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The lattice Boltzmann equation is commonly used to simulate fluids with isothermal equations of state in a
weakly compressible limit, and intended to approximate solutions of the incompressible Navier–Stokes equa-
tions. Due to symmetry requirements there are usually more degrees of freedom in the equilibrium distributions
than there are constraints imposed by the need to recover the Navier–Stokes equations in a slowly varying
limit. We construct equilibria for general barotropic fluids, where pressure depends only upon density, using the
two dimensional, nine velocity (D2Q9) and one dimensional, five velocity (D1Q5) lattices, showing that one
otherwise arbitrary function in the equilibria must be chosen to suppress instability.
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I. INTRODUCTION

Methods based on the lattice Boltzmann equation (LBE) have become very popular for simulating fluid flow [1–3]. Most
common LBEs are used to approximate incompressible flows, using an isothermal equation of state with sound speed much
larger than the maximum speed of fluid flow. The LBE is much less well developed for simulating fluids with other equations of
state, such as the van der Waals or Enskog equations describing dense gases, or the shallow water equations from geophysical
fluid dynamics.

An LBE is an evolution equation for a set of distribution functionsfi(x, t) that specify the densities of particles at positionx
moving with velocityξi,

∂tfi + ξi · ∇fi = −1
τ

(fi − f
(0)
i ). (1)

Macroscopic variables like fluid densityρ, momentumρu, and momentum fluxΠ, are expressed as moments of thefi,

ρ =
∑

i

fi, ρu =
∑

i

ξifi, Π =
∑

i

ξiξifi, Π(0) =
∑

i

ξiξif
(0)
i , (2)

discrete analogs of the integral moments from continuum kinetic theory.
The Bhatnagar–Gross–Krook or BGK collision operator on the right hand side of (1) relaxes thefi towards a specified

equilibriumf
(0)
i with a single timescaleτ . Thef

(0)
i are functions ofρ andu, chosen in such a way that mass and momentum

are conserved by collisions. In this paper we consider only barotropic fluids so there is no separate internal energy. The zeroth
and first moments of (1) then yield the macroscopic conservation laws

∂tρ +∇·(ρu) = 0, ∂t(ρu) +∇·Π = 0. (3)

An equation for the momentum fluxΠ may be obtained from the second (ξiξi) moment of equation (1),

∂tΠ +∇·
(∑

i

ξiξiξifi

)
= −1

τ

(
Π−Π(0)

)
, (4)

using the Chapman–Enskog expansion for smallτ andfi = f
(0)
i +O(τ). This corresponds to seeking solutions that vary slowly

on the timescale set byτ .
Determining suitablef (0)

i for which (3) and (4) yield the desired Navier–Stokes equations is usually the most challenging part
of constructing a viable LBE. The leading order (Euler) hydrodynamic equations imply the constraints

∑

i

f
(0)
i = ρ,

∑

i

ξifi = ρu,
∑

i

ξiξif
(0)
i = Π(0) = P (ρ) + ρuu, (5)

whereP (ρ) is the pressure for a barotropic fluid. Obtaining a correct viscous stress from (4) implies further constraints on∑
i ξiξiξifi.
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FIG. 1: Arrangement of velocity vectors�i for (a) the two dimensional, nine velocity (D2Q9) lattice, and (b) the one dimensional, five velocity
(D1Q5) lattice.
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However, these constraints generally do not suffice to determine thef
(0)
i uniquely. For example, (5) provides six independent

constraints in two dimensions, yet one typically uses a square lattice with nine velocities, or nine degrees of freedom, as shown
in figure 1(a). For this lattice (4) implies only two further constraints, leaving one degree of freedom undetermined [4].

Moreover, the resulting equilibria should lead to a stable numerical scheme when (1) is discretised as

f i(x + ξi∆t, t + ∆t)− f i(x, t) = − ∆t

τ + ∆t/2

[
f i(x, t)− f

(0)
i (x, t)

]
. (6)

The f i are related to the previousfi by f i = fi + (fi − f
(0)
i )∆t/(2τ). This change of variables renders (6) a second order

accurate approximation to the PDE (1), at the price of becoming prone to instabilities whenτ ¿ ∆t. Although this regime gives
high grid-scale Reynolds numbers, the factor before the[· · · ] term in (6) becomes close to−1, so thef i are highlyover-relaxed
at each timestep.

Any resulting instabilities that arise on the grid scale are not visible to the slowly varying Chapman–Enskog expansion, so an
alternative approach must be developed. We first review Dellar’s work [4] for the D2Q9 lattice, showing that the usual expansion
as polynomials in the particle velocitiesξi leads to instability for any equation of state except the usualP = 1

3ρ in lattice units
(∆x = ∆t = 1), but that stability may be restored by suitable choice of a non-hydrodynamic or “ghost” component of the
equilibrium. We then obtain analogous results for the D1Q5 lattice shown in figure 1(b).

II. BAROTROPIC FLOWS WITH THE D2Q9 LATTICE

The most commonly used lattice is probably the two dimensional, nine velocity (D2Q9) lattice shown in figure 1(a), with the
equilibria [5]

f
(0)
i =wi

[
ρ1i + 3(ρu) · ξi +

9
2
(ρuu) : (ξiξi−

1
3
I)

]
, (7)

with weightswi given by

w0 = 4/9, w1,2,3,4 = 1/9, w5,6,7,8 = 1/36. (8)

These equilibria give an isothermal equation of state withP = 1
3ρ in lattice units (∆x = ∆t = 1).

The three terms in (10) correspond to an expansion in the tensor Hermite polynomials1, ξ, (ξξ − 1
3 I). These polynomials

are orthogonal with respect to the weighted inner product〈f, g〉 =
∑

i wifigi, and also with respect to the continuous inner
product with Gaussian weight factorexp(−3|ξ|2/2). He & Luo [6] used this fact to rederive (7) from the continuum Maxwell–
Boltzmann equilibrium distribution by Gaussian quadrature in their“a priori” approach.

However, these tensor Hermite polynomials control only six of the nine degrees of freedom in the D2Q9 equilibria. They may
be completed to form an orthogonal basis forR9 using the vectorsgi = (1,−2,−2,−2,−2, 4, 4, 4, 4)T andgiξi. By analogy
with the hydrodynamic variablesρ, ρu, Π defined in (2), we define non-hydrodynamic or “ghost” [3] variablesN andJ by the
moments

N =
∑

i

gifi, J =
∑

i

giξifi, N (0) =
∑

i

gif
(0)
i , J(0) =

∑

i

giξif
(0)
i , (9)

(see also Ref. [7]). A general set of equilibria may thus be written as [4]

f
(0)
i =wi

[
ρ1i + 3(ρu) · ξi +

9
2
(Π(0)− 1

3
ρI) : (ξiξi−

1
3
I) +

1
4
giN

(0) +
3
8
gi ξi · J(0)

]
, (10)
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where the previous equilibria coincide with just the first three terms of (10). However, the Euler equations are satisfied for any
choice ofN (0) andJ(0), not justN (0) = J(0) = 0 as in the Hermite expansion. WhileJ(0) turns out to be constrained by the
viscous stress,N (0) is left completely arbitrary [4].

To determineN (0), Dellar [4] derived a wave equation approximately describing short scale density perturbations,

∂2ρ

∂t2
= ∇2P (ρ) + 2τ2 ∂4Q(ρ)

∂x2∂y2
, whereQ = P (ρ)− 1

3
ρ +

1
3
N (0), (11)

assuming thatN (0) depends only onρ. The corresponding dispersion relation for linear waves of the formρ = ρ0 + ρ′ exp(ik ·
x + σt) is

σ2 = −(k2
x + k2

y)
dP

dρ

∣∣∣
ρ=ρ0

+ 2τ2k2
xk2

y

dQ

dρ

∣∣∣
ρ=ρ0

. (12)

The first term on the right hand side of (12) gives the expected sound waves with speedcs = (dP/dρ)1/2. However, the second
term involvingQ gives either ill-posed growth (whendQ/dρ > 0) or very high frequency dispersive waves (whendQ/dρ < 0).
In both cases, the timescale is proportional to|k|2, rather than to|k| as for sound waves. It is easy to suppose that high frequency
waves, with phase speed proportional to|k|, would become unstable through violating the Courant–Friedrichs–Lewy (CFL)
condition for the discrete system (6).

Stable equilibria for an arbitrary barotropic equation of stateP = P (ρ) are thus given by choosingN (0) to setQ = 0,

fi = wi

[
ρ1i + 3(ρu) · ξi +

9
2
(ρuu + P I− 1

3
ρI) : (ξiξi −

1
3
I) +

1
4
(ρ− 3P )gi

]
. (13)

They coincide with Salmon’s [8] equilibria for the particular caseP = 1
2gρ2 that yields the shallow water equations. In general

the gi term means that they do not coincide with a truncation in tensor Hermite polynomials, or with a small Mach number
expansion of the Maxwellian in continuum kinetic theory. The only exception is the special caseP = 1

3ρ that sets the coefficient
in the final term to zero, so (13) coincides with the usual isothermal equilibria (7).

III. BAROTROPIC FLOWS WITH THE D1Q5 LATTICE

We now derive similar equilibria for the D1Q5 lattice using the five velocitiesξi = i for i = −2,−1, 0, 1, 2 as sketched in
figure 1(b). For this lattice Qian & Zhou [9] proposed the equilibria

f
(0)
i = wi

[
ρ + ρuξi + 1

2ρu2(ξ2
i − 1) + 1

2ρu3(ξ3
i −3ξi)

]
, (14)

with equation of stateP = ρ, or dimensionless temperatureθ = 1. The weights arew0 =1/2, w±1 =1/6, andw±2 =1/12. The
u3 term eliminates an erroneous∇·(ρuuu)contribution to the viscous stress, as in the D2Q9 equilibria [10].

The four lattice vectors1i, ξi, ξ2
i − 1 andξ3

i − 3ξi appearing in (14) are orthogonal with respect to a weighted inner product
with the above weights. They may be completed bygi = (1,−2, 1,−2, 1) = ξ4

i − 4ξ2
i + 1 to form an orthogonal basis forR5.

Equilibria yielding the one dimensional Euler equations with the barotropic equation of stateP = P (ρ) may thus be written
as

f
(0)
i = wi

[
ρ + ρuξi + 1

2 (P (ρ)− ρ + ρu2)(ξ2
i − 1) + 1

2ρu3(ξ3
i −3ξi) + giN

(0)
]
, (15)

where againN (0) is an arbitrary function ofρ (at least) that is not determined by the Chapman–Enskog expansion, at either the
Euler or Navier–Stokes orders. Forp = ρ andN (0) = 0, the equilibria (15) coincide with those in (14).

Theu3 term plays no r̂ole in the following analysis, which is based on linearising around a rest state (u = 0). However, this
term should really also involve the pressure to achieve a Galilean invariant viscous stress (see appendix)

It does not seem possible (see below) to derive a wave equation analogous to (11) characterising which functionsN (0) give
stable simulations. Instead, we consider solutions close to a global rest-state equilibrium,

f i(xm, t) = f
(0)
i (ρ = 1, u = 0) + εhi(xm, t), (16)

on a periodic domain withM equally spaced pointsxm = m∆x. For ε ¿ 1, thehi then evolve according to the linearised
equation

hi(xm + ξi∆t, t + ∆t)− hi(xm, t) = − ∆t

τ + ∆t/2
Ωijhj(xm, t), (17)

where the5×5 matrixΩij arises from linearising the dependence off
(0)
i on thefi via ρ andu in the full BGK collision operator

(6).
Equation (17) implicitly defines a5M×5M matrix taking the complete set of values{hi(xm, t)} at one timestep to their values

{hi(xm, t+∆t)} at the next timestep. Linear stability of the overall scheme is then determined by the eigenvaluesλ1, . . . , λ5M
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FIG. 2: Maximum amplification factor for the eigenmodes as a function ofN (0), for lattices with 64, 128, 256, and 512 points, and equation
of stateP (ρ) = 1

2
ρ.
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of this large matrix. More specifically, the scheme is stable when the moduli of the eigenvalues, or the amplification factors of
the eigenmodes over a timestep, are all less than or equal to unity.

Figure 2 shows how the maximum modulus of the eigenvalues depends on the choice of functionN (0) for equation of state
P (ρ) = 1

2ρ. In the linearised formulation (17) only the valuedN (0)/dρ|ρ=ρ0 is relevant. The eigenvalues were computed using
theQR algorithm implemented by theLAPACK routineDGEEV [11]. There are always neutrally stable modes, such as spatial
translations by lattice spacings, so the maximum modulus is never less than one.

The scheme (6) is linearly stable (max|λ| = 1) for quite a wide range ofN (0) on a coarse lattice with 64 points. However,
this stability window shrinks for finer lattices that support additional modes, allowing more scope for instability, until one is
forced to chooseN (0) = 1

4ρ. Similar computations for other equations of state lead to the conclusion that one must choose
N (0) = 1

2 [ρ − P (ρ)] for stability, although, as before, all choices ofN (0) lead to the same hydrodynamic equations from the
Chapman–Enskog expansion at Navier–Stokes order.

FIG. 3: Amplication factors of Fourier modes forP = 1
2
ρ, τ = 0.01, and two unstable choices ofN (0). Instability is confined to a band of

wavenumbersk∆x >∼ 2π/3.
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IV. CONCLUSION

Obtaining correct hydrodynamics from the Chapman–Enskog expansion imposes constraints on the first few moments of the
discrete equilibriaf (0)

i in a lattice Boltzmann equation. Generally these constraints fail to determine unique equilibria, since
the lattice contains more degrees of freedom (as may be required to ensure isotropy) than there are constraints. Following an
earlier approach [4] for the D2Q9 lattice, we have found stable equilibria for the D1Q5 lattice reproducing arbitrary barotropic
equations of state. A nonhydrodynamic variableN (0) that is not constrained by the Chapman–Enskog expansion must be chosen
asN (0) = 1

2 [ρ− P (ρ)] to suppress instabilities.
We did this by examining the linear stability of all possible modes on a given sized lattice, as plotted in figure 2, and found

windows of stableN (0) that shrank as the lattice was refined. Alternatively, we may consider only the stability of Fourier modes
with some wavenumberk, equivalent to settinghi(xm, t) ∝ exp(ikxm) in (17). Figure 3 shows the amplification factors as
functions ofk for all 5 such modes, for two different unstable choices ofN (0).

The unstable modes with|λ| > 1 do not extend back to smallk, unlike the D2Q9 case shown in figures 4 and 5 of Ref. [4],
even for larger values ofτ than used here. Instability is confined to a small band of finite wavenumbersk∆x >∼ 2π/3. This
suggests that a PDE approach like (11), being essentially a long wave analysis, albeit pursued to higher order than the Chapman–
Enskog expansion, cannot be applied to determine stability on the D1Q5 lattice. Instead one must solve numerical eigenvalue
problems, either for a whole lattice in one go as in figure 2, or wavenumber by wavenumber as in figure 3. Although the latter
approach may be computationally cheaper, since theQR algorithm’s cost grows asM3 for anM ×M matrix, it is easy to miss
unstable modes, especially when they are confined to narrow bands as in this example. Moreover these bands’s widths shrink to
zero as one approaches the stable choice ofN (0).

Finally, in principleN (0) may depend on all thefi individually, not just onρ =
∑

i fi as assumed here, which may offer
further gains in stability.
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APPENDIX A: EQUILIBRIA GIVING A GALILEAN-INVARIANT VISCOUS STRESS

The equilibria in (15) have the shortcoming that the viscous stress is not correctly Galilean invariant. It contains terms
involving the density gradient like those coming from the equilibria (13) whenP 6= 1

3ρ [4, 8].
Changing the coefficient of theξ3

i term toρu3 + 3(P − ρ)u,

f
(0)
i = wi

[
ρ + ρuξi + 1

2 (P (ρ)− ρ + ρu2)(ξ2
i − 1)

+ 1
2 [ρu3 + 3(P (ρ)− ρ)u](ξ3

i −3ξi) + giN
(0)

]
, (A1)

one obtains the Galilean-invariant viscous stress

Π(1) = −τ

[
∂t0(P (ρ) + ρu2) + ∂x

∑

i

ξ3
i f

(0)
i

]
= −τ

[
3P − ρ

dP

dρ

]
∂u

∂x
. (A2)

The unusual factor of3P − ρ dP/dρ in the viscosity may be eliminated by making the relaxation timeτ a function of the local
density, subject always to the constraint3P −ρ dP/dρ > 0 so thatτ remains positive. This excludes, for example, compressible
flow in water. Water behaves like an adiabatic gas (P ∝ ργ) with exponentγ = 7, for which3P − ρ dP/dρ = −4P is negative.

Preliminary results suggest that there is anN (0) to stabilise the equilibria (A1), but that the dependence on pressure is non-
monotonic, unlike the previous choicesN (0) = 1

2 [ρ− P (ρ)] for D1Q5, andN (0) = ρ− 3P (ρ) for D2Q9.
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