The Banach-Tarski Paradox, the von Neumann-Day conjecture

Cornelia Druțu

Oxford

TCC Course 2019, Lecture 3

Cornelia Druțu (Oxford)

Banach-Tarski, von Neumann-Day

TCC Course 2019, Lecture 3 1 / 19

Last lecture

- Convention: All graphs \mathcal{G} are connected, unoriented, and have bounded geometry: valency of vertices uniformly bounded.
- The following equivalence was proved for a graph \mathcal{G} :
 - (a) \mathcal{G} is non-amenable (i.e. positive Cheeger constant).
 - (b) (expansion condition): $\exists C > 0$ such that for every finite $F \subset V$, $|\overline{\mathcal{N}}_C(F)| \ge 2|F|$.
 - (c) $\exists f \in \mathcal{B}(V)$ such that $\forall v \in V$, $f^{-1}(v)$ contains exactly two elements.
 - (d) (Gromov's condition) $\exists f \in \mathcal{B}(V)$ such that $\forall v \in V, f^{-1}(v)$ contains at least two elements.
- \bullet A non-empty graph ${\mathcal G}$ of sub-exponential growth is amenable.
- R. Brooks Theorem: Let M be a complete connected n-dimensional Riemannian manifold and G a graph, both of bounded geometry. Assume that M is quasi-isometric to G. Then the Cheeger constant of M is strictly positive if and only if G is non-amenable.
- If ${\cal G}$ and ${\cal G}'$ are quasi-isometric graphs then ${\cal G}$ is amenable if and only if ${\cal G}'$ is.

Cornelia Druțu (Oxford)

More on quasi-isometries

Amenability is also relevant for the quasi-isometry versus bi-Lipschitz problem.

To explain the problem, more on quasi-isometries:

A subset N in a metric space X is called

- a net if there exists $\varepsilon > 0$ such that $X = \mathcal{N}_{\varepsilon}(N)$;
- separated if there exists $\delta > 0$ such that $d(x, y) \ge \delta, \forall x, y \in N$.

Exercise: X, Y are quasi-isometric if and only if there exist $N_X \subset X$ and $N_Y \subset Y$ separated nets and $f : N_X \to N_Y$ bi-Lipschitz bijection, that is, for some $L \ge 1$,

$$\frac{1}{L}d(x,y) \leq d(f(x),f(y)) \leq Ld(x,y).$$

Gromov's question

Question (Gromov)

When are two quasi-isometric spaces actually bi-Lipschitz equivalent ?

Examples: Finitely generated groups, separated nets in Euclidean spaces.

Theorem (K. Whyte)

Let \mathcal{G}_i , i = 1, 2, be two non-amenable graphs (of bounded geometry). Then every quasi-isometry $\mathcal{G}_1 \rightarrow \mathcal{G}_2$ is at bounded distance from a bi-Lipschitz map.

Other results

Corollary (K. Whyte)

Two non-amenable quasi-isometric groups are bi-Lipschitz equivalent.

Theorem (P. Papasoglu)

Two free groups F_n and F_m , $n, m \ge 2$, are bi-Lipschitz equivalent.

Burago-Kleiner, McMullen: examples of separated nets in \mathbb{R}^2 not bi-Lipschitz equivalent.

T. Dymarz: examples of amenable groups (lamplighter groups) quasi-isometric, not bi-Lipschitz equivalent.

Hall-Rado Theorem again

Bipartite graph = vertex set $V = Y \sqcup Z$, edges with one endpoint in X, one in Y.

Given two integers $k, l \ge 1$, a perfect (k, l)-matching= a subset of edges such that each vertex in Y is the endpoint of exactly k edges in M, while each vertex in Z is the endpoint of exactly l edges in M.

Theorem (Hall-Rado matching theorem)

A bipartite graph of bounded geometry such that:

- For every finite subset A ⊂ Y, its vertex-boundary ∂_VA contains at least k|A| elements.
- For every finite subset B in Z, its vertex-boundary ∂_VB contains at least |B| elements.

has a perfect (k, 1)-matching.

Lemma

Let \mathcal{G} be a nonamenable graph (of bounded geometry). For each net $V' \subset V = V(\mathcal{G})$, there exists a bijection $f : V' \to V$ which is a bounded perturbation of the inclusion $V' \to V$: there exists $D < \infty$ such that

 $\operatorname{dist}(x,f(x)) \leq D$

for all $x \in V'$.

Assume all valence of the graph \mathcal{G} is at most $m \in \mathbb{N}$.

Assume $V \subset \mathcal{N}_r(V')$.

 \mathcal{G} nonamenable $\Rightarrow \exists C > 0$ such that for every finite $\Phi \subset V$,

$$|\overline{\mathcal{N}}_{\mathcal{C}}(\Phi) \cap V| \geq m^{2r} \cdot |\Phi|.$$

Take D := C + 2r and the bipartite graph $Bip_D(V', V)$. Clearly, for every finite subset $A \subset V'$, $|\partial_V A| \ge |A|$. Let B be a finite subset in V. $\partial_V B = \overline{\mathcal{N}}_{C+2r}(B) \cap V'$ (1) Let $B' = V' \cap \overline{\mathcal{N}}_r(B)$. Since $B \subset \overline{\mathcal{N}}_r(B')$, $|B| \leq m' |B'|$. (2) $|\overline{\mathcal{N}}_{\mathcal{C}}(B') \cap V| \ge m^{2r}|B'| > m^r|B|.$ (3) $|\overline{\mathcal{N}}_{C+r}(B') \cap V'| \ge \frac{1}{m!} |\overline{\mathcal{N}}_{C}(B') \cap V| \ge |B|.$ (4) $\overline{\mathcal{N}}_{C+r}(B') \cap V' \subset \overline{\mathcal{N}}_{C+2r}(B) \cap V'$

The map f in the Lemma is (2D + 1)-bi-Lipschitz:

$$\operatorname{dist}(f(a), f(b)) \leq \operatorname{dist}(a, b) + 2D \leq (2D + 1)\operatorname{dist}(a, b);$$

 $\operatorname{dist}(a,b) \leq \operatorname{dist}(f(a),f(b)) + 2D \leq (2D+1)\operatorname{dist}(f(a),f(b)).$

Proof of K. Whyte Theorem:

There exist V'_i separated nets in $V(\mathcal{G}_i)$, i = 1, 2, and a bi-Lipschitz bijection $h' : V'_1 \to V'_2$.

Lemma implies the existence of bi-Lipschitz bijections

$$f_i: V'_i \to V(\mathcal{G}_i), \quad i=1,2,$$

The composition

$$g := f_2 \circ h' \circ f_1^{-1} : V(\mathcal{G}_1) \to V(\mathcal{G}_2)$$

is the required bi-Lipschitz map.

At the core if this course is the discussion of:

Conjecture (von Neuman-Day conjecture)

Is every finitely generated group either amenable or containing a free non-abelian subgroup ?

Theorem (K. Whyte)

Let \mathcal{G} be an infinite graph (of bounded geometry). The graph \mathcal{G} is non-amenable if and only if there exists a free action of F_2 on \mathcal{G} by bi-Lipschitz maps which are bounded perturbations of the identity.

Amenability for groups

- A mean on a set X = a linear functional $m: \ell^{\infty}(X) \to \mathbb{C}$ s.t.
- (M1) if f takes values in $[0,\infty)$ then $m(f) \ge 0$; (M2) $m(\mathbf{1}_X) = 1$.
 - TFAE in a group G
 - \bigcirc there exists a mean m on G invariant by left multiplication.
 - 2 there exists a finitely additive probability measure μ on $\mathcal{P}(G)$, the set of all subsets of G, invariant by left multiplication.

A group G is amenable if any of the above is true.

Left, right or both

Proposition

(a) Invariant by left multiplication (left-invariance) can be replaced by right-invariance.

(b) Moreover, both can be replaced by bi-invariance.

Proof.

(a) It suffices to define $\mu_r(A) = \mu(A^{-1})$ and $m_r(f) = m(f_1)$, where $f_1(x) = f(x^{-1})$.

(b) Let μ be a left-invariant f.a.p. measure and μ_r the right-invariant measure in (a). Then for every $A \subseteq X$ define

$$\nu(A)=\int \mu(Ag^{-1})d\mu_r(g)\,.$$

Metric and group amenability

Theorem

Let G be a finitely-generated group. TFAE:

G is amenable;

2 one (every) Cayley graph of G is amenable.

Corollary

A finitely generated group is either paradoxical or amenable.

(1) \Rightarrow (2) If some Cayley(G, S) is non-amenable then $\exists f \in \mathcal{B}(G)$ with pre-images having 2 elements.

Modulo the equivalence in the Theorem, corollary proven.

Cornelia Druțu (Oxford)

13 / 19

A useful tool

We prove (2) \Rightarrow (1): given a Følner sequence on a Cayley graph, construct μ invariant measure on *G*.

Goal: a new notion of limit for sequences in compact spaces (and later for sequences of spaces and of actions of groups.)

Definition

An ultrafilter on a set I = a finitely additive probability measure $\omega : \mathcal{P}(I) \to \{0, 1\}.$

Example

 $\delta_x(A) = 1$ if x in A, 0 otherwise. Called principal (or atomic) ultrafilter.

Ultralimit

Definition

Consider $f : I \to Y$ topological space. $y \in Y$ is the ω -limit of f, $\lim_{\omega} f(i)$, if $\forall U$ neighborhood of y, $\omega(f^{-1}U) = 1$.

Theorem

Assume Y compact and Hausdorff. Each $f : I \rightarrow Y$ admits a unique ω -limit.

If $\omega = \delta_x$ then $\lim_{\omega} f(i) = f(x)$.

Theorem

An ultrafilter is non-principal (non-atomic) if and only if $\omega(F) = 0$ for every F finite.

Existence of ultrafilters

Why do non-principal ultrafilters exist ?

Equivalent definition:

A filter \mathcal{F} on a set I is a collection of subsets of I s.t.:

```
 \begin{array}{l} (F_1) \ \emptyset \not\in \mathcal{F}; \\ (F_2) \ \text{If } A, B \in \mathcal{F} \ \text{then } A \cap B \in \mathcal{F}; \\ (F_3) \ \text{If } A \in \mathcal{F}, \ A \subseteq B \subseteq I, \ \text{then } B \in \mathcal{F}. \end{array}
```

Example: Complementaries of finite sets in I = the Fréchet filter.

Ultrafilter on I = a maximal element in the ordered set of filters on I with respect to the inclusion.

Non-principal ultrafilter= contains the Fréchet filter. Exists by Zorn's Lemma.

relation to previous definition: ω is the characteristic function of $\mathcal{U} \subset \mathcal{P}(I)$

Cornelia Druțu (Oxford)

Back to the proof

Theorem

Let G be a finitely-generated group. TFAE:

G is amenable;

one (every) Cayley graph of G is amenable.

 $(2) \Rightarrow (1)$:

A Cayley graph \mathcal{G} is amenable: \exists a Følner sequence $(\Omega_n) \subset G$.

• For every $A \subset G$ define

$$\mu_n(A)=\frac{|A\cap\Omega_n|}{|\Omega_n|}.$$

- $|\mu_n(A) \mu_n(Ag)| \leq \frac{2\partial_V(\Omega_n)}{|\Omega_n|}$ when $g \in S$.
- Let ω be a non-principal ultrafilter on \mathbb{N} . Take $\mu(A) = \omega$ -lim $\mu_n(A)$.

Cornelia Druțu (Oxford)

Group operations

Proposition

A subgroup of an amenable group is amenable.

Corollary

Any group containing a free non-abelian subgroup is non-amenable.

- **1** A finite extension of an amenable group is amenable.
- Let N be a normal subgroup of a group G. The group G is amenable if and only if both N and G/N are amenable.
- The direct limit G of a directed system (H_i)_{i∈I} of amenable groups H_i, is amenable.

Corollary

A group G is amenable if and only if all finitely generated subgroups of G are amenable.

Corollary Every solvable group is amenable.