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Starting from Hamilton’s principle on a rotating sphere, we derive a series of successively more géqleate
approximations. These are Cartesian approximations to motion in spherical geometry that capture the change with
latitude of the angle between the rotation vector and the local vertical. Being derived using Hamilton’s principle, the
different 5-plane approximations each conserve energy, angular momentum, and potential vorticity. They differ in
their treatments of the locally horizontal component of the rotation vector, the component that is usually neglected
under the traditional approximation. In particular, we derive an extended geplaine equations in which the locally
vertical and locally horizontal components of the rotation vector both vary linearly with latitude. This was previously
thought to violate conservation of angular momentum and potential vorticity. We show that the difficulty in maintaining
these conservation laws arises from the need to express the rotation vector as the curl of a vector potential while
approximating the true spherical metric by a flat Cartesian metric. Finally, we derive depth-averaged equations on
our extendeds-plane with topography, and show that they coincide with the extended non-traditional shallow water
equations previously derived in Cartesian geometry.

1. Introduction

Geophysical fluid dynamics is concerned with the wide range of complex behaviour exhibited on many different
scales by stratified fluids moving over the surface of a rotating planet. Simplified or model equations designed to
capture particular phenomena or processes thus play an imp@teritrthis paper we consider the simplications that
replace spherical, or even spheroidal, coordinates with Cartesian coordinates while retaining the latitude-dependence
of the angle between the local vertical and the planetary rotation vector. These approximations are kfwplamas,
after the symbol used for the latitude-dependence of the locally vertical component of the rotation vector. They were
first proposed by Rossbst al. (1939) as a purely conceptual model for motion on a sphere. Only later, beginning
with Veronis (1963), were thg-planes investigated as possible rational approximations to the equations of motion
formulated in spherical geometry. In particular, a valid sef-gflane equations should inherit the conservation laws
of the underlying spherical equations. These include conservation of energy and angular momentum, and material
conservation of another quantity called potential vorticity. The last is probably the most important because potential
vorticity is tied to individual fluid elements, while energy and momentum may be transported over long distances by
waves without any net displacement of fluid elements.

Following Rossbyet al. (1939), we seek equations that capture the change with latitude of the components of the
planetary rotation vector with respect to local axes, but in all other respects appear as though they were formulated in
Cartesian coordinates. We thus seek equations of the form
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in axes withz eastwardsy northwards, and upwards anti-parallel to the local gravitational acceleration. The velocity
vector isu = (u, v, w), and the material time derivativelis/Dt = 9; + w - V. The fluid density ip, the pressure is,
andg is the acceleration due to gravity (see below). This orientation of axesaeiistwards conveniently reduces the
number of Coriolis terms in (1.1) from six to four, with two Coriolis parameteasd f. In a sufficiently small region
around a reference latitudg, the two Coriolis parameters afe= 2 Q sin ¢ and f = 2Qcos ¢o. Thusf and f are
equal to twice the locally vertical and locally horizontal components of the rotation vector respectively. To create a
completes-plane approximation we require relations betweenithg z coordinates and spherical polar coordinates,
and expressions fof and f as functions of:, y, andz that are valid over a larger region of the sphere.

The standargi-plane approximation replaces the exact spherical relgtiea 2 2 sin ¢ with a truncated Taylor
expansion in the variablg = (¢ — ¢¢)/R,
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whereg, is a reference latitude, arfélis the planetary radius. The other Coriolis paramgtir set to zero under the
widely-used traditional approximation, as described below. The combination of (1.1} witlen by (1.2) andf = 0

is widely used in theoretical studies of the wind-driven ocean circulation (e.g. Gill 1982; Pedlosky 1987; Salmon
1998). However, this system of equations cannot be derived as a rational approximation to the equations of motion on
a sphere merely by expanding these equations in ratios of lengthscales (see Veronis 1963, 1¥Bhekvd. The

difficulty arises because free particles on a non-rotating sphere move along great circles, which typically appear as
curved paths in a coordinate system. The equations of motion in those coordinates thus contain curvature terms, like
those in (5.3) below, that are not included in (1.1).

Many of these curvature terms vanish at the equator, where the latitude and longitude lines are themselves great
circles, so equatorial or near-equatoyaplanes may be derived without further assumptions. Alternatively, one may
invoke an additional assumption regarding smallness of a Rossby number, as in Phillips (1973). For this reason the
mid-latitudeS-plane approximation is sometimes put forward only in a quasigeostrophic context (e.g. Pedlosky 1987;
Holton 1992), although it is widely used outside quasigeostrophic theory. Verkley (1990) proposed an alternative
approach that constructs a second system of spherical polar coordinates whose equator passes through the reference
latitude ¢y. The curvature terms thus vanish locally in this coordinate system, but the expressions for the Coriolis
terms become much more complex, and there is no natural conservation law for angular momentum.

The neglect of terms involving, the locally horizontal component of the rotation vector, was named the traditional
approximation by Eckart (1960, on the grounds that it was widely used, but otherwise lacked theoretical justification.
Phillips (1966) gave a derivation based on expresgif2gas the curl of a vector potential (s&2), and exploiting the
smallness of the fluid’s vertical lengthscdferelative to the planetary radiugto approximate both the vector potential
and the curl operator. Although this is a derivation of the traditional approximation, it does not necgsstfylyhe
traditional approximation, as established in the subsequent exchange between Veronis (1968) and Phillips (1968). For
example, when¢ — ¢o| < |¢o| one could use a similar argument to further approximate the true latifugea
reference latitude, in the vector potential. However, this further approximation leads to a constant vector potential,
and the Coriolis force disappears completely. The essential difficulty is that these approximations do not commute
with differentiation. Replacing by R or ¢ by ¢, in a function may change its derivatives at leading order, even if
|r — R| < Ror|¢— ¢o| < |¢o|. Some further examples are given in Appendix B.

More recent work (e.g. Gerkenedal.2008) has typically presented the traditional approximation is a consequence
of the vertical lengthscalé/ being much smaller than the horizontal lengthsdal@ he vertical velocityw is then
expected to be much smaller than the horizontal velocity componearisiv, so thefw term is small compared with
fvinthe first of equations (1.1). Similarly, both terms on the left hand side of the last of equations (1.1) are then small
compared with the right hand side. Takif < L is also the basis for the hydrostatic approximation that further
omits the vertical acceleration from the vertical momentum equation. The pressutteen determined from setting
p~10.p + g = 0. Another argument in favour of the traditional approximation in a stratified fluid relies upon the
buoyancy or Brunt—#isala frequencyV being much larger than the inertial frequency (Queney 1950; Phillips 1968,
1973; Thuburret al. 2002).

Interest has recently grown in retaining the non-traditional terms proportiorfalas reviewed by Gerkenet al.

(2008). Numerical simulations now routinely resolve smaller horizontal lengthscales for which the assuingtidn

becomes less clearly valid. From 1992 the UK Meteorological Office has retained the non-traditional terms in its fore-
casting model (Cullen 1993). The non-traditional terms are likely to be even more significant in the oceans. The deep
oceans contain regions of very weak stratification with buoyancy frequdngy 10/ in the deep oceans, and much

activity at near-inertial frequencies (Munk & Phillips 1968; Fu 1981). van Haren & Millot (2005) report observations

of gyroscopic waves in areas of the Mediterranean whose stratification vanishes to within the uncertainty of their
measurements\| = 0 + 0.4f). Non-traditional effects are required to explain these gyroscopic waves. On larger
scales, PEQUOD data for mean zonal velocities in the equatorial ocean show a depth-dependence that is consistent
with non-traditional effects (Hua, Moore & Le Gentil 1997).

Grimshaw (1975) derived an extended sebBgdlane equations that retain the non-traditional terms proportional to
fin (1.1). However,f was treated as a constant, rather than expanded as
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by analogy with the expansion ¢f= 2 Q) sin ¢ in (1.2). Allowing f to vary with latitude appeared to violate conserva-
tion of angular momentum and potential vorticity. Perhaps for this reason, Grimshaw’s (1975) equations with constant
f have become known as “the” non-traditiomaplane equations (LeBlond & Mysak 1978; Gerkema & Shrira 2005;
Gerkemeet al. 2008).

In this paper we derive a set Bfplane equations that alloyito vary with latitude while preserving all the expected
conservation properties. We also show that Grimshaw’s (1975) non-tradiffeplaine, and the traditionad-plane,
may both be obtained by making further approximations in our derivation. We begin with the three-dimensional equa-
tions of motion on a sphere, as formulated using Hamilton’s principle of least action, and make approximations in the
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action. We formulate Hamilton’s principle using Lagrangian variables, for which the treatment of inertia, and hence of
the Coriolis force in a rotating frame, most closely resembles that of classical particle mechanics. This enables us to
exploit Ripa’s (1997) variational approach to the motion of a particle on a sphere@upthae, and Miler’s (1989)
derivation of the primitive equations in spherical geometry by approximating the inertial terms in a Lagrangian based
on particle mechanics (see also Hinkelmann 1969; Waiitd. 2005; Zdunkowski & Bott 2003).

It was once common to evaluate the merits of competing models, derived from truncated expansions of the under-
lying equations in a small parameter, by determining whether they could be manipulated to give results resembling
conservation of energy, or material conservation of potential vorticity (e.g. Phillips 1966, 1968; Veronis 1968). How-
ever, all these conservation properties may be derived from a formulation of the underlying equations using Hamilton'’s
principle, together with Noether’s theorem that relates conservation laws to the invariance of variational principles un-
der symmetries (e.g. Goldstein 1980). Conservation of energy and angular momentum are a consequence of invariance
under translations in time and axial rotations, while material conservation of potential vorticity arises from a more sub-
tle particle relabelling symmetry (Salmon 128Ripa 1982). This motivates our approach, following Salmon (1983)
of making approximations in the variational principle, instead of approximating the equations directly. This approach
guarantees the preservation of conservation laws, provided nothing is done to jeopardise the symmetries of the varia-
tional principle.

Unlike the work mentioned in the previous two paragraphs, our final equations are expressed in a carefully con-
structed set of pseudo-Cartesian coordinates instead of spherical polar coordinates. By “pseudo-Cartesian” we mean
curvilinear coordinates in which deviations of the metric away from a Cartesian form are neglected. Curvilinear coordi-
nates are necessary to ensure that horizontal coordinate lines lie within surfaces of constant geopotential, as described
in §4 below. Moreover, we do not assume a shallow fluid layer, and do not approximate the true sphericalbpdius
constantR. We thus obtain non-traditional terms in our approximated equations, as in @{litis (2005) extension
of Miller's (1989) approach to encompass White & Bromley's (1995) quasi-hydrostatic equations in spherical geom-
etry. We also obtain our pressure gradient terms consistently from the variational principle, rather than putting them
in by hand as in Niller (1989) and Whitet al. (2005). Our work highlights the essentiéle of a vector potentiaR
for the Coriolis force, through writing2 = (1/2)V x R, and the interaction of the resulting constrant2 = 0 with
the approximation of the spherical metric by a flattened pseudo-Cartesian metric. The derivation given below begins
in spherical geometry, but a purely Cartesian procedure for allo@jntp depend ory is also given in Appendix B.

2. Hamilton’s variational principle for an ideal fluid

The three-dimensional Euler equations for an incompressible fluid in an inertial frame may be derived (Herivel
1955) from the Lagrangian

1|0x

L= /da 2| 0T
The first two terms in (2.1) are the kinetic enefdy2)|z. |> and the gravitational potential energyx). The integral
is expressed over Lagrangian particle lakels (a, b, ¢), and the particle positions = (z, y, z) should be treated as
functions ofa and timer. We use the variable for time to emphasise that partial time derivatieg®r are taken at
fixed particle labels:, instead of at fixed spatial coordinatesThusd/dr = D/Dt in Eulerian variables. Applying
this relation tox gives the Eulerian fluid velocity = dx/07. Salmon (1988, 1983, 1988, 1998) gives many more
details of this form of Hamilton’s principle using particle labels, and its geophysical applications.

The last term in (2.1) is a constraint that enforces incompressibility using the Lagrange multiplie. It is

convenient to assign the labelsso that the density is given by the reciprocal of the Jacobian of the label to particle
map,

— &(z) + p(a,T) (W _ p10> . 2.1)
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The last expression is the determinant &f & 3 matrix of partial derivativesy, = dx/0a etc. The last term in (2.1)
thus enforces incompressiblity by imposing= pg is constant.
According to Hamilton’s principle of least action, the equations of motion render the & 8tationary,

58S = 6/d7-£ =0, (2.3)

under independent variations of the particle positisrad pressurg. The variationgz anddp should vanish at the
endpoints of the- integration, as in classical particle mechanics (e.g. Goldstein 1980) to allow integrations by parts
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with respect tar in the action. The variation in the pressure term due to a variationith y andz fixed is

5‘7; Y,z 8p7y7 pvya II? 'Y, 2 /
d (5 2.4
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The variation of the whole Lagrangian in (2.1) thus yields the three-dimensional incompressible Euler equations with
a gravitational potential,

1
du+u - Vu+ ;Vp =-Vo, Vau=0. (2.5)

This variational approach may be extended to compressible fluids (Serrin 1959; Eckdntip6eplacing they = pg
constraint and its Lagrange multiplier with a potential endidy, s). In generall’ depends upon both density and an
additional advected scalar the entropy. Sinc®s/Dt¢ = 0 we can writes = s(a) with no 7 dependence. The same
approach encompasses Boussinesq fluids with an advected scalar buoyancy instead of the entropy.

The Coriolis force may be included by adding a further term to the Lagrangian that is linear in the velocity,

2
Ez/da% g—f R4 )—l—p(am)(a(x’?m—l). (2.6)

or d(a,b,c)  po
The R notation was introduced by Abarbanel & Holm (1987), although equivalent special cases may be found in
Salmon (1988, 1983) and the particle mechanics version of (2.6) may be found in Landau & Lifshitz (1976). Taking
variations of the action for this Lagrangian gives

1
atu—i—u-Vu—i—(VxR)xu—i—;Vp:—V@, (2.7)

which coincides with the Euler equation in a rotating fram&/ik R = 2£2. Thus R is a vector potential for the
rotation vecton2. The Coriolis force2 2 x v is mathematically equivalent to the Lorentz foraex B experienced by
a particle with charge, and R is the equivalent of the vector potentidlthat appears in the Lagrangian for a charged
particle in the magnetic field = V x A (e.g. Goldstein 1980).

When £2 is spatially uniform,R = 2xx serves as a vector potential. The Lagrangian in (2.6) may then be
interpreted as computing the kinetic energy from the velocity with respect to an inertial figme,f2xx, and
combining the centrifugal force with gravity into a single geopotenkiat ¢, + (1/2)|2xz|?,

{a@+ Jaxal e (G2 - 1) g

2
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Alternatively, one may take the coordinatesvith respect to a rotating frame as being a particular choice of gener-
alised coordinates. The Lagrangian (2.8) then arises from rewriting the kinetic and potential energies with respect to
an inertial frame using these generalised coordinates. The more general form (2.6) follows from the observation that
the action is invariant under replacifigix x by R = 2 xx + V¢, whereyp is any scalar field. The actia$, and hence

the equations of motion, are invariant under a gauge transformation thaVadtis R. Again, this result is precisely
analogous to a result for the Lagrangian of a charged patrticle in a magnetic field (e.g. Goldstein 1980).

3. The vector potential and conservation of circulation

We have added the most general possible term that is linear in the particle velocity to the Lagrangian. However, the
equations of motion derived from Hamilton’s principle contain the Coriolis force generatégi by%VxR, so 2
is subject to the constraiit-£2 = 0. Even without involving Hamilton’s principle, the same constraint is needed to
derive conservation of circulation from the Euler equation with a Coriolis force,

Du 1
— = —-Vp—22xu. A
Dt pr XU (3.1)

The circulation of the velocity. around a closed material lo@gpevolves according to

d

1
< u~d£:7?{7Vp~d£f?{2(Z><u~d£, (3.2)
dt Je cP c

where the left hand side was derived using the forni(&¢) /Dt = (d€- V)u from Batchelor (1967) for the evolution
of a material line elemente.
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Using further formula from Batchelor (1967) for the evolution of material surface elements, we calculate

i//.Q~nd$’:// (u-V2+ 2V-u— 02 -Vu) ndS,

://S [Vx(2xu) +uV-2] -nds,

:fé((zxu).dpr//sv.nwnds, (3.3)

for any time-independent vector fiel? and material surfacé& spanning the material curv& The last step uses
Stokes’ theorem. Equation (3.2) for the evolution of circulation may thus be rewritten as

d[%u-df—l—//&(l-ndé“] :—]{EVp-dE—i—Q//V-.Qu-ndS. (3.4)
de |Je s cp s

We requireV- 2 = 0 to eliminate the source term on the right hand side of (3.4). All the other terms invdlinave
been expressed as a time derivative on the left hand side. Impasiag= 0 also removes the dependency of the left
hand side on the particular choice of spanning surf&d@/riting 22 = V x R and using Stokes’ theorem transforms
(3.4) into

dj{ 7{1
— P(u+R)-db=— ¢ —Vp-de. 3.5
I C( ) b VP (3.5)

We have thus absorbed the torque exerted by the Coriolis force into an evolution equation for the circutatioRof
around the material curv@ The remaining right hand side is the baroclinic torque due to the pressure gradient. The
result (3.5) is generally known as Kelvin's theorem in the absence of the Coriolis force, and as Bjerknes’ theorem
whenR = 2xx (e.g. Holton 1992; Zdunkowski & Bott 2003). The loop integral appearing on the left hand side of
(3.5) is invariant under gauge transformationgdby V¢, because the closed loop integral of the gradient of a scalar
 vanishes, which motivates this more general form of Bjerknes’ theorem given by Abarbanel & Holm (1987). Again,
the replacement ot by v + R appears completely general, sinBeis an arbitrary vector field, but the resulting
Coriolis force is generated by the divergence-free vector fizld (1/2)V x R.

In a stratified fluid, an evolution equation for potential vorticity follows from applying (3.4) to a material ¢urve
and spanning surfacg that lie in a surface of constant entropy (e.g. Pedlosky 1987; White 2002; Zdunkowski &
Bott 2003; Vallis 2006). The loop integral of the baroclinic torque then vanishes, and we may use Stokes’ theorem to
transform the remaining loop integral into a surface integral,

%/[S(qu+29).nd522/[sv-ﬂu~ndS. (3.6)

Writing w = Vxu + 242, we obtain

w

D Vs
— U —w - -2V =—dS = 3.7
//s < D +wVu —w-Vu -2V u) V3] 5=0, 3.7)

sincen = Vs/|Vs| is the unit normal to a constant entropy surface. This integral becomes

//S (]I:))t(w.vs)+(w-Vs)V-u—2V-Qu~Vs>|vls|d5':0, (3.8)

after usingD (9;s)/Dt = —(9;u;)(0;s) in index notation. Equation (3.8) holds for all material surfaSemontained
within a constant entropy surface, so it implies the pointwise evolution equation

Dg 2
— =-V-Ru-V .
Dt 5 u- Vs (3.9

for the potential vorticity
w-Vs
P

We have removed the term proportional¥oeu from (3.8) using the continuity equatiddp/Dt + pV-u = 0, so
this derivation applies equally to compressible and incompressible fluids. In concl¥si@n= 0 is necessary for
material conservation of potential vorticity, as observed by Grimshaw (1975).

q= (3.10)
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4. Hamilton’s principle in spherical geometry

Transforming (2.6) into spherical polar coordinates, the Lagrangian for an incompressible fluid on a rotating sphere
may be written as

L= /da [;7'2(132 + %7’2 cos?pA2 + 12 cos?¢ QN + D(x) + p(a, 7) <r2 cos ¢ m — ,0’10” , (4.1)

where), ¢, andr are longitude, latitude, and radius. This expression arises from using the vector potential
Nxx = Orcosg A (4.2)
for the Coriolis force. The velocity vector is
T =71coSPAN+TdP+ T, (4.3)

where dots denote derivatives with respect to time

This Lagrangian is exact for a sphere. However, the gradient of the combined geopatentid) + (1/2)] 2 x x|
has a horizontal component due to the centrifugal force even when the gravitational pabgnsiad function ofr
only. For geophysically relevant parameters this lead€ #being the dominant term in the horizontal momentum
equations. It is therefore common to omit the centrifugal potential, leaving only the gravitational pofénjimhose
gradient has no horizontal component. The justification for this omission is that the Earth’s surface is much closer to
a surface of constant geopotential, or an oblate spheroid, than to a sphere. One then re-interprets the comsdinate
labelling surfaces of constant geopotential, instead of surfaces of constant geometrical distance from the centre of a
sphere. The Lagrangian (4.1) is then an approximation to the exact Lagrangian, with the full geopotential, formulated
in oblate spheroidal coordinates. This exact Lagrangian gives the equations derived by Gates (2004), and its approxi-
mation omits terms of orde¥/r)? from the metric, wherd is the distance between the two foci of the spheroid. This
approximation of a spheroid by what appear to be spherical polar coordinates is employed by Phillips (1973); Veronis
(1973); Gill (1982); Muller (1989); White (2002); Whitet al. (2005) and described in particular detail by van der
Toorn & Zimmerman (2008).

Following Ripa’s (1997) study of motion on a spherical surface, we introduce the horizontal coordireatdg
defined by

A = sec qzbo%, sin ¢ = sin ¢g + % Cos ¢yg. (4.4)
This relation betweery and ¢ in (4.4) leads to the quantity appearing in the equations derived below with its
conventional valueg = (2/R){2 cos ¢¢ as in (1.3). The widely used coordindte= (¢ — ¢o)/R leads to a different
expression for3, as does the Mercator latitude coordinate used by Grimshaw (1975). Calculations using both these
coordinates are given in Appendix A.

As we are concerned with three-dimensional motions, unlike Ripa (1997), we also introduce a vertical coordinate
z. This coordinate is constructed to make the volume element fat,the: coordinates equal to the Cartesian volume
element,

dAde d
dV = r? cos pd\dodr = 2 cos ¢——¢—rdxdydz
dr dy dz
o sec ¢g Cos ¢g R72 _
=r cosgb( 7 ) (Rcosqb) <r2 daxdydz = dadydz. (4.5)

Ripa’s (1997) choice of; coordinate eliminates the-dependence of the volume element. To also eliminate-the
dependence, we require

dr R?
— = —. 4.6
dz r? (4.6)
The solution of this ordinary differential equation determines
22
r=R(1+32/R)* ~R42z—-"=+---. 4.7)

R

The constant volume elemedl” = dxzdydz ensures that the pressure gradient terms in the equations of motion
obtained from Hamilton’s principle take their expected forms.

However, ther, y, z coordinates are not Cartesian coordinates, and the individual components of the metric tensor
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are not constant. Im, y, z coordinates the Lagrangian (4.1) becomes

B 1., 21431, z\2/3 y v\
L’—/da§z {1+3—} + 59 {1+3—E} 1= 2tangop — 3
2

1.5 . z2/3 Y y
+(2x —i—xQCOS(bO) {1+3E} {1—2tan¢oR—R2

+ &(2) + p(a,7) (CM — p10> . (4.8)

The factors in brace$ } that multiply &2, §2, 22 are the diagonal componenys,, g,y, g-. of the metric. Veronis
(1963) showed that the spatial dependence of the metric components leads to discrepancies between a rational ex-
pansion of the spherical equations in a ratio of lengthscales and what are normally callegl#ime equations, as
described below.

The coordinate: only appears in the Lagrangian (4.8) through the Jacabjany, z)/9(a, b, ¢) in the incompress-
ibility constraint. Otherwise: is an ignorable coordinate, so Noether’s theorem gives a conservation law for angular
momentum in the absence of pressure torques, as in equation (5.8) belanafithg coordinate lines defined by (4.4)
are tangent to the stereographic coordinate linesdy used by Phillips (1973). Taking a stereographic projection
from a point with arbitrary latitude, and longitude\ = 0 gives

AR? — 32 — 2 AR

Pl “9

sin ¢ = sin ¢g
whereZ andy are the stereographic coordinates. In this coordinate systemlihe is a great circle tangent to the
latitude circlegp = ¢o. In other words, equation (4.9) asymptotes to the second of equations (&4ARandy/R
tend to zero. However, the lines of constariecomes inclined relative to the latitude circles away from the origin of
the projection. There is thus no ignorable coordinate analogous to longitfudeo thex defined by (4.4), and hence
no obvious angular momentum conservation law available from Noether’s theorem.

5. Beta-plane equations from an approximate Lagrangian

A (-plane approximation arises from exploiting the smallness, gf z compared with the planetary radi@s In
principle there are two independent small parameters,

e=L/R, and §=H/L, (5.1)

where L and H are typical horizontal and vertical lengthscales for the fluid motion. The traditional approximation
arises from a smalfl limit, in addition to the smalt limit that gives g3-plane. In geophysical fluid dynamics it is con-
ventional to perform derivations using dimensional variables (e.g. Grimshaw 1975; Veronis 1981; Shutts 1989; White
2002; Gerkemaet al. 2008). We therefore retain explicit factors Bfinstead of absorbing them into dimensionless
coordinates.

Expanding the Lagrangian (4.8) iy R for fixed H/L and keeping terms of up to ordek/R)? gives
B 1 /0z\> y z 1 [0y 2 Y z
1 /02\? z oz,y,z) 1
t3 () (g resmen (5055 )

ox z 22 y? Y Yz\ .
+ QRS {(1 +22 - = - R2> cos B — (zﬁ + 4ﬁ) sin ¢0} (5.2)

The same expression may be derived by substitutirge R2’, y = eRy’, z = eRZz’, expanding up to and including
term of ordere3, then rewriting the resulting expression in terms of the original variahlgsandz.

The terms in braceé } are the linearised metric coefficients from (4.8). If considered purely as an expansion in
lengthscales, thg-dependence of the metric terms in bra¢ésis comparable in magnitude to tlyedependence of
the term responsible for theé effect in the Coriolis force. The equations of motion obtained from the Lagrangian
(5.2) therefore contain curvature terms proportional to the velocity squared, and metric factors multiplying the time
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derivatives, as described by Veronis (1963, 1981),

Yy z\ Du 2 10p
(1—2§tan¢o—|—2§)ﬁ—l—Eu(w—vtanfbo)—FQQyw—QQZU:—;%, (5.39)
y 2 Du  La e 2 _ 1o
(1+2Rtan¢0—|—2R) D + R(u + v )tan¢o+Ruw+ZQZU— oy’ (5.3)
z\ Dw 1 19p
1-42) =2 -~ (40 +20%) —2Qu=——2L —g. .
( R) Dy Rt ) v T, Y (5-%)

The curvature terms appear because a free particle moving on the surface of a non-rotating sphere follows a great
circle. This is a geodesic path on the surface of a sphere, but a curved pathringthecoordinates. However, the
pressure gradient appears in a Cartesian form because the volume eledrehtds. The gravitational acceleration
is g = — &' (z). Expressions fof), and(2, are given in (5.9) below.

Some additional assumption is needed to justify discarding the curvature terms while retaining the terms that give
rise to thegs effect. Following Veronis (1963, 1981) one may restrict attention to near-equatepiaines, since the
tan ¢o terms become negligibly small whed,| < 1, and vanish exactly at the equator. In our three-dimensional
treatment a small aspect ratio approximatiéh &« L) is also needed to justify discarding thedependence of the
metric. The derivation in LeBlond & Mysak (1978) neglects terms of orderp,(L/R) while retaining terms of
ordercos ¢o(L/R). This is valid only forg, < 1, so being close to the equator is implicitly one of their geometric
assumptions. At mid-latitudesn ¢, (L/R) andcos ¢o(L/R) are comparable in magnitude, so it becomes inconsistent
to neglect one while retaining the other.

Alternatively, following Phillips (1973), one may introduce the additional assumption

dr Jy
Qy > (87’ 37’) (5.4)
to justify neglect of the curvature terms. The conventional mid-latitéigdane equations then arise as a distinguished
limit in which the Rossby number is comparable to the ratio of lengthscales,
U L
RO_2QLNR' (5.5)
In this limit, the leading order termd /2)x2 and(1/2)y?2 in the kinetic energy are comparable in magnitude to the
Qx.y%/R term that is responsible for theffect.

Using one of these further appproximations to discard the metric terms in Hradesm (5.2) leads to the simpli-

fied Lagrangian

e o () 3 A (5w men (B3

or z 22 9P Y yz\ .
The Euler—Lagrange equations now take the form of equations of motion in Cartesian coordinates,
Du 10p Dv 19p Duw 19p
— +2QQuw—-2Qv=——-—, —H4+2Qu=———, — -2Qu=—-————g, 5.7
Dt + ety Y pOx’ Dt + “ p Oy Dt vt p 0z g ®.7)

althoughz, y, z are actually curvilinear coordinates, as described above.

The term in square brackefs - | multiplying dz/907 in (5.6) is the effective vector potenti&l,, and the first of
equations (5.7) may be rewritten as
D 10p
This shows that the zonal momenturi R, is conserved in the absence of pressure torques, as obtained by applying
Noether’s theorem to (5.6) with its ignorable coordinat&valuatingu - VR, = 2Q,w — 2, v, we find

(5.8)

z z
2Q, =2Qcos ¢ (1 — 2tan¢0% — E) = 2Q cos ¢g (1 — E) + vy, (5.99)

- ; Y 192\ 2904 d
2Q, = 2Qsin ¢g (1—|—Cot¢0R+2R) 2951n¢0(1—|—2R>—|—ﬁy. (5.%)

The proportionality constants for the changefdfvith y are thus
282 cos ¢g 4Q sin ¢g

— =70 5.10
B 7 7 (5.10)

The constany for the y-dependence dR, has twice the value one would obtain by simply expanding the expression
for the rotation vecto#? in spherical polar coordinates as a functiorypés in (1.3).
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More importantly£}, acquires a-dependence proportional fathat compensates for thedependence d?,,. The
vector field £2 is thus divergence-free with respectatpy, z when treated as pseudo-Cartesian coordinates with an
Euclidean metric,

o0 o0

NnN=2" z

v oy T o-

Itis given by 2 = (1/2)VxR = (1/2)(0,0.R,, —0yR.), whereR = &R, is the vector potential, ant x is the
curl operator in pseudo-Cartesian coordinates with an Euclidean metric.

= 0. (5.11)

6. Consistent further approximations

Making further approximations in the Lagrangian (5.6) leads to additional simplifications, including the traditional
approximations-plane, and Grimshaw's (1975) non-traditiortaplane. The largest term in the vector potential in
(5.6) appears as part of the exact time derivatly€)x R cos ¢p) and so does not contribute to the action (see Ripa
1997). Equivalently, a constant may be removed from the vector potential without changing its curl, and hence without
changing the Coriolis force. We therefore omit A&z - cos ¢ term in the further simplified Lagrangians below.

6.1. The traditional approximation
Dropping all terms involving:/ R from the vector potential leads to the Lagrangian

Ox 1 /0y oz,y,2) 1
il P St A e
c= faag( 7) 2 (5 ) #06) atan) (Gt
dz [ vy y
+ QRE { V2 cos ¢g — QE sin ¢ | - (6.1)
Taking variations gives the traditional approximatjgsplane equations. There are no terms involihg and

2Q, =20sin ¢y + By. (6.2)

In this approximation the vertical velocity, also disappears from the kinetic energy, so the vertical momentum
equation reduces to the hydrostatic balapeep. = 0.

6.2. The Grimshaw (1975) non-traditiongtplane
Retaining the terms proportional tg R andy? /R, but notyz/R?, leads to the Lagrangian

1/0z\> 1 /[8y\’ oz,y,2) 1
c=faas () +3(5) + e oran(Gets )
O y? y .
+QR8— [( Rz—I—ZR) cosqﬁo—QRsmqbo} . (6.3)
This therefore corresponds to a distinguished limit in which J, so they? and thez terms are botlD(¢?). Theyz
term isO(e?) and may be discarded. In dimensional variables, this distinguished limit is

H L U

T7R" 200 (6-4)
while the earlier equations permittéfl/ L = O(1). Taking variations of (6.3) leads to tlieplane equations proposed
by Grimshaw (1975) with

29, =2Qcos ¢y, 2, =2Qsin¢y + Py. (6.5)

The horizontal componeift, is retained, but with a spatially uniform value. The vertical compofigntaries with
latitude, as in the traditiongl-plane above. Agairl)w/Dt disppears from the vertical momentum equation, but this
time we obtain auasihydrostatibalance (White & Bromley 1995; Whitet al. 2005)

Ip

—2Qu= ~3, 9 (6.6)

becausé, appears in the vertical momentum equation.
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6.3. A quasihydrostati@-vy-plane
A slight simplification in the3-y-plane equations may be achieved by dropping:fhe:? terms from the Lagrangian,

leaving
1 /0z\> 1 [0y\> Oz,y,z) 1
— [da = (< (X @ 99 e 2
£ / @3 <8T> 3 (87) + 2(z) +pla,7) (8(a,b,c) po)
ox y? z y Yz\ .
+ORS K—RQ + 2R> cos o — (2R + 4ﬁ) sin éo | - (6.7)
This is the Lagrangian that we shall use to derive shallow water equations below. It leads to the simplest set of equations

in which Q, and(2, both vary with latitude,

20, =2Qcos g+ vy, 29, = 2Qsin o (1+2%)+ﬁy. (6.8)

The z-dependence dR, is essential to restor€-£2 = 0 with respect to a constant metric, and arises from the same
yz term in the Lagrangian that givesyadependence df,. However, the earliee-dependence df, in (5.9) has
been eliminated.

7. Depth-averaged equations

Depth-averaged descriptions, such as the shallow water and Green & Naghdi (1976) equations, may be derived from
a three-dimensional Lagrangian by restricting the fluid elements to move in columns (Salmon 1983; Miles & Salmon
1985). We use this approach to derive a non-traditional analogue of the shallow water equations, and show that these
equations coincide with those derived by Dellar & Salmon (2005) and Stewart & Dellar (2010) using purely Cartesian
geometry.

We assume that the fluid lies in a layer between a rigid base-at B(x,y) and an upper free surface at=
B(z,y) + h(z,y,7). The labelsc may be assigned so that= 0 on z = B(x,y), andc = 1 on the free surface
z = B(x,y) + h(z,y, 7). We also assume that the map from laket® coordinates: takes the restricted form

r=ux(a,b,7), y=yla,b,1), (7.1)

with no dependence on the third lakelThe incompressibility constraint for the three-dimensional Jacobian then
factorises into

= - 9 (7.2)

which may be solved to give

—1
z= (po (Z((Z: Z))) c+ B(z,y) = h(z,y,7)c + B(z,y). (7.3)
The dynamic boundary condition of zero pressure on the free surface is implicit in the Lagrangian, because there is no
contribution from the work done by an external pressure at the free surface (see Miles & Salmon 1985). The kinetic
energy due to vertical motions is usually neglected in shallow water theory, since it i &f(Ey?> smaller than that
due to horizontal motions. Miles & Salmon (1985) showed that retaining this term gives the Green & Naghdi (1976)
equations in place of the shallow water equations.

Substitutingz = hc 4+ B into the Lagrangian (6.7) and completing the integration evgives the shallow water

Lagrangian
£= [daant(2Z 2+71 AN B+ in
“Pa\or) T2\or) 7Y 2

Oz yv>  h+2B y h+2B\ .
QR— || —=5 -2= 11 . 7.4
+ R&'T {( iz + i ) cos ¢g R ( + I ) sin qzbo} (7.4)

The expression in square brackpts | is the vector potentiak, evaluated at the midsurfaece= B + h/2. Similarly,
the gravitational terng(B + h/2) is the gravitational potentiab = gz evaluated at the midsurface. Both expressions
also correspond to their averages over the layer, as defined in (7.13) Below, R,(v,y,z = B + h/2) and
g(B+h/2) = gz.

The variational derivatives of (7.4) give the zonal momengym

0L O h+ 2B

P = 9z, ~ or — 20 ysin ¢g (1—1—

2 h+2B> (7.5)

Y
)+QRCOS¢>0< R2—|— 7
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the meridional momentum,, and the Montgomery potential
oL 0Oy 0L 1 ox Yy o
y = = s _— = —— 79 ( S — 2* S ) . 7
b= gy T ar on - 29T g \Cosdo m 2y sindo (7.6
The Euler-Lagrange equations for stationarity of the action under varigtongy be written as

d /6L oL 10 50L oL
dT((;xiT)—axi—(at‘Fu-V)pi_haxi(h (sh)_(mh—oy (7-7)

using formulae from Miles & Salmon (1985). The last two terms separate the implicit dependence on the caerdinate
andy through the height from any explicit dependenceandy through the topograph# or vector potentiaR. The
heighth in (7.4) is a shorthand for the reciprocal of the Jacobian of the (map — (z,y) from labels to particles as
defined in (7.3).

The Euler—Lagrange equations (7.7) may be written more simply as

U + u - Vu — feriv + 0y [g(h + B) — hufy] — Q,V-(hu) =0, (7.89)
vy +u- Vo~ feu+ 0y [g(h + B) — huf),] = 0, (7.80)
where the effective traditional Coriolis paramefefis given by
. 0
fett = 2Qsin ¢ + By — By (Qy(B+h/2)). (7.9)

The last term arises from the dependence of the zonal angular momentum of a fluid column on its mean distance
from the rotation axis. The non-traditional component of the rotation vector also alters the pressure away from
its hydrostatic value. The pressure is now determined by a quasi-hydrostatic balance with both gravity and the non-
traditional part of the Coriolis force. The combination of the vertical velocity and the non-traditional part of the Coriolis
force leads to the-Q2,V-(hu) term in (7.&). The height evolves according to the usual shallow water continuity
equationh; + V-(hu) = 0, as derived by differentiating (7.3) with respectitoEquations (7.8) coincide with the
non-traditional shallow water equations derived by Dellar & Salmon (2005) in Cartesian coordinates, as amended by
Stewart & Dellar (2010) to correct the case when the horizontal part of the rotation vector has non-zero horizontal
divergence.

These extended non-traditional shallow water equations materially conserve the potential vorticity

_ L (%y P
=5 (83} 8y>’ (7.10)

using a general result derived from the particle relabelling symmetry by Ripa (1981) and Salmoa)(Fe8zhe
Lagrangian in (7.4) this expression evaluates to

q= % {QQsinQSo (1 + h —;2B + 2%% <B + Z)) + 28 cos ¢g <Jz — gy <B + Z))] , (7.11)
which may be written more compactly as
qzﬂmz—mya‘?y(BJr;hHg—gﬂ, (7.12)
by introducing the vertically-averaged rotation vector
s 1 h+B
2(z,y,t) = E/B 2(z,y,z)dz. (7.13)

Thus2Q, = 2Qsingg + By — v(B + h/2), and2 Q, = 2 cos ¢o + vy. The vertical averag® is time dependent
because the layer heightz, y, t) is time dependent. Again, this expressiondaroincides with the expression given
previously by Dellar & Salmon (2005) wheéh 2, = 0, and with the amended form given by Stewart & Dellar (2010)
whend,, # 0.

8. Conclusion

Starting from Hamilton’s principle for an ideal fluid expressed in spherical polar coordinates, we introduced a set of
pseudo-Cartesian coordinatesy, z with the important properties that the horizontahndy coordinate lines lie in
curved surfaces of constant geopotential, while the volume element is pretiselydz dy dz due to cancellations
between the metric coefficients. We then assumed that the coordinates: were all small compared with the
planetary radius?, expanded the Lagrangian in powersigiR, y/R, z/ R, and truncated. An additional assumption,
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equivalent to a small Rossby number, was introduced to justify the neglect of metric terms in the kinetic energy due to
the non-Cartesian nature of they, z coordinates. This additional assumption may be omitted when the coordinate
system is centred around a point on, or sufficiently close to, the equator.

From the truncated Lagrangian in thesey, z coordinates we derived sets of equations that include the traditional-
approximation3-plane equations, Grimshaw’s (1975) non-traditioftgdlane, and an extendetd~-plane that allows
the non-traditional Coriolis parameter to vary with latitude. These different approximations arose from different treat-
ments of the vertical coordinaterelative to the horizontal coordinatesandy. The traditional3-plane equations are
a consequence of neglecting all terms proportional o the Lagrangian, while Grimshaw’s (1975) non-traditional
(B-plane arises from retaining a term proportionat twhile neglecting a term proportional {&. Retaining this addi-
tional term leads to a non-traditiondi~y-plane in which the non-traditional Coriolis paramefararies with latitude.
We rewrite the resulting equations (5.7) and (6.8) in slightly different notation here for emphasis,

1 dp Dv 71@ Dw 10p

Du ~
_ — __F - —— - _ S 8.1
Dt +fw=fu pozx’ Dt +fu p0y’ Dt Ju p Oz 9, (8.1)

where the two Coriolis parameters are
f=2Qsin¢g (1 + 2%) + QQcosgbo%, f=2Qcospy — 4Qsin¢o%, (8.2)

and thez, y, z coordinates are defined by (4.4) and (4.7). The parantetaus takes its conventional valye =

(2/R)) cos ¢, Whiley = —(4/R)Q sin ¢. The additionak-dependence of restoresv-{2 = 0 in pseudo-Cartesian
coordinates, which is essential for conservation of circulation and potential vorticity:-tlependence of may be
interpreted as giving a pseudo-Cartesian representation of the dependence of the true angular momentum on spher-
ical radiusr. The z-dependence of and they-dependence of together restore the ordéf/R terms to the zonal
momentum equation from (8.1),

D 10

D—qz + | 282 cos ¢g —4Qsinq§0]y%}w— |:2QSi1’l¢Q( 1 +2%)+2QCOS¢0% U:—fa—p. (8.3)
< e—— — —~ ~ ——— poT

v H H L H L

2QL L R R R

The magnitudes of the various terms are shown relative to the traditional Coriolis term. The traditaak term

is orderL /R, and the non-traditional Coriolis terms are naturally orHgt. smaller than the traditional terms under

the shallow layer velocity scaling ~ (H/L)u. The additional terms of ordeif /R extend the3-plane equations

into the deep atmosphere regime (Wheteal. 2005) whereH /L is treated as a®(1) quantity. White & Bromley

(1995) estimate the change in relative velocity incurred by an ascending air parcel due to non-traditional effects. The
additional orderH /R terms may become relevant for meridional overturning circulations (in the ocean) or Hadley
circulations (in the atmosphere) where fluid parcels ascend and descend at different latitudes. Conversely, the near-
inertial waves studied by Gerkema & Shrira (2005) depend criticallwon f, the difference between the wave
frequencyw and the local inertial frequency. These waves are thus very sensitive to chanfestimlatitude, but

relatively insensitive to changes jhwith latitude.

Being derived from Hamilton’s principle, each of our equation sets conserves energy, angular momentum, and
potential vorticity. These properies are guaranteed by Noether’'s theorem from the symmetries of the truncated La-
grangians. Moreover, introducing the generalised coordinatgs = into Hamilton’s principle does not involve re-
solving forces or performing vector calculus in the generalised coordinates. A minor drawback of the variational
approach is the need to calculate small terms one order higher in the Lagrangian than in the equations of motion,
since the latter arise from variational derivatives of the Lagrangian. For example, to obtain terms that are linear in the
small parametey/ R correctly in the equations of motion, the Lagrangian must be accurate to(gydey?. To obtain
the conventional value faf we must use the coordinateintroduced by Ripa (1997), rather than the conventional
latitude coordinatey = (¢ — ¢o)/R, or the Mercator latitude coordinate described in Appendix A, even those these
coordinates only differ at ordér — ¢,)2. The consequences of using these other latitude coordinates are described
in Appendix A.

The constraintvV-{2 = 0 is essential for conservation of circulation and potential vorticity, as recognised by
Grimshaw (1975), and for the existence of a variational formulation. The essential difficulty in allGyitgvary
with the latitudey arises from the interaction of theé- £2 = 0 constraint with the approximation of the spherical metric,
with its spatially varying coefficients, by a flat Cartesian metric. Moreover, approximations of the true spherical radius
r by a constanfz, and of true latitude» by a constanty, do not commute with differentiations with respecttand
¢, as described in Appendix B. Both these difficulties may be avoided by performing approximations in Hamilton’s
principle, rather than directly in the equations of motion. Our derivation from Hamilton’s principle also shows that the
coefficienty for the y-dependence df,, differs by a factor of two from the value one obtains by approximafihg
alone.
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Appendix A. The choice of latitude coordinate

The -plane equations derived in the main text hgve 2 Q) varying linearly with the coordinatg introduced by
Ripa (1997) and defined by

sin ¢ = sin ¢ + %cos do. (A1)

The derivatived f /dy takes its conventional valug = (2/R){2 cos ¢y. If instead we adopt the coordinajedefined
by

o=go+ L, (A2)

as used by LeBlond & Mysak (1978), Veronis (1981), Pedlosky (1987), and Ger&tala(2008), a calculation
analogous to that in the main text leads to the Lagrangian

1/0z\> 1 [07\° cos(¢o + §/R) O(x,7,2) 1
= [da = | =— — | = P L —
e= [aos(5r) 3 (o) + 20 oot (MERE5ES )
or T j2
+ QRa (2;’% sin ¢ + %(sec ¢o — 2 cos ¢0)) (A3)

in the traditional approximation.é. dropping all terms involving in the vector potential and kinetic energy). Besides
an anomaly in the pressure gradient due togHtependence of the volume element, the resulting equations of motion
contain

Q. = Qsingy + Q% (2 cos ¢p — sec ¢p) . (Ad)

The proportionality constant is thus = (2/R)Q(2 cos ¢y — sec ¢ ). The appearance of a term involvisgt ¢ is
reminiscent of Cushman-Roisin’s (1982) comparison of the oscillatory motion of a free particle between a sphere and
a 3-plane defined using. The two coordinateg andg coincide at the equatong = 0) and hence so dé and3.

Grimshaw (1975) defined, y, z coordinates using

X z
AZES%%, u=u0+%sec¢o, r = Rexp <E)’ (A5)
wherey is the Mercator latitude coordinate defined by the relations
sechp = cos¢, tanhpu =sin¢g, sinhp = tang. (A6)
Substituting these expressions into the spherical Lagrangian (4.1) and expandin@ ((i.fd&?)?) leads to the La-
grangian
z:—/d Li(omN (o) {1-22¢ ¢+25}+1 9z 2{1+2Z} (A7)
-je 2 or or R 8t %o R 2 \ 0T R
eXp(?’Z/R) _ 2 g 8($7y,2) _ i
+ &(2) + pla,T) (cos? ™ (1 tanh (Mo + 7 5ec gzb())) Aabo

or z 22 y? Y Y yz\ .
+ QRE [(1 + 2§ + 2? — 3R2> cos g — 4E sec ¢pg — (2§ + 4?) sin¢g | ,
wherepy = tanh ™! sin ¢. The horizontal kinetic energy becomes isotropic in these coordinates, but there is a non-
constant term multiplying the Jacobi&fw, y, z) /9(a, b, ¢) in the volume element. A term proportionalde: ¢ also
appears in the vector potential, just as it does for the earlier choice of coordinates leading to (A 3) above. The equations
of motion obtained from the Lagrangian (A 7) contain the Coriolis terms

z T
20, = 20 cos ¢ (HQE) — 402 sin gy, (A8a)
_ : z ¥ _
2Q, =20sin ¢g (1+2R)+ZQR(3COS¢O 2sec ¢p) . (A 8b)

Again, the proportionality constant for the linear dependence @f on y does not take its expected vale=
(2Q/R) cos ¢ except at the equator.
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Appendix B. A purely Cartesian approach

Following the heuristic derivation of the-plane approximation, as sketched in the Introduction, the natural rotation
vector for a non-traditionagb-plane should be

20 = (0, f, f) = (2Qcos ¢y + 7y) § + (2Qsin ¢ + By) 2, (B1)

where f and f are given by expanding{sin ¢ and2Q cos ¢ as in (1.3). However, this vector field has non-zero
divergenceV-(202) = 5 # 0, away from the equator. Therefore, it cannot be written as the curl of a vector potential,
202 = VxR, as required for conservation of circulation and potential vorticity. This is why Grimshaw (1975) set
4 = 0in his non-traditional5-plane.

The non-zero divergence @2 arises from the approximation of the spherical metric by a constant Cartesian metric.
In spherical geometry, the vector fiefd = Q (sing 7 + cosqbqﬁ) has zero divergence, even thoughdtsomponent
is a function ofg. Ther-dependence of the spherical volume elemBnt= r2 cos ¢ dA d¢ dr allows the net influx of
24 to a control volumelAd¢dr to be balanced by a net outflux 9f., because the upper surface of a control volume
has a larger area than the lower surface. Equivalently, we calculate

1 1
V2= mowa% (Qpcos¢) + (r’Q,) =0, (B2)

when(, = Qsing, Oy = Qcos ¢, andf2y, = 0. The non-zero divergence arises when one approximakgsk
(constant) andos ¢ by cos ¢g (constant), however good an approximation this may seem in the sense &fand
¢ — ¢p being small compared witR and¢g.

However, one may restofé-£2 = 0 in Cartesian coordinates by adding a compensatidgpendence tf.,,

202 = (2Qcos g + Fy) § + (2Qsin¢g + By — 72) 2. (B3)
A convenient vector potential is
R = [2Q(zcos ¢o — ysin o) — %ﬁy2 + Jyz| &. (B4)

This satisfiesVx R = 242, has noz-component, which is convenient for deriving a depth-averaged shallow water
theory (as in Dellar & Salmon 2005), and has no dependence andberdinate. The resulting Lagrangian therefore
has no explicit dependence enso Noether’s theorem yields a conserved zonal momepiyras in Ripa (1993). In
fact, this Lagrangian coincides with the Lagrangian for the simpliflegplane derived in (6.7), except the value of
4 differs by a factor of two from the derived from spherical geometry.

Alternatively, we might try to approximate the vector potential directly. The rotation végtisrgiven in spherical
polar coordinates by the vector potential

Ryphere = 2xx = Qrcos ¢ X (B5)

which is denoted. by Phillips (1966). Putting = R + z, ¢ = ¢ + y/R, and expanding up to second ordeifiR
andz/R, we obtain

1 2
Ryphere = QR <cos bo — %sin Po + %cos ¢o — 5% COoS g — %
Dropping the constant ter@R cos ¢, which has zero curl, we are left with precisely half the Cartesian vector poten-
tial R given in (B 4). The extra factor of two is required to compensate for the approximation of the spherical metric

by a constant metric. The curl of the vector poteni&},.... in spherical polar coordinates is given by

sin ¢o> & (B6)

0 "
TCOS¢8—¢(COS¢R,\)T:2(Z, B7)

since R, = Qr cos ¢. Replacingr with ¢ (constant) andos ¢ with cos ¢ (constant) has the effect of halving the
guantity calculated,

Vx (RQ?) 19 Ry 6

v or

10 - 1 9 . A
TOE(TORA) o — m%(cosqﬁo Ry 7 =0Q (cos¢gb + smqbfr') =1. (B8)
Again, this is anO(1) change, even ifr — | < ro and|¢ — ¢o| < ¢o.

Phillips’s (1966) derivation of the traditional approximation replacky r, (constant) in both the curl operator and
the vector potential, which becomes

Riraa = Qrocos ¢ A, (B9)
but leaves) unapproximated. The approximated curl of this vector potential is thus
LG (Qrg cos® ) 7 = 2Qsin ¢ 7 = 02 - 77, (B 10)

_rocosqS@Tb
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which is the locally vertical part of2, as it appears in the traditional approximation.
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