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Chapter 1

Asymptotic homogenization with a macroscale

variation in the microscale

Mohit P. Dalwadi

Abstract Asymptotic homogenization is a useful mathematical tool that can be used

to reduce the complexity of a problem with a periodic geometry. Generally, for

asymptotic homogenization to be applicable, the full problem must have: (i) a peri-

odic microstructure and (ii) a small ratio between the typical lengths of the periodic

cell and the macroscale variation. In this Chapter we consider a model for drug de-

livery. Namely, we discuss an asymptotic homogenization for the concentration field

of a drug diffusing within a domain that contains a near-periodic array of circular

obstructions whose boundaries can absorb the drug. In particular, the radii of these

circular obstructions can slowly vary in space, and thus the microscale geometry

varies in the macroscale. Constraining the shape of the obstacles to a one-parameter

family, where the only variation is circle radius, allows us to homogenize this prob-

lem in a computationally efficient manner. Moreover, the method we present allows

us to determine the homogenized equation for any arrangement of the microstruc-

ture within the one-parameter constraint.

1.1 Introduction

Asymptotic homogenization can often be used to reduce the complexity of a prob-

lem that has a periodic geometry. Starting from the governing equations for the full

problem, the general idea behind asymptotic homogenization is to obtain governing

equations for the variables averaged over one periodic cell, and this lengthscale is

referred to as the microscale. Determining the homogenized equations usually re-

quires solving a given problem over one periodic cell, known as the cell problem.

Solving the cell problem once and then solving the resulting homogenized equations

is generally less computationally expensive than solving the full problem. This is

Mohit P. Dalwadi
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2 Mohit P. Dalwadi

because the homogenization procedure has removed the periodic variation from the

problem while retaining the slow change over many periodic cells, and this longer

lengthscale is referred to as the macroscale. Asymptotic homogenization methods

have been widely studied in the literature (see, for example, [2, 10, 11, 16, 19]).

We will consider asymptotic homogenization via the method of multiple scales

[2] rather than, for example, volume averaging methods [19]. Generally, the assump-

tions required to apply the technique of asymptotic homogenization via the method

of multiple scales are: (i) there is a periodic microstructure and (ii) the ratio between

the length of the periodic cell and the length of the macroscale variation is small.

An introduction to this method is given in Chapter ??. In this Chapter, we see how

to relax the assumption that the microstructure is strictly periodic, and we consider

a microscale structure that varies over the macroscale.

1.1.1 Literature review

The method we consider in this Chapter to deal with a macroscopic variation in the

microstructure has been applied to a wide variety of problems (see, for example, [3,

7, 8, 9, 12, 13, 14, 15, 17, 18]), and has formal analysis roots in, for example, [1, 5].

The general idea behind this method is to prescribe a level-set function to define

the microstructure in both the microscale and macroscale variables. To highlight

the general method and a computationally efficient reduction, we now discuss [15],

[13], and [3] in more detail.

In [15], the authors consider the problem of deriving homogenized equations

to determine the electric potential within a beating heart, where the time-dependent

microstructure is close to spatially periodic in general curvilinear coordinates. Thus,

the microscale may vary spatially over the macroscale. The authors transform the

microscale to a strictly periodic domain, and then perform an asymptotic homoge-

nization via the method of multiple scales on the transformed problem. The transfor-

mation of the microscale means that the derived cell problem involves coefficients

from the Jacobian matrix of the transformation. Therefore, unlike a problem with

strict periodicity in the microscale (such as those considered in Chapter ??), a dif-

ferent cell problem must now be solved at every point in the macroscale rather than

just once for the entire problem. Although this procedure is less computationally

expensive than solving the full problem, there is still a significant computational

expense associated with solving many different cell problems.

In [13], the dynamics of colloids suspended within a fluid moving past circu-

lar obstacles in a square array are homogenized and cell problems are derived. The

colloidal particles are allowed to diffuse, advect, interact with one another due to a

general interaction potential, and are allowed to attach and detach to and from the

obstacles. Thus, the microstructure is not strictly periodic and the level set method

is used to homogenize the problem. Although the obstacle variation is constrained

to a one-parameter family, the strong coupling between the flow and colloid parti-

cle problems means that a different cell problem must be solved at every point in
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the macroscale for each time step, and there remains an appreciable computational

expense.

One way to reduce the cost of solving many different cell problems is to con-

strain the problem so that there are a limited number of possible cell problems to

solve. This is the route taken in [3], where the authors consider the problem of de-

riving homogenized equations to the diffusion equation in a domain obstructed by

nonoverlapping impermeable spheres whose centres are located on a periodic lattice.

The radius of adjacent spheres is allowed to vary by an amount that is small com-

pared to the separation of sphere centres. Defining the separation of sphere centres

as the microscale length and the slow variation of sphere radius as the macroscale

length, this set-up allows for a macroscale variation in microstructure. Importantly,

this variation is constrained to a one-parameter family: the sphere radius. Thus, al-

though one must still solve several cell problems to yield the homogenized problem,

the range of possible cell problems only involves varying one parameter. Therefore,

the general homogenized problem can be fully characterized by solving, say, 50 cell

problems, each using a different sphere radius, and interpolating the relevant data

for a sphere whose radius falls between two of the calculated data points. As the

sphere radius determines the solid fraction of a cell, the entire homogenized prob-

lem can be written in terms of the cell-averaged porosity. An interesting conclusion

from [3] is that a porosity variation induces a macroscale advection of concentration

averaged over the entire cell in the direction of decreasing porosity.

A notable difference between the main problem presented in [15] to those con-

sidered in [3, 13] is that the microstructure is strictly periodic in [15] after transfor-

mation, whereas the microstructure is only close to periodic in the latter two. Thus,

the main cell problems in [15] vary due to the differing coefficients in the governing

equations, whereas the main cell problems in [3, 13] vary due to their differing ge-

ometries. It is shown in [15] that one can move between these two formulations for

a general transformation, and it is further shown in [3] that a conformal transforma-

tion has a simplified cell problem due to the form of the Jacobian matrix. Moreover,

as noted in [3], a conformal transformation also has the property that spherical ob-

stacles remain spherical, and thus it is relatively simple to switch between the cases

of sphere centres being located on a strictly periodic lattice with varying sphere

radius and sphere centres being located on a locally periodic lattice with constant

sphere radius. In either case, particular care must be taken when evaluating the unit

normal to the obstacle surface, which may appear in Neumann or Robin boundary

conditions. Between two near-to-periodic cells, there may be a small variation in the

unit normal to the obstacle surface, due to a change in the position of the surface.

As emphasized in [3], this must be taken into account during the homogenization

procedure.

An important modelling question is whether a regular lattice can be a good ap-

proximation of an unstructured medium that may be encountered in physical prob-

lems. This has been investigated in [6] and [3]. In [6], the steady problem of nutrient

uptake past randomly placed point sinks is considered in one spatial dimension. As

the governing equations can be solved if the locations of the sinks are known, signif-

icant analytic progress is made into investigating the macroscale effect of different
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random distributions. The authors show that, although leading-order approximations

remain the same between periodic and random microscale structure, the error terms

vary in magnitude and large spatial gradients can occur from error terms in certain

parameter regimes. In [3], the authors also investigate the error introduced when

one treats an unstructured microstructure as near-periodic. The authors compare re-

sults for an ordered and disordered microstructure in the limit of a low fraction of

obstacles. They solve the full problem in both cases, and compare these results to

the solution of the homogenized problem, concluding that there is little difference

between the solutions.

The method used in [3] to homogenize the diffusion equation past impenetrable

spheres has been extended to consider filtration problems in a similar domain. In

[7], the authors homogenize the flow past a periodic array of impermeable spheres

with a near-periodic microstructure and the coupled problem of solute transport

owing to advection, diffusion, and adsorption onto the surfaces of the spheres. As

in [3], the near periodicity of the spheres in [7] is due to a slow spatial variation in

sphere radius. The motivation of [7] is to understand why filters with gradients in

porosity tend to be more effective than uniform filters, where the spherical obstacles

model the filter. The authors find that filtration is significantly more uniform in filters

whose porosity decreases with depth compared to uniform filters, but the average

filtration tends to be similar. As a large particulate removal in one place may result

in reduced pore space, it is conjectured in [7] that filters with a decreasing porosity

have a longer lifespan before blocking. This conjecture is confirmed in a subsequent

paper [8], where a similar problem to [7] is considered, but now the blocking effect

is explicitly accounted for by allowing the spheres to grow in time according to their

adsorption of particulates. Thus, the microstructure now varies both temporally and

spatially. Although the system presented in [8] involves a moving boundary as in

[13], the problem is simplified by exploiting the slow growth of obstacles due to

slow particle accumulation compared to flow velocity, thus the range of possible cell

problems only involves varying one parameter as in [3]. Using asymptotic results,

the authors are able to solve the inverse problem of determining the initial porosity

distribution of filters that block everywhere at once, and they show that these filters

remove more particulates than other filters with the same initial average porosity.

The general framework presented in [8] could also consider shrinking obstacles in,

for example, chemotherapy delivery, by changing the sign of the obstacle growth

term.

1.1.2 Chapter outline

In this Chapter, we consider the problem of homogenizing the concentration field

of a dissolved drug that diffuses within a two-dimensional domain containing cir-

cular inclusions. The boundaries of these circles can absorb the drug, and the circle

centres are arranged on a periodic square lattice. We define distances of the same

order as the distance between circle centres as the microscale, and we allow the
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sphere radii to vary spatially over a significantly larger distance that we term the

macroscale. This set-up could model drug delivery to tissue, but we do not dwell

on the physical implications of this as our main focus is on the method used to

homogenize a microscale with a macroscale variation.

1.2 Model set-up

We consider a system where the concentration field of a dissolved drug evolves due

to diffusion within a domain obstructed by tissue, modelled as a periodic square

array of circular obstacles. The boundaries of this tissue act as sinks for the concen-

tration field, modelling drug delivery. We start with the dimensionless problem, to

allow us to focus on the homogenization procedure.

The concentration field is given by c(x, t) (where x is the spatial vector coordinate

and t is time), and is defined within Ω f ⊂ R
2, outside the array of circular tissue.1

Although we do not explicitly account for fluid flow in this Chapter (this extension

is considered in [7, 8, 13]), it is helpful to refer to Ω f as the fluid phase. We define

the tissue as Ωs ⊂ R
2, and we refer Ωs as the solid phase. The entire domain is

Ω = Ω f ∪Ωs ⊂ R
2, and we note that the fluid and solid phase are distinct, so that

Ω f ∩Ωs = /0. The circular boundaries between fluid and solid phase are defined as

∂Ω f .The tissue is modelled by a collection of fixed non-overlapping circles, whose

centres are located on a square lattice at a distance ε apart, where ε is a small

dimensionless parameter and the typical dimensionless macroscale length is 1. We

allow the circle radii to vary in space, and a circle with centre at x has radius εR(x),
where R = O(1). A schematic of this set-up is given in figure 1.1.

The concentration field is governed by the standard diffusion equation with a

partially absorbing Robin boundary condition:

∂c

∂ t
= ∇2c, x ∈ Ω f , (1.1a)

−εγc = n·∇c, x ∈ ∂Ω f , (1.1b)

and we are interested in the cases where c = O(1) and t = O(1). Physically, the

boundary condition (1.1b) states that the solute uptake on the circular boundaries

(equivalently, the flux of solute into the circular obstacle) is proportional to the con-

centration of the drug on the tissue boundary. Here, εγ = O(ε) is an experimentally

determined uptake coefficient that will depend on the combination of drug and tis-

sue. As the uptake coefficient is of O(ε), there is a small flux into each obstacle

and this leads to a distinguished asymptotic limit in the final homogenized equation,

where all mechanisms contribute at leading order. The boundary condition (1.1b) is

a simple model of drug uptake on the tissue boundary, and the left-hand side can

easily be generalised to a different uptake model, as long as the uptake coefficient

is of O(ε). For example, one could alternatively use a Michaelis–Menten type con-

1 We note that this method can easily be extended to three dimensions, as seen in [3, 7, 8].
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x ∈ Ω

∼ 1

ε

1

1

R(x)

y ∈ ω(x)

∂ω
ωs

ω f

∂ω f

Fig. 1.1 A schematic of the model. Left: An example of a near-to-periodic set-up where the mi-

croscale varies over the macroscale. Right: A magnified view of a given cell ω(x), with microscale

coordinate y ∈
[

− 1
2
, 1

2

]2
.

dition −εγc/(K + c) on the left-hand side of (1.1b), where K is constant, to model

saturation of uptake.

We now perform an asymptotic homogenization using the method of multiple

scales on the problem defined by (1.1), exploiting the asymptotic limit ε → 0. This

limit corresponds to there being a small ratio of distance between adjacent circle

centres and the lengthscale of the macroscale variation in circle radius.

1.3 Homogenization

To perform the asymptotic homogenization, we introduce the microscale variable

y= x/ε and treat x and y as independent. The extra degree of freedom introduced by

this additional independent variable is later removed by imposing that the solution

is exactly periodic in y. Hence, any small variation between unit cells is captured

through the macroscale variable x. The microscale variable y is defined within a

given unit cell ω(x), whereas the macroscale variable x is defined across the entire

domain (figure 1.1). The tissue is denoted ωs(x) and the fluid portion is ω f (x) =
ω(x) \ωs(x). The circular tissue–fluid boundary within the unit cell is denoted by

∂ω f (x), while the square outer boundary of the unit cell is ∂ω(x).
We now consider each dependent variable as a function of both x and y. Using

the new variable y, we transform spatial derivatives in the following manner
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∇ 7→ ∇x +
1

ε
∇y, (1.2)

where ∇x and ∇y refer to the nabla operator in the x- and y-coordinate systems

respectively.

As our eventual goal is to derive homogenized equations that are valid in the

macroscale domain, it will be useful to introduce some quantities averaged over the

microscale. Our eventual homogenized equations will be in terms of these averaged

quantities. For this purpose, we define the cell-averaged porosity φ(x) to be

φ(x) =
|ω f (x)|

|ω(x)|
= |ω f (x)|, (1.3)

where we use the fact that |ω(x)| = 1 in our microscale geometry to obtain the

second equality. In a different microscale, for example, a hexagonal lattice rather

than a square one, the cell area may be a different constant. As φ = 1−πR2, we note

that the cell-averaged porosity is bounded above by 1−π/4, which occurs when

a circle radius is 0.5. This results in adjacent circles touching, and a subsequent

change in the topology of the domain, so we restrict our domain to 0 < R < 0.5.

There are two main ways to describe an average concentration in our problem,

depending on whether the averaging takes place over the fluid phase of the cell or

over the entire cell. These different averaging methods are known as the intrinsic-

averaged and the volumetric-averaged concentrations, respectively. Formally, the

intrinsic-averaged concentration is defined as

C̃(x, t) =
1

|ω f (x)|

∫

ω(x)
c(x,y, t)dy =

1

φ(x)

∫

ω f (x)
c(x,y, t)dy, (1.4a)

and the volumetric-averaged concentration is defined as

C(x, t) =
1

|ω(x)|

∫

ω(x)
c(x,y, t)dy =

∫

ω f (x)
c(x,y, t)dy, (1.4b)

imposing that c ≡ 0 in ωs(x).

1.3.1 Transforming the normal

A key consideration in homogenizing a problem whose microscale structure varies

in the macroscale is the form of the unit normal. Thus, this is not an issue when

a problem has Dirichlet boundary conditions. However, for Neumann or, as in our

problem, Robin boundary conditions, we must take care with the unit normal to the

tissue boundary. This is carried out by considering a level set function, as used in

[9, 14, 17, 18] for a general obstacle shape, and in [3, 7, 8] for the specific case of a

circular obstacle.

To derive the unit normal, we introduce the scalar function
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χ(x,y) = R(x)−‖y‖, (1.5)

where χ(x,y) = 0 defines the tissue–fluid interface in a cell. Then, the normal vector

n in (1.1b) becomes

n =
∇χ

‖∇χ‖
=

ny + ε∇xR

‖ny + ε∇xR‖
, (1.6)

where the second equality arises from the gradient transform (1.2), ny =−y/‖y‖ is

the outward unit normal on the obstacle boundary ∂ω f (x), and ε∇xR accounts for

the macroscale effect of varying obstacle size. This latter term is unexpected, but we

will see later that it is vital in tracking how adjacent cells vary.

Before we carry on with the homogenization procedure, we note that x varies by

an O(ε) amount across one cell. We show in Appendix 1 that switching between

a small variation in x across one cell and taking x to be constant within one cell

does not affect our analysis. It should be noted, however, that this small variation is

an issue if there is an integral constraint in the problem, even for a strictly periodic

microscale [4].

1.3.2 Homogenization procedure

Using the transformations (1.2) and (1.6), the solute-transport problem (1.1) in one

cell is

ε2 ∂c0

∂ t
= (∇y + ε∇x) ·((∇y + ε∇x)c) , y ∈ ω f (x), (1.7a)

−ε2γc = (ny + ε∇xR) ·((∇y + ε∇x)c)+O(ε3), y ∈ ∂ω f (x), (1.7b)

c periodic, y ∈ ∂ω(x). (1.7c)

The homogenization procedure entails investigating the system (1.7) by looking for

an asymptotic solution in the limit as ε → 0. That is, we look for a solution to c in

terms of an asymptotic expansion

c(x,y, t) = c0(x,y, t)+ εc1(x,y, t)+ ε2c2(x,y, t)+O(ε3), (1.8)

and use the method of multiple scales to derive solvability conditions for c0. These

will be in terms of the macroscale variable x and will yield the homogenized equa-

tions for which we are looking. Although our main interest is in c0, we will see that

we need to proceed to terms of O(ε2) to derive the solvability conditions for c0.
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1.3.2.1 The O(1) problem

Substituting the asymptotic expansion (1.8) into the system (1.7) and equating pow-

ers of ε , the O(1) terms yield the problem

0 = ∇2
yc0, y ∈ ω f (x), (1.9a)

0 = ny·∇yc0, y ∈ ∂ω f (x), (1.9b)

c0 periodic, y ∈ ∂ω(x). (1.9c)

The system (1.9) can be solved by a c0 that is independent of y, and the linearity

of (1.9) allows us to deduce that this solution is unique. We can therefore deduce

that c0 is independent of the microscale, i.e. c0 = c0(x, t), and this will be useful in

simplifying the systems that arise from the O(ε) and O(ε2) problems.

1.3.2.2 The O(ε) problem

Substituting the asymptotic expansion (1.8) into the system (1.7) and equating pow-

ers of ε , the O(ε) terms yield the problem

0 = ∇2
yc1, y ∈ ω f (x), (1.10a)

−ny·∇xc0 = ny·∇yc1, y ∈ ∂ω f (x), (1.10b)

c1 periodic, y ∈ ∂ω(x). (1.10c)

Although we cannot solve the system (1.10) analytically, we can derive a solvabil-

ity condition by integrating (1.10a) over ω f (x) and using the boundary conditions

(1.10b)–(1.10c). However, the solvability condition we obtain from this is just

−∇xc0·

∮

∂ω f (x)
ny ds = 0, (1.11)

where ds denotes the differential element of the obstacle boundary ∂ω f (x), and we

are able to take c0 outside the integral because it is independent of y. As (1.11) is

trivially satisfied for any closed obstacle, we are not yet able to form a macroscale

equation for c0.

It will be useful to determine c1 from (1.10) for use in the solvability condition

we derive in the O(ε2) problem. We could do this numerically for any given function

c0, but this relies on us knowing c0, which is the function for which we are trying to

solve. Alternatively, we can note that we just require knowledge of how c1 behaves

as a function of c0. To do this, we note that the system (1.10) is linear in c1, and we

can therefore write c1 as the dot product of some vector function ΓΓΓ to be determined,

and ∇xc0, as follows

c1(x,y, t) =−ΓΓΓ (x,y)·∇xc0(x, t). (1.12)
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This allows us to reduce the problem of determining c1 in terms of c0 to solving the

following cell problem

0 = ∇2
yΓi, y ∈ ω f (x), (1.13a)

ny,i = ny·∇yΓi, y ∈ ∂ω f (x), (1.13b)

Γi periodic, y ∈ ∂ω(x), (1.13c)

where Γi is the ith component of ΓΓΓ , and ny,i is the ith component of the unit vector

ny. For the circular boundaries we are considering, we have ny,i =−yi/R(x), where

yi is the ith component of the microscale variable y. In practice, ΓΓΓ can be determined

by using a finite element software package.

1.3.2.3 The O(ε2) problem

In our homogenization calculations, we have not yet used the fact that the mi-

crostructure is near periodic rather than strictly periodic. This is because the O(ε)
correction to the normal in (1.6) has not yet appeared in our calculations. In this

section, the macroscale variation in the microstructure finally imposes an effect.

Substituting the asymptotic expansion (1.8) into the system (1.7) and equating

powers of ε , the O(ε2) terms yield the problem

∂c0

∂ t
= ∇y· (∇yc2 +∇xc1)+∇x·(∇yc1 +∇xc0) , y ∈ ω f (x), (1.14a)

−γc0 = ny· (∇yc2 +∇xc1)+∇xR·(∇yc1 +∇xc0) , y ∈ ∂ω f (x), (1.14b)

c2 periodic, y ∈ ∂ω(x). (1.14c)

As with (1.10), we cannot solve the system (1.14) analytically. Rather, we are

interested in obtaining a solvability condition from (1.14), and this will yield our

homogenized equation for c0.

We can derive a solvability condition by integrating (1.14a) over ω f to obtain

∫

ω f (x)

∂c0

∂ t
dy =

∮

∂ω f (x)
ny·(∇yc2 +∇xc1) ds+

∫

ω f (x)
∇x·(∇yc1 +∇xc0) dy,

(1.15)

where the first term on the right-hand side of (1.15) has been obtained by using the

divergence theorem and applying the boundary condition (1.14c).

The integrand on the left-hand side of (1.15) is independent of y, and so can be

integrated immediately. The first term on the right-hand side of (1.15) can be turned

into a function of c0 and c1 by using the boundary condition (1.14b). Thus, we can

re-write (1.15) as
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|ω f (x)|
∂c0

∂ t
=
∫

ω f (x)
∇x·(∇yc1 +∇xc0) dy−

∮

∂ω f (x)
∇xR·(∇yc1 +∇xc0) ds

−
∮

∂ω f (x)
γc0 ds,

(1.16)

where we have rearranged the terms on the right-hand side.

The last term on the right-hand side of (1.16) is independent of y, and so can

be integrated immediately. The first two terms on the right-hand side of (1.16) can

be simplified using the transport theorem (discussed in Appendix 2), and we can

therefore write (1.16) as

|ω f (x)|
∂c0

∂ t
= ∇x·

∫

ω f (x)
(∇yc1 +∇xc0) dy− γ|∂ω f (x)|c0. (1.17)

Our solvability condition is almost solely in terms of c0, as we require. The final

step is to use the result (1.12) to write ∇yc1 in terms of c0, deducing that

∇yc1 = JT
ΓΓΓ ∇xc0, (1.18a)

where JT
ΓΓΓ is the transpose of the Jacobian matrix of ΓΓΓ , which is given by

JΓΓΓ =

(

∂Γ1
∂y1

∂Γ1
∂y2

∂Γ2
∂y1

∂Γ2
∂y2

)

, (1.18b)

where ΓΓΓ can be obtained by solving the cell problem (1.13).

We can use the fact that c0 = c0(x, t) and (1.18) to write (1.17) as

|ω f (x)|
∂c0

∂ t
= ∇x·

((

∫

ω f (x)
(I−JT

ΓΓΓ )dy

)

∇xc0

)

− γ|∂ω f (x)|c0, (1.19)

where I is the 2× 2 identity matrix. We now have a solvability equation for c0, and

can transform this into the leading-order homogenized equation for the intrinsic-

averaged and volumetric-averaged concentrations.

1.3.2.4 The homogenized equations

We see from (1.4) that, at leading order, intrinsic-averaged concentration is C̃(x, t)∼
c0(x, t) and the volumetric-averaged concentration is C(x, t)∼ φ(x)c0(x, t). After a

final rearrangement of (1.19), using |ω f (x)| = φ(x) from (1.3), converting func-

tions of x into functions of φ(x) for convenience, and suppressing the argument for

brevity, we obtain the homogenized equation for the intrinsic-averaged concentra-

tion
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∂C̃

∂ t
=

1

φ
∇x·
(

φD(φ)∇xC̃
)

− k(φ)C̃. (1.20)

Noting that φ = φ(x), so we cannot bring factors of φ unchanged through a deriva-

tive, the homogenized equation for the volumetric-averaged concentration is

∂C

∂ t
= ∇x·

[

D(φ)

(

∇xC−
∇xφ

φ
C

)]

− k(φ)C, (1.21)

where the effective diffusion, D(φ) and the effective uptake, k(φ), are defined as

D(φ) = 1−
1

φ

∫

ω f (φ)

∂Γ1

∂y1

dy, (1.22a)

k(φ) = γ

√

4π(1−φ)

φ
, (1.22b)

and k(φ) is obtained using |∂ω f |= 2πR =
√

4π(1−φ).
The effective diffusion D(φ) is a scalar rather than a matrix (as it appears in

(1.19)) because the cell problems for the components of ΓΓΓ , given in (1.13), are

symmetric across both the y1- and y2-axes. Hence, JΓΓΓ is a multiple of the identity

matrix and thus we could also use ∂Γ2/∂y2 as the integrand in (1.22a) instead of

∂Γ1/∂y1, with the same result. We also note that D is not strictly an effective dif-

fusion coefficient in the homogenized equation for the intrinsic-averaged concen-

tration (1.20) because of the factor of 1/φ outside the derivative and the factor of

φ inside the derivative. The effective diffusion can be computed by solving the cell

problem (1.13) for a given cell porosity φ , which is determined by the radius of the

circular obstacle. We do this numerically using the finite-element software Comsol

MULTIPHYSICS. The effective diffusion monotonically increases from 0 to 1 as

the porosity increases from 1−π/4≈ 0.21 to 1 or, equivalently, as the circle radius

decreases from 0.5 to 0 (figure 1.2a). As the microstructure gets closer to blocking

and φ gets closer to 1− π/4, the diffusion coefficient sharply decreases towards

0. This is because it is very difficult for a drug particle in one region to diffuse to

another region when the gaps between nearly touching circles get very small.

The effective uptake K(φ) requires no further problems to be solved, as an ex-

plicit representation is given in (1.22b). The effective uptake monotonically de-

creases from π/
√

1−π/4 ≈ 14.64 to 0 as the porosity increases from 1−π/4 ≈
0.21 to 1 or, equivalently, as the circle radius decreases from 0.5 to 0 (figure 1.2b).

The effective uptake vanishes when the porosity approaches 1 because, in this limit,

there is no tissue available to absorb the drug.
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Fig. 1.2 The effective diffusion and uptake coefficients for φ ∈ (1 − π/4,1). (a) The effective

diffusion D(φ ). (b) The (scaled) effective uptake k(φ )/γ . As φ → (1−π/4)+ , the domain tends

to that of touching circles where the fluid domain becomes disconnected, and thus the effective

diffusion vanishes. As φ → 1−, the circular obstacles have a vanishingly small radius. This limit is

regular, and thus the effective diffusion and uptake attain the values one would expect. That is, the

effective diffusion is 1, and the effective uptake vanishes.

1.4 Interpreting the homogenized problem

The two homogenized equations (1.20) and (1.21) are equivalent through the trans-

formation C̃(x, t) = φ(x)C(x, t). We discuss the implications of the homogenized

problem by referring only to (1.21), the homogenized equation for the volumetric-

averaged concentration, as this equation is in standard advection–diffusion–reaction

form.

We see that the reaction term, which arises from the Robin boundary condition

modelling uptake on the boundary in the full problem, now appears as a bulk uptake,

weighted by the boundary length to fluid phase area in a cell. This bulk term is one

that we may have anticipated from the start.

Perhaps more surprisingly, the macroscale variation of the porosity has resulted

in the presence of an advection term in the direction of a negative porosity gradi-

ent, as identified in [3, 7, 8]. This term advects the dissolved drug towards regions

of larger porosity, and can be understood by noting that (1.21), the homogenized

equation, is an equation for the concentration averaged over the entirety of one cell,

including the tissue phase. Thus, as the area of the fluid phase is greater within cells

with a larger porosity, the intrinsic smoothing of diffusion will act to increase the

concentration averaged over an entire cell in cells with a larger porosity.

We additionally note that when the cell-averaged porosity is constant, and there

is no macroscale variation in the microscale, the homogenized equations for the

intrinsic-averaged and volumetric-averaged concentrations (1.20)–(1.21) reduce to

the result that could be obtained from a traditional homogenization procedure with

a strictly periodic microscale.
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Appendix 1

When carrying out a homogenization using the method of multiple scales, the vari-

ation of the macroscale variable x across one cell is often ignored, and x is treated

as a constant when the microscale variable varies (this microscale variable can be

formally defined as y = x/ε −⌊x/ε⌋). Note that we just consider a one-dimensional

problem in this Appendix, but the argument we present generalizes to higher dimen-

sions.

If there is a boundary condition or a boundary within a cell that depends on x

and y, this should vary slowly with x through a cell. In this section, we see that it is

fine to treat x as a constant when prescribing a boundary or for a Robin boundary

condition. Note that this is not true for integral constraints, and the reasons for this

are investigated in [4]. We first show that it is fine to treat x as a constant within

one cell when working with a boundary that depends on x and y, then show that the

Robin boundary condition is also unchanged.

Consider a problem where the boundary is defined as

f (x,y) = 0 (1.23)

within a cell. Then, using the asymptotic expansion f = f0 + ε f1 + · · · , writing x =
x0 + εy, where x0 = ε⌊x/ε⌋, and expanding the first argument in a Taylor series, we

obtain

f (x0 + εy,y) =
∞

∑
m=0

εm
m

∑
n=0

yn ∂ n fm−n

∂xn
(x0,y) = 0. (1.24)

Note that we can change x0 by an O(ε) amount (that is, evaluate x0 anywhere within

a cell), and (1.24) remains unchanged when evaluating f (x,y).
We proceed by showing fi(x0,y) = 0 for all i > 0 by induction, and hence that

the O(ε i) perturbation to the interface is the same if we perturb x by O(ε). Namely,

that it does not matter where we evaluate the macroscale variable within a cell.

The result for i = 0 follows from the O(1) equation. The O(ε I) equation is

I

∑
n=0

yn ∂ n fI−n

∂xn
(x0,y) = 0. (1.25)

Under the induction assumption, that fi(x0,y) = 0 for all integers i such that 0 ≤ i ≤
I− 1, all terms apart from n = 0 vanish immediately, yielding

fI(x0,y) = 0, (1.26)

as required, thus showing that fi(x0,y) = 0 for all integers i >, and that we can

evaluate the macroscale variable anywhere within a cell when defining a boundary.

We now consider a general Robin boundary condition

u′(x,y)+αu(x,y)+β = 0. (1.27)
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Under the multiple scales transformation, where ∂x 7→ ∂x +ε−1∂y, using the asymp-

totic expansion u = u0 + εu1 + · · · , and writing u(x,y) = u(x0 + εy,y), the Robin

boundary condition (1.27) becomes

∞

∑
m=0

εm
m

∑
n=0

yn

(

∂ n+1um−n

∂y∂xn
+ ε

(

∂ n+1um−n

∂xn+1
+α

∂ num−n

∂xn

))

+ εβ = 0, (1.28)

evaluated at (x0,y).
Our induction hypothesis is that the standard multiple scales transformation and

asymptotic expansion for u will be valid no matter where we evaluate x within a cell.

That is, we wish to show that ∂yui(x0,y)+ ∂xui−1(x0,y)+αui−1(x0,y)+β δ1i = 0

for all integers i > 0, where u j ≡ 0 for j < 0, and δkl is the Kronecker delta.

The result for i = 0 follows from the O(1) equation. The O(ε I) equation is

I

∑
n=0

yn ∂ n

∂xn

(

∂uI−n

∂y
+

∂uI−n−1

∂x
+αuI−n−1

)

+β δ1I = 0, (1.29)

evaluated at (x0,y). Under the induction hypothesis, ∂yui+∂xui−1+αui−1+β δ1i =
0 at (x0,y) for all integers i such that 0 ≤ i ≤ I − 1, all terms inside the sum apart

from the n = 0 term vanish, leaving

∂uI

∂y
+

∂uI−1

∂x
+αuI−1 +β δ1I = 0, (1.30)

evaluated at (x0,y), as required. Thus, we have shown that ∂yui + ∂xui−1 +αui−1 +
β δ1i = 0 at (x0,y) for all integers i > 0, and that we can evaluate the macroscale

variable anywhere within a cell when using a Robin boundary condition.

Finally, note that we have written R(x) in (1.5) as a continuous function of the

macroscale variable x, rather than a piecewise constant function evaluated at the

centre of the relevant unit cell. This simplifies the subsequent analysis while affect-

ing only the boundary condition (1.7b) at higher orders than we need to consider.

As a result, our final leading-order macroscale equation (1.21) is unchanged by em-

ploying this simplification.

Appendix 2

The transport theorem allows one to differentiate through an integral where the do-

main of integration depends on the variable of differentiation. In general, this yields

two different terms: one from the variation of the integrand over the domain, and

another from the variation of the domain with respect to the variable of integration.

The transport theorem is often used to calculate derivatives with respect to time, and

hence the second term often involves the velocity of the boundary. However, we are

interested in the derivative with respect to space. In particular, with respect to the

macroscale variable x.
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We note that any variation between two different fluid regions ω f (x1) and ω f (x2)
is due to the difference in the radius of the circle within each cell, given by R(x1) and

R(x2), respectively, and is not affected by the outer boundary, given by ω(x1) and

ω(x2), respectively. Moreover, the rate of change of the circle ωs(x) =ω(x)\ω f (x)
with respect to x is ∇xR. This can be deduced by considering the difference over the

domains ω f (x) and ω f (x+ξ ei) as ξ → 0, where ei is the unit vector in the direction

of increasing xi. The resulting domain of integration is a shell whose thickness is

approximately ξ ∂R/∂xi as ξ → 0. As we are considering an integral over ω f (x) =
ω(x)\ωs(x), the relevant velocity of the interior boundary is −∇xR.

Therefore, for any vector function v(x,y, t), the relevant transport theorem is

given by

∇x·

∫

ω f (x)
vdy =

∫

ω f (x)
∇x·vdy−

∮

∂ω f (x)
∇xR·vds. (1.31)

Here, the first term on the right-hand side of (1.31) arises from the variation of the

integrand over the domain and is relatively straightforward. The second term on the

right-hand side of (1.31) arises from the variation of ω f (x) with respect to x, as

described in the paragraph above.
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