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Starting from Hamilton’s principle on a rotating sphere, we derive a series of successively more accurateβ-plane
approximations. These are Cartesian approximations to motion in spherical geometry that capture the change with
latitude of the angle between the rotation vector and the local vertical. Being derived using Hamilton’s principle, the
different β-plane approximations each conserve energy, angular momentum, and potential vorticity. They differ in
their treatments of the locally horizontal component of the rotation vector, the component that is usually neglected
under the traditional approximation. In particular, we derive an extended set ofβ-plane equations in which the locally
vertical and locally horizontal components of the rotation vector both vary linearly with latitude. This was previously
thought to violate conservation of angular momentum and potential vorticity. We show that the difficulty in maintaining
these conservation laws arises from the need to express the rotation vector as the curl of a vector potential while
approximating the true spherical metric by a flat Cartesian metric. Finally, we derive depth-averaged equations on
our extendedβ-plane with topography, and show that they coincide with the extended non-traditional shallow water
equations previously derived in Cartesian geometry.

1. Introduction
Geophysical fluid dynamics is concerned with the wide range of complex behaviour exhibited on many different

scales by stratified fluids moving over the surface of a rotating planet. Simplified or model equations designed to
capture particular phenomena or processes thus play an important rôle. In this paper we consider the simplications that
replace spherical, or even spheroidal, coordinates with Cartesian coordinates while retaining the latitude-dependence
of the angle between the local vertical and the planetary rotation vector. These approximations are known asβ-planes,
after the symbol used for the latitude-dependence of the locally vertical component of the rotation vector. They were
first proposed by Rossbyet al. (1939) as a purely conceptual model for motion on a sphere. Only later, beginning
with Veronis (1963), were theβ-planes investigated as possible rational approximations to the equations of motion
formulated in spherical geometry. In particular, a valid set ofβ-plane equations should inherit the conservation laws
of the underlying spherical equations. These include conservation of energy and angular momentum, and material
conservation of another quantity called potential vorticity. The last is probably the most important because potential
vorticity is tied to individual fluid elements, while energy and momentum may be transported over long distances by
waves without any net displacement of fluid elements.

Following Rossbyet al. (1939), we seek equations that capture the change with latitude of the components of the
planetary rotation vector with respect to local axes, but in all other respects appear as though they were formulated in
Cartesian coordinates. We thus seek equations of the form

Du

Dt
+ f̃w − fv = −1

ρ

∂p

∂x
,

Dv

Dt
+ fu = −1

ρ

∂p

∂y
,

Dw

Dt
− f̃u = −1

ρ

∂p

∂z
− g, (1.1)

in axes withx eastwards,y northwards, andz upwards anti-parallel to the local gravitational acceleration. The velocity
vector isu = (u, v, w), and the material time derivative isD/Dt = ∂t +u ·∇. The fluid density isρ, the pressure isp,
andg is the acceleration due to gravity (see below). This orientation of axes withx eastwards conveniently reduces the
number of Coriolis terms in (1.1) from six to four, with two Coriolis parametersf andf̃ . In a sufficiently small region
around a reference latitudeφ0, the two Coriolis parameters aref = 2Ω sin φ0 andf̃ = 2 Ω cos φ0. Thusf andf̃ are
equal to twice the locally vertical and locally horizontal components of the rotation vector respectively. To create a
completeβ-plane approximation we require relations between thex, y, z coordinates and spherical polar coordinates,
and expressions forf andf̃ as functions ofx, y, andz that are valid over a larger region of the sphere.

The standardβ-plane approximation replaces the exact spherical relationf = 2 Ω sin φ with a truncated Taylor
expansion in the variablẽy = (φ− φ0)/R,

f = 2Ω sin
(

φ0 +
ỹ

R

)
≈ 2Ω sin φ0 + βỹ with β =

2Ωcos φ0

R
, (1.2)
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whereφ0 is a reference latitude, andR is the planetary radius. The other Coriolis parameterf̃ is set to zero under the
widely-used traditional approximation, as described below. The combination of (1.1) withf given by (1.2) and̃f = 0
is widely used in theoretical studies of the wind-driven ocean circulation (e.g. Gill 1982; Pedlosky 1987; Salmon
1998). However, this system of equations cannot be derived as a rational approximation to the equations of motion on
a sphere merely by expanding these equations in ratios of lengthscales (see Veronis 1963, 1981, and§5 below). The
difficulty arises because free particles on a non-rotating sphere move along great circles, which typically appear as
curved paths in a coordinate system. The equations of motion in those coordinates thus contain curvature terms, like
those in (5.3) below, that are not included in (1.1).

Many of these curvature terms vanish at the equator, where the latitude and longitude lines are themselves great
circles, so equatorial or near-equatorialβ-planes may be derived without further assumptions. Alternatively, one may
invoke an additional assumption regarding smallness of a Rossby number, as in Phillips (1973). For this reason the
mid-latitudeβ-plane approximation is sometimes put forward only in a quasigeostrophic context (e.g. Pedlosky 1987;
Holton 1992), although it is widely used outside quasigeostrophic theory. Verkley (1990) proposed an alternative
approach that constructs a second system of spherical polar coordinates whose equator passes through the reference
latitudeφ0. The curvature terms thus vanish locally in this coordinate system, but the expressions for the Coriolis
terms become much more complex, and there is no natural conservation law for angular momentum.

The neglect of terms involving̃f , the locally horizontal component of the rotation vector, was named the traditional
approximation by Eckart (1960a), on the grounds that it was widely used, but otherwise lacked theoretical justification.
Phillips (1966) gave a derivation based on expressing2Ω as the curl of a vector potential (see§2), and exploiting the
smallness of the fluid’s vertical lengthscaleH relative to the planetary radiusR to approximate both the vector potential
and the curl operator. Although this is a derivation of the traditional approximation, it does not necessarilyjustify the
traditional approximation, as established in the subsequent exchange between Veronis (1968) and Phillips (1968). For
example, when|φ − φ0| ¿ |φ0| one could use a similar argument to further approximate the true latitudeφ by a
reference latitudeφ0 in the vector potential. However, this further approximation leads to a constant vector potential,
and the Coriolis force disappears completely. The essential difficulty is that these approximations do not commute
with differentiation. Replacingr by R or φ by φ0 in a function may change its derivatives at leading order, even if
|r −R| ¿ R or |φ− φ0| ¿ |φ0|. Some further examples are given in Appendix B.

More recent work (e.g. Gerkemaet al.2008) has typically presented the traditional approximation is a consequence
of the vertical lengthscaleH being much smaller than the horizontal lengthscaleL. The vertical velocityw is then
expected to be much smaller than the horizontal velocity componentsu andv, so thef̃w term is small compared with
fv in the first of equations (1.1). Similarly, both terms on the left hand side of the last of equations (1.1) are then small
compared with the right hand side. TakingH ¿ L is also the basis for the hydrostatic approximation that further
omits the vertical acceleration from the vertical momentum equation. The pressurep is then determined from setting
ρ−1∂zp + g = 0. Another argument in favour of the traditional approximation in a stratified fluid relies upon the
buoyancy or Brunt–V̈ais̈alä frequencyN being much larger than the inertial frequency (Queney 1950; Phillips 1968,
1973; Thuburnet al.2002).

Interest has recently grown in retaining the non-traditional terms proportional tof̃ , as reviewed by Gerkemaet al.
(2008). Numerical simulations now routinely resolve smaller horizontal lengthscales for which the assumptionH ¿ L
becomes less clearly valid. From 1992 the UK Meteorological Office has retained the non-traditional terms in its fore-
casting model (Cullen 1993). The non-traditional terms are likely to be even more significant in the oceans. The deep
oceans contain regions of very weak stratification with buoyancy frequencyN . 10f in the deep oceans, and much
activity at near-inertial frequencies (Munk & Phillips 1968; Fu 1981). van Haren & Millot (2005) report observations
of gyroscopic waves in areas of the Mediterranean whose stratification vanishes to within the uncertainty of their
measurements (N = 0 ± 0.4f ). Non-traditional effects are required to explain these gyroscopic waves. On larger
scales, PEQUOD data for mean zonal velocities in the equatorial ocean show a depth-dependence that is consistent
with non-traditional effects (Hua, Moore & Le Gentil 1997).

Grimshaw (1975) derived an extended set ofβ-plane equations that retain the non-traditional terms proportional to
f̃ in (1.1). However,f̃ was treated as a constant, rather than expanded as

f̃ = 2Ω cos
(
φ0 +

y

R

)
≈ 2Ω cos φ0 + γ̃y with γ̃ = −2Ω sin φ0

R
(1.3)

by analogy with the expansion off = 2Ω sin φ in (1.2). Allowing f̃ to vary with latitude appeared to violate conserva-
tion of angular momentum and potential vorticity. Perhaps for this reason, Grimshaw’s (1975) equations with constant
f̃ have become known as “the” non-traditionalβ-plane equations (LeBlond & Mysak 1978; Gerkema & Shrira 2005;
Gerkemaet al.2008).

In this paper we derive a set ofβ-plane equations that allow̃f to vary with latitude while preserving all the expected
conservation properties. We also show that Grimshaw’s (1975) non-traditionalβ-plane, and the traditionalβ-plane,
may both be obtained by making further approximations in our derivation. We begin with the three-dimensional equa-
tions of motion on a sphere, as formulated using Hamilton’s principle of least action, and make approximations in the
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action. We formulate Hamilton’s principle using Lagrangian variables, for which the treatment of inertia, and hence of
the Coriolis force in a rotating frame, most closely resembles that of classical particle mechanics. This enables us to
exploit Ripa’s (1997) variational approach to the motion of a particle on a sphere and aβ-plane, and M̈uller’s (1989)
derivation of the primitive equations in spherical geometry by approximating the inertial terms in a Lagrangian based
on particle mechanics (see also Hinkelmann 1969; Whiteet al.2005; Zdunkowski & Bott 2003).

It was once common to evaluate the merits of competing models, derived from truncated expansions of the under-
lying equations in a small parameter, by determining whether they could be manipulated to give results resembling
conservation of energy, or material conservation of potential vorticity (e.g. Phillips 1966, 1968; Veronis 1968). How-
ever, all these conservation properties may be derived from a formulation of the underlying equations using Hamilton’s
principle, together with Noether’s theorem that relates conservation laws to the invariance of variational principles un-
der symmetries (e.g. Goldstein 1980). Conservation of energy and angular momentum are a consequence of invariance
under translations in time and axial rotations, while material conservation of potential vorticity arises from a more sub-
tle particle relabelling symmetry (Salmon 1982a; Ripa 1982). This motivates our approach, following Salmon (1983)
of making approximations in the variational principle, instead of approximating the equations directly. This approach
guarantees the preservation of conservation laws, provided nothing is done to jeopardise the symmetries of the varia-
tional principle.

Unlike the work mentioned in the previous two paragraphs, our final equations are expressed in a carefully con-
structed set of pseudo-Cartesian coordinates instead of spherical polar coordinates. By “pseudo-Cartesian” we mean
curvilinear coordinates in which deviations of the metric away from a Cartesian form are neglected. Curvilinear coordi-
nates are necessary to ensure that horizontal coordinate lines lie within surfaces of constant geopotential, as described
in §4 below. Moreover, we do not assume a shallow fluid layer, and do not approximate the true spherical radiusr by a
constantR. We thus obtain non-traditional terms in our approximated equations, as in Whiteet al.’s (2005) extension
of Müller’s (1989) approach to encompass White & Bromley’s (1995) quasi-hydrostatic equations in spherical geom-
etry. We also obtain our pressure gradient terms consistently from the variational principle, rather than putting them
in by hand as in M̈uller (1989) and Whiteet al. (2005). Our work highlights the essential rôle of a vector potentialR
for the Coriolis force, through writingΩ = (1/2)∇×R, and the interaction of the resulting constraint∇·Ω = 0 with
the approximation of the spherical metric by a flattened pseudo-Cartesian metric. The derivation given below begins
in spherical geometry, but a purely Cartesian procedure for allowingΩy to depend ony is also given in Appendix B.

2. Hamilton’s variational principle for an ideal fluid
The three-dimensional Euler equations for an incompressible fluid in an inertial frame may be derived (Herivel

1955) from the Lagrangian

L =
∫

da
1
2

∣∣∣∣
∂x

∂τ

∣∣∣∣
2

− Φ(x) + p(a, τ)
(

∂(x, y, z)
∂(a, b, c)

− 1
ρ0

)
. (2.1)

The first two terms in (2.1) are the kinetic energy(1/2)|xτ |2 and the gravitational potential energyΦ(x). The integral
is expressed over Lagrangian particle labelsa = (a, b, c), and the particle positionsx = (x, y, z) should be treated as
functions ofa and timeτ . We use the variableτ for time to emphasise that partial time derivatives∂/∂τ are taken at
fixed particle labelsa, instead of at fixed spatial coordinatesx. Thus∂/∂τ = D/Dt in Eulerian variables. Applying
this relation tox gives the Eulerian fluid velocityu = ∂x/∂τ . Salmon (1982b, 1983, 1988, 1998) gives many more
details of this form of Hamilton’s principle using particle labels, and its geophysical applications.

The last term in (2.1) is a constraint that enforces incompressibility using the Lagrange multiplierp(a, τ). It is
convenient to assign the labelsa so that the densityρ is given by the reciprocal of the Jacobian of the label to particle
map,

1
ρ

=
∂(x, y, z)
∂(a, b, c)

=

∣∣∣∣∣∣

xa ya za

xb yb zb

xc yc zc

∣∣∣∣∣∣
. (2.2)

The last expression is the determinant of a3× 3 matrix of partial derivatives,xa = ∂x/∂a etc. The last term in (2.1)
thus enforces incompressiblity by imposingρ = ρ0 is constant.

According to Hamilton’s principle of least action, the equations of motion render the actionS stationary,

δS = δ

∫
dτL = 0, (2.3)

under independent variations of the particle positionsx and pressurep. The variationsδx andδp should vanish at the
endpoints of theτ integration, as in classical particle mechanics (e.g. Goldstein 1980) to allow integrations by parts



4 P. J. Dellar

with respect toτ in the action. The variation in the pressure term due to a variationδx with y andz fixed is
∫

da p(a, τ)
∂(δx, y, z)
∂(a, b, c)

= −
∫

da
∂(p, y, z)
∂(a, b, c)

δx = −
∫

da
∂(p, y, z)
∂(x, y, z)

∂(x, y, z)
∂(a, b, c)

δx = −
∫

da
∂p

∂x

1
ρ
δx. (2.4)

The variation of the whole Lagrangian in (2.1) thus yields the three-dimensional incompressible Euler equations with
a gravitational potential,

∂tu + u · ∇u +
1
ρ
∇p = −∇Φ, ∇·u = 0. (2.5)

This variational approach may be extended to compressible fluids (Serrin 1959; Eckart 1960b) by replacing theρ = ρ0

constraint and its Lagrange multiplier with a potential energyU(ρ, s). In generalU depends upon both density and an
additional advected scalars, the entropy. SinceDs/Dt = 0 we can writes = s(a) with no τ dependence. The same
approach encompasses Boussinesq fluids with an advected scalar buoyancy instead of the entropy.

The Coriolis force may be included by adding a further term to the Lagrangian that is linear in the velocity,

L =
∫

da
1
2

∣∣∣∣
∂x

∂τ

∣∣∣∣
2

+ R · ∂x

∂τ
− Φ(x) + p(a, τ)

(
∂(x, y, z)
∂(a, b, c)

− 1
ρ0

)
. (2.6)

The R notation was introduced by Abarbanel & Holm (1987), although equivalent special cases may be found in
Salmon (1982b, 1983) and the particle mechanics version of (2.6) may be found in Landau & Lifshitz (1976). Taking
variations of the action for this Lagrangian gives

∂tu + u · ∇u + (∇×R)×u +
1
ρ
∇p = −∇Φ, (2.7)

which coincides with the Euler equation in a rotating frame if∇×R = 2Ω . ThusR is a vector potential for the
rotation vectorΩ . The Coriolis force2Ω×u is mathematically equivalent to the Lorentz forcequ×B experienced by
a particle with chargeq, andR is the equivalent of the vector potentialA that appears in the Lagrangian for a charged
particle in the magnetic fieldB = ∇×A (e.g. Goldstein 1980).

When Ω is spatially uniform,R = Ω×x serves as a vector potential. The Lagrangian in (2.6) may then be
interpreted as computing the kinetic energy from the velocity with respect to an inertial frame,xτ + Ω×x, and
combining the centrifugal force with gravity into a single geopotentialΦ = Φg + (1/2)|Ω×x|2,

L =
∫

da
1
2

∣∣∣∣
∂x

∂τ
+ Ω×x

∣∣∣∣
2

−
{

Φg(x) +
1
2
|Ω×x|2

}
+ p(a, τ)

(
∂(x, y, z)
∂(a, b, c)

− 1
ρ0

)
. (2.8)

Alternatively, one may take the coordinatesx with respect to a rotating frame as being a particular choice of gener-
alised coordinates. The Lagrangian (2.8) then arises from rewriting the kinetic and potential energies with respect to
an inertial frame using these generalised coordinates. The more general form (2.6) follows from the observation that
the action is invariant under replacingΩ×x by R = Ω×x+∇ϕ, whereϕ is any scalar field. The actionS, and hence
the equations of motion, are invariant under a gauge transformation that adds∇ϕ to R. Again, this result is precisely
analogous to a result for the Lagrangian of a charged particle in a magnetic field (e.g. Goldstein 1980).

3. The vector potential and conservation of circulation

We have added the most general possible term that is linear in the particle velocity to the Lagrangian. However, the
equations of motion derived from Hamilton’s principle contain the Coriolis force generated byΩ = 1

2∇×R, soΩ
is subject to the constraint∇·Ω = 0. Even without involving Hamilton’s principle, the same constraint is needed to
derive conservation of circulation from the Euler equation with a Coriolis force,

Du

Dt
= −1

ρ
∇p− 2Ω×u. (3.1)

The circulation of the velocityu around a closed material loopC evolves according to

d
dt

∮

C
u · d` = −

∮

C

1
ρ
∇p · d`−

∮

C
2Ω×u · d`, (3.2)

where the left hand side was derived using the formulaD(d`)/Dt = (d` ·∇)u from Batchelor (1967) for the evolution
of a material line elementd`.
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Using further formula from Batchelor (1967) for the evolution of material surface elements, we calculate

d
dt

∫∫

S
Ω · n dS =

∫∫

S
(u · ∇Ω + Ω∇·u−Ω · ∇u) · n dS,

=
∫∫

S

[∇×(Ω×u) + u∇·Ω] · n dS,

=
∮

C
(Ω×u) · d` +

∫∫

S
∇·Ω u · n dS, (3.3)

for any time-independent vector fieldΩ and material surfaceS spanning the material curveC. The last step uses
Stokes’ theorem. Equation (3.2) for the evolution of circulation may thus be rewritten as

d
dt

[∮

C
u · d` +

∫∫

S
2Ω · ndS

]
= −

∮

C

1
ρ
∇p · d` + 2

∫∫

S
∇·Ω u · ndS. (3.4)

We require∇·Ω = 0 to eliminate the source term on the right hand side of (3.4). All the other terms involvingΩ have
been expressed as a time derivative on the left hand side. Imposing∇·Ω = 0 also removes the dependency of the left
hand side on the particular choice of spanning surfaceS. Writing 2Ω = ∇×R and using Stokes’ theorem transforms
(3.4) into

d
dt

∮

C
(u + R) · d` = −

∮

C

1
ρ
∇p · d`. (3.5)

We have thus absorbed the torque exerted by the Coriolis force into an evolution equation for the circulation ofu + R
around the material curveC. The remaining right hand side is the baroclinic torque due to the pressure gradient. The
result (3.5) is generally known as Kelvin’s theorem in the absence of the Coriolis force, and as Bjerknes’ theorem
whenR = Ω×x (e.g. Holton 1992; Zdunkowski & Bott 2003). The loop integral appearing on the left hand side of
(3.5) is invariant under gauge transformations ofR by∇ϕ, because the closed loop integral of the gradient of a scalar
ϕ vanishes, which motivates this more general form of Bjerknes’ theorem given by Abarbanel & Holm (1987). Again,
the replacement ofu by u + R appears completely general, sinceR is an arbitrary vector field, but the resulting
Coriolis force is generated by the divergence-free vector fieldΩ = (1/2)∇×R.

In a stratified fluid, an evolution equation for potential vorticity follows from applying (3.4) to a material curveC
and spanning surfaceS that lie in a surface of constant entropy (e.g. Pedlosky 1987; White 2002; Zdunkowski &
Bott 2003; Vallis 2006). The loop integral of the baroclinic torque then vanishes, and we may use Stokes’ theorem to
transform the remaining loop integral into a surface integral,

d
dt

∫∫

S
(∇×u + 2Ω) · n dS = 2

∫∫

S
∇·Ω u · n dS. (3.6)

Writing ω = ∇×u + 2Ω , we obtain

∫∫

S

(
Dω

Dt
+ ω∇·u− ω · ∇u− 2∇·Ω u

)
· ∇s

|∇s| dS = 0, (3.7)

sincen = ∇s/|∇s| is the unit normal to a constant entropy surface. This integral becomes

∫∫

S

(
D
Dt

(ω · ∇s) + (ω · ∇s)∇·u− 2∇·Ω u · ∇s

)
1
|∇s| dS = 0, (3.8)

after usingD(∂is)/Dt = −(∂iuj)(∂js) in index notation. Equation (3.8) holds for all material surfacesS contained
within a constant entropy surface, so it implies the pointwise evolution equation

Dq

Dt
=

2
ρ
∇·Ω u · ∇s (3.9)

for the potential vorticity

q =
ω · ∇s

ρ
. (3.10)

We have removed the term proportional to∇·u from (3.8) using the continuity equationDρ/Dt + ρ∇·u = 0, so
this derivation applies equally to compressible and incompressible fluids. In conclusion,∇·Ω = 0 is necessary for
material conservation of potential vorticity, as observed by Grimshaw (1975).
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4. Hamilton’s principle in spherical geometry

Transforming (2.6) into spherical polar coordinates, the Lagrangian for an incompressible fluid on a rotating sphere
may be written as

L =
∫

da

[
1
2
r2φ̇2 +

1
2
r2 cos2φλ̇2 + r2 cos2φ Ωλ̇ + Φ(x) + p(a, τ)

(
r2 cos φ

∂(λ, φ, r)
∂(a, b, c)

− 1
ρ0

)]
, (4.1)

whereλ, φ, andr are longitude, latitude, and radius. This expression arises from using the vector potential

Ω×x = Ωr cosφ λ̂ (4.2)

for the Coriolis force. The velocity vector is

ẋ = r cosφ λ̇ λ̂ + rφ̇ φ̂ + ṙ r̂, (4.3)

where dots denote derivatives with respect to timeτ .
This Lagrangian is exact for a sphere. However, the gradient of the combined geopotentialΦ = Φg +(1/2)|Ω×x|2

has a horizontal component due to the centrifugal force even when the gravitational potentialΦg is a function ofr
only. For geophysically relevant parameters this leads to∇Φ being the dominant term in the horizontal momentum
equations. It is therefore common to omit the centrifugal potential, leaving only the gravitational potentialΦ(r) whose
gradient has no horizontal component. The justification for this omission is that the Earth’s surface is much closer to
a surface of constant geopotential, or an oblate spheroid, than to a sphere. One then re-interprets the coordinater as
labelling surfaces of constant geopotential, instead of surfaces of constant geometrical distance from the centre of a
sphere. The Lagrangian (4.1) is then an approximation to the exact Lagrangian, with the full geopotential, formulated
in oblate spheroidal coordinates. This exact Lagrangian gives the equations derived by Gates (2004), and its approxi-
mation omits terms of order(d/r)2 from the metric, whered is the distance between the two foci of the spheroid. This
approximation of a spheroid by what appear to be spherical polar coordinates is employed by Phillips (1973); Veronis
(1973); Gill (1982); M̈uller (1989); White (2002); Whiteet al. (2005) and described in particular detail by van der
Toorn & Zimmerman (2008).

Following Ripa’s (1997) study of motion on a spherical surface, we introduce the horizontal coordinatesx andy
defined by

λ = sec φ0
x

R
, sin φ = sin φ0 +

y

R
cosφ0. (4.4)

This relation betweeny and φ in (4.4) leads to the quantityβ appearing in the equations derived below with its
conventional value,β = (2/R)Ω cos φ0 as in (1.3). The widely used coordinateỹ = (φ − φ0)/R leads to a different
expression forβ, as does the Mercator latitude coordinate used by Grimshaw (1975). Calculations using both these
coordinates are given in Appendix A.

As we are concerned with three-dimensional motions, unlike Ripa (1997), we also introduce a vertical coordinate
z. This coordinate is constructed to make the volume element for thex, y, z coordinates equal to the Cartesian volume
element,

dV = r2 cos φdλdφdr = r2 cos φ
dλ

dx

dφ

dy

dr

dz
dxdydz

= r2 cos φ

(
sec φ0

R

)(
cos φ0

R cosφ

)(
R2

r2

)
dxdydz = dxdydz. (4.5)

Ripa’s (1997) choice ofy coordinate eliminates theφ-dependence of the volume element. To also eliminate ther-
dependence, we require

dr

dz
=

R2

r2
. (4.6)

The solution of this ordinary differential equation determines

r = R(1 + 3z/R)1/3 ∼ R + z − z2

R
+ · · · . (4.7)

The constant volume elementdV = dxdydz ensures that the pressure gradient terms in the equations of motion
obtained from Hamilton’s principle take their expected forms.

However, thex, y, z coordinates are not Cartesian coordinates, and the individual components of the metric tensor
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are not constant. Inx, y, z coordinates the Lagrangian (4.1) becomes

L =
∫

da
1
2
ż2

{
1 + 3

z

R

}−4/3

+
1
2
ẏ2

{
1 + 3

z

R

}2/3
{

1− 2 tan φ0
y

R
− y2

R2

}−1

+
(

1
2
ẋ2 + ẋΩcos φ0

) {
1 + 3

z

R

}2/3
{

1− 2 tan φ0
y

R
− y2

R2

}

+ Φ(z) + p(a, τ)
(

∂(x, y, z)
∂(a, b, c)

− 1
ρ0

)
. (4.8)

The factors in braces{·} that multiply ẋ2, ẏ2, ż2 are the diagonal componentsgxx, gyy, gzz of the metric. Veronis
(1963) showed that the spatial dependence of the metric components leads to discrepancies between a rational ex-
pansion of the spherical equations in a ratio of lengthscales and what are normally called theβ-plane equations, as
described below.

The coordinatex only appears in the Lagrangian (4.8) through the Jacobian∂(x, y, z)/∂(a, b, c) in the incompress-
ibility constraint. Otherwisex is an ignorable coordinate, so Noether’s theorem gives a conservation law for angular
momentum in the absence of pressure torques, as in equation (5.8) below. Thex andy coordinate lines defined by (4.4)
are tangent to the stereographic coordinate linesx̃ and ỹ used by Phillips (1973). Taking a stereographic projection
from a point with arbitrary latitudeφ0 and longitudeλ = 0 gives

sin φ = sin φ0
4R2 − x̃2 − ỹ2

4R2 + x̃2 + ỹ2
+ cosφ0

4R ỹ

4R2 + x̃2 + ỹ2
, (4.9)

wherex̃ and ỹ are the stereographic coordinates. In this coordinate system thex̃ line is a great circle tangent to the
latitude circleφ = φ0. In other words, equation (4.9) asymptotes to the second of equations (4.4) asx̃/R and ỹ/R
tend to zero. However, the lines of constantx̃ becomes inclined relative to the latitude circles away from the origin of
the projection. There is thus no ignorable coordinate analogous to longitudeλ, or to thex defined by (4.4), and hence
no obvious angular momentum conservation law available from Noether’s theorem.

5. Beta-plane equations from an approximate Lagrangian

A β-plane approximation arises from exploiting the smallness ofx, y, z compared with the planetary radiusR. In
principle there are two independent small parameters,

ε = L/R, and δ = H/L, (5.1)

whereL andH are typical horizontal and vertical lengthscales for the fluid motion. The traditional approximation
arises from a smallδ limit, in addition to the smallε limit that gives aβ-plane. In geophysical fluid dynamics it is con-
ventional to perform derivations using dimensional variables (e.g. Grimshaw 1975; Veronis 1981; Shutts 1989; White
2002; Gerkemaet al. 2008). We therefore retain explicit factors ofR instead of absorbing them into dimensionless
coordinates.

Expanding the Lagrangian (4.8) inL/R for fixedH/L and keeping terms of up to order(L/R)3 gives

L =
∫

da
1
2

(
∂x

∂τ

)2 {
1− 2

y

R
tan φ0 + 2

z

R

}
+

1
2

(
∂y

∂τ

)2{
1 + 2

y

R
tan φ0 + 2

z

R

}

+
1
2

(
∂z

∂τ

)2 {
1− 4

z

R

}
+ Φ(z) + p(a, τ)

(
∂(x, y, z)
∂(a, b, c)

− 1
ρ0

)

+ ΩR
∂x

∂τ

[(
1 + 2

z

R
− z2

R2
− y2

R2

)
cosφ0 −

(
2

y

R
+ 4

yz

R2

)
sinφ0

]
. (5.2)

The same expression may be derived by substitutingx = εRx′, y = εRy′, z = εRz′, expanding up to and including
term of orderε3, then rewriting the resulting expression in terms of the original variablesx, y, andz.

The terms in braces{·} are the linearised metric coefficients from (4.8). If considered purely as an expansion in
lengthscales, they-dependence of the metric terms in braces{·} is comparable in magnitude to they-dependence of
the term responsible for theβ effect in the Coriolis force. The equations of motion obtained from the Lagrangian
(5.2) therefore contain curvature terms proportional to the velocity squared, and metric factors multiplying the time
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derivatives, as described by Veronis (1963, 1981),
(
1− 2

y

R
tanφ0 + 2

z

R

) Du

Dt
+

2
R

u (w − v tanφ0) + 2Ωyw − 2 Ωzv = −1
ρ

∂p

∂x
, (5.3a)

(
1 + 2

y

R
tan φ0 + 2

z

R

) Dv

Dt
+

1
R

(
u2 + v2

)
tan φ0 +

2
R

uw + 2 Ωzu = −1
ρ

∂p

∂y
, (5.3b)

(
1− 4

z

R

) Dw

Dt
− 1

R

(
u2 + v2 + 2w2

)− 2 Ωyu = −1
ρ

∂p

∂z
− g. (5.3c)

The curvature terms appear because a free particle moving on the surface of a non-rotating sphere follows a great
circle. This is a geodesic path on the surface of a sphere, but a curved path in thex, y, z coordinates. However, the
pressure gradient appears in a Cartesian form because the volume element isdxdydz. The gravitational acceleration
is g = −Φ′(z). Expressions forΩy andΩz are given in (5.9) below.

Some additional assumption is needed to justify discarding the curvature terms while retaining the terms that give
rise to theβ effect. Following Veronis (1963, 1981) one may restrict attention to near-equatorialβ-planes, since the
tan φ0 terms become negligibly small when|φ0| ¿ 1, and vanish exactly at the equator. In our three-dimensional
treatment a small aspect ratio approximation (H ¿ L) is also needed to justify discarding thez-dependence of the
metric. The derivation in LeBlond & Mysak (1978) neglects terms of ordertan φ0(L/R) while retaining terms of
ordercos φ0(L/R). This is valid only forφ0 ¿ 1, so being close to the equator is implicitly one of their geometric
assumptions. At mid-latitudestan φ0(L/R) andcosφ0(L/R) are comparable in magnitude, so it becomes inconsistent
to neglect one while retaining the other.

Alternatively, following Phillips (1973), one may introduce the additional assumption

Ωy À
(

∂x

∂τ
,
∂y

∂τ

)
(5.4)

to justify neglect of the curvature terms. The conventional mid-latitudeβ-plane equations then arise as a distinguished
limit in which the Rossby number is comparable to the ratio of lengthscales,

Ro =
U

2ΩL
∼ L

R
. (5.5)

In this limit, the leading order terms(1/2)x2
τ and(1/2)y2

τ in the kinetic energy are comparable in magnitude to the
Ωxτy2/R term that is responsible for theβ effect.

Using one of these further appproximations to discard the metric terms in braces{·} from (5.2) leads to the simpli-
fied Lagrangian

L =
∫

da
1
2

(
∂x

∂τ

)2

+
1
2

(
∂y

∂τ

)2

+
1
2

(
∂z

∂τ

)2

+ Φ(z) + p(a, τ)
(

∂(x, y, z)
∂(a, b, c)

− 1
ρ0

)

+ΩR
∂x

∂τ

[(
1 + 2

z

R
− z2

R2
− y2

R2

)
cosφ0 −

(
2

y

R
+ 4

yz

R2

)
sinφ0

]
. (5.6)

The Euler–Lagrange equations now take the form of equations of motion in Cartesian coordinates,

Du

Dt
+ 2Ωyw − 2Ωzv = −1

ρ

∂p

∂x
,

Dv

Dt
+ 2 Ωzu = −1

ρ

∂p

∂y
,

Dw

Dt
− 2Ωyu = −1

ρ

∂p

∂z
− g, (5.7)

althoughx, y, z are actually curvilinear coordinates, as described above.
The term in square brackets[· · · ] multiplying ∂x/∂τ in (5.6) is the effective vector potentialRx, and the first of

equations (5.7) may be rewritten as
D
Dt

(u + Rx) = −1
ρ

∂p

∂x
. (5.8)

This shows that the zonal momentumu + Rx is conserved in the absence of pressure torques, as obtained by applying
Noether’s theorem to (5.6) with its ignorable coordinatex. Evaluatingu · ∇Rx = 2Ωyw − 2Ωzv, we find

2Ωy = 2Ω cos φ0

(
1− 2 tan φ0

y

R
− z

R

)
= 2Ω cos φ0

(
1− z

R

)
+ γy, (5.9a)

2 Ωz = 2Ω sin φ0

(
1 + cot φ0

y

R
+ 2

z

R

)
= 2 Ω sin φ0

(
1 + 2

z

R

)
+ βy. (5.9b)

The proportionality constants for the change ofΩ with y are thus

β =
2Ωcos φ0

R
, γ = −4Ω sin φ0

R
. (5.10)

The constantγ for they-dependence ofΩy has twice the value one would obtain by simply expanding the expression
for the rotation vectorΩ in spherical polar coordinates as a function ofy, as in (1.3).
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More importantly,Ωz acquires az-dependence proportional toγ that compensates for they-dependence ofΩy. The
vector fieldΩ is thus divergence-free with respect tox, y, z when treated as pseudo-Cartesian coordinates with an
Euclidean metric,

∇·Ω =
∂Ωy

∂y
+

∂Ωz

∂z
= 0. (5.11)

It is given byΩ = (1/2)∇×R = (1/2)(0, ∂zRx,−∂yRx), whereR = x̂Rx is the vector potential, and∇× is the
curl operator in pseudo-Cartesian coordinates with an Euclidean metric.

6. Consistent further approximations

Making further approximations in the Lagrangian (5.6) leads to additional simplifications, including the traditional
approximationβ-plane, and Grimshaw’s (1975) non-traditionalβ-plane. The largest term in the vector potential in
(5.6) appears as part of the exact time derivative∂τ (ΩxR cosφ0) and so does not contribute to the action (see Ripa
1997). Equivalently, a constant may be removed from the vector potential without changing its curl, and hence without
changing the Coriolis force. We therefore omit theΩRxτ cosφ0 term in the further simplified Lagrangians below.

6.1. The traditional approximation

Dropping all terms involvingz/R from the vector potential leads to the Lagrangian

L =
∫

da
1
2

(
∂x

∂τ

)2

+
1
2

(
∂y

∂τ

)2

+ Φ(z) + p(a, τ)
(

∂(x, y, z)
∂(a, b, c)

− 1
ρ0

)

+ ΩR
∂x

∂τ

[
− y2

R2
cos φ0 − 2

y

R
sin φ0

]
. (6.1)

Taking variations gives the traditional approximationβ-plane equations. There are no terms involvingΩy, and

2 Ωz = 2Ω sin φ0 + βy. (6.2)

In this approximation the vertical velocityzτ also disappears from the kinetic energy, so the vertical momentum
equation reduces to the hydrostatic balanceg + pz = 0.

6.2. The Grimshaw (1975) non-traditionalβ-plane

Retaining the terms proportional toz/R andy2/R2, but notyz/R2, leads to the Lagrangian

L =
∫

da
1
2

(
∂x

∂τ

)2

+
1
2

(
∂y

∂τ

)2

+ Φ(z) + p(a, τ)
(

∂(x, y, z)
∂(a, b, c)

− 1
ρ0

)

+ ΩR
∂x

∂τ

[(
− y2

R2
+ 2

z

R

)
cos φ0 − 2

y

R
sin φ0

]
. (6.3)

This therefore corresponds to a distinguished limit in whichε = δ, so they2 and thez terms are bothO(ε2). Theyz
term isO(ε3) and may be discarded. In dimensional variables, this distinguished limit is

H

L
∼ L

R
∼ U

2ΩL
, (6.4)

while the earlier equations permittedH/L = O(1). Taking variations of (6.3) leads to theβ-plane equations proposed
by Grimshaw (1975) with

2Ωy = 2Ω cos φ0, 2Ωz = 2 Ω sin φ0 + βy. (6.5)

The horizontal componentΩy is retained, but with a spatially uniform value. The vertical componentΩz varies with
latitude, as in the traditionalβ-plane above. Again,Dw/Dt disppears from the vertical momentum equation, but this
time we obtain aquasihydrostaticbalance (White & Bromley 1995; Whiteet al.2005)

−2Ωyu = −∂p

∂z
− g, (6.6)

becauseΩy appears in the vertical momentum equation.



10 P. J. Dellar

6.3. A quasihydrostaticβ-γ-plane

A slight simplification in theβ-γ-plane equations may be achieved by dropping thez2/R2 terms from the Lagrangian,
leaving

L =
∫

da
1
2

(
∂x

∂τ

)2

+
1
2

(
∂y

∂τ

)2

+ Φ(z) + p(a, τ)
(

∂(x, y, z)
∂(a, b, c)

− 1
ρ0

)

+ΩR
∂x

∂τ

[(
− y2

R2
+ 2

z

R

)
cos φ0 −

(
2

y

R
+ 4

yz

R2

)
sin φ0

]
. (6.7)

This is the Lagrangian that we shall use to derive shallow water equations below. It leads to the simplest set of equations
in whichΩy andΩz both vary with latitude,

2 Ωy = 2 Ω cos φ0 + γy, 2 Ωz = 2Ω sin φ0

(
1 + 2

z

R

)
+ βy. (6.8)

Thez-dependence ofΩz is essential to restore∇·Ω = 0 with respect to a constant metric, and arises from the same
yz term in the Lagrangian that gives ay-dependence ofΩy. However, the earlierz-dependence ofΩy in (5.9a) has
been eliminated.

7. Depth-averaged equations
Depth-averaged descriptions, such as the shallow water and Green & Naghdi (1976) equations, may be derived from

a three-dimensional Lagrangian by restricting the fluid elements to move in columns (Salmon 1983; Miles & Salmon
1985). We use this approach to derive a non-traditional analogue of the shallow water equations, and show that these
equations coincide with those derived by Dellar & Salmon (2005) and Stewart & Dellar (2010) using purely Cartesian
geometry.

We assume that the fluid lies in a layer between a rigid base atz = B(x, y) and an upper free surface atz =
B(x, y) + h(x, y, τ). The labelsc may be assigned so thatc = 0 on z = B(x, y), andc = 1 on the free surface
z = B(x, y) + h(x, y, τ). We also assume that the map from labelsa to coordinatesx takes the restricted form

x = x(a, b, τ), y = y(a, b, τ), (7.1)

with no dependence on the third labelc. The incompressibility constraint for the three-dimensional Jacobian then
factorises into

1
ρ0

=
∂(x, y, z)
∂(a, b, c)

=
∂(x, y)
∂(a, b)

∂z

∂c
, (7.2)

which may be solved to give

z =
(

ρ0
∂(x, y)
∂(a, b)

)−1

c + B(x, y) = h(x, y, τ)c + B(x, y). (7.3)

The dynamic boundary condition of zero pressure on the free surface is implicit in the Lagrangian, because there is no
contribution from the work done by an external pressure at the free surface (see Miles & Salmon 1985). The kinetic
energy due to vertical motions is usually neglected in shallow water theory, since it is order(H/L)2 smaller than that
due to horizontal motions. Miles & Salmon (1985) showed that retaining this term gives the Green & Naghdi (1976)
equations in place of the shallow water equations.

Substitutingz = hc + B into the Lagrangian (6.7) and completing the integration overc gives the shallow water
Lagrangian

L =
∫

dadb
1
2

(
∂x

∂τ

)2

+
1
2

(
∂y

∂τ

)2

− g

(
B +

1
2
h

)

+ΩR
∂x

∂τ

[(
− y2

R2
+

h + 2B

R

)
cosφ0 − 2

y

R

(
1 +

h + 2B

R

)
sin φ0

]
. (7.4)

The expression in square brackets[· · · ] is the vector potentialRx evaluated at the midsurfacez = B +h/2. Similarly,
the gravitational termg(B + h/2) is the gravitational potentialΦ = gz evaluated at the midsurface. Both expressions
also correspond to their averages over the layer, as defined in (7.13) below,Rx = Rx(x, y, z = B + h/2) and
g(B + h/2) = gz.

The variational derivatives of (7.4) give the zonal momentumpx,

px =
∂L
∂xτ

=
∂x

∂τ
− 2Ω y sin φ0

(
1 +

h + 2B

R

)
+ ΩR cos φ0

(
− y2

R2
+

h + 2B

R

)
, (7.5)
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the meridional momentumpy, and the Montgomery potential

py =
∂L
∂yτ

=
∂y

∂τ
,

∂L
∂h

= −1
2

g +
∂x

∂τ
Ω

(
cos φ0 − 2

y

R
sin φ0

)
. (7.6)

The Euler–Lagrange equations for stationarity of the action under variationsδx may be written as

d
dτ

(
δL
δxiτ

)
− δL

δxi
= (∂t + u · ∇) pi − 1

h

∂

∂xi

(
h2 δL

δh

)
− δL

δxi

∣∣∣∣∣
h

= 0, (7.7)

using formulae from Miles & Salmon (1985). The last two terms separate the implicit dependence on the coordinatex
andy through the heighth from any explicit dependencex andy through the topographyB or vector potentialR. The
heighth in (7.4) is a shorthand for the reciprocal of the Jacobian of the map(a, b) 7→ (x, y) from labels to particles as
defined in (7.3).

The Euler–Lagrange equations (7.7) may be written more simply as

ut + u · ∇u− feff v + ∂x [g(h + B)− huΩy]− Ωy∇·(hu) = 0, (7.8a)

vt + u · ∇v + feff u + ∂y [g(h + B)− huΩy] = 0, (7.8b)

where the effective traditional Coriolis parameterfeff is given by

feff = 2Ω sin φ0 + βy − ∂

∂y
(Ωy(B + h/2)) . (7.9)

The last term arises from the dependence of the zonal angular momentum of a fluid column on its mean distance
from the rotation axis. The non-traditional componentΩy of the rotation vector also alters the pressure away from
its hydrostatic value. The pressure is now determined by a quasi-hydrostatic balance with both gravity and the non-
traditional part of the Coriolis force. The combination of the vertical velocity and the non-traditional part of the Coriolis
force leads to the−Ωy∇·(hu) term in (7.8a). The height evolves according to the usual shallow water continuity
equationht + ∇·(hu) = 0, as derived by differentiating (7.3) with respect toτ . Equations (7.8) coincide with the
non-traditional shallow water equations derived by Dellar & Salmon (2005) in Cartesian coordinates, as amended by
Stewart & Dellar (2010) to correct the case when the horizontal part of the rotation vector has non-zero horizontal
divergence.

These extended non-traditional shallow water equations materially conserve the potential vorticity

q =
1
h

(
∂py

∂x
− ∂px

∂y

)
, (7.10)

using a general result derived from the particle relabelling symmetry by Ripa (1981) and Salmon (1982a). For the
Lagrangian in (7.4) this expression evaluates to

q =
1
h

[
2Ω sin φ0

(
1 +

h + 2B

R
+ 2

y

R

∂

∂y

(
B +

h

2

))
+ 2 Ω cosφ0

(
y

R
− ∂

∂y

(
B +

h

2

))]
, (7.11)

which may be written more compactly as

q =
1
h

[
2 Ωz − 2 Ωy

∂

∂y

(
B + 1

2h
)

+
∂v

∂x
− ∂u

∂y

]
, (7.12)

by introducing the vertically-averaged rotation vector

Ω(x, y, t) =
1
h

∫ h+B

B

Ω(x, y, z) dz. (7.13)

Thus2 Ωz = 2 Ω sin φ0 + βy − γ(B + h/2), and2 Ωy = 2Ω cos φ0 + γy. The vertical averageΩ is time dependent
because the layer heighth(x, y, t) is time dependent. Again, this expression forq coincides with the expression given
previously by Dellar & Salmon (2005) when∂yΩy = 0, and with the amended form given by Stewart & Dellar (2010)
when∂yΩy 6= 0.

8. Conclusion
Starting from Hamilton’s principle for an ideal fluid expressed in spherical polar coordinates, we introduced a set of

pseudo-Cartesian coordinatesx, y, z with the important properties that the horizontalx andy coordinate lines lie in
curved surfaces of constant geopotential, while the volume element is preciselydV = dxdy dz due to cancellations
between the metric coefficients. We then assumed that the coordinatesx, y, z were all small compared with the
planetary radiusR, expanded the Lagrangian in powers ofx/R, y/R, z/R, and truncated. An additional assumption,
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equivalent to a small Rossby number, was introduced to justify the neglect of metric terms in the kinetic energy due to
the non-Cartesian nature of thex, y, z coordinates. This additional assumption may be omitted when the coordinate
system is centred around a point on, or sufficiently close to, the equator.

From the truncated Lagrangian in thesex, y, z coordinates we derived sets of equations that include the traditional-
approximationβ-plane equations, Grimshaw’s (1975) non-traditionalβ-plane, and an extendedβ-γ-plane that allows
the non-traditional Coriolis parameter to vary with latitude. These different approximations arose from different treat-
ments of the vertical coordinatez relative to the horizontal coordinatesx andy. The traditionalβ-plane equations are
a consequence of neglecting all terms proportional toz in the Lagrangian, while Grimshaw’s (1975) non-traditional
β-plane arises from retaining a term proportional toz while neglecting a term proportional toyz. Retaining this addi-
tional term leads to a non-traditionalβ-γ-plane in which the non-traditional Coriolis parameterf̃ varies with latitude.
We rewrite the resulting equations (5.7) and (6.8) in slightly different notation here for emphasis,

Du

Dt
+ f̃w − fv = −1

ρ

∂p

∂x
,

Dv

Dt
+ fu = −1

ρ

∂p

∂y
,

Dw

Dt
− f̃u = −1

ρ

∂p

∂z
− g, (8.1)

where the two Coriolis parameters are

f = 2 Ω sinφ0

(
1 + 2

z

R

)
+ 2Ω cos φ0

y

R
, f̃ = 2 Ω cos φ0 − 4Ω sin φ0

y

R
, (8.2)

and thex, y, z coordinates are defined by (4.4) and (4.7). The parameterβ thus takes its conventional valueβ =
(2/R)Ω cos φ0, whileγ = −(4/R)Ω sin φ0. The additionalz-dependence off restores∇·Ω = 0 in pseudo-Cartesian
coordinates, which is essential for conservation of circulation and potential vorticity. Thez-dependence off may be
interpreted as giving a pseudo-Cartesian representation of the dependence of the true angular momentum on spher-
ical radiusr. Thez-dependence off and they-dependence of̃f together restore the orderH/R terms to the zonal
momentum equation from (8.1),

Du

Dt︸︷︷︸
U

2ΩL

+
[

2Ω cos φ0

︸ ︷︷ ︸
H

L

− 4Ω sin φ0
y

R︸ ︷︷ ︸
H

R

]
w −

[
2Ω sin φ0

(
1

︸︷︷︸
1

+ 2
z

R︸︷︷︸
H

R

)
+ 2 Ω cosφ0

y

R︸ ︷︷ ︸
L

R

]
v = −1

ρ

∂p

∂x
. (8.3)

The magnitudes of the various terms are shown relative to the traditional Coriolis term. The traditionalβ-plane term
is orderL/R, and the non-traditional Coriolis terms are naturally orderH/L smaller than the traditional terms under
the shallow layer velocity scalingw ∼ (H/L)u. The additional terms of orderH/R extend theβ-plane equations
into the deep atmosphere regime (Whiteet al. 2005) whereH/L is treated as anO(1) quantity. White & Bromley
(1995) estimate the change in relative velocity incurred by an ascending air parcel due to non-traditional effects. The
additional orderH/R terms may become relevant for meridional overturning circulations (in the ocean) or Hadley
circulations (in the atmosphere) where fluid parcels ascend and descend at different latitudes. Conversely, the near-
inertial waves studied by Gerkema & Shrira (2005) depend critically onω − f , the difference between the wave
frequencyω and the local inertial frequency. These waves are thus very sensitive to changes inf with latitude, but
relatively insensitive to changes iñf with latitude.

Being derived from Hamilton’s principle, each of our equation sets conserves energy, angular momentum, and
potential vorticity. These properies are guaranteed by Noether’s theorem from the symmetries of the truncated La-
grangians. Moreover, introducing the generalised coordinatesx, y, z into Hamilton’s principle does not involve re-
solving forces or performing vector calculus in the generalised coordinates. A minor drawback of the variational
approach is the need to calculate small terms one order higher in the Lagrangian than in the equations of motion,
since the latter arise from variational derivatives of the Lagrangian. For example, to obtain terms that are linear in the
small parametery/R correctly in the equations of motion, the Lagrangian must be accurate to order(y/R)2. To obtain
the conventional value forβ we must use the coordinatey introduced by Ripa (1997), rather than the conventional
latitude coordinatẽy = (φ − φ0)/R, or the Mercator latitude coordinate described in Appendix A, even those these
coordinates only differ at order(φ − φ0)2. The consequences of using these other latitude coordinates are described
in Appendix A.

The constraint∇·Ω = 0 is essential for conservation of circulation and potential vorticity, as recognised by
Grimshaw (1975), and for the existence of a variational formulation. The essential difficulty in allowingΩy to vary
with the latitudey arises from the interaction of the∇·Ω = 0 constraint with the approximation of the spherical metric,
with its spatially varying coefficients, by a flat Cartesian metric. Moreover, approximations of the true spherical radius
r by a constantR, and of true latitudeφ by a constantφ0, do not commute with differentiations with respect tor and
φ, as described in Appendix B. Both these difficulties may be avoided by performing approximations in Hamilton’s
principle, rather than directly in the equations of motion. Our derivation from Hamilton’s principle also shows that the
coefficientγ for they-dependence ofΩy differs by a factor of two from the value one obtains by approximatingΩ
alone.
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Appendix A. The choice of latitude coordinate
Theβ-plane equations derived in the main text havef = 2 Ωz varying linearly with the coordinatey introduced by

Ripa (1997) and defined by

sinφ = sin φ0 +
y

R
cos φ0. (A 1)

The derivativedf/dy takes its conventional valueβ = (2/R)Ω cos φ0. If instead we adopt the coordinatẽy defined
by

φ = φ0 +
ỹ

R
, (A 2)

as used by LeBlond & Mysak (1978), Veronis (1981), Pedlosky (1987), and Gerkemaet al. (2008), a calculation
analogous to that in the main text leads to the Lagrangian

L =
∫

da
1
2

(
∂x

∂τ

)2

+
1
2

(
∂ỹ

∂τ

)2

+ Φ(z) + p(a, τ)
(

cos(φ0 + ỹ/R)
cos φ0

∂(x, ỹ, z)
∂(a, b, c)

− 1
ρ0

)

+ ΩR
∂x

∂τ

(
−2

ỹ

R
sin φ0 +

ỹ2

R2
(sec φ0 − 2 cos φ0)

)
(A 3)

in the traditional approximation (i.e.dropping all terms involvingz in the vector potential and kinetic energy). Besides
an anomaly in the pressure gradient due to theỹ-dependence of the volume element, the resulting equations of motion
contain

Ω̃z = Ω sin φ0 + Ω
ỹ

R
(2 cos φ0 − sec φ0) . (A 4)

The proportionality constant is thus̃β = (2/R)Ω(2 cos φ0 − sec φ0). The appearance of a term involvingsec φ0 is
reminiscent of Cushman-Roisin’s (1982) comparison of the oscillatory motion of a free particle between a sphere and
aβ-plane defined using̃y. The two coordinatesy andỹ coincide at the equator (φ0 = 0) and hence so doβ andβ̃.

Grimshaw (1975) definedx, y, z coordinates using

λ =
x

R
sec φ0, µ = µ0 +

y

R
sec φ0, r = R exp

( z

R

)
, (A 5)

whereµ is the Mercator latitude coordinate defined by the relations

sechµ = cos φ, tanh µ = sin φ, sinh µ = tanφ. (A 6)

Substituting these expressions into the spherical Lagrangian (4.1) and expanding up toO((L/R)3) leads to the La-
grangian

L =
∫

da
1
2

[(
∂x

∂τ

)2

+
(

∂y

∂τ

)2
] {

1− 2
y

R
tan φ0 + 2

z

R

}
+

1
2

(
∂z

∂τ

)2 {
1 + 2

z

R

}
(A 7)

+ Φ(z) + p(a, τ)
(

exp(3z/R)
cos2 φ0

(
1− tanh2

(
µ0 +

y

R
sec φ0

)) ∂(x, y, z)
∂(a, b, c)

− 1
ρ0

)

+ ΩR
∂x

∂τ

[(
1 + 2

z

R
+ 2

z2

R2
− 3

y2

R2

)
cos φ0 − 4

y

R
sec φ0 −

(
2

y

R
+ 4

yz

R2

)
sin φ0

]
,

whereµ0 = tanh−1 sin φ0. The horizontal kinetic energy becomes isotropic in these coordinates, but there is a non-
constant term multiplying the Jacobian∂(x, y, z)/∂(a, b, c) in the volume element. A term proportional tosec φ0 also
appears in the vector potential, just as it does for the earlier choice of coordinates leading to (A 3) above. The equations
of motion obtained from the Lagrangian (A 7) contain the Coriolis terms

2Ωy = 2 Ω cos φ0

(
1 + 2

z

R

)
− 4Ω

y

R
sin φ0, (A 8a)

2Ωz = 2 Ω sinφ0

(
1 + 2

z

R

)
+ 2Ω

y

R
(3 cos φ0 − 2 sec φ0) . (A 8b)

Again, the proportionality constant for the linear dependence of2Ωz on y does not take its expected valueβ =
(2Ω/R) cos φ0 except at the equator.
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Appendix B. A purely Cartesian approach
Following the heuristic derivation of theβ-plane approximation, as sketched in the Introduction, the natural rotation

vector for a non-traditionalβ-plane should be

2Ω̃ = (0, f̃ , f) = (2Ω cos φ0 + γ̃y) ŷ + (2Ω sin φ0 + βy) ẑ, (B 1)

wheref and f̃ are given by expanding2Ω sin φ and2Ω cos φ as in (1.3). However, this vector field has non-zero
divergence,∇·(2Ω̃) = γ̃ 6= 0, away from the equator. Therefore, it cannot be written as the curl of a vector potential,
2Ω̃ = ∇×R, as required for conservation of circulation and potential vorticity. This is why Grimshaw (1975) set
γ̃ = 0 in his non-traditionalβ-plane.

The non-zero divergence of̃Ω arises from the approximation of the spherical metric by a constant Cartesian metric.
In spherical geometry, the vector fieldΩ = Ω(sin φ r̂ + cos φ φ̂) has zero divergence, even though itsφ component
is a function ofφ. Ther-dependence of the spherical volume elementdV = r2 cosφ dλ dφ dr allows the net influx of
Ωφ to a control volumedλdφdr to be balanced by a net outflux ofΩr, because the upper surface of a control volume
has a larger area than the lower surface. Equivalently, we calculate

∇·Ω =
1

r cos φ

∂

∂φ
(Ωφ cos φ) +

1
r2

(
r2Ωr

)
= 0, (B 2)

whenΩr = Ω sin φ, Ωφ = Ωcos φ, andΩλ = 0. The non-zero divergence arises when one approximatesr by R
(constant) andcosφ by cos φ0 (constant), however good an approximation this may seem in the sense ofr − R and
φ− φ0 being small compared withR andφ0.

However, one may restore∇·Ω = 0 in Cartesian coordinates by adding a compensatingz-dependence toΩz,

2Ω = (2Ω cos φ0 + γ̃y) ŷ + (2Ω sin φ0 + βy − γ̃z) ẑ. (B 3)

A convenient vector potential is

R =
[
2Ω(z cosφ0 − y sin φ0)− 1

2βy2 + γ̃yz
]
x̂. (B 4)

This satisfies∇×R = 2Ω , has noz-component, which is convenient for deriving a depth-averaged shallow water
theory (as in Dellar & Salmon 2005), and has no dependence on thex coordinate. The resulting Lagrangian therefore
has no explicit dependence onx, so Noether’s theorem yields a conserved zonal momentumpx, as in Ripa (1993). In
fact, this Lagrangian coincides with the Lagrangian for the simplifiedβ-γ-plane derived in (6.7), except the value of
γ̃ differs by a factor of two from theγ derived from spherical geometry.

Alternatively, we might try to approximate the vector potential directly. The rotation vectorΩ is given in spherical
polar coordinates by the vector potential

Rsphere = Ω×x = Ωr cos φ λ̂, (B 5)

which is denotedve by Phillips (1966). Puttingr = R + z, φ = φ0 + y/R, and expanding up to second order iny/R
andz/R, we obtain

Rsphere = ΩR

(
cosφ0 − y

R
sin φ0 +

z

R
cos φ0 − 1

2
y2

R2
cos φ0 − yz

R2
sin φ0

)
x̂. (B 6)

Dropping the constant termΩR cosφ0, which has zero curl, we are left with precisely half the Cartesian vector poten-
tial R given in (B 4). The extra factor of two is required to compensate for the approximation of the spherical metric
by a constant metric. The curl of the vector potentialRsphere in spherical polar coordinates is given by

∇×
(
Rλλ̂

)
=

1
r

∂

∂r
(rRλ) φ̂− 1

r cos φ

∂

∂φ
(cos φRλ) r̂ = 2Ω , (B 7)

sinceRλ = Ωr cos φ. Replacingr with r0 (constant) andcosφ with cos φ0 (constant) has the effect of halving the
quantity calculated,

1
r0

∂

∂r
(r0Rλ) φ̂− 1

r0 cosφ0

∂

∂φ
(cos φ0 Rλ) r̂ = Ω

(
cosφ φ̂ + sin φ r̂

)
= Ω . (B 8)

Again, this is anO(1) change, even if|r − r0| ¿ r0 and|φ− φ0| ¿ φ0.
Phillips’s (1966) derivation of the traditional approximation replacesr by r0 (constant) in both the curl operator and

the vector potential, which becomes

Rtrad = Ωr0 cosφ λ̂, (B 9)

but leavesφ unapproximated. The approximated curl of this vector potential is thus

− 1
r0 cosφ

∂

∂φ
(Ωr0 cos2 φ) r̂ = 2Ω sin φ r̂ = Ω · r̂r̂, (B 10)
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which is the locally vertical part ofΩ , as it appears in the traditional approximation.
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