

)
erfc

(√
Dx
l

Dy
l

(
λ+

ρ

2
√
t

))

λ

√
πDx

l

Dy
l

exp

(
λ2
Dx
l

Dy
l

)
erfc

(√
Dx
l

Dy
l

λ

)
− 1




,(76b)858

R ∼ 2λ
√
t,(76c)859860

where λ satisfies the transcendental equation861

λ
√
π exp(λ2) erfcλ = 1− α,(77)862863

noting that α ∈ (0, 1) from the definition of α (Table 3), since the initial dimensional temperature is864

T̃0 := T̃f0 − α̃X̃0.865
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