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Abstract

The mevalonate pathway is normally found in eukaryotes, and allows for the pro-

duction of isoprenoids, a useful class of organic compounds. This pathway has

been successfully introduced to Escherichia coli, enabling a biosynthetic produc-

tion route for many isoprenoids. In this paper, we develop and solve a mathemat-

ical model for the concentration of metabolites in the mevalonate pathway over

time, accounting for the loss of acetyl-CoA to other metabolic pathways. Addi-

tionally, we successfully test our theoretical predictions experimentally by intro-

ducing part of the pathway into Cupriavidus necator. In our model, we exploit the

natural separation of time scales as well as of metabolite concentrations to make

significant asymptotic progress in understanding the system. We confirm that our

asymptotic results agree well with numerical simulations, the former enabling us

to predict the most important reactions to increase isopentenyl diphosphate pro-

duction whilst minimizing the levels of HMG-CoA, which inhibits cell growth.

Thus, our mathematical model allows us to recommend the upregulation of certain

combinations of enzymes to improve production through the mevalonate pathway.
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1. Introduction

Isoprenoids are a diverse class of naturally occurring organic chemicals found

in all organisms. In plants, isoprenoids are the cause of many aromas and, in an-

imals, isoprenoids form steroids and sterols. The wide range of isoprenoid prod-

ucts is one reason why the successful introduction of a viable isoprenoid pathway

to Escherichia coli by [1] (in this case to produce amorpha-4,11-diene, a pre-

cursor to the antimalarial compound artemisinin) was a major breakthrough in

synthetic biology. Since then, a significant amount of experimental work has been

carried out to improve the yield from this pathway (see, for example, [2, 3, 4, 5,

6]).

There are two main pathways from pyruvate to isopentenyl diphosphate (IDP)

and dimethylallyl diphosphate (DMADP), and these two products can react to

make isoprenoid compounds. IDP and DMADP are essentially interchangeable

due to the enzyme isopentenyl diphosphate isomerase that allows conversion be-

tween the two. The first pathway is known as the mevalonate pathway, and starts

from acetyl coenzyme A (acetyl-CoA), mainly derived from pyruvate, which is

converted to IDP via the key pathway intermediate mevalonate. The second path-

way is known as the non-mevalonate or, alternatively, the 2-C-methyl-D-erythritol

4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathway, and also

converts pyruvate to IDP. The mevalonate pathway was the first to be discovered,

and occurs naturally in eukaryotes. The non-mevalonate pathway mainly occurs

in bacteria (with some exceptions), and some plants.

The reason for introducing the mevalonate pathway to Escherichia coli, a bac-

terium that naturally expresses only the non-mevalonate pathway, is to bypass the

natural negative feedback mechanisms in place that would ordinarily prevent the

overproduction of isoprenoids. We are interested in mathematically modelling

this mevalonate pathway, with the goal of understanding how to further modify

the pathway by, for example, upregulating genes that control certain enzymes, in

order to produce more IDP. The mevalonate pathway we will model comprises the

following:

Pyruvate
k1−−→ Acetyl-CoA, (1a)

Acetyl-CoA
k2−−⇀↽−−

k−2

Acetoacetyl-CoA, (1b)

Acetyl-CoA
A

−−→ φ , (1c)

Acetoacetyl-CoA+Acetyl-CoA
k3−−→ HMG-CoA, (1d)
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Pyruvate ([S1])

Acetyl-CoA sink

Acetyl-CoA ([S2])

Acetoacetyl-CoA ([S3])

HMG-CoA ([S4]) Mevalonate ([S5])

Mevalonate phosphate ([S6])Mevalonate diphosphate ([S7])Isopentenyl diphosphate ([P ])

E1 E3 E4

E6E7

E2

E5

Figure 1: A schematic network diagram for the pathway we consider in this paper, where arrows

denote the direction of the reactions. We only track the metabolites included in this Figure and,

specifically, not any involved in the acetyl-CoA sink. Where we write Ei (for i = 1, . . . ,7) next

to a reaction arrow, this denotes a specific enzyme that controls the reaction. Hence, E1 corre-

sponds to the pyruvate dehydrogenase complex (EC 1.2.4.1, EC 2.3.1.12, and EC 1.8.1.4), E2

corresponds to acetyl-CoA acetyltransferase (EC 2.3.1.9), E3 corresponds to HMG-CoA synthase

(EC 2.3.3.10), E4 corresponds to HMG-CoA reductase (EC 1.1.1.34), E5 corresponds to meval-

onate kinase (EC 2.7.1.36), E6 corresponds to phosphomevalonate kinase (EC 2.7.4.2), and E7

corresponds to mevalonate diphosphate decarboxylase (EC 4.1.1.33).

HMG-CoA
k4−−→ Mevalonate, (1e)

Mevalonate
k5−−→ Mevalonate phosphate, (1f)

Mevalonate phosphate
k6−−→ Mevalonate diphosphate, (1g)

Mevalonate diphosphate
k7−−→ Isopentenyl diphosphate, (1h)

where (1c) represents the loss of acetyl-CoA to other metabolic pathways, such as

the citric acid cycle or any pathways directly involved with fatty acid biosynthesis.

Moreover, we will not keep track of any metabolites associated with this acetyl-

CoA sink. We show a schematic of the pathway in Figure 1.

In general, the aim of our model is to determine which reactions are the most

important for IDP production without resorting to expensive and time-consuming

experiments. We are also interested in determining which reactions have the

most significant control over the levels of 3-hydroxy-3-methylglutaryl-coenzyme

A (HMG-CoA), linked to the inhibition of cell growth due to its inhibition of fatty

acid biosynthesis [5]. Specifically, we will be interested in maintaining low levels

of HMG-CoA whilst increasing IDP production.

We make several key modelling assumptions to facilitate analysis of our sys-

tem. Firstly, we assume that the formation rate of enzyme complex is much

quicker than the rate of substrate consumption, and thus the reaction rates are

governed by Michaelis–Menten-type laws, the specific form of which we obtain

from the literature. We also consider a system that is well mixed and thus spa-
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tially independent. Additionally, we consider the case where pyruvate is instanta-

neously introduced to a system containing all of the relevant enzymes, but none

of the intermediate metabolites, allowing for a cleaner mathematical analysis. We

first investigate the case where pyruvate is continuously replenished and held at

a constant concentration, then the case where pyruvate is never replenished. We

show that the second case shares many similarities with the first until the pyruvate

is depleted to a certain critical level, which we determine. Understanding these

extreme cases allows us to determine the key reactions in this pathway, and to

suggest targets for upregulation.

As is the case with many biological systems, there are many parameters in

the system. Thus, a comprehensive understanding of the system using a purely

experimental approach would be very time consuming. This reasoning also ap-

plies to investigating our mathematical model using a fully numerical approach,

although the time taken to investigate the system would be shorter than the purely

experimental approach. To get around this issue, we supplement and guide our nu-

merical simulations by determining asymptotic approximations (see, for example,

[7, 8, 9]) of the metabolite concentrations. This will enhance our physical insight

into the underlying system and allow us to determine how the concentrations vary

as functions of the experimental parameters. Moreover, this approach allows us

to bypass the issue we have with the uncertainty in the parameters, as this method

only requires an idea of the order of magnitude of each parameter.

Finally, to test our theoretical predictions, we introduce part of the mevalonate

pathway (from acetyl-CoA to mevalonate) into Cupriavidus necator by transform-

ing it with a plasmid harbouring the mvaE and mvaS genes from Enterococcus

faecalis under the control of the PBAD L-arabinose inducible promoter. The mvaE

and mvaS genes code for the enzymes responsible for the conversion of acetyl-

CoA to mevalonate (in the first half of the mevalonate pathway). We show that

mevalonate can be produced by our bacterial chassis, and confirm that our exper-

imental results are successfully predicted by our model.

The outline of this paper is as follows. We introduce a mathematical model

to describe the nonlinear reaction kinetics in §2. We solve this system in §3,

where we give both numerical and asymptotic solutions to describe the system

behaviour. In that section, we consider the continuous replenishment of pyruvate

case first, then we consider the no replenishment of pyruvate case. We discuss the

experimental procedure and results in §4, and compare these results to our model

predictions. We finish by discussing our results and comparing the two regimes in

§5.
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2. Model description

The dimensional system we consider is derived from Michaelis–Menten-type

laws found in the literature, where each variable is defined in Table 1. The forms

of each reaction rate are obtained from the corresponding reference in Table 2.

The dimensional system is as follows

d[S1]

dτ
=−

k1E1Ki
1[S1]

Ki
1

(

[S1]+KM
1

)

+[S1][S2]
, (2a)

d[S2]

dτ
=

k1E1Ki
1[S1]

Ki
1

(

[S1]+KM
1

)

+[S1][S2]
−

k2E2[S2]

[S2]+KM
2

+
k−2E2[S3]

[S3]+KM
−2

−A[S2], (2b)

d[S3]

dτ
=

k2E2[S2]

[S2]+KM
2

−
k−2E2[S3]

[S3]+KM
−2

−
k3E3Ki

3[S2][S3]

Ki
3[S2][S3]+KM

3,a[S3]
(

[S3]+Ki
3

)

+Ki
3KM

3,b[S2]
,

(2c)

d[S4]

dτ
=

k3E3Ki
3[S2][S3]

Ki
3[S2][S3]+KM

3,a[S3]
(

[S3]+Ki
3

)

+Ki
3KM

3,b[S2]
−

k4E4[S4]

[S4]+KM
4

, (2d)

d[S5]

dτ
=

k4E4[S4]

[S4]+KM
4

−
k5E5[S5]

[S5]+KM
5

, (2e)

d[S6]

dτ
=

k5E5[S5]

[S5]+KM
5

−
k6E6[S6]

[S6]+KM
6

, (2f)

d[S7]

dτ
=

k6[S6]

[S6]+KM
6

−
k7E7[S7]

[S7]+KM
7

, (2g)

d[P]

dτ
=

k7E7[S7]

[S7]+KM
7

. (2h)

Most of the terms in the governing equations (2) are standard Michaelis–Menten

reaction velocities, for which we obtain the relevant kinetic parameters from the

references indicated in Table 2. The two modified Michaelis–Menten terms we

include are for reactions (1a) and (1d), which describe different types of inhibition.

In Kresze and Ronft [10], it is shown that acetyl-CoA has an inhibitory effect on

(1a) which is uncompetitive with pyruvate. Therefore, for this reaction velocity

we use the standard form for uncompetitive inhibition [11]. In Middleton [12], it is

shown that acetoacetyl-CoA has an inhibitory effect on (1d) which is competitive

with acetyl-CoA, and we therefore take this reaction velocity to have the standard

form for competitive inhibition, as stated in Middleton [12] and Yung-Chi and

Prusoff [11]. The parameter A represents the total loss of acetyl-CoA to other
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Original variable Description Nondimensionalisation

[S1] Pyruvate [S1] = S0S1

[S2] Acetyl CoA [S2] = S0S2

[S3] Acetoacetyl-CoA [S3] = S0S3

[S4] HMG-CoA [S4] = S0S4

[S5] Mevalonate [S5] = S0S5

[S6] Mevalonate phosphate [S6] = S0S6

[S7] Mevalonate diphosphate [S7] = S0S7

[P] Isopentenyl diphosphate [P] = S0P

τ Time τ = (S0/k1E1)t

Table 1: Dimensional and dimensionless variable definitions.

metabolic pathways, for example, the citric acid cycle or fatty acid biosynthesis,

and we assume that this occurs with first-order kinetics. While this parameter is

difficult to measure experimentally, we will bypass this issue by considering a

distinguished limit in the dimensionless system when we perform an asymptotic

analysis. The parameters Ei, where i = 1, . . . ,7, denote the enzyme concentrations

for the reactions they control.

We use initial conditions that correspond to the scenario where pyruvate is

instantaneously introduced to a system containing all of the relevant enzymes,

but none of the intermediate metabolites. That is, we use [S1](0) = S0, [S2](0) =
[S3](0) = [S4](0) = [S5](0) = [S6](0) = [S7](0) = [P](0) = 0. Here, S0 represents

the initial or typical level of pyruvate present in the system. As any given metabo-

lite may already be present in the real-world system, our approach to the initial

conditions is a modelling choice. That is, we choose to reduce the number of un-

certain parameters in the system in order to facilitate a more simplified analysis

of the system.

To nondimensionalize the system variables, we scale each dimensional metabo-

lite concentration with S0, the initial concentration of pyruvate. Additionally, we

scale time with S0/(k1E1), the characteristic time of the first reaction, which oc-

curs between pyruvate and acetyl-CoA. We summarise these scalings in Table 1.

To form dimensionless parameters, we first note that estimates of the kinetic pa-

rameters can vary significantly in different environments (Table 2). Given the

uncertainty in the parameters, we seek to understand how the system behaves for

different values of these parameters; we seek asymptotic solutions in terms of the

system parameters, allowing us to explicitly determine how a variation in param-

eter values affects the system. We can explore how the system behaves as these
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Dimensional Organism Range

k1 = 10s−1 Saccharomyces cerevisiae [10, 13] 4 – 30s−1 [10, 13, 14]

k2 = 200s−1 Enterococcus faecalis [15] 10 – 260s−1 [15, 16, 17]

k−2 = 3000s−1 Enterococcus faecalis [15] 80 – 3600s−1 [15, 18]

k3 = 6s−1 Saccharomyces cerevisiae [12] 0.5 – 14s−1 [12, 19, 20]

k4 = 10s−1 Enterococcus faecalis [15] 1 – 20s−1 [15, 21, 22]

k5 = 20s−1 Methanosarcina mazei [23] 4 – 40s−1 [23, 24]

k6 = 4s−1 Saccharomyces cerevisiae [25] 2 – 6s−1 [25, 26]

k7 = 1s−1 Saccharomyces cerevisiae [27] 0.1 – 5.5s−1 [27, 28]

KM
1 = 0.65mM Saccharomyces cerevisiae [10] 0.13 – 1mM [10, 29, 14]

Ki
1 = 0.014mM Saccharomyces cerevisiae [10] 0.014 – 0.018mM [10, 29]

KM
2 = 1mM Enterococcus faecalis [15] 0.06 – 1.2mM [15, 16, 17]

KM
−2 = 0.01mM Enterococcus faecalis [15] 0.01 – 0.09mM [15, 18]

KM
3,a = 0.015mM Saccharomyces cerevisiae [12] 0.01 – 0.04mM [12, 19, 20]

KM
3,b = 0.003mM Saccharomyces cerevisiae [12] 0.0001 – 0.01mM [12, 20]

Ki
3 = 0.01mM Saccharomyces cerevisiae [12] 0.008 – 0.02mM [12, 20]

KM
4 = 0.02mM Enterococcus faecalis [15] 0.015 – 0.065mM [15, 21, 22]

KM
5 = 0.1mM Methanosarcina mazei [23] 0.06 – 0.24mM [23, 24]

KM
6 = 0.9mM Saccharomyces cerevisiae [25] 0.004 – 0.9mM [25, 26]

KM
7 = 0.2mM Saccharomyces cerevisiae [27] 0.03 – 0.9mM [27, 28]

A [s−1]

Dimensionless parameters

k̄2 = εk2E2/k1E1 = 0.2 K̄M
1 = KM

1 /S0 = 0.65 K̄M
4 = KM

4 /εS0 = 2

k̄−2 = εk−2E2/k1E1 = 3 K̄i
1 = Ki

1/εS0 = 1.4 K̄M
5 = KM

5 /S0 = 0.1
k̄3 = k3E3/k1E1 = 0.6 K̄M

2 = KM
2 /S0 = 1 K̄M

6 = KM
6 /S0 = 0.9

k̄4 = k4E4/k1E1 = 1 K̄M
−2 = KM

−2/εS0 = 1 K̄M
7 = KM

7 /S0 = 0.2
k̄5 = k5E5/k1E1 = 2 K̄M

3,a = KM
3,a/εS0 = 1.5 Ā = AS0/k1E1 = 1

k̄6 = k6E6/k1E1 = 0.4 K̄M
3,b = KM

3,b/εS0 = 0.3

k̄7 = k7E7/k1E1 = 0.1 K̄i
3 = Ki

3/εS0 = 1

Table 2: Parameters. We use the value S0 = 1mM, and assume that Ei = E j for i, j = 1, . . . ,7.

Different values of E j can be considered by varying the appropriate dimensionless parameter. We

introduce the small dimensionless parameter ε = 0.01, to formally account for the large difference

in magnitude between parameters, and choose Ā = 1 in the simulations, as there is a distinguished

asymptotic limit when Ā = O(1).
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parameters vary within an order of magnitude by first scaling each rate constant

with the rate constant of the first reaction, each Michaelis constant with the initial

pyruvate concentration, and each enzyme concentration with concentration of the

first enzyme. Then, we use the typical dimensional values in Table 2 to introduce

an artificial small dimensionless parameter ε = 0.01 into the system, and write

each dimensionless parameter as cε j, where c is an O(1) parameter (between 0.1

and 10), and j is an integer. The resultant dimensionless parameters in our system

are given in Table 2, and this approach allows us to interrogate the system using

an asymptotic analysis (see, for example, [7, 8, 9]). Although, as is always the

case with an asymptotic analysis, there may theoretically be an issue in equating

terms with the same powers of ε when extreme O(1) parameters are multiplied

together, we will show that our asymptotic and numerical results show excellent

agreement, and thus the approach is reliable for this system.

Therefore, we nondimensionalize using the dimensionless variables defined

in Table 1 and, using the dimensionless kinetic parameters defined in Table 2, we

obtain the dimensionless system

dS1

dt
=−

εK̄i
1S1

εK̄i
1

(

S1 + K̄M
1

)

+S1S2

, (3a)

dS2

dt
=

εK̄i
1S1

εK̄i
1

(

S1 + K̄M
1

)

+S1S2

−
k̄2S2

ε
(

S2 + K̄M
2

) +
k̄−2S3

ε
(

S3 + εK̄M
−2

) − ĀS2, (3b)

dS3

dt
=

k̄2S2

ε
(

S2 + K̄M
2

) −
k̄−2S3

ε
(

S3 + εK̄M
−2

)

−
k̄3K̄i

3S2S3

K̄i
3S2S3 + K̄M

3,aS3

(

S3 + εK̄i
3

)

+ εK̄i
3K̄M

3,bS2

, (3c)

dS4

dt
=

k̄3K̄i
3S2S3

K̄i
3S2S3 + K̄M

3,aS3

(

S3 + εK̄i
3

)

+ εK̄i
3K̄M

3,bS2

−
k̄4S4

S4 + εK̄M
4

, (3d)

dS5

dt
=

k̄4S4

S4 + εK̄M
4

−
k̄5S5

S5 + K̄M
5

, (3e)

dS6

dt
=

k̄5S5

S5 + K̄M
5

−
k̄6S6

S6 + K̄M
6

, (3f)

dS7

dt
=

k̄6S6

S6 + K̄M
6

−
k̄7S7

S7 + K̄M
7

, (3g)
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dP

dt
=

k̄7S7

S7 + K̄M
7

. (3h)

In forming the dimensionless variables, we have used the physically plausible

value of S0 = 1mM. Finally, the initial conditions become S1(0) = 1, S2(0) =
S3(0) = S4(0) = S5(0) = S6(0) = S7(0) = P(0) = 0.

We solve this system for two cases. The first case is where (3a) does not hold

and we instead impose S1(t)≡ 1. This corresponds to the scenario where pyruvate

is continuously replenished and held at a constant value. The second case is where

(3a) does hold, and we will show that the two systems are equivalent for t = O(1).
In both cases, we are interested in determining how to maximise the production

of IDP whilst minimizing the levels of HMG-CoA, linked to the inhibition of cell

growth.

3. Solutions

3.1. Numerical results

We solve the system presented in §2 numerically, using ode15s in MATLAB

with a relative tolerance of 10−14. We use the parameter values given in Table 2

for the continuous replenishment of pyruvate (Figure 2) and the no replenishment

of pyruvate (Figure 3) cases. In each case, we are also able to model the over-

expression of an enzyme by increasing the dimensionless turnover numbers (the

parameters denoted by a lower-case k with a subscript) given in Table 2.

Although the dynamics for each case are different, we can observe general

trends. Most notably, we see that increasing E3 increases both the maximum lev-

els of HMG-CoA and of IDP production, whereas increasing E4 decreases the

maximum levels of HMG-CoA but has a negligible affect on IDP production.

Comparing the continuously and never replenished pyruvate cases, we see that the

initial dynamics appear to be similar between cases for the same parameter values

(until t ≈ 2 for HMG-CoA and t ≈ 12 for IDP), but the dynamics diverge after

a longer time. In the continuous replenishment case, the concentration of HMG-

CoA and the production rate of IDP tends to a constant value whereas, in the no

replenishment case, the concentration of HMG-CoA increases to a maximum level

before decreasing, and the concentration of IDP tends to a constant value. To un-

derstand these phenomena in more detail, and to determine how we can increase

IDP production whilst minimizing the maximum levels of (cell growth inhibit-

ing) HMG-CoA in terms of the parameter values, we now perform an asymptotic

analysis.
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Figure 2: The numerically determined concentrations of (a) HMG-CoA and (b) IDP in the contin-

uous replenishment of pyruvate case. The solid black lines denote the solutions using the reference

parameter values given in Table 2 with Ei = E j for i 6= j, and the dashed lines denote the solutions

when a particular enzyme is over-expressed. The solutions when E2, E5, E6, or E7 are doubled

are near identical to the reference concentration in (a). The solutions when E2, E4, or E5 are dou-

bled are near identical to the reference concentration in (b), and the solutions when E6 or E7 are

doubled are near identical to each other.
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Figure 3: The numerically determined concentrations of (a) HMG-CoA and (b) IDP in the no

replenishment of pyruvate case. The solid black lines denote the solutions using the parameter

values given in Table 2 with Ei = E j for i 6= j, and the dashed lines denote the solutions when a

particular enzyme is over-expressed. The solutions when E2, E5, E6, or E7 are doubled are near

identical to the reference concentration in (a). The solutions when E2, E4, or E5 are doubled are

near identical to the reference concentration in (b), and the solutions when E6 or E7 are doubled

are near identical to each other. We see that the solutions in this no replenishment of pyruvate case

are very similar to the solutions in the continuous replenishment of pyruvate case until t ≈ 2 for

HMG-CoA and until t ≈ 12 for IDP.
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3.2. Asymptotic results

3.2.1. Continuous replenishment of pyruvate

Here, we consider the system (3b–h), and impose S̄1(t) ≡ 1. As the sink re-

action (1c) is an amalgamation of all sinks of acetyl-CoA (S2), it is difficult to

obtain accurate estimates of Ā. We proceed by assuming the distinguished limit

Ā=O(1), and we discuss the further limit Ā=O(1/ε) in Appendix A. In pursuing

an asymptotic analysis (see, for example, [7, 8, 9]) for small ε , we make the fol-

lowing scalings: (S2,S5,S6,S7,P) = ε1/2(S̄2, S̄5, S̄6, S̄7, P̄), (S3,S4) = ε3/2(S̄3, S̄4)
and we obtain the t = O(1) governing equations

ε
dS̄2

dt
=

εK̄i
1S̄1

ε1/2K̄i
1

(

S̄1 + K̄M
1

)

+ S̄1S̄2

−
k̄2S̄2

ε1/2S̄2 + K̄M
2

+
k̄−2S̄3

ε1/2S̄3 + K̄M
−2

− εĀS̄2,

(4a)

ε2 dS̄3

dt
=

k̄2S̄2

ε1/2S̄2 + K̄M
2

−
k̄−2S̄3

ε1/2S̄3 + K̄M
−2

−
ε k̄3K̄i

3S̄2S̄3

ε1/2K̄i
3S̄2S̄3 + εK̄M

3,aS̄3

(

ε1/2S̄3 + K̄i
3

)

+ K̄i
3K̄M

3,bS̄2

, (4b)

ε
dS̄4

dt
=

k̄3K̄i
3S̄2S̄3

ε1/2K̄i
3S̄2S̄3 + εK̄M

3,aS̄3

(

ε1/2S̄3 + K̄i
3

)

+ K̄i
3K̄M

3,bS̄2

−
k̄4S̄4

ε1/2S̄4 + K̄M
4

, (4c)

dS̄5

dt
=

k̄4S̄4

ε1/2S̄4 + K̄M
4

−
k̄5S̄5

ε1/2S̄5 + K̄M
5

, (4d)

dS̄6

dt
=

k̄5S̄5

ε1/2S̄5 + K̄M
5

−
k̄6S̄6

ε1/2S̄6 + K̄M
6

, (4e)

dS̄7

dt
=

k̄6S̄6

ε1/2S̄6 + K̄M
6

−
k̄7S̄7

ε1/2S̄7 + K̄M
7

, (4f)

dP̄

dt
=

k̄7S̄7

ε1/2S̄7 + K̄M
7

. (4g)

The leading-order version of (4) is given by

dS̄2

dt
=

K̄i
1

S̄2

− v3S̄3 − ĀS̄2, 0 = v2S̄2 − v−2S̄3, 0 = v3S̄3 − v4S̄4,

dS̄5

dt
= v4S̄4 − v5S̄5,

dS̄6

dt
= v5S̄5 − v6S̄6,

dS̄7

dt
= v6S̄6 − v7S̄7,

dP̄

dt
= v7S̄7,

(5)
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Figure 4: The numerical and asymptotic solutions for the metabolite concentrations in the con-

tinuous replenishment of pyruvate case. The solid light lines denote the numerical solutions, and

the dashed darker lines denote the asymptotic solutions given in (6). We see good agreement be-

tween the numerical and asymptotic solutions for t = O(1), and the system attains its steady state

solution in this region.

where v j = k j/KM
j for j ∈ {2,−2,4,5,6,7}, and v3 = k̄3/K̄M

3,b, and (5) is solved

by

S̄2 =

(

K̄i
1

(

1− e−2αt
)

α

)1/2

, S̄3 =
v2

v−2
S̄2, S̄4 =

v2v3

v−2v4
S̄2,

S̄5 =
v2v3

v−2

∫ t

0
ev5(s−t)S̄2(s)ds, S̄6 =

v2v3v5

v−2

∫ t

0

ev5(s−t)− ev6(s−t)

v6 − v5

S̄2(s)ds,

S̄7 =
v2v3v5v6

v−2

∫ t

0

(v7 − v6)ev5(s−t)− (v7 − v5)ev6(s−t)+(v6 − v5)ev7(s−t)

(v7 − v6)(v7 − v5)(v6 − v5)
S̄2(s)ds,

P̄ =
v2v3v5v6v7

v−2

∫ t

0

v7 − v6

v5

(

1− ev5(s−t)
)

−
v7 − v5

v6

(

1− ev6(s−t)
)

+
v6 − v5

v7

(

1− ev7(s−t)
)

(v7 − v6)(v7 − v5)(v6 − v5)
S̄2(s)ds.

(6)

where α = Ā+ v2v3/v−2. We see that these asymptotic solutions agree well with

the numerical ones, except at early time where there is an additional asymptotic

region that we do not consider (Figure 4).

Although the leading-order solution for P̄, given in (6), depends on parameters

from almost all of the reactions, the dependence on v5, v6, and v7 is significantly

reduced as t → ∞, and we may determine that the leading-order long-time be-
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haviour in this regime is given by

P̄ ∼
v2v3

v−2

(

K̄i
1

α

)1/2

t as t → ∞. (7)

Hence, the reactions involving acetyl-CoA are the most important for the produc-

tion of IDP. We can see that the numerical results shown in Figure 4b agree with

the analytic result that P̄ tends to a linear function of time. We may also deduce

the leading-order long-time behaviour of HMG-CoA in the form

S̄4 →
v2v3

v−2v4

(

K̄i
1

α

)1/2

as t → ∞. (8)

In dimensional terms, the long-time behaviour of the isopentenyl diphosphate

(IDP) concentration is

[P]∼ ωE3

(

E1k1Ki
1

A+ωE3

)1/2

τ as τ → ∞, (9a)

and the maximum level of HMG-CoA present in the system is

[S4]∼
ωE3KM

4

k4E4

(

E1k1Ki
1

A+ωE3

)1/2

, (9b)

where

ω =
k2k3KM

−2

k−2KM
2 KM

3,b

. (9c)

From the explicit results (9), we see that the long-time production of IDP

depends on the enzyme concentrations E1 and E3, whereas the maximum con-

centration of HMG-CoA depends on the enzyme concentrations E1, E3, and E4.

Recalling that our goal is to maximize IDP whilst minimizing HMG-CoA, and

noting that the dependence on E1 and E3 is the same for both metabolites of in-

terest, the only way our goal can be achieved by varying enzyme concentration is

to significantly increase E4, so that it compensates for any increase in E1 or E3.

That is, our model suggests that we should overexpress HMG-CoA reductase, the

enzyme that catalyses the reaction from HMG-CoA to mevalonate. Importantly,

we are able to deduce that this is the most significant leading-order effect, and
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this explicit result is possible due to our asymptotic analysis. The significance of

this reaction is in agreement with [4], where it was shown that over-expression of

HMG-CoA reductase alleviated the inhibition of cell growth, benefiting IDP pro-

duction. Increasing E3, the enzyme that catalyses the reaction from acetoacetyl-

CoA and acetyl-CoA to HMG-CoA would increase the levels of IDP produced

by a single cell, but would also produce more HMG-CoA, which would reduce

the number of cells in the system (though this is not formally taken into account

by our model). The same is true of increasing E1, the enzyme that catalyses the

reaction from pyruvate to acetyl-CoA, and decreasing A, any enzyme that cataly-

ses reactions from acetyl-CoA to sinks of acetyl-CoA. Finally, we note that these

results all agree with the numerical results in Figure 2.

3.2.2. No replenishment of pyruvate

We now consider the case where pyruvate can be depleted. Note that this case,

unlike the previous, is singularly perturbed on the long timescale. From (3a), we

must also consider the governing equation

dS̄1

dt
=−

ε1/2K̄i
1S̄1

ε1/2K̄i
1

(

S̄1 + K̄M
1

)

+ S̄1S̄2

, (10)

instead of imposing S̄1(t)≡ 1. By seeking a power series representation for S̄1 in

terms of the small parameter ε1/2, and using the solution (6a) for S̄2, we obtain

the following asymptotic solution to (10) for t = O(1):

S̄1(t)∼ 1−

(

εK̄i
1

α

)1/2
(

αt + log
{

1+
[

1− e−2αt
]1/2
})

+O(ε). (11)

Importantly, we find that S̄1(t)∼ 1+O(ε1/2) for t = O(1), and thus the no replen-

ishment case is equivalent to the continuous replenishment case at leading order

for t = O(1).
As suggested by (11), the O(1) decay of pyruvate occurs over the timescale

t =O(ε−1/2). Further, as the dominant balances over this timescale do not change,

the solution (11) allows us to deduce that the depletion of pyruvate occurs when

t∗ = 1/(εαK̄i
1)

1/2 +O(1). (12)

For completion, we show the dynamics of this depletion, where the levels of

pyruvate become exponentially small, in Appendix B. Using the depletion time

(12) in the long-time IDP solution (7) and reverting back to the original unscaled
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version of IDP, we determine that the total amount of IDP produced in the no

replenishment of pyruvate case is

lim
t→∞

P =
v2v3

αv−2
+O(ε1/2). (13)

Further, we may deduce that the maximum level of HMG-CoA in the system is

again given by (8). In dimensional terms, the long-time behaviour of the isopen-

tenyl diphosphate (IDP) concentration is

[P]∼
ωS0E3

A+ωE3
as τ → ∞, (14)

and the maximum level of HMG-CoA present in the system is

[S4]∼
ωE3KM

4

k4E4

(

E1k1Ki
1

A+ωE3

)1/2

, (15)

where ω is defined in (9c).

Hence, our main conclusions from the continuous replenishment case are still

valid for this case. For this no-replenishment-of-pyruvate case, we are also able to

further determine that a lower value of Ki
1, perhaps achievable by introducing het-

erologous enzymes for the reaction (1a), would decrease the maximum amount of

HMG-CoA present whilst having no significant effect on the total IDP produced.

4. Experimental validation

To validate the predictions made in this model, we carried out in vivo experi-

ments in Cupriavidus necator H16, a gram-negative bacterium previously known

as Ralstonia eutropha. C. necator is a facultative chemolithoautotrophic microor-

ganism of relevant biotechnological interest since it can be exploited as a bacte-

rial chassis for the production of chemicals. As proof of concept, we sought to

introduce the upper part of the mevalonate pathway, leading to the production of

isoprenoid precursors, into C. necator. To this end, C. necator H16 was trans-

formed with a plasmid (pBBR1JW3) carrying the mvaE and mvaS genes from

E. faecalis of the L-arabinose inducible promoter PBAD. These two genes code

for the enzymes Acetyl-CoA acetyltransferase/HMG-CoA reductase (MvaE) and

Hydroxymethylglutaryl-CoA synthase (MvaS), respectively. MvaE is a bifunc-

tional enzyme that catalyses two reactions, from acetyl-CoA to acetoacetyl-CoA

and from HMG-CoA to mevalonate, while MvaS converts acetoacetyl-CoA and
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acetyl-CoA to HMG-CoA. In our model, increasing the expression of MvaE cor-

responds to increasing E2 and E4, whereas increasing the expression of MvaS

corresponds to increasing E3 (a schematic of the pathway is shown in Figure 1).

This plasmid provides a path from pyruvate to mevalonate (S1 to S5) within the

modified C. necator.

4.1. Setting up of bacterial cultures for mevalonate production

Single colonies of C. necator H16/pBBR1-USERcassette1 and C. necator

H16/pBBR1JW3 (pBBR1::araC/PBAD-mvaES) were used to inoculate 5ml of LB

solution with 300µg/ml kanamycin (in 50ml tubes) and grown overnight at 30 ◦C

with shaking (200 rpm). The following morning, the optical density (OD600) of

the cultures was measured and normalised to OD600 = 0.2 in 100ml of LB solu-

tion with 300µg/ml kanamycin (in 500ml flasks). The bacterial cultures were then

incubated at 30 ◦C with shaking (200 rpm) until they reached an OD600 of around

0.6 - 0.7. At this point, 1ml samples were collected from each culture, centrifuged

at 14000 rpm for one minute and the cell pellets were stored at -20 ◦C to be used

as pre-induction protein samples for SDS-PAGE. In addition, 1ml of 1% (w/v);

2% (w/v); or 20% (w/v) L-arabinose solutions were added to the corresponding

cultures, thus obtaining L-arabinose final concentrations of 0.01%; 0.02%; and

0.2%, respectively. Following 18 hours of incubation at 30 ◦C with shaking (200

rpm), the OD600 of the cultures was measured. The bacterial cultures were then

centrifuged (8000 rpm for five minutes), concentrated to OD600 = 15 in 1% fruc-

tose minimal medium (FMM) –NH4Cl with 300µg/ml kanamycin and transferred

to 250ml flasks. After 24 hours of incubation at 30 ◦C with shaking (200 rpm),

500µl samples were taken from the cultures and centrifuged (14000 rpm for one

minute). Supernatants were then analysed by HPLC to quantify the mevalonate

titres produced by C. necator H16/pBBR1JW3 in response to the different L-

arabinose concentrations taken into account.

4.2. Model comparison

We can use our model to predict the behaviour of the shorter pathway from

pyruvate to mevalonate, by taking the limit k̄5, k̄6, k̄7 → 0. In this case, the results

for [S4] remain the same and, in dimensional terms, the long-time results for [S5]
are

[S5]∼ ωE3

(

E1k1Ki
1

A+ωE3

)1/2

τ as τ → ∞, (16)
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Figure 5: Experimental results for (a) mevalonate production by C. necator H16/pBBR1JW3

(pBBR1::araC/PBAD-mvaES) after 24 hours of growth in 1% (w/v) fructose minimal medium

(FMM) in response to the following L-arabinose concentrations: 0.01% (w/v - grey bar); 0.02%

(w/v - dark grey bar); and 0.2% (w/v - light grey bar). As a negative control, mevalonate production

was assessed also with the C. necator H16/pBBR1-USERcassette1 strain (empty vector), that does

not harbour the mvaE and mvaS genes. (b) SDS-PAGE of pre- (lane 1) and post-induction protein

extracts of C. necator H16/pBBR1JW3. Expression of MvaE (86 KDa) and MvaS (42 KDa) was

assessed following induction with 0.01% (lane 2); 0.02% (lane 3); and 0.2% (lane 4) L-arabinose.

While MvaE expression levels increased with increasing L-arabinose concentrations, production

of MvaS appeared to remain constant.

for continuous replenishment of pyruvate and

[S5]→
ωS0E3

A+ωE3
as τ → ∞, (17)

for no replenishment of pyruvate, where ω = k2k3KM
−2/(k−2KM

2 KM
3,b), as previ-

ously defined in (9c). All variables are defined in §2. These are the same results

our model predicts for [P], so our previous predictions for maximizing IDP while

minimizing HMG-CoA will also be our current predictions for maximizing meval-

onate while minimizing HMG-CoA in this experiment.

HPLC data show that increasing the concentration of the inducer L-arabinose

leads to significant increments in the amount of mevalonate produced after 24

hours of growth in the presence of fructose as a carbon source (Figure 5a). From

the three levels of L-arabinose we considered, there appear to be diminishing re-
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turns on the effectiveness of increasing L-arabinose. From an SDS-PAGE, we see

an increase in the expression of MvaE as the levels of L-arabinose are increased

(Figure 5b). However, production of MvaS appears to be constant as the levels

of L-arabinose are increased. In our model, this corresponds to increasing E2 and

E4 while keeping E3 (and all other enzyme levels) constant. As discussed above,

our model predicts that this will decrease the maximum levels of HMG-CoA in

the system, and thus produce more IDP. Hence, our model is verified by these

experimental results.

5. Conclusions

We developed and solved a mathematical model for the kinetics of the meval-

onate pathway, derived using generalised Michaelis–Menten kinetics and includ-

ing the effect of a sink from acetyl-CoA into other metabolic pathways. We con-

sidered two extreme cases, namely where the pyruvate was continuously and never

replenished. We used asymptotic analysis to gain physical insight into the system

behaviour, allowing us to evaluate the effect of upregulating different reactions

without resorting to an expensive parameter sweep. The system we considered

here has eight dependent variables with 20 kinetic parameters. Our asymptotic

analysis enabled us to give analytic expressions for each dependent variable in

the continuous replenishment case, and to reduce the entire system to numerically

solving a coupled nonlinear system of two dependent variables with one param-

eter in the never replenished case. We then validated our model by performing

experiments that agreed with our predictions.

The main experimental goal is to maximise IDP production, whilst minimizing

the maximum levels of HMG-CoA, a metabolite that is linked to the inhibition of

cell growth due to its inhibition of fatty acid biosynthesis [5]. In terms of over-

expressing enzymes, we see that over-expressing E3, the enzyme that catalyses the

reaction from acetoacetyl-CoA and acetyl-CoA to HMG-CoA will have a positive

effect on both IDP production and maximum levels of HMG-CoA. Thus, over-

expressing this enzyme by itself will not have significant effects. However, we

additionally note that over-expressing E4, the enzyme that catalyses the reaction

from HMG-CoA to mevalonate, will decrease the levels of HMG-CoA without

having a significant effect on IDP production. Therefore, over-expressing both

E3 and E4 should have a much larger effect on IDP production than just over-

expressing E3. The importance of the reaction from HMG-CoA to mevalonate

has been previously noted by experiments [4]. We also note that increasing E1 has

a positive effect on both IDP production for continuously replenished pyruvate,
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(a)

Pyruvate

Acetyl-CoA sink
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HMG-CoA Mevalonate

Mevalonate phosphateMevalonate diphosphateIsopentenyl diphosphate

(b)

Figure 6: Schematic showing how overexpression of enzymes can affect IDP production in the

cases of pyruvate being (a) continuously replenished and (b) never replenished. A green arrow

denotes that overexpressing the enzyme corresponding to that reaction results in greater production

of IDP, but comes with diminishing returns. A dashed or dotted arrow denotes whether these

diminishing returns are unbounded or bounded, respectively.

and on the maximum levels of HMG-CoA. Thus, as for E3, this effect can be

amplified by also over-expressing E4 at the same time. We illustrate these results

in Figures 6 and 7.

Our results also suggest that the reactions between acetyl-CoA and acetoacetyl-

CoA can have a significant effect on both IDP production and maximum levels of

HMG-CoA. However, this effect cannot be achieved by over- or under-expressing

E2, the enzyme that catalyses this reaction, as the enzyme catalyses the reaction

in both directions. We see that this positive effect can be attained by using an en-

zyme that strongly favours the forward reaction. That is, an enzyme with a large

ratio of k2KM
−2/k−2KM

2 . The final reaction that plays an important role at leading

order is the reaction from acetyl-CoA to a sink, which has a negative leading-order

effect on both IDP production and the maximum levels of HMG-CoA. Although

we consider the dimensionless sink coefficient to be of O(1) in our main analysis,

we also show in Appendix A that a large sink coefficient does not significantly

affect the system behaviour. However, we note that the importance of acetyl-CoA

to other metabolic pathways represented by this sink, such as the citric acid cy-

cle, means that there are likely to be negative effects to the cell if this reaction is
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Pyruvate

Acetyl-CoA sink

Acetyl-CoA

Acetoacetyl-CoA

Mevalonate

Mevalonate phosphateMevalonate diphosphateIsopentenyl diphosphate

HMG-CoA

Figure 7: Schematic showing how overexpression of enzymes can affect levels of HMG-CoA.

A green/red arrow denotes that overexpressing the enzyme corresponding to that reaction results

in greater/lesser amounts of HMG-CoA, and a dashed arrow denotes that over-expression results

in unbounded but diminishing returns. The results are the same for the cases of pyruvate being

continuously and never replenished.

significantly altered. Our results suggest that the reactions and enzymes we have

mentioned are the only significant reactions at leading order, and we predict that

the over-expression of other enzymes in the pathway will not have a significant

effect on either IDP production or on the maximum levels of HMG-CoA.

In the case where pyruvate was never replenished, we found that the deple-

tion of pyruvate occurred slowly enough that, for intermediate time, our system

reproduced the steady-state behaviour we would eventually expect from the con-

tinuously replenished pyruvate case. However, whilst the system was initially ro-

bust to this slow depletion, we additionally calculated the point at which the low

levels of pyruvate affected the entire system, then calculated the dynamics of this

depletion. This required the use of the method of matched asymptotic expansions

with logarithmic matching terms involving the small variable to track metabolite

concentrations up to the first correction order over two timescales, thus allowing

us to obtain the leading-order depletion at the third and final timescale.

In our experiments, we were able to introduce a pathway from pyruvate to

mevalonate into the bacterium C. necator. This was achieved by transforming C.

necator with a plasmid harbouring the E. faecalis mvaE and mvaS genes under

the control of a promoter induced by the presence of L-arabinose (PBAD). The

proteins MvaE and MvaS, respectively encoded by these two genes, are responsi-

ble for the conversion of acetyl-CoA to mevalonate. A protein expression analysis

showed that production of MvaE increased as the levels of L-arabinose present in

the cultivation medium were increased. On the other hand, expression of MvaS

appeared to be independent of L-arabinose concentration. In any case, the effect

of increasing MvaE expression was to produce more mevalonate, an experimental

result that agreed with the theoretical predictions from our model. We note that
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our model could be verified further by directly measuring the levels of HMG-CoA.

However, as HMG-CoA is not secreted by the cell and is likely to be unstable, di-

rect measurement is significantly more technical; as carried out in Pitera et al. [4],

the experiments would have to be repeated while rapidly quenching the cellular

metabolism, before examining the endo-metabolites using mass spectrometry.

In the derivation of this model, we chose initial conditions that modelled the

instantaneous addition of pyruvate to a well-mixed solution of enzymes. These

conditions were chosen for mathematical convenience and are likely to differ sig-

nificantly from the conditions within a cell producing isopentenyl-diphosphate.

However, as the systems we have considered both tend to stable steady states, this

difference is unlikely to be a practical issue for the long time results, although it

would affect the initial transients.

Finally, we note that this work highlights how a simple mathematical model

can be used to predict the biologically relevant behaviour of a system. Moreover,

this work shows how asymptotic analysis can play an important role in reducing

the computational complexity of a derived system and be used to overcome uncer-

tainty issues with parameter values. We hope that the predictions from our model

can help to build a more efficient path to biological discovery.
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Appendix A. Large Ā limit

There is another distinguished limit in the system (3) when Ā = O(1/ε). We

briefly summarise the system behaviour in this limit for t = O(1). The leading-

order system (5) is mainly unchanged, apart from the first equation for S̄2, which

becomes

εK̄i
1S1

ε1/2K̄i
1

(

S1 + K̄M
1

)

+S1S2

= εĀS2, (A.1)
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where we now have S2 = O(ε1/2), providing an asymptotic balance between the

two terms. Rearranging (A.1) for S2 in terms of S1, we obtain

S2 =
ε1/2

2





{

(

K̄i
1(S1 + K̄M

1 )

S1

)2

+
4K̄i

1

εĀ

}1/2

−
K̄i

1

(

S1 + K̄M
1

)

S1



 . (A.2)

For the continuous-replenishment case we have S1(t)≡ 1, and for the no-replenishment

case the governing equation for S1 is given by (10). Finally, focusing on the

continuous-replenishment case, we note that we can re-write (7), the long-time

production of IDP, as

P̄ ∼

(

v2v3

v−2
t

)

lim
t→∞

S2(t) as t → ∞. (A.3)

Thus, from (A.2) we see that the long-time production of IDP gains some further

dependence on the kinetic properties of E1 in the limit of large Ā, but retains the

same qualitative behaviour.

Appendix B. Dynamics of pyruvate depletion

In this appendix, we further investigate the dynamics of pyruvate depletion.

We only investigate S̄1 and S̄2 here, as the leading-order versions of the remain-

ing metabolites can be obtained by suitably rescaling the solutions (6b–g) for the

timescales we present in this appendix.

To obtain the leading-order solutions during the important depletion timescale,

we require the long-time behaviour of the O(ε1/2) correction to S̄2 at t = O(1).
To this end, we may use the leading-order solution (6) to write the asymptotic

expansion

S̄2 ∼

(

K̄i
1

(

1− e−2αt
)

α

)1/2

+ ε1/2K̄i
1s2(t) as ε → 0, (B.1)

where s2(t) = O(1) is the first correction term for S̄2. We combine (4a,b), (11),

and (B.1) to obtain

1

α

ds2

dt
+

(

2− e−2αt

1− e−2αt

)

s2 =
2β

1− e−2αt
+2γ

(

1− e−2αt
)

, (B.2a)
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where

β =−
K̄M

1 +1

2
, (B.2b)

γ =
v2v3

2α2v−2

(

1

K̄M
2

−
v2

k̄−2

+
v2v3

v−2k̄3

)

. (B.2c)

Solving (B.2a) in the long-time limit, we deduce that

s2 ∼ β + γ + exponentially small terms as t → ∞, (B.3)

and thus we are able to determine the long-time behaviour

S̄2 ∼

(

K̄i
1

α

)1/2

+ ε1/2K̄i
1 (β + γ) as t → ∞. (B.4)

The O(1) depletion of pyruvate occurs over the timescale t = O(ε−1/2), and

we investigate this using the scaling t = T/ε1/2, where T = O(1). Writing S̄1 and

S̄2 as the asymptotic expansions

S̄1 ∼ S̄
(0)
1 + ε1/2S̄

(1)
1 , S̄2 ∼ S̄

(0)
2 + ε1/2S̄

(1)
2 as ε → 0, (B.5)

the appropriate governing equations, obtained from (10) and (4a,b), are

dS̄
(0)
1

dT
=−

K̄i
1

S̄
(0)
2

, (B.6a)

dS̄
(1)
1

dT
=

K̄i
1

(

S̄
(0)
2

)2

(

S̄
(1)
2 + K̄i

1

(

1+
K̄M

1

S̄
(0)
1

))

, (B.6b)

0 =
K̄i

1

S̄
(0)
2

−α S̄
(0)
2 , (B.6c)

dS̄
(0)
2

dT
=−2α

(

S̄
(1)
2 + K̄i

1

(

1

2

(

1+
K̄M

1

S̄
(0)
1

)

− γ

))

, (B.6d)

with matching conditions, valid when T → 0+,

S̄
(0)
1 ∼ 1−

(

αK̄i
1

)1/2
T, S̄

(1)
1 ∼−

(

K̄i
1

α

)1/2

log2,
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S̄
(0)
2 ∼

(

K̄i
1

α

)1/2

, S̄
(1)
2 ∼ K̄i

1 (β + γ) , (B.6e)

obtained using Van Dyke’s matching rule [30] on the t = O(1) results (11) and

(B.4).

The system (B.6) is thus solved by

S̄
(0)
1 = 1−

(

αK̄i
1

)1/2
T, (B.7a)

S̄
(1)
1 = αK̄i

1

(

γ +
1

2

)

T −
K̄M

1

(

αK̄i
1

)1/2

2
log
(

1−
(

αK̄i
1

)1/2
T
)

−

(

K̄i
1

α

)1/2

log2,

(B.7b)

S̄
(0)
2 =

(

K̄i
1

α

)1/2

, (B.7c)

S̄
(1)
2 = K̄i

1



β + γ −

(

αK̄i
1

)1/2
T

2
(

1−
(

αK̄i
1

)1/2
T
)



 . (B.7d)

The most significant asymptotic regime of interest for the depletion dynam-

ics occurs when S̄1 = O(ε1/2), which results in the depletion of several metabo-

lites in the system. This region occurs when t = 1/(εαK̄i
1)

1/2 + t̂/α (equiva-

lently, when T = 1/(αK̄i
1)

1/2+ε1/2(t̂/α)), where t̂ =O(1). We additionally scale

(S̄1, S̄2) = (K̄i
1/α)1/2(ε1/2Ŝ1(t̂), Ŝ2(t̂)). Substituting these scalings into (10) and

(4a,b) results in the leading-order long-time equations

dŜ1

dt̂
=−

Ŝ1

αK̄M
1 + Ŝ1Ŝ2

, (B.8a)

dŜ2

dt̂
=

Ŝ1

αK̄M
1 + Ŝ1Ŝ2

− Ŝ2. (B.8b)

The leading-order matching conditions as t̂ → −∞ are Ŝ1 ∼ −t̂ and Ŝ2 → 1, and

the remaining variables in the system are still given by (6c-h). In practice, we find

that this leading-order system is sensitive to the O(ε1/2) matching condition for

Ŝ1 as t̂ →−∞. We can deduce this directly by determining the behaviour of Ŝ1 as

t̂ →−∞ from the system (B.8). That is, we deduce that

Ŝ1 ∼−t̂ − (αK̄M
1 /2) log(−t̂)+C as t̂ →−∞. (B.9a)
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Figure B.8: The solutions to the full and reduced systems for the concentrations of S1 and S2 in the

no replenishment of pyruvate case. We show (a) A linear plot (b) A log-lin plot. The solid light

lines denote the numerical solutions to the full problem, and the dashed darker lines denote the

solutions to the reduced problem given in (B.8). We see good agreement between the numerical

and asymptotic solutions apart from at early time, as we expect.

We may determine C by matching the solution to S̄1 up to O(ε1/2) when t =
O(ε−1/2), given in (B.7a,b). From this matching, we deduce that

C =− log2+
1

2

(

v2v3

αv−2

(

1

K̄M
2

−
v2

k−2
+

v2v3

k3v−2

)

+α

)

−
αK̄M

1

4
log

(

εK̄i
1

α

)

+O(ε1/2). (B.9b)

Using (B.9) as the matching condition for Ŝ1, we may numerically solve (B.8)

to obtain the depletion dynamics for Ŝ1 and Ŝ2, then use the latter solution in

(6b–g) to deduce the depletion dynamics for the remaining metabolites. We see

excellent agreement between these asymptotically determined solutions and the

full numerical solutions (Figure B.8).

As the system (B.8) is governed by two coupled autonomous nonlinear equa-

tions, we further note that we are able to reduce these to a single nonlinear ordinary

differential equation by dividing one equation by the other and seeking a solution

to S̄2(S̄1). Although this first-order differential equation can be transformed into a

linear second-order differential equation with solutions involving modified Bessel

functions, reintroducing t into this system is nontrivial, and the solutions do not

provide any insight into the underlying system behaviour. Therefore, we do not

consider this route further.
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