A MATHEMATICAL FRAMEWORK FOR DEVELOPING FREEZING PROTOCOLS IN
THE CRYOPRESERVATION OF CELLS
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Abstract. When cooling cells to preserve them during cryopreservation, cooling too quickly results in the formation of
lethal intracellular ice, while cooling too slowly amplifies the toxic effects of the cryoprotective agents (CPA) added to slow
down ice formation. We derive a mathematical model for cell cryopreservation to understand and quantify these observations.
We assume that the system has a spherical geometry of three different regions: ice, extracellular liquid medium, and cell. The
two interfacial boundaries separating the three regions can move and must be determined as part of the solution. The presence
of CPA lowers the freezing point of the system, and the cell membrane moves due to the osmotic pressure difference across
the membrane. We use a combination of numerical and asymptotic methods to determine how the temperature, the CPA
concentration, and concentration of an ion species internal and external to the cell evolve during cooling for a range of cooling
rates across different timescales. We introduce two metrics to characterize the cell damage caused by freezing, accounting for
supercooling and CPA toxicity. Given cell properties and the operating protocol of the cryopreservation process, we show how
the damage metrics can be used to predict an optimal cooling rate. Our asymptotic analysis provides a computationally efficient
framework from which to determine this optimal rate.
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1. Introduction. Cryopreservation is the process of preserving biological entities by cooling to tem-
peratures low enough to halt biochemical processes such as metabolism [34, 37, 41]. This technology has
a variety of uses, including fertility [31], tissue transplantation [25], food security [5], and the protection of
endangered species [21]. While the exact details of cryopreservation protocols vary greatly between different
cell types, unifying elements are the immersion of cells within a physiological liquid extracellular medium,
and the subsequent cooling of this mixture [35]. It is imperative to be able to control and minimize intra-
cellular ice formation during cryopreservation, which can be lethal to cells due to crushing or piercing of the
cell from ice crystals [34, 39].

To combat ice formation, cryoprotective agents (CPAs), such as dimethyl sulphoxide (DMSO) or glycerol,
are often added to the cryopreservation medium before cooling [18]. CPAs lower the freezing point of the
cytosol and the medium, by interfering with the process by which crystalline ice structures form. As such,
these CPAs must be able to permeate through the cell membrane. At the same time, the addition of CPA
is not a panacea since CPAs can be toxic to cells at warmer temperatures, before the cooling process is
complete [17]. Since intracellular ice formation is observed for faster cooling rates [33], and CPA toxicity is
observed for slower cooling rates [17], a careful balance between CPA addition and cooling rate is required
if the frozen cells are to remain viable. Typically the balance between these experimentally controllable
parameters will be application specific and protocols are determined empirically [35, 36]. Mathematical and
computational methods to simulate the cryopreservation process offer a cost-effective way to understand,
refine, and optimize these protocols [1, 49].

The Kedem-Katchalsky (KK) equations are widely used in cryopreservation modelling to track cell
volume and CPA concentration during cryopreservation [26, 29]. The KK equations consist of a system of
coupled ordinary differential equations for the cell volume and the CPA concentration within the cell. The
cell volume can vary during cryopreservation because osmotic pressures are generated across the membrane.
This is caused by the concentrating of chemical species already present outside the cell as the available liquid
volume decreases due to the growth of extracellular ice. However, as noted previously [1], the spatial variation
of important physical quantities, such as the location of the freezing front and the CPA concentration through
the system, are not typically taken into account in the KK equations. Although there are some exceptions
(see, for example, [8, 16, 24]), most currently available spatial models only consider some aspect of spatial
dependence, and rely on numerical simulations to solve them. The aim of this paper is to provide a model
that accounts for the spatial dependence of temperature and chemical concentration and to systematically
deduce the conditions under which simpler ODE models are applicable. This provides a mathematical
framework in which optimal cooling rates for different cells can be deduced.
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Freezing front External boundary

Later

Cell membrane

Fic. 1. A two-dimensional schematic of the three-dimensional spherically symmetric model geometry we consider in this
paper. The dimensionless variables in each phase are defined in Table 1. The cell membrane and freezing front, rc and ry,
respectively, are moving boundaries and are shown in dashed lines.

Three recent papers have investigated similar models to the one we present here [2, 3, 4]. In [2], a general
model for the heat and mass transport around a cell surrounded by a liquid medium containing multiple
chemical species is developed, taking into account spatial variation. As the system is cooled, a freezing
front advances towards the cell. In [3], a version of this system is solved numerically for the case with a
dilute and ideal ternary solution in a spherical domain, including the effects of solute capture within the
ice, a pressure-dependent freezing point depression, and a Gibbs—Thomson freezing point promotion. In [4],
numerical methods for solving the model in [3] are presented, and the effect of partial solute rejection at
the ice-water interface is investigated. The model we consider in this paper is similar to those considered
in [3, 4], however our approaches to analysing the models are different. We focus on obtaining asymptotic
solutions to our model, which allow us to derive reduced equations that effectively govern the system, and
yield significant physical insight into the heat and mass transport processes.

We consider the cryopreservation of a single cell in a liquid extracellular medium. The geometry, shown
in Figure 1, consists of three different regions: ice, extracellular liquid, and cell liquid. The temperature
of the external boundary is lowered at an operationally determined rate, and we solve for the temperature
and concentrations of chemical species within the liquid medium and the cell. We track two representative
species: one which can permeate the cell membrane, and one which cannot. As CPA is chosen for its ability to
permeate cells, we refer to the permeable solute as CPA. As ions typically have a very low permeability across
the cell membrane, we refer to the impermeable solute as the ion species. The concentration difference of
these solutes across the membrane drives an osmotic liquid motion, and an associated change of cell volume.
Additionally, as the exterior temperature decreases and ice forms, a freezing front will develop and propagate
into the liquid phase. We therefore have two moving boundaries to track: the cell membrane and the freezing
front.

We solve the resulting model using a combination of numerical and asymptotic methods. The latter
allows us to systematically reduce the complexity of the model through the method of matched asymptotic
expansions [20, 27], by exploiting an inherent separation of the natural timescales in the problem. These
timescales are associated with heat conduction (seconds), chemical diffusion (minutes), and cell membrane
movement (hours). Our approach allows us to identify the operating regimes where specific spatial effects
of the temperature and chemical concentration are important, resulting in a comprehensive understanding
of the possible cooling behaviours. Our asymptotic results also unveil the flow of information through the
system and inform how we implement the relevant boundary conditions in our numerical scheme of the full
problem.

Our asymptotically reduced model allows for a significant reduction in the computational complexity of
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A MATHEMATICAL MODEL OF CRYOPRESERVATION 3

Dimensional variable Description Dimensionless variable

T Radial coordinate T =Tpr

i Time t = (psCsi/ks)t

Te Intracellular CPA concentration I, = Xoxc

Ye Intracellular ion concentration Je = Xoye

T Extracellular CPA concentration #; = Xoz;

Ul Extracellular ion concentration Y = Xoyl

~l Water temperature Tl = Tfo + (Tfo — Tend) T
[, Ice temperature T, = Tf() + (Tfo - Tend) Ts
Te Cell membrane Te = TpTe

Tf Ice-water interface Ty =TTy

Th Exterior ice boundary

TABLE 1
Dimensional and dimensionless variable definitions.

determining cell damage, and hence optimizing operating conditions, such as the cooling rate. Benson and
colleagues have investigated optimal control problems for CPA equilibration, introducing the concept of a
CPA toxicity cost function that should be minimized [6, 7, 9, 13, 14]. We consider a similar toxicity cost
function, and add a new cost function to characterize intracellular ice formation, in order to estimate cell
damage as a function of cooling rate.

The outline of our paper is as follows. In §2 we present the full model, nondimensionalize, and provide
numerical solutions to illustrate the qualitative behaviours of the system. In §3 we perform an asymptotic
analysis, exploiting the separation of the three natural timescales inherent to the problem. In §4 we explore
how the general analysis of the previous section can be reduced in three distinguished limits of the system
where the operationally imposed cooling rate matches each of the natural timescales. In particular, we show
when it is important to account for spatial dependence, and when the system can be formally reduced to a
system of ODEs similar to the KK model discussed above [26, 29]. We also validate our asymptotic results
by comparison with numerical solutions of the full model. In §5 we introduce damage metrics to account
for cell damage due to supercooling (where liquid is cooled to below its freezing point without solidification)
and CPA toxicity. We conclude in §6 with a discussion of our results, and suggestions for further model
extensions.

2. Model description. We consider the problem of a cell immersed in a liquid medium containing
two chemical species. One of the species, labelled Z, is able to permeate the cell membrane but the other, 3,
is not. As cryoprotective agents (CPAs) are partly chosen for their ability to permeate the cell, we refer to
the permeable species as CPA, and refer to the impermeable species simply as the ion species. We assume
that the concentration of both species is initially equal inside and outside the cell, with the entire system at
the initial freezing point of the liquid. The system is cooled at the external boundary at a prescribed rate
to a final temperature Tona, after which we allow the system to equilibrate. The rate of the cooling is a key
parameter we investigate. As the system cools, the formation of ice from the external boundary into the
interior reduces the volume of the liquid phase, concentrating the chemical species. This changes the freezing
point of the liquid phase, and also induces an osmotic pressure across the cell membrane, driving a change
in cell volume. We provide a schematic of the dimensionless problem in Figure 1 and a list of variables in
Table 1. For brevity, we will not discuss the parameter definitions in the main text, these are all contained
in Table 2.

We consider a spherically symmetric domain in which the cell centre is located at the origin, and 7 is
the radial coordinate. The cell domain is 0 < 7 < 7., where 7 = 7.(f) defines the cell membrane position
and t denotes time. The fluid domain is 7. < 7 < 7¢, where 7 = 7 f(f) defines the freezing front position.
The ice domain is 7y < 7 < 73, where 7 = 7, defines the external boundary. The cell membrane and the
freezing front are moving boundaries which must be determined as part of the solution. We note that while
conservation of mass should result in a slight expansion of the exterior ice boundary as the water freezes,
resulting in a third moving boundary, this effect is small and we therefore neglect it as a simplification.
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Parameters Typical value Description

D 2x 10719 m? s~ [15] Intracellular CPA diffusivity

DY 4 x 10710 m? s~ [15] Intracellular ion diffusivity

Dy 1x 1079 m? s~ [15] Extracellular CPA diffusivity

DY 2 x 1072 m? s71 [15] Extracellular ion diffusivity

ky 0.6 WK=!tm™! Thermal conductivity of water

ks 22WEKtm™! Thermal conductivity of ice

ol 1x10% kg m™3 Density of water

Ps 9 x 102 kg m—3 Density of ice

¢ 4x10% J kg™t K1 Specific heat capacity of water

Cs 2x10%3 J kg ! K~} Specific heat capacity of ice

L 3.4 x10% J kg~? Latent heat of freezing water

a 4 x 1073 K m® mol~! [2§] Cryoscopic constant of CPA

o 0 K m?® mol™! Cryoscopic constant of ion species

Teo 5x 1075 m [45] Initial cell radius

Tp 5x 107% m [32] System radius

R 5x 1071 m? s kgt [15] Hydraulic conductivity of cell membrane

w 5x 107 s mol m~! kg=! [15] CPA permeability of cell membrane

R 8.3kg m? s72 K~ mol~! Universal gas constant

o 0.65 [8] CPA reflection coefficient at cell membrane
Xo 1 x 10® mol m™3 [34] Initial CPA concentration (intra and extra)
Yo 1 x 10% mol m~3 [23] Initial ion concentration (intra and extra)
Ty = Tfo —aX, 269K Initial temperature of system

Tond 200 K [42] Final temperature of system

Tfo 273 K Freezing temperature of water in absence of CPA
B 1073 — 105 K s~ [38, 40] Cooling rate of exterior boundary

TABLE 2
Parameters from the full dimensional problem and their typical values. We estimate Df using the observation in Verkman
[47] that small molecules have a diffusivity of around five times less in cytoplasm than in water, and we estimate DY and ﬁly
by the observation that ions tend to be much smaller molecules than CPA agents, and so ion diffusivity will be higher in a
given medium. We use the typical cell radius of the human oocyte.

We track the temperature in the cell and liquid, 7}, and the ice, T,. We assume that heat conduction
in the cell is the same as that in the liquid as the cell consists mainly of water, so we do not differentiate
between these two regions for the heat flow problem. We also track the concentrations of the cryoprotective
agent (CPA) and the ion species in the cell (Z., §.) and liquid (Z;, §;). As discussed above, the freezing point
of the liquid will be lowered by the presence of chemical species, and we define the freezing temperature T 't
as

(1) Ty(%,9) == Tyo — aF — 77,

where we assume a linear relationship. For simplicity, we will consider the case where the freezing temperature
depends on the CPA concentration only, so we take # = 0 K m® mol~'. This means that the role of the ion
species in this model is to impart an osmotic pressure across the cell membrane as the ice region grows and
the extracellular liquid volume is decreased, resulting in a change in cell volume. The analysis could easily
be extended to incorporate the dependence of the freezing temperature on the ion concentration.

We assume that the chemical transport in the cell and liquid is due to diffusion. While we expect the
chemical diffusivity and membrane parameters to depend on temperature in practice [15], we treat these
parameters as independent of temperature for simplicity and to facilitate analytical progress. We provide
justification of this assumption in Appendix A, where we show that the qualitative features of the problem
do not change significantly when temperature dependence is taken into account.
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A MATHEMATICAL MODEL OF CRYOPRESERVATION 5

The equations governing the temperature distribution in the liquid and ice are

0T, ki 0 [ 0T i

(2a) Pl E = 552 (r 8F> for 0 < 7 < 7 (¢),
__ 0T, ks 0 [ 0T, o

(2b) PsCs o = 2 a5 (r 5 ) for 7 (t) <7 < Ty,

and those governing solute diffusion are

(3a) 3;0 = l:: % <f2 85;) for 0 < 7 < 7 (1),
(3b) agg = %% <F2 %ﬁ) for 0 < 7 < 7. (),
(3c) % = lzaaf (fz %i’) for 7.(f) < 7 < 7 (t),
(3d) % = IZ; (Fz(g‘%> for 7.(F) < 7 < 74 (7).

We now consider appropriate boundary and coupling conditions. At the origin, we impose symmetry
conditions

axczo, Dgaayfzo, /%laTl—O, for # = 0.
7

(4a) D = =

¢ or

At the cell membrane, we impose the following conservation conditions:

- 0%,  _df. =, 0%  _dfe =~ .

(5a) D7 ;f +xc% =Dy ;7:1 + mlé =@RT, (T — Z.) for 7 =7.(t),
- 0y . df. -, 0y _dF -

(5b) DY 5 e dg =D} o +yld—g =0 for7=7.(t),
dr e L . -

(5¢) T = —&RTy [0 (%) — Ze) + (U1 — Ge)]  for 7 = 7c(t).

Equation (5a) corresponds to continuity of CPA flux through the cell membrane, and that this flux is
proportional to the concentration difference across the membrane. Equation (5b) corresponds to no ion flux
across the membrane. Equation (5¢) corresponds to the dynamic change in cell volume being proportional to
the osmotic pressure difference across the cell surface. We use a reflection coefficient of 1 for the difference in
ion concentration in (5¢) since we assume that the cell membrane is impermeable to ions [29]. Additionally,
we have neglected surface tension effects, as a simple dimensional analysis shows that typical surface tension
values of around 0.01 — 0.1 mN m~! for the animal cell membrane [11, 48] yield effects approximately six
orders of magnitude weaker than osmotic forces.
At the freezing front, we have the following conditions:

(6a) Ty =T, =T¢(#) for 7 =7(),

(6b) Dfa—”fl + i dgf =0 for7=7(),
T

(6¢) D;f% ~ld£g =0 for 7 = 7 (D),

(6d) ﬁsf/de =k o _ ky ot for 7 = 74(t)

dt ¢ oF oF

Here, (6a) corresponds to the temperature at the freezing front being continuous and depending on the CPA
concentration as defined in (1), (6b) and (6¢) ensure no flux of either solute across the freezing front, and
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Dimensionless parameter Typical value
ki = kipsis/ (kspicr) 1.2 x 1071
k=ki/ks 2.7x 1071
S=1/ (cs (Tfo - Tend)) 2.3 x 109
DI = szg g/k: 1.6 x 107*
DY = Dypscs/k 3.3x 1074
Dy = Dj pécé/k 8.2 x107*
DY = DY pyés ks 1.6 x 1073
K= HRTOXOpScSrb/k: 4.6 x 1076
w= wRTopscgrb/k 4.6 x 1078
a=aXo/(Tro — Tena) 5.5 x 1072
6 = Bpucsi/ (ks (Tyo — Tena)) 2.8 %1076 — 2.8 x 102
Teo = Teo /Tt 1x 1071

= %/XO 1 x 1071

TABLE 3

Dimensionless parameters, with typical values derived from Table 2. Note that o is provided in Table 2.

(6d) corresponds to the Stefan condition, namely that latent heat is released as water is frozen, which results
in the velocity of the interface being proportional to the difference in heat flux across the interface [19].
Finally, at the exterior ice boundary, we prescribe the temperature in terms of a general function T, (¢ ):

(7) Ty = T,(f) for 7 = 7.
The initial conditions of the system are as follows

‘%5(7;70) = XO? fi’l(F,O) = XOa gC(fvo) = Y07 gl(fv 0) = YO»
(8) Ti(7,0) = Ty := Tyo — aXo, 7c(0) = oo, 7£(0) = 7.

corresponding to a system where the CPA and ion concentration are the same within the cell and the liquid,
and the entire system is at the initial freezing temperature of the liquid. The prescribed final temperature
is Tend, so the prescribed temperature change will be Tfo — dXO — Tend For later use, we introduce a
typical cooling rate ﬁ (which can be experimentally controlled) and hence have a timescale for cooling,
(TfO - OZAXO - end)//@

Taken together, our system consists of equations (2)—(3), boundary conditions (4)—(7), and initial con-
ditions (8).

2.1. Dimensionless problem. We form the dimensionless variables specified in Table 1 and the di-
mensionless parameters specified in Table 3. We choose our time scaling according to the fastest timescale
in the problem, thermal conduction, which occurs over a few seconds in dimensional time.

Using the nondimensionalization described above, the thermal diffusion problems (2) become

Ok 0 (0

(9a) 5 = 2o <T 87‘) for 0 < r < ry(t),
o, 1 0 ( ,0T,

(9b) o 2o (7‘ o ) for rp(t) <r <1,

and the solute diffusion problems (3) become

dz. D7 0 50,

(10a) 5 = 2 o (r 5 ) for 0 < r < r.(t),
ayc _ Dgﬁ 28yc

(10b) 5 — 12 By (r o ) for 0 < r < r.(t),
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A MATHEMATICAL MODEL OF CRYOPRESERVATION 7

Ba:l - D?ﬁ 26337

(10c¢) 5 — 2 oy (r B ) for ro(t) <r <rp(t),
Oy _ D} 0 ( ,0u

(10d) E = 7’725 r W for rc(t) <r< ’rf(t)

At the origin, the symmetry conditions (4) become

Dg%yc =0, kl? =0, forr=0.
r r

0%

¢ or

:0’

(11a)

At the cell membrane, the boundary conditions (5) become

Oz, dre 2 0T dre

(12a) DZ 5 + zc—dt = Dj o + a T w(x; —x.) forr=r.(t),
5yc dre 8yl dr
12b Y e =D~ =0 for r=rc(t),
(12b) ¢ or ty dt 18r+yldt 0 forr=re(t)
dr.
(12¢) g = rlo@—z) +u—ye)] forr=rc(t).

At the freezing front, the boundary conditions (6) become

(13a) Ty =T, =T forr=rst),
(13b) f%Jrzldstf: for r = rs(t),
(13c¢) Dly% yl% =0 forr=rst),
(13d) S% = 8817} - k% for r =7 (t),
where the dimensionless freezing temperature T} is

(14) Tp(z) == —auxy.

At the exterior ice boundary, the boundary condition (7) becomes
(15) Ts = Tp(t)7

where T),(0) = —a. The dimensionless cooling rate is denoted §, and the final temperature is T, = —1. We
will mainly consider linear cooling in the numerics, so
—a—pft for0<t<(1-—a)/B,
(16) T,(t) =
-1 fort > (1 —«)/p.

Finally, from (8), the initial conditions of the system are now
(17) xC(T7 0) =1, xl(ra 0) =1, yC(T7 0) = Yo, yl(rv 0) = Yo, Tl('rv 0) = —q, TC(O) =Tc0, Tf(O) =1

Our dimensionless system is thus defined by equations (9)-(10), with boundary conditions (11)—(15)
and initial conditions (17). We now solve this system numerically to understand the qualitative behaviour,
before undertaking an asymptotic analysis in §3.

2.2. Numerical solutions. We solve this system numerically via the following steps. First, we move
to new dependent variables of the form rf(r,t), where f represents any of the dependent variables in the
system. This reduces the governing equations to one-dimensional diffusion in Cartesian coordinates. Then we
impose the Landau transformation [30] to fix the moving boundary in each phase. We implement the method
of lines with a discretization in space (focused near boundary layers if necessary), essentially converting our
partial differential equations into a system of ordinary differential equations. We solve this system in time
using the function odel5s in MATLAB. This procedure is outlined in more detail in Appendix B. One issue
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-1 -0.5 0 0 10 20 0 1 2
T ] : ]
107
108
¢ R 8
10° ]
10*
10°
0 0.5 1

T T r

FIG. 2. Numerical solutions for a slow dimensionless cooling rate (8 = 2.8 X 10~7, corresponding to a dimensional cooling
rate of B =10"% K s~1). From left to right, we show the temperature, CPA concentration, and ion concentration. The black
lines represent the position of the cell membrane and the freezing front, respectively. All processes occur over the osmotic
timescale here, roughly corresponding to t > 1000.

we face is that the ice region does not exist at t = 0. To circumvent this, we start our simulations at a small
but finite time, using initial conditions that are consistent with the asymptotic early-time behaviour (see
Appendix C).

To explore different cooling rates via our numerical scheme, we use the functional form in (16), and
interrogate the solution with different choices of cooling rate 8. We emphasize that the asymptotic analysis
presented in §3 is valid for a more general class of prescribed temperatures on the external boundary, including
this simple case of linear cooling. It is the cooling rate that is important to the asymptotic analysis, not the
exact form of the prescribed temperature.

The system behaviour changes significantly as the cooling rate varies. The variables are approximately
spatially homogeneous for lower cooling rates (Figure 2), but develop spatial gradients as the cooling rate
increases: first occurring for the concentration (Figure 3), then also for the temperature (Figure 4) if the
cooling rate is very rapid. While the final equilibrium state is the same for all cooling rates, the dynamics
of how these states are reached differ with the cooling rate.

The spatial gradients in solute concentrations in Figures 3-4 are restricted to the liquid phase; the solute
concentrations within the cell always appear to be spatially homogeneous (Figures 2—4). While the change in
solute concentration and temperature at the cell centre occur over the same timescale when the cooling rate
is low (Figure 2), the change in solute concentration occurs over a slower timescale than for the temperature
when the cooling rate is faster (Figures 3-4).

The positions of the moving boundaries are highly dependent on the cooling rate (Figures 5-6). The
cell membrane and freezing front reach a limiting behaviour in time as the cooling rate increases (Figures ba
and 6a). In addition, the positions of the moving boundaries also tend towards limiting behaviours as the
cooling rate decreases. This is most evident when scaled against the external temperature (Figures 5b and
6b), and it represents quasi-steady kinetics. These observations will be elucidated through our asymptotic
analysis in §3.

3. General asymptotic analysis.

3.1. Asymptotic structure. Table 3 shows that there are several small parameters in the system, and
that the difference in magnitude between these parameters can be extreme. In this section we use asymptotic
techniques to investigate the impact of these differences on the system dynamics.

We identify three natural timescales, associated with thermal conduction (¢t = O(1), given the nondi-
mensionalization), solute diffusion (¢ = O(1/Df)), and osmosis (t = O(1/k)). The relative sizes of these
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-1 -0.5 0
7 HET ]
10*
10°
¢
10?
10"
10°
0 0.5 1 0 0.5 1
T T '

FiG. 3. Numerical solutions for a moderate dimensionless cooling rate (8 = 2.8 X 1072, corresponding to a dimensional
cooling rate of B = 101 K s71). As in Figure 2, from left to right we show the temperature, CPA concentration, and ion
concentration. The black lines represent the position of the cell membrane and the freezing front, respectively. The solute
diffusion timescale roughly corresponds to 20 < t < 200, and the osmotic timescale to 200 < t < 3000.

-1 -0.5 0
T I
10
g%
t
10°
107
107
0 0.5 1
T T r
Fic. 4. Numerical solutions for a rapid dimensionless cooling rate (8 = 2.8 X 103, corresponding to a dimensional

cooling rate of B =105 K s71). As in Figure 2, from left to right we show the temperature, CPA concentration, and ion
concentration. The black lines represent the position of the cell membrane and the freezing front, respectively. The thermal
conduction timescale roughly corresponds to t < 10, the solute diffusion timescale to 10 < t < 200, and the osmotic timescale
to 200 < t < 3000.

timescales are summarized in Figure 7. The imposed cooling timescale 1/3 may overlap with any of these,
as discussed in §4. To perform the asymptotic analysis, we assume the limit x < Dj < 1 henceforth, so
that the timescales outlined above are well separated. When we refer to ‘leading-order’ in the next sections,
this is meant in the asymptotic limit 0 < x < D} — 0. We are motivated by the values in Table 3 to
treat D, DY, D} all as the same (small) order as D}, and to treat w as the same (even smaller) order as k.
All other parameters (k;, k, S, a, rc,Yp) are treated as O(1). In the next three subsections (§3.2-83.4) we
discuss each timescale in turn, from fastest to slowest. We start each subsection by summarising the physical
implications of the results we will deduce in that subsection.
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/
(a) 1 (b)
0.8+ i
'rc/TCO
0.6+
0.4+
102 10% 106 0 0.2 0.4 0.6 0.8 1
t -7,

F1G. 5. The normalized radius of the cell rc(t)/rco during freezing, plotted against (a) time and (b) prescribed temperature
Tp(t) at the external boundary. The different solid lines correspond to different values of the cooling rate; we use 8 = 2.8 X 10%,
where k = {—7,...,3} (corresponding to dimensional cooling rates ranging between 104 and 108 K s’l). Otherwise, we use
the parameter values in Table 3. The dashed line is the quasi-steady solution from (44). The arrows denote increasing cooling
rate.

3.2. Thermal conduction timescale: ¢t = O(1). Over this timescale, the important process is heat
conduction, and there can be a significant spatial temperature variation. The moving boundaries are static
to leading order, and the chemical concentrations remain unchanged from their initial values except in a
boundary layer near the freezing front, as seen in Figures 3—4. We see in §3.3 that this boundary layer
problem is the early-time version of a broader diffusion problem that occurs at the later timescale. We will
therefore relegate the details of the chemical boundary layer to Appendix D.

To formalize the above statements, we note that the cell membrane velocity dr./dt = O(x) and, as seen
in Appendix D, the freezing front movement dry/dt = O(/Dy), resulting in r.(t) = reo and rp(t) = 1 at
leading order. Therefore, there is no ice phase at leading order. From (10), the dynamics of z. and y. are
unimportant over this timescale; these concentrations remain unchanged from their initial values, as can be
seen in Figures 2-4, resulting in . = 1 and y. = Y} to leading order.

The only variable that evolves significantly on this timescale is the liquid temperature, T;, which satisfies
the reduced problem
(18) %:%% (7“2?;:> for 0 <r <1,

with symmetry condition

(19) kl% =0 forr=0.

Since the ice region is very small and the temperature within the ice is essentially uniform, we have T = T,(t)
at leading-order (see Appendix D). This leads to the reduced boundary condition

(20) T, =Ty(t) forr=1.
Finally, the initial condition is

(21) T;(r,0) = —a.
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10° 10° 0 0.2 0.4 0.6 0.8 1

FIG. 6. The radius of the water—ice boundary r¢(t) during freezing, plotted against (a) time and (b) prescribed temperature
Tp(t) at the external boundary. As in Figure 5, the different solid lines correspond to different values of the cooling rate; we
use B = 2.8 x 10F, where k = {—7,...,3} (corresponding to dimensional cooling rates ranging between 10~% and 10 K s~1).
Otherwise, we use the parameter values in Table 3. The dashed line is the quasi-steady solution from (44). The arrows denote
increasing cooling rate.

t= 0(1/D7)
i=o(#/Dr)
CPA /ion diffusivity

t=0(1) t=0(1/k)
i=o0 (ﬁlémg/%l) =0 (FC/(RRTOXO))
Heat conduction Cell membrane movement
Seconds Minutes Hours t

F1G. 7. A schematic of the three natural timescales in the system. The prescribed timescale of cooling is t = O(l/ﬁ)
(t = 0(1/B)), which will range from seconds to hours.

The reduced temperature problem presented above contains no information about the velocity of the
freezing front. In Appendix D, we show that on this timescale the temperature problem is decoupled from
the initial motion of the freezing front, the latter being governed by the CPA concentration near the front.

The reduced system for the liquid temperature (18)—(21) has the following analytic leading-order solution

2 = (1) —kyn?m3t t
(22) T :T,,(t)+;z( ) ex;; - momt) { / T)(s) exp(kin®n?s) ds| sinnrr.
n=1 0

For many prescribed external temperatures (for example, piecewise linear), we can calculate the integral in
(22) explicitly.

The large-time behaviour of the temperature over this timescale is given by
(23) T, — T,(t), ast— oo,

and so the spatial dependence of temperature vanishes over this timescale.
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3.3. Solute diffusion timescale: t = O(1/D}). Over this timescale, the important process is solute
diffusion within the liquid, and there are spatial variations in concentration. The solutes within the cell
are still unchanged from their initial values at leading order, and the temperature is now spatially uniform
through the entire system. The cell membrane is static and there is no solute transport through this boundary
to leading order. However, the decrease in temperature will cause the freezing front to advance into the liquid.
This motion is limited by the concentrating of CPA causing a reduction in the freezing temperature, and by
how quickly CPA can be transported away from the front. This is the interesting behaviour on which we
focus in this section.

To formalize the above, we introduce the timescale 7 = Dft = O(1), over which the cell membrane
velocity dr./dr = O(x/Dy) is still small, so 7.(7) = re at leading order. However, the freezing front
movement is important, with dry/dr = O(1). Over this timescale the thermal conduction is very quick, and
it can be shown that the temperature of the entire system is prescribed by the external boundary, that is
Ty =T, = T,(7). From (10), the dynamics of . and y. are unchanged from their initial conditions over this
timescale, with . = 1 and y. = Y{ at leading order.

The important leading-order system is given by the solute diffusion problem

8.’)31 - 10 2(93?[ 8yl _ Diy 0 28yl
(24) o (r 31")7 or Dir? or " or

I ol > for reo < r < 1p(7),

with the following conditions at the cell membrane

Gl -0 I

(25) 5 =0 5 = 0 for r = re,
and the freezing front

(26a) T = —Tp(iT) for r =r¢(7),
(26b) %—I—wz% =0 forr=rs(71),
(26¢) gfiaazl-kyz(zzzo for r = r¢(7).

The matching conditions for this system into the earlier timescale as 7 — 0 are as follows
(27) z(r,0) =1, y(r,0) =Yy, rp(0)=1L1

We note that these ‘initial’ conditions may be inconsistent with the boundary conditions at the freezing
front (26). This discrepancy is remedied by the early-time boundary layer near the freezing front (over the
timescale t = O(1)) discussed in the previous section and outlined in Appendix D.

Thus, the problem reduces to that of solute diffusion in the liquid domain, with one moving boundary
with a prescribed solute concentration and no flux through either boundary. Moreover, we note that the
freezing front movement is limited by how quickly CPA can diffuse away from the interface over this timescale;
the problem for the ion concentration decouples.

The effective no-flux conditions at each interface mean that we can obtain the following global constraints

ry(T) 143 Ty (T) 1_ 43
réx(r,7)dr = ! , ry(r,7)dr =Y, ! ,
28 2 d 3 c0 2 d Y, 3 c0

Tco Tco

valid over this timescale. If x; and y; become spatially uniform, which is typically the case for large 7, these
expressions determine the limiting behaviour

1/3
o a YoT,
(29) Tf ( Tp+rco( +Tp>> T - as T — 00

We use these results as the large-7 matching conditions for the next timescale.
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3.4. Osmotic timescale: t = O(1/k). On the final timescale, the heat conduction and solute diffusion
are very quick, so the temperature and concentration are spatially independent. This yields a significant
reduction in the complexity of the system. The important processes are solute permeation through the cell
membrane and the movement of this membrane. The freezing front can also advance into the liquid, and
this is governed by two main effects. Firstly, as before, the CPA in the liquid medium is concentrated by the
advancing freezing front shrinking the domain, this lowers the freezing point and slows the front movement.
Secondly, as CPA permeates into the cell, the freezing front must advance more quickly to reduce the size
of the liquid domain to conserve total CPA. This is because the liquid CPA concentration is at a constant
level fixed by the freezing point of the liquid.

To formalize the above, we introduce the slow timescale ( = st = O(1), from which we see that we
can have dr./d¢ = O(1) and dry/d{ = O(1). From (9), the thermal conduction is very quick and the
temperature over this timescale is prescribed by the external boundary, resulting in Ts = 7; = T,,(¢). From
(10), solute diffusion is also very quick, leading to chemical concentration being independent of the spatial
coordinate. Hence the freezing temperature at the freezing front (13a) tells us that within the liquid medium

A6}

(07

(30)

To determine the remaining time-dependent concentrations, we integrate each concentration equation over
its respective domain, with the knowledge that each variable is independent of space at leading order.
This procedure results in the following governing equations

(31a) d% (r¥yc) =0,
(310) g =rm) =0
(31c) d% (réz.) = 73?3 <T”O€O + m) ;
(314) d% ((r; ) TpéC)) _ _3c:n§ (T,,ao +$C> ’
(31e) i{g o<T1’a(o+xc> +ye— i,

for the five remaining variables, z¢, ¥y, yi, ¢, and r¢, which are all solely functions of (. The matching
conditions for this system into the earlier timescale as ¢ — 0 are as follows:

2O =1 50 = Yo, w0) =ty (1),
1/3
=T¢ T = lim _L TS (&3 .
(32) re(0) =, 14(0) %ﬁo( R (1 *Tp@))

We are able to reduce this system from five ordinary differential equations to just two, for x. and r.,
as we now describe. The equations (31c) and (31d) can be combined to eliminate the right-hand sides and
integrated directly, yielding an expression for global CPA conservation

(33) r3xe — (ri’c —r3) L =1

Rearranging (33) to obtain an expression for the position of the freezing front in terms of x., r., and T,
and integrating the equations (31a) and (31b) directly, we obtain the algebraic relationships

3

3 1—7% 3 o 3 1/3
(34) Ye = FYO, Y= myoy Ty = (TC — ?p (1 — rcxc)) .

c f c
Therefore, we can reduce the system (31) to the following two ODEs for z. and r,

d 5 Bwr? (T,
-2 (2e)
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dr T rs T, 1—13
35b = yo[feo 2 27 0
(35b) d¢ U(a+x>+o<r§+a1—r§xc ’

with z.(0) = 1 and r.(0) = re. The system (35) is similar to other ODE models that have been used in
the past to model cryopreservation (e.g. [6, 9, 13]), based on the Kedem—Katchalsky (KK) framework for
the volume and intracellular solute concentration of cells during cryopreservation [26, 29]. Our asymptotic
analysis shows that (35) is the relevant KK model for the set-up we consider over longer timescales once the
temperature and concentration have become uniform in each domain. The differences between our model
and the standard KK model are: (1) we consider an additional solute - the ion concentration, and (2) our
model has systematically accounted for the CPA and ion concentrations both internally and externally to
the cell, as well as their coupling to the prescribed temperature at the external boundary.

Noting that T, — —1 when the final freezing temperature is reached, the final equilibrium values are
given by

Yo
(36) Le, Xy = 57 Yer Y1 = Ev Te = TcOa1/37 Ty = Oll/S,

as verified in Figures 2—4.

3.4.1. Small r,. We note that, in practice, the value of 7. is fairly small, and hence r3, and r3 can
be ignored relative to larger terms in (34)—(35). Making that simplification, we find

Y [ a\
(37) w=-2t = ()

and (35b) can be approximated by

dre _ Ty 7"20 1,
(383) d<—0'<a+-'17c>+y0<r3+a .

c

4. Distinguished limits for the cooling rate. Now that we have described the reduced models that
hold on each timescale of the problem, we now consider how the behaviour depends on the cooling rate, 5.
The dimensionless cooling timescale is 1/, and we consider three distinguished limits for 8, where 5 = O(1),
O(D7), and O(k) in turn, proceeding from fastest to slowest cooling rate. We also consider the sub-limits
of > 1 and B < k in their respective relevant distinguished limits.

4.1. Rapid cooling: 5 = O(1). In the case of rapid cooling, where 8 = O(1), the temperature evolves
on the conductive timescale t = O(1) and is outlined in §3.2. Analytic expressions for the temperature over
this timescale are given in (22) and (71). The temperature tends to its uniform final value T = —1 by the
end of this timescale.

Later, when t = O(1/Dy), the problem is governed by (24) — (27), with the general condition (26a)
given the specific form

1
(39) T == for r =rs(7).

This problem determines the diffusive evolution of the solute concentration and the freezing front evolu-
tion. From the integral constraints (29), we have the following large-time behaviour of the reduced moving
boundary problem:

1 Y
(40) ==, oy =2, rf—>(a+rfo(1—a))1/3 as T — 00.
o o

Finally, on the osmotic timescale, outlined in §3.4, (30) and (34) give

1 rs 1—13
(41) Ty = aa Ye = TL;),OYO7 Yy = <0
c

1/3
Oz—’r'?’l’ }/0, T'f:(a—f—?“g(l—l‘c))/ .
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Recalling the definition ¢ = st, the governing ODEs (35) for z. and r. can be simplified to

d 4\ 3Bwr?

(42a) di(: (rcxc) = (1-azx.),
dre ard, 1—r3,

with 2.(0) = 1 and r.(0) = re. Thus, the large-time dynamics for rapid cooling all collapse onto the
solutions of (42), as predicted by the collapse of the faster cooling rates onto a single curve in Figures ba
and 6a.

4.1.1. Very rapid cooling: S > 1. It is informative to note the simplifications that occur when the
cooling timescale is much faster than the heat conduction timescale. In this asymptotic limit, the reductions
occur over the first timescale where ¢t = O(1), and T;(t) ~ —(1 — a)d(t), where §(¢) is the Dirac delta
function. Hence T}, given in (22), becomes

sin nmr.

(43) T =—-1-— 2(1; @) i (_1)neXI;L(7r—/€lﬂ27r2t)

Solutions for the chemical concentration in the boundary layer in this limit are given in Appendix D.1.

4.2. Moderate cooling: 5 = O(D}). In the case of moderate cooling where § = O(D}), the thermal
conductivity timescale t = O(1) (outlined in §3.2) is now fairly uninteresting, since the prescribed tempera-
ture change is small on this timescale. To leading order, nothing happens until the ¢t = O(1/D7) timescale
on which both temperature and solute evolve.

Over this timescale, the temperature is spatially uniform, with T; = Ty = T,(7), and it decreases from
its initial value of —« to its final value of —1. The reduced problem, given in (24)—(27), consists of a partial
differential equation for z; with one moving boundary for r¢. Since T),(7) reaches the final value of —1, the
large-time state attained over this timescale is the same as for the rapid cooling case in §4.1, given in (40).
From this point onwards the dynamics of the moderate cooling case are exactly the same as those in §4.1,
as described by (41)—(42).

4.3. Slow cooling: § = O(k). In the case of slow cooling where 8 = O(k), both the thermal con-
ductivity and solute diffusion timescales (outlined in §3.2 and §3.3) are uninteresting. Over both of these
timescales, the leading-order system is essentially solved by the initial conditions (17). The interesting
timescale for this case is where ( = kt = O(1), described in §3.4. Over this timescale, the system is governed
by (30), (34)—(35).

4.3.1. Very slow cooling: 8 < k. Finally, it is also of interest to determine the further reduced
system when the cooling rate is even smaller than in the distinguished limit of slow cooling, that is when
B < k. In this case the dynamics become quasi-steady. The solution is given parametrically in terms of T,

T T,Y, a\? a\3
(44) Te =Ty o Ye=u o e m( Tp> , Ty 7,

The latter two solutions for the membrane and freezing front position are shown in Figures 5b and 6b by
the dashed lines.

4.4. Overview of asymptotic results. Our asymptotic solutions consist of the analytic results for
the liquid temperature (22) and ice temperature Ts = T}, the reduced partial differential equation for CPA
concentration within the liquid medium with a moving boundary at the freezing front (24)—(27) over the
intermediate timescale, and the heavily reduced system of a coupled set of ordinary differential equations for
the chemical concentrations and moving boundaries (35) over the slow timescale.

To summarize, the ice temperature is always spatially independent and equal to the external temperature
for all cooling rates. The liquid temperature can be spatially dependent for fast cooling rates over the heat
conduction timescale (22), but is spatially independent in all other cases. The chemical concentrations and
motions of the moving boundaries are strongly coupled to one another. While these quantities are forced by
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Fic. 8. A comparison of our numerical and asymptotic solutions for (a) re and (b) x.(0,t). We use a dimensionless
cooling rate of B =1, and the remaining parameters from Table 3. The naive asymptotic solution is from (30), (34)—(35), the
modified asymptotic solution is from (45). The naive asymptotic solutions agree well with the numerical solution, whereas the
modified asymptotic solutions are almost indistinguishable.

the decrease in temperature, the movement of the freezing front dictates the chemical balance. The Stefan
condition (13d) is more correctly interpreted for this problem as a statement about the small flux of heat
from the freezing front to the ice phase, rather than a statement about the balance of heat fluxes with the
front velocity. The cell membrane movement and the CPA concentration within the cell only vary from their
initial values over the slow timescale, no matter what cooling rate is imposed. This means that faster cooling
rates will result in significant differences in CPA concentration within the cell compared to at the freezing
front. This will cause a difference in the freezing temperature at each location, and will therefore result in
supercooling within the cell. This is discussed in more detail in §5.

These asymptotic solutions provide fast and accurate approximations of the numerical solutions when
compared with the size of the cell and the CPA concentration within the cell, as shown in Figure 8. These
variables are the key quantities for determining cell damage, and we will exploit our asymptotic solutions
in §5 to quantify cell damage in a computationally efficient manner. Such insights allow us to numerically
implement boundary conditions in a manner that agrees with the flow of information in the system. There
is a slight discrepancy between the asymptotic and numerical results for intermediate times in Figure 8, we
discuss how to resolve this in the next section.

4.5. Modified asymptotic solutions. We note that there is a discrepancy between the osmotic
timescale for faster cooling predicted by the asymptotic analysis (t = O(1/k) = O(2 x 10%)), and that seen
in Figures 3-4, where the cell membrane movement occurs over ¢t = O(10%). In terms of the physics of the
problem, this occurs because the extracellular solute concentration is not uniform during the early part of
the osmotic timescale. However, we shall demonstrate in this section that a careful incorporation of the
required spatial dependence does provide the required correction.

In terms of the asymptotic methodology we use, this discrepancy occurs because, as is often the case
with asymptotic methods, there are quantities we treat as O(1) that combine to become large in practice.
For this problem, we can obtain a modified osmotic timescale directly from (12c¢). As the CPA concentration
difference across the membrane can be up to 1/« and the cell size is O(r.), a more accurate osmotic
timescale is t = O(rqa/k) = O(10%), which does agree with Figures 3-4. While the osmotic timescale
should therefore start to merge with the solute diffusion timescale (t = O(1/D{) = O(10%)), this does not
occur completely since the diffusion timescale is itself shortened by the reduction in the liquid domain size,
largely keeping these timescales separate. The practical effect of this is that there is a slight merging of
these two timescales, and this causes the small difference between the numerical and asymptotic solutions
in Figure 8. In essence, the cell motion is slightly slower than predicted by the asymptotic analysis. This
is because the CPA concentration is actually lower at the cell membrane than at the freezing front early in
the osmotic timescale. This results in smaller forcing of the cell motion than predicted by the asymptotic
analysis which assumes a sharp separation of timescales leading to the CPA concentration being spatially



ut

N DD

at

3

oo

[S,3NG) G, BN, BING) BIEG) BN, BNV, e,

ot Ot Ot Ot Ot Ot Ot Ut Ut Ot

B

(S

T v Oov Ot Ot Ut Ut Ut Ot
© 0 N O U R W N

or Ot Ot Ot Ot Qv Qv Qv v Ot Qv Ot Ot

iy

A MATHEMATICAL MODEL OF CRYOPRESERVATION 17

uniform throughout the osmotic timescale. We refer to the original set of asymptotic solutions as the ‘naive’
asymptotic results.

To fix the discrepancy, we can formulate an appropriate reduced composite equation using the fact that
x. is approximately independent of space for all time. To do this, we first solve for z;(r, ) over the medium
time, using the reduced PDE system derived in §3.3. This allows us to determine x;(r.o,7) at the cell
membrane (noting that the cell membrane is stationary over this timescale), and we define this quantity as
f(¢) :== x(reo, (D /K)C). Then, we may derive the reduced ODE system

2
(45a) % (re) = =27 (2~ 7(Q).
(450) T = (oo 1)+ (2 - flO7 52 ).

with z.(0) = 1 and 7.(0) = re, for the osmotic timescale. This is a direct modification of (35), replac-
ing —T,(¢)/a with f((), the pre-computed function described above. We refer to these as the ‘modified’
asymptotic results. The system (45) can also be thought of as a modified Kedem—Katchalsky (KK) ODE
model [26, 29], valid over the medium and long timescales, requiring the solution of the reduced PDE system
derived in §3.3 as an input.

Using (45), our modified asymptotic results show excellent agreement with the full numerical results
(Figure 8), allowing us to be confident in both our numerical and asymptotic solutions. While this modified
asymptotic solution is slightly more computationally intensive than simply obtaining the solution of the
ODE (35), it remains around 500 times faster than a full numerical solution.

5. Cell damage. In this section, we use our results to estimate the potential damage caused to cells
during freezing. The two main mechanisms of damage are due to intracellular ice formation, and chemical
toxicity. The former is triggered by supercooling, a quantity we are able to calculate directly from our
model (Figure 9a). We observe that cells can experience significant levels of supercooling. Our first metric
quantifies intracellular ice formation by integrating the total supercooling over time. As cytoplasm can
tolerate a certain level of supercooling before freezing occurs, we build this into our metric by only counting
supercooling above a specified level, Tsup. In insects that cryogenically preserve themselves during cold
weather, Tsup ~ 20°C [50], and so we use this value here for definiteness, but we emphasize that this value
can be varied if required.

With the assumptions outlined above, our metric for cell damage due to supercooling is

(462) &:Aw?ﬁwwwam—ﬂmo—nﬁ+®

where [f(z)]4 denotes the positive part of f(z) and Taup = Teup/(Tro — Tena) = 0.29 is the dimensionless
level of safe supercooling within cytoplasm. We have integrated over the cell volume approximating the
supercooling by its value at the cell centre, since our solutions show that the supercooling is essentially
independent of space within the cell. As one might expect, the damage due to supercooling increases as the
cooling rate increases (Figure 10a).

To quantify cell damage due to chemical toxicity, we assume that toxicity accumulates over time at a
rate proportional to CPA concentration and cell volume, but we note that a more general toxicity function
could incorporate effects due to the increased concentration of the impermeable chemical species as well.
We see that lower cooling rates lead to higher CPA concentrations at the cell centre for the same external
temperatures (Figure 9b), which suggests that toxicity is likely to be more of a concern for slow cooling,
agreeing with experimental observation. We assume that the rate of proportionality for toxicity satisfies an
Arrhenius-type temperature dependence with activation energy E, [14]. To this end, we use the following
metric to quantify CPA toxicity

>4
(46b) T:/'?@%mofﬁmﬂmwwn@wfnm+@
0

where E, = E,/ (]:'if’fo) is a dimensionless activation energy (we use E, = 40, corresponding to E, = 90.6 kJ
mol™1), and v = (Tfo — Tena)/T'ro. While the introduction of this Arrhenius factor means that CPA toxicity
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(b) 20 ‘ ‘ ‘ ‘

10+

FIG. 9. Prozies for cell damage at the cell centre. (a) Supercooling T¢(xc(0,t))—T;(0,t) versus time. (b) CPA concentration
zc(0,t) versus external temperature. The different lines correspond to different values of the cooling rate; we use § = 2.8 x 10¥,
where k = {—7,...,3} (corresponding to dimensional cooling rates ranging between 10=* — 106 K s=1). The solid lines are
numerical solutions and the black dashed lines are asymptotic solutions, using the analytic result for the temperature (22) from
the fast timescale and the naive asymptotic solution (30), (34)—(35) from the slow timescale. The arrows denote increasing
cooling rate.
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(CL) ( ) x Numerical (full PDE)
— Naive asymptotic (reduced ODE)
— -Modified asymptotic (reduced PDE/ODE)

+ KK (reduced ODE)

10[] L

S T
0.5+ B +
1074 B
+
+
x Numerical (full PDE)
—Naive asymptotic (reduced ODE) +
— -Modified asymptotic (reduced PDE/ODE)
+ KK (reduced ODE) . +
0 Lok ¥ ¥ — 1078 L L
10° 10° 10° 10°
B KsT g Ks™)

F1G. 10. The metrics for cell damage in our system, (a) S and (b) T, using Tsup = 0.29, E, = 40, and Tmet = —0.9.

decreases as the temperature decreases, it is also helpful to impose that the CPA toxicity explicitly falls to
zero when the temperature falls below a certain level, defined in dimensionless terms as Ty,0;. This ensures
that we do not accrue infinite toxicity as ¢ — co. We impose a value of Tet = —0.9 here for definiteness,
but again emphasize that this can be varied if required. We note that the metric 7 is similar to the
temperature-dependent toxicity cost function used in Davidson et al. [14] to optimise operating conditions
during cryopreservation, itself an adaptation of the toxicity cost function from [6, 7, 13], for example.
However, we consider the integrand to be linearly proportional to CPA concentration rather than as a non-
integer power, and we scale toxicity with the cell volume. We note that the damage due to CPA toxicity
increases as the cooling rate decreases (Figure 10b), in agreement with physical intuition and experimental
observation.

When we compare the damage predicted by our asymptotic results to that predicted by our numerical
solutions, we note that while there is excellent agreement for 7, the asymptotic results for S systematically
predict a lower damage from supercooling if we use the naive asymptotic results discussed in §4.4 (Figure
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Fic. 11. The cell damage function D, defined in (47) with A and p chosen to normalize the mazimum values of S and T
as described in the text, versus cooling rate 8. We show results for different cytosol tolerances to supercooling (Tsup), which
lead to different optimal cooling rates which minimize D, denoted by a cross.

10). However, the modified asymptotic results show excellent agreement for both. In Figure 10, we also plot
the damage predicted by using the model (35) (for the slow timescale) for all time. We refer to this as the
Kedem—Katchalsky (KK) model. As one might expect, the results from this are very similar to those of the
naive asymptotic results, which differ from the KK model by using the analytic solution for the temperature
(22) over the fast timescale, in addition to (35) over the slow timescale. This is because even though there
are significant differences between the KK and naive asymptotic results in the liquid and ice regions, the only
difference between our naive asymptotic results and the KK equations at the cell centre is the temperature
over the fast timescale for fast cooling rates. This explains the discrepancy in 7 for faster cooling rates; the
KK equations over-estimate the rate of heat propagation to the cell centre at faster cooling rates.

Hence, we are able to efficiently compute & and T as metrics for cell damage in the system. For given
cell membrane permeability parameters and appropriate weightings of each metric, we can use these results
to compute optimal cooling rates, using a combined damage function,

(47) D=AS+uT.

For example, if we sweep between B € [1073,10'] K s7! and choose A and yu to normalize S and 7 such
that their highest values are equal to one, we see that our damage function predicts a minimum in D at an
intermediate cooling rate (Figure 11). The optimal cooling rate increases as the tolerance to supercooling
increases. The framework we have developed in this paper allows us to quantify the optimal cooling rate for
given cell parameters.

6. Discussion. We have derived and solved a mathematical model for the cryopreservation of a cell
immersed in a liquid medium, using a combination of numerical and asymptotic methods. Our model
accounts for spatial variation of temperature and chemical concentrations, and for the motion of a freezing
front and cell membrane. The system is fully coupled, since the presence of cryoprotective agent (CPA) lowers
the freezing point, and the membrane movement is generated by an osmotic force of chemical concentration
difference across the membrane. Investigating this system has provided insight into how the coupled physical
mechanisms underlying cryopreservation combine during the freezing process, and when they cause cell
damage. To this end, we have introduced two different damage metrics to infer the implicit cell damage
caused by freezing. The first quantifies the cumulative supercooling occurring within the cell as a proxy
for intracellular ice formation. The second measures the cumulative CPA toxicity occurring within the cell.
We note that it is impossible to globally optimize both of these metrics separately since it is observed that
faster cooling has a greater chance of intracellular ice formation and slower cooling suffers from greater CPA
toxicity. Our metrics allow us to quantify these observations, and show that there is an ‘optimal’ cooling
rate, which will depend on the cell properties and the operating conditions of the cryopreservation process.
These results are consistent with the well-known ‘two-factor hypothesis’ of freezing injury [39]. Our work
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provides a computationally efficient framework from which to determine this optimal cooling rate.

It would be straightforward to modify both the toxicity and supercooling metrics to account for different
cell biology or sensitivity to the ion concentration, for example. For simplicity, we have not explicitly
considered the mechanism of intracellular ice formation; we only allow ice to form from a nucleation surface
at the external boundary. Explicitly accounting for the mechanism of supercooling and new crystal nucleation
with an unstable freezing front could lead to mushy layers near the front, consisting of ice and water. This
would be an interesting extension of the model we present in this paper.

We have focused on the freezing process of cryopreservation here, but note that there are also interesting
physical problems arising in the thawing stage. As our model is inherently nonlinear, a reversal of the
freezing process will not result in a strict reversal of the dynamics, and would be an interesting problem in
its own right.

Moreover, we note that while this work is for a single cell, a significant application of cryopreservation is
for biological tissue. Safely freezing larger tissues remains a current challenge in the field. Our model could
be extended to a tissue comprising many cells using the mathematical technique of homogenization [10, 22].
However, care must be taken in this upscaling procedure due to the moving boundaries in the problem - one
could follow the methodology of [12, 44], for example.

The higher cooling rates we consider in this paper start to touch on the realm of vitrification, where a
liquid is cooled rapidly past its glass transition point so as to form a non-crystalline amorphous solid rather
than a crystalline ice [43]. While vitrification is not a focus of this work, and we do not account for the
mechanisms of vitrification in the model, we note that a drop in CPA diffusivity associated with lowering
temperature can be accounted for using the results in Appendix A. In this Appendix, we provide system-
atically reduced systems for the cryopreservation of a single cell where the cell parameters are temperature
dependent. Although the solutions will vary due to this temperature dependence, the asymptotic structure
of the problem remains the same.

Finally, we note that this work has the potential to guide cryopreservation protocols for the freezing of
single cells. Our methodology allows us to account for the spatial variations inherent to the system at faster
cooling rates, and to systematically reduce the system over the different timescales. This approach allows us
to derive asymptotic solutions which largely circumvent the issue of expensive parameter sweeps, resulting
in a computationally efficient framework to compute the cell damage for given cell properties and operating
conditions.

Data deposition. The computational code we developed to solve this model (outlined in Appendix B)
is openly available at https://github.com/m-dalwadi/Mathematical-model-cryopreservation.

Appendix A. Temperature-dependent coefficients.

In this Appendix we outline how the problem changes when we allow the following chemical transport
parameters to depend on temperature: DZ, DY, Df, D}, w, k. Though we carry out this analysis for gen-
eral temperature-dependent coefficients, it may be helpful to think of the membrane coefficients having an
Arrhenius-type dependence on the temperature. For the diffusivities, one may consider a modified Arrhenius-
type dependence, using the Stokes—Einstein equation for diffusivity, and an Arrhenius-type dependence for
the viscosity.

In general, we expect all these parameters to decrease as the temperature decreases. Looking at activation
energies [8, 15], we note that the activation energies for diffusivities are smaller than those for membrane
permeability. Hence, the distinct timescales in §3 will separate rather than coalesce as the temperature
decreases, maintaining the asymptotic structure that we identified in the main text. Hence, we are able to
present the asymptotic solution to the generalized problem over the three important timescales identified in
the main text as a simple extension of §3.

A.1. Thermal conduction timescale: t = O(1). Over this timescale, the solution largely proceeds
as in §3.2. For precision, we use the diffusivity of CPA in water at the initial temperature Dy := D (—a) as
our small (constant) parameter, and this replaces the D{ in §3.2. In this case, the system is governed by the
same temperature solutions (22) and (71). The chemical transport equations will be the early-time versions
of those given in the next subsection.

A.2. Solute diffusion timescale: t = O(1/Dy). Over this timescale, the solution largely proceeds as
in §3.3. We will again use the diffusivity of CPA in water at the initial temperature D7 (—a) as our small
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(constant) parameter, replacing the D} in §3.3. This means that we use 7 = Dyt = O(1) as our timescale.
The temperature is given by Ty = T; = T,,(7), but now the chemical transport problem is governed by

Dy D/
O =V. (lel> 7 ] =V- <DlVyl> for reg <1 < rp(T),
0

(48) or Dy or

instead of (24). At the cell membrane, we have the no-flux versions of (12a)—(12b), which are

Dy oz dr, Dy dy dr,

et Mg’ =0, —LtZ&
Dy Or o dr Dy Or Tt dr

(49) =0 forr=r.(7).

At the freezing front, we have the Dirichlet condition for the CPA concentration (26a), and the following
conditions
Di oy dry

—L=0 forr=

Dlx 8:1:1 de _

(50) Do or = Vdr

0,

to replace (26b) and (26¢). The matching conditions for this system into the earlier timescale as 7 — 0 are
the same as in §3.3, given by (27) away from the freezing front, and addressed in the next section when the
matching conditions near the freezing front may become relevant.

A.3. Osmotic timescale: t = O(1/kp). Over this timescale, the solution largely proceeds as in §3.4.
We now use the hydraulic conductivity of the cell membrane at the initial temperature ko := k(—«) as our
small parameter, replacing the x in §3.4. This means that we use { = kot = O(1) as our timescale.

The temperature of the system is given by Ts = T; = T,,(¢), and the CPA concentration in the water
phase is given by (30). The procedure to determine a closed system for the remaining variables is similar to
that in §3.4. This means that z., y., ¥, and 7y are given by (30) and (34), while the remaining generalized
system is given by

G (i) o Bure (T”(O+xc), dre _ ~ {a <W+xc> +Y, (%@Tpl_?ﬁ))] :
a a ”

d Fio ¢ ko 3 a1,

for the variables, ., y., and r., which are all solely functions of (. The ‘initial’ conditions for this system
as ¢ — 0 are 2.(0) = 1 and 7.(0) = r.o. Finally, we note that in the case where cooling occurs over a longer
timescale than membrane movement (8 < kg), the temperature dependence of the parameters becomes
irrelevant for the system dynamics.

Appendix B. Landau transformation to three fixed domains.

In this section we make a transformation to turn the Laplacian in our governing equations from an oper-
ator acting on a spherical coordinate system to a Cartesian one, and we perform the Landau transformation
[30] to map the moving-boundary problem into a fixed domain problem. Both of these transformations will
facilitate a numerical solution.

To transform the Laplacian in our governing equations, we introduce the new dependent variables

1
(52) (TZJTSwrwyoxbyl) = ; (61a ®saXc>Y07Xl7}/l) .

In addition, we note that it is helpful for the numerical simulation to split ©; into ©; . and ©;;, which hold
in the cell and liquid domain, respectively. At the cell membrane, we couple these two new variables by
imposing continuity of temperature and heat flux. We note that if f = F/r, then f' = F'/r — F/r?, and
therefore our governing equations and boundary conditions must be adjusted accordingly. We outline them
below, after one additional transformation.

To transform the moving-boundary problem into three fixed domains, we introduce new independent
variables based on the formulation

(53) szg(Jgf&;>7
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FI1G. 12. The nonlinear monotonic function g2(n; X) (Table 4), used in the transformation of the domain re(t) < r < rs(t)
to resolve the boundary layers near r = ry(t). The dotted line corresponds to ga2(n; 0%) =1, and the solid lines correspond to
A=0.1, 1, 5, 10. Hence, we see that a uniform grid spacing of g2 corresponds to more grid points near n = 1, with this effect
being amplified as \ increases.

where r € (a(t),b(t)), and g is a monotonic increasing function, with g(0) = 0 and g(1) = 1. The purpose
of g is to allow a uniform discretization of £ to provide a non-uniform discretization of r, allowing for finer
resolutions near boundary layers. For our problem, we use

(54a) &L=q (7' Zﬂ) for 0 < r < re(t),

(54b) & = go (r ¢ ,A) for ro(t) <r <rg(t),
ry(t)

(54c) 3 =03 ( rf(t)) for rp(t) <r < L

where &; = 0 corresponds to the left-hand boundary of the respective domain, and ¢; = 1 corresponds to the
right, where j € {1,2,3}. In (54), g1(n) = g3(n) =, and g2(n; A) = —log [1 — (1 — e~*)] /A is a monotonic
increasing function, with g2(0) = 0 and g2(1) = 1. Here, A € (0,00) is a constant we choose, with a larger
value of A corresponding to a finer grid resolution near r = Ty with a uniform discretization of &. The limit
g2(n; A) — n is reached as A — 0. We show g2(n; A) in Figure 12.

Under the transformations (54), the derivatives transform as follows

o dgle'€)] o o o gyl . o )
(55) mHgJ[Egj_a]ag &H&—M a3 (1= 91(€) + ba; ' €)] 5
Therefore, the governing equations (9)—(10) are transformed as follows:
o, g lo;" &) T, - : oc, ;9o &)] o (g5]e ()] ol
(%) at ijjfaj {aj (1=97(6) +bgy (@)} 56; ij* a; 0 ijJ* aj 5§j 7

on the domain 0 < &; < 1. Here, i1 € {1,2,3}, i € {1,2,3}, and i3 € {1}, and we note that g1 (n) = g3(n) =7
greatly simplifies (56) in the cell and solid domains. We specify a;(t), b;(¢), ¢; , and D} in Table 4.
The boundary conditions at the origin (11) become '

(57) X =Y. = @l,c =0 for fl =0,
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J g;(n) a;(t)  b;(t) ‘ ] ‘ Czj ng
1| X. D?
1 n 0 re(t) | 2 | Y. DY
3|0, Kk
1| Xy Dy
2| —<log[l—n(l—e?)] rlt) 7)) | 2| i D
3 @u k;
3 i r(t) 1 1| 6 1
TABLE 4

Definitions for the variables in (56).

The boundary conditions at the cell membrane (12) become

. [0X. dre L (re(1—e?)0X, dr..
(58&) ‘DC <8§1 - X ) +X Te—— dr D <)\ (’rf —’rc) 8752 —Xl +XZTCE

(58b) D? (%);f - XC) n Xcrc% —wre (X1 = X,) for& =1,6 =0,
(58¢) DY (gZC—Y)—f—YTC(Zt =0 for& =1,
(584) <TA Eif_erc)) a@ - Yl> ¥ Yire (Z"C —0 for & =0,
(58¢) ‘Zj = —Tﬁc [0 (X — Xo) + (Y~ Y.)] for & =1,6 =0,
(58f) ©,.=0;; foré&i=1,6£=0
(582) 9O _ e (1—e*) 00y, for €, = 1, £ = 0.

96 A(ry —re) 08

The boundary conditions at the freezing front (13) become

(59a) O, =06,=—-aX; for&=1,8 =0,
(59b) Dy <m22 Xl> +X17"f% =0 foré& =1,
(59¢) DY (W%m) +erf%f:o for & = 1,
(59d) Srfc%f = - ifrf %(Z: e,k (’maa(z;” - @U> for & =1, & = 0.

The boundary condition at the exterior ice boundary (15) becomes
(60) O, =Tp(t) for & =1.
Finally, the initial conditions (17) are now
Xe(&1,0) = re0t,  Ye(&1,0) = Yoreo&r, ©1.0(&1,0) = —arqoéi,
1 — e e 1 — oM
Xi(82,0) =70 + (1 = Tco)ﬁv Yi(&2,0) = Yo (Tco +(1— Tco)l—e—>‘) )

1 — e N6
(61) 0,(&2,0) = —« (Tco +(1- Tco)le>‘> . 1re(0) =7c0, 7§(0)=1.

for 51 = ]-752 :07
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We discretize our spatial operators using a standard second-order accurate central-difference scheme
with uniform grid spacing. We discretize our boundary conditions using forward- or backward-difference
schemes where appropriate, with second-order accuracy (verified in the supplementary material). We use 80
grid points in the cell and ice regions, and 300 grid points in the liquid region. For a given cooling rate, we
choose A such that there are at least 10 points in the initial boundary layer identified in Appendix C. This
ranged from A = 10~° for low cooling rates to A = 8.7 for the highest cooling rate of 8 = 10 K s~1. For
B>05Kst we stop the simulation at ¢t = 10, then restart it using A = 0 on a re-meshed uniform grid.
This procedure enables us to generate a solution more quickly. We found that this approach was sufficient
to ensure that our solutions were well resolved for all time. The excellent agreement between our numerical
and asymptotic solutions (Figures 8-9) gives us confidence in our results.

Appendix C. Early-time asymptotics.

In this section we derive the early-time solutions for a linear temperature drop. This will allow us to
start our simulations at a small but finite time, thus side-stepping the issue of creating the ice phase at
t = 0. While we have several natural small parameters in our system, the small parameters we use for this
analysis are t and 1 — r¢(t), formally treating all other dimensionless parameters in the system as O(1). We
also note that the early-time limit of §3.2, the first important timescale in the problem, is equivalent to the
small-time limit of the full system (i.e. the limits of Df — 0% and ¢ — 0T commute), confirming that we
have correctly identified the earliest interesting timescale ¢ = O(1).

For ease of numerical implementation, it is simpler to determine the early-time solutions to the trans-
formed system derived in Appendix B. However, we can also use the results of §3.2 to guide our analysis,
noting that for early-time the ice temperature is constant in r, z. = 1, y. = Yy, and 7.(t) = re. In terms of
the transformed variables

Xe(&i,t) ~reon,  Ye(&r,t) ~ Yoreoln, ©1c(&o,t) ~ —arqpéi,
(62) Os(&s,t) ~ (r(t) + (1 —1p(t)&3) Tp(t), 7e(t) ~ Teo-

The more interesting problems are for X;, ¥}, ©;; and ry; governed by (56), with boundary conditions
(59a)—(59¢) and initial conditions (61). At early time, X, ¥}, and O, are close to their initial values, with
a boundary layer near £& = 1. While we also have an analytic expression for ©;;, we note that the infinite
sum in (22) requires many terms to evaluate accurately as ¢ — 0. Therefore, it is helpful to obtain a
simplified version in this limit. Although FEuler-Maclaurin summation can be used for this purpose, the steps
required are fairly involved. A simpler method is to note that there is an early-time boundary layer near
the interface, and to solve the relevant equations for ©;; in the small-¢ limit. Following this process, we
note that the correct early-time scalings are 1 —ry = O(t¥/2), 1 — & = O(t/?), X; — X;(&,0) = O(1),
Y, — Y(&2,0) = O(t), and ©;; — ©;,(£2,0) = O(t). Seeking similarity solutions in the boundary layer, and
noting that g5(1) = (e — 1)/, the early-time (additive) composite solutions [46] are

1—e X B ()\1

(63a) Xi~7reo+ (1 —7e0) -+ F ((eA 1
(

1—e o

)
)
1 — e N6 BYot |Df A1 —&2) (1 —re)
(63b) Yi~Y (TCO + (1 - TcO) 1— e X > + o DilyF ( (EA . 1) 4D;lt ’

1 — e A& A(1=&) (1 —7e0)
(63c) O~ —« <7“co +(1— Tco)l_e,\) — BtF ( (& — 1) VARt ) ,
1_ 2B D sy
(63d) re(t) ~1 3oV = e,
(63e) F(z) = (22% + 1) erfc 2 — 26722,

N3
where F'(z) satisfies the following ODE

(64) F"+2:F —4F =0, F(0)=1, F(c0)=0.
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Although Y] satisfies a Neumann condition at the interface, its solution can be written in terms of F.
We note that the early-time results we derive in this Appendix generalize to any nonlinear prescribed
temperature drop with initial velocity 7},(0) = —3, where 0 < 3 < oc.

Appendix D. Boundary layer problems for ¢t = O(1).

To investigate the ice temperature and the concentration boundary layers over the timescale t = O(1),
we must account for the position of the freezing front as a small perturbation from its initial value. To this
end, we introduce R(t) = O(1), where

(65) ry(t) =1—/DFR(t).

Due to the slow movement of the freezing front over this timescale, the solute concentrations in the liquid
phase take their initial values, z; = 1 and y; = Yp, in most of the liquid domain except within a boundary
layer near the freezing front whose width is similar to that of the ice region. Therefore, we introduce the
boundary layer coordinate

(66) p=(1-r)//Df = R(t),

where —R(t) < p < 0 corresponds to the ice region, p = 0 corresponds to the freezing front, and p > 0
corresponds to the liquid region boundary layer. Due to the ice phase being asymptotically small over this
timescale, the leading-order problem for the liquid temperature will hold over the domain 0 < r < 1.

Using the coordinate transform (66) for the ice region, the leading-order versions of the governing
equations for the thermal problem (9) are

o1, ki 0 (TQaTl 9T,

0p?

(67) — 5 for — R(t) < p<O.

LM f 1 =
5 29, > or0<r<1, 0

The relevant leading-order boundary conditions are as follows. At the origin, we have the symmetry condition

T,
(68) kl% =0 forr=0.
At the freezing front, we require the following conditions
oTs
(69) Tl|r:1 = Ts|p:07 87p =0 for p=0,

where the first condition is continuity of temperature, and the second condition is a significantly reduced
Stefan condition, essentially telling us that the ice phase is insulated to leading order at the freezing front.
At the exterior ice boundary, we have

(70) Ts =Ty(t) for p=—R(t).
From the above system, we see that
(71) Ts = To(t),

everywhere within the ice to leading order. Therefore, the coupling condition (69) yields the boundary
condition (20).

The leading-order versions of the governing equations for the solute concentration problems (10) in the
liquid region are
8.’);7 o dR 8.’L‘l 62$l 8yl - dR 8yl D? ale

ot dt dp | 9p?’ ot~ dt 9p ' Dy 9p*

(72) for p > 0,

recalling the boundary layer coordinate given in (66). The relevant boundary conditions are

dr,  dR DY 9 dR
(73) wi(1,t) = —T,(t)/a, (‘Tpl”lazo’ D*ical,fﬂlﬂ:o for p = 0.
l
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To match into the outer liquid region, we have the conditions

(74)

=1, y—Y for p — oo,

Finally, the initial conditions of the system are as follows

(75)

zi(r,0) =1, wy(r,0) =Yy, R(0)=0.

From the above, we see that the motion of the freezing front is governed by the CPA concentration near the
front, rather than from the release of heat due to freezing as one may have expected.

The reduced system for x; and y; near the freezing front is governed by (72)—(75). We note that the

system for y; decouples from the problem for z; and R.

D.1. Very rapid cooling: 3 > 1. Using the fact that 7}, — —1 immediately for very rapid cooling,

we can obtain analytic expressions for x;, ¥y;, and R over the conduction timescale. Seeking a similarity
solution, we deduce

(76a) xlwl+(1_1)erfc<)\+2\p/i)

(76b) g~ Ye{l—

erfc(\) ’

(76¢) R ~ 2\,

where ) satisfies the transcendental equation

(77)

M rexp(A)erfed =1 — a,

noting that o € (0,1) from the definition of « (Table 3), since the initial dimensional temperature is
TO = Tfo - dXO

1]
2]
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