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Abstract. The kinetic theory of gases implies an independent evolution equation for the momentum flux tensor that closely resembles an evolution equation
for the elastic stress in continuum descriptions of viscoelastic liquids. However, kinetic theory leads to a non-objective convected derivative for the evolution
of the deviatoric stress, and a fixed relation between the stress relaxation rate and the viscosity. We show that simulations of freely decaying shear flow using
the standard two-dimensional lattice Boltzmann kinetic model develop a tangential stress consistent with this non-objective convected derivative, and this fixed
relation between parameters. By contrast, viscoelastic liquids are typically modelled by an upper convected derivative, and with two independent parameters for
the viscosity and stress relaxation rate. Although we are unable to obtain an upper convected derivative from kinetic theory with a scalar distribution function,
we show that introducing a general linear coupling to a second stress tensor yields the linear Jeffreys viscoelastic model with three independent parameters in
the incompressible limit. Unlike previous work, we do not attempt to represent the additional stress through moments of additional distribution functions, but
treat it only as an abstract tensor that couples to the corresponding tensorial moment of the hydrodynamic distribution functions. This greatly simplifies the
derivation, and the implementation of flows driven by body forces. The utility of the approach is demonstrated through simulations of Stokes’ second problem
for an oscillating boundary, of the four-roller mill, and of three-dimensional Arnold–Beltrami–Childress and Taylor–Green flows.
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1. Introduction. Lattice Boltzmann algorithms have achieved notable successes for simulating simple Newtonian fluids,
multiphase flows, suspensions with resolved microstructure, and macroscopic continuum models for liquid crystals, electrically
conducting fluids, and strongly magnetised plasmas with anisotropic stress-strain relations [58, 25, 12, 2, 18, 20, 22]. Lattice
Boltzmann approaches for continuum models of viscoelastic liquids are notably less advanced. This is perhaps surprising given
the many similarities between such models and kinetic theory. One of the simplest models for viscoelastic liquids is the linear
Maxwell model [8, 51, 71, 76]

T+ τ∂tT = µE. (1.1)

Maxwell originally proposed this model for rarefied gases [65]. It generalises the usual instantaneous relation T = µE between
the deviatoric stress T and the strain rate E in a Newtonian fluid with viscosity µ by allowing the stress to relax over a timescale
τ set by the the frequency of collisions between particles. The instantaneous relation is recovered for solutions of (1.1) that
vary slowly on timescales much longer than τ . Seeking slowly varying solutions is the key ingredient of the Chapman–Enskog
perturbation expansion that derives the Navier–Stokes equations from kinetic theory [13, 15]. The separate evolution equation
for T is what distinguishes genuinely non-Newtonian or viscoelastic liquids from generalised Newtonian fluids. The stress in
the latter is a function of the local, instantaneous strain rate, typically of the form T = µ(||E||)E, with ||E|| = (E : E)1/2. There
is a well-established lattice Boltzmann approach for simulating such fluids, and for the mathematically identical Smagorinsky
turbulence model [78, 1, 79, 45, 95, 82, 72, 22].

Heuristic models for rarefied gases such as (1.1) were superceded by the Boltzmann equation that gives a complete de-
scription of a dilute monatomic gas. It leads (see section 2) to the nonlinear evolution equation

T+ τ
[
∂tT+ u · ∇T+ T · ∇u+ (∇u)T · T

]
= τρθE (1.2)

in the incompressible limit. We write the velocity gradient as [∇u]ij = ∂iuj in suffix notation, so [T · ∇u]ij = Tik(∂kuj),
and a superscript T denotes a matrix transpose. The first difficulty lies in the fixed relation µ = τρθ between the viscosity µ
and relaxation time τ for a fluid with density ρ and temperature θ. A satisfactory model for viscoelastic liquids requires two
independent parameters for τ and µ. Secondly, the partial time derivative ∂tT in (1.1) has been replaced by a combination of
terms [∂tT + · · · ] involving the fluid velocity u and its gradient ∇u. The first two terms ∂tT + u · ∇T make up the standard
material derivative for a scalar quantity, and the extra T ·∇u+(∇u)T ·T terms appear because T is a tensor. However, neither
the partial time derivative ∂tT in (1.1) nor the combination [∂tT+ · · · ] in (1.2) transforms as required under rotations. In both
models, the stress in a deforming fluid subject to an additional rigid body rotation differs from the rotation of the stress in a
fluid undergoing the same deformation without rotation. The two models are thus not objective [8].

By contrast, the rheology of polymers is commonly described using the upper convected Maxwell model [8, 51, 71, 76]

T+ τ
[
∂tT+ u · ∇T− T · ∇u− (∇u)T · T

]
= µE. (1.3)

This model is objective, because the third and fourth terms in the material time derivative [∂tT + · · · ] have the opposite signs
to those in (1.2). The lower convected Maxwell model

T+ τ
[
∂tT+ u · ∇T+ (∇u) · T+ T · (∇u)T

]
= µE, (1.4)

is also objective, since the tensor contractions are between T and the u rather than the ∇ component of the dyad ∇u, and has
been used to model suspensions of discoid particles. Linear combinations of (1.3) and (1.4) are also objective, such as the
Jaumann or corotational time derivative.

The upper convected Maxwell model (1.3) may be derived from the Fokker–Planck equation for a dilute suspension of
microscopic dumbbells, each comprising a pair of Brownian beads separated by a linear spring [64, 73, 9, 76]. Assuming for
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the moment that each bead moves with the local fluid velocity, the separation vector between each pair of beads becomes a
material line element ℓ that evolves according to

∂tℓ+ u · ∇ℓ− ℓ · ∇u = 0 (1.5)

in an incompressible fluid [4]. The last term represents the stretching of material elements by velocity gradients, being the
velocity difference u(x + ℓ) − u(x) between the two ends of an element. The dyad ℓℓ then evolves according to the upper
convected derivative. The upper convected Maxwell model (1.3) describes an elastric stress proportional to an ensemble average
⟨ℓℓ⟩ over many dumbbells. The additional terms T and µE in (1.3) arise from the beads slipping relative to their surrounding
fluid, and from stochastic Brownian forces exerted on the beads by solvent molecules. Equation (1.5) also describes the
advection and stretching of the magnetic field vector B in ideal magnetohydrodynamics, for which the magnetic Maxwell
stress tensor BB− 1

2 |B|2I evolves according to the upper convected derivative.
Conversely, suppose ϕ is an advected scalar field that obeys ∂tϕ+ u · ∇ϕ = 0. Its gradient ∇ϕ evolves according to

∂t∇ϕ+ (u · ∇)∇ϕ+ (∇u) · ∇ϕ = 0. (1.6)

The last term has a different sign to that in (1.5), and the contraction is with the u rather than the ∇ component of the dyad ∇u.
These differences together ensure that ℓ · ∇ϕ evolves as an advected scalar field, while the dyad (∇u)(∇u) evolves as a lower
convected tensor field. The names “upper convected” and “lower convected” arise from the use of upper indices such as ℓi for
vector components, and lower indices such as ∂iϕ for components of co-vectors or 1-forms [67, 51].

Given the incompatibility between these objective nonlinear rheological models and the stress evolution equation (1.2)
obtained from the Boltzmann equation, previous lattice Boltzmann approaches have targetted the linear Jeffreys model [50, 8,
51, 71, 76]. This model generalises the linear Maxwell model by including the time derivative of E with an additional time
constant Λ,

T+ λ∂tT = µ (E+ Λ∂tE) . (1.7)

We now use λ for the time constant for T. We reserve τ for the stress relaxation time that appears in the moment (2.4) of the
kinetic equation (2.1) below, and in the Newtonian viscosity µ = τρθ. The Jeffreys model arises naturally for polymer solutions
if one decomposes the total stress T = µ′ E+ T̃ into a Newtonian viscous stress µ′ E due to the solvent, and an additional stress
T̃ due to the polymers that is governed by the linear Maxwell model. It was later derived from a microscopic description of
a suspension of elastic particles in a viscous fluid [33]. This decomposition of T establishes the relation Λ = λµ′/(µ + µ′)
and implies Λ < λ. A real polymeric liquid has a whole spectrum λ1, λ2, . . . of stress relaxation times. The single λ in the
Jeffreys model is identified with the longest of these, while the others are all supposed short enough to be modelled collectively
by the Newtonian viscous stress. Replacing the partial time derivatives in (1.7) with upper convected derivatives leads to the
popular Oldroyd-B model [67]. This model offers a good description of the Boger fluids that possess elastic properties but no
significant shear-dependence of their viscosities [11, 14, 49].

Lattice Boltzmann algorithms represent the hydrodynamic variables such as density and velocity as moments of a finite set
of distribution functions fα, each moving with a fixed velocity ξα, as described in Sec. 2. Following an earlier two-dimensional
lattice gas model [24], Giraud et al. [36, 37] developed a two-dimensional lattice Boltzmann formulation for the Jeffreys model
by adding two more distribution functions f9 and f10 with zero velocity, ξ9 = ξ10 = 0. They used these additional degrees of
freedom to build a second traceless stress tensor, which they coupled to the existing stress through the collision operator. This
coupling enables µ and τ to be adjusted independently. The approach was later extended to three dimensions [59].

Ispolatov & Grant [48] subsequently implemented a linear Maxwell model using an ordinary differential equation (ODE)
to evolve the divergence of the elastic stress at each lattice point. Their ODE contains a forcing term ∇·E = ∇2u calculated
using a finite difference approximation, and they included the divergence of the elastic stress as a body force in their momentum
equation. This approach was pursued by Li & Fang [62] and Frantziskonis [31], and extended to include a finite spectrum of
relaxation times (typically 6) by Frank & Li [29, 30]. This latter work puts the elastic stress into the second moment Π(0) of
the equilibrium distributions, following the approach used to include the Maxwell stress in lattice Boltzmann magnetohydro-
dynamics [18], instead of including the stress divergence as a body force. Tsutahara et al. [90] proposed a modified discrete
Boltzmann equation that allows an independent adjustment of τ and µ without introducing additional degrees of freedom (see
the appendix) but their equation cannot be implemented using the standard lattice Boltzmann space/time discretisation. Moving
beyond linear viscoelastic theory, Onishi et al. [68, 69] simulated a population of microscopic dumbbells in a viscous fluid,
whose macroscopic behavior reproduces the Oldroyd-B model. Karra [54] coupled a finite difference discretisation of the
Oldroyd-B elastic stress evolution equation with a standard lattice Boltzmann hydrodynamic algorithm, while Malaspinas et al.
[63] used a lattice Boltzmann advection/diffusion algorithm for each component of the elastic stress tensor. Phillips & Roberts
[72] have reviewed these different approaches, concentrating mainly on generalised Newtonian fluids.

In this paper we present a greatly simplified lattice Boltzmann formulation for the Jeffreys model using a matrix collision
operator defined purely in terms of moments to couple the existing stress T with a second stress M local to each lattice point.
Unlike previous work, we make no attempt to represent M as the second moment of a set of distribution functions. Instead, we
simply evolve the components of M directly at each lattice point. A general linear coupling between T and M contains three
coefficients, the overall magnitude of M relative to T being arbitrary. This set of three coefficients is in a one-to-one relation
with the set of three coefficients µ, λ, Λ appearing in the Jeffreys model. Although we begin with a nonlinear and nonobjective
convected derivative for T in (1.2), we obtain the linear Jeffreys model in the low Mach number limit relevant for simulating
incompressible flow.
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2. Stress evolution in kinetic theory. We consider a finite set of distribution functions fα(x, t) for α = 0, 1, . . . , N that
evolve according to the discrete Boltzmann equation

∂tfα + ξα · ∇fα = −
N∑

β=0

Ωαβ

(
fβ − f

(0)
β

)
. (2.1)

Each fα propagates with constant velocity ξα, and interacts with the other distribution functions through the collision term
on the right hand side. We use Greek indices to label discrete velocities, and reserve Roman indices for Cartesian tensor
components. Hydrodynamic quantities, the density ρ, velocity u, and momentum flux Π, are defined as moments of the fα,

ρ =
N∑

α=0

fα, ρu =
N∑

α=0

ξαfα, Π =
N∑

α=0

ξαξαfα, Q =
N∑

α=0

ξαξαξαfα. (2.2)

The velocity set ξα, equilibrium distributions f (0)β (ρ,u), and collision matrix Ωαβ are chosen so that moments of slowly varying
solutions of (2.1) satisfy the Navier–Stokes equations.

The zeroth and first moments of the discrete Boltzmann equation (2.1) with respect to the particle velocity ξα give the
mass and momentum conservation equations

∂tρ+∇·(ρu) = 0, ∂t(ρu) +∇·Π = 0. (2.3)

The right hand sides vanish under the assumption that collisions locally conserve mass and momentum, which implies condi-
tions on f (0)β (ρ,u) and Ωαβ . The second moment of (2.1) with respect to ξα gives an evolution equation for the momentum
flux,

∂tΠ+∇·Q = −1

τ

(
Π−Π(0)

)
, (2.4)

which involves the third moment Q defined in (2.2). The right hand side of (2.4) arises from Π being an eigenfunction of
the collision operator with eigenvalue −1/τ . For example, the Bhatnagar–Gross–Krook [7] or BGK collision matrix Ωαβ =
(1/τ)δαβ has this property. More generally, Ωαβ is constructed to have this property by specifying its basis of eigenvectors
and their associated eigenvalues [23, 60, 19]. The superscript zero on Π(0) in (2.4) indicates a moment of the equilibrium
distributions f (0)β (ρ,u). These are typically quadratic polynomials in the fluid velocity u [55, 74]

f
(0)
β (ρ,u) = ρwβ

(
1 +

1

θ
u · ξβ +

2

θ2
uu :

(
ξβξβ − θI

))
. (2.5)

The wβ are a set of weights associated with the discrete velocities ξβ . The constant θ determines the effective temperature in
the equilibrium momentum flux Π(0) = θρI + ρuu, where I is the identity tensor. The speed of sound is thus cs = θ1/2, and
the Mach number is Ma = |u|/cs.

The same three equations (2.3) and (2.4) may be derived from the first three integral moments of the continuous Boltzmann
equation [13, 15]. However, in continuous kinetic theory it is more common to use moments with respect to the peculiar
velocity, the difference c = ξ − u between the particle velocity ξ and the local fluid velocity u [38, 46, 13, 15]. The moments
Π and Q may be rewritten in terms of moments with respect to cα = ξα − u as

Πij = Pij + ρuiuj , Qijk = Qijk + uiPjk + ujPki + ukPij + ρuiujuk. (2.6)

The definition of cα as the discrete peculiar velocity implies
∑

α cαfα = 0, so all terms with precisely one cα vanish. The two
new quantities appearing in (2.6) are

P =
N∑

α=0

cαcαfα, Q =
N∑

α=0

cαcαcαfα. (2.7)

The left hand side of the momentum flux evolution equation (2.4) becomes

∂tΠij + ∂kQijk = ∂t (Pij + ρuiuj) + ∂k (Qijk + uiPjk + ujPik + ukPij + ρuiujuk) , (2.8)

and we use the mass and momentum conservation equations to evaluate

∂t (ρuiuj) = ui∂t (ρuj) + uj∂t (ρui)− uiuj∂tρ,

= −ui∂k (ρujuk + Pjk)− uj∂k (ρuiuk + Pik) + uiuj∂k(ρuk). (2.9)

Subtracting (2.9) from (2.8) gives an evolution equation for the pressure tensor,

∂tPij + ∂k (ukPij +Qijk) + Pik
∂uj
∂xk

+ Pkj
∂ui
∂xk

= −1

τ

(
Pij − P

(0)
ij

)
. (2.10)
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FIG. 2.1. (left) The nine discrete velocities in the D2Q9 lattice. (right) The boundary conditions at the lower edge of the domain must supply values for
the three incoming distributions f2, f5, f6 as described in Sec. 9.

The same equation may be derived directly from the continuous Boltzmann equation as a special case of Maxwell’s equation
of transfer for the evolution of an arbitrary moment of f(x, ξ, t) with respect to c = ξ − u [15].

We now isolate the deviatoric stress T = ρθI− P, which evolves according to

∂tTij + ∂k

(
Tijuk −Qijk

)
− ρθ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ Tik

∂uj
∂xk

+ Tjk
∂ui
∂xk

= −1

τ
Tij , (2.11)

assuming the usual isothermal (constant θ) equation of state for lattice Boltzmann hydrodynamics. The standard quadratic
polynomial equilibria (2.5) give

Q(0) = −ρuuu = O(Ma3), (2.12)

while Q(0) = 0 for the continuous Maxwell–Boltzmann distribution. We may design the collision operator Ωαβ to apply a very
short relaxation time τQ ≪ τ to Q, keeping it near equilibrium, and thus negligibly small. Similarly, we use the low Mach
number near-incompressibility condition ∂kuk = O(Ma2) to simplify the ∂k(ukTij) term. Making these two approximations
in (2.11) gives

Tij + τ

[
∂tTij + uk∂kTij + Tik

∂uj
∂xk

+ Tjk
∂ui
∂xk

]
= τρθ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.13)

This closely resembles the upper convected Maxwell model with parameters λ = τ and µ = τρθ. Neglecting all the terms
multiplied by τ on the left hand side gives the Navier–Stokes relation T = µE. However, the third and fourth terms in the
convected time derivative have the opposite signs from (1.3). This difference, which encapsulates the incompatibility between
kinetic theory and the principle of material frame indifference that mandates an objective stress-strain relation, has long been
a source of contention between the two fields [94, 26, 10, 52, 32], and was first identified in a lattice Boltzmann context by
Wagner [92]. The difference ultimately arises from Q being a completely symmetric third rank tensor. The three terms uiPjk,
ujPik, and ukPij in (2.8) thus all have the same sign, so the Tik∂kxj and Tkj∂kui terms in (2.13) have the same sign as the
uk∂kTij term. By contrast, the upper convected derivative ultimately arises from the u ·∇ℓ−ℓ ·∇u combination that describes
the stretching of material line elements. This cannot be the evolution equation for the first moment of a scalar distribution
function, since the required tensor uℓ− ℓu is antisymmetric rather than symmetric [18].

3. Planar channel flow in the kinetic model. We illustrate the consequences of the T·∇u term and its transpose in (2.13)
by considering a uni-directional channel flow with u = u(y, t)x̂ in the standard rheological orientation [85, 76, 17, 35, 91, 71].
The stress advection u · ∇T vanishes in this geometry, and the stress evolution equation (2.13) becomes

T+ τ

[
∂tT+ u′

(
2Txy Tyy
Tyy 0

)]
= µ

(
0 u′

u′ 0

)
, (3.1)

where u′ = ∂yu, and µ = τρθ as before. The three independent components of (3.1) are

Txx + τ [∂tTxx + 2u′Txy] = 0, Txy + τ [∂tTxy + u′Tyy] = µu′, Tyy = 0, (3.2)

and their steady solution is

Txx = −2µτu′2, Txy = µu′, Tyy = 0. (3.3)

The shear stress Txy takes the form one expects from the Navier–Stokes equations, but the non-zero Txx is an O(Kn2) cor-
rection to the Navier–Stokes solution. An equivalent term has been found in solutions of the Burnett equations for Poiseuille
flow, from an integral representation of the solution of the continuous Boltzmann–BGK equation for Couette flow [96], by
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FIG. 3.1. Shear stress Txy (left) and tangential stress Txx (right) in a lattice Boltzmann simulation of freely decaying sinusoidal shear flow compared
with the quasistationary theory (3.3). The same legend applies to both plots.

perturbative solutions of the continuous Boltzmann–BGK equation for small forcing [89, 77], and in Direct Simulation Monte
Carlo (DSMC) simulations [91, 35].

Figure 3.1 shows the nonzero stress components in a lattice Boltzmann simulation of a freely decaying sinusoidal shear flow
starting from initial conditions with u = sin(2πy)x̂ and ρ = 1 with viscosity ν = 0.1 in the periodic domain 0 ≤ y ≤ 1. This
simulation avoids the additional complexity of a body force or non-periodic boundary conditions, while the steady solutions
(3.3) provide accurate approximations when the viscous decay time for the flow is much longer than the stress relaxation
time τ . The simulation employed the D2Q9 lattice shown in figure 2.1, with the weights w0 = 4/9, w1,2,3,4 = 1/9 and
w5,6,7,8 = 1/36. The simulation was run on a lattice of 128 points in y with Mach number Ma =

√
3/50 and the BGK

collision matrix Ωαβ = (1/τ)δαβ .
As described in Sec. 5, the lattice Boltzmann equation

fα(x+ ξα∆t, t+∆t) = fα(x, t)−
∆t

τ +∆t/2

(
fα(x, t)− f (0)α (x, t)

)
(3.4)

arises from a space/time discretisation of the discrete Boltzmann equation (2.1) with the BGK collision operator. The BGK
collision time τ is replaced by τ + ∆t/2 in the denominator of the right hand side of (3.4), a correction originally derived by
Hénon [43] for linear shear flows in lattice gas automata. This correction may also be understood as arising from a Crank–
Nicolson discretisation of the ordinary differential equations dtfα = −(1/τ)

(
fα − f

(0)
α

)
governing collisions in a spatially

homogeneous state, while an uncorrected ratio ∆t/τ in the right hand side of (3.4) would arise from a forward Euler discretisa-
tion [21]. Throughout this work τ denotes the stress relaxation time in the discrete Boltzmann PDE, so the Newtonian viscosity
is always µ = τρθ.

The correction of τ to τ +∆t/2 is accompanied by a transformation of the distribution functions from fα to [40]

fα = fα +
∆t

2τ

(
fα − f (0)α

)
. (3.5)

The second moment of this transformation gives an expression for the deviatoric stress in a lattice Boltzmann simulation:

T =
Π(0) −Π

1 + ∆t/(2τ)
, where Π =

N∑
α=0

ξαξαfα, (3.6)

with a corresponding Hénon correction to the denominator. Figure 3.1 shows the reconstructed Txx and Txy at t = 0.5, by
which time the maximum velocity has decayed to exp(−π2/5) ≈ 0.139. Both stress components are in excellent agreement
with the theoretical expressions from (3.3) for the instantaneous velocity field u(y) = exp(−π2/5) sin(2πy). In particular, the
right hand plot in figure 3.1 confirms the existence and sign of the tangential stress Txx predicted by the kinetic equation, and
the fixed relation µ = τρθ between µ and τ .

4. Coupling to a second local stress tensor. The Jeffreys model expresses the total deviatoric stress as a linear com-
bination of a standard Newtonian viscous stress due to a solvent, and a second viscoelastic stress due to embedded polymer
molecules. Following the work of Giraud et al. [36, 37] we therefore seek to generalise the Maxwell-like behavior of the
deviatoric stress given by the discrete kinetic models from Sec. 2 by introducing a second stress tensor M that is local to lattice
points. However, we do not attempt to represent M explicitly using additional distribution functions, but instead introduce a
general linear coupling between M and the existing stress tensor T defined in Sec. 2.

Setting Q = 0 in the evolution equation (2.11) for the deviatoric stress gives

DT− ρθE = −1

τ
T, (4.1)
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where DT denotes the convected derivative of T that appears in (2.11). We now generalise (4.1) to(
DT− ρθE
∂tM

)
= − 1

Λ

(
a −1
b 1

)(
T
M

)
, (4.2)

where the scalar cofficients in the 2 × 2 matrix multiply the tensors T and M. The equation for evolving M contains the
partial derivative ∂tM, rather than a convected derivative, because we take M to be local to lattice points in the numerical
implementation below. The pre-factor 1/Λ sets the relaxation rate for M, with the remaining matrix being dimensionless, and
fixes the bottom right matrix coefficient to be 1. The magnitude of M relative to T is arbitrary in a linear theory, so we may also
set the upper right matrix coefficient to be −1.

We now eliminate M by applying (1 + Λ∂t) to the equation for T given by the upper row of (4.2),

DT− ρθE+ Λ∂t (DT− ρθE) = −a+ b

Λ
T− a∂tT. (4.3)

Assigning

a = λ/τ − 1, b = 1 + (Λ− λ)/τ, µ = τρθ, (4.4)

gives

T+ [(λ− τ)∂tT+ τDT] + Λτ∂tDT = µ (E+ Λ∂tE) . (4.5)

This is the Burgers viscoelastic model [71], though with a mix of partial and convected time derivatives. The timescale τ
controlling the steady-state viscosity scales with Mach number, due to the relation µ = τρθ, while λ and Λ have no such
scaling. At sufficiently small Mach number (ensuring τ ≪ Λ < λ) we thus recover the linear Jeffreys model

T+ λ∂tT = µ (E+ Λ∂tE) , (4.6)

with a simple partial derivative ∂tT instead of the earlier nonlinear convected time derivative DT. The coefficients a and b
in the matrix (4.2) are are uniquely determined by the three timescales τ , λ, Λ in the Jeffreys model. The eigenvalues of this
matrix are

σ± =
−λ±

√
λ2 − 4Λτ

2Λτ
, (4.7)

which are purely real when 4Λτ < λ2. The real parts of σ± are always negative, so (4.2) is a viable model of stress relaxation.

5. From discrete Boltzmann to lattice Boltzmann. We now construct a second-order accurate discretization of the above
kinetic equation using operator splitting [21]. The discrete Boltzmann equation (2.1) may be split into separate equations for
streaming and collisions,

∂tfα + ξα · ∇fα = 0, ∂tfα = −
N∑

β=0

Ωαβ

(
fβ − f

(0)
β

)
. (5.1)

The first of the pair describes advection along characteristics. Its solution over a timestep ∆t may be written symbolically as
fα(x, t+∆t) = Sfα(x, t) = fα(x− ξα∆t, t) in terms of the streaming operator S. Approximating the solution of the second
equation over a timestep ∆t by the Crank–Nicolson formula gives

f(x, t+∆t)− f(x, t)

∆t
= −1

2
Ω
(
f(t+∆t)− f (0)(t+∆t) + f(t)− f (0)(t)

)
, (5.2)

in matrix notation where f = (f0, f1, . . . fN )T is a column vector of distribution functions, and Ω is the collision matrix with
components Ωαβ . The equilibrium distributions f (0)(ρ,u) are invariant under collisions, since ρ and u are invariant under
collisions, so we may replace f (0)(t+∆t) by f (0)(t) in (5.2). The solution may then be written as

f(x, t+∆t) = f(x, t)− Ω̃
(
f(x, t)− f (0)(x, t)

)
, (5.3)

where Ω̃ = (I+ 1
2∆tΩ)−1∆tΩ is a discrete collision matrix constructed from the continuous collision matrix Ω. We write the

solution (5.3) symbolically as f(x, t+∆t) = C f(x, t).
We now combine the solution operators S and C using the Strang splitting formula [84]

f(x, t+∆t) = C1/2 SC1/2 f(x, t), (5.4)

where C1/2 denotes the action of the collision operator for a half-timestep of length ∆t/2. This symmetric splitting gives a
second order in ∆t approximation to the evolution under the unsplit discrete Boltzmann equation (2.1). For linear operators S
and C this splitting formula is a consequence of the Baker–Cambell–Hausdorff and Zassenhaus formulae for the exponential
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of a sum of non-commuting operators. Its nonlinear extension may be accomplished using the notion of the Lie derivative of a
nonlinear operator [39].

Applying the Strang splitting formula repeatedly for n timesteps gives

f(x, t+ n∆t) = C1/2 SC1/2 C1/2 SC1/2 . . . C1/2 SC1/2 f(x, t), (5.5)

which simplifies to

f(x, t+ n∆t) = C1/2 (SC)n C−1/2 f(x, t), (5.6)

after using C1/2 C1/2 = C and C1/2 = CC−1/2 to combine intermediate stages.
Equation (5.6) for n = 1 may be rewritten as the standard lattice Boltzmann equation

fα(x+ ξα∆t, t+∆t) = fα(x, t)−
N∑

β=0

Ω̃αβ

(
fβ(x, t)− f

(0)
β (x, t)

)
(5.7)

for the discrete collision matrix Ω̃, and the transformed distribution functions f defined by

f = C−1/2f , f = C1/2f . (5.8)

If we take C1/2 = 1
2 (I+C), and C−1/2 = 2(I+C)−1 to be its exact inverse, we recover the transformation introduced by He et

al. [40] for the single-relaxation-time collision operator Ωαβ = (1/τ)δαβ , and extended to general matrix collision operators
by Dellar [19]. The replacement of Ω by Ω̃ = (I+ 1

2∆tΩ)−1∆tΩ in the Crank–Nicolson definition of C generalises the Hénon
correction in Sec. 3 that replaces the single relaxation time τ in the discrete Boltzmann–BGK PDE with τ +∆t/2 in the lattice
Boltzmann equation [43].

6. Viscoelastic implementation. The above formulation extends easily to encompass coupling to a second set of vari-
ables, the components of M located at each lattice point, that only take part in the collision step. These variables are thus
invariant under the streaming step. To construct the viscoelastic collision step it is beneficial to replace Π with T = Π(0) −Π.
The equilibrium momentum flux Π(0) = θρI + ρuu is invariant under collisions, being a function of ρ and u, so the post-
collisional momentum flux Π′ = Π(0) − T′ may be easily reconstructed from the post-collisional deviatoric stress T′. The
simplest approach reconstructs the post-collisional distribution functions from the truncated Hermite expansion [41]

f
′
α = wα

[
ρ+ 3ρu · ξα + 9

2 (ρuu− T
′
) : (ξαξα − 1

3 I)
]
, (6.1)

for lattices with θ = 1/3, and propagates them to adjacent lattice points

fα(x+ ξα∆t, t+∆t) = f
′
α(x, t). (6.2)

The overbars indicate the transformed distribution functions defined by (5.8) and their corresponding moments such as T,
while the fluid density ρ and velocity u are unaffected by this transformation. The expansion (6.1) coincides with the standard
quadratic equilibria when T

′
= 0. It implicitly resets the higher, non-hydrodynamic, or “ghost” moments of the distribution

function to their equilibrium values at every timestep [44, 58, 66, 19]. This is equivalent to applying a continuous relaxation
time τghost = ∆t/2 to these moments. Alternatively, the relaxation times for these moments may be freely chosen in the usual
way [23, 60], independently of the coupling between the stress moment T and the second stress M

The construction of a viscoelastic lattice Boltzmann algorithm thus reduces to constructing the post-collisional stress T
′

in
the transformed fα variables. The general formula (5.3) gives the discrete analog of the matrix in (4.2) as

C =
1

4Λτ + 2λ∆t+∆t2

4Λτ + 2∆t(2τ − λ)−∆t2 4τ∆t

4∆t(λ− Λ− τ) 4Λτ + 2∆t(λ− 2τ)−∆t2

 . (6.3)

The eigenvalues of this matrix,

σ̃± =
4Λτ −∆t2 ± 2∆t

(
λ2 − 4τΛ

)1/2
4Λτ + 2λ∆t+∆t2

, (6.4)

are real when 4τΛ < λ2, and otherwise complex. The eigenvalues always lie within the unit circle, since

(4Λτ −∆t2)2 + 4∆t2
(
4τΛ− λ2

)
<

(
4Λτ + 2λ∆t+∆t2

)2
(6.5)

whenever λ∆t > 0. This discrete collision step is thus linearly stable for all positive values of the parameters µ, λ, Λ in the
Jeffreys fluid model.

The collision matrix C is applied component-by-component to the the transformed stress tensors T and M defined by(
T
M

)
= 2(I+ C)−1

(
T
M

)
. (6.6)

The 2 × 2 matrices C and (I + C)−1 act either on the whole tensors T and M, or just on their traceless parts. The latter is
sufficient for linear viscoelasticity, and is easily accomplished by decomposing T into its trace TrT = T xx + T yy + T zz , its
off-diagonal components T xy, T xz , T yz , and the normal stress differences T xx − T yy and T yy − T zz . We thus need two extra
degrees of freedom per lattice point for the traceless part of M in two dimensions, and five extra degrees of freedom per lattice
point in three dimensions.
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FIG. 7.1. Imaginary parts (left) and complex values (right) of the eigenvalues for axis-aligned sinusoidal disturbances with wavenumber k. The
continuous curves in the left plot show the theoretical dispersion relations Imσ = ±csk for acoustic waves and (7.2) for elastic waves. The continuous curves
in the right plot show the theoretical dispersion relation for elastic waves and the unit circle.

7. Dispersion relations for linear waves. The properties of lattice Boltzmann algorithms are often studied using the von
Neumann approach that seeks plane wave solutions to the linearised form of discrete equations such as (3.4) and its viscoelastic
generalisations [81, 36, 60, 59]. Unsteady shear flow in an incompressible Jeffreys fluid is governed by the coupled linear
equations

ρ0∂tu = ∂yT, T + λ∂tT = µ(∂yu+ Λ∂tyu), (7.1)

where u = u(y, t)x̂ in the standard rheological orientation of Sec. 3, and T = Txy. Solutions proportional to exp(iky + σt)
exist when the growth rate σ satisfies the dispersion relation

σ = − 1

2λ

[
1 + Λνk2 ±

(
(1 + Λνk2)2 − 4λνk2

)1/2]
. (7.2)

This reduces to the expected purely viscous relation σ = −νk2 in the double limit as λ and Λ tend to zero. The dispersion
relation for a Maxwell fluid (Λ = 0) takes the simpler form

σ = − 1

2λ

[
1±

(
1− 4λνk2

)1/2]
. (7.3)

Both dispersion relations imply Reσ < 0 for all parameter values, so disturbances are damped by viscosity. However, σ may
become complex, showing that the elastic property of the fluid may support oscillations in the form of decaying transverse
shear waves. Disturbances in a Maxwell fluid become oscillatory if 4λνk2 > 1, while disturbances in a Jeffreys fluid become
oscillatory in the band of wavenumbers k for which 4λνk2 > (1 + Λνk2)2.

Seeking solutions to the numerical algorithm described in Secs. 5 and 6 for sinusoidal disturbances with amplitude ϵ ≪ 1
about a uniform rest state in the form fα = wα + ϵhα exp(ik · x + σt) and M = ϵH exp(ik · x + σt) gives a matrix
eigenvalue problem for the constants hα and H. Combining the D2Q9 lattice Boltzmann model from Sec. 3 with a traceless
stress perturbation H represented by Hxy and Hn = Hxx − Hyy gives 11 degrees of freedom in total. The resulting linear
system may be written as

eσ∆teiξα·k∆xhα = hα −
∑8

β=0Lαβ(τ)hβ

+ 9wα(ξ
2
αx − ξ2αy)

[
(λ− τ +∆t/2)(−h1 + h2 − h3 + h4)− τHn

]
/∆

+ 36wαξαxξαy
[
(λ− τ +∆t/2)(−h5 + h6 − h7 + h8)− τHxy

]
/∆, (7.4a)

eσ∆tHn = Hn − 4
[
(Λ− λ+ τ)(−h1 + h2 − h3 + h4) + (τ +∆t/2)Hn

]
/∆, (7.4b)

eσ∆tHxy = Hxy − 4
[
(Λ− λ+ τ)(−h5 + h6 − h7 + h8) + (τ +∆t/2)Hxy

]
/∆, (7.4c)

where ∆ = ∆t + 2τ + 4τΛ/∆t, and Lαβ(τ) is the usual linearised hydrodynamic collision operator. This system defines an
11× 11 matrix eigenvalue problem for the eigenvalues eσ∆t and their corresponding eigenvectors (h0, . . . h8,Hn,Hxy).

Figure 7.1 shows the 11 eigenvalues eσ∆t as a function of k∆x for disturbances with wave vector k = (k, 0) aligned
with the x-axis. The normalisation of lengths with ∆x and times with ∆t is convenient for investigating properties of the
algorithm on the lattice scale, and is equivalent to working in the so-called lattice units in which ∆x = 1 and ∆t = 1. The
parameter values τ = 0.1∆t, λ = 4∆t and Λ = 0.5∆t are chosen to show the transverse elastic waves on the same axes
as the longitudinal acoustic waves that propagate at the sound speed cs =

√
1/3 (∆x/∆t). The eigenvalues of the discrete

algorithm corresponding to the elastic waves are in good agreement with the theoretical dispersion relation (7.2) for a Jeffreys
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FIG. 7.2. Scatter plots of the wave speeds (left) and decay rates (right) for numerical transverse elastic waves with wavevector k and parameters
λ = 200∆t, Λ = 140∆t, τ = 0.075∆t. The same key applies to both plots, with the solid lines showing the elastic wave dispersion relation (7.2). The
sound waves are not visible on these axes.

fluid, although the the large wavenumber cut-off for the elastic waves is not visible because it lies beyond the largest resolved
wavenumber with k∆x = π.

However, the convergence of the discrete algorithm towards solutions of the PDEs describing an incompressible Jeffreys
fluid requires k∆x→ 0, and an asymptotic separation between the acoustic and elastic wave speeds. Figure 7.2 shows the real
and imaginary parts of the eigenvalues for the more realistic parameter values τ = 0.075∆t, λ = 200∆t, Λ = 140∆t, computed
for a grid of wave vectors k = (kx, ky) for which kx∆x and ky∆x both lie in the set {π/100, 2π/100, . . . , 99π/100}. The
near-perfect collapse of these data points onto single curves when plotted against |k| demonstrates the isotropy of the algorithm.
The finite band of wavenumbers for which elastic waves exist in the Jeffreys model is now visible, but the much faster acoustic
waves are not visible on these axes. The phase speeds in the left-hand plot are noticably affected by the finite spatial resolution
for |k|∆x ≈ 1. Small errors in the effective numerical wavenumber become visible here because the derivative dσ/dk of the
theoretical solution (7.2) becomes infinite at the points where Imσ crosses zero.

8. Implementation of a body force. A wider range of benchmark flows may be simulated by including a body force F
in the momentum equation. The continuous Boltzmann equation for a distribution f(x, ξ, t) of particles each experiencing an
acceleration a due to external body forces is

∂tf + ξ · ∇f + a · ∇ξf = C[f, f ], (8.1)

where the right hand side is Boltzmann’s binary collision operator [13, 15]. The first three moments of (8.1) give

∂tρ+∇·(ρu) = 0, (8.2a)
∂t(ρu) +∇·Π = F, (8.2b)

∂tΠ+∇·Q = −1

τ

(
Π−Π(0)

)
+ Fu+ uF, (8.2c)

where F = ρa. The moments of the acceleration term a · ∇ξf have been written on the right hand sides, as is conventional for
fluid equations. The body force does not appear in the continuity equation, and appears as expected in the momentum equation.
The additional terms Fu+uF on the right hand side of (8.2c) ensure that the body force disappears from the evolution equation
for the stress T. The body force modifies the previous equation (2.9) to

∂t (ρuiuj) = uiFj − ui∂k (ρujuk + Pjk) + ujFi − uj∂k (ρuiuk + Pik) + uiuj∂k(ρuk), (8.3)

with additional terms uiFj and ujFi. These cancel with the matching terms on the right hand side of (8.2c) as rewritten using
P,

∂t (Pij + ρuiuj) + ∂k (Qijk + uiPjk + ujPik + ukPij + ρuiujuk)

= −1

τ

(
Pij − P

(0)
ij

)
+ uiFj + ujFi, (8.4)

to leave the unmodified equations (2.10) and (2.13) for P and T.
The combination of the splitting approach of Sec. 5 with a representation in terms of moments leads us to discretise the
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ordinary differential equations

∂tρ = 0, (8.5a)
∂t(ρu) = F, (8.5b)

∂tΠ = −1

τ

(
Π−Π(0)

)
+ Fu+ uF, (8.5c)

using the Crank–Nicolson formula. Taking F to be independent of time, we obtain ρ′ = ρ and u′ = u + ρ−1∆tF. A prime
denotes a quantity evaluated at t+∆t, while unprimed quantities are evaluated at t. Applying the Crank–Nicolson formula to
(8.5c) gives

Π′ −Π = −∆t

2τ

(
Π′ +Π−Π′(0) −Π(0)

)
+

1

2
∆t (Fu′ + u′ F+ Fu+ uF) . (8.6)

The last term simplifies using u′ = u+ ρ−1∆tF,

1

2
∆t (Fu′ + u′ F+ Fu+ uF) = ∆t

(
Fu+ uF+ ρ−1∆tFF

)
= Π′(0) −Π(0), (8.7)

so (8.6) becomes

Π′ = Π′(0) +

(
τ −∆t/2

τ +∆t/2

)(
Π−Π(0)

)
. (8.8)

Converting these expressions for ρ′, u′ and Π′ into an expression for the post-collisional distribution functions gives the so-
called “exact difference method” [56, 57]

f ′α = fα − ∆t

τ +∆t/2

(
fα − f (0)α

)
+ f ′ (0)α − f (0)α , (8.9)

since the contribution from the body force appears solely through the difference f ′ (0)α − f
(0)
α .

Equation (8.8) is exactly the same formula that relates the post-collisional deviatoric stress T′ = Π′(0) − Π′ to the pre-
collisional deviatoric stress T = Π(0) − Π in the absence of a body force. The body force only contributes through the
difference between Π′(0) and Π(0). This decoupling enables the simple inclusion of a body force in the viscoelastic collision
algorithm of Sec. 6. We first calculate T = Π(0) − Π, apply the existing algorithm to calculate the corresponding T′, then
finally calculate the post-collisional momentum flux as Π′ = Π′(0) − T′. Second-order accuracy is achieved, as in Sec. 5, by
defining barred variables using a half timestep of this collision algorithm. The collision operator defined by (8.9) no longer
conserves momentum, since u′ = u+ ρ−1∆tF, so the fα to fα transformation in (5.8) implies [40]

ρu =

N∑
α=0

ξαfα = ρu− 1
2∆tF. (8.10)

9. Flow due to a tangentially oscillating wall. The flow driven by a tangentially oscillating wall in a Newtonian viscous
fluid is known as Stokes’ second problem [83]. After an initial transient, the fluid oscillates with the same frequency as the wall,
and with an amplitude that decays exponentially with distance from the wall [4, 61]. This is the spatial analog of the temporally
decaying transverse waves studied in Sec. 7. The non-transient part of the solution is given by

u(y, t) = U0 sin(ωt− ky)e−κy, (9.1)

for a wall moving tangentially with velocity Uwall = U0 sin(ωt) in the x̂ direction. Choosing sin(ωt) gives a continuous
transition from a rest state for t < 0 to a moving state for t > 0, eliminating the generalised functions that appear in the initial
transient due to an impulsive start [17]. The wavenumber k and attenuation scale κ for the Jeffreys model are [28, 27]

k =

[
ω

2µ

√
1 + λ2ω2

√
1 + Λ2ω2 + (λ− Λ)ω

1 + Λ2ω2

]1/2

, κ =
ω

2µk

1 + Λλω2

1 + Λ2ω2
, (9.2)

and the shear stress is

Txy = −U0
ω√

k2 + κ2
cos

[
ωt− ky + tan−1(k/κ)

]
e−κy. (9.3)

To simulate this flow, the lattice Boltzmann formulation derived above must be supplemented with boundary conditions
for the incoming distribution functions f4, f7, f8 on the upper boundary at y = 1, and for f2, f5, f6 on the lower boundary
at y = 0 shown in figure 2.1. We use the approach of Wagner & Yeomans [93] and Bennett [5, 6, 75] to impose boundary
conditions on the hydrodynamic moments ux, uy and Πxx,

ρUwall = ρux = f1 − f3 + f5 − f6 − f7 + f8, (9.4a)
0 = ρuy = f2 − f4 + f5 + f6 − f7 − f8, (9.4b)

Π(0)
xx = Πxx = f1 + f3 + f5 + f6 + f7 + f8. (9.4c)
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FIG. 9.1. Velocity (left) and shear stress (right) in the spatially decaying sinusoidal shear flow driven by an oscillating wall at y = 0. The fields are
shown at a time of maximum displacement of the wall.

These three moments are chosen because they contain the three linearly independent combinations f5 − f6, f2 + f5 + f6, and
f5+ f6, of the unknowns f2, f5, f6. The first two conditions (9.4a) and (9.4b) impose no-flux and no-slip boundary conditions,
and the third boundary condition (9.4c) on the tangential stress has a natural physical interpretation, unlike the alternatives
involving higher moments [5, 6, 75]. Solving the above linear system determines

f2 = f1 + f3 + f4 + 2f7 + 2f8 +Π(0)
xx , (9.5a)

f5 =
1

2

(
Π(0)

xx + Uwall

)
− f1 − f8, (9.5b)

f6 =
1

2

(
Π(0)

xx − Uwall

)
− f3 − f7, (9.5c)

with Π
(0)
xx = (1/3)ρ+ ρU2

wall, and Uwall = U0 sin(ωt) known. We take ρ = 1 for simplicity, since ρ remains spatially uniform
in a shear flow with ∇·u = 0, rather than determining ρ =

∑
α fα self-consistently as part of the algebraic system. These

boundary conditions supply the distribution functions at the lowermost lattice points at y = 0 immediate before the collision
step. An equivalent calculation supplies boundary conditions for f4, f7, f8 at the uppermost lattice points at y = 1. Since the
whole problem is independent of x, it is sufficient to use just one point in the x direction with periodic boundary conditions.

Figure 9.1 shows excellent agreement between the analytical solution (9.1) with coefficients (9.2) and the numerical so-
lution computed using the lattice Boltzmann algorithm from Secs. 4 and 5. The parameters are ω = 4π, µ = 1/30, λ = 1,
Λ = 0.01, for which the formulas (9.2) give k ≈ 68.31 and κ ≈ 7.01. The simulation used a lattice of 1024 points and
a Mach number Ma =

√
3/200 ≈ 0.0087. The plot shows the solution at a time of maximum displacement of the wall,

t = (2n + 1/2)π/ω for integer n. The attenuation scale is substantially affected by Λ, even though ωΛ ≈ 1/8 for these
parameters. The corresponding attenuation scale is κ ≈ 2.74 for a linear Maxwell fluid with Λ = 0.

10. The four-roller mill. A configuration of four rollers is commonly used to create two-dimensional extensional flows
in the laboratory [86, 34]. A convenient numerical analog uses the body force F = (2 sinx cos y,−2 cosx sin y)T to create a
pattern of Taylor–Green vortices in the doubly-periodic domain 0 ≤ x, y ≤ 2π at zero Reynolds number [88]. For incompress-
ible flow with a velocity field written as u = ẑ×∇ψ in terms of a streamfunction ψ, the vorticity equation at finite Reynolds
number is

∂tω + [ψ, ω] = ζ + ν′∇2ω + 4 sinx sin y, (10.1)

where ω = ∇2ψ, and the Jacobian [ψ, ω] = ẑ · (∇ψ×∇ω). We have separated the Newtonian viscous torque ν′∇2ω from the
elastic torque ζ = ẑ · ∇×∇·T̃ using the decomposition T = ν′ E + T̃ for a fluid of unit density. The elastic torque evolves
according to the linear Maxwell model

ζ + λ∂tζ = ν̃∇2ω, (10.2)

where ν′ and ν̃ are related to the parameters ν, λ,Λ in the Jeffreys model by

ν̃ = ν (1− Λ/λ) , ν′ = νΛ/λ. (10.3)

The solution to the coupled PDEs (10.1) and (10.2) may be written as

ω = ω̂(t) sinx sin y, ζ = ζ̂(t) sinx sin y, (10.4)

since the forcing term sinx sin y is an eigenfunction of the Laplacian, so [∇−2ω, ω] = 0. The two functions ω̂(t) and ζ̂(t)
evolve according to the coupled ordinary differential equations

dtω̂ = ζ̂ − 2ν′ω̂ + 4, ζ̂ + λdtζ̂ = −2ν̃ω̂, (10.5)
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FIG. 10.1. Evolution of the maximum vorticity |ω̂| and maximum total torque |ζ̂tot| for the doubly-periodic four-roller mill starting from rest with ν = 1,
λ = 2.5, and Λ = 0.01. Both quantities show an oscillatory approach to their long-time limits ω̂∞ = 2/ν and |ζ̂tot∞| = 4.
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FIG. 10.2. ℓ2-norm errors in the vorticity field ω and total torque field ζtot computed on square N ×N grids for N ∈ {128, 256, 512} (top to bottom).
Each simulation was run with a Mach number Ma =

√
3× 1.28/N . Doubling N reduces the errors in both ω and ζtot by a factor of 4.

whose solutions asymptote to the limiting values ω̂∞ = 2/ν and ζ̂∞ = 4(Λ/λ − 1) at long times. The availability of an
analytical solution to these equations makes the doubly-periodic four-roller mill a useful benchmark, though the behavior of
the Jeffreys fluid is much simpler than the behavior of the Oldroyd-B fluid with its nonlinear stretching terms [88].

Figure 10.1 shows the evolution of the maximum vorticity and maximum total torque for a numerical simulation starting
from rest, as compared with the analytical solution of (10.5) with initial conditions ω̂(0) = 0 and ζ̂(0) = 0. We compare
the total torque because the the lattice Boltzmann algorithm computes the total viscoelastic stress T, rather than the separate
viscous and elastic stresses in the decomposition under (10.1). The corresponding total torque in the analytical solution above
is ζtot = ζ + ν′∇2ω with amplitude ζ̂tot = ζ̂ − 2ν′ω̂. The numerical vorticity ω = ẑ · ∇×u and total torque ζtot =
ẑ · ∇×∇·T = (∂xx − ∂yy)Txy + ∂xy(Tyy − Txx) were computed by inverting the transformations (8.10) and (6.6) that define
u, T, M, then spectrally differentiating the components of u and T on lattice points. The torque involves only the traceless part
of T. The initial conditions correspond to u = 0, T = 0 and M = 0 in the lattice Boltzmann formulation, which transform into
u = − 1

2ρ
−1∆tF, T = 0 and M = 0 under (8.10) and (6.6).

Figure 10.2 shows the ℓ2-norm errors in the vorticity and total torque fields relative to the analytical solution ω(x, y, t) =
ω̂(t) sinx sin y and ζtot(x, y, t) = ζ̂tot sinx sin y for simulations onN×N lattices withN ∈ {128, 256, 512}. Each simulation
was run with a Mach number Ma =

√
3 × 1.28/N . This so-called diffusive scaling [80, 47, 53] balances the O(Ma2) com-

pressibility error with the O(N−2) spatial truncation errror to give second-order convergence towards the analytical solution of
the incompressible fluid equations, as shown in the figure.

11. Three dimensional Arnold–Beltrami–Childress flows. The four-roller mill flow in a linear Jeffreys fluid has an
analytical solution because the forcing term 4 sinx sin y in the vorticity equation is an eigenfunction of the Laplacian. This sets
the nonlinear term [∇−2ω, ω] to zero. The three-dimensional Arnold–Beltrami–Childress (ABC) flows [3, 42, 16]

uABC = A(0, sinx, cosx) +B(cos y, 0, sin y) + C(sin z, cos z, 0) (11.1)

in the triply-periodic domain 0 ≤ x, y, z < 2π have the equivalent property of being eigenfunctions of the curl operator
(∇×uABC = uABC). This eliminates the nonlinear (∇×u)×u term in the three-dimensional incompressible Navier–Stokes
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FIG. 11.1. Evolution of the maxima of the velocity vector u and the total stress component Txy for the ABC flow with A = B = C = 1 starting from
rest with ν = 1, λ = 2.5, and Λ = 0.01.

equations for a fluid of unit density written as

∂tu+ (∇×u)×u+∇(p+ 1
2 |u|

2) = ν∇·E. (11.2)

The evolution equations for a linear Jeffreys fluid driven by a body force F equal to uABC thus reduce to

∂tω = ζ + ν′∇2ω + F, ζ + λ∂tζ = ν̃∇2ω, (11.3)

for the vorticity vector ω = ∇×u and total torque vector ζ = ∇×∇·T. These in turn reduce to a pair of ODEs analogous to
(10.5) for the amplitudes of ω and ζ,

dtω̂ = ζ̂ − ν′ω̂ + 1, ζ̂ + λ dtζ̂ = −ν̃ ω̂. (11.4)

The previous factors of 2 are absent because the ABC vector fields are eigenfunctions of the Laplacian with eigenvalue −1,
while sinx sin y is an eigenfunction with eigenvalue −2.

The strain rate tensor E for the velocity field uABC has non-zero components

Exy = B cosx− C sin y, Exz = A cos z −B sinx, Eyz = C cos y −A sin z, (11.5)

and their symmetric pairs. All diagonal components zero. The xy component of the total stress tensor is thus

Txy = (−ζ̂ + ω̂Λ/λ) (B cosx− C sin y) , (11.6)

and similarly for Txz and Tyz . Figure 11.1 shows the evolution of the maxima of the velocity vector u and the total stress
component Txy in comparison with the analytical solution (11.6), and the corresponding expression u = ω̂uABC for the
velocity field. This simulation was run on a grid of 1283 points using the D3Q27 velocity space lattice [41] at Mach number
Ma =

√
3/200.

Figure 11.2 shows the ℓ2 norms of the differences between the analytical solution u = ω̂uABC and the computed velocity
field for simulations of ABC flow withA = B = C = 1 onN3 lattices withN ∈ {32, 64, 128}. As before, each simulation was
run with a Mach number Ma =

√
3× 0.64/N to balance the compressibility error with the spatial truncation error. Figure 11.2

also shows the second-order convergence in the ℓ2 norm of the three non-zero components Txy , Txz , Tyz of the total stress
towards the analytical solution (11.6) and its cyclic permutations

12. Simulations at larger Reynolds numbers. The previous numerical experiments used large viscosity values (ν = 1)
to emphasise viscoelastic effects. However, the numerical algorithm is not limited to these viscously-dominated, low Reynolds
number flows. Figure 12.1 shows the vertical velocity components at t = 0.5 for simulations of a modified Taylor–Green vortex
evolving from the initial conditions [87, 70]

ux = cos 2πx sin 2πy cos(2πz + π/4), uy = − sin 2πx cos 2πy cos(2πz + π/4), uz = 0 (12.1)

in the triply-periodic domain 0 ≤ x, y, z < 1 discretised using a 1283 lattice with ν = 10−3 and Ma =
√
3/100. One

simulation shows a Newtonian fluid, and the other shows a Jeffreys fluid with λ = 10 and Λ = 10−3. The differences are small
because the viscous and viscoelastic stresses are both small for large Reynolds numbers.
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FIG. 11.2. ℓ2-norm errors in the velocity field u and the off-diagonal components of the total stress tensor T from simulations on grids with N3 points
for N ∈ {32, 64, 128} (top to bottom). Each simulation was run with a Mach number Ma =

√
3× 0.64/N . Doubling N reduces the errors in both u and T

by a factor of 4.

FIG. 12.1. The vertical velocity component at t = 0.5 for simulations of a modified Taylor–Green vortex with viscosity ν = 10−3 for (left) a Newtonian
fluid, and (right) a Jeffreys fluid with λ = 10 and Λ = 10−3. Both plots use the same color scale. Differences are small because the deviatoric stresses are
small in both flows.

13. Conclusion. In kinetic theory every hydrodynamic quantity must obey the evolution equation implied by the un-
derlying evolution equation for the distribution function. The evolution equation for the pressure tensor given by Maxwell’s
equation of transfer closely resembles the Oldroyd-B model for viscoelastic liquids. However, the nonlinear coupling between
the pressure tensor P and the velocity gradient ∇u in kinetic theory creates a non-objective time derivative that is considered
unsuitable for modelling viscoelastic liquids. Moreover, kinetic theory imposes a fixed relation between the stress relaxation
time τ and the dynamic viscosity µ = τρθ for a fluid with density ρ and temperature θ in energy units. These two coefficients
are independent parameters for viscoelastic fluids.

The introduction of a second stress tensor that couples to the first through collisions allows independent adjustment of
the two coefficients τ and µ, while retaining the linear, constant-coefficient property of the discrete Boltzmann equation that
allows an efficient and non-dissipative space/time discretisation. Our coupling of the discrete Boltzmann PDE to an abstract
second stress, followed by a discretisation using second-order Strang splitting, offers a much simpler alternative to the previous
fully discrete models using extra rest particles [36, 37, 59], and extends easily to three dimensional flows driven by body
forces. We recover an incompressible linear Jeffreys fluid in the low Mach number limit, even though our starting point, the
discrete Boltzmann equation, implies a non-objective convected derivative for the deviatoric stress intead of a simple partial
time derivative. Replacing the partial derivative ∂tM with a finite difference approximation to an objective convected derivative
in (4.2) may allow the simulation of nonlinear viscoelastic fluids.
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Appendix. Modified discrete Boltzmann equation with two parameters.
The standard Boltzmann equation implies the relation µ = τρθ between the dynamic viscosity µ and the stress relaxation
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time τ . Tsutahara et al. [90] introduced the modified discrete Boltzmann equation

∂tfα + ξα · ∇fα − Λ

τ
ξα · ∇

(
fα − f (0)α

)
= −1

τ

(
fα − f (0)α

)
(A.1)

with an additional term proportional to Λ that changes the relation between µ and τ . The first and second moments of (A.1)
give

∂t(ρu) +∇·Π− Λ

τ
∇·

(
Π−Π(0)

)
= 0, (A.2)

∂tΠ+∇·Q− Λ

τ
∇·

(
Q− Q(0)

)
= −1

τ

(
Π−Π(0)

)
. (A.3)

Putting the approximation Q = Q(0) into (A.3) leads to the previous equation (2.13) for T with relaxation timescale τ . However,
the momentum equation (A.2) now becomes

∂t(ρu) +∇·
[
Π(0) − (1− Λ/τ)T

]
= 0, (A.4)

so the fluid viscosity is µ = ρθ(τ − Λ). The coefficient Λ allows the viscosity to be decreased below the value µ0 = τρθ
previously set by the stress relaxation time τ . However, the left hand side of (A.1) cannot be written as a total time derivative
along a straight characteristic, because ∇f (0)α couples fα to all the fβ with β ̸= α through ρ and u. The standard lattice
Boltzmann space/time discretisation thus cannot be applied to (A.1). Instead, Tsutahara et al. [90] combined third-order upwind
finite differences for spatial derivatives with an explicit second-order Runge–Kutta integration in time. Taking Λ ≈ τ enables
the viscosity to be reduced without the Runge–Kutta stability condition ∆t < 2τ imposing an excessively short restriction on
the timestep ∆t.
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