Non-hydrodynamic modes and general equations of state in lattice Boltzmann equations
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The lattice Boltzmann equation is commonly used to simulate fluids with isothermal equations of state in a
weakly compressible limit, and intended to approximate solutions of the incompressible Navier—Stokes equa-
tions. Due to symmetry requirements there are usually more degrees of freedom in the equilibrium distributions
than there are constraints imposed by the need to recover the Navier—Stokes equations in a slowly varying
limit. We construct equilibria for general barotropic fluids, where pressure depends only upon density, using the
two dimensional, nine velocity (D2Q9) and one dimensional, five velocity (D1Q5) lattices, showing that one
otherwise arbitrary function in the equilibria must be chosen to suppress instability.
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. INTRODUCTION

Methods based on the lattice Boltzmann equation (LBE) have become very popular for simulating fluid flow [1-3]. Mos
common LBEs are used to approximate incompressible flows, using an isothermal equation of state with sound speed m
larger than the maximum speed of fluid flow. The LBE is much less well developed for simulating fluids with other equations c
state, such as the van der Waals or Enskog equations describing dense gases, or the shallow water equations from geoph
fluid dynamics.

An LBE is an evolution equation for a set of distribution functigigx, t) that specify the densities of particles at position
moving with velocityg;,
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Macroscopic variables like fluid density momentunpu, and momentum fluXI, are expressed as moments of fhe
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discrete analogs of the integral moments from continuum kinetic theory.
The Bhatnagar—Gross—Krook or BGK collision operator on the right hand side of (1) relax¢s tihveards a specified

equilibrium fi(o) with a single timescale. Thefi(o) are functions ofp andu, chosen in such a way that mass and momentum
are conserved by collisions. In this paper we consider only barotropic fluids so there is no separate internal energy. The zel
and first moments of (1) then yield the macroscopic conservation laws

Op+ V-(pu) =0, 0(pu)+ V-II =0. 3)

An equation for the momentum flld may be obtained from the secorgj§;) moment of equation (1),
on+ V- (Y eks ) =+ (m-n®) @)
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using the Chapman—Enskog expansion for smalhd f; = fi(o) + O(7). This corresponds to seeking solutions that vary slowly
on the timescale set by

Determining suitabqui(o) for which (3) and (4) yield the desired Navier—Stokes equations is usually the most challenging par
of constructing a viable LBE. The leading order (Euler) hydrodynamic equations imply the constraints

SRV =p Y Gfi=pu Y &&S"Y =10 = P(p) + pun, (5)

where P(p) is the pressure for a barotropic fluid. Obtaining a correct viscous stress from (4) implies further constraints o
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FIG. 1: Arrangement of velocity vectogs for (a) the two dimensional, nine velocity (D2Q9) lattice, and (b) the one dimensional, five velocity
(D1Q5) lattice.
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However, these constraints generally do not suffice to determinﬁ(%aniquely. For example, (5) provides six independent
constraints in two dimensions, yet one typically uses a square lattice with nine velocities, or nine degrees of freedom, as shc
in figure 1(a). For this lattice (4) implies only two further constraints, leaving one degree of freedom undetermined [4].

Moreover, the resulting equilibria should lead to a stable numerical scheme when (1) is discretised as

At

Filx+ &ALt + At) — fi(x,t) = TR A2

T t) = 10 1)] (6)

The f, are related to the previoug by f, = f; + (fi — fi(o))At/(Qr). This change of variables renders (6) a second order
accurate approximation to the PDE (1), at the price of becoming prone to instabilitieswhiefyt. Although this regime gives
high grid-scale Reynolds numbers, the factor beford-thé term in (6) becomes close tel, so thef, are highlyover-relaxed

at each timestep.

Any resulting instabilities that arise on the grid scale are not visible to the slowly varying Chapman—Enskog expansion, so
alternative approach must be developed. We first review Dellar’s work [4] for the D2Q9 lattice, showing that the usual expansit
as polynomials in the particle velociti€s leads to instability for any equation of state except the usual %p in lattice units
(Ax = At = 1), but that stability may be restored by suitable choice of a non-hydrodynamic or “ghost” component of the
equilibrium. We then obtain analogous results for the D1Q5 lattice shown in figure 1(b).

II. BAROTROPIC FLOWS WITH THE D2Q9 LATTICE

The most commonly used lattice is probably the two dimensional, nine velocity (D2Q9) lattice shown in figure 1(a), with the
equilibria [5]

9 1
19 =wi[pLi+3(pu) - & + S (puw) : (6,6, 31 @)
with weightsw; given by
Wy = 4/97 w1,273,4 = 1/97 w57677,8 = 1/36. (8)

These equilibria give an isothermal equation of state With: %p in lattice units Ax = At = 1).

The three terms in (10) correspond to an expansion in the tensor Hermite polynongalgs — %I). These polynomials
are orthogonal with respect to the weighted inner prodyict) = >, w; figi, and also with respect to the continuous inner
product with Gaussian weight factetp(—3|¢|2/2). He & Luo [6] used this fact to rederive (7) from the continuum Maxwell—
Boltzmann equilibrium distribution by Gaussian quadrature in tteepriori” approach.

However, these tensor Hermite polynomials control only six of the nine degrees of freedom in the D2Q9 equilibria. They mg
be completed to form an orthogonal basis ®r using the vectorg; = (1, -2, -2, -2, -2,4,4,4,4)T andg,;¢,. By analogy
with the hydrodynamic variables pu, IT defined in (2), we define non-hydrodynamic or “ghost” [3] variab\eandJ by the
moments

N=3gfi I=3 g&f, NO=3af" I0=3 g&s", )
(see also Ref. [7]). A general set of equilibria may thus be written as [4]

9 1 1 1 3
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where the previous equilibria coincide with just the first three terms of (10). However, the Euler equations are satisfied for a
choice of N(© andJ(©), not justN(®) = J( = 0 as in the Hermite expansion. Whik® turns out to be constrained by the
viscous stressy () is left completely arbitrary [4].

To determineV(®), Dellar [4] derived a wave equation approximately describing short scale density perturbations,

Py _
o2

o 1 1
V2P(p) + 272 65553, whereQ = P(p) = =p+ §N<0>, (11)

assuming thalv(®) depends only op. The corresponding dispersion relation for linear waves of the formp, + p’ exp(ik -
x + ot) is
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The first term on the right hand side of (12) gives the expected sound waves withcgpe¢dP/dp)'/2. However, the second
term involving@ gives either ill-posed growth (whet@Q)/dp > 0) or very high frequency dispersive waves (Wh&p/dp < 0).
In both cases, the timescale is proportiongkid, rather than tdk| as for sound waves. It is easy to suppose that high frequency
waves, with phase speed proportionallkd, would become unstable through violating the Courant—Friedrichs—Lewy (CFL)
condition for the discrete system (6).

Stable equilibria for an arbitrary barotropic equation of sfate P(p) are thus given by choosiny(® to setQ = 0,

9 1 1 1
Ji=w; [Pli +3(pu) - §; + 5(/’1111 + Pl — §P|) (€€ — g') + Z(P - 3P)9i] (13)
They coincide with Salmon'’s [8] equilibria for the particular cdse- %gpQ that yields the shallow water equations. In general
the g; term means that they do not coincide with a truncation in tensor Hermite polynomials, or with a small Mach numbe
expansion of the Maxwellian in continuum kinetic theory. The only exception is the specichas§p that sets the coefficient
in the final term to zero, so (13) coincides with the usual isothermal equilibria (7).

lll.  BAROTROPIC FLOWS WITH THE D1Q5 LATTICE

We now derive similar equilibria for the D1Q5 lattice using the five velocifies- ¢ for i = —2,—1,0, 1,2 as sketched in
figure 1(b). For this lattice Qian & Zhou [9] proposed the equilibria

PO = w;i[p+ pu&s + Lpu(€2 — 1) + Lpu® (€3 -3¢,)], (14)

with equation of staté = p, or dimensionless temperatute= 1. The weights arevg=1/2, wy; =1/6, andwis=1/12. The
u? term eliminates an erroneod% (puuu) contribution to the viscous stress, as in the D2Q9 equilibria [10].
The four lattice vectors,;, &;, £2 — 1 and&? — 3¢; appearing in (14) are orthogonal with respect to a weighted inner product
with the above weights. They may be completedjby= (1, —2,1, —2,1) = &} — 4¢2 + 1 to form an orthogonal basis f&°.
Equilibria yielding the one dimensional Euler equations with the barotropic equation ofstaté(p) may thus be written
as

£ = wip+ puts + L(P(p) — p+ pu?) (€2 — 1) + LpuP (€3 —3¢,) + g:N©)], (15)

where againV (%) is an arbitrary function op (at least) that is not determined by the Chapman—Enskog expansion, at either the
Euler or Navier-Stokes orders. For= p and N(©) = 0, the equilibria (15) coincide with those in (14).
Thew? term plays nodle in the following analysis, which is based on linearising around a rest state(f). However, this
term should really also involve the pressure to achieve a Galilean invariant viscous stress (see appendix)
It does not seem possible (see below) to derive a wave equation analogous to (11) characterising which Niff¢tigins
stable simulations. Instead, we consider solutions close to a global rest-state equilibrium,

?i ('r’rru t) = fz(O) (p = 17 u = 0) + Eh’i (x'rna t), (16)

on a periodic domain withl/ equally spaced points,, = mAz. Fore < 1, the h; then evolve according to the linearised
equation

At

hi(zm + § ALt + AL) — hi(zm,t) = *mmj

hj (fﬂm, t), (17)

where theb x 5 matrix(2,; arises from linearising the dependencg‘ﬁ? on thef; via p andu in the full BGK collision operator
(6).

Equation (17) implicitly defines &M x 5 M matrix taking the complete set of valufs; (., t) } at one timestep to their values
{h;(xzm,,t+ At)} at the next timestep. Linear stability of the overall scheme is then determined by the eigenvyalueshs,,



FIG. 2: Maximum amplification factor for the eigenmodes as a functio 6%, for lattices with 64, 128, 256, and 512 points, and equation
of stateP(p) = 1p.
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of this large matrix. More specifically, the scheme is stable when the moduli of the eigenvalues, or the amplification factors
the eigenmodes over a timestep, are all less than or equal to unity.

Figure 2 shows how the maximum modulus of the eigenvalues depends on the choice of fiietifor equation of state
P(p) = %p. In the linearised formulation (17) only the valtmf(o)/dp\p:p0 is relevant. The eigenvalues were computed using
the QR algorithm implemented by theaPAack routineDGEEV [11]. There are always neutrally stable modes, such as spatial
translations by lattice spacings, so the maximum modulus is never less than one.

The scheme (6) is linearly stableigx|\| = 1) for quite a wide range oN(®) on a coarse lattice with 64 points. However,
this stability window shrinks for finer lattices that support additional modes, allowing more scope for instability, until one is
forced to chooseV(®) = ip. Similar computations for other equations of state lead to the conclusion that one must choos
N© = 1[p — P(p)] for stability, although, as before, all choices®f?) lead to the same hydrodynamic equations from the
Chapman—Enskog expansion at Navier—Stokes order.

FIG. 3: Amplication factors of Fourier modes fét = %p, 7 = 0.01, and two unstable choices 8f(%). Instability is confined to a band of
wavenumbergAz 2> 27/3.
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IV. CONCLUSION

Obtaining correct hydrodynamics from the Chapman—Enskog expansion imposes constraints on the first few moments of

discrete equilibriafi(o) in a lattice Boltzmann equation. Generally these constraints fail to determine unique equilibria, since
the lattice contains more degrees of freedom (as may be required to ensure isotropy) than there are constraints. Following
earlier approach [4] for the D2Q9 lattice, we have found stable equilibria for the D1Q5 lattice reproducing arbitrary barotropi
equations of state. A nonhydrodynamic varialé) that is not constrained by the Chapman—Enskog expansion must be chosen
asN©® = 1[p — P(p)] to suppress instabilities.

We did this by examining the linear stability of all possible modes on a given sized lattice, as plotted in figure 2, and foun
windows of stableV(®) that shrank as the lattice was refined. Alternatively, we may consider only the stability of Fourier modes
with some wavenumbek, equivalent to setting;(x,,,t) x exp(ikz,,) in (17). Figure 3 shows the amplification factors as
functions of% for all 5 such modes, for two different unstable choicesVé?).

The unstable modes witl\| > 1 do not extend back to small unlike the D2Q9 case shown in figures 4 and 5 of Ref. [4],
even for larger values of than used here. Instability is confined to a small band of finite wavenuniders> 2r/3. This
suggests that a PDE approach like (11), being essentially a long wave analysis, albeit pursued to higher order than the Chapn
Enskog expansion, cannot be applied to determine stability on the D1Q5 lattice. Instead one must solve humerical eigenve
problems, either for a whole lattice in one go as in figure 2, or wavenumber by wavenumber as in figure 3. Although the latt
approach may be computationally cheaper, sinc&XRealgorithm'’s cost grows as/?® for an M x M matrix, it is easy to miss
unstable modes, especially when they are confined to narrow bands as in this example. Moreover these bands’s widths shrir
zero as one approaches the stable choic¥ 6f.

Finally, in principle N(©) may depend on all th¢; individually, not just onp = >, [i as assumed here, which may offer
further gains in stability.
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APPENDIX A: EQUILIBRIA GIVING A GALILEAN-INVARIANT VISCOUS STRESS

The equilibria in (15) have the shortcoming that the viscous stress is not correctly Galilean invariant. It contains tern
involving the density gradient like those coming from the equilibria (13) wRe# %p [4, 8].
Changing the coefficient of th§ term topu® + 3(P — p)u,

FO =wi[p+puts + L(P(p) — p+pu?)(€F 1)
+ Lpu® +3(P(p) — p)ul(€} —3¢) + g:N ], (A1)

one obtains the Galilean-invariant viscous stress
0 dP | ou
W = —7 | 8, (P(p) + pu?) + s ;s?ff >] =—r [3P "5 | o (A2)

The unusual factor a§P — p dP/dp in the viscosity may be eliminated by making the relaxation tingfunction of the local
density, subject always to the constrediit — p dP/dp > 0 so thatr remains positive. This excludes, for example, compressible
flow in water. Water behaves like an adiabatic gasx p”) with exponenty = 7, for which3P — pdP/dp = —4P is negative.

Preliminary results suggest that there isMaf?) to stabilise the equilibria (A1), but that the dependence on pressure is non-
monotonic, unlike the previous choice&®) = 1[p — P(p)] for D1Q5, andN () = p — 3P(p) for D2Q9.
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