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Abstract We investigate how to characterize the kinetic parameters of an aminotransaminase using a non-standard
coupled (or auxiliary) enzyme assay, where the peculiarity arises for two reasons. First, one of the products of the
auxiliary enzyme is a substrate for the primary enzyme and, second, we explicitly account for the reversibility of the
auxiliary enzyme reaction. Using singular perturbation theory, we characterize the two distinguished asymptotic limits
in terms of the strength of the reverse reaction, which allows us to determine how to deduce the kinetic parameters of
the primary enzyme for a characterized auxiliary enzyme. This establishes a parameter-estimation algorithm that is
applicable more generally to similar reaction networks. We demonstrate the applicability of our theory by performing
enzyme assays to characterize a novel putative aminotransaminase enzyme, CnAptA (UniProtKB Q0KEZ8) from
Cupriavidus necator H16, for two different omega-amino acid substrates.

Keywords Asymptotic analysis · Reaction kinetics · Synthetic biology · Enzyme characterization · Aminotransami-
nase

1 Introduction

Enzyme assays are an important tool for characterizing enzymes. In the classic assay, a single reaction converts a
substrate into a product, using an enzyme as a catalyst, and the product is measured over time to estimate the initial
reaction velocity [3]. A mathematical analysis allows one to use this information to deduce the kinetic properties of
the enzyme in question [18]. When characterizing an enzyme for which the reaction product is difficult to observe, an
auxiliary enzyme can be introduced to convert the product of the primary enzyme reaction into a chemical that can
more easily be measured (e.g. NADH) [19, 23]. This is called a coupled enzyme assay. However, the problem is more
complicated if the reaction catalysed by the auxiliary enzyme has a product which is also a substrate for the primary
enzyme.

In this paper, we are interested in understanding how to characterize a primary enzyme in a non-standard coupled
enzyme assay, where one of the products of the auxiliary enzyme is a substrate for the primary enzyme and where we
explicitly account for the reversibility of the auxiliary enzyme reaction. This is motivated by the characterization of
the class of enzymes known as aminotransaminases, which catalyse the transfer of keto and amine groups between
organic compounds [22], and are an important class of biocatalysts in synthetic biology for reasons we discuss below.
In Figure 1 we show a schematic of the reaction network we consider in this paper. While we refer to the specific
organic compounds pyruvate and alpha-L-alanine in Figure 1 and through the paper in order to be consistent with the
experiments we perform, we emphasize that our analysis is more general. In particular, the general organic-group-
transfer property of aminotransaminases means that ‘pyruvate’ can be generalized to ‘keto acid’, and ‘alpha-L-alanine’
can be generalized to ‘amino acid’ for an aminotransaminase primary enzyme. Since ammonia is produced when an
amino acid is dehydrogenated, the presence of ammonia is a consequence of using an aminotransaminase as the
primary enzyme. This means that the reaction network we show in Figure 1 is particularly applicable to coupled
enzyme assays with the primary enzyme being an aminotransaminase.

The technique to deal with a standard coupled enzyme assay with one primary enzyme and one auxiliary enzyme
was first outlined within a mathematical framework in [15]. We direct the interested reader to [19] for a history of the
theoretical work on standard coupled enzyme assays, as well as a practical guide to performing these types of assays.
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Fig. 1 A diagram of the reaction network we investigate in this paper. Each box denotes a chemical compound involved in the network, and each
arrow denotes a reaction to and from the specified group of products and substrates, respectively. Each reaction is catalysed by an enzyme; the
primary enzyme catalyses the reaction on the right, marked with velocity ṽ1, and the auxiliary (secondary) enzyme catalyses both directions of the
reversible reaction on the left, marked with forward velocity ṽ2 and backwards velocity ṽ−2. Note that our model does not rely on pyruvate being
converted into alpha-L-alanine, it being valid for the primary enzyme being a general aminotransaminase. Hence, in this diagram ‘pyruvate’ can
be generalized to ‘keto acid’, and ‘alpha-L-alanine’ can be generalized to ‘amino acid’.

In this paper, we investigate when the standard approach identified in [15] is appropriate for the non-standard assay
we consider, and how to modify the approach when it is not. We then implement our theory by performing assays on
a previously-uncharacterized enzyme for two different substrates.

Calculating enzyme properties through enzyme assays is an inherently dynamic process; the steady state is reached
only when one of the substrates vanishes. In this dynamic process, it is helpful to measure the indicator chemical
during a regime where the reaction velocity is approximately constant, corresponding to a linear increase of the
indicator chemical in time (we henceforth refer to this as a ‘linear growth’ regime). Often this means estimating the
reaction velocity through initial rate experiments, with the goal of avoiding complications due to reversible reactions.
Linear growth is helpful as a sanity check that things are proceeding as they should (typically using the ‘eyeball
norm’). Moreover, experimental noise can increase the error when attempting to implement an accurate fit in nonlinear
systems - restricting oneself to a linear growth regime significantly reduces this issue.

For these reasons, we use singular perturbation theory [2, 11] to analyse the mathematical systems we derive,
and to understand how to determine the kinetic parameter values of the primary enzyme in such a system. This
provides a significant reduction of the complexity of the system, and thus allows us to minimize issues associated
with experimental noise, as we aim to determine functional forms for the measurable reaction velocities. Moreover, as
exhibited in recent examples [5, 6, 7, 8, 12], singular perturbation theory is particularly well suited to understanding
systems of chemical reactions exhibiting a significant separation of timescales, so we will use a similar approach here.

In our analysis, we assume that the timescales of enzyme complex formation are much shorter than the other
reaction timescales in our problem, and that the effective reaction velocities are governed by Michaelis–Menten-type
laws. The suitability of the Michaelis–Menten equations in many scenarios, including but not limited to standard
coupled enzyme assays, has been investigated in recent work by Schnell and colleagues, for example [7, 8, 24], using
singular perturbation theory.

To demonstrate how our theoretical results can be used to characterize enzymes, we perform several coupled
enzyme assays to characterize a putative omega-aminotransferase (also known as an aminotransaminase or an omega-
amino-acid amino transferase) enzyme, CnAptA, for two omega-amino acid substrates. Omega-aminotransferases
belong to class III aminotransferases; these catalyse the transamination of omega-amino acids such as beta-alanine or
gamma-aminobutyric acid by transferring the amino group to a keto acid, using pyridoxal 5’-phosphate (PLP) as a co-
factor [16]. Aminotransferases are increasingly important biocatalysts for the synthesis of industrially relevant chiral
compounds and in the pharmaceutical industry for the production of optically pure amines and amino alcohols nec-
essary for the synthesis of important drugs [21]. Moreover, aminotransferases are particularly important in synthetic
biology because they are the key to creating biosustainable production routes to many important platform chemicals.
That is, carboxylic acids make up eight of the top twelve platform chemicals selected by the US Department of Energy
that can be derived from biomass [26]. As current industrial methods to produce these acids often involve fossil fuels,
biological production routes provide environmentally sustainable alternatives.

The outline of this paper is as follows. In §2, we briefly recap the mathematical analysis of the standard enzyme
assay, which allows us to put the main results of this paper into an appropriate context. In §3, we derive a mathematical
model for the non-standard coupled enzyme assay of interest in this paper, which has the reaction network shown in
Figure 1. We then explore how the non-standard assay differs from the standard one and determine how the measured
reaction velocity relates to the kinetic parameters of the primary enzyme in the non-standard case. We do this using an
asymptotic analysis to systematically reduce the complexity of the system, and we present the main distinguished limit
(i.e. the dominant balance of most practical relevance) of the system in §3.1. We present the remaining distinguished
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Fig. 2 Abstract network diagram for a standard enzyme assay. The primary enzyme has reaction velocity ṽ1 and the auxiliary enzyme has reaction
velocity ṽ2.

limit in §3.2, where we find that the distinguished nature of this limit is apparent only in a non-measurable chemical
during the linear regime or during the depletion regime, and that the measurable system behaviour in the linear regime
is captured by a sub-limit of the strong reverse reaction regime treated in §3.1. We summarise our theoretical results
in §4, outlining the procedure that should be implemented to use experimental data to infer the kinetic parameters of
the primary enzyme. In the same section, we compare our proposed method with a naive nonlinear fit, verifying that
our method is preferable. In §5, we demonstrate that our results can be used effectively in characterizing enzymes by
performing the coupled enzyme assay modelled in this paper and applying our theoretical results. Finally, in §6, we
discuss our results in the context of their significance for experimental approaches involving non-standard coupled
enzyme assays.

2 Standard coupled enzyme assay

We start by briefly recapping the mathematical model for the standard coupled enzyme assay, presented in broad
dimensional terms in [15]. In this section, we present the relevant chemicals involved in abstract terms before relating
them to the chemicals labelled in Figure 1 for the non-standard coupled enzyme assay we consider in the next section.
Our goal in this section is to recap how to determine the kinetic parameters of the primary enzyme in the system shown
in Figure 2, where we assume knowledge of the kinetic parameters of the auxiliary enzyme. Experimentally, we are
able to measure the concentration of s̃6, and so our overarching goal is to understand how to use this measurement to
infer the kinetic parameters that characterize the primary enzyme.

In general, the kinetic parameters used to characterize an enzyme are intrinsic to the ordinary differential equations
(ODEs) assumed to govern this system, using Michaelis–Menten-type laws to quantify each reaction velocity [17].
The network in Figure 2 implies the following seven dimensional ODEs

ds̃1

dt̃
=−ṽ1,

ds̃2

dt̃
=−ṽ1,

ds̃3

dt̃
= ṽ1,

ds̃4

dt̃
= ṽ1− ṽ2,

ds̃5

dt̃
=−ṽ2,

ds̃6

dt̃
= ṽ2,

ds̃7

dt̃
= ṽ2. (1)

We use the convention that dimensional quantities are marked with a tilde, whereas dimensionless quantities are not.
The initial conditions are

s̃1(0) = α̃, s̃2(0) = β̃ , s̃3(0) = 0, s̃4(0) = 0, s̃5(0) = γ̃, s̃6(0) = 0, s̃7(0) = 0, (2)

which corresponds to a system initially containing the minimal number of substrates necessary for both reactions to
take place: s̃1, s̃2, and s̃5, then instantaneously adding the primary and auxiliary enzyme such that the entire system
is well-mixed. We assume that the affinity a given substrate has for an enzyme is independent of the other substrates.
Therefore, the reaction velocities follow Michaelis–Menten kinetics generalized to multiple substrates [1]

ṽ1 = k̃(1)
(

s̃1

K̃(1)
1 + s̃1

)(
s̃2

K̃(1)
2 + s̃2

)
, ṽ2 = k̃(2)

(
s̃4

K̃(2)
4 + s̃4

)(
s̃5

K̃(2)
5 + s̃5

)
. (3)

This problem was recently investigated through a singular perturbation analysis in [7] to determine when the Michaelis–
Menten reaction-type formulation of the problem is valid by considering the intermediate enzyme complexes formed
during each reaction. We will assume throughout this paper that we are in this regime, essentially assuming the
reactant-stationary assumption holds, i.e. that the primary substrates are approximately constant as the primary inter-
mediate complexes form.

In (3), we use the convention that a subscript refers to a relationship with a particular chemical, and a bracketed
superscript refers to a particular reaction. For example, the parameter K̃(2)

4 refers to the Michaelis constant for s̃4 in the
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reaction velocity ṽ2. In general, α̃ and β̃ can be viewed as control parameters that can be varied between experiments;
all remaining parameters should remain constant between different experiments (at fixed temperatures and pHs), such
assumptions being appropriate to the experimental approach we describe in §5. Hence, we are interested in inferring
the three parameters with a bracketed superscript of 1, which are k̃(1), K̃(1)

1 , and K̃(1)
2 , from measurements of s̃6.

It is apparent from the system (1)–(3), as well as from Figure 2, that the concentrations for s̃3, s̃6, and s̃7 decouple
from the rest of the system. We include them here to keep the same notation as for §3. Moreover, we are able to reduce
the system to two ODEs by noting the five following linearly independent conserved quantities:

s̃1 + s̃3 = α̃, s̃2 + s̃3 = β̃ , s̃5 + s̃6 = γ̃, s̃2 + s̃4 + s̃6 = β̃ , s̃6 = s̃7. (4)

We delay the system reduction to discuss first the following standard assumptions made when carrying out a coupled
enzyme assay, as this will aid in deciding with which ODEs to work. First, we assume that the maximum rate of
reaction mediated by the auxiliary enzyme is much faster than for the primary enzyme, so that k̃(2) � k̃(1). As the
maximum rate of each reaction is proportional to the concentration of the corresponding enzyme, this can be ensured
by using a high enough ratio of auxiliary to primary enzyme. Second, we will initially saturate the system with large
quantities of s̃5, so that γ̃� K̃(2)

5 , thus reducing the complexity of ṽ2 in (3). Third, we will initially saturate the system

with either s̃1 or s̃2 (so that α̃ � K̃(1)
1 or β̃ � K̃(1)

2 ) if we are interested in determining K̃(1)
2 or K̃(1)

1 , respectively. This
reduces the complexity of ṽ1 in (3). This final assumption is not required to facilitate a solution of the reduced system,
though it does reduce the number of fitting parameters. In §3, we only make the first two assumptions in our analysis.
Not making the third assumption allows us to consider the separate cases of saturating s̃1 and s̃2 at the same time.

We will present the method for determining K̃(1)
1 , essentially the case with a large initial saturation of s̃2. The

approach to determining K̃(1)
2 is equivalent for the standard coupled enzyme assay discussed in this section, but this

will not be the case for the non-standard assay we consider in §3. If we initially saturate the system with large
quantities of s̃2, it is convenient to use the following two ODEs to describe the system:

ds̃1

dt̃
=− k̃(1)s̃1

K̃(1)
1 + s̃1

,
ds̃4

dt̃
=

k̃(1)s̃1

K̃(1)
1 + s̃1

− k̃(2)s̃4

K̃(2)
4 + s̃4

, s̃1(0) = α̃, s̃4(0) = 0. (5)

This is the standard system to consider when using coupled enzyme assays, investigated in the literature in [15], as
discussed in §1.

To implement our systematic asymptotic analysis, we form dimensionless variables as in Table 1, and obtain the
following system

ds1

dt
=−εa

s1

K(1)
1 + s1

,
ds4

dt
=

s1

K(1)
1 + s1

− s4

1+ εs4
, s1(0) = 1, s4(0) = 0, (6)

where typical values and definitions of the dimensional and dimensionless parameters are given in Tables 2 and 3,
respectively. The most important definition here is ε = k̃(1)/k̃(2) which, as discussed above, is small in coupled enzyme
assays. We also define a = K̃(2)

4 /α̃ and K(1)
1 = K̃(1)

1 /α̃ .
In the limit of ε → 0, with t = O(1), (6) has leading-order solution

s1 = 1, s4 =
1− e−t

K(1)
1 +1

, (7)

which corresponds to the dimensional solution

s̃6 =
α̃ k̃(1)

K̃(1)
1 + α̃

(
t̃ +

K̃(2)
4

k̃(2)

[
exp
{
−k̃(2)t̃/K̃(2)

4

}
−1
])

, (8)

for our measurable chemical. The long-time limit of (8) is

s̃6 ∼
α̃ k̃(1)

K̃(1)
1 + α̃

(
t̃− K̃(2)

4

k̃(2)

)
as t̃→ ∞. (9)

Therefore, the kinetic parameters k̃(1) and K̃(1)
1 can be inferred by measuring the long-term (by which we mean

K̃(2)
4 /k̃(2)� t̃� α̃/k̃(1), for reasons noted below) production rate of s̃6 for different values of α̃ . A similar procedure,

but with saturating s̃1 instead of s̃2, allows the inference of k̃(1) (again) and K̃(1)
2 . The solution (9) tells us that the

long-term production rate will be α̃ k̃(1)/(K̃(1)
1 + α̃), as can be seen in Figure 3, and that we require t̃ � K̃(2)

4 /k̃(2)

before s̃6 production will appear to be at a constant rate (K̃(2)
4 /k̃(2) ≈ 200 s in Figure 3). However, this constant rate



Using singular perturbation theory to determine kinetic parameters in a non-standard coupled enzyme assay 5

(a) (b)

Fig. 3 The measurable chemical s̃6 as the numerical solution to (1), the asymptotic solution (8) (prior to the depletion dynamics), and the long-time
asymptotic solution (9) (also prior to the depletion dynamics). We use the parameter values in Table 2, choosing α̃ = 2.5 mM and using β̃ = γ̃ = 50
mM to focus on the effect of a limiting initial concentration of s̃1, rather than s̃2 or s̃5.

will not occur indefinitely - given that ds1/dt = O(aε), the production rate of s̃6 will start to deviate from constant
when t = O(1/aε), equivalent to t̃ = O(α̃/k̃(1)) = O(2.5×104 s) in Figure 3. In the language of matched asymptotic
expansions, this corresponds to an outer scaling, a timescale over which (what we term) the depletion dynamics
occur. For brevity, we do not consider the depletion dynamics further for the standard enzyme assay, but we will for
the non-standard enzyme assay.

3 Non-standard coupled enzyme assay

We now consider the main problem we are concerned with in this paper - the determination of the kinetic parameters
k̃(1), K̃(1)

1 , and K̃(1)
2 of the primary enzyme in the system shown in Figure 1, where we assume knowledge of the kinetic

parameters of the auxiliary enzyme. Experimentally, we are able to measure the concentration of NADH (i.e. s̃6) in
the system, and so our overarching goal is to understand how to use this measurement to infer the kinetic parameters
that characterize the primary enzyme for a range of different substrates. The differences between the standard coupled
enzyme assay in §2 and the problem we consider in this section are that the latter involves a reversible auxiliary
reaction and that s̃1 is a product/substrate of the forward/backward auxiliary reaction, rather than the auxiliary reaction
being unidirectional and s̃1 being decoupled from the auxiliary reaction in §2. The reaction network we consider is
particularly relevant to the class of enzymes known as aminotransferases1, as discussed in the Introduction.

The governing equations for the network shown in Figure 1 consist of the following seven ODEs

ds̃1

dt̃
=−ṽ1 + ṽ2− ṽ−2,

ds̃2

dt̃
=−ṽ1,

ds̃3

dt̃
= ṽ1,

ds̃4

dt̃
= ṽ1− ṽ2 + ṽ−2,

ds̃5

dt̃
=−ṽ2 + ṽ−2,

ds̃6

dt̃
= ṽ2− ṽ−2,

ds̃7

dt̃
= ṽ2− ṽ−2, (10)

where we define each variable in Table 1. As in the previous section, we use the convention that dimensional quantities
are marked with a tilde, whereas dimensionless quantities are not. Here, the three reaction velocities are

ṽ1 = k̃(1)
(

s̃1

K̃(1)
1 + s̃1

)(
s̃2

K̃(1)
2 + s̃2

)
, (11a)

ṽ2 = k̃(2)
(

s̃4

K̃(2)
4 + s̃4

)(
s̃5

K̃(2)
5 + s̃5

)
, (11b)

ṽ−2 = k̃(−2)

(
s̃1

K̃(−2)
1 + s̃1

)(
s̃6

K̃(−2)
6 + s̃6

)(
s̃7

K̃(−2)
7 + s̃7

)
, (11c)

each following Michaelis–Menten kinetics generalized to multiple substrates [1], under the assumption that the affinity
a given substrate has for an enzyme is independent of the other substrates.
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Original variable Description Nondimensionalisation

s̃1 Pyruvate s̃1 = α̃s1
s̃2 Substrate s̃2 = β̃ s2
s̃3 Aldehyde s̃3 = β̃ s3

s̃4 Alpha-L-alanine s̃4 = (k̃(1)K̃(2)
4 /k̃(2))s4

s̃5 NAD+ s̃5 = γ̃s5

s̃6 NADH s̃6 = (k̃(1)K̃(2)
4 /k̃(2))s6

t̃ Time t̃ = (K̃(2)
4 /k̃(2))t

Table 1 Definitions of the dimensional and dimensionless variables in our system.

Typical parameter size Notes

k̃(1) ≈ 0.1 µMs−1 To be determined
K̃(1)

1 ≈ 1mM To be determined
K̃(1)

2 ≈ 1mM To be determined

k̃(2) = 10 µMs−1 Experimental choice
K̃(2)

4 = 2mM From Bacillus subtilis [27], though 0.45 – 14mM from other organisms [4, 10, 20, 25]
K̃(2)

5 = 0.2mM From Bacillus subtilis [27], though 0.04 – 0.3mM from other organisms [4, 10, 20, 25]

k̃(−2) = 0 – 2mMs−1 Value determined by choice of k̃(2) and assay environment.
K̃(−2)

1 = 0.5mM From Bacillus subtilis [27], though 0.22 – 1.45mM from other organisms [4, 10, 20, 25]
K̃(−2)

6 = 0.02mM From Bacillus subtilis [27], though 0.02 – 0.1mM from other organisms [4, 10, 20, 25]
K̃(−2)

7 = 40mM From Bacillus subtilis [27], though 28 – 67mM from other organisms [4, 10, 20, 25]

α̃ = 1 – 5mM Control parameter
β̃ = 1 – 5mM Control parameter
γ̃ = 5mM Experimental choice

Table 2 Dimensional parameters and their typical size where known. For the auxiliary enzyme, we use values taken from [27] in our numerical
simulations. We give an idea of the range of these parameter values by also providing data from four other organisms: Enterobacter aerogenes [4],
Mycobacterium tuberculosis [10], Phormidium lapideum [20], and Rhodopseudomonas capsulata [10].

In conjunction with the governing equations (10), we use initial conditions

s̃1(0) = α̃, s̃2(0) = β̃ , s̃3(0) = 0, s̃4(0) = 0, s̃5(0) = γ̃, s̃6(0) = 0, s̃7(0) = 0, (12)

where α̃, β̃ , γ̃ > 0. This corresponds to a system initially containing pyruvate (s̃1), an omega-amino acid substrate (s̃2),
and NAD+ (s̃5), with no other substrates present in the reaction network, then instantaneously adding the primary and
auxiliary enzyme such that the entire system is well-mixed. Hence, there are thirteen dimensional parameters. We
reiterate that our goal is to infer the three parameters k̃(1), K̃(1)

1 , and K̃(1)
2 that correspond to the primary enzyme, as-

suming that we know the remaining ten parameters, which correspond to the auxiliary enzyme and the initial chemical
concentrations. We provide typical parameter values in Table 2.

As would be expected on physical grounds, the inclusion of a reverse reaction for the auxiliary enzyme causes
less NADH to be made over a given time (Figure 4a). Moreover, the reverse reaction can result in a linear phase that
is very short (Figure 4b), making the standard approach of calculating a steady production rate difficult to implement
in practice. To this end, we will characterize the different possible types of NADH production through a systematic
asymptotic analysis - see [2, 11] for general descriptions of the approach.

Before we nondimensionalize the system, we note from (10) and (12) the five following linearly independent
conserved quantities:

s̃1 + s̃4 = α̃, s̃2 + s̃3 = β̃ , s̃5 + s̃6 = γ̃, s̃2 + s̃4 + s̃6 = β̃ , s̃6 = s̃7. (13)

Thus, we may immediately reduce the number of ODEs from seven to two. However, the asymptotic analysis we will
carry out is more intuitive if we keep most of the ODEs; the only ones we disregard are those for ds̃3/dt̃ and ds̃7/dt̃
in (10). For the former, we do this since the aldehyde produced from the primary enzyme (s̃3) decouples from the rest
of the system, so we are able ignore this ODE henceforth, noting that s̃3 can be determined from (13). For the latter,
the concentration of ammonia is always equivalent to the concentration of NADH (s̃7 ≡ s̃6), so we will replace s̃7 by
s̃6 henceforth.

We form the following dimensionless variables

t̃ = (K̃(2)
4 /k̃(2))t, s̃1 = α̃s1, s̃2 = β̃ s2, (s̃4, s̃6) = (k̃(1)K̃(2)

4 /k̃(2))(s4,s6), s̃5 = γ̃s5, (14)

1 Example KEGG classifications for this case would be EC 2.6.1.18 for the primary enzyme and EC 1.4.1.1 for the auxiliary enzyme.
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(a) (b)

Fig. 4 The measurable chemical s̃6 as the numerical solution to (10) in (a) a linear plot and (b) a log-log plot. We use the parameter values in Table
2, with k̃(−2) = 0.5 mM s−1, α̃ = 2.5 mM, and β̃ = 2.5 mM.

which we also summarize in Table 2. The timescale here (i.e. K̃(2)
4 /k̃(2)) is that of initial alpha-L-alanine (s4) and

NADH (s6) formation, and is 200 s for the parameters in Table 2. For the substrate dimensionless variables we scale
pyruvate, beta-alanine, and NAD+ with their initial conditions and alpha-L-alanine and NADH with the order of
magnitude of alpha-L-alanine present during the regime of linear NADH growth, which our analysis will show to be
approximately 50 µM. From (14), we obtain the dimensionless governing equations

ds1

dt
=−εa(v1− v2 + v−2) , (15a)

ds2

dt
=−εbv1, (15b)

ds4

dt
= v1− v2 + v−2, (15c)

ds5

dt
=−εc(v2− v−2) , (15d)

ds6

dt
= v2− v−2, (15e)

where the three dimensionless reaction velocities are defined as

v1 =

(
s1

K(1)
1 + s1

)(
s2

K(1)
2 + s2

)
, (16a)

v2 =

(
s4

1+ εs4

)(
s5

δ + s5

)
, (16b)

v−2 = k(−2)K

(
s1

K(−2)
1 + s1

)(
s6

K(−2)
6 + s6

)(
s6

1+ εKs6

)
. (16c)

The initial conditions of the dimensionless system are

s1(0) = 1, s2(0) = 1, s4(0) = 0, s5(0) = 1, s6(0) = 0. (17)

We provide the definitions of the dimensionless parameters in Table 3, from which we note that ε , δ , and K are all
much smaller than 1. Additionally, we note that the value of k(−2), representing the ratio of the backward to forward
rates controlled by the auxiliary enzyme, can vary across many orders of magnitude.

We reiterate that our goal is to understand how to relate the measurement of NADH (s̃6) in the linear production
regime to the values of the kinetic parameters governing the primary enzyme. Our approach is to comprehensively
investigate how the system behaves for different magnitudes of k(−2), with a focus on understanding when a linear
regime for NADH production is appropriate and what the measurement of NADH in this regime will tell us about
the primary enzyme. To this end, we perform an asymptotic analysis that exploits the small parameters ε , δ , and
K (noting that the three limits all commute), with a focus on analysing how the asymptotic size of k(−2) affects the
system behaviour. We emphasize that the parameter ε can always be made to be small by suitable choices of the
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ε =
k̃(1)

k̃(2)
≈ 0.01 b =

K̃(2)
4

β̃
= 0.4 – 2 K(−2)

6 =
K̃(−2)

6 k̃(2)

K̃(2)
4 k̃(1)

≈ 1

K(1)
1 =

K̃(1)
1
α̃
≈ 0.2 – 1 c =

K̃(2)
4
γ̃

= 0.8 k(−2) =
k̃(−2)

k̃(2)
= 0 – 103

K(1)
2 =

K̃(1)
2

β̃
≈ 0.2 – 1 δ =

K̃(2)
5
γ̃

= 0.04 K =
K̃(2)

4

K̃(−2)
7

= 0.05

a =
K̃(2)

4
α̃

= 0.4 – 2 K(−2)
1 =

K̃(−2)
1
α̃
≈ 0.1 - 0.5

Table 3 The dimensionless parameters in our system, obtained using the data in Table 2. The approximately equal signs arise from uncertainty in
the kinetic parameters of the primary enzyme.

Asymptotic timescales Solutions Dimensionless parameters for s6/S6

Strong reverse reaction t = O(1) One-dimensional ODE representation in (19), (21) V in (20), γ in (22), and K(−2)
6

k(−2) = O(1/K) t = O(1/ε) Implicit quadrature representation in (40)–(41) a, b, K(1)
1 , K(1)

2 , K(−2)
1 , and k(−2)K

Weak reverse reaction t = O(1) Explicit analytic solutions in (45) V in (20)
k(−2) = O(εK) t = O(1/ε) Implicit analytic solutions in (49) b, K(1)

1 , and K(1)
2

Table 4 A summary of the solutions we derive in this paper for each timescale in the two distinguished limits of the problem, as well as the
dimensionless parameters that control the concentration of s6 in each asymptotic region. We give the equation number for the definition of each
parameter unless it is given in Table 3.

relative concentrations of the primary and auxiliary enzyme, which scale with k̃(1) and k̃(2), respectively, and likewise
for δ by choosing γ̃ , the initial concentration of s̃5, to be significantly larger than K̃(2)

5 , the Michaelis constant for s̃5
in the forward auxiliary reaction. Since the smallness of these parameters reduces the complexity of the system, it is
experimentally favourable to choose the relative enzyme concentrations and initial conditions to make ε and δ small.
We note that the smallness of K is slightly different, however. While the typical parameter values we give in Table 2
unanimously result in small values of K, there seems no fundamental reason why it should be small. To ensure the
generality of our analysis, we therefore also present results for K = O(1) in Appendix C.

It turns out that there are two distinguished asymptotic limits in this system (so that all other regimes with ε , δ ,
and K each small are sub-cases of these two), whereby k(−2) = O(1/K)� 1 and k(−2) = O(εK)� 1, respectively.
We investigate the former in the next section, discussing its relevance to our inference problem, and we investigate
the latter in §3.2, where we show that it can be considered a sub-limit of the former case in terms of experimental
measurements. Moreover, we show that the latter regime exhibits the same constant ‘long-time’ production rate of
NADH as the standard coupled enzyme assay case we summarized in §2. In Table 4, we provide a summary of the
results we derive in the remainder of this section.

3.1 Strong reverse reaction: k(−2) = O(1/K)

When k(−2) = O(1/K), the auxiliary-enzyme-controlled reaction in the forward direction is much stronger than for
the reverse direction. This scaling results in a distinguished limit where the nonlinearity of the reverse reaction is
important when t = O(1), which is where the linear growth regime occurs for the standard coupled enzyme assay. We
now exploit the limits ε,δ ,K � 1 with k(−2)K = O(1). We note that while small values of ε would result in large
values of K(−2)

6 , we will treat K(−2)
6 = O(1) (as we do with the remaining dimensionless parameters in the system) as

this choice keeps more terms at leading order (i.e. constitutes a distinguished limit) and is the case we expect from
experimental parameters.

3.1.1 Linear-phase regime

We first consider the linear-phase regime, which occurs over the timescale t = O(1). By ‘linear-phase’, we mean that
s6 will exhibit linear growth for some time period which we can approximate. In the language of matched asymptotic
expansions, this corresponds to linear growth in the intermediate matching region between this timescale and the
longer depletion timescale (which we will show corresponds to t = O(1/ε)).

In the limits set out in §3.1, the leading-order version of (15) for t = O(1) is

ds1

dt
= 0, (18a)

ds2

dt
= 0, (18b)
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ds4

dt
=

(
s1

K(1)
1 + s1

)(
s2

K(1)
2 + s2

)
− s4 + k(−2)K

(
s1

K(−2)
1 + s1

)(
s6

K(−2)
6 + s6

)
s6, (18c)

ds5

dt
= 0, (18d)

ds6

dt
= s4− k(−2)K

(
s1

K(−2)
1 + s1

)(
s6

K(−2)
6 + s6

)
s6, (18e)

with initial conditions (17). We may immediately deduce that, over this timescale,

s1 = 1, s2 = 1, s5 = 1, s4 + s6 =Vt, (19)

where we define

V :=
1(

K(1)
1 +1

)(
K(1)

2 +1
) . (20)

We can therefore reduce the system (17)–(18) to the following single ODE

ds6

dt
=Vt− s6−

γs2
6

K(−2)
6 + s6

, s6(0) = 0, (21)

where we define

γ :=
k(−2)K

K(−2)
1 +1

. (22)

Although we cannot solve (21) explicitly, we may deduce from (21) that the early-time behaviour is

s6 ∼
Vt2

2
as t→ 0+. (23)

and the long-time behaviour is

s6 ∼
Vt

1+ γ
+

γK(−2)
6 (1+ γ)−V

(1+ γ)2 as t→ ∞. (24)

These asymptotic solutions are good approximations of the numerical solution to (21) in their regions of validity
(Figure 5).

It will also be helpful to note that

s4 ∼
γVt

1+ γ
as t→ ∞. (25)

Hence when measuring s6 experimentally, we will not observe linear growth in time immediately (rather, (23) implies
that we will observe a t2 relationship), but this linear relationship will start to develop after a lag period. To help
understand further the solution of the ODE (21), we first note that we can reduce its dependence from three parameters
to two by making the scaling s6 = K(−2)

6 Y . This results in the system

dY
dt

= V̄ t−Y − γY 2

1+Y
, Y (0) = 0, (26a)

where we define

V̄ =V/K(−2)
6 . (26b)

Solutions to (26) generally exhibit a transient region before settling to linear growth for a wide range of parameter
values (Figure 6). The long-time linear growth exhibited by the ODE (26) is

Y ∼ V̄ t
1+ γ

as t→ ∞, (27)

and it is of interest to understand when this linear growth becomes apparent. One way to do this is to examine the
menagerie of distinguished asymptotic limits of the ODE (26), which are interesting in their own right. Moreover,
the analytic solutions afforded by an asymptotic analysis can be used to fit time-series data from experimental results
more easily than numerical solutions of a system of ODEs. We investigate the subsidiary distinguished asymptotic
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Fig. 5 A comparison of the numerical solution to the ODE (21) with the early- and late-time asymptotic solutions (23) and (24), respectively. We
use parameter values V = 0.5, γ = 1, K(−2)

6 = 1.

limits in terms of the two parameters V̄ and γ in Appendix A, and we show a comparison of numerical and asymptotic
solutions to (26) in Figure 6. We illustrate the four distinguished limits that we obtain from the analysis of Appendix
A in Figure 7. A result from this analysis with particular importance for accurately interpreting the data is that there
are two distinct linear regimes in the distinguished limit I.

While the duration of this transient region can be calculated numerically for given parameter values or approxi-
mated analytically from the asymptotic results we derive in Appendix A, it is helpful to obtain an approximate analytic
estimate for when we expect to see a linear relationship for the general case. To this end, we first note that Y > 0,
Ẏ > 0, and Y/(1+Y )∈ [0,1), so we may obtain the bounds f1(t)6Y (t)6 f2(t) where f1 and f2 satisfy the following
ODEs

d f1

dt
= V̄ t− (1+ γ) f1,

d f2

dt
= V̄ t− f2, f1(0) = f2(0) = 0, (28)

which yield the following bounds

V̄

(1+ γ)2

[
(1+ γ) t−1+ e−(1+γ)t

]
6 Y (t)< V̄

(
t−1+ e−t) . (29)

We note that the long-time limit of the lower bound in (29) is the long-time limit (27) of the ODE (26) since the
nonlinear term in the ODE becomes negligible when Y � 1. Mathematically, the lower bound of (29) appears linear
when (1+ γ)t � 1. Combining these two constraints, we expect the NADH concentration to grow linearly in time
when

t�max
(

1
1+ γ

,
(1+ γ)

V̄

)
. (30)

As 1/(1+ γ) is bounded above by 1, it is the second of these constraints that can lead to very large times before the
linear regime is encountered. This problem is exacerbated when γ � 1 and V̄ = V/K(−2)

6 � 1, as can be seen by
the significantly large times until linearity for Figure 6b. Moreover, we note that the two constraints in (30) approx-
imately balance when V̄ = O(γ2) for large γ (essentially Regime III in Figure 7), and where V̄ = O(1) for small γ .
This represents a boundary between the two different constraints, where the large-V̄ case (on the right of Figure 7)
corresponds to t � 1/(1+ γ). When we denote the onset of the linear regime in Figure 6, we use an asterisk when
(1+ γ)/V̄ > 1/(1+ γ) and a cross when (1+ γ)/V̄ < 1/(1+ γ). In each case, we take for definiteness the onset to
occur at 2.5 times the value of the right-hand side of (30).
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(a) (b)

(c) (d)

Fig. 6 A comparison of numerical and asymptotic solutions of the reduced ODE (26) for (a) V̄ = 10−2, γ = 100, (b) V̄ = 10−2, γ = 102 (c) V̄ = 104,
γ = 102, (d) V̄ = 102, γ = 100. The onset of the linear regime is set as 2.5 times the right-hand side of (30), and is denoted by a cross/asterisk when
the first/second term on the right-hand side is maximal.

log γ

log V̄I

II

III

IV

A

B

C

D

Fig. 7 The distinguished asymptotic limits of the reduced ODE (26) for asymptotically large or small values of V̄ and γ , denoted by dark solid
lines and labelled using Roman numerals contained within a circle. Note that the distinguished limit I corresponds to V̄ � 1 and γ = O(1), the
distinguished limit II corresponds to V̄ γ = O(1) with V̄ � 1 and γ � 1, the distinguished limit III corresponds to V̄/γ2 = O(1) with V̄ � 1 and
γ � 1, and the distinguished limit IV corresponds to V̄ � 1 and γ = O(1). The sublimits of the distinguished asymptotic limits are noted using
letters contained within a square.

3.1.2 Physical interpretation

To understand the physical implications of our analysis from the linear-phase regime, it is helpful to reframe our
results in terms of dimensional quantities. Hence, the long-time dimensional linear behaviour of NADH, given in (24)
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for the dimensionless problem, is

s̃6 ∼ Ṽ ω t̃ as t̃→ ∞, (31)

at leading order, where

ω =
1

1+
k̃(−2)K̃(2)

4

k̃(2)K̃(−2)
7

α̃

K̃(−2)
1 + α̃

∈ (0,1), (32a)

Ṽ = k̃(1)
α̃

K̃(1)
1 + α̃

β̃

K̃(1)
2 + β̃

. (32b)

Here, ω can be thought of as a measure of the relative strengths of the forward and backward auxiliary reactions
- ω → 0+ when the backward reaction is much stronger, but ω → 1− when the forward reaction is much stronger.
Additionally, Ṽ can be thought of as the ‘natural’ observed strength of the reaction, as this is the reaction strength
when the backward auxiliary reaction is unimportant, as we show in §3.2. Moreover, ω can be calculated from the
experimental setup, so the standard practice of inferring the unknown parameters for a single enzyme can be used, as
long as the observed reaction velocity is modified by a factor of 1/ω . Thus, we have determined the reaction velocity
in the linear-phase regime in terms of the system parameters.

Our remaining task is to understand when we expect to observe this regime. The dimensional version of the lower
constraint for the linear regime, given in (30) for the dimensionless problem, is

t̃�max

(
ωK̃(2)

4

k̃(2)
,

K̃(−2)
6

Ṽ ω

)
. (33)

Hence, this gives us the approximate time we expect to wait before observing a linear relationship between time
and NADH production. The constraint (33) provides a warning against particularly low initial concentrations of the
primary enzyme, pyruvate, or the substrate, as this will cause a very large lag time. One can use (33) to specify a
required lag time, and determine constraints for the initial concentrations discussed above.

However, while we have identified and characterized the linear regime of NADH production, this regime is unfor-
tunately transient; it can only last until substrate depletion starts to affect the system at leading order, which occurs
when t becomes of O(1/ε). We investigate this regime in the next subsection.

3.1.3 Depletion regime

To investigate the depletion regime, we introduce T = εt and analyse the limit ε→ 0 with T = O(1). Moreover, from
(24) and (25), we see that we must also make the scalings S4 = s4/ε , and S6 = s6/ε , resulting in the system

ε
ds1

dT
=−a(εv1−V2 +V−2) , (34a)

ds2

dT
=−bv1, (34b)

ε
dS4

dT
= εv1−V2 +V−2, (34c)

ε
ds5

dT
=−c(V2−V−2) , (34d)

ε
dS6

dT
=V2−V−2, (34e)

where the three reaction velocities are now defined as

v1 =

(
s1

K(1)
1 + s1

)(
s2

K(1)
2 + s2

)
, (35a)

V2 =

(
S4

1+S4

)(
s5

δ + s5

)
, (35b)

V−2 = k(−2)K

(
s1

K(−2)
1 + s1

)(
S6

εK(−2)
6 +S6

)(
S6

1+KS6

)
. (35c)

The matching conditions from the earlier timescale yield the following ‘initial conditions’

s1(0) = 1, s2(0) = 1, S4(0) = 0, s5(0) = 1, S6(0) = 0. (36)
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Naively taking the limits of ε,δ ,K → 0 in (34) to obtain a leading-order system would yield a duplication of
information. To avoid this, we must form appropriate linear combinations of the governing equations in order to
obtain enough information for a leading-order system. Using this approach, exploiting conserved quantities where
possible, we obtain the following differential-algebraic system at leading-order

ds2

dT
=−b

(
s1

K(1)
1 + s1

)(
s2

K(1)
2 + s2

)
, (37a)

S4

1+S4
= k(−2)K

(
s1

K(−2)
1 + s1

)
S6, (37b)

s1 +aS4 = 1, (37c)
s2 +bS4 +bS6 = 1, (37d)

s5 + cS6 = 1. (37e)

Thus, we have reduced the problem to that of one ODE with four additional algebraic relationships, and the initial
conditions (36). To further simplify this system, it is convenient to use (37b–d) to write

s2 = f (s1) := 1− b
a

[
1− s1 +

a
k(−2)K

(
s1 +K(−2)

1
s1

)(
1− s1

a+1− s1

)]
, (38)

then to transform (37a) into a separable ODE for s1, obtaining

ds1

dT
=− b

f ′(s1)

(
s1

K(1)
1 + s1

)(
f (s1)

K(1)
2 + f (s1)

)
, s1(0) = 1. (39)

Solving (39) allows the remaining variables to be deduced algebraically from (37b–e), (38). We are able to integrate
(39) to obtain the following implicit solution

−bT = f (s1)−1+K(1)
2 log f (s1)+bK(1)

1

(
logs1

a
+

g(s1)

k(−2)K(a+1)2

)
+K(1)

1 K(1)
2

∫ s1

1

f ′(u)
u f (u)

du, (40a)

where

g(s1) :=
K(−2)

1 (a+1)
2

s2
1−1
s2

1
+

a(a+1+K(−2)
1 )

a+1
log

as1

a+1− s1
− (a+1+K(−2)

1 )
1− s1

a+1− s1
. (40b)

The term with coefficient bK(1)
1 on the right-hand side of (40a) arises from direct term-by-term integration of the ratio

of the derivative of f (s1) (defined in (38)) and s1.
Thus, we have characterized the depletion regime. One can use (37c–d), and (40) to obtain the following functional

forms for the chemical concentrations in the depletion regime

s2 = f (s1), S4 =
1− s1

a
, s5 = 1− c

(
1− f (s1)

b
− 1− s1

a

)
, S6 =

1− f (s1)

b
− 1− s1

a
. (41)

The asymptotic solution for S6 in (41) agrees well with the numerical results for a range of values of k(−2) in both the
linear-phase regime of the previous section and the depletion regime of this section (Figure 8).

While the transient-linear regime of the previous section is much easier to fit and has the benefit of being easier to
identify from time data, this linear behaviour may only be exhibited for a short duration. Given experimental data on
the NADH concentration, we can therefore estimate the three unknown parameters k(1), K(1)

1 , and K(1)
2 via a nonlinear

parameter fitting of (41). In practice, it is likely that either s1 or s2 will be saturating, corresponding to either K(1)
1 or

K(1)
2 being small, thus reducing the number of parameters that need to be fitted at any one time. It is worth noting that,

unlike in the standard assay considered in §2, the form of S6 is not symmetric in the parameters K(1)
1 and K(1)

2 . This is
to be expected, since the symmetry in the reaction network is broken in the non-standard assay.

To identify when we may be able to use the transient-linear regime to fit data, we now estimate an upper bound for
this regime. While it is possible to determine this by obtaining an early-time solution to the system (37) to calculate
a correction to the long-time solution from the earlier time regime (24), the resultant expression is cumbersome and
not particularly insightful. Instead, we use the following more crude approximation for an upper limit to the linear
regime:

t� 1/aε, (42)
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(a) (b)

(c) (d)

Fig. 8 A comparison of numerical solutions of the full system (15) to the asymptotic or reduced solutions in the linear-phase regime from the
previous section and in the depletion regime (40)–(41). We use the parameter values in Tables 2 and 3, with α̃ = β̃ = 2.5 mM, and varying k(−2)

in each sub-figure such that (a) k(−2)K = 0.1, (b) k(−2)K = 0.5, (c) k(−2)K = 2, and (d) k(−2)K = 10.

obtained from the requirement to stray from linearity in this depletion regime. In terms of dimensional quantities, (42)
is

t̃� α̃

k̃(1)
. (43)

Over the timescale t = O(1/aε), the levels of S6 increase and the levels of s2 and s5 decrease. From (41), we see
that the maximum amount of NADH produced is bounded above by an O(1) quantity. Hence, we see from (34)–(35)
that there will be additional depletion dynamics if s5 = O(δ ). This condition is not guaranteed to occur, and will
depend on the values of the kinetic parameters, as well as on the initial conditions of the system. We do not consider
this depletion possibility further, as it has no bearing on our main goal of characterizing the primary enzyme. We
consider the remaining distinguished limit in the system, that of a weak reverse reaction, in the next section.

3.2 Weak reverse reaction: k(−2) = O(εK)

3.2.1 Linear-phase regime

The distinguished limit where the reverse reaction is weak occurs when k(−2) = O(εK), and it will be helpful to
introduce ρ := k(−2)/(εK) = O(1) for notational purposes. This scaling results in a distinguished limit in which the
nonlinearities of the primary reaction and the reverse auxiliary reaction are important when t = O(1/ε). This causes
the limit to be distinguished for s4 over a timescale of t = O(1/ε).

In this case, the leading-order version of (15) for t = O(1) is

ds1

dt
= 0,

ds2

dt
= 0,

ds4

dt
=

(
s1

K(1)
1 + s1

)(
s2

K(1)
2 + s2

)
− s4,

ds5

dt
= 0,

ds6

dt
= s4, (44)
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with initial conditions (17). The solution to (44) is

s1 = 1, s2 = 1, s4 =V
(
1− e−t) , s5 = 1, s6 =V

(
t−1+ e−t) , (45)

where V is defined in (20). Hence, s6 initially scales with t2 before eventually scaling with t. Thus, when t = O(1) for
a weak reverse reaction, the observed NADH production is essentially equivalent to that of §2, even though pyruvate
is both a substrate of the primary reaction and a product of the auxiliary reaction. This is because there is not enough
alpha-L-alanine being created to produce a large enough amount of pyruvate to affect the NADH production, and the
reverse reaction is too weak to siphon away the NADH that is produced by a significant amount. In dimensional terms,
the observed long-time concentration of NADH in this regime is

s̃6 ∼ Ṽ t̃ as t̃→ ∞, (46)

essentially the sub-limit of (31) as ω → 1, with Ṽ and ω defined in (32). Additionally, we are able to obtain a lower
bound for this linear regime from (45), namely that t � 1 for the linear regime to hold. In dimensional terms, this
corresponds to

t̃� K̃(2)
4

k̃(2)
. (47)

3.2.2 Depletion regime

As t increases further, the substrate depletion and the reversible reaction from NADH to NAD+ start to affect the
problem at leading order. To investigate this, we make the scalings t = T/ε and S6 = s6/ε . Then, the leading-order
version of (15) is

ds1

dT
=−a

((
s1

K(1)
1 + s1

)(
s2

K(1)
2 + s2

)
− s4 +ρ

(
s1

K(−2)
1 + s1

)
S6

)
, (48a)

ds2

dT
=−b

(
s1

K(1)
1 + s1

)(
s2

K(1)
2 + s2

)
, (48b)

0 =

(
s1

K(1)
1 + s1

)(
s2

K(1)
2 + s2

)
− s4 +ρ

(
s1

K(−2)
1 + s1

)
S6, (48c)

ds5

dT
=−c

(
s4−ρ

(
s1

K(−2)
1 + s1

)
S6

)
, (48d)

dS6

dT
= s4−ρ

(
s1

K(−2)
1 + s1

)
S6. (48e)

While (48) may appear complicated at first glance, it reduces readily to allow an implicit analytic solution for the
system. To see this, we first use (48c) to reduce (48a) and deduce that

s1 = 1 (49a)

at leading order over this timescale. Using (49a) in (48b) yields a separable ODE for s2, with implicit solution

s2−1+K(1)
2 logs2 =−

bT

K(1)
1 +1

, (49b)

which can also be written in terms of the Lambert W function. This tells us that the leading-order substrate concen-
tration will start to decrease before the pyruvate (Figure 9), even if the substrate is saturating i.e. K(1)

2 → 0. Finally,
forming linear combinations of (48b)–(48e) to yield conserved quantities allows us to deduce that

s4 =

(
1

K(1)
1 +1

)(
s2

K(1)
2 + s2

)
+ρ

(
1

K(−2)
1 +1

)(
1− s2

b

)
, (49c)

s5 = 1− c
b
(1− s2) , (49d)

S6 =
1− s2

b
. (49e)
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Fig. 9 A comparison of the substrate depletion between the strong and weak reverse reactions, obtained from numerical solutions to the full system
(15). We use the parameter values in Table 3, with α̃ = β̃ = 2.5 mM, k(−2) = εK = 5×10−4 for the weak reverse reaction and k(−2) = 1/K = 20
for the strong reverse reaction.

From our analytic solutions, we are able to infer that the weak reverse reaction only affects the amount of s4 in the
system over this timescale; the other chemicals are independent of the reverse reaction despite it appearing at leading
order. This change of scaling affects the asymptotic analysis of the depletion dynamics between the strong and weak
reverse reaction cases; care is needed in scaling appropriately if taking k(−2)→ 0 in (37)–(41).

We are able to deduce the long-time dynamics in terms of the implicit solution for s2 given in (49b). As the
experimental calculation for the reaction velocity is taken when the growth of NADH is linear, it is helpful to note
when and how this breaks down in this long-time limit. To do this, we expand (49b) for small time to note that

s6 ∼V T

1− bK(1)
2 V

2
(

1+K(1)
2

)T

 as T → 0+. (50)

Moving back to dimensional quantities, we find that

s̃6 ∼ k̃(1)
α̃

K̃(1)
1 + α̃

β̃

K̃(1)
2 + β̃

t̃

1− k̃(1)

2
α̃

K̃(1)
1 + α̃

K̃(1)
2(

K̃(1)
2 + β̃

)2 t̃

 , (51)

for

K(2)
4

k̃(2)
� t̃� (K̃(1)

1 + α̃)(K̃(1)
2 + β̃ )2

α k̃(1)K̃(1)
2

. (52)

The simplest way to make this constraint less limiting is to have as small a value of ε = k̃(1)/k̃(2) as possible. Another
way is to increase β̃ , though we note that this also has the effect of making it difficult to determine K̃(1)

2 . Therefore,
to minimize the correction term (and hence increase the duration of time at which the NADH growth is linear, thus
reducing experimental error), we should decrease α̃ and increase β̃ . The former of these is perhaps a little surprising,
though we note that we must also ensure that pyruvate depletion does not affect anything at leading order, so α̃ �
εK̃(2)

4 ≈ 0.05 mM must also hold.
There will be further asymptotic regions and depletion dynamics at play here at longer timescales, such as if s5

becomes of O(δ ). However, these additional regions are of limited relevance to our analysis here.

4 Guide to using our theoretical results

We now summarize the main results from §3.1 and §3.2, and give a step-by-step guide of how to use these to char-
acterize enzymes. We have found that a linear-growth regime for NADH is possible for a strong reverse reaction, but
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7 /K̃
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Fig. 10 A flow chart summarising how to use the main results of this paper. Further details of each step are provided in the main text of §4.

this regime can be quite short and is sandwiched between two nonlinear-growth regimes. The NADH concentration in
the linear regime is given in (31) in terms of dimensional quantities. Although the linear-growth regime in the weak
reverse reaction case is also sandwiched between two nonlinear-growth regimes, it lasts for a much longer duration in
this case and so results from the linear regime are easier to use in practice.

Due to our analytic asymptotic results, we are able to deduce upper and lower time constraints for the linear
regimes, which we give in (33) and (43) in terms of dimensional quantities for the strong reverse reaction case and
in (52) for the weak reverse reaction case. We are also able to obtain an implicit closed-form solution for the NADH
concentration away from this linear regime, which would allow the unknown quantities to be inferred through a
nonlinear parameter fitting, if the linear regime was too short for accurate measurements to be obtained. We now
provide a step-by-step guide to using our results with time data for the concentration of the indicator chemical in
each case, using different values of the initial substrate concentrations α̃ and β̃ . We also present a summary of these
guidelines as a flow chart in Figure 10, and note that a summary of the solutions we derive in this paper in provided
in Table 4.

Step 1: Characterize the auxiliary enzyme.
Step 2: Determine k̃(−2), the maximum velocity of the reverse reaction for the auxiliary enzyme. If k̃(−2) is sig-

nificantly smaller than k̃(2)K̃(−2)
7 /K̃(2)

4 (say, two-to-three orders of magnitude), proceed to §4.1. If not, proceed to
§4.2.

4.1 Using the weak reverse reaction results

In this case, the NADH concentration should exhibit linear growth for a significant period of time, with the relevant
bounds given in (52). We are able to reduce the lower bound in (52) by adding more of the auxiliary enzyme, thereby
reducing the lag period. Additionally, although the upper bound in (52) contains the parameters we are trying to infer,
we can see that adding less of the primary enzyme will increase it, extending the length of time until the depletion
dynamics kick in.

From the experimental data in the linear growth regime, the procedure is to calculate the average slope of NADH
concentration. This slope is equal to Ṽ , defined in (32). The kinetic parameters of the primary enzyme can be inferred
by fitting the average slope obtained from the experimental data to the expression we give for Ṽ in (32), using nonlinear
data-fitting to minimize the sum of the difference between the data and functional form.

4.2 Using the strong reverse reaction results

In this case, the NADH concentration should exhibit linear growth for some period of time, with the relevant bounds
given in (33) and (43). While the upper bound of (43) can be extended by adding less of the primary enzyme, it
is not necessarily true in this case that adding more of the auxiliary enzyme will decrease the lower bound of (33).
If the linear regime is able to be observed for an appropriate length of time, then the appropriate approach is to
calculate the average slope of NADH concentration from the experimental data in the linear growth regime. This
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Fig. 11 An example of the ‘true’ time courses generated from the system (10)–(11), with added Gaussian noise of mean 0 µM and standard
deviation 1 µM. The data without noise is indicated by the dashed lines. We use the parameter values from Table 2, as well as k̃(1) = 0.02 µM
s−1, k̃(2) = 10 µM s−1, k̃(−2) = 10 µM s−1, K̃(1)

1 = 1.5 mM, K̃(1)
2 = 1 mM, β̃ = 50 mM, and γ̃ = 50 mM. The four different curves correspond to

α̃ = 0.5, 1, 2.5, 5 mM.

slope is equal to Ṽ ω , defined in (31). Here, ω is a function of the kinetic parameters of the auxiliary enzyme and the
initial chemical concentrations, whereas Ṽ depends on the kinetic parameters of the primary enzyme and the initial
chemical concentrations. Hence, the kinetic parameters of the primary enzyme can be inferred by fitting the average
slope obtained from the experimental data to the expression we give for Ṽ ω in (32), using nonlinear data-fitting to
minimize the distance between the data and functional form.

If the linear regime is not able to be observed for an appropriate length of time, there are two options, depending
on whether better data is available for t̃ = O(K̃(2)

4 /k̃(2)) or for t̃ = O(α̃/k̃(1)). In the former case, one should use the
results from §3.1, where the data-fitting has been reduced to the single ODE (21). In terms of dimensional quantities,
the ODE (21) can be re-written as

ds̃6

dt̃
=

(
Ṽ k̃(2)

K̃(2)
4

)
t̃−
(

k̃(2)

K̃(2)
4

)
s̃6−

(
k̃(−2)

K̃(−2)
7

α̃

K̃(−2)
1 + α̃

)
s̃2

6

K̃(−2)
6 + s̃6

, s̃6(0) = 0. (53)

While there are four different parameter groupings in (53), the kinetic parameters of the primary enzyme are all
contained within Ṽ , as described in (32). Therefore, the data fitting to this ODE is likely to be significantly simpler
than data-fitting to the initial system of ODEs (1). If better data is instead available for t̃ = O(α̃/k̃(1)), then the results
of §3.1.3 should be used. Here, the functional form for the NADH concentration is given by (38), (40), and (41). In
this case, the data-fitting should involve minimizing the sum of the difference between the time data and the functional
form.

4.3 Comparison with a naive nonlinear solver

We now compare the asymptotic method we describe in this paper with a naive nonlinear parameter fitting. To do
this, we first generate ‘true’ time courses for NADH from the system (10)–(11) for four different values of α̃ , then
add Gaussian noise with mean 0 µM and standard deviation σ µM, and we use σ as a control parameter. An example
of these time courses with σ = 1 is given in Figure 11. The asymptotic parameter fitting is carried out by fitting the
asymptotic solution (31) to the true time courses using the MATLAB function ‘lsqcurvefit’ for the parameters k̃(1)

and K̃(1)
1 . The naive nonlinear parameter fitting is carried out using the same MATLAB function ‘lsqcurvefit’ on the

ODE system (10)–(11), fitting the parameter values k̃(1), K̃(1)
1 , and K̃(1)

2 . However, as we generate the true time courses
using a large value of β̃ in order to focus on K̃(1)

1 rather than K̃(1)
2 , we ignore the value of K̃(1)

2 generated from this.
In general, the naive nonlinear fit is worse than the asymptotic fit in determining k̃(1) and better than the asymptotic

fit in determining K̃(1)
1 (Figure 12). However, the asymptotic fit appears to be more consistent in its predictions than

the naive nonlinear fit, as the naive nonlinear fit can predict wildly incorrect values of k̃(1) even for small noise.
Moreover, we note that the computational time required for the naive nonlinear fit is around 1000 times larger than
for the asymptotic method.
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(a) (b)

Fig. 12 A comparison between the asymptotic method presented in this paper, and a naive nonlinear fit of the system (10)–(11). We show the root
mean squared error (RMSE) for both methods in estimating the parameters (a) k̃(1) and (b) K̃(1)

1 . The dashed line shows the value of the parameter
being estimated, so a RMSE well below this line signifies good accuracy whereas a RMSE near or above the line signifies poor accuracy. We
generate the ‘true’ data from the system (10)–(11), then add Gaussian noise with mean 0 µM and standard deviation indicated on the x-axis. Each
marker represents the RMSE calculated from 100 total realisations. We use the parameter values from Table 2, as well as k̃(1) = 0.02 µM s−1,
k̃(2) = 10 µM s−1, k̃(−2) = 10 µM s−1 K̃(1)

1 = 1.5 mM, K̃(1)
2 = 1 mM, β̃ = 50 mM, and γ̃ = 50 mM. We also use α̃ = 0.5, 1, 2.5, 5 mM to generate

four different ‘true’ time course curves for each different standard deviation of noise.

5 Application to experimental data

The above concludes our mathematical analysis of the problem. To showcase how these results can be used in practice,
we performed enzyme assays to characterize an enzyme for two different substrates using a previously uncharacterized
putative omega-aminotransferase, cloned and purified in a heterologous Escherichia coli host. The aminotransferase
is CnAptA (UniProtKB Q0KEZ8), named here for the first time in the literature and identified in the genome of
Cupriavidus necator H16, an industrially relevant, facultative chemolithoautotrophic chassis microorganism of the
Synthetic Biology Research Centre (SBRC-Nottingham). We describe the experimental protocol used to purify this
enzyme in Appendix B.

5.1 Enzyme assay protocol

For these assays, the corresponding reaction network is shown in Figure 1. The primary enzyme is CnAptA, which
converts pyruvate and an additional omega-amino acid substrate into a corresponding aldehyde and alpha-L-alanine.
Our assay solution also included beta-nicotinamide adenine dinucleotide sodium salt (NAD+) as an electron acceptor
for the auxiliary enzyme reaction, and we monitored the formation of NADH over time, produced from the auxiliary
reaction. We used a commercially available alanine dehydrogenase (A-DH) from Bacillus cereus (alanine dehydroge-
nase, recombinant; CAS-No 9029-06-5, Sigma-Aldrich Company Ltd.) as the auxiliary enzyme, and we performed the
experiment at pH 10, the pH condition recommended by the supplier of this auxiliary enzyme, this condition resulting
in an undetectable reverse reaction. Our analysis suggests that the primary enzyme will be easier to characterize, since
the bounds on the validity of the linear regime are less severe. Hence, we can either use the sub-limit as ω → 1 of
the results in the distinguished limit (31), or we can use the sub-limit directly deduced in §3.2. The approach for this
is summarised in §4 and §4.1. Performing these assays at different acidities, which may be more relevant for certain
bacterial cell environments, would result in a strong reverse reaction, which could be dealt with using the analytic
representation for the distinguished limit given in (31). The approach for these cases is summarised in §4 and §4.2.

We performed the enzyme assays in 96 well microtiter flat bottom transparent plates (Costar® Sigma-Aldrich).
The reaction mixture contained different concentrations of the substrate, 2.5 mM NAD+, 5 mM pyruvate, 5 µl A-
DH [0.28 mg/ml], 5 µM of pyridoxal 5’-phosphate (PLP), and 5 µl of CnAptA [0.0245 mg/ml]. We then used an
appropriate amount of sodium carbonate buffer to obtain a final volume of 200 µl. The two different substrates we
used were 3-aminobutanoic acid (Sigma-Aldrich 97%, CAS No 541-46-6) and 5-aminovalerate (ACROS Organics,
97%. CAS No 660-88-8).

To detect the NADH present in the solution, we measured the light absorbance at 340 nm using a TECAN Infinite®

M1000 PRO plate reader, at 30 ◦C, the absorbance being linearly proportional to the concentration of NADH in the
solution. We monitored the light absorbance at 340 nm at 60 second intervals for one hour. After subtracting off
the base level of absorbance at the start of each experiment and the absorbance increase monitored in the control
experiment with no substrate, we converted these clean absorbance data into an NADH concentration, shown for
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(a) (b)

Fig. 13 (a) The time course data for NADH production with the enzyme CnAptA and substrate 3-aminobutanoic acid, using different concentrations
of the latter. (b) The average reaction velocity at different substrate concentrations, and the predicted reaction velocity using our nonlinear data
fitting to obtain values of k̃(1) = 0.026 µM s−1 and K̃(1)

2 = 1.3 mM, each to two significant figures. The error bars on the figures correspond to one
standard deviation of the data.

(a) (b)

Fig. 14 (a) The time course data for NADH production with the enzyme CnAptA and substrate 5-aminovalerate, using different concentrations of
the latter. (b) The average reaction velocity at different substrate concentrations, and the predicted reaction velocity using our nonlinear data fitting
to obtain values of k̃(1) = 0.021 µM s−1 and K̃(1)

2 = 0.93 mM. The error bars on the figures correspond to one standard deviation of the data.

each substrate in Figures 13a and 14a. We expect our TECAN data to be accurate to within a few µM, and this
error margin is why there sometimes appears to be ‘negative’ concentrations for early time. As our analysis predicts,
there is a clear linear regime after a lag period. We obtained a constant reaction velocity from this linear regime,
using the average slope between 1800 and 3600 seconds. From this constant reaction velocity, we used a nonlinear
data fit to the functional form of the solution (31)–(32) with ω → 1 (as discussed in §4 and §4.1) by minimizing
the sum of the difference between the data and functional form squared, using the in-built function fminsearch in
MATLAB, a simplex search method for finding minima [13]. From Figures 13b and 14b, we see that our nonlinear
fits generally provide accurate representations of the data. For the enzyme CnAptA, our nonlinear fit predicts values
of k̃(1) = 0.026 µM s−1 and K̃(1)

2 = 1.3 mM for the substrate 3-aminobutanoic acid and values of k̃(1) = 0.021 µM s−1

and K̃(1)
2 = 0.93 mM for the substrate 5-aminovalerate, assuming that the levels of pyruvate we use are saturating. In

terms of the catalytic efficiencies, we see that k̃(1)/K̃(1)
2 = 2.0× 10−5 s−1 for 3-aminobutanoic acid and k̃(1)/K̃(1)

2 =
2.3× 10−5 s−1 for 5-aminovalerate. Therefore, we note that while 5-aminovalerate has a higher affinity (a lower
K̃(1)

2 ) to and catalytic efficiency for CnAptA than 3-aminobutanoic acid, the maximum reaction velocity is higher
for 3-aminobutanoic acid than for 5-aminovalerate. However, these differences are fairly small - there is not a large
difference in enzyme behaviour between the two substrates.

6 Discussion

We have used singular perturbation theory to determine how to infer the kinetic parameters of the primary enzyme
from the measured NADH concentration in a coupled enzyme assay, with reaction network shown in Figure 1. In
particular, this will allow putative aminotransferases to be quickly characterized using coupled enzyme assays. Our
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analysis also allows us to obtain estimates for when we expect to see a linear growth in NADH concentration, the
typical regime measured in enzyme assays since it allows a quick sanity check of experimental results and is much
easier to fit to data. We have outlined how to use our theoretical results to infer the kinetic parameters of the primary
enzyme from experimental data in §4, where we also compared our method with a a naive nonlinear fit. Moreover, we
have used our results to characterize a novel putative aminotransferase for two different substrates in §5.

Our analysis shows that there are two distinguished asymptotic limits in the system: the important one for NADH
(the measurable chemical) being the strong reverse reaction case, considered in §3.1; the other is the weak reverse
reaction case, considered in §3.2. We demonstrate that all the information that can be inferred from the NADH con-
centration in the weak reverse reaction case is a sub-limit of the strong reaction case, even though there are differences
in the concentrations of alpha-L-alanine, an intermediate chemical, between these two cases. In our analysis, we ex-
ploit the smallness of three dimensionless parameters: ε , δ , and K, with a focus on analysing how the asymptotic size
of k(−2) affects the system behaviour and treating all other parameters in the system as O(1) to retain their generality.
As the parameters ε and δ can always be made to be small through experimental choice, and we also present results
for K = O(1) in Appendix C (which shows a slight change in the depletion regimes), our work represents a compre-
hensive asymptotic analysis of the possible behaviours of the non-standard coupled enzyme assay we consider in this
paper.

Additionally, we note that our results suggest that one cannot deduce whether the strong reaction case pertains
simply by looking for a change in reaction velocity when the amount of auxiliary enzyme is varied. This can be
seen by (31), where we see that the only two variables that involve the experimentally controlled auxiliary enzyme
concentration, k̃(2) and k̃(−2), appear as a ratio, thus removing any dependence on this enzyme concentration. Thus, it
is not always immediately clear from observations whether one is in the weak or strong reverse reaction regime, unless
the auxiliary reaction has previously been completely characterized. Due to the weak reverse reaction being a sub-
limit of the strong for the experimentally measurable NADH concentration, as discussed above, we advise working
with the results derived in the strong reverse reaction regime in §3.1.

In the derivation of our model, we assume that the kinetic parameters of the putative enzyme are unchanging over
time. This may not be valid for enzymes that are unstable or suffer a loss of activity over time, for example through
incubation in a nonoptimal buffer at certain temperatures. Accounting for this change in enzyme activity would require
additional information about the type and effect of the degradation occurring.

Although it would be possible to perform a brute force fitting of the kinetic parameters of the primary enzyme
using the governing equations (10), such an approach would be time-consuming and would not provide the general
analytic expressions we derive through our asymptotic analysis. Moreover, we are able to use our analytic expressions
to estimate when we will be in the linear growth regime, and for how long we expect this regime to last, in terms of
the experimental parameters. This provides a useful sanity check when it comes to interpreting the data.

Historically, the measured reaction velocity is often converted into kinetic parameters for the enzyme using a
Lineweaver–Burke plot [14]. However, this procedure is generally not the best way to calculate these values as it
amplifies noise in the measurements [9]. Nonlinear data fitting is orders of magnitude better than it was at the time
of Lineweaver and Burke, so it is much more accurate nowadays to fit the data to analytic forms such as those we
have deduced using singular perturbation theory. For the case we consider in this paper, measurements with varying
initial substrate concentrations give us a two-dimensional array of data from which to fit three variables. Additionally,
choosing one of these substrate concentrations to be much larger than the estimated Michaelis constant K̃(1)

1 or K̃(1)
2

reduces the problem to a one-dimensional array of data from which to fit two variables.
While we have considered a specific type of non-standard coupled enzyme assay here, the asymptotic techniques

we use are far from restricted to this system. We hope that the techniques used in this paper will be applied to different
reaction networks, to help characterize enzymes that can only be assayed in non-standard reaction network topologies.
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A Distinguished asymptotic limits of equation (26)

In this Appendix, we investigate the distinguished asymptotic limits of (26), thus allowing us to characterize the possible behaviours of its solution.

A.1 Case I

The first distinguished limit we discuss (Region I in Figure 7) occurs when V̄ � 1 and γ = O(1) for the ODE (26). Here, there are two different
timescales in the problem: t = O(1) and t = O(1/V̄ ), for which Y = O(V̄ ) and Y = O(1), respectively; the limit is distinguished only over the latter.
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Therefore, our brief analysis of the earlier timescale consists simply of the asymptotic solution

Y ∼ V̄
(
t−1+ e−t) . (54)

For the later timescale, the leading-order governing equation is

0 = V̄ t−Y − γ
Y 2

1+Y
(55)

and hence we are in the full quasi-steady case. The equation (55) has solution

Y =
V̄ t−1+

√
(V̄ t +1)2 +4V̄ γt

2(γ +1)
, (56)

which matches appropriately to the earlier-time solution. We note that the large-time limit of (56) is Y ∼ V̄ t/(γ +1). This is different to the large-
time limit of (54) (when t = O(1)), which is Y ∼ V̄ t. Therefore, there are two different linear regimes here, and one should take great care in
this distinguished limit to ensure that one is aware of in which linear regime the measurements are being taken: failure to do so could result in a
significant error of interpretation.

When γ → ∞ in this distinguished limit, we move into sub-limit A (Figure 7). Here, the earliest timescale is the same as (54), but the later
timescale splits into two, the earlier with t = O(1/(V̄ γ)) and Y = O(1/γ), the later with t = O(γ/V̄ ) and Y = O(1), as could be inferred from the
large-γ limit of (56). On the timescale t = O(1/(V̄ γ)), the solution is

Y =

√
1+4V̄ γt−1

2γ
, (57)

and on the timescale t = O(γ/V̄ )

Y =
V̄ t +

√
(V̄ t)2 +4V̄ γt

2γ
. (58)

When γ → 0 in this distinguished limit, we move into sub-limit D (Figure 7). Here, the full leading-order solution in the later timescale is
simply the large-time limit of the earlier timescale. Hence, the leading-order solution is simply (54), uniformly valid for all time.

A.2 Case II

The next distinguished limit (Region II in Figure 7) occurs when V̄ � 1 and γ� 1, with V̄ γ = O(1), in the ODE (26). Here, there are two different
timescales in the problem: t = O(1) and t = O(γ2), for which Y = O(1/γ) and Y = O(1), respectively; the limit is distinguished only over the
earlier of these. Taking Y = Ȳ/γ , the leading-order equation for the earlier timescale is

dȲ
dt

= V̄ γt− Ȳ − Ȳ 2, Ȳ (0) = 0. (59)

The Riccati equation (59) has solution

Ȳ = (V̄ γ)
1/3 Bi′[T (t)]+α Ai′[T (t)]

Bi[T (t)]+α Ai[T (t)]
− 1

2
, (60a)

α =
2(V̄ γ)

1/3 Bi′[T (0)]−Bi[T (0)]

Ai[T (0)]−2(V̄ γ)
1/3 Ai′[T (0)]

, (60b)

T (t) =
1

4(V̄ γ)
2/3 +(V̄ γ)

1/3 t, (60c)

where Ai(z) and Bi(z) are the standard Airy functions. The solution (60a) exhibits the following large-t behaviour

Ȳ ∼
√

V̄ γt as t→ ∞. (61)

The later timescale in this problem occurs when t = O(γ2) = O(1/V̄ 2) and Y = O(1). From (26), this timescale yields the following leading-order
equation

V̄ t = γ
Y 2

1+Y
, (62)

with solution

Y =
V̄ t +

√
(V̄ t)2 +4V̄ γt

2γ
. (63)

This exhibits the large-t behaviour

Y ∼ V̄ t/γ as t̄→ ∞. (64)

Hence, we may deduce that in this regime the variable Y initially behaves as Y ∼ V̄ t2/2, then as Y ∼
√

V̄ t/γ , then finally as Y ∼ V̄ t/γ , and therefore
exhibits at least two points of inflection, as well as three distinct power laws.

The solutions of the distinguished limit in Case II tend to those of the sub-limit A (Figure 7) as V̄ γ → 0. The early timescale, when t = O(1)
with solution (60a), splits into two, with solutions (54) and (57). The late timescale solution (63) is the same as in sub-limit A, as given in (58).

As V̄ γ → ∞, we move into sub-limit B (Figure 7). There are two different timescales in this sub-limit: t = O(1/(V̄ γ)1/3) and t = O(γ/V̄ ), for
which Y = O((V̄/γ2)1/3) and Y = O(1), respectively. For the first, t = O(1/(V̄ γ)1/3), the solution (60a) reduces to

Y =

(
V̄
γ2

)1/3 Bi′
[
(γV̄ )

1/3 t
]
+
√

3Ai′
[
(γV̄ )

1/3 t
]

Bi
[
(γV̄ )

1/3 t
]
+
√

3Ai
[
(γV̄ )

1/3 t
] , (65)

For the second, t = O(γ/V̄ ), the leading-order solution is the same as for Case II, given by (63).
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A.3 Case III

The next distinguished limit (Region III in Figure 7) occurs when V̄ � 1 and γ � 1, with V̄/γ2 = O(1), in the ODE (26). Here, the important
timescale has t = O(1/γ) = O(1/V̄ 1/2), for which Y = O(1). To investigate this, we make the substitution t = τ/γ , resulting in the leading-order
behaviour being described by

dY
dτ

=
V̄
γ2 τ− Y 2

1+Y
, Y (0) = 0. (66)

While we cannot solve (66) analytically, we note that the large-τ behaviour of (66) is Y ∼ V̄ τ/γ2 = V̄ t/γ , and that this behaviour will dominate
when t = O(1). Moreover, we can show that this case reduces to the sub-limits B and C (Figure 7) as V̄/γ2→ 0 and V̄/γ2→ ∞, respectively.

In the former sub-limit, with V̄/γ2→ 0, there are two timescales. For the earlier timescale scaling Y ∼ (V̄/γ2)1/3 and τ ∼ (γ2/V̄ )1/3 (equivalent
to t ∼ 1/(γV̄ )1/3) results in the reduction of (66) to a Riccati equation with solution (65). The problem for the later timescale can be obtained by
scaling τ ∼ γ2/V̄ (equivalent to t ∼ γ/V̄ ), and this has solution (63).

For the latter sub-limit, with V̄/γ2 → ∞, the important balance occurs when τ = O(1) (equivalent to t ∼ 1/γ) and Y = O(V̄/γ2), resulting in
the leading-order system

dY
dτ

=
V̄
γ2 τ−Y, Y (0) = 0, (67)

which has solution

Y =
V̄
γ2

(
τ−1+ e−τ

)
=

V̄
γ2

(
γt−1+ e−γt) . (68)

A.4 Case IV

The final distinguished limit (Region IV in Figure 7) occurs when V̄ � 1 and γ = O(1) in the ODE (26). Here, the main balance occurs when
t = O(1) and Y = O(V̄ ). In this case, the leading-order version of the ODE (26) is

dY
dt

= V̄ t−Y − γY, Y (0) = 0, (69)

which has solution

Y =
V̄

(1+ γ)2

[
(1+ γ)t−1+ e−(1+γ)t

]
. (70)

In the limit of γ → ∞, the solution (70) reduces to that in sub-limit C (Figure 7), given by (68), with the important timescale t = O(1/γ). In the
limit of γ → 0, the solution (70) reduces to that of sub-limit D (Figure 7), given by (54). This completes our comprehensive asymptotic analysis of
the distinguished limits of the ODE (26).

B Experimental protocol

B.1 Bacterial strains and cultivation conditions

We purchased the bacterial strains used in this study from New England Biolabs (E. coli ER2566) and DSMZ-Deutsche Sammlung von Mikroor-
ganismen und Zellkulturen GmbH DSMZ (C. necator H16). Lysogeny broth (LB) medium was used for cultivation of both strains. We cultivated
strains carrying the pTXB1 plasmid (supplied with the IMPACTTM KIT (NEB#E6901)) in the same media supplemented with ampicillin, at a final
concentration of 100 µg/ml.

B.2 Cloning of the putative aminotransferase CnAptA

We amplified the coding region of CnAptA by PCR from the genomic DNA of C. necator H16 using 0.5 µM of FwaptA (5’ taccatatggacgccgccaa-
gaccgt 3’) and RvaptA (5’ tgcaggaagagcccttgatgtcctgcagcgccttct 3’) primer pairs, using the Q5® High-fidelity 2X Master Mix (NEB, #M0492S)
with the following PCR conditions: 3 minutes of denaturation at 98 ◦C, followed by 25 cycles of 10 seconds denaturation at 98 ◦C, 30 seconds of
an annealing temperature at 72 ◦C, and 1 minute extension of at 72 ◦C. We also added 5% DMSO to the PCR mixture due to the high GC content
of the amplicon.

We digested the resulting PCR products with the NdeI and SapI restriction enzymes and ligated into the pTXB1 expression vector supplied
with the IMPACTTM KIT, which we digested with the same restriction enzymes. We introduced the resulting plasmid, pTXB1-CnAptA, into the
E. coli ER2566 strain. The pTXB1 vector allows for the fusion of the target protein at its C-terminus to the affinity tag (chitin binding domain or
CBD) via a protein splicing element. This system is suitable for the purification of the native recombinant protein in a single chromatographic step,
without the use of a protease. The expression of the fusion gene is controlled by an isopropyl-beta-D-1-tiogalactopyranoside (IPTG)-inducible T7
promoter.

To overexpress the putative transaminase CnAptA, we grew the recombinant E. coli ER2566 strains carrying the plasmid pTXB1-CnAptA on
LB medium in the presence of ampicillin (100 µg/ml), at 37 ◦C until the optical density at 600 nm (OD600) for the culture reached 0.5–0.6, at
which point 0.4 mM IPTG was added. We then incubated this culture at 22 ◦C for another 10 hours and harvested it by centrifugation at 2800×g,
at 4 ◦C.
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Fig. 15 The ColorPlusTM pre-stained protein ladder (10–230 kDa, Lane 1), the concentrated CnAptA protein after on column cleavage (Lane 2,
47 kDa) and 10 µL of the resin removed after washing and cleavage of the target protein (Lane 3) was loaded onto a NuPAGE® Novex 4–12%
Bis-Tris SDS-PAGE Gel and run for 2 hours at 150V in NuPAGE® MES SDS Running Buffer. Protein bands were visualised using Coomassie
Blue staining. BD+P: intein tagged CnAptA, P:CnAPTA after intein tag cleavage, BD: cleaved intein tag.

B.3 Purification of chitin-tagged CnAptA transaminase

We re-suspended the cell pellets from the previous centrifugation step in Tris-HCl buffer (20mM Tris-HCl, 0.5 M NaCl [pH 7.4]) and disrupted them
using a Soniprep 150 MSE SANYO sonicator, at 4 ◦C, at 30 second intervals for 30 minutes. We removed the insoluble fraction by centrifugation
at 8400×g for 30 minutes. Then, we loaded the supernatant onto the chromatography column packed with the chitin resin (Poly-Prep® prepacked
columns, AG® 1-X8, chloride form #731-1550), equilibrated with the same buffer at pH 8.4, according to the suppliers protocol. We induced the
on-column cleavage of the CnAptA purified enzyme by adding Tris-HCl buffer containing 1,4-Dithiothreitol (DDT) (20 mM Tris-HCl, 0.5 M NaCl
[pH 8.4]), 50 mM DTT). We then performed an elution of the un-tagged enzyme by adding 12 ml of Tris-HCl buffer (20 mM Tris-HCl, 0.5 M
NaCl [pH 8.4]). Finally, we concentrated the eluted protein fraction and exchanged the elution buffer to a buffer containing 20 mM Tris-HCl, 0.05
M NaCl pH 8.4, using an Aminco Ultra-15 centrifugal filter unit (molecular mass cutoff, 50 kDa; Millipore). Hence, the target protein (CnAptA)
was eluted from the column in a pure form (Figure 15).

C Case in which K = O(1)

In this Appendix, we provide the governing system in the depletion regime for the case with a strong reverse reaction when K = O(1), as the
t = O(1) case proceeds in the same manner as when K is small. Here, substrate depletion starts to affect the system at leading order when t
becomes of O(1/ε). To investigate this, we introduce T = εt, and we must also make the scalings S4 = s4/ε , and S6 = s6/ε . These scalings result
in the system

ε
ds1

dT
=−a(εv1−V2 +V−2) , (71a)

ds2

dT
=−bv1, (71b)

ε
dS4

dT
= εv1−V2 +V−2, (71c)

ε
ds5

dT
=−c(V2−V−2) , (71d)

ε
dS6

dT
=V2−V−2, (71e)

where the three reaction velocities are now defined as

v1 =

(
s1

K(1)
1 + s1

)(
s2

K(1)
2 + s2

)
, (72a)

V2 =

(
S4

1+S4

)(
s5

δ + s5

)
, (72b)

V−2 = k(−2)K

(
s1

K(−2)
1 + s1

)(
S6

εK(−2)
6 +S6

)(
S6

1+KS6

)
. (72c)

The matching conditions from the earlier timescale yield the following ‘initial conditions’

s1(0) = 1, s2(0) = 1, S4(0) = 0, s5(0) = 1, S6(0) = 0. (73)

Naively taking the limit as ε → 0 in (34) to obtain a leading-order system would yield a duplication of information. To avoid this, we must
form appropriate linear combinations of the governing equations in order to obtain enough information for a leading-order system. Using conserved
quantities where possible, we obtain the following differential-algebraic system at leading-order

ds2

dT
=−b

(
s1

K(1)
1 + s1

)(
s2

K(1)
2 + s2

)
, (74a)
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S4

1+S4
= k(−2)K

(
s1

K(−2)
1 + s1

)(
S6

1+KS6

)
, (74b)

s1 +aS4 = 1, (74c)

s2 +bS4 +bS6 = 1, (74d)

s5 + cS6 = 1. (74e)

It is still possible to follow the analysis of §3.1 and rearrange this system into a single ODE, though this is too cumbersome to be particularly
enlightening.
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