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Preface

This book is based on the notes of the authors’ seminar on algebraic and Lie
groups held at the Department of Mechanics and Mathematics of Moscow
University in 1967/68. Our guiding idea was to present in the most economic
way the theory of semisimple Lie groups on the basis of the theory of algebraic
groups. Our main sources were A. Borel’s paper [34], C. Chevalley’s seminar [14],
seminar “Sophus Lie” [15] and monographs by C. Chevalley [4], N. Jacobson
[9] and J-P. Serre [16, 17].

In preparing this book we have completely rearranged these notes and added
two new chapters: “Lie groups” and “Real semisimple Lie groups”. Several
traditional topics of Lie algebra theory, however, are left entirely disregarded,
e.g. universal enveloping algebras, characters of linear representations and
(co)homology of Lie algebras.

A distinctive feature of this book is that almost all the material is presented
as a sequence of problems, as it had been in the first draft of the seminar’s notes.
We believe that solving these problems may help the reader to feel the seminar’s
atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and
sometimes solutions, are contained in hints given at the end of each section. The
proofs of certain theorems, which we consider more difficult, are given directly
in the main text. The book also contains exercises, the majority of which are an
essential complement to the main contents.

As a rule, the generally accepted terminology and notation is used. Neverthe-
less, two essential deviations should be mentioned. Firstly, we use the phrase
tangent algebra of a Lie group for the Lie algebra associated with this group,
with a view to emphasizing the construction of this Lie algebra as the tangent
vector space to the Lie group. Secondly, in contrast to some monographs and
textbooks, we call a Lie subgroup of a Lie group any of its subgroups which is an
embedded (and necessarily closed) submanifold, while an immersed submanifold
endowed with the structure of a Lie group is called a virtual Lie subgroup.

The reader is required to have linear algebra, the basics of group and ring
theory and topology (including the notion of fundamental group) and to be
acquainted with the main concepts of the theory of differentiable manifolds.

Numbering of subsections, formulas, theorems, etc. is performed inside each
section and sections are numbered inside a chapter. In references we generally
use triple numbering: for instance, Problem 2.3.17 refers to Problem 17 of §3,
Chapter 2. However, we skip the number of a chapter (or a section) in references
inside of it. The last chapter is not divided into sections but in references is
considered consisting of one section: § 1.



VI Preface

In compiling the first draft of seminar’s notes we enjoyed the help provided
by E.M. Andreyev, V.G. Kac, B.N. Kimelfeld and A.C. Tolpygo. In computing
the decompositions of products of irreducible representations (Table 5) B.N.
Kimelfeld, B.O. Makarevich, V.L. Popov and A.G. Elashvili took part. Besides,
we would like to point out that certain nice proofs were the result of seminar’s
workout.

We are grateful to D.A. Leites thanks to whose insistence and help this book
has been written.



The Translator’s Preface

In my 20 years of work in mathematics, I have never met a Soviet mathe-
matician personally involved in any aspect of representation theory who would
not refer to the rotaprint notes of the Seminar on algebraic groups and Lie groups
conducted by A. Onishchik and E. Vinberg with the participation of A. Elashivili,
V. Kac, B. Kimelfeld, and A. Tolpygo. The notes had been published in 1969 by
Moscow University in a meager number of 200 copies.

Ten years later A. Onishchik and E. Vinberg rewrote the notes and considerably
enlarged them. This is a translation of the enlarged version of the notes; its
abridged variant was issued in Russian in 1988.

The reader might wonder why one should have the book: why not Bourbaki’s
book, or S. Helgason’s, or one of the excellent (text) books, say, by J. Humphreys
or C. Jantzen. Here are some important reasons why:

—Nowhere are the basics of the Lie group theory so clearly and concisely
expressed.

—This is the only book where the theory of semisimple Lie groups is based
systematically on the technique of algebraic groups (an idea that goes back to
Chevalley and is partly realized in his 3 volumes on the theory of Lie groups
(1946, 1951, 1955)).

—Nowhere is the theory of real semisimple finite-dimensional Lie groups
(their classification and representation theory included) expressed with such
lucidity and in such detail.

—The unconventional style—the book is written as a string of problems—
makes it useful as a reference to physicists (or anyone else too lazy to bother with
the proof when a formulation suffices) whereas those interested in proofs will
find either complete solutions or hints which should be ample help. (They were
ample for some schoolboys, bright boys I must admit, at a specialized mathe-
matical school in Moscow.)

—The reference chapter contains tables invaluable for anybody who actually
has to compute something pertaining to representations, e.g. the table of decom-
positions into irreducible components of tensor products of some common
representations, which is really unique.

The authors managed to display in a surprisingly small space a quite large
range of topics, including correspondence between Lie groups and Lie algebras,
elements of algebraic geometry and of algebraic group theory over fields of real
and complex numbers, basic facts of the theory of semisimple Lie groups (real
and complex; their local and global classification included) and their representa-
tions, and Levi-Malcev theorems for Lie groups and algebraic groups.



VIII The Translator’s Preface

There is nothing comparable to this book by the broadness of scope in the
literature on the group theory or Lie algebra theory.

At the same time, the book is self-contained indeed since only the very basics
of algebra, calculus and smooth manifold theory are really needed to understand
it. It is this feature that makes it compare favourably with the books mentioned
above.

On the other hand, as far as algebraic groups are concerned, it cannot replace
treatises like those by Humphrey or Jantzen, especially over fields of prime
characteristic. Nevertheless, this book might serve better for the first acquaintance
with these topics. ’

The algebraic groups, however, though vital in the approach adopted, are not
the main characters of the book while the theory of Lie groups is. Still, the
viewpoint of algebraic group theory enabled the authors to simplify some proofs
of important theorems. Other novelties include:

—Malcev closure which enabled the authors to give a new proof of existence
of an embedded (here: virtual) Lie subgroup with given tangent algebra;

—a proof of the fixed point theorem for compact groups of affine transforma-
tions that does not refer to integration over the group and corollaries of this
theorem, such as Weyl’s theorem on unitarity of a compact linear group and the
algebraicity of compact linear groups;

—a generalization of V. Kac’s classification of periodic automorphisms based
on ideas different from those put forward by Kac originally;

—a simple proof of E. Cartan’s theorem on the conjugacy of the maximal
compact subgroups, that does not require any Riemannian geometry.

Lastly, I believe that some further reading on the rapidly developing gener-
alization of the topic of the book should be recommended, including:

(Twisted) loop algebras and, more generally, Kac-Moody algebras:

V. Kac: Infinite-dimensional Lie algebras, 2nd ed. Cambridge Univ. Press,
Cambridge, 1983;

V. Kac,, A. Raina: Bombay lectures on highest weight representations of
infinite dimensional Lie algebras, Adv. Series in Math. Phys. 2, World Sci.,
Singapore, 1987,

A. Pressley, G. Segal: Loop groups. Clarendon Press. Oxford, 1986.

Lie superalgebras and stringy Lie (super) algebras:

V. Kac: Lie superalgebras. Adv. Math. 26, 1977, §-96.

M. Scheunert: The theory of Lie superalgebras. An introduction. LN in Math.
# 716, Springer, Berlin, 1979.

D. Leites (ed): Seminar on supermanifolds, vols. 1 and 3. Kluwer, Dordrecht,
1990.

Finally, I wish to contribute one more problem to this compendium of prob-
lems. The importance of Table 5 has been rapidly increasing of late, in particular
with the introduction of new ideas and problems in theoretical physics by
V. Drinfeld (“quantum groups”, quadratic algebras, etc.). The time and ingenuity-
consuming task of acquiring similar data should be solved once and for all:
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Problem. Write a program for a computer to calculate data similar to those
of Table 5, e.g. S"(R(A)) ® A™(R(M)), etc., together with an explicit expression
for the highest (lowest) weight vectors of the irreducible components of the tensor
product in terms of the vectors from the initial spaces-factors’.

I am sure that the reader will enjoy the book and treasure it as does everybody
I know, who was lucky enough to get a copy in Russian.

Petrozavodsk—Moscow—Stockholm, 197989 Dimitry Leites

! As far as I know, some partial results in this area were obtained recently in Montreal and at Moscow
University.
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Commonly Used Symbols

Z—ring of integers

Q, R, C—fields of rational, real and complex numbers respectively

T—group of complex numbers with absolute value 1

H—skew field of quaternions

A"—n-dimensional coordinate affine space

P—n-dimensional coordinate projective space

P(V)—projective space associated with a vector space V
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L(V)—(associative) algebra of linear transformations of a space V

GL(V)—group of invertible linear transformations of V

GA(V)—group of invertible affine transformations of V

L,(K)—(associative) algebra of n x n matrices over a field K

GL,(K)—group of invertible n x n matrices over a field K
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E—unit matrix or identity linear transformation

id—identity map (for nonlinear maps)
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< —sign of inclusion, possibly identity

~ —sign of isomorphism



Chapter 1
Lie Groups

Here the notions of the differentiable (smooth) manifold, differentiable
(smooth) map, direct product of differentiable manifolds, tangent space and
the differential of a map (the tangent map) are assumed to be known. Several
other notions and theorems on differentiable manifolds will be recalled in the
sequel.

The ground field K is either R or C.

Unless otherwise stated, the differentiability of functions of real variables is to
be understood in such a way that in every case there are as many derivatives as
needed. The differentiability of manifolds and maps is understood accordingly.
The differentiability of functions of complex variables is, clearly, equivalent to
their analyticity.

The Jacobi matrix of a system of differentiable functions f7, ..., f, of variables

Ofise-esSm . . L
Xy, ..., X, 1s denoted by 0Ef_£_; For m = n its determinant (Jacobian) is
1,-..’ n
D(fy,---> 10
denoted by ————"~.
Rt TR

The tangent space to a manifold X at a point x is denoted by T,.(X). The
differential of a map f: X — Y at a point x is a linear map T, (X) — T, (Y)
denoted by d,f. When it is not misleading we omit the index and write T(X)
instead of T (X).

We assume that every differentiable manifold has a countable base. In par-
ticular this is so in all the cases when a manifold arises as a result of some
construction which start with a manifold possessing a countable base, e.g. as a
submanifold, quotient manifold, covering manifold, direct product of manifolds.

§ 1. Background

1°. Lie Groups. A group G endowed with a structure of a differentiable
manifold over K so that the maps

u: G x G- G, where pu:(x,y)—xy

and
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1:G—> G, where ©x—x7!,

are differentiable is called a Lie group over K. In other words, the coordinates
of the product must be differentiable functions of the coordinates of factors, and
the coordinates of the inverse element must be differentiable functions of the
coordinates of the element itself.

A Lie group over C is also called a complex Lie group and a Lie group over
R is called a real Lie group. Any complex Lie group may be considered as a real
Lie group of doubled dimension.

Examples of Lie groups. 1) The additive group of K. It will be denoted by K,
but it is also denoted in the literature as G,(K).

2) The Multiplicative group K* of K (also denoted in the literature as G,,(K)).

3) The Circle T = {z € C*:|z| = 1} is a real Lie group.

4) The general linear group GL,(K) of invertible n x n matrices over K. The
differentiable structure on GL,(K) is defined as on the open subset of the vector
space L,(K) of all n x n matrices.

5) The group GL(V) of all invertible linear transformations of an n-
dimensional vector space V over K may be considered as a Lie group under the
isomorphism GL(V)— GL,(K) which to any linear transformation assigns its
matrix in a fixed basis of V. The formula describing how a matrix of a linear
transformation changes under the change of basis implies that the differentiable
structure on GL(V) does not depend on the choice of a basis in V.

6) The group GA(S) of (invertible) affine transformations of an n-dimensional
affine space S over K is also naturally endowed with a differentiable structure
which makes it a Lie group. Namely, in an affine coordinate system on S the
affine transformations are expressed by formulas of the form X +— AX + B, where
X is the column of coordinates of a point, A an invertible square matrix and
B a column vector. The entries of 4 and B can serve as (global) coordinates on
GA(S). The differentiable structure on GA(S) defined by them does not depend
on the choice of an affine coordinate system in S since under a change of affine
coordinates in S they are transformed in a differentiable way.

7) Any finite or countable group with discrete topology and the structure of
a 0-dimensional differentiable manifold.

The direct product of Lie groups is the direct product of abstract groups
endowed with the differentiable structure of the direct product of differentiable
manifolds.

Problem 1. The direct product of Lie groups is a Lie group.
The direct product K" of n copies of the additive group of the field K is called
the n-dimensional vector Lie group.

2°. Lie Subgroups. A subgroup H of a Lie group G is called a Lie subgroup if
it is a submanifold of the manifold G. By a submanifold of codimension m of a
differentiable manifold X we mean a subset Y < X such that in an appropriate
neighbourhood of any of its points it may be determined in some local coor-
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dinates by a system of equations

fixyy-.0sx,) =0 fori=1,...,m,

where f,, ..., f,, are differentiable functions and rk OUns--ofm)

. 0(X s esXy)
point.

(Sometimes the terms “submanifold” and “Lie subgroup” respectively are
understood in a wider sense. In our book to this more general interpretation
would correspond the term “virtual Lie subgroup” (cf. 2.9).)

The submanifold Y is uniquely endowed with the structure of an (n — m)-
dimensional differentiable manifold compatible with the induced topology so
that the identity embedding Y <, X is a differentiable map of constant rank

= m at this

n — m. If, in the above notation, L—f”'l # 0 at a given point then the
D(xy,... %)
restrictions of x,,,4, ..., X, may serve as local coordinates on Y in a neighbour-

hood of this point.
Problem 2. A Lie subgroup is a Lie group.

Examples. 1) Any subspace of a vector space is a Lie subgroup of the vector
Lie group.

2) The group T (see Example 1.3) is a Lie subgroup of C* considered as a real
Lie group.

3) Any discrete subgroup is a Lie subgroup.

4) The group of n x n invertible diagonal matrices is a Lie subgroup of
GL,(K).

5) The group of n x n invertible (upper) triangular matrices is a Lie subgroup
of GL,(K).

Problem 3. Let H be a subgroup of a Lie group G. If there is a neighbourhood
O(e) of the unit of G such that H n @(e) is a submanifold, then H is a Lie subgroup.

A Lie subgroup of GL(¥) (in particular, that of GL,(K) = GL(K")) is called a
linear Lie group.

Problem 4. The group SL,(K) of unimodular (i.e. of determinant 1) n x n
matrices is a Lie subgroup of codimension 1 in GL,(K).

Problem 5. The group O,(K) of orthogonal n x n matrices is a Lie subgroup
of dimension n(n — 1)/2 in GL,(K).

Problem 6. The group U, of unitary n x n matrices is a real Lie subgroup of
dimension n? in GL,(C).

Problem 7. Any Lie subgroup is closed.
3°. Homomorphisms, Linear Representations and Actions of Lie Groups. Let G

and H be Lie groups. A map f: G — H is called a Lie group homomorphism if it
is both a homomorphism of abstract groups and a differentiable mapping.
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A homomorphism f: G — H is an isomorphism if there exists an inverse homo-
morphism f~!: H — G, i.e. if f is an isomorphism of abstract groups and at the
same time a diffeomorphism of manifolds (however, see Corollary of Theorem 5).

Examples. 1) The exponential map x — e* is a homomorphism of the additive
Lie group K into the multiplicative Lie group K*.

2) The map A+ det A is a Lie group homomorphism of GL,(K) onto K*.

3) For any g € G the inner automorphism

a(g): x+>gxg~*

is a Lie group automorphism.

4) The map x+> e™ is a Lie group homomorphism of R onto T.

5) The map assigning to each affine transformation of an affine space S its
differential (linear part) is a homomorphism of the Lie group GA(S) (cf. Example
1.6) into the Lie group GL(V), where V is the vector space associated with S.

6) Any homomorphism of finite or countable abstract groups is a homo-
morphism of zero-dimensional Lie groups.

Clearly, the composition of Lie group homomorphisms is also a Lie group
homomorphism.

A Lie group homomorphism of G into GL(V) is called a linear representation
of G in the space V.

Problem 8. Let us assign to any matrix A € GL,(K) the linear transformations
Ad(A) and Sq(A) in the space L,(K) by the formulas:

Ad(A)(X) = AXA™Y,  Sq(4)(X) = AXA".

Prove that Ad and Sq are linear representations of the Lie group GL,(K) in the
space L,(K).

Sometimes one considers complex linear representations of real Lie groups or
real linear representations of complex Lie groups. In the first case one assumes
that the group of linear transformations of a complex vector space is considered
as a real Lie group, in the second one that the given complex Lie group is
considered as a real one.

A group homomorphism « of a Lie group G into the group Diff X of diffeo-
morphisms of a manifold X (which is not a Lie group in any conceivable sense)
is called a G-action on X if the map G x X — X, where (g, x)—a(g)x, is
differentiable.

Examples. 1) For any Lie group G we may define the following three G-actions
on G itself:

l(g)x = gx

r(g)x = xg™!

a(g)x = gxg™'
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2) The natural GL,(K)-action on the projective space P(K") is a Lie group
action.

3) Any linear representation T: G — GL(V) of a Lie group G may be con-
sidered as a G-action on the space V.

4) Similarly, any homomorphism f: G - GA(S) may be considered as an
action of the Lie group G on an affine space S. Such an action is called affine.

Clearly, the composition of a homomorphism f: H — G and an action
a: G — Diff X is the action e o f: H - Diff X.

When it is clear which action we are speaking about we will write gx instead
of a(g)x.

4°. Operations on Linear Representations. Suppose R and S are linear repre-
sentations of a group G in spaces V and U respectively. The sum of R and S is the
linear representation R + S of G in the space V' @ U defined by the formula

(R + 8)(9)(v + u) = R(g)v + S(g)u.

The product of R and § is the linear representation RS of G in the space V® U
defined on simple (i.e. decomposable) elements by the formula.

RS(g)(v ® u) = R(g)v ® S(g)u.

The sum and the product of any finite number of representations are defined
similarly.

The dual (or the contragradient) of the representation R of a group G in a space
V is the representation R* of G in the space V'* defined by the formula

(R*(9)f)(v) = f(R(g)™"v).

Problem 9. If R and S are linear representations of a Lie group G, then R + S,
RS and R* are also Lie group representations (i.e. they are differentiable).

For any integers k, [ > 0 the identity linear representation Id of the Lie group
GL(V)in V generates the linear representation T, , = (Id)*(Id*)' of GL(V) in the
space VR @V V*®: - ®V* (k factors V and [ factors V*) of tensors of
type (k,!) on V. Let us give convenient formulas for T, ,(4), where 4 € GL(V), in
the two cases which occur most often: k = 0 and k = 1.

The tensors of type (0,1) are I-linear forms on V. For any such a form f we
have

(To, (A f)y,...,0) = f(A7 vy, A7 ). (1)

The tensors of type (1,1) are I-linear maps F: V x -+ x V — V. For any such

1 factors

a map F we have

(Ty (A)F)(vy,...,v0) = AF(A7'vy,..., A7 ). (2)
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Problem 10. Prove (1) and (2).

Problem 11. The representations Ad and Sq considered in Problem 8 are
exactly the natural linear representations of GL,(K) in the spaces of tensors of
types (1, 1) and (2,0) respectively written in the matrix form.

If R is a linear representation of a group G in a space V and U < V' is an
invariant subspace then the subrepresentation Ry: G - GL(U) and the quotient
representation Ry ;: G = GL (V/U) are defined naturally.

Evidently, any subrepresentation and any quotient representation of a linear
representation of a Lie group are its linear representations (as of a Lie group).

A special role in group theory is played by one-dimensional representations
which are nothing but homomorphism of a given group G into the multiplicative
subgroup of the ground field. They are called characters' of the group G.
Characters form a group with respect to the multiplication of representations;
the inversion in this group is the passage to the dual representation.

In the context of the Lie group theory characters are supposed to be differen-
tiable. In this book we will only consider complex characters of (real and
complex) Lie groups. The group of complex characters of a Lie group G will be
denoted by Z(G).

The additive notation is traditionally used in the group of characters:

G+ 229 = 1:(Dx2(9), (X x2 € Z(G), g € G).

5°. Orbits and Stabilizers. Suppose « is an action of a Lie group G on a
manifold X and let x € X be a point. Consider the map

o..G— X, where o g—alg)x.

Its image is the orbit «(G)x of the point x and the inverse image of x is nothing
but its stabilizer

G, = {g € G:a(g)x = x}.

The inverse images of the other points of the orbit are left cosets of G with respect
to G,.

Problem 12. Prove that «, is differentiable and its rank is constant.

Recall that a differentiable map f: X — Y of constant rank is linearizable in a
neighbourhood of any point of X. This implies that

(1) the inverse image of any point y = f(x) is a submanifold of codimension
k=rk fin X and T.(f"!(y)) = Kerd, f;

'In the representation theory the term “character” is more often understood in a wider sense as a
trace of any (not necessarily one-dimensional) linear representation. However, we will not consider
characters in this wider sense and the term “character” will always be understood as above.
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(2) for any point x € X the image of any sufficiently small neighbourhood ¢(x)
is a k-dimensional submanifold in Y, and Ty,,(f(0(x))) = Imd, f.

Besides,

(3) if f(X) is a submanifold in Y then dim f(X) = k.

Indeed, if we had had dim f(X) > k, then by (2) the manifold f(X) would have
been covered by a countable set of submanifolds of a smaller dimension, but this
is impossible.

The listed properties of constant rank maps and Problem 12 immediately
imply

Theorem 1. Suppose « is an action of a Lie group G on a differentiable manifold
X. For any x € X the map a, is of constant rank. Let rk o, = k, then

1) the stabilizer G, is a Lie subgroup of codimension k in G and T,(G,) =
Kerd,a,;

2) for any sufficiently small neighbourhood O(e) of the unit of G the subset
a(O(e))x is a submanifold of dimension k in X and T,((0(e))x) = Imd,a,;

3) if the orbit a(G)x is a submanifold in X, then dim «(G)x = k.

Note that an orbit is not always a submanifold. (A counterexample will be
given in the following subsection.)
Therefore the following statement is of interest to us:

Problem 13. Any orbit of a compact Lie group action is a closed submanifold.

The most important examples of compact Lie groups (besides finite ones) are
the n-dimensional torus T" (the direct product of n copies of T), the orthogonal
group O,(= O,(R)) and the unitary group U,. To prove the compactness of O,
note that it is distinguished in the space L,(R) of all real matrices by algebraic
equations Y , a,a; = d;, hence is closed in L,(R). These equations imply la;l < 1
which means that O, is bounded in L,(R). The compactness of U, is proved
similarly. We will continue the discussion of properties of compact Lie groups
and their orbits in §3.4.

Statement 1) of the theorem may be used to prove the fact that a given
subgroup H of a Lie group G is a Lie subgroup. For this it suffices to realize H
as the stabilizer of a point for some action of the Lie group G. Most (if not all)
interesting Lie subgroups arise in this way. If the orbit of a given point under this
action is a submanifold of a known dimension, then the dimension of H may be
computed using statement 3).

We can apply this to the representation of the Lie group GL(V) in the space
of tensors (see 4°) to find that the group of invertible linear transformations
preserving a tensor is a linear Lie group.

Examples. 1) Consider the representation of GL(V) in the space B, (V) of
symmetric bilinear forms (i.e. symmetric tensors of type (0, 2)). The group O(V, f)
of invertible linear transformations preserving a symmetric bilinear form f
is a linear Lie group. If f is nondegenerate, then its orbit is open in B, (V),
hence
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n(n+1) _n(n—1)
2 2

dim O(V, f) = dim GL(V) — dim B, (V) = n?

where n = dim V.

2) Similarly, consider the representation of GL(V) in the space B_(V) of
skew-symmetric bilinear forms. The group Sp(V, f) of invertible linear trans-
formations preserving a skew-symmetric bilinear form f is a linear Lie group. If
f is nondegenerate, then

dim Sp(¥, f) = dim GL(V) — dimB_(V) = n(n + 1)/2

3) Consider the representation of GL(V) in the space of algebras on V (ie.
tensors of the type (1, 2)). We find that the group of automorphisms of any algebra
is a linear Lie group.

6°. The Image and the Kernel of a Homomorphism. Suppose f: G — H is a Lie
group homomorphism. Consider the action « of G on the manifold H defined by
the formula

a(g)h = f(g)h,

where the right-hand side is the product of elements of H. In other words, « is
the composition of f and the action [ or H on itself by left translations.

Let e be the unit of H. Then «, = f and a(G)e = f(G); the stabilizer of e with
respect to o coincides with Ker f. Theorem 1 being applied to the action o and
the point e € H yields the following theorem.

Theorem 2. Suppose f: G — H is a Lie group homomorphism. Then f is a
mapping of constant rank. Let tk f = k. Then

1) Ker f is a Lie subgroup of codimension k in G and T,(Ker f) = Kerd, f;

2) for any sufficiently small neighbourhood (0(e) of the unit of G the subset f(0(e))
is a submanifold of dimension k in H and T,(f(0(e))) = Imd, f;

3) if f(G) is a Lie subgroup in H, then dim f(G) = k.

Example. Consider the homomorphism det: GL,(K) — K*. Its kernel is the
group SL,(K) of unimodular matrices. Since det(GL,(K)) = K*, we have
rk det = 1. Hence SL,(K) is a Lie subgroup of codimension 1 in GL,(K).

Clearly, if f(G) is a submanifold then f(G)is a Lie subgroup in H. The following
example shows that f(G) is not always a submanifold.

Problem 14. Let f: R — T" be a Lie group homomorphism defined by the
formula

f(x) = (e~ ..., e"~), where a,,...,a,€R.

[ts image f(R)is a Lie subgroup in T"if and only if a,, ..., a, are commensurable
(i.e. their ratios are rational).
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For n = 2 and incommensurable a,, a, the subgroup f(R) is a dense winding
of a (two-dimensional) torus.

It can be shown that, for any n, if a,, ..., a, are not related by any nontrivial
linear relation with rational coefficients the subgroup f(R) is dense in T".

Problem 13 implies that the image of a compact Lie group under a homo-
morphism is always a Lie subgroup.

7°. Coset Manifolds and Quotient Groups. On the coset space of a Lie group
with respect to a Lie subgroup, a differentiable structure can be naturally defined.
To formulate the corresponding theorem we need several definitions.

Let X and Y be differentiable manifolds and p: X — Y a differentiable surjec-
tive map. For any function f defined on a subset U = Y we determine the
function p*f on p~!(U) by the formula

(P*f)(x) = f(p(x)).

The map p is called a quotient map if

1) asubset U < Y is open if and only if p~*(U) is open in X;

2) a function f, defined on an open subset U < Y, is differentiable if and only
if so is p*f.

A map pis called a trivial bundle with the fibre Z (where Z is also a differentiable
manifold), if there is a diffeomorphism

vi¥YxZ-X
satisfying
p(v(y,2)) = y.

A map pis called a locally trivial bundle with the fibre Z if Y can be covered
by open subsets such that p is a trivial bundle with the fibre isomorphic to Z
over each of these subsets.

Problem 15. Any locally trivial bundle is a quotient map.

Problem 16. If a quotient map p enters the commutative triangle

X —>2 Sy

\/

where Z is a differentiable manifold and g is a differentiable map, then ¢ is
differentiable. If in the above triangle the map q also is a quotient map and ¢ is
bijective, then ¢ is a difffomorphism.
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The second assertion of Problem 16 may be interpreted as follows: given a
map p of a differentiable manifold X onto a set Y there exists on Y no more than
one differentiable structure such that p is a factorization with respect to this
structure.

Theorem 3. Let G be a Lie group and H its Lie subgroup. There is a unique
differentiable structure on the space G/H of left cosets such that the canonical map

p: G— G/H, where p:gr—gH,

is a quotient map. With respect to this structure
1) pis a locally trivial bundle;
2) the natural G-action on G/H (by left translations) is differentiable;
3) if H is a normal subgroup then the quotient group G/H is a Lie group.
Proof. In G/H, introduce a topology assuming a subset U = G/H open if and
only if p~*(U) is open in G.

Problem 17. p is continuous and open.
Problem 18. G/H is a Hausdorff space.
The key point in the proof of Theorem 3 is the following

Problem 19. There is a submanifold S = G containing the unit e and such that
the map

v:S x H— G, where v:(s,h)— sh,

is a diffeomorphism of the direct product S x H onto an open subset of G.

Under p the submanifold S is bijectively mapped onto a neighbourhood U of
the point p(e) = H in the space G/H. Let us transport the differentiable structure
from S to U by means of p. Then p is a trivial bundle on U.

Further, for any g € G transport the differentiable structure from U to gU by
means of the left translation by g. Since p commutes with the left translations,
and by the definition of the differentiable structure on gU the map p defines a
trivial bundle structure on gU. In particular, it is a quotient map over gU
(Problem 15). This implies that for any g,, g, € G the differentiable structures
defined on g, U and g,U coincide on ¢g,U ng,U (Problem 16). Thus, our
definition of the differentiable structure on G/H implies that p is a locally trivial
bundle with respect to this structure.

To prove statements 2) and 3) of the theorem we need

Problem 20. Let p;: X; — Y; be a locally trivial bundle with the fibre Z; for
i=1,2 Then

Py X ppi Xy x X, > Yy x Y,, where p; x pyi(x;,x;)—=(pi(xy),pa(x2)),

is a locally trivial bundle with the fibre Z, x Z,.
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The natural G-action on G/H is defined by the map
A: G x G/H— G/H, where Ai:(g’,gH)—g'gH,
which enters the commutative diagram

I

GxG —— G

N

G x G/H —*— G/H

p

where p is the multiplication in G. The map id x p is a locally trivial bundle,
hence a quotient map. Applying Problem 16 to the commutative triangle made
of id x p, q = p o uand A we see that 1 is a differentiable mapping.

Similarly, from the commutative diagram

m

GxG — G

I

G/H x G/H —2~ G/H

we deduce the differentiability of the multiplication py in the quotient group G/H
when H is a normal subgroup.
In conclusion, note that the tangent map

dep: T;(G) - p(e)(G/H)

is onto and its kernel is T,(H). (This follows for instance, from heading 1) of the
theorem). Therefore T,,(G/H) is naturally identified with T,(G)/T,(H).

Problem 21. Let a Lie group G act on a differentiable manifold X andlet N = G
be a normal Lie subgroup contained in the kernel of this action. Then the induced
action of the Lie group G/H on X is differentiable.

Running ahead, note that the kernel itself is a (normal) Lie subgroup of
G. This follows from Theorem 4.2 since the kernel is the intersection of all
stabilizers.

Problem 22. Let H be a Lie subgroup of G and N a normal Lie subgroup
contained in H. Then H/N is a Lie subgroup of G/N.

8°. Theorems on Transitive Actions and Epimorphisms. An action « of a group
G on a set X is called transitive if for any x, x" € X there is a g € G such
that a(g)x = x'. In this case the map a, is onto and we have the commutative
triangle
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, \‘X ©)

7

G/G

where B, is a bijection commuting with the G-action.

Theorem 4. Let G be a Lie group and o its transitive action on a differentiable
manifold X. For any x € X the map

B«: G/G, > X, where B,:gG.—a(g)x,

is a diffeomorphism commuting with the G-action.

Proof. Since p is a quotient map, the commutativity of (3) implies that f, is a
differentiable map (Problem 16). By Theorem 1

rka, = dim X = dim G/G,

so the tangent map da, is onto (at each point). Hence, the map df, is an
isomorphism of tangent spaces. Therefore f, is a difftomorphism.

Now, let f: G — H be an epimorphism of Lie groups. Then the G-action « on
H defined in 6° is transitive. Applying Theorem 4 to this action we obtain the
following theorem.

Theorem 5. Let f: G — H be a Lie group epimorphism. The map

f:G/Kerf— H, gKer f— f(g)
is a Lie group isomorphism.

Corollary. A4 bijective Lie group homomorphism is an isomorphism.

9°. Homogeneous Spaces. A differentiable manifold X with a transitive
action of a Lie group G on it is called a homogeneous space of G. By Theorem 4
any homogeneous space of G is isomorphic to G/H, where H = G is a Lie
subgroup, with the canonical G-action. Homogeneous spaces are the most im-
portant and interesting objects of geometry.

In geometry significant is not the G itself but its image in Diff X. Therefore in
the study of homogeneous spaces from this point of view we may confine
ourselves to effective actions (see Problem 21).

The linear group d,G.(x € X) is called the isotropy group of the homogeneous
space X (at x).

Examples. 1) The spaces of constant curvature—the Euclidean space E", the
sphere S” (n = 2) and the Lobachevsky space L" (n > 2)—may be considered as
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homogeneous spaces of their groups of motions which are in a natural sense (real)
Lie groups and act in a differentiable way.

The group of motions of the Euclidean space is a Lie subgroup of the group
of affine transformations (cf. Example in 10°). Its construction is described in
Example 11.2. The sphere S" is naturally embedded in R**! so that its motions
are induced by orthogonal transformations of R"*!. This establishes an isomor-
phism of the group of motions of $" with the Lie group O,,,. Similarly, L" is
embedded in R"*! as a connected component of the two-sheeted hyperboloid
x3 — x3 — --- — x% = 1, so that its motions are induced by the pseudoorthogonal
(preserving the quadratic form x3 — x? —--- — x2) transformations of R"*!
mapping each connected component of this hyperboloid onto itself. This estab-
lishes an isomorphism of the group of motions of L" with the subgroup of index
2 of the Lie group O, , of all pseudoorthogonal transformations (cf. Problem
3.10).

In these three cases the stabilizer of a point is isomorphic to O,. More precisely
it is isomorphic (via the differential) to the isotropy group which coincides with
the full orthogonal group of the tangent space.

The spaces of constant curvature may be characterized as simply connected
homogeneous spaces of real Lie groups satisfying one of the following equivalent
conditions (see e.g. [47]):

a) there exists an invariant Riemannian metric of constant sectional curvature;

b) the isotropy group coincides with the full orthogonal group of the tangent
space (with respect to some Euclidean metric).

2) The Grassmann variety Gr, ,(K) of all p-dimensional subspaces of K" is a
homogeneous space of GL,(K). The stabilizer of the subspace determined by
Xp+p = = X, = 0 consists of matrices of the form

<g g), where A e GL,(K), BeGL,_,(K),
and its codimension in GL,(K) is p(n — p). Therefore dimGr, ,(K)=
p(n — p).

3) The manifold of positive definite symmetric real n x n matrices is a homo-
geneous space of GL,(R) with respect to the action Sq defined in Problem 8 (cf.
Example 5.1). Since the stabilizer of the unit matrix under this action coincides
with the orthogonal group O,, this homogeneous space is isomorphic to
GL,(R)/O,.

4) The group manifold of a Lie group G may be considered as a homoge-
neous space of the Lie group G x G with respect to the action f defined by the
formula

B(91,92)x = g,xg95" (41.92,x € G)

The stabilizer of e € G is the diagonal of G x G (isomorphic to G) and the isotropy
group coincides with the adjoint group Ad G (see 2.4).
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10°. Inverse Image of a Lie Subgroup with Respect to a Homomorphism

Theorem 6. Suppose f: G — H is a Lie group homomorphism and H, is a Lie
subgroup in H. Then G, = f~'(H,) is a Lie subgroup in G and

T.(Gy) = (d.f) " (Te(H1))-

Proof. Consider the composition a = fo f of the natural H-action f on
H/H, and the homomorphism f:

% =Bof:G— Diff H/H,.

The subgroup G, = f'(H,) is the stabilizer of the point p(e) € H/H,, where p
is the canonical projection of H onto H/H,. By Theorem 1 G, is a Lie subgroup
and

T,(G,) = Kerd,a,e)-
Clearly, a,, = p o f. Hence,

dopey = dep o def.

e’ p(e)

Since Kerd,p = T,(H,), we have
KCI' deap(e) = (def)_l(j;(Hl))'
The theorem is proved. (]

Example. Let S be a Euclidean affine space, V the associated Euclidean vector
space and d: GA(S) —» GL(V) the homomorphism assigning to each affine trans-
formation its differential, cf. Example 3.5. Then d "} (O(V)) s the group of motions
of S. Theorem 6 enables us to deduce that the group of motions of a Euclidean
space is a Lie subgroup in the Lie group of all affine transformations.

Let us show several applications of Theorem 6 which will be used in what
follows.

Problem 23. Let H, and H, be Lie subgroups of G. Then H; n H, is also a Lie
subgroup and T,(H, n H,) = T,(H,) n T,(H,).

Observe that the intersection of submanifolds is not, in general, a submanifold.
For example, in C3, the intersection of the nonsingular surface z = x* + y* with
the plane z =0 is a singular curve (cuspidal cubic curve) which is not a
submanifold.

The statement of Problem 21 can be easily extended to any finite number
of subgroups. It is also valid for an infinite number of subgroups (see Theorem
4.2).
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In the following two problems Theorem 6 is applied to a linear representation.
Since GL(V) is an open subset in the space L(V) the tangent space to GL(V) (at
any point) is naturally identified with L(V).

Problem 24. Let R: G - GL(V) be a linear representation of a Lie group G
and U < V a subspace. Then

G(U)={geG:R(g)U = U}
is a Lie subgroup in G and

T.(G(U)) = {¢ € T.(G): (. R)(E)U = U}.

Problem 25. Under the conditions of Problem 22 let W be a subspace of U.
Then

G(U,W)={geG:(R(9) — E)\U c W}
is a Lie subgroup in G and
T(G(U, W)) = { € T,(G): (d.R)(E)U = W}.

11°. Semidirect Product. In many cases it is convenient to describe the struc-
ture of Lie groups in terms of semidirect products.

Recall that the semidirect product of abstract groups G, and G, is the direct
product of sets G, and G, endowed with the group structure via

(91,92)(hy, hy) = (g, b(g2)hy,92h,), 4)

where b is a homomorphism of G, into the group Aut G, of automorphisms of
the group G,. We will denote the semidirect product by G, x G, or more
precisely, by G, x, G,. The elements of the form (g,,e) (resp. (e,g,)) form a
subgroup in G, x, G, isomorphic to G, (resp. G,). This subgroup is usually
identified with G, (resp. G,). The subgroup G, is normal and

929,93" = b(g2)9, (91 €Gy,9, € G,). (3)

The subgroup G, is normal if and only if b is trivial i.e. b(G,) = e; in this case the
semidirect product coincides with the direct product G, x G,.

One says that a group G splits into a semidirect product of subgroups G, and
G, if

1) G, is normal;

2) GG, =G;

3) G, G, ={e}.

In this case we have the isomorphism

G, x G, =G, (91,92)— 9193, (6)
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where b: G, —» Aut G, is the homomorphism defined by (5) and we will write
G=G, xG,orG=G, x G,.

A semidirect product of Lie groups G, and G, is defined as a semidirect product
of abstract groups endowed with a differentiable structure as the direct product
of differentiable manifolds. It is additionally required that b define differentiable
G,-action on G, i.e. that the map

G, x G, > Gy, (91,92)—b(g2)9: (7)

be differentiable. (In particular, the automorphism b(g,) of G, must be differen-
tiable for any g, € G,). This ensures the differentiability of group actions in the
semidirect product.

One says that a Lie group G splits into a semidirect product of Lie subgroups
G, and G, if it splits into their semidirect product as an abstract group. In this
case the action b of G, on G, defined by (5) is differentiable and the abstract
isomorphism (6) due to the corollary of Theorem 5 is a Lie group isomorphism.

Examples. 1) Let R: G — GL(V) be a linear representation of a Lie group G.
Then we may form a semidirect product V' xx G where V is considered as a vector
Lie group.

2) Let Id be the identity linear representation of GL(V) in V. Then there is an
isomorphism

V x4 GL(V) = GA(V)
assigning to each v € V a parallel translation
[,o XX + v, (x e V).

3) Every Lie subgroup G = GA(V) containing all parallel translations splits
into the semidirect product of the group of parallel translations and some linear
Lie group

H = dG = GL(V).

In particular, the group of motions of the Euclidean space E" splits into the
semidirect product of the group of parallel translations and the orthogonal group
O,.

4) The Lie group of invertible triangular matrices splits into the semidirect
product of the normal Lie subgroup of unitriangular matrices (triangular with
the units on the diagonal) and the Lie subgroup of invertible diagonal matrices.

Exercises

1) If a group is endowed with the structure of a differentiable manifold
such that the multiplication is differentiable, then the inversion is also
differentiable.
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2) Consider the group GL,(H) of invertible n x n matrices over H as an open
subset of the real vector space of all quaternionic n x n matrices. Show that
GL,(H) thus endowed with a differentiable manifold structure is a real Lie
group of dimension 4n?.

3) The group Sp, of unitary quaternionic matrices is a Lie subgroup of dimen-
sion 2n? + nin GL,(H).

4) Find all the Lie subgroups of the additive Lie group K.

5) Any homomorphism f of the additive Lie group K into GL,(K) is of the
form f(t) = exp(tX), where X € L,(K).

6) The centralizer Z(g) of any element g of a Lie group G is a Lie subgroup.

7) The dimension of the centralizer of any element of GL,(K) is not less
than n.

8) The Lie group Sp, (see Exercise 3) is compact.

9) The action of GL,(K) on Gr, ,(K) is differentiable.

10) Let W < U be subspaces of a vector space V over K. Let H be a Lie subgroup
of GL(U/W). Then the set of invertible linear transformations of V preserv-
ing U and W and inducing on U/W transformations from the group H is a
Lie subgroup in GL(V).

11) The Lie group GL,(K) splits into the semidirect product of SL,(K) and a
one-dimensional Lie subgroup.

Hints to Problems

3. Note that the left translation by any element of H is an H-preserving
diffeomorphism of the manifold G.

7. As any submanifold, the Lie subgroup H is open in its closure H If
g € H, then gH is also open in H, hence intersects with H, and therefore
ge H.

9. Compute the matrix elements of the representations R + S, RS and R* in
convenient bases. For example, if {e;} is a basis of the space V" and {f;} is a
basis of U then {¢; ® f;} is a basis of ¥ ® U. The matrix elements of the
representation RS in this basis are products of matrix elements of the repre-
sentations R and S.

10. It suffices to prove these formulas for simple tensors f and F, respectively.

11. It suffices to look at the action of Ad(A4) and Sq(A4) on simple tensors
(corresponding to matrices of rank 1).

12. Use the commutative diagram

G —=

X
i(g) j l a(g)

G —=- X

13. It suffices to show that the orbit a(G)x is a submanifold in a neighbourhood
of x. Let ((e) be a neighbourhood of the unit of G such that U = «(((e))x is
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a submanifold in X. The orbit «(G)x is the union of the two nonintersecting
subsets: U and «(C)x, where C = G\0(e)G,. Since 0(e)G, = | J;c¢_U(e)g is
open in G, its complement, C, is closed and therefore compact; but then
a(C)x = a,(C) is compact, hence closed in X. Thus the intersection of a(G)x
with the open subset X \a(C)x of X containing x is a submanifold.

Suppose a, # 0. The intersection of the subgroup f(R) with the subgroup

T ={(z(,...,2,) € T 2, = 1}

is a cyclic group with generator

t = (eZRi(a,/a,,), s e21ri(a,,_ ,/a,‘)’ 1)

If at least one of a, /a,, ..., a,_, /a, is irrational, then ¢ is an element of infinite
order, and f(R)~ T"! is not closed in T"*. But then f(R) is not closed in
T" hence is not a Lie subgroup (see Problem 7).

Conversely, suppose a,, ..., a, are commensurable. Let us assume that not

all of them are zero. Then Ker f = bZ, where b > 0. Let U be a neighbour-
hood of the origin of R such that f(U) is a submanifold in T". The comple-
ment of the open submanifold U + bZ in R will be denoted by C. Since
f(C) = f(C n[0,b])and since C N [0, b] is compact, f(C)is closed in T". The
complement of f(C) is open and contains the unit of T”; the intersection of
f(R) with this open set coincides with f(U). Hence, f(R) is a Lie subgroup
(see Problem 3).
Let g, H and g,H be different cosets. Then g7'g, ¢ H. Since the group
operations are continuous and H is closed (Problem 7), there are
neighbourhoods @(g,) and 0O(g,) of g, and g,, respectively, such that
0(g9,)7'C(g;) " H = &. Then O(g,)H N O(g,)H = &. Hence p(0(g,)) and
p(0(g,)) are nonintersecting neighbourhoods of the cosets g, H and g, H in
the space G/H.

. Let S, be a submanifold transversal to H at the point e, i.e. such that

T.(G) = T.(H) @ T,(S,).
Since
die.eyv(ds,dh) = ds + dh,

thend,, v is an isomorphism of the tangent spaces. Hence, there exist neigh-
bourhoods S, and @y(e) of the point e in the manifolds S; and H, respec-
tively, such that v diffeomorphically maps S, x O4(e) onto an open subset
of G. Since v(s,hh') = v(s,h)h’, the mapping v is a local difffomorphism
everywhere on S, x Oy(e). Let S be a neighbourhood of e in S, such that
S7IS A H < (y(e). Then v is locally difftfomorphic and injective on S x H,
thus S is the desired submanifold.
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21. Consider the commutative diagram
GxX —— X
G/N x X -
where the horizontal arrow is the map defined by the given G-action on X
and use the fact that p x id is a quotient map.
22. Apply Problem 21 to the canonical G-action on G/H.
23. Apply Theorem 6 to the identity embedding H, =, G and the subgroup
24. f}zalaclyqfheorem 6 to the homomorphism R and the subgroup
GL(V;U)={A e GL(V): AU < U} = GL(V).
It is easy to see that GL(V; U) is an open subset in the space
L(V;U)={XeL(V): XU c U}.
Hence, GL(V; U) is a linear Lie group and
T:(GL(V; U)) = L(V; U).
25. Apply Theorem 6 to the homomorphism R and the subgroup
GL(V;U,W)={AeGL(V):(A - E)U c W} < GL(V).

It is easy to see that GL(V;U, W) is an open subset in the plane E +
L(V; U, W), where

L(V;U,W)={XeL(V): XU c W}.
Hence, GL(V; U, W) is a linear Lie group and

T(GL(V;U,W)) = L(V; U, W).

§2. Tangent Algebra

1°. Definition of the Tangent Algebra. The structure of a Lie group in a
neighbourhood of the unit is determined by an algebra structure in the tangent
space T,(G). The most straightforward way to define it is the following one.
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Choose a coordinate system in a neighbourhood of the unit e of G such that
all the coordinates of the point e are zero. The column of coordinates of a point
x will be denoted by x. Consider the Taylor series expansion of the coordinates
of the product xy. Since ey = y and xe = x, we have

Xy=X+y+aXxy)+ - (1)

where a is a bilinear vector-valued function and dots stand for the terms of degree
=3
The transposition of x and y yields

yX=y+X+ay,X)+ @

We see that the noncommutativity of the multiplication in G can only manifest
itself in terms of degree >2. The noncommutativity is measured by the group
commutator (x,y) = xyx~'y~!. The second order terms in the Taylor series
expansion of coordinates of (x, y) are easy to find from the relation (x, y)yx = xy.
Comparing (1) and (2) we get

() =y&7) + (3)
where
Y%, ¥) = alX,y) — a(y, X), 4)
and dots stand for the terms of degree >3.

In the tangent space T,(G), define a bilinear operation known as the bracket
or commutator (&,n)— [, n] by the formula

[En] =7, (5)

where { is the column of coordinates of a tangent vector { in the coordinate
system of T,(G) associated with the chosen local coordinate system on G. Let us
prove that this operation does not depend on the choice of the coordinate system.
Consider another local coordinate system with the origin at e. The column of
coordinates of x in the new coordinate system will be denoted by X. Then

x=C

=l

+...,

where C is the Jacobi matrix of the old coordinates with respect to the new ones
at e and dots stand for the terms of degree >2. Hence,

(x,y) = CT9(CX,Cy) + -, (6)

where dots stand for the terms of degree >3.

4
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The coordinates of a tangent vector ¢ € T,(G) are transformed via the formula

£ =Cg,
hence
[En] = CY9(CE, 7). )

Here [£, n] stands for the bracket defined in the old coordinate system. Formulas
(6) and (7) show that [£,#] coincides with the bracket of & and 5 defined in the
new coordinate system.

The space T,(G) endowed with the above defined bracket e is called the tangent
algebra of the Lie group G and is denoted by g. In the sequel we also denote Lie
groups by Latin capitals and the corresponding tangent algebras by the corre-
sponding small Gothic letters.

It is clear (see formula (4)) that the tangent algebra is anticommutative, i.e.

[Snl=—[n¢]
forany & neg.

Problem 1. The tangent algebra of a commutative Lie group is an algebra with
the zero bracket.

Let V be a finite dimensional vector space over K. We will naturally identify
the tangent space of the Lie group GL(V) at E with the space L(V).

Problem 2. The tangent algebra of GL(V) is the space L(V)) with the bracket
(2, %) =F% — HX. 8)
The tangent algebra of GL(V) (resp. GL,(K)) is denoted by gl(V) (resp. gl,(K)).

2°, Tangent Homomorphism. Let f: G — H be a Lie group homomorphism.
Letd,f: T,G — T,H be its differential at e.

Problem 3. The map d, f is a homomorphism of tangent algebras.
We will sometimes call the map d, f the tangent homomorphism of f and, by an
abuse of notation denote it simply by df.

Problem 4. The tangent algebra of a Lie subgroup of a Lie group G is a
subalgebra of the tangent algebra g. In particular, the bracket in the tangent
algebra of any linear Lie group is defined by the formula (8).

By Theorem 1.2 the tangent algebra of the kernel of a Lie group homomor-
phism coincides with the kernel of the tangent homomorphism.
For example, the kernel of the homomorphism
det: GL,(K) » K*.
is SL,(K).
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Problem 5. (dg det)(X) = tr X.

Thus, the tangent algebra of SL,(K) consists of all traceless matrices. It is
denoted by sl,(K).

Problem 6. Let H be a normal subgroup of G. Then b is an ideal of g and, under
the canonical identification of the tangent space T,(G/H) with the quotient space
T.(G)/T,(H) the tangent algebra of G/H coincides with g/b.

A particular case of the tangent homomorphism is the differential of a linear
representation. The differential of a representation G - GL(V) is a homomor-
phism g — gl(V).

Problem 7. The differentials of the linear representations Ad and Sq defined in
Problem 1.8 are of the form

dAD(YV)(X) =YX — XY, (dSq(Y)(X)=YX + XY".

Let R and S be linear representations of a Lie group G in spaces V and U,
respectively, and let dR and dS be their differentials. Let us compute the differ-
entials of R* and RS.

Problem 8. ((dR*)(£)f)(v) = — f((dR)(&)v).

Problem 9. (d(RS))(&)(v ® u) = (AR(E)v @ u + v @ (dS(&))u.

Using these formulas we may compute the differential of the product of any
number of given linear representations and their duals.

For example, the natural linear representation T, of GL(V) in the space of
tensors of type (k, ) is the product of k copies of the identity representation and
[ copies of its dual (see 1.4). Denote the differential of T, , by 7, ;. Let us give
convenient formulas for 7, ,(X) and 7, ,(X), where X € gl(V).

If f is an [-linear function on V then

(to (X)) )(vy,...,0) = ——Zi:f(vl,...,vi_l,Xvi,v,.H,...,v,). 9)
If F: Vx - x V- V(lfactors in the source) is a multilinear map then
(t1 (X)F)(vy,...,0) = XF(vy,...,0) — Z Fy,...,0;_1, X0;, Vi415.--,0).  (10)
Problem 10. Prove formulas (9) and (10).

3°. The Tangent Algebra of a Stabilizer. When a Lie subgroup H of G is defined
as the stabilizer of a certain point for some G-action, the tangent subalgebra
corresponding to H may be found using Theorem 1.1.

Consider the case of a linear action R: G — GL(V). The differentiation of the
identity R,(g) = R(g)v with respect to g at e gives

(dR,)(§) = (dR)(&)v,
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where dR on the right-hand side stands for the differential of R. Therefore, the
second part of heading 1) of Theorem 1.1 can be reformulated in this particular
case as follows.

Theorem 1. Suppose R is a linear representation of G in V and H is the stabilizer
of ve V. Then

h={leg:dR()v =0}

In particular, using this theorem we can find the tangent algebra of a linear
Lie group that preserves a tensor.

Examples. 1) The group G of invertible linear transformations of a space V that
preserve a fixed bilinear form f is the stabilizer of f with respect to the natural
linear representation T, , of GL(V) in the space of bilinear forms on V (see
formula 1.1). Formula (9) implies that the tangent algebra of G consists of all
linear maps which are skew-symmetric with respect to f.

2) Let A be a finite-dimensional algebra over K. The group AutA of the
automorphisms of A4 is the stabilizer of the structure tensor of A with respect to
the natural linear representation T; , of GL(4) in the space of tensors of type
(1,2) on A (see formula (1.2)). Formula (10) implies that the tangent algebra of
Aut A4 consists of all linear transformations D that satisfy

D(ab) = D(a)b + aD(b), (a,b e A) (11)

Such transformations are called derivations of A. Hence, they form an algebra
with respect to the bracket. (This, however, may be verified directly.) This algebra
is denoted by der A.

4°. The Adjoint Representation and the Jacobi Identity. Any Lie group G hasa
natural linear representation in its tangent algebra g. It is defined as follows:
For any g € G consider the inner automorphism

a(g): x—gxg™', where xeG.

Denote by Ad g the differential of a(g) at e. It is an automorphism of the tangent
algebra.

Problem 11. The map Ad: G — GL(g) is a linear representation of the Lie
group G.

Ad is called the adjoint representation of G. Let us compute the corresponding
tangent homomorphism g — gl(g).

Problem 12. In local coordinates in a neighbourhood of the unit we have
gxg =X+ (g% + -,

where dots stand for the terms of degree > 3.
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If we confine ourselves to terms of the first degree in X we obtain

where dots stand for the terms of degree >2 in g. This implies that

(dAd(n) € =7, %),

ie.
@A) =[&n]  (Eneg) (12)

Since d Ad is a Lie algebra homomorphism g — gl(g), we have

LLE 1.0 =& [n,4] — [0, [&,C1] (13)

for any &, n, { € g. Taking into account the anticommutativity of the bracket we
may rewrite this identity in a more symmetric form:

L& 000 + [0, ¢3,€1 + [[4.€1.n]1 =0 (14)

The identity (14) is called the Jacobi identity.

Problem 13. Prove the Jacobi identity starting from
AdG < Autg.

An anticommutative algebra that satisfies the Jacobi identity is called a Lie
algebra®. We have proved

Theorem 2. The tangent algebra of any Lie group is a Lie algebra.

In particular, gl(V) is a Lie algebra. This however is easy to deduce directly
from (8).

A Lie algebra homomorphism g — gl(V) is called a linear representation of g.
By Problem 3 the differential of a linear representation of a Lie group is a linear
representation of its tangent algebra.

The Jacobi identity written in the form (13) means that for any Lie algebra g
the map ad: g — gl(g) defined by the formula

@@d&n=[&n]  (Eneg),

is a linear representation of g. This representation is called the adjoint represen-
tation of g. We have proved (formula (12)) the following statement:

2 When the ground field is of characteristic 2 the anticommutativity should be replaced by a stronger
condition: “[£,¢] =0forall e g™
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Theorem 3. The differential of the adjoint representation of a Lie group coincides
with the adjoint representation of its tangent algebra.

A Lie algebra with the zero bracket is called commutative. By Problem 1 the

tangent algebra of a commutative Lie group is commutative.

5°. Differential Equations for Paths on a Lie Group. By means of left or right
translations we may define natural isomorphisms between tangent spaces to the
Lie group G at different points. Let I(g) be a left translation by g € G, i.e. the
transformation x — gx, and r'(g) the right translation by g, i.e. the transformation
x+—xg. For any ¢ € T,(G) put

g& = dl(9)(S) € Tp(G),

¢g = dr'(9)(¢) € Tpy(G).

In particular, if € g then g¢, &g € T,(G).

Evidently, if G < GL(V) is a linear Lie group and its tangent spaces at
different points are naturally embedded into L(V), then g¢ and &g are the usual
products of linear transformations.

Problem 14. Let G be a Lie group. Then

(gh)e =ghd),  (9h=g(Ch),  (Egh = &(gh)

foranyg,he G, ¢eq.
Also, note that by the definition of the adjoint representation we have

gég™' = (Adg)¢ ((eg)

Problem 15. Suppose a coordinate system with the origin at the unit e of a Lie
group G is chosen in a neighbourhood of e. This naturally determines coordinate
systems on the tangent spaces. Then the Taylor series expansions of coordinates
of “products” g¢ and &g, where & € g, are of the form

g =&+ a(g, &)+,
Eg=C¢+alg) +-,

where a is the bilinear vector-valued function from formula (1) and dots stand
for the terms linear in ¢ and of degree >2in g.

Problem 16. Let f: G — H be a Lie group homomorphism. Then

df(9¢) = f(g)df (&)

df(&g) = df($)f(9)
for any g € G and ¢ € T(G).
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One of the constructed parametrizations of tangent spaces of a Lie group G
with the elements of the tangent algebra g may be used to describe the differen-
tiable paths in G in terms of g. This description will play an important role in
the remainder of this section.

A continuous map of a connected subset of the real line into the manifold X
is called a path in X.

For any differentiable path ¢+ g(t) in a Lie group G define a path t— £(t) in
the Lie algebra g of G by the equation

dg(t) ‘
5 = 09 (15)

The path &(t) is called the velocity of the path g(t).
A velocity &(t) being given, equation (15) may be considered as a differential
equation for g(t). Written in local coordinates it is of the form

WY~ FEw.g0), (16)
t
where g(t) and &(t) are the columns of coordinates of the elements g(t) € G and
&(t) € g, respectively, and F is a differentiable vector-valued function, that de-
pends only on the chosen coordinate system on G and on the coordinate system
on g.

The uniqueness theorem for a system of ordinary differential equations implies
that the velocity é(t) and the initial value g(t,) = g, uniquely determine the curve
g(t). The latter relation in Problem 14 shows that the set of solutions of (15) is
invariant with respect to right translations. Since we can obtain any initial value
by an appropriate right translation, any two solutions of (15) are obtained from
each other by a right translation.

Let us now discuss the existence of a solution of (15).

Proposition 1. Let t+— &(t) be a differentiable map of a connected subset S — R
into the tangent algebra of a Lie group G. Then there exists a solution of (15)
defined for allt € S.

Proof. Clearly, it suffices to prove the proposition in the case when S is a
segment. Furthermore, it suffices to show that there exists ¢ > 0 such that for
any t, € S there exists a solution of (15) defined for |t — t,| < &. Since the set of
solutions is invariant with respect to right translations, we may assume that
g(ty) = e. Choose a coordinate system in a neighbourhood @(e) of the unit of G,
which sends the unit to zero. Let R be a positive number such that the neigh-
bourhood @(e) in the local coordinate system contains the ball | x|| < R. (Here
after ||x| stands for the Euclidean norm of the column-vector x). Choose a
coordinate system in the tangent algebra g and put C = max, . [|¢(f)]|. Suppose
that equation (15) in the above coordinate systems is of the form (16) and put
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M= max [F(xy)].
Ixl<C.lyl<R
Then by the known existence theorem for a system of differential equations [43],
equation (16) has a solution defined for |t — t,| < R/M and t € S. Since R/M does
not depend on t,, it may be taken as the desired . []

6°. Uniqueness Theorem for Lie Group Homomorphisms

Theorem 4. A homomorphism of a connected Lie group G into a Lie group H is
uniquely determined by the corresponding tangent homomorphism of Lie algebras.

Proof. Let ¢ = df be the tangent homomorphism of the homomorphism
f: G — H. Let us show how f can be recovered from ¢.

Let us join an arbitrary element g € G with the unit by a differentiable path
g(t), where 0 <t < 1. Let £(¢t) be the velocity of this path. Put h(t) = f(g(?)).
Problem 16 implies that

dh(t)

= = PO, oo

This relation may be considered as a differential equation for h(t). Together with
the initial condition h(0) = e it uniquely determines the path h(t) and therefore
the element f(g) = h(1). O

Theorem 5. Let f be a homomorphism of a connected Lie group G into a Lie
group H. Let H, be a Lie subgroup of H. If df(g) = b,, then f(G) = H,.

Proof. If p(g) = b then equation (17) may be considered as an equation in the
group H,. Its solution in H, is at the same time a solution in H. Hence, h(t) € H,
for any ¢ € [0, 1] and, in particular, f(g) = h(1)e H,. O

Theorems 4 and 5 have plenty of important corollaries.

Problem 17. The kernel of the adjoint representation of a connected Lie group
G coincides with the center Z(G) of G.

Define the center of a Lie algebra g to be the set 3(g) = {{ €g:[{,{] =0 for
any ¢ € g}.

Problem 18. The tangent algebra of the center of a connected Lie group G
coincides with the center 3(g) of the tangent algebra g.

Problem 19. Let R be a linear representation of a connected Lie group G in a
space V. A subspace U < V is invariant with respect to R if and only if it is
invariant with respect the tangent representation dR of the Lie algebra g.

Problem 20. Let G, and G, be connected Lie subgroups of G. Then
G, = G,+g, =g, and

G, = Gy=g, = g,.
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Problem 21. A connected Lie subgroup H of a connected Lie group G is normal
if and only if its tangent algebra b is an ideal of g.

7°. Exponential Map. A differentiable path g(t) in a Lie group G defined for all
t € Ris called a one-parameter subgroup if

g(s +t) = g(s)g(?)

(and then we automatically have g(0) = e and g(—1t) = g(£)™*).

In other words, a one-parameter subgroup is a homomorphism of the Lie
group R into G. Sometimes one defines a one-parameter subgroup to be the
image of such a homomorphism. As Problem 1.14 shows a one-parameter
subgroup in the latter sense may fail to be a Lie subgroup.

Problem 22. The path g(t) defined by the differential equation (15) is a one-
parameter subgroup if and only if £(t) = const and g(0) = e.

For any ¢ € g put g,(¢) for the one-parameter subgroup defined by equation
(15), where &(t) = £. Call ¢ its directing vector. For G = GL(V) it is known (and
constitutes the theory of systems of linear differential equations with constant
coefficients) that

ge(t) = exp(td)
where the exponent is understood as the sum of the series
k

expX = ) X (X e L(V)).

¥So k!

The same is obviously true for any linear Lie group.
For an arbitrary Lie group G put

exp(§) = gg(1), where Ceg.
The map exp: g — G thus defined is called the exponential map. Here are some
of its properties.
Problem 23. g.(t) = exp(t&).
Problem 24. exp is differentiable.

Problem 25. d,exp = Id.
This implies the following statement.

Proposition 2. The map exp is a diffeomorphism of a neighbourhood of zero of
the tangent algebra g onto a neighbourhood of the unit of G.

However at the global level, the exponential map does not possess, in general,
any nice properties. It may be neither injective, nor onto, nor open, etc. (see
Exercises 9 and 10).
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Problem 26. Let f: G —» H be a Lie group homomorphism. Then

flexp()) = exp(df(§))  foranyleg.
In particular,

Adexp & =expad{ for any £ e g.

As an example consider the homomorphism det: GL,(K)— K*. Since
d(det) = tr (Problem 5), we have

trA

detexpA =e

for any 4 € L,(K).
Problem 27. If [¢,7] = 0 then exp(¢ + 1) = exp &-exp.

In particular, if G is a commutative Lie group then the same applies to any
&, 1 € g, 1e. exp is a homomorphism of the vector group g into G. Proposition 2
implies that the kernel of this homomorphism is discrete and its image is an open
subgroup of G. This can be used to classify the connected commutative Lie
groups.

Problem 28. If G is a connected commutative Lie group then expg = G.
Therefore, any n-dimensional connected commutative Lie group over K is iso-
morphic to K"/I", where I is a discrete subgroup of K”.

Problem 29. If G, and G, are isomorphic commutative Lie groups then
there exists an isomorphism of their tangent algebras which maps the kernel
of the homomorphism exp: g, — G, into the kernel of the homomorphism exp:
g, = G,.

Therefore, if I'; and I, are two discrete subgroups of K" then the groups K"/I'}
and K"/I; are isomorphic (as Lie groups) if and only if I can be transformmed
into I, by a nondegenerate linear transformation of K".

When K = R there is a simple classification of discrete subgroups of K"

Problem 30. Any discrete subgroup I” of the vector Lie group R" is transformed
by a nondegenerate linear transformation into a subgroup of the form

Li={(x, s X)) ER X, ..., X4 €L, Xy =+ = X, = 0}

This implies
Proposition 3. Any n-dimensional connected commutative real Lie group is
isomorphic to a Lie group of the form T* x R"7*,

When K = C the classification of connected commutative Lie groups is con-
siderably more complicated (see Exercises 12 and 13).
Let us demonstrate one more application of the exponential map.
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Problem 31. Let o be automorphism of a Lie group G. Then

G°={geG:a(g) =g}

is a Lie subgroup with the tangent algebra

g’ ={¢eg:da(¢) = ¢}

8°. Existence Theorem for Lie Group Homomorphisms

Theorem 6. Let G and H be Lie groups and let G be simply connected. Then for
any Lie algebra homomorphism ¢: g — b there exists a Lie group homomorphism
f: G — H such that df = o.

Proof. Let us try to construct f following the lines of the proof of Theorem 4.
Namely, in order to define the image of an element g € G let us connect it with
the unit by a differential path g(t), where 0 < t < 1, and find the velocity &(t) of
this path. Furthermore, consider a solution A(t) of equation (17) with the initial
value h(0) = e. Set f(g) = h(1).

Since there is an arbitrariness in the choice of g(t), we must prove that f(g) is
well defined. This constitutes the bulk of the proof of the theorem.

We will use the fact that in a simply connected differentiable manifold X
for any two differentiable paths «, and «, that join some points x, and x,
there is a differentiable homotopy of «, into «,, i.e. a differentiable map of the
square

I ={(t;,t,) e R:0< t,t, < 1}

into X such that the bottom line is transformed into a, and the top line is
transformed into «,, while the side lines are transformed into x, and x,,
respectively.

Lemma. Let (t,,t,)— g(t,,t,) be a differentiable map of I into a Lie group
G. Let

ag(t,s)
22 = 46990t
(18)
% (gt’ D (e, 9)9(t,9),
S

where &(t, s), n(t,s) € g. Then

cn(ts)  0€(t,s)

Ct 0s

= [&(t,5),n(¢,9)]. (19)
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Proof of the lemma. Since &(t, s) and 7(t, s) do not change under the multiplica-
tion of g(t,s) on the right by any element of the group, then, proving (19) at a
point (ty, o) we may assume that g(to, o) = e.

Choose a coordinate system in a neighbourhood of the unit of G and
write (18) in coordinates in a neighbourhood of (t,,s,). By Problem 15 we
get

ct
ag(t, B B )
g(gts s) _ fi(t.s) + a(i(t, s), g, s) + -,

where dots stand for the terms of degree >2in(t — ty,s — so). The differentiation
of the first of these equations with respect to s and of the second one with respect
to t performed at (¢,, so) yields

G(to,so)  0E(to,So) = =
Fre e A + a(S(to, So), (ko5 So))

Mlto,So) _
- ——,%—0 + a(#(to, o), E(tos o)),

whence

3M(to, S0) _ E(to, E(tor o). T
q(taot So) _ é(g)s $o) = 3(E(to, So), Tilto» So))-

This means that

onl(te, So) _ 0&(to,50)
ot Js

= [Ct([o, sO)’ ’7(50, SO)]-

The lemma is proved. (J

Let us continue with the proof of theorem. Let g,(¢) and g, (t) be two differen-
tiable paths in G that join e with g. The corresponding paths in H obtained as
the solutions of equation (17) will be denoted by hy(t) and h,(t). We must show
that ho(1) = hy(1).

There is a differentiable map t+— g(t, s) of the square I? into G satisfying

1) g(t,0) = go(t), g(t, 1) = g,(t);

2) g(0,5) = e, 9(1,5) = g.

Find &(t, s) and #(t, s) from equations (18). The property 2) implies that

n(0,s) = n(l,s) = 0.



32 Chapter 1. Lie Groups

Now, define the differentiable map (t, s)— h(t,s) of I? into H as the solution of
the initial value problem for the differential equation in t with s as a parameter:

I gt hO9 =
Clearly, h(t,0) = ho(t) and h(¢, 1) = h,(2).
Let
HE3) _ e, it 5,
Os

where ((t, s) € h. Let us prove that {(t, s) = ¢(n(t, s)). This will imply that {(1,s) =
0, hence h(1,s) = const. In particular, we get hy(1) = h(1).
By Lemma,

a¢(t,s) _ 0p(&(t,s))

ot s T Lo(&(t,9)), L(2,s)].

This relation may be considered as a differential equation (in t) for {(¢, s). Apply-
ing ¢ to (19) we obtain the same differential equation for ¢(n(t, s)). Since

£(0,5) = ¢(n(0,5)) = 0,

{(t,s) = o(n(t,s)) for any t.

Thus, we have defined the mapping f: G —» H. Let us prove that f is a
homomorphism.

Suppose g, (t) and g,(t), where 0 < t < 1, are differentiable paths in G that join
e with g, and g,, respectively, &, (t) and &,(t) are their velocities. The path that
connects e with g, g, may be defined by

o) = {gz(Zt) for0 <

t<1/2
9,2t — 1)g, for1/2 <t

<L

Under an appropriate choice of paths g, () and g,(¢) the path g(t) is differentiable.
Its velocity £(¢) is defined by

£) = {252(0 for0 <

t<12
26,2t —1) forl12<t

<L

If hy(¢), h,(t) and h(t) are paths in H corresponding to the paths g, (t), g,(t) and
g(t), then

/2

<1
t< 1

_ Jha(20) for0 <t
"o = {hl(Zt — Dhy(t) for1/2 <
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In particular,

f(g192) = h(1) = hi(Dh,(1) = f(g,)f(92)-

From the construction of f we see that f(exp(¢)) = exp @(¢) for any ¢ € g, i.e.
the diagram
g b
G H

is commutative. Proposition 2 and Problem 25 show that f is differentiable in a
neighbourhood of the unit of G and d, f = ¢. The homomorphism f is differen-
tiable at any point g € G because the diagram

@
_

R
f

f

G — H

l ltg) l I(h)

/

G —— H

where h = f(g) is commutative. Theorem is proved. []

Corollary. Simply connected Lie groups are isomorphic if and only if their
tangent Lie algebras are isomorphic.

9°. Virtual Lie Subgroups. As we have seen (Problem 1.14), the image of a Lie
group under a homomorphism is not always a Lie subgroup. More general
subgroups obtained in this way can sometimes serve as substitutes of Lie
subgroups.

A virtual Lie subgroup of a Lie group G is a subgroup endowed with a Lie
group structure so that the identity embedding i: H —» G is a Lie group homo-
morphism. We will assume that ) is embedded into g via di.

Clearly, any Lie subgroup (endowed with the induced Lie subgroup structure)
is a virtual Lie subgroup.

Problem 32. Let f: H — G be an arbitrary Lie group homomorphism. Then
the group f(H) endowed with a Lie group structure as the quotient group
H/Ker f is a virtual Lie subgroup of G with the tangent algebra df(b).

The topology of a virtual Lie subgroup can be different from the topology
induced by the ambient group. This is the case for a dense winding of the torus
T2 which carries the Lie group (in particular, the topology) structure of R but

intersects with any nonempty open subset of the torus on an unbounded subset
of R.
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However, Theorem 1.2 implies that any sufficiently small neighbourhood Oy (e)
of the unit of a virtual Lie subgroup H is a submanifold of the ambient Lie group
(in particular, possesses the induced topology) and T,(O(e)) = b.

The following problem elucidates the topological structure of virtual Lie
subgroups.

Problem 33. Let H be a virtual Lie subgroup of G. There exists a neighbour-
hood (4 (e) of the unit of H and a submanifold S = G containing the unit such
that the map

v: S X Oyle) - G, (s, h)— sh,

is a diffeomorphism of S x O(e) onto a neighbourhood O(e) of the unit of G
and

Hn Oge) = TOxle),

where T = H N S is finite or countable. If O4(e) is connected, it is a connected
component of H n (;(e) in the induced topology.

Theorem 7. Let G,, G, be virtual Lie subgroups of G. If G, = G, then G, is a
virtual Lie subgroup of G, and g, < g,. Conversely, if g, < g, and G, is connected
then G, < G,.

Problem 34. Prove this theorem.

Corollary 1. If virtual Lie subgroups G,, G, of G coincide as subsets then they
carry the same Lie group structure.

Corollary 2. A connected virtual Lie subgroup is uniquely determined by its
tangent algebra (the subalgebra of the tangent algebra of the ambient Lie group).

Introducing virtual Lie subgroups makes the correspondence between Lie
subgroups and subalgebras of the tangent algebra more complete. Namely, the
following holds:

Theorem 8. Any subalgebra by of the tangent algebra of a Lie group G is
the tangent algebra of a (uniquely determined) connected virtual Lie subgroup
H.

Proof of this theorem will be given in n. 4.3.

There exists a simple topological characterization of Lie subgroups and virtual
Lie subgroups of real Lie groups. By E. Cartan’s theorem any closed subgroup
of a real Lie group is a Lie subgroup (proof of this theorem can be found e.g. in
[4] or [1]). Therefore Lie subgroups of real Lie groups are the same as closed
subgroups.

Any pathwise connected subgroup of a real Lie group is a virtual Lie subgroup
(Yamabe’s theorem, see [40]). Therefore virtual Lie subgroups of a real Lie group
are just the subgroups with a finite or countable number of pathwise connected
components (in the induced topology).
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10°. Automorphisms and Derivations. Let G be a connected Lie group and
Aut G the group of its automorphisms (as of a Lie group).

Any group automorphism of G generates an automorphism of its tangent
algebra g. If G is simply connected then the converse is true (Theorem 6); in this
case Aut G is naturally isomorphic to Aut g, the automorphism group of the Lie
algebra g. The latter group is a linear Lie group (Example 1.5.3). Therefore, Aut G
is naturally endowed with a Lie group structure provided G is simply connected.

Problem 35. The action of the Lie group Aut G on a simply connected Lie
group G is differentiable.

Similarly as for abstract groups, the inner automorphisms of a Lie group G
constitute a normal subgroup of Aut G isomorphic to the quotient group G/Z
(where Z is the center of G) and denoted by Int G. Accordingly, their differentials
Ad g, g € G, called the inner automorphisms of the Lie algebra g, constitute the
normal subgroup of Aut g. This subgroup is denoted by Intg.

The quotient group Aut G/Int G (resp. Aut g/Int g) is called the group of outer
automorphisms of the Lie group G. (resp. Lie algebra g). (Clearly, this term should
not be understood literally. Moreover the outer, i.e. not inner, automorphisms
do not constitute a group at all.) For a simply connected group G we have the
natural isomorphism Aut G/Int G ~ Aut g/Int g.

The group Int g, being the image of G under the adjoint representation, is a
virtual Lie subgroup of Aut g. However, it might be not a genuine Lie subgroup:
cf. Exercise 19.

The tangent algebra of Aut g is the Lie algebra der g of derivations of
g (Example 3.2). The tangent algebra of Intg is the image of g under the
homomorphism

ad =dAd: g — derg

This shows, in particular, (see Corollary 2 of Theorem 7) that Intg does not
depend on the choice of G from connected Lie groups with the tangent alge-
bra g.

The derivations of the form ad &, € € g, are called the inner derivations of the
Lie algebra g.

Problem 36. The inner derivations constitute an ideal of der g. More precisely
[D,ad¢]=adDé  forany D e derg, Eeg. (20)
Examples. 1) If g is a commutative Lie algebra then

Autg = GL(g), Intg = {E}.

2) Let g be the Lie algebra of nil-triangular (triangular with zeroes on the
diagonal) 3 x 3 matrices. This is the tangent algebra of the Lie group of unitrian-
gular 3 x 3 matrices. For its basis take:
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S O O
S O O
[ R

010 0 0O
X=(0 0 0], Y=|10 0 1|, Z =
0 0O 0 0O
with the commutation relations

[X,Y]1=2  [X,Z]=[YZ]=0.

The subspace 3 = (Z) is the center of g. Any automorphism should transform
3 into itself, i.e. multiply Z by some ¢ # 0. It is subject to a straightforward
verification that such an automorphism induces in g/3 a linear transfor-
mation with determinant c. Conversely, any linear transformation with these
properties is an automorphism of g. The inner automorphisms are of the
form

X—X+aZ, Y—Y+bZ Z—Z (abek)

The group Int g in this case is a Lie subgroup of Aut g and is isomorphic to the
two-dimensional vector group. The quotient group Autg/Intg (the group of
outer automorphisms of g) is isomorphic to GL,(K).

3) Let g be the Lie algebra of matrices of the form (g é)’ where x,y € K.
This is the tangent algebra of the Lie group G of matrices of the form

b . .
<g 1), where a, be K, a # 0. The group G is isomorphic to the group of

1 0
affine transformations of the line. For the basis of g take X = (0 0>, and

0 1 .
Y= <0 0), satisfying [ X, Y] = Y. A straightforward calculation shows that the

. . b
inner automorphism defined by <g 1) € G acts as follows:

X— X —bY, Y—aY.

On the other hand, any automorphism of g is, clearly, of this form. Thus, in this
case

Autg =Intg~ G. -

11°. The Tangent Algebra of a Semidirect Product of Lie Groups. To semidirect
products of Lie groups there correspond semidirect sums of Lie algebras (which
could as well have been called semidirect products).

A semidirect sum of Lie algebras g, and g, is the direct sum of vector spaces
g, and g, endowed with the bracket



§2. Tangent Algebra 37

L&, 820 (n2)] = ([€1,m ] + BE2)ny — B(na)E1, [E2,m2]), (1)

where f is a Lie algebra homomorphism g, — der g,. We will denote the semi-
direct sum by g, D g,, or more prudently by g, §;g,.

Problem 37. A semidirect sum of Lie algebras is a Lie algebra.

The elements of the form (£, 0) (resp. (0, £,)) constitute a subalgebra of g, P g,
isomorphic to g, (resp. g,), usually identified with g, (resp. g,). The subalgebra
g, 1s an ideal and

(62,611 =B, (€reg1,8z€8,) (22)

The subalgebra g, is an ideal if and only if # = 0. In this case the semidirect sum
is isomorphic to the direct sum g, @ g,.

Example. Let V be a vector space considered as a commutative Lie algebra.
Then der V = gl(V). For any linear representation p: g— gl(V) of g we may
construct the semidirect sum V P, g which is also a Lie algebra. The space V is
a commutative ideal in it.

One says that a Lie algebra g splits into a semidirect sum of Lie subalgebras g,
and g, if

1) g, is an ideal;

2) g is the direct sum of subspaces g, and g, as a vector space.

In this case we have an isomorphism

91 Dp82 =g (§1,8)— 8 + &,

where f:g, —» derg, is the homomorphism defined by formula (22). In this
situation we will writeg =g, Dg,org=g, ¢ g;-

Theorem 9. The tangent algebra of the semidirect product G, x,G, of Lie
groups G, and G, is the semidirect sum g, D;z g, of their tangent algebras and
p = dB, where B: G, — Aut g, is a Lie group homomorphism defined by the formula
B(g,) = d(b(g,)) for any g, € G,.

Problem 38. Prove this theorem.

Examples. 1) Let R: G - GL(V) be a linear representation of a Lie group G.
The tangent algebra of the semidirect product V x G (see Example 1.11.1) is
the semidirect sum V P, g, where p = dR.

2) The Lie group GA(V) of affine transformations of a vector space V is
identified with the semidirect product V x4 GL(V) (see Example 1.11.2). Its
tangent algebra is identified with the semidirect sum V B, gl(V), where id is the
identity linear representation of the Lie algebra gl(V)in V.

Problem 39. Let G, and G, be simply connected Lie groups. For any homo-
morphism fi: g, — der g, there exists a homomorphism b: G, - Aut G,, such that



38

Chapter 1. Lie Groups

the G,-action on G, defined by b is differentiable and the tangent algebra of the

Qemldlrprr product G, %, G, isg, B,

1)

4)

7)
8)

LIt

b2 %0 bl Vﬁbz

Exercises

The tangent algebra of the group of invertible triangular matrices is the Lie
algebra of all triangular matrices.

T at A kha o Fnita_Aimanginnal accnnria a aloahra with 11nit 1 rar a field K
LClL A UL a uuuc-uuuuumuual dbbUblallVC aigvuvia Wil unit i uvux a HvIu Is.

Then the multiplicative group A* of invertible elements of A endowed with
the induced differentiable structure (as an open subset of the space 4) is a
Lie group. Prove that under the canonical identification of the tangent space
T,(A*) with the space A the bracket in the tangent algebra of the group 4*
is defined by the formula [£,7] = &n — né.

With the notation of 1°, define a bilinear operation *in the space T,(G) by
the formula

¢ * n= 0‘(2, n) + (77, E)

Prove that for a suitable coordinate system this operation coincides with
any given commutative bilinear operation in T,(G).

The tangent algebra of the centralizer Z(g) of an element g € G (see Exercise
1.6)) coincides with

3@) = {eg:(Adg)¢ = &} = {¢e g g¢ = &g}

Suppose ¢ is an element of the tangent algebra g of a Lie group G. Its
centralizer Z(&) in G defined as

Z()={geG:(Adg)l = ¢}

is a Lie subgroup whose tangent algebra coincides with the subalgebra
3(8) = {n € g: [{,n] = 0} called the centralizer of ¢ in the Lie algebra g.
Let H be a connected Lie subgroup of G. Its normalizer

N(H) = {ge G:gHg™' = H}
is a Lie subgroup and the tangent algebra of N(H) coincides with the algebra

n(b) = {{eg:[¢,b] = b},

called the normalizer of h in g.

The tangent algebra of U, consists of all skewhermitian n x n matrices.
Deduce the Jacobi identity in the tangent algebra of a Lie group directly
from the associativity of the product in the Lie group. (Consider the terms
of degree <3 in the Taylor series expansions of coordinates of products of
any three elements close to the unit.)
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9) For GL,(C) the exponential map is onto, but it is neither open nor injective.

10) For SL,(R) the exponential map is not onto.

11) If the tangent algebra of a connected Lie group G is commutative then G is
commutative.

12) Any noncompact connected one-dimensional complex Lie group is iso-
morphic to either C or C*.

13) Any compact connected one-dimensional complex Lie group is isomorphic
to a Lie group of the form A(u) = C/(Z + Zu), where ue C, Imu > 0. The
Lie groups A(u) and A(v) are isomorphic (as complex Lie groups!) if and only

b
au+ b, where (Z d) e SL,(2).

fo=
v cu+d

14) Any connected compact complex Lie group G is commutative. (Hint: For
any ¢ € g the linear transformation ad ¢ is diagonalizable and its eigenvalues
are purely imaginary.)

15) If the center Z of a connected Lie group G is discrete then the center of the
quotient group G/Z is trivial.

16) A connected Lie group is nilpotent (as an abstract group) if and only if its
tangent algebra is nilpotent. (A Lie algebra g is called nilpotent if there exists
a sequence of subalgebras

§=602812""" DG8n-1 2 Gmn=0,

such that [g,g;] < g;+;.) (Hint: Prove that the center of a connected nilpotent
Lie group is of positive dimension.)

17) The connected components of open sets in the induced topology on a virtual
Lie subgroup constitute a base of its inner topology.

18) Let g be the Heisenberg algebra ie. the Lie algebra with basis {x,...,
Xps V1s-++» YV 2} such that [x;,y;] =z (i = 1,...,n), all the other brackets of
base elements being zero. Find Aut g, Int g and Aut g/Intg.

19) Let g be the Lie algebra of diagonal complex 3 x 3 matrices whose diagonal
elements x,, x,, x5 satisfy the condition x,:x,:x3 = ¢,:¢,:c5, Where ¢, ¢;,
c5 are fixed real numbers. The group Intg is a Lie subgroup of Aut g if and
only if the differences ¢, — ¢, and ¢, — ¢; are commensurable.

20) Let a Lie group G split (as an abstract group) into a semidirect product of
its virtual Lie subgroups G, and G,. Then G, and G, are genuine Lie
subgroup.

Hints to Problems

2. In ¥V, choose a basis and assign to any linear transformation X € GL(V) the
matrix X = [X] — E, where [ X]is the matrix of X in this basis. The elements
of X may be taken for local coordinates in a neighbourhood of the unit E;
then E has zero coordinates. A straightforward verification shows that

XY=X+Y+ XY
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Hence, «(X,Y) = XY and y(X,Y)= XY — YX for any X, Y. In the asso-
ciated coordinate system of the tangent space L(V’) of the Lie group GL(V)
(at E) the coordinates of a linear transformation coincide with the elements
of its matrix. Therefore

[X,Y]=XY-YX forany XY € L(V).

. Choose coordinate systems in neighbourhoods of the units of G and H. Let
¢ and yy be bilinear vector-functions defined by formula (3) in these coor-
dinate systems on G and H, respectively. Let C be the Jacobi matrix of the
map f at e € G. Then

fx)=Cx+ -,

where dots stand for the terms of degree >2. Hence

f((xsy)) = CVG()?’)_)) + 0,
(f(x), f(y) = yu(CX,CY) + -+,

where dots stand for the terms of degree > 3. Since f((x, y)) = (f(x), f(y)), we
have

Cys(X, y) = yu(Cx, Cy).
Furthermore
df(&) = CE.

Therefore, the above formula and the definition of the brackets in g and b
imply that

df([¢,n]) = Ldf(&),df(n)]  forany &, neag,

i.e. df is a tangent algebra homomorphism.

. Apply Problem 3 to the identity embedding of the subgroup.

. Find the coefficient of ¢ in the polynomial det(E + tX).

. Apply Problem 3 to the canonical homomorphism p: G — H.

. In the definitions of the representations Ad and Sq put A = E + tY and
differentiate with respect to t at t = 0.

. It suffices to prove these formulas for simple tensors f and F, respectively.
It can be done using Problems 8 and 9. The other possible approach is to
take a derivative of formulas (1.1) and (1.2) with respect to 4 (at E).

. Use the fact that a is a G-action, i.e. a(g,g,) = a(g,)a(g,).

. The simplest approach is to start from the relation (gxg~')g = gx.
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If we consider Ad as a Lie group homomorphism G — Aut g, then ad is a Lie
algebra homomorphism g — der g (see Example 3.2). Hence ad £ is a deriva-
tion of the Lie algebra g for any £ € g. By anticommutativity this is equivalent
to the Jacobi identity.

The Taylor series expansion of the coordinates of g¢ (resp. £g) is obtained
from the Taylor series expansion of the coordinates of the group products,
when we choose only terms linear in the second (resp. first) factor.

By the definition, Ad g is the differential of the inner automorphism a(g) of
the group G. By Theorem 4 Adg = E if and only if a(g) is the identity
automorphism, i.e. when g € Z(G).

Since Z(G) is the kernel of Ad, the tangent algebra of Z(G) is the kernel of
the tangent representation ad (see 2°), and the latter is just 3(g).

Apply Theorem 5 to the homomorphism T: G — GL(V) and the Lie sub-
group GL(V; U) = GL(V). (See the solution of Problem 1.24).

Apply Theorem 5 to the identity embedding G, =, G and the subgroup
G, < G.

The subgroup H is normal if and only if it is invariant with respect to the
inner automorphisms of the group G. By Problem 20 this is equivalent to
the invariance of the tangent algebra b with respect to the adjoint represen-
tation of G. Next, apply Problem 25 and Theorem 2.

If g(t) is a one-parameter subgroup, then

dg(s)

s=0 dS

dg(t) dg(s + 1)
d —  dt

“g(t).

s=0

Conversely, if the path g(t) satisfies (15), where £(t) = const, then for any fixed
s € Rthe path h(t) = g(t + s)satisfies the same equation with the initial value
h(0) = g(s). If, moreover, g(0) = e, then h(t) = g(t)g(s).

Make a linear change of the variable ¢ in equation (15).

The differentiability in a neighbourhood of zero follows from the theorem
on smooth dependence of solution of a system of differential equations on
parameters. The global differentiability can be proved using the fact that by
Problem 23 exp & = (exp &/m)™ for any m € Z.

Problem 23 and the definition of g,(t) imply that (d, exp)(¢) = &.

Use Problem 16.

Prove that (Ad exp t€)n = n, next prove that

d
EMWémwm=@+mmm6ﬂwm

Follows from Problem 20.

Follows from Problem 26.

Show by induction in n that I" is generated by a linear independent set of
vectors. For this choose an indivisible vector e, € I" and prove that I'/Ze, is
a discrete subgroup of the (n — 1)-dimensional vector group R"/Re, .
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Make use of the fact that
o(exp &) = expdo(&) for any & € g.

Make use of Proposition 1.16.
The neighbourhood Oy(e) and the submanifold S = G are constructed as in
the solution of Problem 1.19. The countability of T follows from the fact that
H can only contain a finite or countable family of mutually nonintersecting
open subsets. To prove the latter statement one should make use of the fact
that any countable subset of R" is discrete.
In order to prove the first statement of the theorem it is necessary to show
that the identity embedding of G, into G, is differentiable. With the help of
Problem 33 applied to G, one can show that a sufficiently small connected
neighbourhood of the unit of G, is contained in a neighbourhood of the unit
of G, which is a submanifold of G. This implies the required differentiability.
The second part of the theorem is proved as Theorem 5.
The differentiability of the (Aut g)-action on g and the fact that automor-
phisms commute with the exponential map imply the differentiability of the
map

(AutG) x G - G, (o, g)—a(g) (23)

on (Aut G) x ((e), where ((e) is a neighbourhood of the unit of G. On the
other hand, the theorem on differentiable dependence of a solution of a
system of differential equations on parameters implies that a(g) is differen-
tiable with respect to « for any g. The differentiability of the map (23) at any
point (ay, g,) follows from this with the help of the identity

a(g) = algo)a(go'g)-

Calculate the differential of the adjoint representation of G; x; G,.

The desired homomorphism b is obtained from f by “integrating”, i.e. the
procedure inverse to the one described in the formulation of Theorem 9.
The differentiability of the G,-action on G, defined by it follows from
Problem 35.

§ 3. Connectedness and Simple Connectedness

As shown in § 2 (Theorems 2.4 and 2.6) connectedness and simple connected-
ness play an important role even at the first stages of the Lie group theory. That
is why we have devoted to them a separate section.

The definition of the fundamental group and the proof of topological theorems
used in this section (the existence of the simply connected covering, the exactness
of the homotopy sequence of a locally trivial bundle, etc.) can be found e.g. in
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[56]. One should have in mind that these theorems hold and are naturally proved
for more general topological spaces and their maps rather than differentiable
manifolds and differentiable maps we deal with in this book.

1°. Connectedness. A topological space is called connected if it is not a union
of two non-intersecting non-empty open subsets and pathwise connected if any
two of its points can be joined by a continuous path. For a differentiable manifold
these notions coincide. Moreover, any two points of a connected differentiable
manifolds can be joined by a differentiable path. Connected components of a
differentiable manifold are both open and closed. The assumption of existence
of a countable base implies that a differentiable manifold has a finite or countable
number of connected components.

Denote by G° the connected component of a Lie group G, which contain e.

Theorem 1. G° is a normal Lie subgroup of G. Other connected components of
G are cosets with respect to G°. The quotient group G/G° is discrete.

Problem 1. Prove Theorem 1.
Problem 2. Any open Lie subgroup of G is closed and contains G°.

Problem 3. A connected Lie group is generated (as an abstract group) by any
neighbourhood of the unit.

Problem 4. Any closed subgroup of a finite index of a Lie group is open.

Theorem 2. Let G be a Lie group and o its transitive action on a connected
differentiable manifold X. Then

1) the Lie group G° also acts transitively on X ;

2) G/G° = G,/G, N G° for any point x € X;

3) if the stabilizer G, is connected for some x € X then so is G.

Problem 5. Prove Theorem 2.

Theorem 2 enables us to answer the question whether the classical linear Lie
groups are connected.

Problem 6. SL ,(K) is connected.

Problem 7. O,(K) has two connected components. One that contains the unit
is the subgroup SO,(K) of unimodular orthogonal matrices.

An n x n matrix (n being even) is called symplectic if the corresponding linear
transformation of K" preserves the skew-symmetric bilinear from with the

0 E . .
matrix < E O>' The group of symplectic matrices is denoted by Sp,(K).

This is a Lie group of dimension n(n + 1)/2 (see 1.5°, Example 2).
Problem 8. Sp,(K) is connected.

Consider a more complicated example. Let k, [ >0 and k + [ = n. A real
matrix of order n is called pseudoorthogonal of signature (k, 1) if the corresponding
linear transformation preserves the quadratic form
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q(x) = x3 + - 4+ x2 — xty — - — x2.
The group of pseudoorthogonal matrices of signature (k, ) is denoted by O, . It
is a Lie group of dimension n(n — 1)/2 (see Example 1.5.1). Clearly O, ; = O, ,.
As in the case of usual orthogonal matrices, the subgroup SO, , of unimodular
pseudoorthogonal matrices is an open subgroup of index 2 in O, ;. But, as we
will see, it is not connected.

Problem 9. The upper left minor d,(A) of order k of any pseudoorthogonal
matrix A € O, , is nonzero.

SO, , contains matrices with both positive and negative values of d,. Such
matrices are easy to find even among diagonal matrices. Since the subsets that
are distinguished by inequalities d, > 0 and d, < 0 are open, the group SO, , is
not connected.

an o

Probiem 10. SO, , has two connected components. The connected component
containing the unit is distinguished by d, > 0.

2°, Cﬁ'v’el‘iiig nﬁmﬁmﬁfpllisms The prin‘-ipal Lcuuuquc of Lie group uu:uly'
consists in replacing the study of Lie groups by the study of their tangent
algebras. The applicability of this method depends on the extent to which a Lie
group can be recovered from its tangent algebra. Such a recovery is possible and
unique for simply connected Lie groups (Corollary of Theorem 2.6), and con-
nected Lie groups are determined up to covering homomorphisms.

Recall that a covering is a locally trivial bundle with a discrete fibre.

Problem 11. Let f be a homomorphism of a connected Lie group G into a Lie
group H. The following conditions are equivalent:

1) fis a diffeomorphism of a neighbourhood of the unit of G onto a neigh-
bourhood of the unit of H;

2) the kernel of f is discrete;

3) fis a covering;

4) df is a tangent algebra isomorphism.

Homomorphisms satisfying conditions of Problem 11 will be called covering
homomorphisms.

Examples. 1) The homomorphism
f:R—>T, where f:x—e™,

is covering since its kernel, i.e. 2nZ, is discrete.
2) Consider the adjoint representation Ad of the Lie group SL,(C). The
transformations

AdA: X+—AXA! (4 € SL,(C), X € s1,(C))

preserve the function det which is a nondegenerate quadratic form on sl,(C) and
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AdSL,(C) = O(sl,(C), det) ~ O4(C). The kernel of Ad is the center of SL,(C)
which consists of E and —E.

Since dim SL,(C) = dim O3(C) = 3 and SL,(C) is connected, Ad SL,(C) coin-
cides with the connected component of O(sl,(C),det), i.e. with the subgroup
SO(sl,(C), det) = SO5(C). Thus, there is a covering homomorphism SL,(C) —»
SO;(C) whose kernel consists of E and —E.

Problem 12. Any discrete normal subgroup of a connected Lie group G is
contained in the center of G.

Thus, for a given connected Lie group G the description of covering homo-
morphisms G — H boils down to the description of discrete central subgroups
of G.

3°. Simply Connected Covering Lie Groups. A connected differentiable mani-
fold is called simply connected if any closed path in it is homotopic to a trivial
one. It is known [45] that any connected differentiable manifold can be covered
by a simply connected manifold. For the sake of brevity we call it the simply
connected covering.

The following functorial property holds.

(F ) Let X and Y be connected manifolds, f: X — Y a differentiable map. Let
p: X - X and q: ¥ — Y be the simply connected coverings. Then for any points
%, € X and Yo € Y such that f(p(%,)) = q(J,) there exists a unique differentiable
map f: X — ¥ such that the diagram

) QN

(F)

X—f—>

~
~ e~
£~}

commutes and f(%,) = j,. In this case we say that f covers f.

Let p: X > X be the simply connected covering. The diffeomorphisms of X
covering the identity difffomorphism of X form the group I'(p) called the group
of the covering p. By (F), for any %,, X, € X such that p(X,) = p(%,) there exists
a unique element of /'(p) which transforms X, into X,.

The group I(p) is isomorphic to the fundamental group n 1(X) of X; the
isomorphism is obtained as follows. Choose a point X, in X and let x, = p(%,).
Then to any element y of I'(p) we assign the class of closed paths in X with
the origin in x, which are images under p of those paths in X which join %,
with y(X,).

Theorem 3. Any connected Lie group G is isomorphic to the quotient group G/N,
where G is a simply connected Lie group, and N is its discrete central subgroup.
The pair (G, N) is defined by these conditions uniquely up to an isomorphism, i.e. if
(Gl, N ) and (G,, N,) are two such pairs, then there is a Lie group isomorphism
G, — G, that transforms N, into N,.
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The canonical homomorphism G — G/N is covering and therefore the group
G is called the simply connected covering Lie group of G.

Proof. Let p: G — G be a simply connected covering of the group manifold G
and é e G a pullback of the unit e of G. The mapping p x p: GxG-GxGis
the simply connected covering of the manifold G x G. Define the multiplication
fi: G x G— G to be the covering map for the multiplication p in G which
transforms (¢, &) into é. Define the inversion i: G — G to be the covering map
of the inversion 1 in G which transforms € into itself.

Problem 13. The multiplication 7 and the inversion 7 satisfy group axioms for
G with & as the unit.

Thus, we have turned the manifold G into a Lie group. The definition of
multiplication in G implies that p is a homomorphism. Its kernel N is a discrete
central subgroup (Problems 11 and 12) and G = G/N (Theorem 1.5).

Now, let G, and G, be simply connected Lie groups, N, and N, their discrete
central subgroups and f: G1 /N; = G,/N, a Lie group isomorphism. The cano-
nical homomorphisms p,: G, —» GI/N1 and p,: G, —» G,/N, are covering. By (F)
there is a diffeomorphism f* G — G, that covers f and transforms the unit &, of
G, into the unit &, of G,. Since the diagram

Gl_f,

| k

S
G1/N1 — Gz/Nz

commutes, f(N,) = N,.
Problem 14. The map f is a group isomorphism.
The theorem is proved. []
Problem 15. Under the assumptions of the theorem, N = =, (G).

In particular, this implies that the fundamental group =, (G) of any connected
Lie group G is abelian.

Theorem 3 and corollaries of Theorem 1.6 imply that the connected Lie groups
whose tangent algebras are isomorphic to a given Lie algebra, if exist, are
described as follows: among them there exists a simply connected one, unique
up to an isomorphism and the other ones are obtained from it taking quotients
modulo different discrete central subgroups. In Chapter VI we will show that for
any finite-dimensional Lie algebra g there exists a Lie group whose tangent
algebra is isomorphic to g.

Theorem 3 may be viewed as a generalization of the description of connected
commutative Lie groups obtained in 2.7.

4°. Exact Homotopy Sequence. In order to calculate fundamental groups of
Lie groups it is convenient to use a part of the exact homotopy sequence of a
locally trivial bundle.
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Let X and Y be connected differentiable manifolds, p: X — Y a locally trivial
bundle with fibre Z. Let i: Z — X be a diffeomorphism of Z with p~(y,), the
inverse image of a distinguished point y, of Y. Fix points x, and z, in X and
Z respectively so that i(zy) = x, and therefore p(x,) = y,. Then the canonical
homomorphisms

Py 1 (X, x0) = 7 (Y, y0)
iy m(Z,20) = 1y (X, x0)

are defined. Let m,(Z) be the set of connected components of Z. For any closed
path fin Y beginning at y, there is a path « on X beginning at x, such that
p(a) = p. A connected component of Z whose image contains the end of the path
a depends only on the homotopy class of f. Therefore the map

0: 7y (Y, yo) = mo(2)

is well-defined.
The part of the exact homotopy sequence we need is of the form

1,(2) =5 7y (X) =25 7, (Y)—— 70(Z) — 0

Here, the exactness means the following:

1) Kerp, =1Imi,;

2) the fibres of 0 are the cosets of m,(Y) with respect to Imp,,;

3) 0 is surjective.

Also, if m,(Y) = 0, i.e. any continuous map of a two-dimensional sphere into
Y is homotopic to a trivial one, then i, is injective.

Let us apply the above to the locally trivial bundle p: G — G/H, where G is a
connected Lie group, H its Lie subgroup. Take the unit e of G to be the
distinguished point of G and let p(e) = H be the distinguished point of G/H.
Define i to be the identity embedding of H into G.

In this case 7,(Z) is the group H/H®. Denote by : the inversion in this group.

Problem 16. The map 1 o 9: n,(G/H) — H/H® is a homomorphism.
Thus, the following theorem holds.

Theorem 4. Let G be a connected Lie group, p: G — G/H the canonical map,
i: H— G the identity embedding. Then the sequence of groups and homomorphisms

7, (H)—5 7,(G)—25 1,(G/H)—> H/H®—— 0

is exact. Moreover, if m,(G/H) = 0, then i, is injective.
Corollary 1. If n,(G/H) = n,(G/H) = 0, then n,(G) = =,(H).
Corollary 2. If G is simply connected, then n,(G/H) =~ H/H°.

Now we will apply Corollary 1 in order to calculate the fundamental groups
of classical complex Lie groups.
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Problem 17. SL,(C) and Sp,,(C) are simply connected.
Since SO54(C) = SL,(C)/{E, —E} (see Example 2.2) and SL,(C) is simply con-
nected, we have n,(SO5(C)) = Z,.

Problem 18. 7,(SO,(C)) = Z, for n > 3.

Exercises

1) A Lie subgroup H of a Lie group G contains G° if and only if the manifold
G/H is discrete.

2) If in the definition of a Lie group we omit the assumption that the group
manifold possesses a countable base then any connected Lie group still
possesses a countable base.

3) GL,(C) is connected and GL,(R) has two connected components.

4) U, and SU, = {4 € U,: det 4 = 1} are connected.

5) The group O, ,/Op,, where k, [ > 0, is the direct product of two cyclic groups
of order 2.

6) Construct the covering homomorphism SU, — SO;.

7) Suppose « is an action of a simply connected Lie group G on a connected
differential manifold X and p: X — X the simply connected covering. Then
there exists a G-action @ on X such that p(d@(g)%) = «(g)p(%).

8) SU, and Sp,, (see exercise 1.3) are simply connected.

9) n,(80,)= Z, forn > 3.

10) Any connected two-dimensional real Lie group is either commutative of
isomorphic to the group of orientation preserving affine transformations of
the line.

11) For any connected Lie group G the differentials of all its automorphisms
form a Lie subgroup in Aut g. (Hint: characterize a sufficiently small neigh-
bourhood of the unit of this subgroup in terms of the (Aut g)-action on the
simply connected covering Lie group of G.)

Hints to Problems

1. Use the fact that the inversion, left and right translations, and inner auto-
morphisms are diffefomorphisms of the group manifold, and therefore can
only permute connected components.

2. An open subgroup is closed since its complement is the union of cosets and
each coset is also an open subset.

3. Prove that the subgroup generated by a neighbourhood of the unit is open
and use Problem 2.

5. Let x € X. Theorem 1.1 yields rk «, = dim X. Applying this theorem to the
restriction of the action a to G° we find that the orbit «(G°)x contains a
neighbourhood of x. Hence, all the orbit of G are open in X. Since X is
connected, there is actually only one orbit, i.e. G° acts transitively on X.
Hence, in any connected component of G, there is an element of the subgroup
G, (for any given point x € X). The other statements of the theorem are
deduced from here.
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. Consider the natural SL,(K)-action on the punctured space K"\{0}. Prove

that the stabilizer of any point is diffeomorphic to the direct product
SL,_,(K) x K"™1,

Clearly, SO,(K) is an open subgroup of index 2 in O,(K). Therefore, it suffices
to show that SO,(K) is connected. In order to do this consider the natural
SO,(K)-action on the sphere x{ + -** + xZ = 1 and prove that the stabilizer
of any point is isomorphic to SO,_, (K).

Consider the natural Sp,,(K)-action on the punctured space K2"\{0}. Prove
that this action is transitive and the stabilizer of any point is diffeomorphic
to Sp,_,(K) x K*"1,

. Ifd,(4) = O then the image of the subspace spanned by the first k basic vectors

has a nonzero intersection with the subspace spanned by the last [ basic
vectors. This is impossible, since the quadratic form q is positive definite on
the former and negative definite on the latter.

For k > 2 and [ > 1 consider the SO, ;-action on the hyperboloid

X4+ Xg =Xy — = x2 =1

Prove that this action is transitive and the stabilizer of any point is iso-
morphic to SO,_,; ;. Use the isomorphism SO, ; = SO, , to prove that the
number of connected components of SO, ; does not exceed the number of
connected components of SO, ; which equals 2.

The equivalences 1) <> 2) <> 4) follow from Theorem 1.2 and the implication
2) = 3) follows from Theorems 1.3 and 1.5.

Let N be a discrete normal subgroup of a connected Lie group G. For any
n € N consider the map

G — N, where g+>gng™t.

Its image is connected, hence consists of one point n. That means that n
belongs to the center of G.
Since each of the maps

fo(fxid),jfio(idxf):GxGxG—0G,
where
fio (f x id): (X, y,2)— A(A(X, y), 2),
fio(id x fi): (X, y,2)— A%, 4(3, 2)),
is covering for the map

GxGxG-QG, (x,y,z)— xyz,

and transforms (¢, €, €) into € we obtain the associativity of the multiplication
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fi. We similarly prove that

and

covers the map
(GI/NI) X (Gx/Nl)“’Gz/Nz» (x, ) f(xy),

and transforms (2,,¢,) into &,. Hence, f(%5) = f(X)f(3).

Let p: G — G be a covering homomorphism with kernel N. Prove that the
elements of the group I'(p) are multiplications by elements of N.

Let B, and B, be closed paths on G/H with the source at p(e). Let «; and a,
be paths on G beginning at e such that p(¢,) = f, and p(x,) = B,. Let the
ends of «; and «, be h, € H and h, € H, respectively. Consider the path aht
obtained from a, via the right multiplication by h,. This path begins at h,
and terminates at h,h,. We have p(x,a4') = f; f,. Therefore 0 transforms
the homotopic class of the path §, 8, into h,h, H® = (h, H®)(h; H), i.e. d is
an antihomomorphism. Therefore, - d is a homomorphism.

Consider the action of these groups on the punctured spaces C"\{0} and
C*"\{0}, respectively. (See hints to Problems 6 and 8).

For n > 3 consider the SO,(C)-action on the complex sphere in the space C"
(see hint to Problem 7). Prove that the complex sphere is homotopically
equivalent to the real sphere of the same dimension.

§4. The Derived Algebra and the Radical

This section is devoted to the part of the Lie group theory related to the

construction of the derived algebra. We will define here two opposite types of
Lie groups: solvable and semisimple. Any Lie group is constructed from groups
of these two types in the sense that it possesses a connected solvable normal Lie
subgroup the quotient group modulo which is semisimple.

1°. The Commutator Group and the Derived Algebra. Recall that the commu-

tator group of a group G is the subgroup (G,G) = G’ generated by all the
commutators (x. y) = xyx~'y~!, where x, y € G. This subgroup is normal and it
is the smallest normal subgroup the quotient group modulo which is commu-
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tative. The derived algebra of a Lie algebra g is the subalgebra [g,g] = g’
generated by the brackets [, n], where &, 7 € g. It is the smallest ideal such that
the corresponding quotient algebra is commutative.

Theorem 1. For a connected Lie group G, G' is a connected virtual Lie subgroup
with the tangent algebra g'. If G is simply connected then G' is a genuine Lie
subgroup.

Proof. First, let G be a simply connected Lie group. Consider the quotient
algebra g/g’. It is commutative and therefore may be identified with the tangent
algebra of a suitable vector Lie group V. By Theorem 2.6 the canonical homo-
morphism ¢: g — g/g'is the differential of a homomorphism f: G — V. The kernel
of f will be denoted by H. It is a normal Lie subgroup whose tangent algebra
coincides with the kernel of ¢, i.e. with g'. Since G/H =~ V is commutative, H o G
Since G and G/H are simply connected, H is connected (Theorem 3.4).

Let us show that G’ contains a neighbourhood of the unit of H: this will imply
that G' = H.

Problem 1. For any ¢, n € g there exists a differentiable C!-path g(t) in G defined
in a neighbourhood of zero such that

1) g(0) =e,g'(0) = [&n];

2) g(t) 1s a commutator in the group G for any ¢.

Now choose a basis {(;,...,(,} in the space g’ over R consisting of brackets.
Let g;(t), where |t| < ¢, be a path satisfying the conditions of Problem 1 for
[¢,n] = {;. Let U be the neighbourhood of zero in R™ defined by the inequalities
|t;] < ¢&. Consider the map

fiU—>H, where (ty,...,t,)—g.(t)...gm(tm).

The properties of the paths g,(t) imply that d,, f is an isomorphism of tangent
spaces. Hence, f(U) contains a neighbourhood of the unit of H, but f(U) = G’
and therefore G’ also contains a neighbourhood of the unit of H. []

For an arbitrary connected Lie group G consider its simply connected covering
p: G — G. By what we have already proved, G’ is a connected Lie subgroup of G
with the tangent algebra §'. However, it is obvious that G’ = p(G’). It follows
that G’ is a connected virtual Lie subgroup of G with the tangent algebra
dp(d') = g’ (Problem 2.32). The theorem is proved. [J

If G is not simply connected then G’ might be not a genuine Lie subgroup (see
Exercise 4).

Problem 2. If G is a connected Lie group and g’ = g, then G’ = G.

Problem 3. SL,(K) coincides with its commutator group.

2°, Malcev Closures. In the tangent algebra of a Lie group may exist sub-
algebras that do not correspond to any Lie subgroups. The following example
is in a sense a model one.
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Problem 4. The one-dimensional subalgebra of the tangent algebra of the Lie
group T", generated by (ia,,...,ia,), where ay, ..., a, € R, is the tangent algebra
of a Lie subgroup if and only if numbers ay, ..., a, are commensurable.

Nevertheless, as we will soon see, there is always a Lie subgroup whose tangent
algebra is only “a little bit” larger than the initial subalgebra.

Theorem 2. Let {H,} be an arbitrary collection of Lie subgroups of G. Then
H = (\H, is also a Lie subgroup and its tangent algebra coincides with b =

b,

Problem 5. Prove Theorem 2.

Now let b be an arbitrary subalgebra of the tangent algebra g of a Lie group
G. By Theorem 2 there exists the smallest Lie subgroup of G such that its
tangent algebra h™ contains b. The subalgebra h™ will be called the Malcev
closure of by.

Theorem 3. ([43]) Let b be a subalgebra of the tangent algebra of the Lie group
G and ™ its Malcev closure. Then (h™Y =y’

Proof. Apply Problem 1.25 to the adjoint representation of G with subspaces
b and by serving as U and W, respectively. We see that
H ={geG:(Adg — E)h = b’}
is a Lie subgroup in G and its tangent algebra is
by ={¢eg:(@dd)h=b'}.

Clearly, i < b,. Hence, b < b,,i.e. [h*,h] = b’. Now apply Problem 1.23 again
taking b instead of U. We see that

H,={geG:(Adg - E}h" c iy}
is a Lie subgroup and
b, = {leg:(@add)h™ < b’}

By what we have proved above, h < by,. Hence, h < b,, meaning that (h*) < b'.
O

Problem 6. The Malcev closure of an ideal is an ideal.

3°. Existence of Virtual Lie Subgroups. Let us prove Theorem 2.8. Let |y be a
subalgebra of the tangent algebra of a Lie group G. Consider its Malcev closure
b™ =§. By Theorem 3> h o f =b'". Let F be a connected Lie subgroup of G
with the tangent algebra § and F its simply connected covering Lie group. Since
F/F" is a vector group, it contains a connected Lie subgroup (a subspace of a
vector space) with the tangent algebra /b’ = §/f'. (We identify the tangent algebra
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of F with ). Therefore, the group F itself contains a connected Lie subgroup A
with the tangent algebra ). The image of this subgroup in F is the desired virtual
Lie subgroup of G. []

During the proof we have actually obtained a description of arbitrary con-
nected virtual Lie subgroups. Namely, any connected virtual Lie subgroup H of
a Lie group G may be obtained as follows: there exists a connected Lie subgroup
F of G and a connected Lie subgroup H of the simply connected covering
Lie group F containing its commutator subgroup such that H = p(H), where
p: F — F is the covering homomorphism. (Clearly, A is the simply connected
covering Lie group for H.)

4°. Solvable Lie Groups. Recall that the iterated commutator groups G®
(k=0,1,2,...) of G are defined by induction:

GO = G, GV = G, G+ — (G("))'.

A group G is called solvable if there exists an m such that G™ = {e}. Any

subgroup and any quotient group of a solvable group is solvable. Conversely, if

a normal subgroup N < G and the quotient group G/N are solvable then so is G.
A Lie group is called solvable if it is solvable as an abstract group.

Example 1. The group B, = B,(K) of invertible (upper) triangular n x n
matrices over K. Denote by B, , (k =0, 1,...,n) its subgroup consisting of the
matrices A = (a;) with a;; = §; for j — i < k. Clearly, B, = B, , and the map

A (g k41,02, k425> Bnkyn) (1)

is a homomorphism of B, , onto the vector group K"*. The kernel of this
homomorphism coincides with B, ;.. Therefore B, , < B, ,+,. Since B, , = {e},
we have B = {e}.

Similarly, the iterated derived algebras g™ (k = 0,1,2,...) of a Lie algebra g
are defined by induction as:

@ =g gV=g, g¥V=(g").

A Lie algebra g is called solvable if there exists an m such that g™ = 0.
Subalgebras and quotient algebras of a solvable Lie algebra are solvable. Con-
versely, if an ideal n = g and the quotient algebra g/n are solvable then so
is g.

Example 2. The tangent algebra of B,(K) is the Lie algebra b, = b,(K) of all
upper triangular n x n matrices over K. Let us prove that b, is solvable. Let
b, (k=0,1,...,n) be its subalgebra consisting of matrices X = (x;) with x;; =0
for j — i < k. Clearly, b, b, , and the map (1) is a homomorphism of b, , onto
a commutative Lie algebra K"~*. The kernel of this homomorphism coincides
with b, ;.. Therefore b}, , = b, ;. Since b, , = 0, we have b™ = 0.
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The induction shows that the iterated commutator group G*' of a connected
Lie group G is its connected virtual Lie subgroup with the tangent algebra g

This implies

Theorem 4. A connected Lie group G is solvable if and only if so is its tangent
algebra. More precisely, G™ = {e} if and only if g™ = 0.

Problem 7. Any nontrivial solvable Lie algebra splits into a semidirect sum of
an ideal of codimension 1 and a 1-dimensional subalgebra.

Applying Problem 2.39 and induction in dim g we see that for any solvable
Lie algebra g there exists a simply connected Lie group whose tangent algebra
is isomorphic to g. Simultaneously we establish the following fact.

Problem 8. Any nontrivial simply connected solvable Lie group decomposes
into a semidirect product of a normal Lie subgroup of codimension 1 and a
one-dimensional Lie subgroup (isomorphic to K).

5°. Lie’s Theorem. The most important tool in the study of solvable Lie groups
is
Theorem 5 (Lie’s theorem). Let R: G — GL(V) be a complex linear represen-

tation of a connected solvable (real or complex) Lie group G. There exists a
one-dimensional subspace U < V invariant with respect to R(G).

Before we prove this theorem let us introduce certain definitions and prove
several simple statements on linear representations of abstract groups.

Let R: G - GL(V) be a linear representation (over an arbitrary field). For any
character y of G (see definition of character in 1.4) set

V(G)={ve V:R(g)v = y(g)vforall g e G}. (2)

If V,(G) # 0 then y is called a weight of R, the subspace V,(G) a weight subspace
and its nonzero elements the weight vectors corresponding to y. In other words,
the weights of a representation are the characters that occur in it as one-
dimensional subrepresentations and the weight vectors are the vectors generating
one-dimensional invariant subspaces.

Problem 9. The weight subspaces corresponding to different weights are
linearly independent.

This implies, in particular, that a linear representation may only have a finite
number of weights.
Now let H be a normal subgroup of G.

Problem 10. For any character y of H and any g € G we have

where y9(h) = y(g 'hg) for he H.
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Therefore the operators corresponding to elements of G can only permute
weight subspaces of H.

Proof of Theorem 5 will be carried out by induction in dim G. Suppose that
dim G > 0 and that the theorem holds for groups whose dimension is less than
dim G. Passing to the simply connected covering Lie group we can reduce the
proof to the case when G is simply connected. In this case by Problem 8 we have

G=HxP,

where H is a normal Lie subgroup of codimension 1 and P is a one-dimensional
Lie subgroup.

By inductive hypothesis there exists a one-dimensional subspace of V invariant
with respect to R(H). This means that V,(H) # 0 for a character y of H. Since the
operators R(g), g € G, can only permute weight subspaces of H and since G is
connected, then ¥, (H) is invariant with respect to R(G), hence with respect to
dR(g).

Now let ¢ be a nonzero element of the tangent algebra of P and U a one-
dimensional subspace of V,(H) invariant with respect to dR(¢). Then it is also
invariant with respect to R(P), hence with respect to R(G). The theorem is proved.

O

Problem 11 (Corollary). Under the conditions of the theorem there exists a
basis of V in which all the operators R(g), g € G, are expressed by (upper)
triangular matrices.

6°. The Radical. Semisimple Lie Groups.
Problem 12. The sum of solvable ideals of a Lie algebra is a solvable ideal.

It follows, that in any Lie algebra g there exists the largest solvable ideal.
It is called the radical of g. We will denote it by radg.

Theorem 6. In any Lie group G there is the largest connected solvable normal
Lie subgroup. Its tangent algebra coincides with rad g.

Proof. Consider the Malcev closure (rad g)¥. By Theorem 3 ((radg)¥) =
(rad g). Hence, (radg)™ is a solvable Lie algebra. By Problem 6 (radg)™ is an
ideal. Since radg is the largest solvable ideal of g, then (rad g)” = radg. This
means that there exists a connected Lie subgroup R < G such that its tangent
algebra coincides with rad g.

The definition of radg implies that radg is invariant with respect to all
automorphisms of g. Hence, R is invariant with respect to all automorphisms of
G. In particular, R is normal. By Theorem 4 it is solvable.

Any connected solvable normal Lie subgroup H < G must be contained in R
since its tangent algebra f) being a solvable ideal of g is contained in rad g. Thus,
R is the largest connected solvable normal Lie subgroup of G. [J

The subgroup satisfying the hypotheses of Theorem 5 is called the radical of
the Lie group G. We will denote it by Rad G.
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A Lie group G (a Lie algebra g) is called semisimple if Rad G = {e} (resp.
rad g = 0). Obviously, a Lie group is semisimpie if and only if its tangent aigebra
is semisimple. For any Lie group G (resp. Lie algebra g) the quotient group
G/Rad G (resp. the quotient algebra g/rad g) is semisimple.

Problem 13. A Lie algebra g is semisimple if and only if it has no commutative
ideals.

In Chapters [V and V we will show that the classical Lie groups SL,(K), SO,(K)
for n > 3, Sp,(K) and several other groups are semisimple. The theory of semi-
simple Lie groups is the most difficult and significant part of the Lie group theory.

7°. Complexification. Complex Lie algebras have a simpler structure than real
ones. Therefore the usual way to study real Lie algebras is to complexify them.

In order to prove anything in this way we should know which properties of a
Lie algebra are preserved under the r\nmnlpxlf’rntlnn In this section we will prove

L aighiaal CSCI VO Lilset AL LU D 2EL

that solvability and semisimplicity are among these properties.

Let V(C) = V ®5 C be the complexification of a real vector space V. Any vector
z € V(C) can be uniquely presented in the form z = x + iy, where x, y € V. The
vector T = x — iy is called the complex conjugate to z. The complex conjugation
is an antilinear transformation of the space V(C). Therefore if W < V(C) is a
subspace then so is W.

Problem 14. A subspace W < V(C)is the complexification of a subspace U = V
if and only if W = W.

Now let g(C) = g ®g C be the complexification of a real Lie algebra g. Clearly,
a subspace ) = g is a subalgebra (resp. ideal) if and only if its complexification
h(C) is a subalgebra (ideal) of g(C). Obviously, the complex conjugation is an
antilinear automorphism of g(C).

Problem 15. (g(C)) = ¢'(C)
This implies that g(C) is solvable if and only if so is g.

Problem 16. rad g(C) = (rad g)(C).
It follows, that g(C) is semisimple if and only if so is g.

Exercises
1) a(K)) = SL,(K).
2) K)) = SO,(K).
3) U, =SU,.
4) Let H be the Lie group of 3 x 3 unitriangular real matrices and G =
(H x T)/N, where N is the cyclic subgroup generated by

1 0 1
((0 1 0),0
0 0 1

If ¢ is an element of infinite order of T then G’ is not a Lie subgroup.

L
(

, where CeT.
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5) A subspace of the tangent algebra of T" is the tangent space to a Lie sub-
group if and only if it is generated by vectors of the form (ia,,...,ia,), where
a;,...,a,€Q.

6) Let a and b be subalgebras of the tangent algebra of a Lie group such that
[a,b] = anb. Let a™, b™ be their Malcev closures. Then [a™,b¥] =
[a,b]. (Here [a,b] is the subspace generated by the brackets [£,#], where
Eea,neb)

7) The Malcev closure of a commutative subalgebra is a commutative
subalgebra.

8) If a Lie group (resp. Lie algebra) is not semisimple it has a connected
commutative normal Lie subgroup (resp. a commutative ideal) of positive
dimension.

9) Let R be a connected solvable normal Lie subgroup of G. If G/R is semisimple
then R = Rad G.

10) SL,(K) is semisimple.
11) A direct product of semisimple Lie groups is a semisimple Lie group.
12) Let U be a subspace of a complex vector space V. The radical of the Lie group

GL(V;U) = {A € GL(V): AU < U}

consists of all the transformations A € GL(V; U) that act as multiplications
by scalars on U and on V/U.

13) The radical of a complex Lie group coincides with the radical of this group
considered as a real Lie group.

14) Any nontrivial connected solvable real Lie group has a connected normal
Lie subgroup of codimension 1.

15) Let G be a connected solvable real Lie group and H its connected solvable
Lie subgroup of codimension 1. Then G = H x P, where P is a connected
one-dimensional Lie subgroup.

Hints to Problems
1. Let x(t) and y(t), where 0 <t < ¢, be differentiable paths in G such that
x(0) = y(0) = e, x'(0) = &, y'(0) = n. Then we may take

_ {(x(\ﬁ),y(ﬁ» for ¢ >0
(x(/1eh, y(e) ™t fore<0

3. Let E;; be a matrix unit, i.e. its (i, j)-th entry is 1 and the other entries are
zeros. Clearly,

[Eii _/_/’E(]]
[Eu’ jl] E _E

for i # j. This implies that sl,(K)" = sl,(K), hence SL,(K) = SL,(K).
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11.

13.
14.

16.
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If the required Lie subgroup exists, it is the image of R under the homomor-
phism R — T" such that its differential maps 1 into (la1 .,ia,). This homo-
morphism is of the form

X (e, ..., e" ).

Further, use Problem 1.14.

For a finite number of subgroups the statement is just the contents of
Problem 1.23. In the general case the subalgebra ()b, coincides with the
intersection of a finite number of subalgebras, say va ey bvk, and by the
above it is the tangent algebra of the Lie subgroup H = H, n---n H, . For
any v the Lie subgroup H n H, has the same tangent algebra as A. Hence
H N H, is contained in H and contains H® and therefore so is and does H.
Thus H is a Lie subgroup and its tangent algebra coincides with () b,.
Clearly, if a is an automorphism of the Lie group G, then (da(h)) = da(h™))
for any Lie subalgebra b < g. In particular, ((Ad g)h) = (Ad g)b™. Further,
use the fact that } is an ideal if and only if (Ad g)h = b for any g € G°.

. For an ideal take any subspace of codimension 1 containing the derived

algebra and for a subalgebra take any complementary subspace.

The proof is similar to that of the theorem on linear independence of
eigensubspaces of a linear operator.

Take a one-dimensional invariant subspace U < V which exists due to the
theorem and consider the quotient representation of G in V/U. Apply the
theorem again to this representation, etc.

Consider the last nonzero iterated derived algebra of rad g.

If W = W then with any z = x + iy (x, y € V) the subspace W contains both

1 ) .
x=4%z+7Z)and y = T(Z — Z), which means that W is the complexifica-
i

tionof U=WnV.
Notice that rad g(C) is a solvable ideal of g(C) hence is contained in rad g(C).




Chapter 2
Algebraic Varieties

The objects that occur in this chapter (vector spaces, algebras, algebraic
varieties, etc.) are considered over a fixed ground field K. In subsections 1.5-3.3
it is assumed to be algebraically closed'. Sometimes we require that it be of zero
characteristic. The reader, however, would not lose much by restricting himself
to the cases K = C or (where the algebraic closedness is not required) K = R.
Only these cases are needed for future applications to the Lie group theory and
we only consider more general fields in order to elucidate the algebraic nature
of the theory discussed.

Denote by A" (resp. P") the n-dimensional affine (resp. projective) space over
K. The point of A" with coordinates X,, ..., X, is denoted by (X,,...,X,).
A point of P" with homogeneous coordinates U,, U,, ... U, is denoted by
(Up:Uy:..2U,).

Hereafter the word “algebra” means “commutative associative algebra with
unit” except the subsection 3.6 where arbitrary algebras are also considered.
Subalgebras are supposed to contain unit, homomorphisms to transform the unit
into the unit.

QA stands for the full quotient algebra of an algebra A, i.e. the quotient ring
of A with respect to the multiplicative system consisting of all elements that are
not zero divisors (see [44]), considered as an algebra over the ground field. If, in
particular, A is an algebra without zero divisors then QA is a field.

If L,, L,, ... are some capitals then A [L,,L,,...] denotes the polynomial
algebra of L,, L,, ... with coefficients in A.

§ 1. Affine Algebraic Varieties

In subsections 1°-4° the ground field K is an arbitrary infinite field.

1°. Embedded Affine Varieties. An algebraic variety in A" or an embedded
affine algebraic variety is a subset in A" defined by a system of equations

JXy, 0 X,) =0 (fe9), (1)

! In many cases this assumption is superfluous but we decided not to overburden our narrative with a
perpetual change of scenery.
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where S is a (not necessarily finite) set of polynomials. An algebraic variety
defined by system (1) will be denoted by M(S).

The collection I of polynomials of the form Zy, f;, where g; € K[X,,..., X,]
and f;eS, is an ideal of the algebra K[X,,...,X,]. It is the smallest ideal
that contains S. We will say that the ideal I is generated by the set S or that S is
a system of generators of the ideal I. Evidently, M(S) = M(I).

An algebra is noetherian if one of the following conditions is satisfied

a) each its ideal is finitely generated;

b) any nondescending chain of its ideals I; = I, = --- stabilizes, ie. I, =

I, = for some m.
Problem 1. Conditions a) and b) are equivalent.

Theorem 1 (Hilbert’s ideal basis theorem). If R is noetherian then so is R[ X].
In particular, K[ X |,..., X,] is noetherian.

Proof: see e.g. [8].

Problem 2 (Corollary). Any affine algebraic variety can be determined by a
finite system of equations.

Let I be an ideal of K[X,,...,X,] and A = K[X,,..., X,]/I. The natural
homomorphism of K[X|,...,X,] onto 4 will be denoted by =; put n(X;) = x;.
The algebra A is generated over K by x,, ..., x,, .. any element of 4 is presented
(in general, non uniquely) as a polynomial in x,, ..., x, with coefficients in
K. We will express this fact as follows: 4 = K[x,,...,x,]. Clearly, if fel,
then f(x,,...,x,) =0 and for any homomorphism ¢: A4 —> K we have
Sflo(xy),...,0(x,)) = 0. This means that for any homomorphism ¢: 4 —» K the
point (¢(x,),..., ¢(x,)) belongs to the variety M(I).

Problem 3. This correspondence between the homomorphisms A — K and the
points of M(I) is one to one.

Now let 4 = K[x,,...,x,] be an algebra generated by its elements x,, ..., x,.
There is the unique homomorphism n: K[X|,..., X,] = A4 such that z(X;) = x,.
If I =kern, then A = K[X,,...,X,]/I. By Problem 3 the homomorphisms
A — K are in one-to-one correspondence with the points of M(I). Thus we may
speak about an affine algebraic variety defined by an algebra with a fixed finite
system of generators.

Different ideals (algebras) may define the same variety. For example, the ideals
(X)and (X?)in K[X] define the subvariety in A! that consists of the single point
(0). Among all the ideals defining a given variety M there is the largest one,
namely, the ideal generated by all polynomials that vanish on M.

Let M < A" be an algebraic variety. For any polynomial f e K[X,,...,X,]
denote by f|,, its restriction (as of a function) onto M. The map [+ f|,, is a
homomorphism of K[X|,...,X,] into the algebra of functions on M and the
kernel of this homomorphis is I(M). Therefore, elements of the algebra

K[M] = K[X,,...,X,]/[(M) (2)
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may be interpreted as functions on M. These functions will be called polynomials
on M and the algebra K[M] will be called the algebra of polynomials on M or
the coordinate algebra of M.

Problem 4. Suppose 4 = K[x,,..., X, ] defines a variety M. Then there exists
a unique homomorphism p: A - K[M] such that p(x;,) = X;|u-

In the sequel, as long as it is clear what M is meant and unless mentioned
otherwise we will write x; for X|,; then K[M] = K[x,,...,x,]

An element a € A is called nilpotent if a* = 0 for a certain k. Clearly, K[M]
does not have nilpotent elements. (When talking about algebras without zero
divisors or nilpotent elements one obviously has in mind nonzero elements.)

Let L be a field extension of K. The space A" is naturally embedded into the
n-dimensional affine space A"(L) over L. For any algebraic variety M < A" one
may consider the algebraic variety

M(L) = {x e A*(L): f(x) = O for all f e (M)}
in A™(L). Obviously, M = M(L) n A".

2°. Morphisms. A morphism of an algebraic variety M < A" into an algebraic
variety N = A™is any polynomial map f: M — N i.e. a map that (in coordinates)
may be determined by polynomials. More precisely, it means that there are
polynomials fi, ..., f,, € K[X,..., X,] such that the map f transforms a point
x € M into the point of the variety N with coordinates f(x), ..., fu(X).

As any map, a morphism f: M — N induces a homomorphism of algebras of
functions defined by the formula

(f*9)(x) = g(f(x)) ©)

(Here g is a function on N, x € M). The definition of the morphism clearly implies
that if g is a polynomial on N, then f*g is a polynomial on M. So we get a
homomorphism of algebras: f*: k[N] — k[M].

Problem 5. For any algebra homomorphism ¢: K[N] - K[M] there exists a
unique morphism f: M — N such that f* = ¢.

Thus, to define a morphism of embedded affine algebraic varieties is the same
as to define a homomorphism of algebras of polynomials on these varieties.

Clearly, the product g f of morphisms f: M — N and g: N — P is a morphism
and (g f)* = f*g*. A morphism f: M — N is called an isomorphism if there exists
an inverse morphism f~!: N — M, i.. if f is bijective and the inverse map is also
a polynomial one. This is equivalent to the fact that /* is an isomorphism of
algebras.

The class of isomorphic embedded affine algebraic varieties is called an (ab-
stract) affine algebraic variety (or, in short, affine variety) and its representatives
will be called embeddings of this variety into the affine space, or models. Practi-
cally, an affine variety is identified with one of its models (always having in mind,
however, the possibility to pass to any other model).
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A polynomial on an affine variety is a function which is a polynomial on a
model of this variety (it does not matter on which one). The polynomials on an
affine variety M constitute the algebra denoted by K[ M]. Similarly, a morphism
or a polynomial map of affine varieties is a map which is a morphism of their
models (it does not matter of which ones).

By Problem 3 there is a one-to-one correspondence between the points of an
affine variety M and algebra homomorphisms of K[M] into K. Explicitly, to
each point x € M the homomorphism ¢, corresponds which assigns to each
polynomial f € K[ M] its value at x:

o fof(x)  (feKIM]). 4)

It is clear from the above that to determine an affine variety M isthe same as
to determine the algebra K[M] and to determine an embedding of M in an
affine space is the same as to choose a system of generators in the algebra
K[M]. To determine a morphism of affine varieties is the same as to determine
a homomorphism of their polynomial algebras. This makes it principally possible
to translate any statement about affine varieties from the geometric language into
the algebraic one and, the other way around, to translate statements on poly-
nomial algebras into the geometric language.

Thus, the question arises what are the algebras that are algebras of polynomials
on affine varieties?

An exact answer to this question in the case of an algebraically closed K will
be given in n. 7°. For the time being we can say that they can only be finitely
generated algebras without nilpotent elements. In algebraic geometry more
general geometric objects (affine schemes) are also considered which correspond
to arbitrary finitely generated algebras. However, for our purposes affine varieties
in the above “naive” sense will do.

Let L be a field extension of K. Clearly, any morphism M — N of embedded
affine varieties extends to a morphism M(L) — N(L) determined by the same
polynomials. Therefore we may speak about an abstract affine variety M (L) over
L determined by an abstract affine variety M over K and about an embedding
M <= M(L).

3°. Zariski Topology. Let us consider algebraic varieties as closed subsets of
A",
Problem 6. This system of closed subsets determines a topology in A" (i.e. the

intersection of closed subsets and the union of a finite number of closed subsets
are closed).

This topology in A" is called the Zariski topology. Clearly, a point is closed in
the Zariski topology.

The Zariski topology of A" induces a topology on any algebraic variety
M < A" which is called the Zariski topology on M. According to this definition
the closed subsets are distinguished in M by systems of equations of the form
f(x) =0, where f € K[M]. In particular, the Zariski topology on M is defined
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by K[M], and that is why we may speak about the Zariski topology on an
abstract affine variety. Clearly, morphisms of affine varieties are continuous in
Zariski topology. Closed subsets N of an affine variety M are canonically
endowed with an affine variety structure so that

K[N] = K[M]/I}(N),

where I,,(N) s the ideal of K[ M] consisting of the polynomials that vanish on N.

Notice that the Zariski topology on A"*™ does not coincide with the direct
product topology on A" x A™ (e.g. the set in A? determined by the equation
X, = X, is closed but it is not closed in A x A!).

In the sequel, unless otherwise stated, all the topological terms, excluding
connectedness and simple connectedness are referred to the Zariski topology.

The space A" x A™ is supposed to be endowed with the Zariski topology of
the space A"*™.

A topological space X is noetherian if it satisfies the descending chain condition *
for closed subsets.

Problem 7. A subspace of a noetherian space is noetherian.

Problem 8. The space A" endowed with the Zariski topology is a noetherian
topological space.

This implies that any affine variety is a noetherian topological space.

A topological space M is irreducible if it is nonempty and one of the following
three conditions is satisfied:

a) any nonempty open set is dense in M;

b) any two nonempty open sets intersect;

¢) it is impossible to present M as a union of two of its proper closed subsets.

Problem 9. Prove the equivalence of these conditions.

Theorem 2. Any noetherian topological space M can be presented as a union of
a finite number of closed irreducible subsets M;, so that M; & M; for i # j. This
decomposition is unique up to a renumbering of the M;.

The subsets M; defined in Theorem 2 are called irreducible components
of M.

Problem 10. Prove Theorem 2.

Problem 11. An affine variety M is irreducible if and only if K[M] does not
have zero divisors. More precisely, zero divisors in K[M] are the polynomials
which vanish on an irreducible component of M. In particular, A" is irreducible.

The closure of a subset M in a topological space will be denoted by M.

Problem 12. Let M be a subset of a noetherian topological space. If M = ( J; M,
is the decomposition of M into irreducible components, then M = ()i M, is the
decomposition of M into irreducible components. In particular, M is irreducible
if and only if so is M.
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Let M be an affine variety. The open subsets of the form
M, ={xeM:h(x) #0} (he K[M])
are called principal open subsets of M. Clearly,
M, " M,, = M, ,,

It follows from Problem 11 that M, is dense in M if and only if 4 is not a zero
divisor in K[M]. '

Problem 13. The principal open subsets of an affine variety constitute a base
of the Zariski topology (i.e. any open subset is a union of principal open subsets).

If h e K[M] is not a zero divisor then the elements of K[M][1/h] =« QK[M]
can be naturally considered as functions on M, since for x € M, the homo-
morphism (4) uniquely extends to a homomorphism K[M][1/h] - K. On the
other hand, for x ¢ M, such an extension is clearly impossible. This means that
M, can be considered as an affine variety with the polynomial algebra

K[M,] = K[M] [ﬂ

If h is a zero divisor and M’ is the union of irreducible components of M on
which h does not vanish identically then M, = M,., where h’ = h|;,. € K[M'].
Since h' is not a zero divisor in K[M'], then M, can be considered as an affine
variety with the polynomial algebra K[M,] = K[M'][1/h"]. Keeping the above
in mind, we will speak from now on about principal open subsets of affine
varieties as about affine varieties.

Let L be a field extension of K.

Problem 14. The Zariski topology on A" coincides with the topology induced
by the Zariski topology on A™(L). The closure in A"(L) of any algebraic variety
M < A" coincides with M (L) and I(M(L)) = LI(M).

4°. The Direct Product. Let M and N be algebraic varieties in A" and A™,
respectively. Then M x N is an algebraic variety in A" x A™ = A"*™,

Problem 15. If M and N are irreducible then so is M x N.

In order to describe the polynomial algebra on M x N it is necessary to
introduce the notion of the tensor product of algebras. The tensor product A ® B
of algebras A and B is the tensor product of the vector spaces A and B with the
multiplication

(a, ®by)(a, ®b,) =a,a, ® b, b,.

The maps 1,:ar»a® 1 and 153:b— 1 ® b determine natural embeddings of
algebras A and B into A ® B.
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The tensor product of algebras is characterized by the following universality
condition: for any algebra C and algebra homomorphisms ¢: A — C and y:
B — C there exists a unique homomorphism w: A ® B — C such that the diagram

A®B

commutes. This homomorphism is defined by the formula

w(a ® b) = p(a)y(b).

When o is an isomorphism, we say that C is the tensor product of 4 and B with

respect to homomorphisms ¢ and . If it is clear which homomorphisms ¢ and
i we have in mind, we write C = A ® B. For example

K[Xp,o s X0 Yy, Yl = K[X,, .., X,]® K[Y,,..., Yy,

Let M c A"and N = A™ be algebraic varieties. Put n,, and my for projections
of M x N onto M and N, respectively.

Problem 16. K[M x N] = K[M] ® K[N] with respect to homomorphisms
n* and n%. The ideal I(M x N) of the algebra K[X},..., X,, Y;,.., ¥,.] is gener-
ated by the ideals I(M) and I(N) of the algebras K[ X ,..., X,]Jand K[Y,,..., ¥,]
naturally embedded into K[X,,...,X,, Y;,..., Y, ].

In the sequel we will identify the algebras K[M x N] and K[M]® K[N]
having in mind the isomorphism constructed in Problem 16. Under such an
identification an element f ® g € K[M] ® K[N] is presented as the function on
M x N defined by the formula

(f®9)(x,y) = f(x)g(¥).

An important corollary of Problem 16: The polynomial algebra on M x N is
defined by polynomial algebras on M and N, hence does not depend on em-
beddings of M and N into affine spaces. This enables us to define the direct
product of abstract affine varieties M and N as the affine variety M x N whose
model is the direct product of any models of M and N.

It also follows from Problem 16 that (M x N)(L) = M(L) x N(L)for any field
extension L of K.

5°. Homomorphism Extension Theorems. From here and till the end of the
chapter (§§ 3.4-3.7 excluded) we will assume that K is algebraically closed.

Suppose A is a subalgebra of B. For any subset U = B put A[U] (or A[u,,...]
if U = {u,,...}) for the subalgebra in B generated by the set U over 4, i.e. for
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the collection of all elements of B presentable as polynomials in elements of U
with coefficients in 4. If A[fU] = B we will say that U is a system of generators
of the algebra B over A (do not confuse with the notion of generators of an ideal!)
The algebra B is called finitely generated over A if it has a finite number of
generators over A. Clearly, if B is finitely generated over K then so it is over A.

Algebras finitely generated over K will be simply called finitely generated.

Suppose B is without zero divisors. An element b € B is called algebraic over
A if there is a nonzero polynomial f € A[X] such that f(b) = 0; otherwise b is
called transcedental (over A).If b is transcedental over A4, then A[b] = A[X]. An
algebra B is called an algebraic extention of A if any of its elements is algebraic
over A. It is convenient to introduce the quotient field QB into which the algebra
B and the field QA are isomorphically embedded.

Problem 17. An element b € B is algebraic over A if and only if QA[b] is a
finite-dimensional vector space over Q 4.

Problem 18.If B = A[b,,...,b,], where by, ..., b, are algebraic over 4, then B
is an algebraic extension of A.

Theorem 3. Suppose B is an algebra without zero divisors finitely generated
over its subalgebra A. Then for any nonzero element b € B there exists a nonzero
element a € A such that any homomorphism ¢: A — C that does not annihilate a
extends to a homomorphism y: B — C which does not annihilate b.

Problem 19. Prove Theorem 3 when B = A[u], where u is transcedental over A.
Problem 20. Prove Theorem 3 when B = A[u], where u is algebraic over A.
Problem 21. Prove Theorem 3.

Corollary. If Bis a finitely generated algebra without zero divisors then for any
nonzero b € B there exists a homomorphism y: B — C which does not annihilate b.

Theorem 4. Let char K = 0. Suppose B is a finitely generated algebra without
zero divisors and A is its finitely generated subalgebra. If there exists a nonzero
element b € B such that any homomorphism A — C has no more than one extension
to a homomorphism B — C which does not annihilate b, then B < QA.

Problem 22. Prove Theorem 4.

6°. The Image of a Dominant Morphism. A morphism f: M — N of irreducible
affine varieties is called dominant if f(M) = N.

Problem 23. A morphism fis dominant if and only if the corresponding algebra
homomorphism f*: K[N] - K[M] is injective.

A dominant morphism may be not surjective. For instance let M =
(X X)) eAT X X, =1}, N=A' and f:(X,,X,)—(X,); then f(M)=
A\ {0}. Nevertheless, the image of a dominant morphism is sufficiently large as
it is shown by the following theorem.
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A subset of an irreducible topological space is called épais if it contains a
nonempty open subset. Clearly, any épais subset is dense. The intersection of a
finite number of épais subsets is épais itself.

Theorem 5. Let f: M — N be a dominant morphism of irreducible affine varieties.
The image f(M,) of any épais subset My = M is an épais subset in N.

Proof. It suffices to prove that the image of any nonempty principal open
subset of M contains a nonempty principal open subset of N. This is the
geometric equivalent of Theorem 3 appled to A = K[N] and B = K[M] if we
identify the elements of K[ N] with their images under f*.

Indeed, the points of M and N can be considered as homomorphisms into K
of K[M] and K[N] respectively. Then f can be viewed as a restriction onto
K[N] of the homomorphisms K[M]— K. By Theorem 3 for any nonzero
g € K[M] there exists a nonzero he K[N] such that any homomorphism
K[N] - K that does not annihilate h extends to a homomorphism K[M] - K
that does not annihilate g; but this means that f(M,) > N,. O

7°. Hilbert’s Nullstellensatz. An ideal I of A4 different from A is prime if
A/I does not have zero divisors. This means that if ab € I then either a€ [ or
b e I. For example, in K[ X], the ideal generated by a polynomial f is prime if
and only if f is a first degree polynomial.

Clearly, a prime ideal contains all nilpotent elements. The set of all nilpotent
elements of A4 is an ideal called the radical of A and is denoted by RA.

Theorem 6. The radical of an algebra A coincides with the intersection of all the
prime ideals of A.
Proof see e.g. in [8], [53].

Problem 24. The kernel of the homomorphism p defined in Problem 4 equals
RA.

In particular, a finitely generated algebra A coincides with the polynomial
algebra on the affine variety that A defines if and only if 4 has no nonzero
nilpotent elements.

A reformulation of Problem 24 is

Theorem 7 (Hilbert’s Nullstellensatz which in German means ‘theorem
on zeroes’). Suppose M = M(I) = A" is the variety defined by an ideal I
K[X,,...,X,). For any f € I(M) there exists k such that f* € I.

Applying this theorem to f = 1 we obtain

Corollary. If M(I) = J then I = K[Xy,...,X,].
Problem 25. Let M be an affine variety and I an ideal of K[ M]. If there is no
point of M at which all the polynomials of I vanish, then I = K[M].

Problem 26. Suppose an affine variety M is presented in the form of a union
of non-intersecting closed subsets M,, ..., M,. Then the homomorphism
K[M] - K[M,] x - x K[M], f>(flpm,---»S|s,) 1s an isomorphism.
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In other words, any function on M whose restrictions to My, ..., M, are
polynomials is a polynomial itself.

8°. Rational Functions. Let M be an affine variety. The algebra QK[M] is
called the algebra of rational functions on M and is denoted by K(M). Problem
11 shows that if M is irreducible then K(M) is a field. In particular, K(A") =
K(X,,...,X,) is the field of rational functions in X, ..., X.

The elements of K (M) are called rational functions on M. A function f € K(M)
is defined at a point x € M if f can be presented in the form of a ratio g/h, where
g, h e K[M], such that h(x) # 0. In this case the element g(x)/h(x) is called the
value of f at x and is denoted by f(x). The value does not depend on the choice
of representation of f in the form of such a ratio.

The set of all points x € M where a rational function f € K(M) is defined is
called the domain of f. This set will be denoted by D;.

The following properties of rational functions are obvious:

(R1) the domain D, of '€ K(M) is a dense open subset in M;

(R2) the map f: D, — K is continuous (K is considered here as A! with the
Zariski topology);

(R3) f asanelement of K(M), is uniquely determined by its restriction to any
dense open subset;

(R4) the operations on the elements of K(M) coincide with the usual operations
on functions where these functions are defined.

Let f be a rational function on M. The denominators of all possible presenta-
tions of f in the form of a ratio of two polynomials are precisely the nondivisors
of zero contained in the ideal

I, ={he K[M]: fhe K[M]}

Problem 27. The ideal I, is generated by the nondivisors of zero contained in
it. The domain of f is the complement of the variety of zeros of this ideal.

Problem 28. Any rational function defined at all points of M is a polynomial,
L.e. belongs to K[M].

Problems 29. Any rational function defined at all points of a principal open
subset M,, where h € K[ M] is a nondivisor of zero, can be presented in the form
g/h* (g e K[M]), i.e. belongs to K[M][1/h] = K(M).

Let M’ be the union of some irreducible components of M. Since the restriction
homomorphism K[M] — K[M'] maps the nondivisors of zero into nondivisors
of zero, it extends to a homomorphism K(M) — K(M'). The image of a rational
function f € K(M) under this homomorphism is called its restriction to M" and
is denoted by f1,, .

Problem 30. If f is defined at x € M’ then so is |, and [, (x) = f(x).

Let M” be the union of the irreducible components of M which do not occur
in M'.



§ 1. Affine Algebraic Varieties 69

Problem 31. If f|,,. is defined at x € M'\M" then so is f.

Problem 32. Let M = M, U - U M, be the decomposition of M into irreduc-
ible components. Then the homomorphism

K(M)— K(M,) x - x K(M,), f>(fly-->fIn,)

is an isomorphism.

9°. Rational Maps. A rational map of an affine variety M into A™ is a map of
the form

f:xH(fl(x)"°'9fm(x))’ (5)

where f}, ..., f,, € K(M). The map f is considered as defined at a point x € M if
all the functions f, ..., f,, are defined at this point.

Problem 33. The domain of a rational map is an open dense subset of M. A
rational map is continuous on its domain.

Now let N be another affine variety. Considering N as embedded into A™
define a rational map f: M — N as a rational map f: M — A™such that f(M) = N.

Problem 34. The notion of a rational map into a variety N does not depend
on the embedding of N into an affine space.

Under the inversely directed homomorphism of the algebras of functions
defined by formula (3) the coordinate functions are mapped into the functions f;
while the polynomials on N are mapped into the rational functions on M. Thus,
a rational map f: M — N induces a homomorphism f*: K[N] — K(M). Formula
(3) means here that if f is defined at x then so is f*g and (3) holds.

Problem 35. For any homomorphism ¢: K[N] — K(M) there is a unique
rational map f: M — N such that f* = ¢.

Thus, to define a rational map of a variety M into a variety N is the same as
to define an algebra homomorphism K[ N] — K(M). If the image of K[ N] under
this homomorphism is contained in K[ M], then the corresponding rational map
is a morphism.

Suppose that a rational map f: M — N is defined by formula (5)and h € K[M]
is a polynomial which is not a zero divisor in K[M] such that hf;e K[M] for
i=1,..., m(eg we may take for h the product of denominators of some
presentations of the functions f; in the form of a ratio of polynomials). Then
f; e K[M][1/h], i.e. the functions f;, where i = 1, ..., m, are polynomials on the
affine variety M, (see Problem 30). Thus the restriction of a rational map to a
suitable dense principal open subset is a morphism.

A rational map f: M — N of irreducible affine varieties is called dominant if
f(M)=N.

Problem 36. A rational map f is dominant if and only if f* is injective. If f is
dominant then f* extends to an algebra homomorphism K(N)— K(M) (also
denoted by f*).
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Formula (3) is valid for any rational function g defined at the point f(x).

The superposition of a dominant rational map f: M — N and a rational
map g: N — P can be defined as a rational map gf: M — P such that (g f)* =
S*g*

Clearly, if f is defined at x € M and g is defined at f(x) € N then g f is defined
at x and (g f)(x) = g(f(x)).

Note that the map g f may be defined not only at points satisfying the above
condition. For example, let M = N = P = A' and f = g: (X)—(1/X); then g f
is the identity morphism which is defined everywhere, whereas f is not defined
at 0. ‘

10°. Factorization of a Morphism

Theorem 8. Let char K = 0, let M, N, P be irreducible affine varieties and let
f:M — N, h: M — P be dominant morphisms. If f(x') = f(x") implies h(x') = h(x")
for any points x', x” of an épais subset M, = M, then there exists a rational map
g: N = Psuchthath=gf.

The situation is illustrated by the following commutative diagram

M—" P
7
s 9
N

Proof. First consider a particular case, when P = M and h = id. In this case
the condition of the theorem means that f is one-to-one on M,. Let M,, where
be K[M], b # 0, be a principal open subset contained in M.

The same arguments as in the proof of Theorem 7 yield the following algebraic
formulation of the bijectiveness of f on M,: any homomorphism of f*K[N] =
K[N]into K extends in no more than one way to a homomorphism K[M] —» K
that does not annihilate b. By Theorem 4 this implies that K[M] < f*K(N). In
other words, there is a homomorphism ¢: K[M] — K(N) such that f*¢ = id.
The rational map g: N - M defined by this homomorphism is the required

inverse of f.
In general case, consider an auxiliary rational map

[: M - N x P, x+—(f(x),h(x))

The closure of its image will be denoted by L. Furthermore, let p, and p, be the
restrictions onto L of the projections of the product N x P onto the first and
second factor, respectively. The conditions of the theorem imply that p, is a
bijection onto the épais subset [(M,) < L. By the above there exists a rational
map k: N — L inverse to p,. The map g = p,k is the one sought for. Proof is
illustrated by the following commuting diagram:
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Note that the assumption char K =0 is essential. Indeed, suppose that
char K = p > 0. Then the morphism f: A’ > A, (X)+ (X?) is a bijection but
the inverse map is not rational.

Exercises

The ground field K is assumed to be algebraically closed.
1) Let M and N be algebraic varieties in A" and N = M. Then K[N] is a
quotient algebra of K[M].
2) What is the Zariski topology in A'?
3) The Zariski topology in A" is not the Hausdorff one.
4) Any open covering of a noetherian topological space has a finite subcovering.
5) Suppose f = p¥i...pkisadecomposition of a polynomial f € C[X},..., X,]
into irreducible factors. Then M(f) = | ) M(p;) is the decomposition of the
variety M(f) into irreducible components.
6) Give an example of two nonisomorphic algebras that define the same alge-
braic variety in A"
7) An affine algebraic variety defined by a finite-dimensional algebra consists
of a finite number of points.
8) A finitely generated algebra which is a field coincides with K.
9) Suppose 4 is a finitely generated algebra, I its maximal ideal. Then 4/I = K.
10) There is a one-to-one correspondence between the points of an affine alge-
braic variety M defined by a finitely generated algebra A and the maximal
ideals of this algebra: to a point x € M the kernel of the homomorphism
¢.. A = K corresponds.
11) If two finitely generated algebras do not have zero divisors (or nilpotent
elements) then so does their tensor product. (Prove geometrically.)
12) The radical of a finitely generated algebra coincides with the intersection of
all its maximal ideals.
An ideal I of an algebra A is called a radical ideal if f™e I implies
fel
13) Any radical ideal of a finitely generated algebra is the intersection of a finite
number of prime ideals.
14) Find the domain of the rational function x,/x; on the algebraic variety in
A* defined by the equation X, X, = X, X3.
15) Find the image of the variety M = A' under the rational map (X)—
(1 — X3)/(1 + X?),2X/(1 + X?)).
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16)

17)
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Suppose M = A%, and f: (X))~ (X2, X?). There is an inverse rational map
£~ f(M) - A but it is not defined at f(0).

Suppose f, - .-, fi» g are rational functions on A", If g is constant on the level
surfaces of the family { fi,..., f,}, then it may be presented in the form of a
rational function in fi, ..., f.

An elementary algebraic predicate in variables x € A", ye A", ze AP, ...
is a predicate of the form “F(x,y,z,...) =07, where F is a polynomial in
n+ m+ p + - variables. Furthermore an algebraic predicate is any predi-
cate obtained from elementary ones within the framework of the logic of
predicates, i.e. by making use of (a finite number of) conjunctions, disjunc-
tions and negations and also quantifiers of existence and generality.

Aset M < A™ x A" x AP x --- is constructible if there exists a predicate P
containing free variables x € A", y € A™, z € AP, ... (and containing no other
free variables), such that (a,b,c,...) € M if and only if P(a, b,c,...) = 0.

An irreducible component of a constructibie set is constructible itseif.

The image of an irreducible constructible set under a rational map into A4
is a constructible set in A%

Any constructible set can be presented as a finite union of sets of
F\G, where F and G are closed sets.

An irreducible constructible set is épais in its closure.

PR TR S,
tne 10rm

Hints to Problems

. The desired morphism is of the form x> (f;(x),..., fu(x)), Where f; = o(y,),

where y,, ..., y,, are the restrictions on .#" of coordinates in A™

. M(S;) U M(S,) = M(S), where S = {f, f: fi €S, and f, € S, }.
. This is a geometric equivalent of Theorem 1.
. The topological spaces that are not representable as unions of finite numbers

of closed irreducible subsets will be called bad spaces. Suppose M is bad.
Then, in particular, M can not be irreducible, therefore M = M, u M,, where
M, M, are proper closed subsets and at least one of M,, M, is bad. Suppose
M, is bad. Then M, = M, u M,,, where M,,, M, are proper closed
subsets and at least one of M,, M, is bad. Suppose this is M, . Continuing
the process, we obtain an infinite descending chain M > M, > M, o --- of
closed subsets of M. If M is noetherian, this is impossible.

Suppose M = | J, <;<x M;, where M, is a closed irreducible subset such that

M; & M;fori # j. Then M, ..., M, are all the maximal irreducible subsets of
M, and therefore the M; are uniquely defined.
Suppose there are nonzero elements f,, f, € K[M] such that f, f, = 0. Then
M = M, uM,, where M, = {x € M: fi(x) = 0} so that M, # M and M, #
M. Thus, if K[ M] has zero divisors then M is reducible, and each zero divizor
vanishes on an irreducible component of M.

. Let {u,} be a basis of L as of a vector space over K. Any polynomial

feL[X,,....X,] is representable in the form f =) ,u,f,, where f, e
K[X,,...,X,] and for a point x € A" the condition f(x) = 0 is equivalent to
the conjunction of the conditions f,(x) = 0. Therefore the intersection of any
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closed subset of A"(L) with A" is closed in A" Proof of the remaining
statements is similar.

Suppose M x N = P, u P,, where P, and P, are closed subsets. For any
x € M consider the closed sets

P(x)={yeN:(x,y)eP} =N for k=12

Since P, (x) U P,(x) = N, one of the sets P, (x) or P,(x) coincides with N. Now
consider the closed sets M, = {x € M:(x,y) € P, for any y € N} ¢ M, where
k = 1, 2. By the previons results M = M, U M,. Hence, M coincides either
with M, or with M,. If M = M,, then M x N = P,, therefore M x N = P,
or P;.

Let {f,,f;,...} be a basis of K[M]. The homomorphism w: K[M]®
K[N] - K[M x N] defined by nM and nN assigns to u =Y,/ ®g; (g; €
K[N7]) the function h(x,y) = Y ; fi(x) (x € M,y € N). Therefore g;(y) = 0
for any i and y € N, but then u = 0 ThlS proves the injectivity of w. Its
surjectivity is clear. The second statement of the problem follows from the
first one.

For any f € A[X] put f° for a polynomial of K[X] which is obtained from
f by applying the homomorphism ¢ coefficient-wise. Let b = g(u) and « € K
be any number which is not a root of g®. Define the homomorphism  setting
Y(f(w)) = f°(a). In this case g® # 0 is the only restriction on ¢. This condition
is verified if we take for a any nonzero coefficient of g.

Let p e A[X] be the minimal polynomial of u. Denote by a, the highest
degree coefficient of p. If g e A[X] is such that q(u) 0, then g is divis-
ible by p in QA[X] and there exists k such that a¥q is divisible by p in
A[X]

Therefore, if p(a,) # 0 and « € K is a root of p®, then the homomorphism
¥: B — K that coincides with ¢ on A is well-defined by the formula y/(f(u)) =
S (@

Now let us make (b) # 0. By Problem 18 b is algebraic over 4. Let

h € A[X] be a nonzero polynomial such that h(b) = 0. We may assume that
the constant term a, of h is nonzero (otherwise we divide h by X). If ¢(b) = B,
then h®(B) = 0. Let @(a,) # 0. Then B is a root of a polynomial with a
nonzero constant term and therefore f # 0. Thus we may put a = a,a,.
The induction in the number of generators of the algebra B over A reduces
the proof to the cases considered in Problems 19 and 20.
The induction in the number of generators of the algebra B over 4 enables
us to reduce the proof to the case B = A[u]. In this case we are under the
conditions of Problems 19 or 20. Let a € A be a nonzero element constructed
while solving the corresponding problem. By Corollary of Theorem 3 there
is a homomorphism ¢: A — K that does not annihilate a. The solutions of
Problems 19 and 20 show that the homomorphism ¢ uniquely extends to a
homomorphism y: B— K only when u is algebraic over A and p® has a
unique root, i.e. p® = ¢(X — a)*, where c € K and ¢ # 0.
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Let us show that if m = degp > 1, then ¢ can be chosen so that the
polynomial p is not of this form. Since p is irreducible over QA4, then, in
particular, p is not proportional to any power of a linear binomial. Let

p=po+p X+ +p,X", where peA, p,#0.

There exists i < m — 2 such that p; # pp(")(Pm_r/Mpm)™ ", i.e. m™ '~ "1p, #
("pm=i, otherwise p = p,(X + (P—1/mpn))" If we require an extra condi-
tion: @(m™ ‘pm~ " "'p; — (T)pmzt) # 0, then p® also is not proportional to any
degree of a linear binomial. '

Thus, deg p = 1. But this means exactly that u € QA4 and hence B = QA.
First show that the kernel of p coincides with the intersection of the kernels
of all the homomorphisms 4 — K. Further, apply Theorem 5 and Corollary
of Theorem 3.

Consider an embedding M — A" and apply Theorem 7 to the preimage of
the ideal I with respect to the restriction homomorphism K[X,,..., X,] =
K[M]andto f = 1.

The proof reduces to the case g = 2. In this case Problem 25 implies that
I, (M,) + I,4,(M,) = K[M]. This means that the considered map is surjective.
Its injectivity is obvious.

Let M = M, u---uU M, be the decomposition of M into irreducible com-
ponents. By Problem 11 the set of zero divisors of K[M] is the union of the
ideals Iy, (M;), s = 1, ..., q. Since I, contains at least one nondivisor of zero,
then I, N I4(M;) is a proper subspace of I, for any s. If all the nondivisors of
zero contained in I, had belonged to some of its proper subspaces, then I,
would have been a union of a finite number of proper subspaces which is
impossible.

Let f be such a function. The conditions of the problem imply that the variety
of zeros of I, is empty. By Problem 25 this implies that I; 31, ie. f is
presentable in the form f = g/1, where g € K[ M], as required.

Is solved like Problem 28 but with the help of the Hilbert’s Nullstellensatz
itself.

Passing to an appropriate dense principal open subset reduce to the case
when M’ n M" = & and use Problem 26.

Passing to an appropriate dense principal open subset reduce to the case
when irreducible components of M do no intersect and use Problem 26.
Let N be embedded in the affine space A™ with coordinates Y;, ..., Y.
Then the required map is of the form x — (f(x),..., f,.(x)), where f; = o(y,),
yi = Yily.

§ 2. Projective and Quasiprojective Varieties

1°. Graded Algebras. Before we start to define projective varieties recall certain

elementary facts on graded vector spaces and algebras.
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A vector space V is graded if there are distinguished subspaces V, (k € Z) in it
called grading subspaces such that V = @), V;. The nonzero elements of V, are
then called homogeneous elements of degree k. By definition any nonzero element
is uniquely presentable as the sum of homogeneous elements called its homo-
geneous components. A subspace U < V is called homogeneous if together with
each of its elements it contains all its homogeneous components. This is equi-
valent to the fact that U = @), Uy, where U, = V,. If U is a homogeneous sub-
space then the quotient space V/U inherits the grading such that (V/U), = V,/Uj.

A grading is called nonnegative if V, = 0 for k < 0. In this chapter we will only
consider nonnegative gradings.

An algebra A is called graded if it is graded by subspaces A4, (k € Z) as a vector
space and A, 4, < Ay, for any k, [ e Z. If I is a homogeneous ideal of a graded
algebra A then A/I is also a graded algebra.

A polynomial algebra possesses a standard nonnegative grading: the homo-
geneous elements of degree k are just the forms (homogeneous polynomials) of
degree k. Notice, that in this case all the grading subspaces are finite dimensional
(though the algebra itself is infinite dimensional).

Problem 1. The radical of a graded algebra is a homogeneous ideal.

Problem 2. If there are no homogeneous zero divisors in a graded algebra A
i.e. pqg = 0 for p € A, q € A, implies either p = 0 or g = 0, then there are no zero
divisors in A4 at all.

2°. Embedded Projective Algebraic Varieties. Let P" be an n-dimensional
projective space over K and U,, U,, ..., U, homogeneous coordinates in P". Since
homogeneous coordinates of a point are only defined up to a simultaneous multi-
plication by a nonzero element of K, it is impossible to speak about the value of
a polynomial p € K[U,, U,,...,U,] at a point x € P". But if p is a form (i.e. a
homogeneous polynomial) the equality p(x) = 0 is meaningful. If p and q are
forms of the same degree and g(x) # 0, then the ratio p(x)/q(x) is well defined.

An algebraic variety in P" or an embedded projective algebraic variety is a
subset in P" singled out by the system of equations

p(Uo, Uy,...,U,) =0(peS) (1)

where S is a set of forms. The variety defined by system (1) will be denoted by
MP(S).

Problems 3. Any homogeneous ideal of K[U,, U,,...,U,] possesses a finite
system of homogeneous generators.

Let M be an algebraic variety in P". Consider a subspace of K[U,, U,,...,U,]
generated by all forms that vanish on M. This subspace is a homogeneous ideal.
Denote it by I”"(M). If S is a system of its homogeneous generators, then
M = MP"(S). Therefore Problem 3 implies that any algebraic variety in P" can
be defined by a finite number of homogeneous equations.
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Call the algebraic varieties in P" its closed subsets. This introduces a topology
in P" (cf. Problem 1.6) called the Zariski topoiogy.

Problem 4. The space P" endowed with the Zariski topology is an irreducible
noetherian topological space (see 1.3).

Now define rational functions on an algebraic variety M < P". Consider the
algebra

K[M]P" = K[U,,U,,..., U, J/I"(M).

Since IP"(M) is a homogeneous ideal, K[ M]"" inherits the grading of K[U,, Uy,
.U

Unlike in the affine case, the elements of K[M]®" cannot be considered as
functions on M. However, if p e K[M] is a homogeneous element then the
identity p(x) = 0 makes sense for x € M; if p, g € K[M]® are homogeneous
elements of the same degree and g(x) # 0, then the ratio p(x)/q(x) makes sense.

Problem 5. M is irreducible if and only if K[M]®" has no zero divisors. More
precisely, the homogeneous zero divisors of K[ M]®" are its homogeneous cle-

ments which vanish on an irreducible component of M.

In QK[ M]P", consider the subalgebra generated by the ratios of the form p/q,
where p, ¢ are homogeneous elements of the same degree (and g is not a zero
divisor). This subalgebra is denoted by K (M) and is called the algebra of rational
functions on M. Problem 5 shows that if M is irreducible then K(M) is a field.

The elements of K (M) are called rational functions on M. A function f € K(M)
is. considered defined at x € M if it is presentable in the form p/q, where p,
q € K[M]P" are homogeneous elements of the same degree and g(x) # 0. In this
case the ratio p(x)/q(x) € K (independent of the choice of such a presentation) is
called the value of f at x and is denoted by f(x). As in the affine case, the properties
(R1)-(R4) of 1.8 hold.

Let f be a rational function on M. The denominators of all possible representa-
tions of f'in the form of a ratio of two homogeneous elements (of the same degree)
of K[M]P" are exactly the homogeneous nondivisors of zero contained in the
homogeneous ideal

I, = {he K[MJ"": fhe K[M]"}.

Problem 6. The domain D, of f is the complement of the set of zeros of I, i.e.
of the set of points where all homogeneous elements of I, vanish.

The following theorem demonstrates the crucial difference between projective
varieties and affine ones.

Theorem 1. Ler M < P" be an irreducible algebraic variety. Any rational func-
tion f € K(M) defined at all points of M is a constant, i.e. belongs to K.

Proof. Consider the affine space A"*! with coordinates U,, Uy, ..., U,. Let I
be the pre-image of I, with respect to the canonical homomorphism
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n: K[U,, Uy,...,U,] > K[M]F".

The absence of zeros of I, on M means that the unique zero of I on A"*! is the
origin. Applying Hilbert’s Nullstellensatz to the ideal I <« K[U,, U,,..,U,] and
the coordinate functions U,, Uy, ..., U, we see that I contains some powers of all
coordinate functions and therefore contains all homogeneous polynomials of a
sufficiently high degree. Therefore I, contains all homogeneous elements of
K[M7]P" of a sufficiently high degree.

Let V be one of the grading subspaces of K[ M]*" belonging entirely to I,. The
map h— fh(h e V)is a linear transformation. Consider an eigenvector hy of this
transformation. We have fh, = ch, (c € k) and since h,, is not a zero divisor (M
is irreducible!), we have f = c, as required.

Developing the arguments contained in the first part of this proof we may
assign to every algebraic variety M = P" an algebraic variety M < A™*! “the
cone over M7, defined by the same equations as M (but in which U,, U4, ..., U,
are considered as coordinates in A"*!). Then K[ M7 is identified with K[M]
and K (M) with a subfield of K(M). Problems 6 and 1.27 imply that the domain

12 W oY =

of f € K(M) on M is a cone (perhaps without the vertex) over its domain on M.
Problems 5 and 1.11 show that the irreducible components of M are cones over
the irreducible components of M.

Problem 7. The subfield K(M) = K(M) consists of all functions invariant with
respect to homotheties, i.e. constant on generatrices of M.

The described trick enables one to apply the affine theory to the study of
projective varieties. In particular, it enables one to derive from Problems 1.30-1.32
their projective analogues.

Namely, let M < P" be an algebraic variety, M’ the union of some of its
irreducible components and M” the union of the remaining components. In
exactly the same way as in the affine case the restriction homomorphism K(M) -
K(M') is defined.

Problem 8. If a function f is defined at x € M’ then so is f|,, and f|,.(x) =
f(x).

Problem 9. If a function f},, is defined at x e M'\M" then so is f.

Problem 10. Let M = M, U -+ U M, be a decomposition of M into irreducible
components. Then the homomorphism

K(M)— K(M;) x -+ x K(Mp),  f=>(flm,>--->Sm,)

is an isomorphism.

3°. Sheaves of Functions. To consider affine and projective algebraic varieties
from a unified point of view and to be able to define abstract projective and more
general algebraic varieties introduce the notion of a topological space with a
sheaf of functions or, briefly, of sheafed space.
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One says that on a topological space M the sheaf ¢ of functions (or, more
precisely, of algebras of functions) is defined if for any open subset U = M a
subalgebra O(U) is distinguished in the algebra of all continuous functions on U
with values in K so that

(S1) if ¥ = U and f € O(U) then f|, € O(V)

(S2) if U =J, U, and f is a function on U such that f|y, € O(U,) for all «
then f € O(U).

When needed we will write 0, instead if .

A continuous map f: M — N of sheafed spaces is a morphism if f*Oy(V) <
Op(f 1 (V) for any open subset V < N. Clearly, the composition of morphisms
is a morphism.

A subspace N of a sheafed space M is canonically endowed with a sheaf of
functions. Namely, a functon f on an open subset ¥ on M is assumed to belong
to Oy(V) if there exist open subsets U, of M and functions f, € 0,(U,) such that
V=Nn(J,U,) and fly~y, = falnr, for all a.

Problem 11. This structure on N satisfies the axioms of the sheaf of functions.

The sheaf € is called the restriction of 0, onto N. Its definition implies that

the identity embedding N = M is a morphism. If N is open in M then Oy(V) =
Uy (V) for any open V = N.

Problem 12. The restriction of sheaves of functions is a transitive operation
meaning that if P = N = M then the sheaf of functions on P obtained by
consequtive restrictions of ¢, first onto N and then onto P coincides with the
sheaf obtained by directly restricting ¢,, onto P.

Let M and N be two sheafed spaces.
Problem 13.If f: M — N is a morphism and f(M) = N, = N then f: M — N,
is a morphism.

Problem 14. Let M = | J, U, be an open covering. If a map f: M — N is such
that its restriction onto any subset U, is a morphism (into N) then f is a
morphism.

Now suppose M is irreducible (see 1.3). Any morphism of a nonempty open
subset U = M into N will be called a partial morphism of M into N. Two partial
morphisms are called equivalent if they coincide on the common domain.

Problem 15. The above is an equivalence relation on partial morphisms.

Problem 16. An equivalence class of partial morphisms contains a (unique)
morphism whose domain contains the domains of all partial morphisms of the
given class.

A partial morphism satisfying the conditions of this problem is called a rational
map of M into N. Clearly, an everywhere defined rational map is a morphism.

A rational map f: M — N is called dominant if f(M) = N. (In this case N is
also irreducible).

The product of a dominant rational map f: M — N and a rational map
g: N - Pisarational map gf: M — P equivalent to any partial morphism of the
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form go fo, Where f, and g, are partial morphisms equivalent to f and g respec-
tively and the image of f is contained in the domain of g,. It is easy to see that
such pairs (fy,go) exist and if f is defined at x € M and g is defined at f(x)e N
then ¢gf is defined at x and (gf)(x) = g(f(x)); however gf may also be defined at
points which do not satisfy these conditions.

4°. Sheaves of Algebras of Rational Functions. Let M be an embedded affine
or projective algebraic variety. In both cases the notion of a rational function is
defined. For any open subset U = M denote by ¢(U) the algebra of functions on
U defined by restrictions onto U of rational functions whose domains contain
U. (If U is dense in M then O(U) is identified with a subalgebra of K(M).)

Problem 17. This structure @ on M is a sheaf of functions.

This sheaf is called the sheaf of (algebras of ) rational functions.

Problem 18. The sheaf @ on M coincides with the restriction onto M of the
sheaf of rational functions on the hosting affine or projective space.

The open subset in P" defined by U, # 0 can be identified with A" and the

ubset efined by 0 can be ide

functions X; = U;/U, (i = 1,...,n) form a coordinate system in this A". Therefore

Problem 19. The sheaf of rational functions on A" coincides with the restriction
of the sheaf of rational functions on P".

Problem 20. Let M, (h € K[M]) be a principal open subset of an affine variety
M. The sheaf of rational functions on M, as on an affine variety (see 1.8°)
coincides with the restriction of the sheaf of rational functions on M.

Problem 21. The morphisms of affine varieties are the same as their morphisms
as of sheafed spaces.

This means that affine varieties can be considered as special objects in the
category of sheafed spaces. Namely an (abstract) affine algebraic variety is a
sheafed space isomorphic to a closed subset of an affine space.

Problem 22. The rational maps of irreducible affine varieties (see 1.9°) are the
same as their rational maps as of sheafed spaces (see 3°).

Similarly, an (abstract) projective algebraic variety is defined as a sheafed space
isomorphic to a closed subset of a projective space. The morphisms of projective
varieties are by definition the morphisms of sheafed spaces.

5°. Quasiprojective Varieties. A quasiprojective algebratic variety (or simply a
quasiprojective variety) is a sheafed space isomorphic to an open subset of a
projective variety or, which is the same, a locally closed subset of a projective
space.

Affine and projective algebraic varieties are particular cases of quasiprojective
ones. These cases exclude each other. More precisely, if an irreducible quasipro-
jective variety M is simultaneously affine and projective then it consists of one



80 Chapter 2. Algebraic Varieties

point. Indeed, if M is affine then O(M) = K[M], and if M is projective then
(M) = K (Theorem 1). Therefore if it is both affine and projective then K[M] =
K, but for an affine variety this means that it consists of one point.

A locally closed subset of a quasiprojective variety M (endowed with the
induced topology and a sheaf of functions which is the restriction of the sheaf
C,y) is called a subvariety of M. Clearly, it is also a quasiprojective variety; any
closed subvariety of an affine (resp. projective) variety is affine (resp. projective).

By definition any quasiprojective variety M can be embedded as an open
subvariety into a projective variety P. Assuming that M is dense in P (we can
always do this without loss of generality) set K(M) = K(P) and consider each
element of K(M) as a function on M which is the restriction of the corresponding
rational function on P. The functions on M obtained in this way will also be
called rational ones. They are characterized in inner terms as the functions from
¢\, whose domains cannot be extended.

On the other hand, 0,, is completely defined by the algebra of rational
functions on M since for any open subset U = M the functions from 0,,(U) are
nothing but the restrictions of rational functions.

Clearly, if My = M is a dense open subvariety then there exists a natural
isomorphism of algebras K(M) and K(M,) which to any rational function on M
assigns its restriction onto M.

The following problems show that quasiprojective varieties can be in a
sense approximated by affine ones and their morphisms by morphisms of affine
varieties.

Problem 23. For any finite set of points of a quasiprojective variety there exists
a dense open affine subvariety containing it.

Problem 24. For any morphism f: M — N of quasiprojective varieties there
exist dense open affine subvarieties M, = M and N, = N such that f(M,) = N,
(and then the map f: M, — N, is automatically a morphism, cf. Problem 13).
Moreover, we may require that M, and N, contain any prescribed finite sets of
points of M and N respectively.

Due to this, Theorems 1.5 and 1.8 are obviously generalized to any quasipro-
jective varieties. Let us formulate theorems thus obtained.

Theorem 2. Let f: M — N be a dominant morphism of irreducible quasiprojective
varieties. Then f(M) is an épais subset of N.

Theorem 3. Let char K = 0, let M, N, P be irreducible quasiprojective varieties,
and let f: M — N. h: M —» P be dominant morphisms. If f(x') = f(x") implies
h(x") = h(x") for any x', x" € M then there exists a (dominant) rational map
g: N — P such that h = ¢f.

Clearly, a complex quasiprojective variety is projective if and only if it is

compact in a real topology.

6°. The Direct Product. The direct product M x N of affine varieties M and
N defined in 1.4° is their set-theoretic direct product endowed with an affine
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variety structure. Let us characterize this structure in terms meaningful for any
quasiprojective varieties.

Problem 25: The projections of the direct product M x N onto M and N are
morphisms. For any affine variety P and morphisms f: P - M and g: P — N the
map

Po>MxN, z—(f(2),9(2))
is a morphism.

Taking this as a guide, give the following axiomatic definition of the direct
product of quasiprojective varieties M, ..., M,: it is their set-theoretical direct
product M, x - x M, endowed with a quasiprojective variety structure so that

(P1) the projections p;: My x --- x M, —» M; (i = 1,..., k) are morphisms;

(P2) for any quasiprojective variety P and any morphisms f;: P —» M, (i = 1,
..., k) the map

PoM; x:xM, z—(fi(2),...,[i(2)

is a morphism.

Problem 26. On M, x --- x M, there exists no more than one quasiprojective
variety structure satisfying these axioms.

(The existence of such a structure, however, is not clear from the definition.)

Thanks to Problem 14 and the existence of an open covering of any quasipro-
jective variety by affine subvarieties (Problem 23) one may confine oneself in the
above definition to affine varieties P. Therefore the direct product of affine
varieties in the sense of 1.4 is also their direct product in the sense of the new
definition.

The direct product topology of quasiprojective varieties should not coincide
with the topology of the direct product of topological spaces and in nontrivial
cases never coincides with the latter (see 1.3). However, the following problem
shows that in any case the direct product topology is not weaker than the latter
one.

Problem 27. Let M, x --- x M, be the direct product of quasiprojective va-
rieties My, ..., M,and N; € M; (i = 1,..., k) be locally closed (resp. open, closed)
subsets. Then N; x --- N, is a locally closed (resp. open, closed) subset of M, x
-+ M,. Endowed with a quasiprojective variety structure as a subvariety of
M, x -+ x M, it is the direct product of varieties N, ..., N,.

Now, let us consider the question of the existence of the direct product.

Theorem 4. For any quasiprojective varieties M, ..., M, there exists their direct
product M, x -+ x M, and if My, ..., M, are affine (resp. projective) varieties
thensois My x -+ x M,. The direct product of irreducible varieties is an irreducible
variety.

The following problem enables us to reduce the proof to the case of two factors.
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Problem 28. Let M, x -+ x M,_, = N be the direct product of quasiprojective
varieties M,, ..., M,_,, and N x M, be the direct product of N and M,. Then
N x M, naturally identified with M, x --+ x M, is the direct product of M, ...,
M,.

Furthermore, since any quasiprojective variety is by definition a subvariety of
a projective space, Problem 27 shows that it suffices to prove the existence of the

direct nroduct of proiective snaces. For this let us make use of the fol]gwrnu
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criterion.

Problem 29. Let M = | J, M, and N = | J; N; be open coverings of quasipro-
jective varieties M and N and let a quasiprojective variety structure on M x N
be introduced so that the subvariety M, x Ny = M x N is the direct product of
varieties M, and N, for any «, . Then M x N is the direct product of M and N.

Now let P" and P™ be the projective spaces with homogeneous coordinates
U (i=0,1,...,n) and V] (j = 0,1,...,m) respectively. Consider the projective
space P""™"*™ with homogeneous coordinates W,; (i = 0,1,...,n;j = 0,1,...,m)
and the map

}7: pn X Pm_) an+n+m

defined by the formulas W; = U, V.
Problem 30. The map 7 is one-to-one. Its image is closed in P""*"*m,

Identifying P"” x P™ with its image under n we introduce on it a projective
variety structure.
Let us identify the open subsets of P”, P™ and P™*"*™ distinguished by the
inequalities
U, #0, Vo # 0, Woo # 0, (2)

respectively, with the affine spaces A", A™ and A" *"*™ (see 4°). We have
H(An % Am) c Anm+n+m.

Problem 31. The map 7 induces the isomorphism of A" x A™ = A"*™ onto a
closed subvariety of A™m*"*m,

This means that the projective variety structure introduced on P" x P™ in-
duces a direct product structure on A" x A™. Since instead of Uy, V, and Wy,
in (2) we might have taken U,, V; and W, with any i, j, then the conditions of
Problem 29 are satisfied, hence IP" x pm is actually the direct product of P" and
P

We have therefore simultaneously proved the first statement of the theorem
and the fact that the direct product of projective varieties is a projective variety.
The fact that the direct product of affine varieties is an affine variety had actually
already been proved in § 1. The irreducibility of the direct product of irreducible
varieties is proved as in the affine case (Problem 1.14).
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It is useful to describe the topology of P" x P™ in the inner terms.

Problem 32. A subset F = P" x P™is closed if and only if it can be defined by
a system of equations of the form

pUo, Uy,..., U Vo, V1., V) = 0,

where p is a polynomial homogeneous separately in U,, U,, ..., U, and in V,,
Vieoos Vi

7°. Flag Varieties. Let V' be an n-dimensional vector space.

A flag in V is a set {V,,...,V,} of its subspaces such that dim ¥, = k and
Vic Vigr(k=1,...,n—1).

In this subsection we aim to introduce a natural structure of a projective
algebraic variety on the set of flags. This variety is called the flag variety and
plays an important role in the theory of algebraic groups.

Let A(V) = @0 A*(V) be the exterior (Grassmann) algebra of V (see [50, 52]).
The elements of A*(V) are called k-vectors. There is a canonical isomorphism 6
between the space A*V and the space of the k-th degree skewsymmetric tensors,
defined by the formula

0(x1 A A X)) = Z(_l)parityofaxam@...@xam,

where ¢ runs through all permutations.

A nonzero k-vector is called simple (or decomposable) if it can be presented in
the form x; A --* A X, where x; € V. The above isomorphism defines a coordi-
nate system in A*V in which coordinates of a simple k-vector x; A -* A x, are
the k-th order minors of the matrix formed by the coordinates of vectors x,, ...,
x, 1n a fixed basis of V. These are the Pliicker coordinates.

Problem 33. Suppose u = x; A -** A X, is a simple k-vector. The subspace
V(u) = V spanned by the vectors x,, ..., x, is uniquely recovered from u as
follows:

Vw={xeV:iunx=0} (3)

Clearly, a simple k-vector u is defined by the subspace V(u) up to a factor.
Thus, there is a one-to-one correspondence between the k-dimensional subspaces
of ¥ and the one-dimensional subspaces of A*V consisting of simple k-vectors.

Problem 34. If a nonzero k-vector u is not simple then dim V(u) < k, where
V(u) = V is constructed in (3).

Let P(U) be the projective space associated with the vector space U. (The
points of P(U) are the one-dimensional subspaces of U). In accordance with the
above, the set of all k-dimensional subspaces of V is identified with some subset
Gr,(V) = P(A*V) called the Grassmann variety.
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Problem 35. Gr, (V) is closed in P(A*V).

Let us prove that the Grassmann variety is irreducible. Let E(V) be the set of
all frames of V. There is a surjective map

g: E(V) - Gr(V),

which to each basis assigns the subspace spanned by the first k of its ele-
ments. The set E(V) is endowed with the structure of an irreducible affine
variety as a principal open subset of the irreducible affine variety V' x ==+ x V
(n factors).

Problem 36. The map g, is a morphism of E(V) into P(A*V).

Since the image of an irreducible topological space under a continuous mapping
is irreducible, the above implies that Gr, (V) is irreducible.

Let 1 < k < I < n. Consider the subset Gr, ,(V) = Gr, (V) x Gr,(V) consisting
of pairs (W, U) of subspaces, such that dim W =k, dimU =iand W < U.

Problem 37. The subspace Gr, (V) is closed in Gr, (V) x Gr,(V).

The set F(V) of all flags of V is a subset in the direct product Gr, (V) x --* x
Gr, (V).

Problem 38. The set F(V) is closed in Gr,(V) x -+ x Gr, (V).

Problem 39. The set F(V) is irreducible.

Thus, the set F(V) is an irreducible closed subset of the projective variety
Gr,(V) x --* x Gr,(V) and due to this fact it is endowed with an irreducible
projective variety structure. This variety is called the flag variety of V.

Exercises

1) The projective variety M?"(S) defined by (1) is empty if and only if there exists
k such that the ideal of K[U,, U,,..., U,] generated by S contains all the
forms of degree k (therefore all forms of greater degrees as well).

2) LetS = {p,,p,,...} be the set of forms of degrees k,, k,, ... respectively. For
given k,, k,, ... the necessary and sufficient conditions for M?'(S) to be
nonempty can be expressed in the form of a system of algebraic relations in
the coefficients of forms p,, p,, ... each of relations being homogeneous in
the coefficients of each form. (Each relation contains coefficients of only a
finite number of forms.)

3) Let M = P"beanirreducible algebraic variety. An ordered set(pgy, Py, .-, Pm)
of homogeneous elements of equal degree from K[M]” is admissible if
it contains at least one nonzero element. Admissible sets (pg, Py, ---»Pm) and
(90+915--->9m) are equivalent if p;q; = p;q; for all i, j.

This equivalence relation is well-defined.

4) Each equivalence class of admissible sets defines a map (perhaps not every-
where defined) f: M — P™ according to the following rule: f is defined at
x € M if the given class contains a set (py,p;,---,Pm) such that p,(x) # O for
some i and in this case
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Jx) = (po(x):p1(x):...:pp(x))-

This is a rational map (in the sense of 3°).
5) Any rational map f: M — P™is defined in the above sense by an equivalence
class of admissible sets.
6) Any rational map f: P' — P™is a morphism, i.e. is defined everywhere.
7) Find the image of the morphism P! — P™ defined by the set (Ug, Ug Uy, ...,
um).
8) Find the domain and the range of the rational map f: P? — P? defined by
(U,U,,U,U,, UyU,)). Prove that f2 = id
9) Let M = P2 be the conic defined by U2 — U2 — U2 = 0and f: M — P! the
rational map (stereographic projection) defined by the set (uy — uy,u,),
where ug, u,, u, are the images of U,, U,, U, under the canonical homo-
morphism K[U,,U,,U,] - K[M]". Prove that f is an isomorphism.
10) The image of any morphism of a projective variety into a quasiprojective
variety is closed. (Hint: make use of Exercises 5 and 2.)
11) Let M = M(S) be an algebraic variety in A" defined by the system of
equations (1.1) and M an algebraic variety in P" defined by the system

U
Udcg S _ny
f<U0 UO) 0

The closure M of M in P" coincides with the union of irreducible components
of M which are not entirely contained in the hyperplane Uy, =0.

12) In the notation of Exercise 11, if S = {X,,X? + X,} then M # M.

13) In any quasiprojective variety the open affine subvarieties constitute a basis
of its topology.

Hints to Problems

1, 2. Consider the highest components of nilpotent elements and of zero divisors
respectively.

3. Deduce from Hilbert’s theorem on the basis of an ideal.

5. Is proved similarly to Problem 1.11.

6. Let M = M, u--U M, be a decomposition of M into irreducible com-
ponents and I (s = 1,...,q) the ideal of K[ M]"" generated by the homo-
geneous elements that vanish on M,. Since I, contains homogeneous non-
divisors of zero, then there exists a homogeneous element g € I, which does
not belong to any of the I;. Let x € M be a point which does not belong to
the set of zeros of I; and r € I, a homogeneous element such that r(x) # 0.
Replacing q and r by their appropriate powers we may achieve that degg =
degr. An appropriate linear combination of g and r is then a nondivisor of
zero contained in I, and does not vanish at x. Therefore x € Df

7. If f € K[M] is invariant with respect to homotheties then so is the ideal I,
of K[M] = K[M],i.e. I, is homogeneous. We must prove that it contains
homogeneous nondivisors of zero. Since it contains some nondivisors of
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zero, then in the notation of the solution of Problem 6 I, & I for any s.
Therefore, for any s there exists a homogeneous element g, € I, such that
q, ¢ I.. We may assume (see the solution of Problem 6) that the degrees of
all these elements are equal. Then their appropriate linear combination is
the required homogeneous nondivisor of zero.

Make use of Problem 7.

To verify axiom (S2) in the affine case make use of Problem 1.31 and 1.32
and in the projective case make use of Problems 9 and 10.

Due to axiom (S2), it suffices to prove the statement for an irreducible M.
Let a given quasiprojective variety M be embedded as a subvariety into P".
By an appropriate projective transformation we can achieve that none of
the given points and none of the irreducible components of M belong to
the hyperplane U, = 0. Then M n A" is a dense open subset of M containing
all the given points. Furthermore in the affine variety M n A" there exists a
principal open subset contained in M n A" and containing all the given
points. This is the desired subvariety of M.

First, choose a subvariety N, = N which contains at least one point of the
image of every irreducible component of M.

This is a geometric reformulation of the properties of the tensor product of
algebras (see 1.4).

Make use of Problem 13.

For any morphisms f: P - M and g: P — N consider their restrictions onto
Py = f71(M,) ng~*(N,) and make use of Problem 14.

If we arrange the homogeneous coordinates of a point of P™*"*™ into an
(n + 1) x (m + 1)-matrix then the image of # consists of the points whose
matrix of coordinates is of rank 1 and is determined by the conditions that
the second order minors of this matrix vanish.

Follows from the fact that among the coordinates of the point

’7((X1,...,X,,),(Yl,..., Ym))e Anm-ﬂm—m

some are equal to X,,..., X,, Y,, ..., Y,, and the remaining ones are their
products.

Let the subset F be defined by equations of the form mentioned in the
conditions of the problem. Suppose one of these equations is of the form
p = 0, where p is a quasihomogeneous polynomial of degree k in U,, U,,
..., U,and of degree l in V, Vy, ..., V,,. If, say, k > [ then multiplying p = 0
by all monomials of degree k — I in V,, V;, ..., V,, we obtain a system
of equations equivalent to the initial equation and consisting of equations
of homogeneity degree k in each group of coordinates. Therefore, we may
require that each of equations that determine F have the same homogeneity
degree in both groups of coordinates. The equations of this form can be
presented as homogeneous equations in the products U, ¥, where i = 0, 1,
..,nand j=0, 1, ..., m, yielding the closedness of F. The converse is
obvious.
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34. Let (x;,...,x;) be a basis of the subspace V(u). Let us complete this basis
to a basis of the space V' by vectors X 4y, ..., X,. Letu = ¥ ; <..<i, Ui i Xi, A
- A x; . Therelationsu A x; =0fori=1,...,limply thaty; ; =O0Oifat
least one of 1, ..., lis not one of i, ..., i,. It follows that [ < kand if | = k
thenu =cx; A" A x,forceC.

35. Problems 33 and 34 imply that a k-vector x is simple if and only if the rank
of the linear map x+> u A x is not greater than n — k (and in this case it
equals n — k). The latter is equivalent to the vanishing of all minors of order
n — k + 1 of the matrix of this map.

36. The map g, is defined by the k-th order minors of the matrix constructed
from the coordinates (in a fixed basis) of the first k vectors of a basis.

37. Let u be a simple k-vector and v a simple l-vector. Problem 33 implies that
V(u) = V(v) if and only if the rank of the linear map

Vo ATV @ ALY, X (U A X0 A X)

is not greater than n — k (and in this case it automatically equals n — k).
38. Follows from Problem 37.
39. The proof follows the line of the proof of irreducibility of Gr,(V).

§ 3. Dimension and Analytic Properties of Algebraic Varieties

In this section “algebraic varieties” are understood as quasiprojective alge-
braic varieties (but other varieties will do if the reader knows what those concepts
mean). ‘

1°. Definition of the Dimension and its Main Properties. Let A be an algebra
without zero divisors. Elements u,, ..., u,, € A are called algebraically independent
(over K) if they do not satisfy any nontrivial algebraic relation with coefficients
in K. In such a case K[u,,...,u,] = K[X,,...,X,]. A maximal algebraically
independent system of elements is called a transcendence basis of A.

Problem 1. Algebraically independent elements u,, ..., u, € A form a trans-
cendence basis if and only if A is an algebraic extension of a subalgebra
Kluy,...,u,] (see 1.5).

Problem 2. Let A = K[u,,...,u,] and {u,,...,u,} be a maximal algebraically
independent subsystem of {u,,...,u,}. Then {u,,...,u,} is a transcendence basis
of A.

Problem 3. Any transcendence basis of A4 is a transcendence basis of Q 4.

Theorem 1. If A has a transcendence basis of m elements, then any n > m of its
elements are algebraically dependent.
Proof see e.g. in [52]. Another proof will be given in 2°.
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Corollary. All transcendence bases of A contain the same number of elements.

This number is called the transcendence degree of A and denoted tr.deg A. If 4
has no (finite) transcendence basis we set tr.deg A = 0.

Clearly, the transcendence degrees of a subalgebra and a quotient algebra do
not exceed the transcendence degree of the algebra. By Problem 3 tr.deg A =
tr.deg QA. Finally, tr.deg K[ X,,...,X,] =n.

The dimension of an irreducible algebraic variety M is dim M = tr. deg K(M).
The dimension of an arbitrary algebraic variety is the maximum of dimensions
of its irreducible components. Clearly, the dimension of a variety equals the
dimension of any of its dense open subvarieties and dim P" = dim A" = n.

Problem 4. If N is a subvariety of an algebraic variety M then dim N < dim M.

Problem 5. Under the conditions of Problem 4, if M is irreducible and N is
closed in M, then dim N = dim M implies N = M.

Theorem 2. Any non-descending chain N; € N, < --- of irreducible closed
subsets in an algebraic variety M is stable.

Problem 6. Prove Theorem 2.

2°, Derivations of the Algebra of Functions. Let ¢ be a homomorphism of an
algebra A without zero divisors into a field L containing K (and considered as a
K-algebra). A linear map 0: A — L is called a ¢-derivation of A into L if

d(ab) = d(a)p(b) + ¢(a)d(b), (1

for any a, b € A. It is easy to see that d(1) = 0. The set of all ¢-derivations of 4
into L is a vector space over L with respect to the natural operations:

(0, + 83)(a) = 0,(a) + 0,(a),
(40)(a) = 1d(a) for A e L.

2

This space will be denoted by D(4, L).

Problem 7. Let A = K[X,,...,X,]- Then for any 4,, ..., 4, € L there exists a
unique @-derivation é: 4 — L which transforms X; into 4;fori=1,...,n.

Clearly, under the conditions of Problem 7 dim D(4, L) = n.
Consider a particular case, when A = L and ¢ = id. In this case we will simply
speak about a derivation of 4 into L.

Problem 8. Any derivation d: A — L uniquely extends to a derivation Q4 — L.

Problem 9. Let B = L be a subalgebra finitely generated over A. If B is an
algebraic extension of A, then any derivation d: A — L uniquely extends to a
derivation B — L.

Problem 10. If 4 = L is a finitely generated algebra, then dim D(4,L) =
tr.deg A.
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Theorem 1 easily follows from Problem 10: take QA instead of L.
Thus, if M is an irreducible algebraic variety then

dim M = dim D(K (M), K (M)). 3)

Theorem 3. Let M < A" be an irreducible algebraic variety and {fi,...,f} a

system of generators of I(M). Let r be the rank of J = M (as of a
Xy, s X)) |m

matrix with entries in K(M)). Thendim M =n — r.

To prove the theorem first of all note that dim M = dim D(K[M], K(M)).
Further, K[M] = K[X,,...,X,]/I(M). Let = be a homomorphism of K[X|,...,
X,] into the field K(M) defined by the formula =(f) = f|,,. To any derivation
0: K[M] - K(M) assign a n-derivation d: K[X,,...,X,] » K(M) by the formula
of = on(f).

Problem 11. The map 0+ 4 is an isomorphism of the space D(K[M], K(M))
onto the space of n-derivations of K[X,,...,X,] into K(M) that vanish on
I(M).

Problem 12. Prove Theorem 3.

3°. Simple Points. Let M be an irreducible algebraic variety in A" and J a
matrix with entries from K[M] constructed as in Theorem 3. A point x € M is
simple, if rk J(x) = rk J.

This definition has, actually, an intrinsic sense. Moreover, for any point x € M
the number n — tk J(x) does not depend on an embedding of M into an affine
space. The proof of this fact is similar to that of Theorem 3. Consider the
homomorphism

¢ KIM] - K, [ f(x)

and denote by D, (K[M], K) the space of all ¢,-derivations of K[M] into the
field K. The elements of this space are the linear maps d: K[M] — K satisfying

0(f9) = of 9(x) + f(x)- 0g.

Problem 13. dim D (K[M],K) = n — rk J(x).

In particular, since rkJ(x) <rkJ =r, then dimD(K[M],K)=>n—r=
dim M, and the equality holds if and only if x is a simple point of M. This gives
an intrinsic characterization of simple points of irreducible affine varieites.

The notion of a simpie point may be extended to arbitrary algebraic varieties.
To do this let us give a local definition of a simple point of an irreducible affine
variety M that does not involve K[M].

For a point x € M define its local algebra O, as the algebra of all rational
functions on M defined at x.
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Problem 14. Any ¢,-derivation of K[M] into K uniquely extends to a ¢,-
derivation of O, into K.

Now, denote by D,(0,, K) the space of all ¢,-derivations of O, into K. Problems
13 and 14 imply that x is simple if and only if

dim D,(0,, K) = dim M. 4)

For an irreducible quasiprojective variety M the equality (4) is understood as
a definition of a simple point. The local algebra O, in this situation is defined
exactly as in the affine case, i.e. as the algebra of all rational functions on M
defined at x.

The set of all simple points of M is denoted by M.

Problem 15. Let N be an open subvariety of an irreducible algebraic variety
M. Then N™& = N n M",

Problem 16. The set M"™® is non-empty and open in M.

Finally, a point of a reducible algebraic variety M is simple if it is a simple
point of an irreducible component of M of the maximal dimension and is not
contained in any other irreducible component.

All points of an algebraic variety M which are not simple are called singular.
A variety M is called non-singular if it has no singular points. Clearly, it is so if
and only if all irreducible components of M are non-singular, have the same
dimension and have empty intersections.

Problem 16 and the definition of simple points of reducible varieties imply that
the set of singular points is always a closed subvariety whose dimension is strictly
less than that of the variety itself.

Problem 17. Any algebraic variety M is the union of a finite number of
nonintersecting nonsingular subvarieties.

4°. The Analytic Structure of Complex and Real Algebraic Varieties. The
dimension of a real affine variety M is the dimension of its complexification
M(C); a point x € M is simple if it is a simple point of M (C). Clearly, simple points
constitute a nonempty open subset of M. It is denoted by M.

Theorem 4. Let M be a d-dimensional irreducible algebraic variety in a complex
or real affine space A". Then M is a d-dimensional analytic subvariety of A".

In both cases the theorem is proved similarly. Let K stand for C in the first case
and for R in the second case. Let f}, ..., f,,€ K[X,,...,X,] be a system of
generators of I(M) and J a matrix with entries from K[M] constructed as in
Theorem 3.

Let xe M(K) be a simple point. We may assume that the minor 4 =

D(fl#?fr) : 0(f17""fm)
D(X,,..., x,) o the matrix 57—~
minors vanish identically on M.

is non-zero at x and all the bordering
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Problem 18. There exist g;, € K[X,,..., X,], wherei=1,...,mand k=1, ...,
r, such that

49 G

3% =, 5 0wy modIOD) (= Looooimij = 1)

Consider the algebraic variety M’ = A" defined by the equations fi(x) =0
wherei=1,...,r.

Problem 19. There exists a neighbourhood U of x in the real topology of A"
such that M’ " U is a d-dimensional analytic subvariety of A" and M N U =
M nU.

The theorem is proved. []

Notice that if K = R then M8 is at the same time a real analytic subvariety
of the complex analytic variety M™#(C) and any of its tangent spaces is a real
form of the tangent space of M™¢(C) at the same point.

Problem 20 (Corollary). Any d-dimensional algebraic variety M in a complex
or real affine space A" is the union of a finite number of nonintersecting analytic
subvarieties of A", the maximal of their dimensions being equal to d.

Theorem 4 proved enables us to introduce a natural analytic structure on an
arbitrary nonsingular complex algebraic variety.

Theorem 5. Any d-dimensional nonsingular complex algebraic variety possesses
a unique structure of a d-dimensional complex analytic variety such that

1) all rational functions are analytic in their domains;

2) inan appropriate neighbourhood of any point a system of analytic coordinates
may be chosen from the restrictions of rational functions.

Problem 21. The analytic structure on an embedded nonsingular affine com-
plex algebraic variety defined as on an analytic subvariety of an affine space
satisfies the conditions of Theorem 5.

Problem 22. Prove Theorem 5.

Problem 23. Any morphism of nonsingular complex algebraic varieties is an
analytic map.

Problem 24. The analytic structure of the direct product of nonsingular com-
plex algebraic varieties, coincides with the analytic structure of their direct
product as of analytic varieties.

5°, Realification of Complex Algebraic Varieties. A complex analytic variety
can be considered as a real analytic variety (of doubled dimension), and similarly
a complex algebraic variety can be considered as a real algebraic variety. We
confine ourselves to the construction of the realification functor for affine
varieties.
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First, let us agree to consider the n-dimensional complex affine space A"
also as the 2n-dimensional real affine space A*"(R) identifying (Z,...,Z,) € A"
with (X,,..., X,, Y;,..., ¥;) € A?"(R), where X, + iY, = Z,.

Now let M be an algebraic variety in A". Rewriting the equations which define
it in real coordinates, it is easy to see that it is an algebraic variety in A?*(R), too.
The variety M determined in this way will be called a realification of M and
denoted by M®.

Similarly, passing to real coordinates it is easy to see that any morphism of
embedded complex affine varieties is at the same time a morphism of the corre-
sponding real varieties. Therefore the realification makes sense independently of
an embedding.

Problem 25. dim M® = 2dim M.

Let us describe the polynomial algebra on M®. Let z,, ..., z, be the restrictions
onto M of coordinate functions on A”. By the definition R[M™] is generated by
the real and imaginary parts of these functions. Sometimes it is more convenient
to consider the algebra C[M®] = R[M®] ®C of “complex polynomials” on
MP® that contains functions z,, ..., z, themselves. The above implies that

CIMR)=Clzy,...,20Z1,---120] (5

Therefore, C[LM®] is generated by C[M] = C[z,,...,z,] and C[M] = C[z,,
e Zn)e

This shows, in particular, that closed subsets of M® are the subsets defined by
algebraic equations with respect to z,, ..., z, and Z,, ..., Z,. Considered as real
algebraic varieties, they are called (closed) real subvarieties of M.

A map f: M — N of complex affine varieties is an antiholomorphic morphism
if f*C[N] < C[M]. Clearly, antiholomorphic morphisms, as well as genuine
(holomorphic) morphisms, are morphisms of realified varieties.

Problem 26. Any antiholomorphic morphism is continuous in the complex
Zariski topology.

Problem 27. Let M be a real affine variety. Then there exists a unique antiholo-
morphic automorphism x— X (complex conjugation) of M(C) identical on M.
Moreover, we have

M ={xeM(C): X = x}

and X = x for any x € M(C).

In conclusion notice that (M x N)® = M® x N® for any complex affine va-
rieties M and N.

6°. Forms of Vector Spaces and Algebras. Let V be a vector space or algebra
(not necessarily commutative or associative) over an arbitrary field K and k a
subfield of K. One says that a k-subspace (resp. k-subalgebra) V, = V is a k-form
of the space (resp. algebra) V if the identity embedding V, = V extends to an
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isomorphism V, ®, K 3 V, i.e. a basis of V, over k is a basis of V over K. A
subspace U < V is defined over k (with respect to V,) if it is generated by vectors
of V. In this case U, = U NV, is a k-form of U and V, /U, is a k-form of V/U.

For instance k[X,,..., X,] is a k-form of K[X,,..., X,]. More generally, let
M = M,(K) be an affine variety over K obtained by a field extension from an
affine variety M, over k. Assuming M, embedded in the n-dimensional affine
space we deduce from Problem 1.14 that /(M) = KI(M,) and therefore k[M,] =
k[Xi,...,X,]/1(M,)is a k-form of K[M] = K[X,,..., X, ]/I(M).

A linear map ¢: U — V of vector spaces with distinguished k-forms U,, V; is
defined over k if ¢(U,) = V. Clearly, the kernel and the image of such a map
are defined over k.

If K is the Galois extension of k then it is convenient to describe the k-forms
in terms of the Galois group action. In particular, this is so in the only important
for us case K = C, k = R when the Galois group is generated by the complex
conjugation. We will only consider this case and instead of “R-form” we will say
“real form”.

A real form ¥, of a complex vector space (resp. algebra) V defines an involutive
antilinear automorphism t of this space (resp. algebra)—the complex conjugation
with respect to V,—so that V, = {v e V: 1(v) = v}.

Problem 28. Conversely, let = be an involutive antilinear automorphism of a
complex vector space (resp. algebra) V. Then the set V;, of the fixed points of 7 is
a real form of the space (resp. algebra) V.

Problem 29. A subspace U < V is defined over R if and only if 7(U) = U.

Problem 30. A linear map of complex vector spaces with fixed real forms is
defined over R if and only if it commutes with the complex conjugation.

7°. Real Forms of Complex Algebraic Varieties. A real form of a complex affine
variety M is its closed real subvariety M, such that the identity embedding
M, = M extends to an isomorphism

My(C) 3 M. (6)

Therefore the passage to a real form of an algebraic variety is an operation
inverse to the complexification. However, unlike the complexification and
the realification, this operation is not uniquely defined and does not always
exist.

The complex conjugation on M,(C) is transported onto M via (6). The involu-
tive antiholomorphic automorphism t of M obtained in this way is called the
complex conjugation (with respect to M,). Clearly M, = {x € M: t(x) = x}.

With certain reservations the converse statement, similar to Problem 28,
holds.

Theorem 6. Let © be an involutive antiholomorphic automorphism of an irre-
ducible complex affine variety M. If the set M, of its fixed points contains at least
one simple point then M, is a real form of M.
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Proof. For any f € C[M] set
[ x)=fz(x))  (xeM)

The map f+ f®is an involutive antilinear automorphism of C[M]. By Problem
28

C[M], = {feC[M]: " =1},

is a real form of C[M]. Let C[M], = R[x,, ..., x,] and let f, ...,
f.,e R[X,,...,X,] be generators of the ideal of relations between x,, ..., x,.
Suppose that M is embedded into the complex affine space A" so that x, ..., x,
are the coordinate functions. Then t is just a coordinate-wise complex conjuga-
tion and M, is the set of real points of M. The ideal I(M) is generated by the

a(fb'"}fm)

— 2| =r=n-—d, where
X1y Xo) M

polynomials f;, ..., f,,. By Theorem 3 rk

d = dim M.

Let x € M, be a simple point of M. Without loss of generality we may assume
D(fy,---» 1))
D(X4,...,X,)
U of x in a real topology of A" such that M n U is defined by the equations
fi(x)=0,i=1,...,r. On the other hand, if U is sufficiently small then the real
solutions of these equations in U constitute a d-dimensional real analytic sub-
variety. Therefore dim M, = dim M,(C) = d. Since M,(C) € M and M is irre-
ducible, M,(C) = M (Problem 5), as required. []

that # 0 at x. Then by Problem 19 there exists a neighbourhood

Exercises

1) Any (n — 1)-dimensional irreducible algebraic variety in A" (resp. in P") can
be defined by a single (resp. homogeneous) equation.

2) Any nontrivial (resp. homogeneous) equation defines in A" (resp. in P") a
variety of dimension n — 1.

3) The line X, = 1, X, = 0 in A3 cannot be singled out of the surface X7 +
X, X; =1 by a single equation.

4) Let f: M — N be a dominant morphism of irreducible algebraic varieties.
Then dim N < dim M.

5) If, under the conditions of Exercise 4, dim N = dim M then there exists a
nonempty open subset N, = N such that any point of N, has only a finite
number of preimages.

6) In Theorem 2 it is impossible not to require irreducibility of N,.

7) P" satisfies the ascending chain condition for irreducible quasiprojective
algebraic varieties (see 2.6).

8) If char K = 0 and an irreducible algebraic variety M < A" is singled out
by the equations fi(x) =0 for i=1, ..., m, then rkJ <n—dimM (see
Theorem 3). Give an example (one can do it even for n = m = 1) when
rkJ < n —dim M.
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The derivations 0/X; constitute a basis of the space D(K(X,,...,X,),
K(X,,...,X,)):

Let M = A? be defined by the equation X{ + X3 = 1. Find a basis of the
space D(K(M), K(M)).

Under the notation of the proof of Theorem 4 the variety M is an irreducible
component of the variety M'.

Under the notation of Theorem 4 let x be a simple point of M. For any
tangent vector & € T.(M™®) put , for the derivation along £. Then the map
¢+ 0, is an isomorphism of T,(M) onto D, (K[M], K), where K = C or R.
In Exercises 13—16 we assume char K = 0.

Let A and B be subalgebras of the field L that contains K, such that 4 = B
and Biis finitely generated over A. Then the restriction map D(B, L) —» D(4, L)
is an epimorphism.

Let f: x> (f1(x),..., fm(x)) be amorphism of an irreducible algebraic variety
M into A™. Further, iet {J,,...,0,} be a basis of the space D(K(M), K(M)).
Consider the matrix (d; f;) with entries from K(M). Suppose that rk(d; f;) = L.
Then dim f(M) = 1.

JUNA
Iff,..., f,e K(X4,...,X,) are such that —=—"—"-"" 3£ 0 then these func-
fi 5 (X, ) D(X,...X) # u

tions are algebraically independent.

Let M = A" be an irreducible algebraic variety and f € K(A"). If (3f/0X )|y =
Ofori=1,...,n,then f|,, = const.

The Poincaré series of a nonnegatively graded vector space V with finite
dimensional grading subspaces ¥, is the formal power series

Pi)= Y (dim V)t

k>0

Clearly, if U < V is a homogeneous subspace then

Py y(t) = Py(t) — Pyl(0).

If A is a graded algebra then a graded A-module is an A-module M graded
as a vector space so that 4, M, = M, ., for any k, | € Z.
Let A = K[U,,U,,...,U,] and M a finitely generated graded A-module.
Then Py, (t) = p(t)/(1 — t)***, where p is a polynomial with integer coefficients
and k < n.(Hint: prove by induction in n with the kernel of the multiplication
by u, considered as a graded K[U,, U,,..., U,_, ]-module).
Let p(t) = ) ;>0 a,t* be a formal power series with rational coefficients. It
may be presented in the form p(t) = p(¢)/(1 — t)**!, where p is a polynomial
and p(1) # 0, if and only if a, = f(k) for sufficiently large k, where f is a
polynomial of degree d.
Let M = P" be a d-dimensional algebraic variety and A = K[M]*". Then
p4(t) = p()/(1 — t)**!, where p is a polynomial with integer coefficients and
p(1) # 0.
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20) The same as in Exercise 19 but with K[ M]*" replaced by any graded algebra
of the form K[U,, Uy,...,U,]/I, where I is a homogeneous ideal whose set
of zeros is M.

21) Let M = P"be an irreducible algebraic variety and M, = {x € M: p(x) = 0},
where pe K[M]" is a nonzero homogeneous element. Then dim M, =
dimM — 1.

22) The dimension of an irreducible algebraic variety equals d if and only if the
maximum of the dimensions of its proper closed subvarieties equals d — 1.

23) Let M be an irreducible algebraic variety in a complex affine space and M
its complex conjugate. There is an isomorphism M®(C) 3 M x M which to
any x € M® assigns (x,X) e M x M.

24) Let M be an irreducible complex affine variety. Prove that (M®)8 = M,

Hints to Problems

N

. Apply Problem 1.18.

3. Let B < A be a subalgebra generated by a given transcendence basis. It
suffices to verify that if a € A, where a # 0, then a™' € QA is algebraic over
B. Let by + bya + -+ + b,a™ = 0, where b,e B and b, # 0. Then a™! =
—by'(by + bya + -+ + b,a™ 1), ie.a! € QB[a]. Next, apply Problem 1.14.

4. Reduce to the case when M and N are irreducible and M is an affine variety.
Next, make use of the fact that if M is an irreducible affine variety then
dimM = tr.deg K[M].

5. Reduce to the case when M is an affine variety. Then there is a homomor-

phism ¢: K[M] — K[N]. We must prove that its kernel is zero. Let

{fi,...,fi} be a transcendence basis of K[N] and ﬁ, vxhere i=1,...,k, are

elements of K[M] such that ¢(f;) = f;. Then {fi,..., f;} is a transcendence

basis of K[M]. Put 4 = K[f,,..., f,] and let f € Ker o, where f # 0. Then

fis algebraic over A4, i.e. there are ay, a,, ..., a,, € A, where a, # 0, such that
ag+a, f+ " +a,f™=0. Applying ¢ to this equality we get o(a,) =0
which is impossible because of algebraic independence of fi, ..., f;.

o

It suffices to put ¢(a/b) = (8(a)b — ad(b))/b>.

9. Reduce to the case B = A[u]. If f is a minimal polynomial of u over 4 then
S'(u) # 0 and du is determined from the linear equation f'(u)du + 1) =0,
where £ is the polynomial obtained from f by applying @ coefficient-wise.

10. Follows from Problems 7 and 9.
12. First prove that if d is a n-derivation of K[X|,...,X,] into K(M) which
carries X; into 4; then

in=- 3 1L

1}
1<ign 6Xi M

for any polynomial f € K[X,,..., X, ]

13. To each derivation de D (K[M],K) assign the derivation d =0 me
D.(K[X,,...,X,].K], where = is the restriction homomorphism onto M.
The map é— ¢ is an isomorphism of the space D (K[M], K) onto the space



14.
16.

17.
18.

19.

22.

25.

28.
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of ¢,-derivations of K[X,,...,X,] into K that vanish on I(M). "I:he dgriva-
tion 0 e D.(K[X,,...,X,],K) is defined by the numbers 4, = 0X; and it
vanishes on I(M) if and only if

af; .
;ijéz(X)—O for l-—l,...,m.

Hence, these derivations form the space of dimension n — rk J(x).

Proved similarly to Problem 8.

By Problem 2.23 and Problem 15 the proof reduces to the affine case for
which the statement follows from the first definition of a simple point.
Take M to be one of the required subvarieties.

Consider the decomposition with respect to the last column of each minor
a(flv"‘afm)
0Xy,...,X,)
The implicit function theorem implies that in a neighbourhood U of the point
x (in the real topology of A") the equations of the variety M’ can be written
in the form

of order r + 1 of the matrix bordering 4.

Xi=(pi(Xr+19“'9X,.) f0r i=1,...,r

where ¢, are smooth functions and the point (X,,,,..., X,) runs over an open
(in the real topology) set V' < A"™". We may assume that 4 # 0 everywhere
on U and V is pathwise connected. Let us prove that M'AnU = M n U. Let
x = (X?,...,X?). Consider a smooth path X; = X,(t), wherei=r + 1,...,n,
in V satisfying X;(0) = X?. The corresponding smooth path x(t) on M’
satisfies x(0) = x. Problem 18 implies that along x(t) we have

dfi_ Z wik(t)fk for i=l,...,m

dt 1<k<m

where y,, are certain smooth functions. Since f;(x(0)) =0fori=1,..., m,
then fi(x(¢)) = O for any t i.e. x(t) € M.

The uniqueness if obvious. It suffices to prove the existence for the affine
varieties (cf. Problems 2.23 and 15) in which case it follows from Problem 21.
Compare the complex and the real analytic structure on M = M® described
in Problem 20.

If V is considered as a real vector space then t is its involutive linear
transformation. The space V decomposes over R into the direct sum of
eigensubspaces V, and V; of this transformation corresponding to the eigen-
values 1 and —1 respectively. Since t is antilinear over C, then V| = iV,
hence, V, is a real form of V.

. See Problem 1.4.14.



Chapter 3
Algebraic Groups

The definition of an algebraic group is similar to that of a Lie group, except
that differentiable manifolds are replaced by algebraic varieties and differentiable
maps by morphisms of algebraic varieties. In this book we will only consider the
algebraic groups whose underlying varieties are affine ones. They are called
“affine” or “linear” algebraic groups. The difference between arbitrary groups
and affine ones is quite essential from the point of view of algebraic geometry
and almost indiscernible from the group-theoretical points of view, since the
commutator group of any irreducible algebraic group is an affine algebraic
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are affine algebraic groups. Therefore the affine algebraic groups are the most
interesting ones for the Lie group theory. We will simply call them algebraic
groups.

In 1.4-3.7 of this chapter the ground field K is assumed to be algebraically
closed.

§ 1. Background

1°. Main Definitions. In this subsection the ground field K is an arbitrary
infinite field. An algebraic group is a group G endowed with the structure of an
affine algebraic variety so that the maps

wGxG-G, (x, y)—xy

I: G - G, x—x!

are morphisms of algebraic varieties.

The most important example of an algebraic group is the general linear group,
ie. GL,(K) or, in another interpretation, the group GL(V), where V is an
n-dimensional vector space over K. Being a principal open subset in the vector
space L,(K), the group GL,(K) inherits the canonical structure of an affine variety
(see 2.1.3). In this situation the rational functions in matrix elements whose
denominators are powers of the determinant serve as polynomials on GL,(K).
This implies that the multiplication and the inversion in GL,(K) are morphisms
of algebraic varieties, i.e. GL,(K) is an algebraic group.



§ 1. Background

Similarly, the group of affine transformations of the n-dimensional affine
space over K can be considered as an aigebraic group.

Other important examples of algebraic groups are the additive group of the
field K, which we will denote also by K, and the multiplicative group of K, which
we will denote by K*. The latter is, however, just GL,(K). The direct product of
algebraic groups is the direct product of abstract groups endowed with the
structure of an affine variety as the direct product of affine varieties (see 2.4.1).
Clearly, the direct product of algebraic groups is an algebraic group.

The algebraic group K" (the direct product of n copies of the additive group
of K) is called the n-dimensional (algebraic) vector group.

The definition of an algebraic group G implies that for any g € G the left and
the right translations

l(g): x—>gx,  r(g): x—>xg~!

and also the inner automorphism a(g) = I(g)r(g) are automorphisms of the
algebraic variety G.

Sgnmm left franclahons act trapsltnlel 7
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Theorem 1. Let G be an algebraic group. Put G° for the irreducible component
of G that contains the unit. Then G° is a normal subgroup and other irreducible
components of G are cosets with respect to G°.

Problem 1. Prove Theorem 1.

An algebraic subgroup of an algebraic group is a closed (in the Zariski topology)
subgroup. Clearly, an algebraic subgroup is an algebraic group with respect to
the same group operation and induced structure of the affine variety.

Problem 2. The closure of any subgroup of an algebraic group is an (algebraic)
subgroup.

Problem 3. Any irreducible subgroup of an algebraic group épais in its closure
is closed.

An algebraic subgroup of a general linear group is called an algebraic linear
group. Let us emphasize that an algebraic linear group is not just an algebraic
group but an algebraic group given in a linear representation (do not confuse
this term with the term “linear algebraic group” which means in this text the
same as just “algebraic group™).

Examples of algebraic linear groups. 1) The group SL(V) of unimodular linear
transformations. The polynomials on SL(V'), or an any of its algebraic subgroups,
are simply polynomials in matrix elements.

2) The groups O(V, f) (Sp(V, f)) of linear transformations that preserve a non-
degenerate (skew)symmetric bilinear form f.

3) The group

GL(V;U) = {4 € GL(V): AU = U},
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where U is a subspace of a space V, and more generally, the group
GL(V;U,W)={4eGL(V): (4 - E)U < Wi,

where U, W are subspaces of V such that W < U.
4) Any finite linear group.

Problem 4. Linear groups in the above examples are algebraic.

Let V,, ..., V, be vector spaces. The algebraic group GL(V;) x -+ x GL(V,)
is naturally identified with an algebraic linear group in the space V=V, @ - ®
V., consisting of all invertible linear transformations that preserve each of the
subspaces Vi, ..., V,. In the basis of V, which is the union of bases of V}, ..., V,,
the elements of GL(V}) x --- x GL(V,) are presented by block-diagonal matrices.
In particular, (K*)" = GL,(K) x --- x GL,(K) (n factors) can be presented as a
group of invertible diagonal n x n matrices.

A homomorphism of algebraic groups is a map which is a group homomorphism
and at the same time a morphism of algebraic varieties. An isomorphism of
algebraic groups is an invertible homomorphism, i.e. a map which is simultane-
ously an isomorphism of groups and of algebraic varieties.

Let f:G— H be a homomorphism of algebraic groups and H, < H an
algebraic subgroup. Clearly, f ~*(H,) is an algebraic subgroup in G. In particular,
Ker f is a (normal) algebraic subgroup in G.

A linear representation of an algebraic group in a space V is its homomorphism
into GL(V).

Problem 5. If R and S are linear representations of an algebraic group G, then
the representations R + S, RS and R* (see 1.1.4) are also its linear representations
as of an algebraic group. (Cf. Problem 1.1.9).

In particular, this implies that the natural linear representation T, , of GL(V)
in the space of tensors of type (k,[) (see 1.1.4) is its linear representation as of an
algebraic group.

The one-dimensional linear representations of an algebraic group G are called
its characters. They constitute a group which will be denoted by Z(G), cf. 1.1.4.

Let L be a field extension of K. For any algebraic group G over K we may
consider the algebraic group G(L) over L whose variety is obtained from the
variety G by a field extension, cf. 2.1.1 and 2.1.2, and the group operations are
the morphisms extending the operations of G. The group G is a dense subgroup
of G(L) as is shown in Problem 2.1.14.

2°, Complex and Real Algebraic Groups

Problem 6. Any complex algebraic group is a nonsingular algebraic variety.

Due to this fact any complex algebraic group possesses a canonical complex
analytic manifold structure, cf. 2.3.4. Similarly, any real algebraic group possesses
a canonical real analytic manifold structure. Since morphisms of nonsingular
complex and real affine varieties are analytic, the following statement holds.



§ 1. Background 101

Theorem 2. Any complex (real) algebraic group is a complex (real) Lie group of
the same dimension. Any algebraic subgroup of a complex or real algebraic group
is its Lie subgroup.

However, not any Lie subgroup is an algebraic subgroup.

1 0 1 1
Problem 7. Subgroups {expt(o i>: te C} and {expt(o 1): te C} of
GL,(C) are Lie subgroups but not algebraic subgroups.

Any homomorphism of complex or real algebraic groups is at the same time
a Lie group homomorphism but not vice versa. If it is necessary to emphasize
that we are speaking about an algebraic group homomorphism we will say
“polynomial homomorphism”. We will also adopt the similar convention for
linear representations.

Problem 8. Any complex algebraic group connected in the real topology is
irreducible.

The converse is also true: see Theorem 3.1. Moreover, any irreducible complex
algebraic variety is connected, see e.g. [53]

The realification of complex affine varieties (see 2.3.5) transforms any complex
algebraic group G into a real algebraic group G® of the doubled dimension.

As an example, consider GL,(C). The polynomial algebra on this group is
generated by the matrix elements and the function 4+ (det 4)~!. By 2.3.5 this
implies that the algebraic subgroups of GL,(C)® (we will call them real algebraic
subgroups of GL,(C)) are the subgroups which can be determined by algebraic
equations in the matrix elements and their complex conjugates.

For instance, the unitary group U, is a real algebraic subgroup of GL,(C) and
therefore a real algebraic group.

A real algebraic subgroup G, is a real form of a complex algebraic group G if
the identity embedding G, = G extends to an isomorphism G,(C) = G.

Problem 9. Any subgroup G, = G which is a real form of a group variety G is
a real form of the group G. The complex conjugation with respect to G, is an
automorphism of G as of an abstract group.

A map of complex algebraic groups which is a homomorphism of abstract
groups and an antiholomorphic morphism of their group varieties is called an
antiholomorphic homomorphism. By the above, the complex conjugation with
respect to any real form G, is an involutive antiholomorphic automorphism of
the group G. For the irreducible groups the converse statement is also true.

Problem 10. The set of fixed points of any involutive antiholomorphic auto-
morphism of an irreducible complex algebraic group is its real form.

For instance the subgroups GL,(R) and U, are real forms of the group GL,(C)
since they are the sets of fixed points of the involutive antiholomorphic auto-
morphisms A 4 and A+ (A4")7!, respectively.
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For the reducible groups the similar statement is false as the example of the
complex conjugation in the group of cubic roots of unity shows.

3°. Semidirect Products. A semidirect product of algebraic groups G, and G,
is defined as the semidirect product G, x, G, of abstract groups, cf. 1.1.11,
endowed with the affine variety structure as the direct product of affine varieties.
Here it is required that the map (1.1.7) be polynomial which ensures the poly-
nomiality of the group operations.

Clearly, a semidirect product of complex or real algebraic groups is at the same
time their semidirect product as of Lie groups..

Let an algebraic group G decompose into a semidirect product of its algebraic
subgroups G, and G,, as an abstract group. Then the action b of G, on G, by
conjugations is polynomial and we may form an algebraic group G, x,G,.
Theorem 6 which will be proved in the following subsection shows that if
the ground field K is algebraically closed and char K = 0 then the abstract
isomorphism G, x, G, =5 G defined by (1.1.6) is an algebraic group isomorphism.

If char K = p > 0 this might be false. For instance in this case the algebraic
group (K*)? = {(z,,2,): z;,2, € K*} splits as an abstract group into the direct
product of algebraic subgroups distinguished by the equations z, =1 and
z, = zP respectively. However, (K*)? is not the direct product of these subgroups
as an algebraic group.

Examples. (cf. 1.1.11). 1) The group of affine transformations of a vector space
V decomposes as an algebraic group into the semidirect product of the normal
subgroup of parallel translations and GL(V).

2) The group of invertible (upper) triangular n x n matrices decomposes as
an algebraic group into the semidirect product of the normal subgroup of
unitriangular matrices and the subgroup of invertible diagonal matrices.

4°. Certain Theorems on Subgroups and Homomorphisms of Algebraic Groups.
Hearafter and till the end of § 3 (subsection 3.8 excluded) the ground field K is
assumed to be algebraically closed. This assumption is essential, in particular,
for the subsequent theorems whose proof is based on the theorems on the image
and the factorization of morphisms of algebraic varieties.

Theorem 3. Let f: G — H be an algebraic group homomorphism. Then f(G) is
an algebraic subgroup of H.

Problem 11. Prove this theorem.

Theorem 4. The subgroup H of an algebraic group G generated by an arbitrary
family {M,|a € A} (A is an index set) of irreducible subsets that contain the unit
and are épais in their closures is an irreducible algebraic subgroup. In particular,
the subgroup generated by an arbitrary family of irreducible algebraic subgroups
is an irreducible algebraic subgroup.

Proof. For any finite sequence (¢,,...,¢&), Where ¢; = + 1, consider the mor-
phism (k factors)
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:usl.”‘:k:Gx'HXG_)G’ (gb”'agk)Hgil"'g’fk'
The subgroup H is the union of the subsets of the form

Mt = e oM, X o X M,) (ay,...,0 € A).

Ay ..y

Each of these subsets is irreducible and épais in its closure as the image of
an irreducible subset which is épais in its closure, namely M, x - x M, <
G x -+ x G (k factors), under the morphism p® -« (see Theorem 7 and Prob-
lems 2.1.13 and 2.1.14). Besides, since each of the subsets M, contains the unit,
M} O Magias = Moyl
By Theorem 2.3.2 any non-decreasing chain consisting of the closures of
M3 stabilizes. Hence, among all such closures there is one that contains all

the others. Denote it by N. Clearly, H = N and H is épais in N. By Problem 7
this implies that H = N. ]

Theorem 5. The commutator subgroup of an irreducible algebraic group is an
irreducible algebraic subgroup.

Problem 12. Prove Theorem 5.
Note that the similar theorem for Lie groups is false (see Exercise 1.4.4).

Corollary. The commutator subgroup of an irreducible complex algebraic group
is a Lie subgroup.

Problem 13. Let G and H be irreducible algebraic groups and f: G - H a map
which is an abstract group homomorphism and coincides with a rational map
fo: G — H on the latter’s domain. Then f is a polynomial homomorphism.

Theorem 6. A bijective homomorphism of algebraic groups over a field of zero
characteristic is an isomorphism.

Problem 14. Prove this theorem.
Over a field K of characteristic p > 0 the similar theorem fails. A counter-
example is given by the Frobenius endomorphism x~— x? of K (or K*).

5°. Actions of Algebraic Groups. An action of the algebraic group G on a
quasiprojective algebraic variety M is a homomorphism « of G into the group
of automorphisms of M such that the map

GxM->M, (g, x)—a(g)x (1)

is a morphism of algebraic varieties.

For example, any algebraic group acts in three ways on itself: by the action [
by the left translations, the action r by the right translations and the action a by
inner automorphisms. Any linear representation of an algebraic group may be
considered as its action on the space of the representation.
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When it is necessary to emphasize that we mean an action of an algebraic
group and not of a Lie group or an abstract group we will use the term “an
algebraic action”.

Problem 15. The natural action of GL(V) on the projective space P(V) is
algebraic.

Problem 16. If an algebraic group G acts on a reducible quasiprojective variety
M, then the elements of G° transform each irreducible component of M into itself.

Theorem 7. Suppose a is an action of an algebraic group G on a quasiprojective
algebraic variety M and x € M. Then

1) the stabilizer G, is an algebraic subgroup of G;

2) the orbit a(G)x is a non-singular algebraic subvariety of M.

Problem 17. Prove Theorem 7.

Corollary. Under the conditions of the theorem G possesses at least one closed
orbit on M.

Proof. The boundary of any orbit is invariant with respect to G. The dimension
of the boundary is less than that of the orbit itself and therefore the boundary
consists of orbits of lesser dimension. Therefore any orbit of the minimal dimen-
sion is closed. []

Clearly, any algebraic action of a complex algebraic group on a non-singular
quasiprojective variety is also an action in the sense of Lie group theory, i.e. it
is differentiable. In this situation the orbits are differentiable submanifolds due
to the Theorem 7, which is in general false for arbitrary differentiable actions.
(See Example in 1.1.6; its complexification gives a similar example for complex
Lie groups).

The local closedness of orbits and closedness of images of homomorphisms
stand in favour of the theory of algebraic groups as compared to the theory
of Lie groups, where the phenomenon of dense winding of a torus, that does not
deserve such an attention, required lengthy discussions. Confining ourselves to
algebraic Lie groups and their algebraic actions we may get rid of various
nuisances without substantially impoverishing the Lie group theory.

6°. Existence of a Faithful Linear Representation. In the theory of linear
representations of compact topological groups one of the main methods is the
study of the regular representation, i.e. the linear representation of the group in
the space of functions on this group induced by its action on itself, say by right
translations. This method turns out to be fruitful in the theory of algebraic
groups as well. Making use of this method we will prove in this subsection the
following

Theorem 8. Any algebraic group is isomorphic to an algebraic linear group.

First, consider the following general situation. Suppose « is an action of any
algebraic group G on an affine variety M. Put «, for the corresponding linear
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representation of G in the space K[M] of polynomials on M defined by the
formula

(4(9)/)(x) = fla(g)™"x). 2

This representation is infinite-dimensional (unless M consists of a finite number
of points). However, we will see that it is the inductive limit of finite-dimensional
representations.

By the definition of an algebraic action, the function

(g, %) fla(g)™'x) = fla(g™")x)

is a polynomial on G x M for any f e K[M]. Since K[G x M] =K[G]®
K[M] (see 2.1.4), there exist polynomials ¢; € K[G], f; e K[M],wherei=1,...,

P FERE Y

n, Sucil wnat

fl(g) ™ )= Y olg)fix)

1<i<n
For a fixed g € G we deduce that
al(9f = Y cafs
1<ign

where ¢; = ¢;(g) € K. In other words, the orbit of a polynomial f under the action
a, of G is contained in the finite-dimensional subspace {f},..., f,> = K[M]. Its
linear span is a finite-dimensional invariant subspace containing f. Therefore,
we have proved

Theorem 9. For any action o of G on an affine algebraic variety M the space
K[M7] is the union of finite-dimensional subspaces invariant with respect to o, (G).

Problem 18. Any finite-dimensional subrepresentation of «, is a polynomial
one.

Now, let r be an action of an algebraic group G on itself by right translations.
The corresponding linear representation r, of G in the space K[ M] defined by
the formula

(re(9)/)(x) = f(xg) ©)

is called the (right) regular representation of G.

Let V < K[G] be a finite dimensional subspace invariant with respect to r, (G).
Denote by R the linear representation of G in the space V induced by r,. By
Theorem 3 the image H = R(G) of G under this representation is an algebraic
subgroup of GL(V). We will see that the space V may be chosen so that the
map R: G — H is an isomorphism of algebraic groups. The homomorphism
R*: K[H] — K[G]isinjective by the definition of H and its image is a subalgebra
generated by the matrix elements of R.
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Problem 19. The linear span of the matrix elements of R contains V.

If we take for V a subspace containing a system of generators of K[G], then
the homomorphism R*: K[H] — K[G] is an algebra isomorphism, hence the
map R: G - H is an isomorphism of algebraic groups. Therefore, Theorem 8
is proved. OJ

With this theorem we easily prove the following important statement: the
adjoint representation of a complex algebraic group G is polynomial. Indeed,
if G is realized as a linear group, then its adjoint representation is a subrepresen-
tation of the linear representation T, ;|; whose polynomiality follows from
Problem 5.

7°. The Coset Variety and the Quotient Group. Let G be an algebraic group,
H its algebraic subgroup. It is natural to ask: how to introduce an algebraic
variety structure on the coset space G/H? The necessary requirement here is that
the action of G on G/H be algebraic. When K is of zero characteristic this
requirement already guarantees the uniqueness of the desired structure.

Problem 20. Let char K = 0. Suppose, that a quasiprojective algebraic variety
structure is introduced on G/H so that the canonical action of G on G/H is an
algebraic one. Then for any action « of G on a quasiprojective variety M and
any point x € M satisfying G, > H the map

p: G/H - M, gH— a(g)x

is a morphism of algebraic varieties. If § is a bijection (i.e. if G, = H and « is
transitive), then f is an isomorphism.

The existence of an algebraic structure on G/H is proved with the help of the
following theorem.

Theorem 10 (Chevalley’s theorem). Let G be an algebraic group, H its algebraic
subgroup. There exist a linear representation R: G — GL(V) and a vector vy € V
such that H = {h € G: R(h)vy € Kv,}. If H is a normal subgroup, then there exists
a linear representation T of G such that H = Ker T.

Proof of this theorem makes use of the regular representation r, of G. Let
I;(H) be the ideal of K[G] consisting of all polynomials that vanish on H.

Problem 21. H = {h e G: r (h)Iz(H) < I;(H)}.

Choose a finite-dimensional subspace V< K[G] invariant with respect to
r(G)and containing a system of generators of I;(H). Denote by W its intersection
with I;(H) and by S a (polynomial) linear representation of G in U induced by
r, (see Problem 18).

Problem 22. H = (he G: S(hWW < W}.

Let (fy,-.., /) be a basis of W. Put V = A™U, vy = f; A - A f,, and denote
by R the linear representation of G in V induced by S (the subrepresentation of
T,00S).
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Problem 23. H = {h € G: R(h)v, € Kv,}.

Thus, the first part of the theorem is proved. Now suppose that H is a normal
subgroup. Denote by x, the character of H defined from the identity

R(h)vo = xo(h)vo (h e H)

By the definition (see 1.4.5) x, is a weight of the representation R|y and v, the
corresponding weight vector.

Let %o, X1, ---» Xi be different characters of H constituting {x?: g € G}. By
Problem 1.4.10 the sum (—Bog,-sk V,(H) =V, is invariant with respect to the
representation R of G and the operators of the representation transitively per-
mute its summands. (In particular, if G is irreducible the sum contains only one
summand, i.e. the space V, (H) is already invariant with respect to R(G).)

Consider the restriction T of the natural linear representation of G in L(V})
onto the invariant subspace Py <;<x L(V},(H)) = Lo(V}).

Problem 24. H = Ker T.
The Theorem is proved. (]

Returning to the problem of defining an algebraic variety structure on G/H
we can, under the notation of Theorem 10, identify G/H with the orbit O of the
point Kv, € P(V) under the natural G-action in the projective space P(V) defined
by the representation R. By Theorem 7 it is an (embedded) quasiprojective
variety. The G-action on G/H by left translations coincides with the restriction
onto O of the natural G-action in the space P(V'), hence, it is algebraic.

Similarly, if H is a normal subgroup, then we can, under the notation of
Theorem 10, identify G/H with the group T(G) which is, due to Theorem 3, an
algebraic linear group.

These results combined with Problem 21 yield the following theorem.

Theorem 11. Let char K = 0 and G an algebraic group, H its algebraic subgroup.
Then, on G/H, there is a unique quasiprojective algebraic variety structure for
which the canonical G-action on G/H is algebraic. If, in addition, H is normal, then
G/H is an affine variety and the quotient group G/H is algebraic.

The reader has probably noticed the difference of our approaches to the
definition of coset varieties for algebraic groups and coset manifolds for Lie
groups. In fact we might base the definition of an algebraic structure on cosets
for an algebraic group on the notion of factorization as we had done for Lie
groups.

A map p: M — N of algebraic varieties is called a quotient map if

1) asubset U = N is open if and only if p~'(U) is open in M,

2) afunction f defined on an open subset U = N belongs to Oy(U) if and only
if p*f € Oy (p™(U)).

For the proof of the following theorem see e.g. [10]

Theorem 12. Let G be an algebraic group and H an algebraic subgroup. Then
there exists a unique quasiprojective algebraic variety structure on G/H for which
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the canonical map p: G — G/H is a quotient map. With respect to this structure the
canonical G-action on G/H is algebraic and if H is normal then G/H is an algebraic

group.
Exercises

1) In the definition of an algebraic group the requirement on the inversion to
be a morphism is redundant. (Hint: analyze the proof of Theorem 8.)

2) The automorphism group of an arbitrary finite-dimensional algebra is an
algebraic linear group.

3) If M and N are épais subsets of an irreducible algebralc group G then
MN =G.

In exercises 4-6 the ground field K should be assumed algebraically closed.

4) Under the conditions of Theorem 4 there exist &y, ..., and ¢, ..., = +1
such that H = M;!... M}x,

5) Give an example which shows that the irreducibility of M,’s in Theorem 4
is essential for the algebraicity of H.

6) The commutator group of any (not necessarily irreducible) algebraic group
G is its algebraic subgroup. (Hint: first prove using Theorem 4 that (G, G°)
is an algebraic subgroup; then make use of the theorem that if the center of
a group is of finite index then its commutator group is finite.)

7) Any connected real algebraic group is irreducible.

8) Give an example of an irreducible real algebraic group which is not
connected.

9) Let G = GL,(C) be an irreducible complex algebraic group, G its complex
conjugate. The map G®(C) 3 G x G which to any A € G® assigns (4, A) is
an isomorphism.

10) The set of fixed points of an action of an algebraic group G on a quasi-
projective variety M is closed in M.

11) The kernel of an action of an algebraic group G on a quasiprojective variety
M is a (normal) algebraic subgroup of G.

12) For any action of an algebraic group G on an affine variety M there exists
an embedding of M in a vector space V such that the action is induced by a
linear representation of G in V. (Hint: for V take the vector space dual to a
finite-dimensional G-invariant subspace of K[ M] that contains a system of
generators of this algebra).

13) Reproducing the proof of Theorem 8 construct a faithful linear represen-
tation of the additive group of the field.

14) Let H be an algebraic subgroup of a complex algebraic group G such that
the quotient space G/H is compact in the real topology. Then G/H is a
projective algebraic variety.

Hints to Problems

1. Make use of the fact that transformations of the form I(g), r(g) and a(g),
where g € G, being automorphisms of the group variety, can only permute
its irreducible components.
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Proof is similar to that of Problem 1.1.7.
Follows from the fact that all the points of a group variety are on equal
footing.

. ) 1 0 1 1
If A is one of the matrices (O i)’ <

01
t+— exptA,is a proper one (i.e. the preimage of any compact is compact itself).
This implies that these subgroups are Lie subgroups. The first of them is
contained in the algebraic subgroup of diagonal matrices but is not algebraic
itself since there is no nonzero polynomial f of two variables (the diagonal
elements of the matrices) such that f(e’,e”) = 0 for all t € C. The proof of the
fact that the other subgroup is not algebraic is similar.

Proof is deduced from the continuity of the group operations and the
complex conjugation and from the density of G, in G.

Follows from Theorem 2.3.6.

For an irreducible G follows from Theorem 2.1.5 and Problem 7.

Apply Theorem 4 to the set M of all commutators of elements of G.

For any g € G the diagram of rational maps

G ——
l(g)\ ll(f(g))
G H

commutes. From here we deduce that f, is defined everywhere, hence fj is
polynomial (see Problem 2.1.29).

For irreducible groups this follows from Theorem 2.1.8 and Problem 13. In
general case it is necessary to make use of Problem 2.2.14.

The orbit a(G)x is the image of G under the morphism

>, then the map C —» GL,(C),

Jo

_

a*: G- M, g a(g)x.

We may assume that G is irreducible. Theorem 2.2.2 implies then that the
orbit is épais in its closure but, since all its points are on equal footing, it is
open in its closure, i.e. is an algebraic subvariety of M. The same (“equality
of rights” of points) considerations show that this subvariety is non-singular.

. Let (fi,...,f,) be a basis of a G-invariant subspace V = K[M]. Then the

definition of an algebraic action implies that
fle9)x) =Y ay(9)fix) (g€ G.xe M),

where a;; € K[G].

. Let (fl, ., f,) be a basis of V. Then

fi(xg) = ¥ ay(@)fix),
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where a;; are the matrix elements of the representation R. Substituting x =
we find that f; = ), c,a;;, where ¢; = fi(e).

20. For an irreducible group G it follows from Theorem 2.2.3 and the homce
geneity (equal rights of points) considerations. For a reducible group G it i
necessary to make use of Problem 2.2.14.

21. r(h)H <« H<r (h)I(H) < I5(H).

23. Follows from the fact that a subspace is uniquely determined by the exterio
product of its basics’ vectors (see Problem 2.2.33).

24. Follows from the fact that the centralizer of Ly(¥;) in L(V;) consists ¢
operators acting as scalars on each of V}(H).

§ 2. Commutative and Solvable Algebraic Groups

In this section, except 1°, we assume that char K = 0.

1°. The Jordan Decomposition of a Linear Operator. Let V' be a finite
dimensional vector space. For any linear operator A € L(V) and 4 € K conside
the eigenspace

Vi(A)={veV:(4 — LE)v =0}
and ambient root subspace
V*(A) = {ve V:(A — LE)™v = 0 for some m}

The subspaces V;(A4) and V*(A) are invariant with respect to any linear operato
commuting with 4. As it is known,

V= 6;) Vi(A).

A linear operator 4 € L(V)is called semisimple if it satisfies any of the followin:
equivalent conditions:

1) in some basis 4 is expressed by a diagonal matrix;

2) V =@, Vi(A)

3) V*(A) = V,(A) for any 1 € K.

Problem 1. Let A € L(V) be a semisimple linear operator and U < V a sub
space invariant with respect to A. Then

1) A|y is semisimple;

2) there exists an invariant subspace complementary to U.

Problem 2. Any family of commutating semisimple linear operators can b
simultaneously reduced to the diagonal form.



§2. Commutative and Solvable Algebraic Groups 111

[n particular, this implies that the sum and the product of commuting semi-
simple operators are semisimple operators.

A linear operator A € L(V) is called nilpotent (resp. unipotent) if A™ = 0 (resp.
(A — E)" = 0) for some m. This is equivalent to the fact that A" =0 (resp.
(A — E)" = 0), where n = dim V.

Clearly, the sum of commuting nilpotent operators is a nilpotent operator.
The product of commuting unipotent operators is a unipotent operator.

If A is both semisimple and nilpotent (resp. unipotent) then 4 = 0 (resp.
A = E).

Let A e L(V) be an arbitrary linear operator. The semisimple operator A;
defined by the condition

Vi(4,) = V}A) forany A e K

i.e. acting on each root subspace V*(4) of 4 as multiplication by 4, is called the
semisimple part of A. The definition of root subspaces implies that A, = 4 — A;
is nilpotent; it is called the nilpotent part of A.If A is invertible then 4, = A4 =
E + A,A; ! is unipotent; it is called the unipotent part of A. The operators A,, A,
and A, commute with each other and with any operator commuting with A.

The decomposition A = A, + A, (resp. A = A, A,) is called the additive (resp.
multiplicative) Jordan decomposition of A. The following problem gives its axio-
matic characterization.

Problem 3. The additive (resp. multiplicative) Jordan decomposition of a
linear operator A is its unique decomposition into the sum (resp. product) of
commuting semisimple and nilpotent (resp. unipotent) linear operators.

2°, Commutative Unipotent Algebraic Linear Groups. Let X be a nilpotent
operator. For any formal power series

flx) = Z akxk (ax € K)
k>0
set

fX)= 3 ax*

k>0

(this sum is finite, actually). Clearly,
1) f(X) — aoE is nilpotent;
2) f(AXA™') = Af(X)A™! for any invertible linear operator A.
In particular, set

expX = ) —I—X",

k>0 k!

log(E + X) = ) (———IKI

K>1
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Since any unipotent operator is of the form E + X, where X is a nilpotent
operator, the (nilpotent) operator log A is defined for any unipotent A.

Let L,(V) (resp. L,(V)) be the set of all nilpotent (resp. unipotent) operators
in V. Clearly, L,(V) and L,(V) are algebraic varieties in L(V).

Problem 4. The maps

exp: L,(V) - L,(V), log: L,(V)— L,(V)

are morphisms inverse to each other.

Problem 5. 1) If nilpotent operators X, Y commute then
exp(X + Y)=expX-exp Y.
2) If unipotent operators A, B commute then
log AB =log A + log B

Theorem 1. The minimal algebraic linear group G(A) containing a unipotent
linear operator A consists of all (unipotent) linear operators of the form

A" = exp(tlog A) (teK)
and
K—>G(4), t—A,

is an algebraic group isomorphism provided A # E.
Problem 6. Prove this theorem.

Corollary 1. Any invertible linear operator A of finite order, i.e. such that A™ = E
for some positive integer m, is semisimple.

Proof. We have A™ = ATAT = E implying A} = E, but due to Theorem 1 it is
only possible if 4, = E. []

An algebraic linear group is called unipotent if all its operators are unipotent.
Corollary 2. Any unipotent algebraic linear group G is irreducible.

Proof. For any A € G the subgroup G(A) = G is irreducible by Theorem 1.
Therefore A € G(A) = G°. O

Problems 4 and S and Theorem 1 imply the following description of commuta-
tive unipotent groups.

Theorem 2. Let G = GL(V) be a commutative unipotent algebraic linear group.
Then g =logG <= L(V) is a subspace consisting of commuting nilpotent linear
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operators and exp: g — G is an isomorphism of the vector group g onto G.
Conversely, if ¢ = L(V) is a subspace consisting of commuting nilpotent linear
operators then G = expg < GL(V) is a commutative unipotent algebraic linear
group.

A similar description can be obtained for arbitrary unipotent groups the
difference being that exp is an isomorphism of not algebraic groups but only of
algebraic varieties. In 3.6 we will give such a description for K = C and see that
g = log G is nothing but the tangent algebra of G.

3°. Algebraic Tori and Quasitori. An algebraic group isomorphic to the direct
product of n copies of K* is called the n-dimensional algebraic torus. The adjective
“algebraic” is applied here to distinguish algebraic tori from the tori in the sense
of Lie group theory. In the context of the algebraic group theory over an
algebraically closed field we will usually skip this adjective.

Together with the tori it is useful to consider algebraic groups which are direct
products of a torus and a commutative finite group; we will call them (algebraic)
quasitori. Note that irreducible quasitori are just tori.

Problem 7. In any quasitorus the elements of finite order form a dense
subset.

Theorem 3. Under any linear representation of a quasitorus its elements are
mapped into semisimple operators which are simultaneously diagonalizable.

Proof. If we confine ourselves to the elements of finite order then the statment
of the theorem follows from Corollary of Theorem 1 and Problem 2; but Problem
7 implies that the basis which diagonalizes operators corresponding to elements
of finite order also diagonalizes all the operators of the representation.

This theorem means that any linear representation of a quasitorus is a sum of
one-dimensional representations. Now describe one-dimensional representa-
tions, or characters, of tort.

Theorem 4. Any character y of the torus (K*)" is of the form

w(xg,..,x,) = x5 x*  where k,,...,k,eZ.

Problem 8. Prove this theorem.

Let T be an n-dimensional algebraic torus.

Problem 9. The characters of T form a basis of K[T] (as of vector space
over K).

Let Z(T) be the character group of T. Theorem 4 implies that this is a free
commutative group of rank n. A duality between T and Z(T) holds, see Exercise
4. One of the manifestations of this duality is that a representation of T in the
form of the direct product of n copies of K* is equivalent to the choice of a basis
of Z(T). More precisely the following statement holds.
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Problem 10. Let (¢,,...,¢,) be a basis of Z(T). Then the map
& T_>(K*)n9 xH(gl(x),""en(x))9

is an isomorphism. Any isomorphism ¢: T =3 (K*)" is obtained in this way.
Another manifestation of the mentioned duality is the following descriptio:
of the algebraic subgroups of T.

Theorem 5. There is a one-to-one correspondence between algebraic subgroup
of an n-dimensional torus T and subgroups of Z(T), which to a subgroup I' = Z(T
assigns the subgroup

T ={xeT:y(x)=1forallyel'} =T

Letcy, ..., c, (m < n) be nonzero invariant factors of I (as of a subgroup of th
free commutative group & (T)). There exists an isomorphisme: T = (K*)" such tha

e(TT) = {(x1,...,x,) € (K¥)": x§ =+ = xim = 1} (1

Proof. Let S = T be an algebraic subgroup. By Chevalley’s theorem (Theorer
1.10) there exists a linear representation of T whose kernel is S. Let y;, ..., x, b
the weights of this representation. Then

S={xeT:p()="=z=1 =T

where I" = Z(T) is a subgroup generated by x;, ..., %,

Further, let I" = Z(T) be any subgroup and c¢,, ..., ¢, (m < n) its non
zero invariant factors. There exists a basis (¢,,...,¢,) of Z(T) such that I =
(C1&1y s CmEmy. We have

T = {xeT:e,(x)' = = gu(x)m =1}

and ife: T = (K*)" is an isomorphism corresponding to the basis (¢,,...,¢,) the.
the subgroup &(T7) is singled out in (K*)" exactly by (1).

To complete the proof of the theorem it remains to show that I” consists of a:
characters whose value on T is 1. Let y = k, &, + --- + k,¢, be such a characte;
Considering the values of y on the elements x € T all the coordinates ¢, (x), ...
&,(x) of which except one are equal to 1 we easily deduce from the abov
description that k., =+ =k, =0, while k,, ..., k,, are divisible by ¢, ..., ¢
respectively. But this means that y € I. [J

Corollary. Any algebraic subgroup of a torus is a quasitorus.
Notice two more corollaries of Theorem 3.

Problem 11. The character group of a torus is generated by weights of an
faithful linear representation.
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Problem 12. Any torus has elements which are not contained in any of its
proper algebraic subgroups.

4°. The Jordan Decomposition in an Algebraic Group. In this subsection we
will prove the following theorems:

Theorem 6. An algebraic linear group G = GL(V) contains together with any
linear operator A the operators A, and A,.

Theorem 7. Let R: G — GL(U) be a linear representation of an algebraic group
G. If A € G is semisimple (resp. unipotent) then so is R(A).

In general terms the reason why this is true might be explained as follows:

1) the semisimple elements of an algebraic linear group are linked to its
algebraic subgroups isomorphic to K* or to its finite subgroups and the uni-
potent elements are linked to the subgroups isomorphic to K;

2) the groups K* and K do not admit nontrivial homomorphisms into each
other and thanks to this they do not “intermix”.

Proof of Theorem 6. For any linear operator 4 € GL(V) denote by G(A) the
smallest algebraic linear group containing A, i.e. the closure of the cyclic linear
group generated by A.

If A is unipotent then by Theorem 1 G(A) consists of unipotent operators and
is isomorphic to K except for the trivial case A = E.

Problem 13. If A is semisimple then G(A4) consists of semisimple operators and
is a quasitorus.

In general, G(A) is contained in the smallest algebraic linear group G(A4,, 4,)
containing A, and A4,. The continuity considerations imply that G(4,, 4,) is
commutative. Since G(A;) consists of semisimple elements and G(A,) of unipotent
ones, we have G(4,) n G(4,) = {E}. It follows,

G(4) = G(4,, 4,) = G(4;) x G(4,). (2)

Problem 14. A quasitorus does not admit nontrivial homomorphisms into
K.

Problem 15. G(4) = G(A4,) x G(A,).
This immediately implies Theorem 6. []

Proof of Theorem 7. First, note that for any A € G we have G(4) = G and
R(G(A4)) = G(R(A)).

If A€ G is semisimple then G(A) is a quasitorus. Applying Theorem 3 to
R|; 4, we see that R(A) is semisimple.

Now let A € G be unipotent. Set B = R(A). Suppose that B # E, otherwise we
have nothing to prove. Then G(4) ~ K and G(B) = R(G(A4)) ~ K. By Problem
15 we have

G(B) = G(B,) x G(B,),
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but since G(B) does not contain elements of finite order different from the unit,
G(B) = G(B,), i.e. B is unipotent. []

An element g of an algebraic group G is semisimple (unipotent) if for some
faithful (and therefore for any) linear representation R of G the operator R(g) is
semisimple (unipotent).

Theorem 6 implies that any element g of an algebraic group G presents as the
product of commuting semisimple and unipotent elements g, g, € G. By Problem
3 this decomposition is unique. The elements g, and g, are called semisimple and
unipotent parts of g respectively and g = g,g, the Jordan decomposition of g.

Theorem 7 implies that any algebraic group homomorphism transforms the
semisimple elements into semisimple ones and the unipotent elements into uni-
potent ones.

Problem 16. Let f: G — H be an algebraic group homomorphism. For any
semisimple (unipotent) element h e f(G) its pre-image f ~!(h) contains a semi-
simple (unipotent) element.

Notice that the group K* and, more general, any quasitorus consists only of
semisimple elements (Theorem 3). Conversely, the group K and, therefore, any
vector group consists of unipotent elements only.

An algebraic group all elements of which are unipotent is called unipotent. By
Corollary 2 of Theorem 2 any unipotent algebraic group is irreducible.

5°. The Structure of Commutative Algebraic Groups

Problem 17. Any commutative algebraic group consisting of semisimple ele-

ments is a quasitorus.
Since the converse is true, this problem gives a convenient characterizations
of quasitori (and therefore tori).

Theorem 8. Any commutative algebraic group is a direct product of a quasitoru:
and a vector group.

Problem 18. Prove this theorem.

Corollary. Any irreducible commutative algebraic group is the direct product oj
a torus and a vector group.

6°. Borel’s Theorem. An algebraic group is called solvable if it is solvabl
asan abstract group. An example of a solvable algebraic group is the group B,(K
of invertible (upper) triangular n x n matrices over K (see Example 1.4.4; th
arguments given there work for any field).

For solvable algebraic groups an analogue of Lie’s theorem (see 1.4.5) holds
It can be proved in almost exactly the same way as Lie’s theorem but we wil
deduce it from a more general theorem whose proof is in a sense even simpler.

The statement of Lie’s theorem may be formulated as a fixed point theoren
for an action of the considered group in the projective space associated with th:
space of the representation. Therefore Lie’s theorem for algebraic groups is :
consequence of the following theorem.
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Theorem 9 (Borel’s theorem). Any action of an irreducible solvable algebraic
group G on a projective algebraic variety M possesses a fixed point.

Proof. We will prove the theorem by induction in dim G. Suppose dim G > 0
and assume that for groups whose dimension is less than dim G the theorem
holds. Let G’ be the commutator subgroup of G. By the inductive hypothesis G’
possesses fixed points on M. Let N be the set of all these points. It is easy to see
that N is a closed subvariety. Since G’ is normal in G, then N is G-invariant.

By the corollary of Theorem 1.7 there exists a closed orbit of the G-action on
N. Let O be such an orbit. We have O = G/G, where G, is the stabilizer of some
point y € 0. Since G, > G’ and G/G’ is commutative, G, is a normal subgroup and
G/G, is an irreducible algebraic group and therefore an irreducible affine variety.
But O is a projective variety. Therefore O consists of one point (see 2.2.5) which
is the fixed point for the G-action on M. ]

Corollary 1 (Lie’s theorem for algebraic groups). Let R: G — GL(V) be a linear
representation of an irreducible solvable algebraic group G. There exists a one-
dimensional subspace U c V invariant with respect to R(G).

This in its turn implies

Corollary 2. Under the conditions of Corollary 1 there exists a basis of V
in which all the operators R(g), g € G, are expressed by (upper) triangular
matrices.

7°. The Splitting of a Solvable Algebraic Group. Let G be an irreducible
solvable algebraic group.

Problem 19. The unipotent elements of G form an algebraic normal subgroup
U in G containing G'.
This subgroup is called the unipotent radical of G.

Problem 20. G/U is a torus.
Actually a more precise statement holds.

Theorem 10. Any irreducible solvable algebraic group splits into the semidirect
product of its unipotent radical and a torus.

Proof. Under the above notation consider an element of the torus G/U which
is not contained in any of its proper algebraic subgroups (see Problem 12). The
pre-image of this element with respect to the canonical homomorphism p: G —
G/U contains a semisimple element (Problem 16), say g. Denote by T the minimal
algebraic subgroup of G containing g. It is a quasitorus (Problem 13). Therefore
T N U = {e}. On the other hand, from the choice of g it is clear that p(T) = G/U.
Therefore

G=UxT (3)

and T~ G/U is a torus. []
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Example. For G = B,(K) the unipotent radical U is the subgroup of uni-
triangular matrices and for T we may take the group of invertible diagonal
matrices.

Remarks about decomposition (3). Clearly, any algebraic subgroup of G con-
taining T is the semidirect product of a unipotent subgroup contained in U, and
T. In particular, this implies that T is a maximal torus in G, and any algebraic
subgroup containing it is irreducible.

Problem 21. The normalizer of T in G coincides with the centralizer of T.

8°. Semisimple Elements of a Solvable Algebraic Group

Theorem 11. Let G be an irreducible solvable algebraic group and T a torus
complementary to its unipotent radical U. Then any semisimple element of G is
conjugate to some element of T.

Problem 22. Under the conditions of the theorem if U # {e} then there exists
a unipotent algebraic normal subgroup U, of G of codimension 1 in U.

Proof of Theorem 11 will be carried out by induction in dim U. I[f dim U =0
then G = T and we have nothing to prove. LetdimU = landg=ut (ue U,teT)
a semisimple element. Consider two cases: when u and ¢t commute and when
they do not. In the first case the decomposition g = tu is the Jordan decomposi-
tion of g; hence u = e and g e T. In the other case the conjugacy class of g
coincides with Ug. Indeed, since G/U is commutative, the conjugacy class C(h)
of any h e U is contained in Ug. It is an irreducible subvariety as an orbit of G
and does not consist of one element h since uhu™t # h. Therefore, C(h) is Uy
without, perhaps, a finite number of points; but since this takes place for any
h e Ug, then C(h) = C(g) = Ug. In particular, C(g) 3 t, as required.

Now, let dim U > 1 and let the theorem hold for the groups whose unipotent
radicals are of dimensions less than dim U. Let U, be an algebraic normal
subgroup of G satisfying conditions of Problem 22 and p: G — G/U, the canonical
homomorphism. Clearly, G/U, is an irreducible solvable algebraic group with
the one-dimensional unipotent radical p(U) = U/U, and the complementary
torus p(T) ~ T. For any semisimple g € G the element p(g) is, by the above,
conjugate in G/U, to an element of p(T). This means that in G itself that element
g is conjugate to a (semisimple) element g, of G, = U; T. However, by the
inductive hypothesis g, is conjugate in G, to some ¢ € T. Therefore g is conjugate
inGtot (J

Problem 23 (Corollary). All maximal tori in a solvable algebraic group are
conjugate to each other.
Now we may state that any maximal torus can be taken for T in (3).

9°. Borel Subgroups. While studying arbitrary (not necessarily solvable) alge-
braic groups it is convenient to consider their maximal irreducible solvable
algebraic subgroups. Such subgroups are called Borel subgroups.
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For instance, by Lie’s theorem any irreducible solvable algebraic subgroup of
GL,(K)is conjugate to a subgroup contained in B,(K). Therefore B,(K)is a Borel
subgroup of GL,(K) and any other Borel subgroup is conjugate to this one.

Theorem 12. All Borel subgroups of an algebraic group G are conjugate to each
other. The quotient space of a complex algebraic group modulo a Borel subgroup
is a projective algebraic variety.

Proof. We may assume that G is an algebraic linear group acting in a vector
space V. The group G naturally acts on the flag variety F(V), see 2.2.7. Let O be
a closed orbit of this action. Since O is a projective variety, then by Borel’s
theorem any Borel subgroup of G has a fixed point in O, i.e. is contained in the
stabilizer of a flag F € 0. On the other hand, the stabilizer of any flag is solvable
since in a basis of ¥ compatible with this flag all the elements of this group
are expressed by triangular matrices. Therefore the Borel subgroups of G are
irreducible components of the stabilizers of the points of O and therefore are
conjugate to each other.

Let us prove the second statement of the theorem. Let G be a complex algebraic
group and B its Borel subgroup. The quotient space G/B is a finite covering of
the projective algebraic variety O, encountered in the above arguments, and
therefore is compact and is also a projective algebraic variety. (]

Actually, the second statement of the theorem holds over an arbitrary algebrai-
cally closed field [8]. Moreover, if G is irreducible then the stabilizers of points
of O encountered in the proof are exactly the Borel subgroups of G. For the
complex algebraic groups this latter assertion will be proved in §4.2.

Problem 24 (Corollary). All the maximal tori of an algebraic group G are
conjugate to each other.

Exercises

1) Let A = E + X be a unipotent operator. The linear operator A' can be
defined, apart from the method proposed in subsection 2°, directly with the
help of the binomial series:

te—1D...t —k+ I)X"

=Y k!

2) Let g be an element of an algebraic group G. If g™ is semisimple for some
positive integer m then ¢ is semisimple.
3) If an irreducible component of the unit of an algebraic group G is a torus
then all elements of G are semisimple.
4) For each element x of a torus T denote by J, the character of X(T) defined
by the formula d,(x) = x(x). The map
0: T - Z(X(T)), x—0

X9

is a group isomorphism.
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5) There is a one-to-one correspondence between the tori homomorphisms
T, - T, and the group homomorphisms Z(T;) = Z(T,) which to any homo-
morphism f: T, — T, assigns the homomorphism f*: Z(T,) — Z(T) defined
by the formula

(f*0x) =x(f(x) (e Z(T)xeT)

6) Generalize Exercises 4 and 5 and the first statement of Theorem 5 to
quasitori.

7) The intersection of the kernels of all characters of an algebraic group is a
normal algebraic subgroup and the corresponding quotient group is a

quasitorus.
8) Let a nondegenerate linear operator 4 € GL(V) be expressed in a basis of V
by a diagonal matrix diag (a,,...,a,). Then G(A4) consists of all invertible

linear operators B which in the same basis are expressed by the matrices of

the form diag (b,,...,b,), where b, ..., b, satisfy all the relations of the form

xki .. xk=1(k,,..., k, € Z) which are satisfied by a,, ..., a,.

Any nontrivial irreducibie solvabie aigebraic group splits into the semidirect

product of an algebraic normal subgroup of codimension 1 and an algebraic

subgroup isomorphic to K* or K.

10) Any nontrivial irreducible algebraic group has a nontrivial Borel subgroup.
(Hint: analyze the proof of Theorem 12.)

11) Any nontrivial irreducible algebraic group contains an algebraic subgroup
isomorphic to K* or K. In particular, any one-dimensional irreducible
algebraic group is isomorphic to K* or K.

12) The closure of any solvable subgroup of an algebraic group is a solvable
subgroup.

13) Any subgroup of an irreducible solvable algebraic group consisting of semi-
simple elements (in particular, any finite subgroup) is commutative.

14) Give an example of a solvable finite linear group which cannot be expressed
in any basis by triangular matrices.

15) Any commutative linear group is expressed in some basis by triangular
matrices.

16) Give an example of a commutative finite subgroup in PGL,(K), the quotient
of GL,(K) modulo its center, which is not contained in any Borel subgroup.

17) A commutative algebraic subgroup of an algebraic group is contained in
some Borel subgroup if and only if so is the subgroup of its semisimple
elements.

O
~

Hints of Problems

1. To prove the first statement make use of condition 3) in the definition of a
semisimple operator; to prove the second one make use of condition 2).

2. By induction: consider the restrictions of operators of the given family onto
eigensubspaces of any nonscalar of these operators.

3. Let A = B + C, where B is semisimple, C nilpotent and BC = CB. For any



12.

13.

14.
15.

16.
17.
18.
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A€ K the subspace V,(B) is invariant with respect to C and, since C is
nilpotent, we have
V.(B) = V*(A).

Since V = (P, Vi(B), then V;(B) = V*(4) for any A € K, hence B = A;. The
multiplicative decomposition is treated similarly.

. Consider the formal series e(x) = expx — 1 and /(x) = log(1 + x). Since the

constant terms of these series vanish, we may well substitute one of them into
another one. To solve the problem it suffices to show that

le(x)) =x, e(l(x)=x 4)

For this make use of the fact that e(x) and /(x) have rational coefficients and
define functions of a complex variable for which (4) holds in the functional
sense for sufficiently small |x|.

. Similarly to the proof of Problem 4 make use of formal series in two

indeterminates.

. The map t+— A' is a homomorphism of K onto an algebraic linear group H

containing A. If A # E then the kernel of this homomorphism is a finite
subgroup of K and therefore is the trivial group (recall that char K = 0!).
Thus, H =~ K and similar arguments show that G(A4) = H.
It suffices to prove that any character y of K* is of the form y(x) = x*, where
k € Z. The simplest way to do this is to make use of the fact that a character
x of K* is a polynomial in x and x~! such that y(x)y(x™') = 1 and x(1) = 1.
These are the elements on which no nontrivial character takes the value 1.
For instance, any element whose coordinates are different primes possesses
this property.
Consider a basis in which A is expressed by a diagonal matrix and make use
of Corollary of Theorem 5.
Make use of Problem 7.
It suffices to prove that G(A) o G(A,). Assume the contrary. Then G(A4) N
G(A,) = {E}, ie. G(A) has an isomorphic projection onto G(A,). Therefore
G(A) is a quasitorus. But then by Problem 14 it has the trivial projection
onto G(A,) which is impossible.
Take any pre-image and consider its Jordan decomposition.
Follows from Problem 2 and Corollary of Theorem 5.
Let G be a commutative abstract group. The Jordan decomposition implies
that G splits, as an abstract group, into the direct product of the subgroups
G, consisting of semisimple elements, and G, consisting of unipotent ele-
ments. Let us prove that these subgroups are algebraic which implies the
statement of the theorem with the help of Problem 17 and Theorem 2.
Assume that G is an algebraic linear group acting in a vector space V. Then
G, = Gn L,(V)is an algebraic subgroup. Next, take a basis in which all the
operators of G, are expressed by diagonal matrices. Equating to zero the
nondiagonal elements of the matrix of 4 € G in this basis we get a system of
algebraic equations distinguishing G;.
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19. Apply Corollary 2 of Theorem 9 to a faithful linear representation of G.
In a basis in which the operators of the representation are expressed by
triangular matrices the unipotent elements of G are distinguished by the fact
that all diagonal elements of the corresponding matrices are equal to 1.

20. By Problem 17 it suffices to prove that G/U is commutative, consists of
semisimple elements and is irreducible. The first follows from Problem 19,
the second is proved with the help of Problem 16, the third is obvious.

22. Passing to G/U’ we may reduce the proof to the case of a commutative U.
In this case by Theorem 2 U is a vector group and the action of the torus
T on it is linear. By Theorem 3 U splits into the direct product of one-
dimensional subgroups normalized by T. For U, we may take the product
of all these subgroups except any one of them.

23. Make use of Problem 12.

24. Follows from Theorem 12 and Corollary of Theorem 11.

§3. The Tangent Algebra

The tangent Lie algebra can be defined for an algebraic group over an arbitrary
field (see e.g. [10]) but for simplicity we confine ourselves to C and R. In these
cases no special definition is needed since any complex or real algebraic group
is at the same time a Lie group and its tangent algebra may be understood in
the sense of the Lie group theory.

1°. Connectedness of Irreducible Complex Algebraic Groups. The notion of the
tangent algebra can be used to prove the following theorem.

Theorem 1. Any irreducible complex algebraic group is connected.
Problem 1. Any irreducible commutative complex algebraic group is connected.

Proof of the theorem. Let G be an irreducible complex algebraic group, g its
tangent algebra. Consider some one-parameter subgroups P,, ..., P, of G whose
generators generate g. Denote by G,(i = 1,...,n) the closure of P, in the Zariski
topology. This is a commutative algebraic subgroup. Since its irreducible com-
ponents are closed in the real topology, P, is entirely contained in one irreducible
component; but this means that G; is irreducible.

The subgroup G = G generated by G,, ..., G, is closed in the Zariski topology
(Theorem 1.4). Its tangent algebra contains the tangent algebras of G,, ..., G,
and, in particular, the generators of P,, ..., P,; therefore it coincides with g. Thus
dim G = dim G and therefore G = G.

By Problem 1 the subgroups G,,..., G, are connected and therefore, contained
in the unit component of G. But by what we have already proved they generate
G. Therefore G is connected. []

Thus, for a complex algebraic group its irreducibility is equivalent to its
connectedness in the real topology. Notice that since irreducible components
of an algebraic group do not intersect, its irreducibility is equivalent to its
connectedness in the Zariski topology. All this being taken into account, we
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will, speaking about complex algebraic groups, say “connected” instead of
“irreducible” in order to avoid confusion with the irreducibility of linear groups
which means the absence of nontrivial invariant subspaces.

2°. The Rational Structure on the Tangent Algebra of a Torus. Since a complex
algebraic torus is a commutative Lie group, the Lie algebra structure on its
tangent space is trivial. However, this space is naturally endowed with the
structure of another kind.

Let T be an n-dimensional torus and t its tangent algebra. The differential dy
(at the unit) of any character y € Z(T) is a linear function on t. Clearly,

d(xy + x2) = dy; + dy,. (1)

(Recall that y; + x, is by definition the product of functions y; and y, on T. The
sum on the right-hand side of identity (1) is the usual sum of linear functions
ont.)

Problem 2. If (¢,,...,¢,) is a basis of Z(T) then (de,,...,dg,) is a basis of the
space t* of linear functions on t.

For any additive number group 4, set
f(4) = {E e fldx(&) € Afor all e X(T)}
={¢efldg(l)e Afori=1,...,n}.

If k is a number field, then f(k)is a k-form of the space f (see the definition in 2.3.6).

In the sequel, while speaking about the field over which the linear maps and
subspaces of the tangent algebras of tori are defined we will have these very
forms in mind.

Problem 3. The differential of any homomorphism (in particular, any auto-
morphism) of a torus is defined over Q (and the more so over any other number
field).

Problem 4. The tangent algebras of algebraic subgroups of a torus are exactly
the subspaces of its tangent algebra which are defined over Q.

3°. Algebraic Subalgebras. Let G be a complex algebraic group. A subalgebra
b < g is called algebraic if it is the tangent algebra of an algebraic subgroup
H < G or, in other words, if the corresponding connected virtual Lie subgroup
of G is an algebraic subgroup. As shown e.g. in Problem 4, certainly not any
subalgebra is algebraic.

In this subsection we will find certain sufficient conditions for algebraicity
of a subalgebra (and therefore sufficient conditions for this subalgebra to be
the tangent algebra of a Lie subgroup). The existence of such conditions is one
of the reasons why algebraic group theory is useful in the Lie group theory.

Problem 5. The derived algebra of an algebraic subalgebra is an algebraic
subalgebra.



124 Chapter 3. Algebraic Groups

Theorem 2. Let an algebraic subgroup H of a complex algebraic group G be
generated by connected algebraic subgroups H,, o € A for a set A. Then the tangent
algebra by of H is generated by the tangent algebras b, of H,’s.

Problem 6. Prove this theorem.

Corollary. The subalgebra generated by any family of algebraic subalgebras is
algebraic.

Obviously the intersection of any family of algebraic subgroups is an algebraic
subgroup. Therefore for any subalgebra f) < g there exists the smallest algebraic
subalgebra containing b. It is called the algebraic closure of b and is denoted
by b“.

Problem 7. b” is the tangent algebra of the closure (in the Zariski topology) of
the connected virtual Lie subgroup H < G corresponding to b.

The properties of the algebraic closure are similar to those of the Malcev
closure (see 1.4.2).

Theorem 3. Let by be a subalgebra of the tangent algebra of a complex algebraic
group G and b its algebraic closure. Then (H°*) = V.

This theorem is proved in exactly the same way as Theorem 1.4.3 (the sub-
groups H, and H, turn out to be algebraic: see Example 1.1.3)

Corollary 1. The derived algebra of any subalgebra is an algebraic subalgebra.
In particular, any subalgebra coinciding with its derived algebra is algebraic.

Corollary 2. The algebraic closure of a commutative (solvable) algebra is
commutative (solvable).

Maximal solvable subalgebras of g are called its Borel subalgebras.

Problem 8. Any Borel subalgebra of g is the tangent algebra of a Borel
subgroup of G.

Problem 9. The algebraic closure of an ideal is an ideal.

Problem 10. The radical of G is an algebraic subgroup.

Alinear Lie algebra by = gl(V)is called algebraic ifit is algebraic as a subalgebra
of the tangent algebra of GL(V), i.e. if it is the tangent algebra of an algebraic
linear group H < GL(V).

All that has been stated in this subsection surely holds for G = GL(V). In
particular, Corollary 1 of Theorem 3 enables us to conclude that any linear Lie
algebra coinciding with its derived algebra is algebraic.

4°. The Algebraic Structure on Certain Complex Lie Groups

Theorem 4. Let G be a connected complex algebraic group coinciding with its
commutator group. Then any differentiable homomorphism of G into a complex
algebraic group H is polynomial.
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Proof. Let f: G —» H be a differentiable homomorphism. Consider its graph
I'=1{(g9,.f(g9)) € G x H: g € G}. Clearly I" is a connected Lie subgroup of G x H
and its projection onto G is isomorphic to I". Its tangent algebra is isomorphic
to the tangent algebra of G, hence it coincides with its derived algebra. Therefore
[ is an algebraic subgroup of G x H (Corollary 1 of Theorem 3). By Theorem
1.6 the map g+ (g, f(g)), inverse to the projection I"— G is polynomial. There-
fore f is also polynomial. []

An algebraic structure on a complex Lie group G is an algebraic group structure
on G compatible with the Lie group structure, i.e. generating the same Lie group
structure. Since any algebraic group has a faithful linear representation, for the
existence of an algebraic structure on a complex Lie group it is necessary that
this group has a faithful linear representation (as a Lie group).

Theorem 5. A connected complex Lie group coinciding with its commutator group
and having a faithful linear representation admits a unique algebraic structure.

Problem 11. Prove this theorem.

5°. Engel’s Theorem. In this subsection we consider vector spaces and Lie
algebras over an arbitrary field.

A linear Lie algebra g = gl(V) is called unipotent if all its operators are
nilpotent. (The origin of this term will become clear in the sequel: see Problem
15.)

Problem 12. If a linear Lie algebra g < gl(V) is unipotent then so is the linear
Lie algebra ad g < gl(g).

Theorem 6 (Engel’s theorem.) Let g < gl(V) be a unipotent linear Lie algebra.
There exists a nonzero vector in V annihilated by all operators of g.

Proof will be carried out by induction in dimg. Suppose dimg > 0 and
the statement holds for all linear Lie algebras whose dimensions are less than
dimg. Let ) be a maximal subalgebra of g. Let us prove that b is an ideal of
codimension 1.

Consider the linear representation p of ) in g/b induced by the adjoint repre-
sentation of g. Problem 12 implies that the linear Lie algebra p(b) is unipotent.
By the inductive hypothesis there exists a nonzero vector in g/bh annihilated by
all operators of p(b), i.e. there exists an element C € g\b such that [h,C] < b.
But then h + (C) is a subalgebra of g and the maximality of }) implies that
b + (C> = g. With the above this means that b is ideal of codimension one.

Consider the subspace V, = {v e V: hv = 0} = V. By the inductive hypothesis
Vo # 0. The fact that b is an ideal in g easily implies that V, is g-invariant. Let C
be any element of g which does not belong to b. Since C is nilpotent and V; is
invariant with respect to C, there exists a nonzero vector in V; annihilated by C.
Clearly, this vector is annihilated by all the operators of g. (]

Corollary 1. Under the conditions of the theorem there exists a basis of V with
respect to which all operators of g are expressed by niltriangular matrices.
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This corollary is deduced from the theorem like the similar corollary of Lie’s
theorem, cf. 1.4.6. This in turn implies

Corollary 2. Any unipotent Lie algebra is solvable.

Engel’s theorem implies not only the solvability but also the nilpotency of any
unipotent linear Lie algebra. (For the definition of a nilpotent Lie algebra see
Exercise 1.2.16.) In fact, the Lie algebra of niltriangular matrices is clearly
nilpotent. Corollary 1 of Engel’s theorem shows that any unipotent linear Lie
algebra is isomorphic to some of its subalgebras and therefore is also nilpotent.
However, the converse is false: there exist nilpotent Lie algebras which are not
unipotent, e.g. Lie algebra of triangular matrices with equal elements on the
diagonal.

6°. Unipotent Algebraic Linear Groups. Let V be a complex vector space.

Problem 13. An operator X € gl(V) is nilpotent (semisimple) if and only if
exp tX is unipotent (semisimple) for any ¢ € C.

For anv nilpotent X e nI(V\ the linear group fexntX:t
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2.2. Clearly, its tangent algebra is generated by X. Therefore an
unipotent linear Lie algebra is algebraic.
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Problem 14. Any unipotent linear Lie algebra is algebraic.

Problem 15. A connected algebraic linear group is unipotent (see 2.2) if and
only if its tangent algebra is unipotent.
This explains the term “unipotent” applied to the linear Lie algebras.

Theorem 7. Any unipotent complex algebraic linear group G = GL(V)is solvable
and is expressed in some basis by unitriangular matrices. The map exp: g — G is
an isomorphism of algebraic varieties.

Problem 16. Prove this theorem.

Notice that the last statement of the theorem makes sense independently of a
linear representation of G.

7°. The Jordan Decomposition in the Tangent Algebra of an Algebraic Group.
Let G be a complex algebraic group. For any £ € g denote by G(&) the smallest
algebraic subgroup of G whose tangent algebra contains &, i.e. the closure (in the
Zariski topology) of the subgroup {exp t&: t € C}. This is an irreducible commu-
tative algebraic group. By Corollary of Theorem 2.8 it splits into the direct
product of a torus and a vector group.

An element ¢ € g is called semisimple (nilpotent) if G(&) is a torus (a vector
group).

Problem 17. Let f: G — H be an algebraic group homomorphism. If £ € g is
semisimple (nilpotent) then so is df(&) € b.

Problem 18. Let R be a linear representation of G. If & € g is semisimple
(nilpotent) then so is the linear operator dR(&).
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Theorem 8. Any element & of the tangent algebra g of a complex algebraic group
G can be uniquely presented in the form of the sum of commuting semisimple and
nilpotent elements &, &,,.

The elements &, and &, are called the semisimple and nilpotent parts of &
respectively and the decomposition & = & + £, is called its Jordan decomposition.

Problem 19. Prove Theorem 8.

Problem 20. Let R be a locally faithful (i.e. with a finite kernel) linear represen-
tation of G and ¢ € g. If dR(&) is semisimple (nilpotent) then so is &.

Problems 18 and 20 show in particular that semisimple and nilpotent elements
of the tangent algebra of GL(V) are same as semisimple and nilpotent linear
operators.

Problem 21. Let f: G — H be an algebraic group homomorphism. For any
semisimple (nilpotent) element # € df(g) its pre-image (df) ™" (1) contains a semi-
simple (nilpotent) element.

8°. The Tangent Algebra of a Real Algebraic Group. Let G be a real algebraic
group, g its tangent algebra (as of a real Lie group), G(C) its complexification,
see 1.1.

The tangent algebra of G(C) coincides with the complexification g(C) of g, see
2.3.4. If 7 is the complex conjugation on G(C) then dz is the complex conjugation
on g(C).

Problem 22. A connected algebraic subgroup of G(C) is a complexification of
an algebraic subgroup of G if and only if its tangent algebra is defined over R (as
a subspace of g(C)).

A Lie subalgebra b < g is called algebraic if it is the tangent algebra of an
algebraic subgroup H = G. For any subalgebra ) = g there exists the smallest
algebraic subalgebra containing b. It is called the algebraic closure of }) and is
denoted by h“.

Problem 23. The subalgebra ) = gis algebraicif and only if its complexification
bh(C) is an algebraic subalgebra of g(C). In any case §*(C) = h(C)".

Due to this fact most of the results of 3° are routinely carried over to the real
setting. In particular, in this way we obtain that the following subalgebras of g
are algebraic:

1) the derived algebra of any subalgebra; in particular, any subalgebra coin-
ciding with its derived algebra;

2) a subalgebra generated by any family of algebraic subalgebras;

3) the radical of g.

9°, The Union of Borel Subgroups and the Centralizers of Tori. Let G be a
connected complex algebraic group, g its tangent algebra.

Problem 24. Any element of g is contained in some of Borel subalgebras.
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Problem 25. The union of all Borel subgroups of G is an épais subset in G.
Actually, the following statement holds:

Theorem 9. Every element of a connected complex algebraic group is contained
in some of its Borel subgroups.

Proof. Let U be the union of all Borel subgroups of G. It follows from Problem
25 that U is dense in G in the real topology. Therefore it suffices to prove that
U is closed in the real topology.

We have U = | J,.¢9Bg ™", where B is a fixed Borel subgroup of G. Let the
sequence of elements g,b,9, (g, € G, b, € B) converge to some g € G. Since G/B
is compact (Theorem 2.12), then, passing to a subsequence, we may assume that
9n = g,C,, Where g, — h € G and c, € B, but then

cpbc;t > h7lgh=beB

hence,g = hbh ' e U. ]
The combination of this theorem with Theorem 2.11 and Corollary of
Theorem 2.12 yields the following two corollaries.

Corollary 1. Every semisimple element of G is contained in a torus.

Corollary 2. Every central semisimple element of G is contained in the inter-
section of all maximal tori of G.

Problem 26. Let S = G be a torus and g € G a semisimple element commuting
with it. Then there exists a torus T < G containing S and g.

Theorem 10. The centralizer Z(S) of any torus S in a connected complex
algebraic group G is connected.

Problem 27. Prove the theorem.

Exercises
1) Thesubgroup {(e%, e”): z € C} = (C*)*isa Lie subgroup but not an algebraic
subgroup.
2) Any differentiable linear representation of a complex algebraic torus is
polynomial.

3) Give an example of a nonpolynomial differentiable linear representation
of C.

4) The complex Lie group C/(Z + iZ) does not admit an algebraic structure.

(For a broader interpretation of the notion of an algebraic group, which does

not require that the group variety is affine, this Lie group admits an

algebraic structure. However, there are examples of complex Lie groups

which do not admit an algebraic structure in this broader sense either.)

The complex Lie group C x C* admits a continuum of different algebraic

structures.

6) An algebraic normal subgroup of a connected complex algebraic group G
which is a quasitorus is contained in the center of G.

(]
=
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10.
12.

13.
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15.
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An element ¢ of the tangent algebra of a complex algebraic group G is

semisimple if and only if exp £ € G is semisimple.

A Lie algebra g (over an arbitrary field) is nilpotent if and only if the linear

Lie algebra ad g is unipotent.

The derived algebra of any solvable subalgebra of the tangent algebra of a

complex algebraic group is unipotent (i.e. all its elements are nilpotent).

Given a linear operator X e gl(V) let g(X) be the smallest algebraic linear

Lie algebra which contains it, i.e. the algebraic closure of the one-dimensional

linear Lie algebra (X ).If X = X + X, is the additive Jordan decomposition

of X then g(X) = g(X,) ® {X,).

Under the notation of Exercise 10 if X is expressed in some basis by a

diagonal matrix diag (x,, ..., x,) then g(X) consists of all operators which in

the same basis are expressed by matrices of the form diag (y,,...,y,), where

Y1, ..., Vo satisfy all linear equations with integer coefficients satisfied by x,
ey Xpe

Under the notation of 7° the dimension of the vector factor of G(&) does not

exceed 1.

Hints to Problems

. Make use of the description of algebraic subgroups of a torus given in

Theorem 2.5.

. Follows from Theorems 1.5 and 1.4.1.
. Leth < b beasubalgebra generated by by, a € 4,and A < H the correspond-

ing connected virtual Lie subgroup (cf. Theorem 1.2.8). For any a € A we
have b o b, hence H > H,. Therefore H = H and h = b.

. First prove that any Borel subalgebra is an algebraic subalgebra.
. Solution is similar to that of Problem 1.4.6.

Prove that the radical of g is an algebraic subalgebra.

It is subject to a straightforward verification that if X™ = 0 then (ad X)
0.

First prove the “only if” part. After this prove that exptX = (exptXj)
(exptX,) is the (multiplicative) Jordan decomposition of exp tX.

Follows from the remark made just before the formulation of the problem
and Corollary of Theorem.

The “if” part is proved with the help of Corollary 1 of Engel’s theorem. The
“only if” part follows from Problem 13.

The first part of the theorem follows from Problem 15 and corollaries of
Engel’s theorem. The surjectivity of exp: g = G follows from the fact that
together with 4 the group G contains the subgroup G(A) = {exptX:t e C},
where X = log(A), cf. Theorem 2.1. The remaining properties of the map exp
are proved with the help of Problem 2.4.

Notice that the element df(£) is contained in the tangent algebra of the
algebraic subgroup f(G(¢)) < H.

Make use of the hint to Problem 17 and of Problem 13.

Let G(¢) = T x U, where T is a torus and U a vector group. If g(é) =t @ u

2m-1 _
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is the corresponding decomposition of the tangent algebra then the decom-
position & = &, + &,, where £, € t and ¢, € u, is the desired one. The unique-
ness of the desired decomposition follows, due to Problem 18, from the
uniqueness of the additive Jordan decomposition of a linear operator.

20. Consider the Jordan decomposition of ¢ and make use of Problem 18.

21. Take any pre-image and consider its Jordan decomposition.

22. Problem 1.10 implies that a connected algebraic subgroup H < G(C) is a
complexification of an algebraic subgroup of G if and only if (H) = H and
this, in turn, is equivalent to the fact that dr(h) = b. Next, make use of
Problem 2.3.29. ‘

23. Notice that if the subalgebra (C) is algebraic then the corresponding con-
nected algebraic subgroup of G(C) is according to the Problem 22 a com-
plexification of an algebraic subgroup of G. The second statement follows
from the first one.

26. By Corollary 1 of Theorem 9 g is contained in a torus. Let H = G be the
subgroup generated by this torus and S. This is a connected algebraic
subgroup by Theorem 1.4 and g belongs to its center. Let T be a maximal
torus of H containing S. By Corollary 2 of Theorem 9 T'ag.

27. It suffices to prove that any semisimple element of Z(S) is contained in Z(S)°
but this follows from Problem 26.

§4. Compact Linear Groups

Compact linear groups give an example when the algebraicity follows from a
topological assumption. Namely, any compact linear group acting in a real
vector space is algebraic (and therefore, it is a Lie group). This will constitute
one of the theorems of this section.

1°. A Fixed Point Theorem. Proofs of all properties of compact linear groups
contained in this section are based on the following theorem.

Theorem 1. Let G be a compact subgroup of the group GA(S) of affine trans-
formations of a real affine space S and let M = S be a nonempty convex G-invariant
subset. Then M contains a fixed point of G.

Before we proceed with the proof of this theorem define the center of mass of
a nonempty bounded convex subset M of a real affine space S to be

(M) = u(M)™! J xp(dx),

M

where y is the usual measure in S invariant with respect to parallel translations.
The measure 4 is defined up to a constant factor but it is clear from the formula
that the ambiguity in the choice of u does not affect the results. The integral on
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the right-hand side can be defined either 1) coordinate-wise or 2) directly, as the
limit of integral sums which are (the factor preceding the integral being taken
into account) linear combinations of points of S with the sum of coefficients being
equal to 1, and therefore make sense. The first definition shows the existence of
the integral and the second one its independence of the choice of a coordinate
system.

In general case let P be the smallest plane in S containing M. Then M has a
nonempty interior as a subset of the affine space P and we define c(M) as above
but with S replaced by P.

Problem 1. ¢(M) e M.

Since the center of mass is defined in terms of affine geometry, c(gM) = gc(M)
for any affine transformation g of S. In particular, if M is invariant with respect
to an affine transformation then its center of mass is a fixed point of this
transformation.

Proof of the theorem. If M is bounded then its center of mass will do as a fixed
point. In general let M’ be the convex hull of an orbit of G in M. Clearly, M is
an invariant subset. Since the orbit is compact, its convex hull is bounded. The
point ¢(M') e M’ = M is the desired fixed point.

Applying the theorem to M = S we get

Corollary. Any compact group of affine transformations has a fixed point.

2°. Complete Reducibility

Theorem 2. Let G be a compact group of linear transformations of a real
(complex) vector space V. Then there exists a positive definite quadratic (Hermitian)
form on V invariant with respect to G.

In other words V can be made into a Euclidean (Hermitian) space so that all
transformations of G are orthogonal (unitary).

Proof is obtained by applying Theorem 1 to the image of G under the natural
linear representation of GL(V) in a (real) space S of all quadratic or Hermitian
forms on V. For M take the subset of positive definite forms. []

Corollary. Any compact linear group in a real or complex vector space is
completely reducible.

Recall that a linear group G = GL(V) is irreducible if V # 0 and there are no
nontrivial G-invariant subspaces in V and completely reducible if V decomposes
into the direct sum of G-invariant subspaces so that the restriction of G onto any
of them is irreducible. (Notice a linguistic inconsistency: any irreducible linear
group is completely reducible!)

Problem 2. A linear group G = GL(V) is completely reducible if and only if
for any G-invariant subspace of V there exists a G-invariant complementary
subspace.
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If V is a Eucledean (Hermitian) space and all transformations from G are
orthogonal (unitary) then for a complementary invariant space we can take the
orthogonal complement which implies the above Corollary.

3°. Separating Orbits with the Help of Invariants. Let V' be a (finite-dimensional)
vector space over an infinite field K. Every linear operator A € GL(V) determines
an automorphism A* of the polynomial algebra K[ V] acting via the formula

(A*f)(x)=f(A7'x)  (feK[V]xeV)

The map A+— A* is a linear representation of GL(V) in K[V]. This representa-
tion is infinite-dimensional but is the inductive limit of finite-dimensional ones:
K[V]is the union of the increasing chain of finite-dimensional GL(V)-invariant
subspaces K[V]™, m=0, 1, ..., where K[V]™ consists of polynomials of
degree < m.

Now, let G = GL(V) be a subgroup. A polynomial f € K[V] is G-invariant if
A*f = f or, equivalently, if

f(Ax) = f(x) forany AeG,xeV.

In other words, a polynomial f is G-invariant if it is constant on every orbit of
G. The invariant polynomials constitute a subalgebra of K[V] denoted by
K[V]e

We say that two orbits of G are separated by invariants if for any x, y € V that
belong to different orbits there exists f € K[V ]€ such that f(x) # f(»).

For example, let G = S,, where n = dim V, be the symmetric group which acts
in V permuting the vectors of a fixed basis. Then K[V ] is the algebra of
symmetric polynomials (in the coordinate system corresponding to the basis). As
1s known, this algebra is generated by the elementary symmetric polynomials o,
..., 0,. Let us prove that the orbits of G are separated by the invariants. To each
x € V with coordinates x, ..., x, assign the polynomial

Q) =(t = x)...(t = x,) =" — o, ()" + - + (= 1)'0,(x)

in a variable ¢t with roots x4, ..., x,. If x and y belong to different orbits of G, i.e.
the coordinates of one of them cannot be obtained from the coordinates of
another by permutation then ¢, # ¢, and therefore o,(x) # g,(y) for some k.

It is possible to show that the orbits of any finite linear group are separated
by the invariants. On the contrary, for infinite groups this is seldom so. For
instance consider a classical situation. Let V = L,(K) be the space of matrices
over an algebraically closed field K and let G = GL(V) be the group of trans-
formations X +— AXA™ (X € L,(K), A € GL,(K)). Then the orbits of G are the
classes of similar matrices and K[V]¢, as it is not difficult to show, is generated
by the coefficients of the characteristic polynomial (which are polynomials in the
matrix elements). Therefore the matrices with the same characteristic poly-
nomials but different Jordan forms are not separated by the invariants although
they belong to different orbits.
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Theorem 3. The orbits of a compact linear group acting in a real vector space
are separated by the invariants.

Proof. Let O, and O, be different orbits of a compact linear group G acting in
a real vector space V. Since O, and O, are nonintersecting compact subsets, there
exists a continuous function ¢ on ¥V equal 1 on 0, and — 1 on 0,. Furthermore,
by Weierstrass’s theorem there exists f € R[V] such that

If(x) —ex)I <1 for xe0,u0,

and therefore

f(x)>0 for xe0, and f(x)<0 for xeO, (1)

Let m be the degree of this polynomial.

In S = R[V]™, consider the subset M consisting of all polynomials satisfying
(1). Clearly, M is convex and invariant with respect to the natural linear represen-
tation of G in S. By Theorem 1 there exists a G-invariant polynomial in M. It is
clear from (1) that the values of this polynomial at the points of O, are different
from the values at the points of 0,. (]

Example. Let V be the space of symmetric real matrices of order n. To each
orthogonal n x n matrix A assign a linear transformation R(A) of V by the
formula

R(A)X = AXA™ (XeV)

Then we get a linear representation R: O, - GL(V). Let G = R(O,). This is a
compact linear group acting on the space V. As it is known from the linear
algebra, each orbit of this group contains a diagonal matrix. Therefore the orbit
which contains the symmetric matrix X is determined by the characteristic
polynomial of this matrix. Since the coefficients of a characteristic polynomial
are G-invariant polynomials in the elements of X, the orbits of G are separated
by the invariants as it should be according to the theorem. (J

4°. Algebraicity

Theorem 4. The orbits of a compact linear group G acting on a real vector space
V are algebraic varieties in V.

Proof. Let O be an orbit and I an ideal of R[ V] consisting of invariants which
vanish on 0. By Theorem 3 for any orbit O’ # O there exists an invariant which
takes different values on O and O'. Adding to it an appropriate constant we can
get a polynomial f e I which does not vanish at any point of O'. Thus, the set of
zeros of I coincides with O implying that O is an algebraic variety in V. (J

Theorem 5. Any compact linear group acting on a real vector space is algebraic
(and therefore is a linear Lie group).
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Proof. Let G = GL(V) be a compact linear group. Consider a linear represen-
tation R of G in the space L(V) defined by the formula

R(A)X = AX (Ae GL(V), X € L(V)).

The group G, as a subset of L(V), is an orbit of R(G) (namely G = R(G)E). By
Theorem 4 this implies that G is algebraic. (]

Notice that a similar theorem fails over C. More precisely, the following
statement holds.

Problem 3. Any compact complex algebraic group is finite.

However, Theorem 5 implies that any compact linear group acting on a
complex vector space V is an algebraic subgroup of the group of invertible linear
transformations of V considered as a real vector space and therefore a real
algebraic subgroup of GL(V).

In Chapter 5 we will obtain a classification of connected compact linear groups
and prove that any compact Lie group admits a faithful linear representation.

Exercises

1) Let G be anirreducible compact linear group acting on a real (complex) vector
space V. Then a G-invariant positive definite quadratic (Hermitian) form on
V is unique up to a positive factor.

2) A linear operator in a vector space over an algebraically closed field is
semisimple if and only if the cyclic linear group it generates is completely
reducible.

3) The orbits of any finite linear group (over an arbitrary field) are separated by
the invariants.

4) Let V = L,(K) be the space of matrices over an algebraically closed field K
and let G = GL(V) be the group consisting of transformations

X AXA™ (X e L,(K), 4 € GL,(K)).

Then K[V]€ is generated by the coefficients of the characteristic polynomial.
(Hint: consider the restrictions of invariants onto the subspace of diagonal
matrices.)

5) In the notations of Exercise 4 the orbit of X € L,(K) is closed in L,(K) if and
only if X is similar to a diagonal matrix.

Hints to Problems

1. We can assume that M has a nonempty interior. In this case suppose c(M) ¢ M.
Then there exists an affine function [ on S positive at all interior points of M
and vanishing at ¢(M). But this is impossible since the definition of the center
of mass implies that

l(c(M)) = p(M)™! J [(x)pu(dx) > 0.

M
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2. Let V=V, @ - @V, be the decomposition of V into the direct sum of
invariant subspaces on each of which G acts irreducibly and let U < V be an
invariant subspace. Then as an invariant subspace complementary to U we
can always take the sum of a certain number of subspaces Vi, ..., V,.

3. More generally, an irreducible complex affine variety of positive dimension
cannot be compact: see 2.2.5.



Chapter 4
Complex Semisimple Lie Groups

This chapter deals with the most explored section of the theory of Lie groups

and Lie aleebras. Its main result is the comnlete classification of connected
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complex semisimple Lie groups and their irreducible linear representations.

This classification is based on the theory of root systems, which because of its

numerous applications deserves a special treatment. The theory is axiomatically
20\ 4L

developed in § 2. During the whole chapter (except 1.1°-1.3°) the ground field is
C. All the vector spaces and Lie algebras considered are finite-dimensional.

§ 1. Preliminaries

1°. Invariant Scalar Products. Let G be a Lie group (real or complex). A bilinear
function b on the tangent algebra g of G is said to be invariant if it is invariant
with respect to Ad G, i.e. if

b((Ad g)x,(Ad g)y) = b(x, )

foranygeG, x,yeaq.

Problem 1. An invariant bilinear function b on g satisfies

b([x,y),2) + b(y,[x,2]) =0 (1)

for any x, y, ze g. If G is connected then the converse statement holds: any
bilinear function b on g satisfying (1) is invariant.

Now let g be a Lie algebra over an arbitrary field K. A bilinear function b on
g satisfying (1) is called invariant. If, in addition, b is symmetric we will call b an
invariant scalar product on g.

Examples. 1) Let E be the three-dimensional Euclidean space with the scalar
product (-, *). Fixing an orientation on E we make E into a Lie algebra over R
with respect to the vector product, and the scalar product (-, ) is invariant.

2) In gl(V), there is the canonical invariant scalar product

(X,Y)=trXY. 2)
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3) Let g be an arbitrary Lie algebra, p: g — gl(V) its linear representation.
Then the bilinear function

(x, ), = (p(x), p(¥)) = tr(p(x)p(y))

is an invariant scalar product on g. In particular, on any Lie algebra g the
invariant scalar product \

(X, Y)ag = tr((ad x)(ad y))

is defined; it is called the Cartan scalar product (or the Killing bilinear function).
It is not difficult to verify that this scalar product is invariant with respect to all
the automorphisms « of g:

\

a{X), 4(Y))ad = (X, P)aa-

—_

scalar pr oduct on a Lie algebra g. For any subspace

at ={xeg(x,y)=0forallyea}.

Problem 2. If a is an ideal of g, then so is a™.

Let V be a vector space over K and g a subalgebra of gl(V). The embedding
g — gl(V) defines an invariant scalar product (-, ) on g (see Example 3); it is
defined by (2). We wish to specify (for K = C) those algebraic linear Lie algebras
for which this scalar product is nondegenerate.

A complex linear Lie algebra t is called diagonalizable if it is commutative and
all its elements are semisimple.

Problem 3. A complex algebraic linear Lie algebra is diagonalizable if and only
if it is the tangent algebra of a torus.

Problem 4. Let t be a diagonalizable complex algebraic linear Lie algebra. Then
the scalar product (2) is nondegenerate on t and positive definite on the real form
t(R) (see 3.3.2°).

Problem 5. Let n be a complex linear Lie algebra, on which the scalar product
(2) vanishes identically. If n is algebraic then it is unipotent; in general case it is
solvable.

Problem 6. If n is a unipotent ideal of a linear Lie algebra g then (n,g) = 0.

Problem 7. Let K = C or R and let g be a semisimple linear Lie algebra. Then
the scalar product (2) is nondegenerate on g.

Notice that any semisimple Lie algebra admits a faithful linear representa-
tion, e.g. the adjoint one. Therefore it may always be assumed linear. Problem 7
implies
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Theorem 1. Any semisimple Lie algebra g over C or R possesses a nondegenerate
invariant scalar product. In particular, the Cartan scalar product on g is non-
degenerate.

Problem 8. If there is an invariant scalar product on a Lie algebra g then the
center 3(g) is contained in g'*. If this scalar product is nondegenerate then

3(g)=g™*.

Problem 9. A semisimple Lie algebra (complex or real) coincides with its
derived algebra. Any semisimple linear Lie algebra g = gl(V) is contained in the
subalgebra sl(V) of traceless operators. '

A complex linear Lie algebra g is called reductive if g = 3@® g, where 3 is a
diagonalizable and g, is a semisimple ideal of g. Clearly, 3 coincides with 3(g) and
also with radg. By Problem 9 g, coincides with the derived algebra g of g.
Problems 4, 7 and 8 imply that the scalar product (2) is nondegenerate on any
reductive algebraic linear Lie algebra.

Now let g be an algebraic linear Lie algebra over C such that the scalar product
(2) is nondegenerate on it.

Problem 10. The center 3(g) of g is algebraic and consists of semisimple
elements.

Problems 10, 4 and 8 imply that g = 3(g) ® g'.

Problem 11. g’ is semisimple.

Thus we have proved

Theorem 2. Ler g = gl(V) be an algebraic linear Lie algebra over C. The
following conditions are equivalent:

1) g is a reductive algebraic linear Lie algebra;

2) the scalar product (2) is nondegenerate on g.

2°. Algebraicity. Let g < gl(V) be a semisimple linear Lie algebra over K = C
or R. By Problem 8 and Corollary 1 of Theorem 3.3.3 (valid also over R as had
been mentioned in 3.3.8) g is an algebraic Lie algebra. This means that there
exists an irreducible algebraic subgroup G = GL(V) with the tangent algebra g.
For K = C this subgroup is connected (see Theorem 3.3.1).

Problem 12. Any connected semisimple virtual Lie subgroup G =« GL(V)is a
Lie subgroup, which is algebraic if K = C or which is the identity component
of an irreducible algebraic linear group if K = R.

A complex algebraic linear Lie group G is called reductive if its tangent alge-
bra g is reductive. Problem 3.3.18 implies that this property of G does not de-
pend on its representation as a linear group, so the notion of reductive complex
algebraic group is well-defined. Any semisimple complex algebraic group is
reductive. A reductive algebraic group G is semisimple if and only if 3(g) = 0.

Theorem 2 implies that a complex algebraic linear group is reductive if and
only if the scalar product (2) is nondegenerate on its tangent algebra.
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Problem 13. The classical complex linear groups SL,(C) (n = 2), SO,(C) (n = 3),
Sp.(C) (n = 2) are semisimple and GL,(C) is reductive. All these groups are
irreducible.

Example. Consider the real algebraic group SO, ;, where k, [ >0, k + [ =n,
consisting of unimodular matrices corresponding to linear operators preserving
a nondegenerate quadratic form q of signature (k, I). The group SO, ,(C) is the
group of unimodular complex matrices whose corresponding operators preserve
gq. Since all nondegenerate quadratic forms in C" are equivalent, SO, ,(C) is
isomorphic to SO,(C). Therefore SO, ; is an irreducible semisimple algebraic
group. At the same time it is not connected (see Problem 1.3.9).

Problem 9 and Theorem 1.4.1 imply that a connected semisimple Lie group
coincides with its commutator group. Therefore (see Theorem 3.3.4) any dif-
ferentiable representation of a connected semisimple complex algebraic group G
is polynomial. By Theorem 3.3.5 the algebraic structure on G is unique. (Actually
these statements are also true for arbitrary reductive algebraic groups over C,
see Exercise 10). In § 3 we will show that any connected semisimple complex Lie
group admits the structure of an algebraic group.

Let g be the tangent algebra of an algebraic group G over C. Any commutative
subalgebra of g consisting of semisimple elements is called diagonalizable.

Problem 14. An algebraic subalgebra t g is diagonalizable if and only if it is
the tangent algebra of a torus T = G. The maximal diagonalizable subalgebras
are algebraic and correspond to maximal tori of G. If a maximal diagonalizable
subalgebra t is zero then G° is unipotent.

Two subalgebras of a Lie algebra g are conjugate if they are transformed into
each other by an automorphism from Int g. Problems 14 and 3.2.24 imply that
all maximal diagonalizable subalgebras of the tangent algebra of a complex
algebraic group are conjugate.

The rank of a reductive algebraic group G (or of its tangent algebra g) is the
dimension of a maximal torus of G (or of a maximal diagonalizable subalgebra
of g and is denoted by rk G = rk g.

3°. Normal Subgroups. We assume that the ground field K is either C or R. If
g is simple, i.e. has no proper ideals, then either g is noncommutative or g is a
one-dimensional commutative Lie algebra. Clearly, a noncommutative simple
Lie algebra is semisimple.

Let g be a semisimple Lie algebra; we may consider it as a subalgebra of gl(V),
where V is a vector space over K.

Problem 15. On any ideal a of g the scalar product (2) is nondegenerate and
g =a® at. Ifbis an ideal of a, then b is also an ideal of g.

Problem 16. If a is an ideal of g, then a and g/a are semisimple.

Problem 17. g splits into the orthogonal direct sum of noncommutative simple
ideals g;, and any ideal of g is the sum of some of g;’s.

Problem 15 and 17 imply
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Theorem 3. A semisimple Lie algebra splits uniquely into the direct sum of
noncommutative simple ideals.

The converse statement is also true:

Problem 18. If a Lie algebra g splits into the direct sum of noncommutative
simple ideals then g is semisimple.

Now let us prove the corresponding results for Lie and algebraic groups.

A Lie group (in particular an algebraic group) is called simple if its tangent
algebra is simple. By Problem 1.2.21 and Theorem 1.2, a connected Lie group G
is simple if and only if G has no connected normal virtual Lie subgroups, not
coinciding with {e} or G.

Problem 19. A connected simple Lie group or an irreducible simple algebraic
group is either noncommutative and semisimple or commutative and one-
dimensional.

Problem 20. A connected complex algebraic group G is simple if and only if it
does not contain proper connected normal algebraic subgroups.

Let G be a Lie group, Gy, ..., G, its normal Lie subgroups. We say that G
locally splits into the direct product of subgroups G;’s if G = G, ..., G, and all
the intersections G; " (G, ... G;_, G;,, ... G,) (i = 1,...,s) are discrete.

Problem 21. A connected Lie group G locally splits into the direct product of
connected normal Lie groups G,, i = 1,..., s, if and only if its tangent algebra g
splits into the direct sum g = g, @ -+ @ g,, where g; is the ideal tangent to G;.

Theorem 3 and Problems 21, 18 imply

Theorem 4. A connected semisimple Lie group G locally splits into the direct
product of connected noncommutative simple normal Lie subgroups G = G, ... G;.
Given such a decomposition, any normal Lie subgroup of G is a product of some
of G;/s. Any Lie group that locally splits into the direct product of noncommutative
simple normal Lie subgroups is semisimple.

Problem 22. A connected complex algebraic group G is reductive if and only
if it locally splits into the direct product G = ZG,, where Z is a torus and G, is
a semisimple normal subgroup. In this case Z coincides with Z(G)° and with
Rad G, whereas G, coincides with the commutator group of G. A homomorphic
image of a reductive group is a reductive group.

4°. Weight and Root Decompositions. From now on and till the end of the
section we will assume that the ground field is C. Algebraic tori will be briefly
called tori.

Let T be a nontrivial torus, t its tangent algebra. As follows from Problem
3.3.2 the correspondence A+ d4 is an injective homomorphism of the group of
characters of T into t* sending any basis of the group Z(T) into a basis of the
space t(R)*, where t(R) is the real form of t defined by (3.3.2). It will be convenient
for us to identify the characters i € Z(T) with their differentials. Then Z(T) is
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identified with the discrete subgroup of the space t(R)* generated by a basis of
this space.

We may assume that the group T is linear. By Problem 2 the space t(R) is a
Euclidean one with respect to the scalar product (2). Consider the canonical
isomorphism A+ u; of t* onto t defined by the formula

(ux) = A(x) (x ) (3)

which maps t(R)* onto t(R). With this isomorphism we may translate the Eu-
clidean space structure from t(R) into t(R)* setting

() = (uz,u,) = Aw,) = p(uy) (4, p € LR)*). )

For any nonzero 4 € t(R)* choose an element h; on the line Cu,; < t(R), such that
A(h;) = 2. Clearly, h, is uniquely defined, belongs to t(R) and is of the form

For any u € t* we have

p(hy) = 2(u, A)/(4, 4) (6)

Now let G be an algebraic linear group containing a torus T and let R:
G — GL(V) be a polynomial linear representation. By Theorem 3.2.3 all the
operators of R(T) are expressed in some basis by diagonal matrices. This means
that

V=@ V., (7)

Aedyg

where @y = Z(T) is the system of weights of the restriction R|T. The elements
of the system @, will be called the weights of the representation R with respect
to T and the decomposition (7) the weight decomposition with respect to T. Some-
times we write @y instead of @g(T).

Problem 23. The system @ spans the subspace {1 € t(R)*: i(x) =0 for all
x € t n KerdR} in t(R)*. In particular, if dR is faithful then &g spans t(R)*.

Now take for R the adjoint representation Ad of G in its tangent algebra. For
any 4 € @, we have

g, = {xeq [hx]=Ai(h)xforall het). (8)

In particular, g, is the centralizer of the subalgebra t of g and therefore is an
algebraic subalgebra containing t.

The nonzero weights of @,4(T) are called roots and the weight subspaces g,
(x # 0) root subspaces of g with respect to T. The root system is denoted by 4(T)
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or 4, hence @,4 = 4(T) U {0}. The decomposition

3=06® @ 8 )

aeA(T)

is called the root decomposition of g with respect to T.

Let us study the action of automorphisms of G on weights and roots. Let
O € AutG, 0 = dO € Autg. The automorphism @ transforms T into T = o(T).
By Problem 3.3.3 the isomorphism 6: t —»t maps t(R) onto t(R) and therefore
induces an isomorphism 9: t(R)* — t(R)*. We have ‘0(Z(T)) = Z(T) and under
the assumed identification of the character with its differential the obtained
isomorphism of the groups of characters is identified with the isomorphism
AL 0.

Problem 24.If @ = a(g), where g € G, then 0 = ‘(Ad g) maps ®L(T) onto Px(T)
and we have Viaq,-1, = R(g)V,. For any O € Aut G we have ‘0(4(T)) = 4(T)
and geg-1(a) = 0(8,)-

Problem 25. For any representation R: G — GL(V), any a € @,4(T), 4 € Px(T)
and any x € g, we have

< Viea A+ ae @g(T),
=0 otherwise

dR(x)V, {

In particular, for any «, f € @,4(T)

(o g S 9 2+ BeOu(T)
9a> Gt _ 0 otherwise.

Now let us investigate the behavior of the root decomposition (9) with respect
to the invariant scalar product (2).

Problem 26. If «, f € ®@,4(T) and « + f8 # 0 then (g,,g5) = 0.

Problem 27. Let G be a reductive algebraic group. Then the scalar product (2)
is nondegenerate on g,. If « € 4(T) then —a € 4(T) and the scalar product is
nondegenerate on g, ® g_,-

Problem 28. If G is a reductive algebraic group then the subalgebra g, is a
reductive algebraic algebra. If, in particular, T is a maximal torus of G then

g(‘):t.

Since all maximal tori in G are conjugate (Problem 3.2.24), Problem 24 implies
that the weight system of a representation and the root system of G with respect
to a maximal torus T are defined uniquely up to an isomorphism of the form
‘(Ad g), where g € G, of the corresponding spaces t(R)*. The roots with respect tc
a maximal torus T are simply called the roots of G; the root system is denoted
dg or 4, since it is transparent from (8) that the root system is completely
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determined by the pair (g, t). The root subspaces with respect to a maximal torus
are simply called root subspaces of g.

In the sequel we assume that G is a reductive algebraic group and T is its
maximal torus. The most interesting is the case when G is semisimple.

Let us present g in the form g = 3(g) @ g’, where g is a semisimple ideal.
Problem 28 implies that any maximal diagonalizable subalgebra t = g contains
3(g) and therefore is of the form t = 3(g) @ t, where t' = tn g’ is a maximal
diagonalizable subalgebra of g'. Conversely, any subalgebra t = 3(g) @ t,, where
t'=tng' i1s a maximal diagonalizable subalgebra of g, is a maximal diago-
nalizable subalgebra of g. Assigning to each linear function on t its restriction
onto t’ we identify the subspace {1 € t*: A(x) = 0 for all x € 3(g)} with t'.

Problem 29. The root system 4, is identified with 4, and 4, = 4, spans the
space t'(R)* while the vectors h, (« € 45) span t} (R). The algebra g is commutative
if and only if 4; = ¥ and semisimple if and only if 4, spans t(R)*.

Problem 30. For any x € g,, y € g,, Where a € 4, we have

[x,y] = (x, ))u, = 3(x, y) (@, 2)h,.

The subspace [g,,3-,] is one-dimensional and is spanned by h,.

[t is clear from Problem 30 that the line Ch, for any given « € 4, is determined
by the Lie algebra structure on g and does not depend on the chosen realization
of g as a linear Lie algebra. The definition of h, implies that it is also uniquely
defined. If g is semisimple then by Problem 29 the space t(R) is generated by the
elements h, (« € 4,). Therefore if g is semisimple, t(R) is completely determined
by g.

Now let us investigate what is the root system of the direct sum g = g, ® g,,
where g,, g, are semisimple Lie algebras. From Problem 28 we easily deduce
that any maximal diagonalizable subalgebra t = g is of the form t =t, ® t,,
where t;, i = 1, 2, is a maximal diagonalizable subalgebra of g;. The converse is
true since a subalgebra t of such a form coincides with its centralizer in g. Let us
identify in a usual way t}¥ with the subspace {1 e t*: A(x) =0 forall xe t,} and
t3 with {4 e t*: A(x) = O for all x e t, }. Then t* = t¥ @ t} and {{R)* = t,(R)* @
t,(R)*. Let 4, 4, 4,, be the root systems of g, g,, g, with respect to t, t,, t,
respectively.

Problem 31. We have 4, = 4, u 4,, and («,f) = Oforanyae 4, ,fe 4,,.

Problem 32. For any decomposition 4, = 4, U 4, of the root system of a
semisimple Lie algebra g into a union of two orthogonal subsystems there exist
ideals g,, 9, = gsuch thatg =g, @ g,and 4, = 4, (i = 1,2).

Concluding this section we generalize the notion of weight system and weight
decomposition to an arbitrary linear representation p of a semisimple Lie algebra.
We need this generalization since p need not a priori coincide with the differential
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of a linear representation of any algebraic group whose tangent algebra is g. Note
that this generalization does not actually give anything new since, as we shall see
in §9, there always exists a simply connected algebraic group G with the tangent
algebra g and p is the differential of a representation of G by Theorem 1.2.6.

Let g be a semisimple Lie algebra, G an algebraic group with g as the tangent
algebra. Problems 3.3.18 and 3.3.20 applied to the adjoint representation of G
yield that x € g is semisimple (nilpotent) if and only if so is ad x in the space g.
Therefore we may speak about semisimple and nilpotent elements of an abstract
semisimple Lie algebra.

Problem 33. A linear representation p of a semisimple Lie algebra g maps the
semisimple elements in semisimple operators and the nilpotent elements in
nilpotent operators.

Let p: g — gl(V) be a linear representation of a semisimple Lie aglebra g, t a
maximal diagonalizable subalgebra of g. Problem 33 implies that p(t) is a

commutative subalgebra of gl(V) consisting of semisimple operators. By Problem
3.2.2 we have

V=@ V. (10)

ied,
where

V, = {ueV:p(x)u = A(x)u for all x € t}

and @, < t* is the set of linear functions 4, such that V; # 0. The elements of @,
are called weights and the corresponding subspaces V; weight subspaces of the
representation p. If p = dR, where R is a linear representation of G, then &,
coincides with @, and the decomposition (10) with the weight decomposition (7).
It is also easy to verify that the statement of Problem 25 holds for (10).

In 6° we will show that @, = t(R)*.

5°. Root Decompositions and Root Systems of Classical Lie Algebras. In this
section we will give explicitly the form of maximal diagonalizable subalgebras
t,, root decompositions, roots and vectors h, for the classical Lie algebras
g = gl,(C), s1,(C), 50,(C), sp,,(C) (see Problem 13).

The identity, i.e standard, representation of the corresponding classical group
is denoted by Id; it is convenient to express the roots by means of weights of Id.

Let T be the torus in GL,(C) consisting of all invertible diagonal matrices. It is
easy to verify that T coincides with its centralizer implying that T is a maximal
torus of GL,(C). Its tangent algebra t < gl,(C) is the algebra of all diagonal
matrices and the real form t(R) is the algebra of all real diagonal matrices. The
scalar product (2) is determined in t by the formula

(X,Y)= Y x;y, where X =diag(x,,...,x,), Y =diag(y,...,yn)

1<ign
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The vectors e; (i = 1,...,n) of the standard basis of C" are the weight vectors
for the representation Id|T. The corresponding weight ¢; (and also the element
de; € t(R)* identified with it) is of the form

g;(diag(x,,...,Xx,)) = X; i=1,...,n). (1)

In what follows ¢; also denotes the restriction of the linear function (11) onto the
maximal diagonalizable subalgebra of a classical Lie algebra g.

Example 4. For g = gl,,(C) we have

ty =1,
dg={o;=¢— ¢ i#j,i,j=1,...,n},
Gy, = CE;,
h,,, = diag(0,...,0,1,0,...,0, = 1,0,...,0) with 1 (resp. —1) at the i-th (j-th)
place.

Example 5. For g = sl,(C) (n > 2) we have

t,={xettrx =0},

g

dg={ay =6 —¢gi#jij=1,..,n}

The subspaces g, and vectors h,,, are the same as in Example 4 (see Problem 29).

In the simplest case n = 2 we have 4, = {a, —a}, where « = a;,. A basis of the
Lie algebra sl,(C) is {h,e,f}, where h = h, = diag(l, —1),e = E,,, f = E,, such
that

[h,e] = 2e, [h,f] = —2f, [e,f]=h.
In the following two examples we consider G = SO,(C). For our purposes it

is convenient to choose a basis in C" so that the matrix of the G-invariant
quadratic form is

0 E 0
0 E
E o (n=2l) or E, 0 O] (n=2+1)
! 0 0 1

Example 6. The Lie algebra g = s0,,(C) (I = 2) consists of matrices of the form

X Y
<Z -XT>’ X,Y,Zegl(C), Y = -Y,Z"T= -Z

We have
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t, = {diag(x,,..., %, — xy,..., —x,): x; € C},
Dig = {1,181, =150y — &),
dg=Aou;=¢— & #)Bj=¢+¢(<j),—Pyij=1,.,1}
Qa,; = C(Eij — Eisji4i)s 9s,;, = C(Ei,1+j — E; 140, -8, = C(Eisi,j — Eirj0)
h,,, = diag(o,...,0,1,0,...,0,-1,0,...,0, - 1,0,...,0,1,0,...,0),
with entries 1 on the positions i, | + j and — 1 on the positions j, | + i,
hg,, = diag(0,...,0,1,0,...,0,1,0,...,0, — 1,0,...,0, — 1,0,...,0).

with entries 1 on the positions i, j and — 1 on the positions [ + i, [ + j.

Example 7. The Lie algebra g = so,,,,(C) consists of the matrices of the form

X Y U
Z -XT v, X,Y,Zegl(C),YT=-Y,Z"T=-Z,U,VeC.
—-vT —UT 0

We have

ty = {diag(x,,...,x;, =xy,..., —x,,0): x; € C},
Dy = {&1,... .8, —&1,..., —&,0},
Ag = {aij =& — gj(i ?éj)sﬁij =¢ + Ej(i <Jj)— ij» €is — & Lj= 1,~--’l},

9a,;» 9p,,» 9-p,, are determined by the same formulas as in Example 6.

e, = C(E; 2041 — Eqparisi)y 8¢, = C(Eisi 2001 — Egper,0); hy,,, hg,, are deter-
mined by the same formula as in Example 6, h,, = diag(0,...,2,0,..., —2,0,...,0)
with 2(—2) on the ith ((I + i)-th) place.

For G = Sp,,(C) we choose a basis in C?! such that the matrix of the invariant

0 E
bili form i .
11inear rorm 1S <—E1 0)

Example 8. The Lie algebra sp,,(C) (n > 1) consists of matrices of the form

X v . .
S _yr) XY Zeg € Y=Y ZT=Z

The subalgebra t; and the weight system &, are the same as in Example 6.
We have

Ag = {“ij =& — Sj(i ¢j)’ﬂij =¢& + 8j(i <)), _ﬂij: ILj= 1,~--,1}§
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Ox,,» ha,, and hy (=i <) are the same as in Example 6, 9, = C(Ei 1+ + E; 140,
g-p, = C(Epyij + Epyj0), hy, = diag(0,...,0,1,0,...,0, —1,0,...,0) with I (resp.
—1) at the i-th ((I + i)-th) place.

Note that sp,(C) = sl,(C).

6°. Three-Dimensional Subalgebras. We retain the notation of 4° and assume
that G is reductive and T is a maximal torus of G. To each root a € 4, we will
assign a three-dimensional subalgebra of g isomorphic to sl,(C), a priori defined
not quite uniquely. Let e, be a nonzero vector in g,. By Problem 27 there exists
a nonzero vector e_, € g, such that (e,,e_,) = 2/(a, 2). Then (5) and (6) imply
that

[ew e—-a] = ha’ [han ea] = 2eaa [h:x’e—a] = —2ea'
Define the embedding ¢,: sl,(C) — g by setting (see Example 5):

o.e)=e,, @f)=e_,, @, h)=h,

The map ¢, is an isomorphism of s, (C) onto the subalgebra g® = <e,,e_,, h,> =
g.

By Problem 1.3.17 the group SL,(C) is simply connected. Therefore (see
Theorem 1.2.6) there exists a differentiable homomorphism F,: SL,(C) — G such
that dF, = ¢,. Since SL,(C) is semisimple, F, is a polynomial homomorphism.
Its image is a connected algebraic subgroup G = G with the tangent algebra
g(a).

Problem 34. For any a € 4, we have h, € t(Z).

Problem 35. If o, cx € 4, where ce R, thenc = +1/2, +1 or £2.

0 1
Now consider the elements n, = F, << { 0)) € GY (a e 4,).

Problem 36. (Adn,)h, = —h,; (Adn,)x = x, if x e t and a(x) = 0.

Problem 37. n,Tn;! = T and Ad n, induces in the space t(R) the orthogonal
reflection r, with respect to the hyperplane P, = {x € t(R): a(x) = 0}. The map
'r, is the orthogonal reflection of t(R)* with respect to the hyperplane L, =
{A e t(R)*: (&, ) = 0}.

This reflection will also be denoted by r,.
Problem 24 and 37 imply

Theorem 5. The weight system @y of any polynomial linear representation
R: G - GL(V) of a reductive algebraic group G is invariant with respect to the
reflections r, (a € 4g). Moreover V, ;. = R(n,)V, for any i€ ®g. In particular,
r(4¢) = 4 and g, 5 = (Ad n,)g, for any a, f € 4.
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Corollary. The weight system ®, of any linear representation p of sl,(C) is
symmetric: if 1€ @,, then —Ae ®,.

We will use this corollary in the proof of the following important property of
root decompositions.

Theorem 6. The root subspaces of a reductive algebraic Lie algebra g are
one-dimensional. If « € 4q, then co ¢ A, force Rand ¢ # +1.

Proof. Consider the subspace m = §, + g,, < g, where §, = {x € g, (e_,, x) =
0} and g,, = 0if 20 ¢ 4.

Problem 38. The subspace m is invariant with respect to ad g.

This problem and Corollary of Theorem 5 imply m = 0 which proves Theorem

6.0

Theorem 6 shows, in particular, that g is of the form
g“ =g, +g-, + Ch,

hence it is uniquely determined by the root «.
Let 4 € @ and o € 4. The set of all weights of R of the form 4 + ka, where
k € Z, is called the a-string of weights through A. Set

U= @ V).+ka’

where the sum runs through all the weights from the a-string. Denote p = dR.

Problem 39. The subspace U is invariant with respect to the restriction of p
onto ¢@® and all V,,,,’s are weight subspaces for p|g® with respect to the
diagonalizable subalgebra <{h,).

Problem 40. The a-string of weights through 4 € @, is of the form {4 + ka:
ke Z, —p < k < q}, where p, q are nonnegative integers and p — g = A(h,). If
A(h,) < 0, then A + a € ®@g and if A(h,) > 0, then 4 — a € Py.

Problem 41. In notation of Problem 40 p(e,)?*V,_,, # 0. In particular, if 4,
4 + o€ Dy, then p(e,)V, # 0.

Problem 42. If o, B, « + B € 4, then [g,,85] = Gz44-

Concluding this section we prove that the properties of the weight system &g
listed above remain valid for the weight system @, of any linear representation
p of a semisimple Lie algebra g, as defined in 4°. For this notice that g = g, @ g5,
where g,, g, are semisimple ideals, g, = Ker p and p isomorphically maps g,
onto p(g). Any maximal diagonalizable subalgebra t of gis of the formt =t, @ t,,
where t; = g;. By Problem 31 4, =4, u 4, . Clearly, A(x) =0 if Ae &, and
xet, =tnKerp implying @, = t}. The set &, is identified with the weight
system @, , where p, = p|g, is a faithful representation.

Problem 43. For any i€ @, and x € 4, we have A(h,) € Z. In particular,
@, < t(R)*. The representation p is faithful if and only if @, spans t(R)*.
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Reducing the general case to the case of a faithfy] representation p and using
Theorem 5, one proves easily that the system @, is invariant with respect to all

reflections r,, o € 4. This implies that for any representation p the assertions
analogous to those of Problems 40 and 41 are trye.

Exercises

In exercises 1-13 the ground field is either C or R unless otherwise stated.

1) If g = gl(V)is an algebraic Lie algebra then the kernel of the scalar product
(2) in g is the largest unipotent ideal. (This ideal is called the unipotent
radical of g).

2) Inasimple Lie algebra any nonzero invariant scalar product is nondegenerate
and all invariant scalar products are proportional.

3) Simple ideals of a Lie algebra are orthogonal with respect to any invariant
scalar product.

4) In a diagonalizable complex algebraic linear Lie algebra the orthogonal
complement to an algebraic subalgebra with respect to the form (2) is an
algebraic subalgebra.

5) If a is an ideal of a Lie algebra g, then the restriction of the Cartan scalar
product of g onto a coincides with the Cartan scalar product of a.

6) If (g,9).q = O then g is solvable. If g is solvable then (g, [8,8])ag = O-

7) If the Cartan scalar product of a Lie algebra g is nondegenerate then g is
semisimple.

8) Ifad gisanalgebraic Lie algebra then the kernel of the Cartan scalar product
of g is the largest nilpotent ideal of g.

9) Let W < V be a subspace, neither 0 nor V. The group

G={AeSL(V) Av—veWforallve V}

is algebraic, connected and coincides with its commutator group but is not
semisimple.

10) Any differentiable linear representation of a reductive complex algebraic
group G is polynomial. Considered as a Lie group, G possesses a unique
algebraic structure.

11) A normal Lie subgroup and a quotient of a semisimple Lie group are
semisimple.

12) Let G = [],<i<s G: be a decomposition of a connected semisimple Lie group
G into a locally direct product of simple normal Lie subgroups. Then any
normal Lie subgroup of G is the product of some of G/’s by a central
subgroup.

13) Any normal Lie subgroup of a connected normal Lie subgroup of a con-
nected semisimple Lie group or a connected reductive algebraic group G is
normal in G.

14) A connected complex algebraic group is reductive if and only if it locally
splits into the direct product of connected simple normal algebraic sub-
groups with all the commutative factors isomorphic to C*.
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15) A polynomial linear representation R of a reductive algebraic group is locally
faithful if and only if the system @, generates t(R)* (here t is the tangent
algebra of the maximal torus with respect to which weights are considered).

In exercises 16-25 G denotes a connected semisimple complex algebraic group
and g its tangent algebra.

16) Let T be a torus in G, §, the orthogonal complement to t in go, a € 4(T)
and x € g,, x # 0. For the existence of an element y € g_, such that [x, y] = h,
it is necessary and sufficient that x ¢ [§,, x].

17) Forany x € g the subspace [g, x] coincides with the orthogonal complement
to the centralizer of x.

18) For any nilpotent x € g there exists a semisimple y € g such that [y,x] = x.

19) (Morozov’s theorem). Any nilpotent x € g can be included in a simple three-
dimensional subalgebra. (Hint: choose a maximal torus T in the group
N(x) = {g € G: (Ad g)x € {x)}. Consider the root decomposition of g with
respect to T and apply Exercise 16.)

A subalgebra of a Lie algebra g is regular if its normalizer contains the tangent
algebra t of a maximal torus T < G. A subset X' < 4, is closed if for any o, f € X
such that « + f € 4, we have a + f e 2.

20) Let X' < 4, be a closed subset, t; < t a subspace containing the vectors h,
for all @ € 2 such that —a e 2. Then

g(2,t) =t ® G—)zga,

is a regular subalgebra of g.

21) Any regular subalgebra of g is conjugate to a subalgebra of the form g(2t,).

22) The subalgebra g(2,t,)is algebraic if and only if t, is an algebraic subalgebra
of t.

23) The subalgebra g(Z,t,) is reductive if and only if —ax € 2 for any x € 2" In
this case the subalgebra is semisimple if and only if t, is spanned by the
vectors h,, x € 2.

24) The subalgebras g(X,t;) and g(Z,,t,) are conjugate if and only if there
exists g € G such that gTg~™' = T, (Ad g)t, = t, and (Adg)Z, = 2.

25) Any subalgebra of g containing t coincides with its normalizer and therefore
is a regular algebraic subalgebra.

In Exercises 26—28 a linear representation p: g — gl(V) is considered.

26) If V, < V, is a subspace invariant with respect to p(e,)p(e_,), then V; @
(Do p(e)V,) ® (P50 ple—,)' ;) is invariant with respect to p|g®.

27) Let 4 and 4 + «, where a € 4,, be weights of p and A: V; — V., the linear
map induced by p(e,). Then
a) if A(h,) < 0 then A is a monomorphism;

b) if A(h,) = —1 then A is an epimorphism.

28) Let v € V, be an eigenvector of p(e,)p(e_,) with eigenvalue c. Define p (resp.
q) as the maximal integer such that p(e_,)?v # 0 (resp. p(e,)® # 0). Then
p—q=~4i(h,)and c = p(q + 1).
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Hints to Problems

. Make use of Example 1 from 1.2 and Theorem 1.2.5.

Nondegeneracy follows from the positive definiteness on t(R) and the latter
is obvious.

. The first statement follows from Problem 4; to prove the second one consider

[n,n].
By Theorem 3.3.6

Vo={veV:inw=0}+#0.
Clearly, V, is g-invariant. The definition of ¥, implies that
(X,Y)=try, (XY) for Xeg Yen

This makes it possible to apply induction on dim V.

For K = C apply Problem 5 to the kernel n of the scalar product (2). By
Problem 2 this kernel is an ideal of g. For K = R consider g(C) which is
semisimple by Problem 1.4.

The semisimplicity of the elements of the center follows from Problem 6.
Let n be a solvable ideal in g’ = [g,g]. Since ¢’ is algebraic, then by pass-
ing to a solvable ideal n* we may assume that n is an algebraic linear Lie
algebra. Problem 6 implies that n is the tangent algebra of a torus. Problem
4 implies that ¢ = n@®n* and [n,n']=0. Therefore n < 3(g), hence
n=0.

Make use of Corollary 2 of Theorem 1.2.7.

Notice that for any diagonalizable subalgebra t = g the algebraic subalgebra
t* is also diagonalizable. The last statement of the problem follows from
Problem 6.

Apply Problem 5 to the ideal n = a N a* of g. Then make use of the fact that
[a,at]canat =0.

The existence of the decomposition is proved by induction in dim g. Let g,
be a minimal ideal of g. Problem 15 implies that g, is simple and g = g, @ g7
It is clear from Problem 16 that g7 is a semisimple ideal which enables us to
apply to it the inductive hypothesis. To prove the second statement notice
that the projection b; of any ideal b of g onto g; is an ideal of g;; therefore
either b; = 0 or b; = g;. But in the second case g; = [g;,h] < b.

Let G satisfy the conditions of the theorem and b be a nonzero ideal of its
tangent algebra g. Then g° is an ideal of g (Problem 3.3.9). Therefore h* = g
implying g’ = )’ = h by Theorem 3.3.3. Since g’ is an algebraic ideal of g, then
either g’ = g (and hence ) = g) or g’ = 0. In the second case the description
of connected commutative algebraic groups (see Corollary of Theorem 3.2.8)
implies that dim g = 1; therefore h = g.

First, prove that ab = ba for any ae G;, be G;, i #j. Then consider the
homomorphism m: G, x --- X G, — G defined by the formula m(g,,...,g,) =
g, ---9gs and apply Problem 1.3.11.
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Note that t » Ker dR coincides with the intersection of the kernels Ker 4 for
allle

AT ¥R

Follows from the invariance of the scalar product with respect to Ad T.
Follows from Problems 26 and 7.
The algebraic Lie algebra g, is reductive thanks to Theorem 1 and Problem
27. We have t < 3(go). If T is a maximal torus then t = 3(go) so that g, =
t @ g, where gj, is the semisimple ideal of go. If g5 # 0, then g, contains a
nonzero semisimple element (see Corollary 2 of Theorem 3.3.6) contradicting
the maximality of the diagonalizable subalgebra t.
Make use of Problem 23.
To prove the orthogonality note that a(h;) = 0 if « and B belong to different
44, (i=1,2).
If aed,, e d, then (x + B,2) >0, (¢ + B,B) >0 implying a + B ¢ 4,.
Therefore the subspaces g; = t; ® (P, 4, 94 Where t; is the linear span of all
h, such that « € 4,, satisfy [g,,9,] = 0 and g; are subalgebras such that
g=g,®g;and 4, = 4;(i = 1,2).
The statement is obvious if p is a faithful representation. It is easy to verify
that the projection of g onto any direct summand maps the semisimple
elements into semisimple ones and the nilpotent elements into nilpotent
ones. By Problems 15, 16 g decomposes as g = g; @ g,, where g; are semi-
simple ideals, g, = Ker p and p, = p|g, is a faithful representation. We have
p = p, o m, where m: g — g, is the projection.
Notice that h € t(Z) for SL,(C) and that for any homomorphism of tori
¢: T - T we have do(t(2)) < t(2).
If «, cx € 44, where ¢ € R, then Problem 34 implies that 2/c, 2c € Z.

-1
The first statement follows from the identity <_(1) :)) h<_(1) (1)> = —h.
To prove the second statement note that if «(x) = 0, then [g*, x] = 0, hence
(Ad g)x = x for any g € G*®.
Let r < s be integers such that 4 + ka € @, for all integers k, r < k < s, but
A+(r—Dag¢ Py and A+ (s + D¢ @y Then U = P, chgs Viska 18 in-
variant with respect to p|g®. Applying Corollary of Theorem 5 we see that
the set of numbers {A(h,) + 2k: r < k < s} is symmetric with respect to zero.
Therefore Ai(k,) = —(r + s) and the segment {4 + ka:r < k < s} of our a-
string is symmetric. There are no other weights in the a-string since any of
its segments is symmetric and therefore intersects with the one already
considered.
Let s > 0 be the minimal of integers k such that p(e,) V,_., # 0. Verify that
U = @o<k<s P(€,)Viiq Is invariant with respect to p|g®. If s < p + g then
the weight system of the subrepresentation of G in U is not symmetric.

2. Apply Problem 41 to the adjoint representation.
3. If p is faithful then it may be replaced by the identity representation of p(g

in which case Problem 34 is applicable. This and the above arguments imply
that in general case A(h,) € Z for all A e @, and all a € 4,,. Besides, A(h,) = (
forallze 4, .
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§2. Root Systems

In 1.4° we have introduced the root system of a reductive (in particular,
semisimple) algebraic group. In this section this notion will be axiomized and
studied in detail. The exposition of the properties of an abstract root systems is
intermitted with interpretation of these properties in the language of algebraic
groups and Lie algebras. The ground field is C.

1°. Principal Definitions and Examples. Let E be a finite-dimensional Euclidean
space with the scalar product (-, -). For an arbitrary nonzero vector « € E denote
by L, the hyperplane of E orthogonal to « and by r, the reflection with respect
to L,. To express r, explicitly set

Ay =24 W/ (peE p#0)

Note that the function {(i|u) is linear only in the first argument and does not
vary if the scaiar product in E is muitiplied by a positive number.

Problem 1. The reflection r, acts by the formula

r{f) =B — {Bleya  (BeE)

A subset 4 = E is a root system in E if it has the following properties:

1) 4 is finite and consists of nonzero vectors;

2) for any a € 4 the reflection r, transforms 4 into itself;

3) <a|f> e Zforanya, € 4.

The rank rk 4 of a root system 4 is, as usual, the dimension of its linear span.
By 2) we have —a = r,(«) € 4 for any a € 4. A root system 4 is reduced if

4) x € 4 and ca € 4 for some c € Rimply c = +1.

Problem 2. Let 4 be a root system, « € 4 and cx € 4 for some ¢ € R. Then
c=+1/2, £1, £2.

Let G be a reductive algebraic group, T its maximal torus. In 1.4° the root
system A of G with respect to T (or, which is the same, the root system 4, of
the Lie algebra g) was defined. This is a system of vectors of the Euclidean space
E = t(R)*. By Problem 1.34 and Theorems 1.5, 1.6 4, is a reduced root system
in the sense of the above definition. The group G is semisimple if and only if 44
spans E; G° is a torus if and only if 45 = (J (see Problem 1.29). In the general
case rk 4, = rk g'.

We will prove that any nonempty reduced root system is (naturally) isomorphic
to a root system of a semisimple algebraic group. We will encounter nonreduced
root systems in Ch.V.

Let 2 and €’ be two sets of vectors of Euclidean spaces E and E’ respectively.
An isomorphism of £ onto €' is any linear isomorphism ¢: {Q) — {Q") of their



154 Chapter 4. Complex Semisimple Lie Groups

A, BC,
o « Do o a Qa
——————— —
A, tA,
A B
o o 2 o 2
2 a 2 o 1 @
2a,
o G, @ o BC,
a, )
Fig. 1

linear spans such that ¢(2) = Q' and <{¢(2), p(f)) = {a|p) («, p € 2). The map
¢ need not be orthogonal (e.g. any homothety arca, ¢ # 0, of E defines an
isomorphism of Q onto ¢Q). Clearly an isomorphism ¢: () - {(£') is com-
pletely determined by the map ¢|Q: 2 — ©'. In particular, we may speak about
an isomorphism of root systems and isomorphic root systems. The isomorphisms
of a set Q onto itself are its automorphisms; they form the group Aut Q.

Consider the root system 4,(t) of a semisimple Lie algebra g with respect to a
maximal diagonalizable subalgebra t. As we have seen in 1.4°, the vector space
E = t(R)* is uniquely determined by (g, t). The scalar product in E depends, in
general, on the realization of g as an algebra of linear transformations. The
numbers {a|f) («, f € 4,), however, are only defined by the structure of g, i.e. do
not depend on the choice of this realization (see 1.4°). Furthermore, if we replace
t by another maximal diagonalizable subalgebra t then by Problem 1.24 the
corresponding root system Ag(f) is obtained from 4(t) via '(Ad 9 HR) - %(R),
where ¢ is an element of G°. The invariance of the scalar product implies that
‘(Ad g)~! is orthogonal, i.e. is an isomorphism of the root systems.

Now let g be a reductive algebraic Lie algebra, t its maximal diagonalizable
subalgebra. By Problem 1.23 the root system 4, spans the subspace {4 € t(R)*:
4(x) = 0 for all x € 3(g) " t(R)} of t(R)*. In Problem 1.29 we have identified 4,
with 4,.. Clearly, this identification is an isomorphism of the root systems.

Examples of root systems of rank 1 and 2 are depicted in Fig. 1.

Problem 3. All the vector systems depicted in Fig. 1 are root systems and all
of them, except for BC, and BC, are reduced and nonisomorphic. The root
systems of types A, A,, A, + A,, B, are isomorphic to the root systems of Lie
algebras sl,(C), sl5(C), s0,4(C) (or s05(C), so5(C), sl,(C) ® sl,(C)), and sp,(C)
respectively (see Examples 5.8 of 1.5°).

Problem 4. The systems 4, and BC, are the only up to an isomorphism root
systems of rank 1.



§2. Root Systems 155

We will see that any root system of rank 2 is isomorphic to one of the systems
depicted in Fig. 1.

Problem 5. Let 4, < E; (i = 1,...,s) be root systems and E = ), ¢;, E; the
orthogonal direct sum of Euclidean spaces E;. Then 4 =  J,<;<,4; is a root
system in E.

The system 4 constructed in Problem § is called the direct sum of root systems
4;(i=1,...,s). Forexample, by Problem 1.31 the root system 4, g, of the direct
sum of semisimple Lie algebras is the direct sum of 4, and 4,.

A system of nonzero vectors 2 < E is indecomposable if it cannot be presented
as the union Q2 = Q, U Q, of two proper subsets, orthogonal to each other;
otherwise Q is called decomposable. Clearly, all the root systems expressed on
Fig. 1 except A, + A, are indecomposable.

Problem 6. For an arbitrary root system 4 < E there exists an orthogonal
direct decomposition E = ), <;<, E; such that 4 = | J, <;<,4;, where 4; c E,
(i=1,...,s) are indecomposable root systems.

The subsystems 4; are maximal indecomposable subsystems in 4 and therefore
are determined uniquely.

The systems 4, mentioned in Problem 6 are called indecomposable components
of 4. Obviously, 4 is the direct sum of its indecomposable components.

Problem 7. The root system 4, of a semisimple Lie algebra g is indecomposable
if and only if g is simple. If g = P, <;«, 8; is a decomposition of g into the direct
sum of simple ideals then 4, = Ulgigsdgi is a decomposition of 4, into the
direct sum of indecomposable components.

Now let us study the simplest geometric properties of root systems. The axiom
3) imposes rigorous constraints on the possible angles between roots and the
ratios of their lengths.

Problem 8. Let «, § be nonzero vectors of a Euclidean space E and 6 the angle
between « and B. Then {a|B) {Bla) = 4cos? 0. If (x| 8 and {B|«) are nonposi-
tive integers and |f| > |«| then for 0, {«|B), {Bla), |BI?/|«|* only the following
values are possible:

b {alB> (Pl |BI*/al?
n/2 0 0
2n/3 —1 -1 1
3n/4 -1 -2 2
Sn/6 —1 -3 3

n -2 =2 1

T -1 -4 4

Problem 9. Let «, 8 be two nonproportional roots from 4. If («, f) > O then
o —fedandif(z,f) <Othena + f e 4.

Let , B be two nonproportional elements from a root system 4. The set
{ved:y =P+ ka(k e Z)} is called the a-string through p.
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Problem 10. The a-string through B is of the form {f + ka: —p <k <.
where p, ¢ > 0 and p — g = {B,a). In particular, if f — a ¢ 4, then f + a € £
and only if (8,a) < 0.

In conclusion of this subsection let us construct the dual root system. Let E
a finite-dimensional Euclidean space and F = E* its dual. Let us identify F* w
E with the help of the natural isomorphism E — (E*)* = F*, i.e. consider E
the dual of F. Let 2+ u, be the isomorphism of vector spaces E — F defined
the scalar product in E, i.e. given by the formula

Aw,)=(Ap)  (hueE)

Let us translate the Euclidean space structure onto F with the help of t.
isomorphism setting

() = () = Aw,) = p(w;)  (LueE).
Let 4 be a root system in E. For any o € 4 set

aY = 2u,/(a,a)
Then
p@”) =2(p,0)/(a,0) = {play  (neE).

In particular by Problem 1
r,(A)=4—A(a")a (A e E).
It is easy to verify that
{aV|BY ) ={(Play forany a,f e 4.

Problem 11. If 4 is a root system in E then 4V = {a": a € 4} is a root syst:
in F, reduced if and only if so is 4. We have

rkd=rkd", 4v)y = 4.

The root system 4" is called the dual of 4.

In particular, let E = t(R)*, where t is a maximal diagonalizable subalget
of a reductive algebraic linear Lie algebra g (see 1.4°). Then F = t(R) and 1
root system dual to 4, is the system 4y = {h,: € 4,}.

2°. Weyl Chambers and Simple Roots. Let 4 = E be a root system. E:
nonzero 4 € E defines in F = E* a hyperplane

P, = {xeF: i(x) = 0}.
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The hyperplanes P, (x € 4) separate F into finitely many polyhedral convex cones.
The elements of F,., = F\| ), 4 P, are called regular and those of Uzea Py singu-
lar. The connected components of F,,, are called (open) Weyl chambers, and their
closures closed Weyl chambers.

Since the set of singular elements is transformed into itself while multiplied by
—1, then for any Weyl chamber C the set —C = {x e F: —x € C} is also a Weyl
chamber, called the chamber opposite to C.

A subsystem IT of 4 is called a system of simple roots (or a base) of 4 if the
elements of /7 are linearly independent and any f € 4 presents in the form

b= 3 ka, 3)
aell
where k, are simultaneously either nonnegative or nonpositive integers.

Clearly, the number of simple roots always equals rk 4 and the presentation
(3) is unique.

Example 1. For the root systems depicted in Fig. 1 the systems {«} and {«,,a,}
are bases.

A root B € 4 is positive with respect to a given base IT if k, > 0 (« € IT) in (3),
and negativeifk, < 0(x € I7).If ITis fixed then denote the set of positive (negative)
roots by 4™ (resp. 47). Clearly, 4~ = —4*. We writea > 0ifa e 4" and « < 0
if « € A7. This notation agrees with the following partial order on E:

Eznelt—m= anacx, k,eZ,.

Now let us prove the existence of a base for any root system. We will also
establish a one-to-one correspondence between the bases of 4 and the Weyl
chambers.

Let C be a Weyl chamber and a € 4. Since C is connected, then either a(x) > 0
for all x e C or a(x) <0 for all x e C and we accordingly call « a C-positive
(C-negative) root. Clearly, C-positive roots are (— C)-negative ones and vice
versa. Denote by [7(C) the set of all C-positive roots a not presentable in the
form o« = f + 7, where § and y are C-positive roots.

Theorem 1. For any Weyl chamber C the system I1(C) is a system of simple roots
of 4. The roots positive with respect to I1(C) coincide with the C-positive ones and
the negative roots coincide with the C-negative ones. The correspondence C +— I1(C)
is a bijection of the set of all Weyl chambers onto the set of all bases of 4.

The proof'is divided into several problems.

Problem 12. Each C-positive root f € 4 presents in the form =, _ 7 ka2,
where k, e Z,.

Problem 13. If o, f € I1(C), & # B, thena — f ¢ 4 and (o, f) < 0.

Problem 14. Let v, ..., v, be a system of nonzero vectors of a Euclidean space
E with pairwise nonacute angles. If they are linearly dependent:

alui‘ + - +akv,-k—blvjl —_ —b,vjl =0,
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where i,, .. ik,jl, ..., J, are different and all a,, b, are positive, then
a) a;v; +- 4 _bly + - J.bly =0
b)(,,v)—Oforp=1 skig=1,...,1
Ifv,,...,v,belongto an open halfspace of E then they are linearly independei
This 1mp11es the first two statements of the theorem. The injectivity of the m:

C+ I1(C) follows from

e F:a{x) > 0 for:

,--~

Problem 15. C = {x e F: a(x) > 0 for all a € [I(C)} =
C-positive roots a}.

Let us prove that the map C— [1(C) is surjective.

Problem 16. Let V be a finite-dimensional vector space over R and v, ...,
a linearly independent system of vectors of ¥*. Then there exists a vector x €
such that y,(x) >0(i=1,...,r).

Problem 17. If /7 is a base in 4, then C = {x € F: a(x) > O(x € IT)} is a W«
chamber and I7 = I1(C).

A hyperplane P < F is called a wall of a Weyl chamber Cif PNnC = a
P ~ C contains a nonempty subset open in P.

Problem 18.1f C is a Weyl chamber then C = {x € F: a(x) > 0(x € J1(C))}. T
hyperplanes P,, where a € I1(C), are the walls of C.

Thus any Weyl chamber is a simplicial cone.

Problem 19. Any hyperplane P,, where a € 4, is a wall of a Weyl chamber. F
any « € 4 there exists a Weyl chamber C such that a € I7(C) (or perhaps 3
II(C), if 4 is not reduced).

In the following problems a fixed base IT c 4 is considered.

Problem 20. If x € 4*\ 11, then there exists f§ € IT such that x — ffe d ¢
a—pf>0.

Problem 21. Any positive root o € 4 presents in the form o = a; + - +
where ;e Tand o, + -+ e dforanyk=1,...,s

Problem 22. A root system 4 is indecomposable if and only if so is a b
IT< A4.1f4 =4, v U 4,is the decomposition of 4 into irreducible compone
then IT = I1, u--- U I1,, where II; = 4; is a base.

The latter statement has important applications in the theory of semisim
Lie algebras. A system of simple roots of a semisimple Lie algebra g is any b
of 4,. Problems 22 and 7 imply

Theorem 2. A semisimple Lie algebra g is simple if and only if its system
simple roots Il is indecomposable. If IT = I, u--- U I1, is the decomposition i
indecomposable components then g = g, ® --- @ g,, where g, is the simple id
whose system of simple roots is IT;.



§2. Root Systems 159

Let us indicate another useful construction of bases which historically preceded
the one described above. A real vector space E over R is called ordered if E is
endowed with an order < such that for any A, u € E we have

DA>0,u>0=>4A4+u>0;

2) 1>0,ceR,c>0=cl>0.

Clearly, — 4 < 0 for any 4 > 0. An example of an order satisfying 1) and 2) is the
lexicographic order with respect to a basis of E defined as follows: 4 > u if the
first nonzero coordinate of 4 — u with respect to this basis is positive.

Let 4 be a root system in an ordered Euclidean space E. Let IT be the set of
roots o > 0, such that a # f + y, where B,ye 4, >0,y > 0.

Problem 23. I7 is a base of 4 and the corresponding set 4* coincides with the
set of all roots which are positive with respect to the given order.

Example 2. Let us specify subsystems of positive and simple roots for the root
systems 4, of the classical Lie algebras g described in 1.5°.

g = gl,(C), n > 2. Considering the lexicographic order in t(R)* with respect to
the basis ¢, ..., &, we get

={g—¢i<jij=1,...,n},

II, = {a,...,,_}, where o, =¢ —é&,.

9

The corresponding Weyl chamber C = F = t(R) is the set of the diagonal matrices
diag (x,,...,X,) such that x; > x, > --- > x,.

g = sl,(C), n > 2. Problem 1.29 implies that 4, and /7, have the same form as
for gl,(C).

g = 50,(C), n > 2. Considering the lexicographic order in t4(R)* with respect
to the basis ¢, ..., g we get

43 ={e+ei<jiij=1..,1}
={a,...,u}, where a;=¢ —g (I1<i<I-1),u=¢_+¢.
g = $0,,4,(C), I > 1. Similarly,
={et el <j)erij=1,...,1}
1, = {al""’a’}’ where o, =¢ —g(l<i<I=1),0=¢.
g = spy(C), [ = 1. Similarly,
a7 = (et gli <j)2e0ij=1,...,1}
I, = {a,,...,0,}, where o;=¢ —g,, (1<i<l—1),a =2

As it is easy to verify all the described bases 71, are indecomposable except for
g = s0,(C) (in 5° we will give a beautiful geometrlc method to verify this inde-
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composability). Therefore Theorem 2 implies that all semisimple classical Lie
algebras are simple except 504(C). :

Let us now return to the notation from the beginning of the section and
consider the dual root system 4 < F. The natural isomorphism A u; of
Euclidean spaces E — F maps each hyperplane L, onto P,. Clearly

Ly={peE:a"(y=0} (xed). “4)

Therefore this isomorphism maps the Weyl chambers of 4 onto the Weyl
chambers of 4.

Problem 24. Let 4 be a reduced root system, 7 its base. The /7Y = {a": o€ IT}
isa base of 4V.

3°. Borel Subgroups and Maximal Tori. In this section we will consider the
root system 4 of a reductive algebraic group G with respect to a fixed maximal
torus T. We will see that Weyl chambers in F = tg are in one-to-one corre-
spondence with the Borel subgroups of G containing T and we will establish
several important properties of Borel subgroups and maximal tori.

Let C — F be a Weyl chamber. Let us construct from C a Borel subgroup of
G. Let 4 = 4" U4~ be the decomposition of 4 into the C-positive and C-
negative roots. Problem 1.25 implies that the subspaces

=@ g, b* =t@n*

aedr

are subalgebras of g. The subalgebras

nm =@ g, b"=t@®n"

aed-

are constructed similarly and correspond to the opposite Weyl chamber —C.
Problem 25. The Lie algebra b* is solvable and n* is its unipotent ideal.

Problem 26. b* is a Borel subalgebra of g and coincides with its normalizer.

By Problem 3.3.8 G contains a Borel subgroup B with the tangent algebra
b*. Clearly, B* o T. The group B* will be called the Borel subgroup corresponding
to the Weyl chamber C. By Problem 3.3, the ideal n* determines a unipotent
normal algebraic subgroup N* = B*. The connected algebraic subgroups N~ <
B~ are similarly defined and B~ coincides with the Borel subgroup corresponding
to the opposite Weyl chamber — C.

Note that for G = GL,(C) and the Weyl chamber C chosen as in the Example
2 of 3° the subgroups B* and B~ coincide with the subgroups of all upper and
lower nil-triangular matrices respectively and N* and N~ coincide with the
subgroups of the uni-triangular matrices.

Problem 27. N* coincides with the unipotent radical of B* and B* = N* x T.
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Problem 28. Different Borel subgroups of G correspond to different Weyl
chambers.

Now we wish to show that any Borel subgroup containing T corresponds to
a Weyl chamber. To do so consider the normalizer N(T') of T. By Problem 1.24,
to any element n € N(T) there correspond linear transformations w = Ad n and
‘w of F = t(R) and E = t(R)* respectively, satisfying ‘w(4) = 4. Clearly, w(F,) =
F, and w permutes the Weyl chambers. It is not difficult to see that if B is the
Borel subgroup corresponding to a fixed Weyl chamber C then nB*n™! corre-
sponds to the Weyl chamber w(C).

Problem 29. Let B be any Borel subgroup of G containing T. Then there exists
a e N(T), such that aBa™! = B*.

Problems 28, 29 and the above remarks imply

Theorem 3. The map C+> B* constructed above is a bijection of the set of all
Weyl chambers in F onto the set of all Borel subgroups of G containing T.

Now suppose that G is connected. Let us consider, as in the proof of Theorem
3.2.12, a closed orbit D of G in the flag variety. There exists p € D whose stabilizer
G, contains B™ as the identity component. Our next aim is to prove that D is
simply connected and G, = B.

For this consider the orbit N7(p) of the subgroup N~ = G in D which by
Theorem 2.1.7 is a nonsingular algebraic subvariety. The G-action on D gives
rise to the surjective morphism «,: G — D given by the formula «,(g) = gp.

Problem 30. The orbit N™(p) is open in D and «,: N~ — N~ (p) is an isomor-
phism of algebraic varieties.

Since G is connected, D is irreducible. Problem 30 implies that D\N~(p) is an
algebraic subvariety of a real codimension > 2 in D. Theorem 3.3.7 implies that
N~ (p) is isomorphic to C? and, in particular, it is simply connected. Therefore,
so is D. This implies that G, = B (see Theorem 1.3.4).

Since all Borel subgroups of G are conjugate (Theorem 3.2.12), all the results
obtained for B hold for any Borel subgroup. Since any Borel subgroup of an
algebraic group contains the radical of this group, the following statement holds:

Theorem 4. Let G be a connected algebraic group and B its Borel subgroup. Then
D = G/B is a simply connected projective algebraic variety.

Problem 31. Prove the following theorem:

Theorem 5. A Borel subgroup B of a connected algebraic group G coincides with
its normalizer N(B).

From this we derive the following property of a maximal torus.

Theorem 6. A maximal torus of a connected reductive algebraic group G coincides
with its centralizer; in particular, it contains the center of G.

Corollary. The intersection of all maximal tori of a connected reductive algebraic
group coincides with the center of the group.
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Problem 32. Under the conditions of Theorem 6 let T be a maximal torus
contained in a Borel subgroup B. Then the normalizer Ng(T) of T in B coincides
with T.

Problem 33. Prove Theorem 6.

4°. Weyl Group. We will use the notation of 2°. Let A € E, 2 # 0. Recall that
we denote by r; the orthogonal reflection in E with respect to the hyperplane L;.
Clearly, the orthogonal reflection in the dual space F = E* with respect to the
hyperplane given by (2) coincides with r;, but for simplicity we denote it by
r; as well. Consider the groups W and W of orthogonal transformations of the
spaces F and E, respectively, generated by reflections 7, (x € 4). The group W is
called the Weyl group of the root system 4. It is clear from (4) that W is the
Weyl group of the dual root system 4V. Since r2 = e, the map w - ‘w™! is an
isomorphism W —» WV,

The definition of a root system implies that W " (4) = 4. Therefore W trans-
forms the system of singular hyperplanes P,, « € 4, into itself and permutes Weyl
chambers.

Problem 34. The Weyl group is finite.

Theorem 7. The Weyl group W acts simply transitively on the set of all the Weyl
chambers in F and so does W on the set of all the bases of A. Fix a base Il c 4.
Then W and W are generated by reflections r,, o € II, and for any a € 4 there
exists we W such that w(x) € IT (or $w(x) € IT).

The proof uses the following notion. Two Weyl chambers C and C’ are called
adjacent if there exists a hyperplane P < F such that PnC =P C' = J and
P~ C~ C’ contains a nonempty subset, open in P. In this case the hyperplane
P is a common wall of the chambers C and C’ and these chambers are located
on different sides of P. Problem 18 implies that the reflection with respect to P
maps C and C’ onto each other.

Problem 35. Given two Weyl chambers C, C’, there exists a sequence C,, C,,
..., C, of Weyl chambers such that C = C,, C' = C, and C;, C;,, are adjacent
(i=0,....r—1).

Now fix a system of simple roots /T < 4 and denote by W' the subgroup of W
generated by the reflections r, (o € IT), i.e. the reflections with respect to the walls
of the Weyl chamber C, corresponding to /7 (Problem 18).

Problem 36. W' is transitive on the set of all Weyl chambers.
Problem 37. W’ coincides with W.

Problem 38. Let w=r, ...r, be an expression of an element we W as a
product of the smallest possible number of generators r, (x € IT) (t = 0if w = e).
Then the only hyperplanes of the form P, ( € 4) that separate the Weyl chambers
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C, and w(C,) are the following t hyperplanes:
ral(Paz), ooy, ...raH(Pa,).

The number ¢t = [(w) is called the length of w.
Problems 36, 37, 38 and 19 imply Theorem 7.

Theorem 8. Any closed Weyl chamber C is a fundamental set for the Weyl group
W, i.e. it intersects the orbit W(y) of any point y € F at a single point.

The existence of a point y, € W(y) N C follows from Theorem 7 and its unique-
ness follows from Problem 39:

Problem 39. If y € C n w(C), where w € W, then w(y) =

Another application of Theorem 7 is the following important theorem which

shows that a reduced root system is determined up to an lcnmnrnhmm by its

Q ivuauLva 1 UUL AR S viiw) § § wp WO Qi SRR paasi

system of simple roots.

Theorem 9. Let 4 < E, 4’ < E’ be root systems of the same rank, I < 4 a base,
@: {4y = A"y an isomorphism of II onto a subsystem II' = o(IT) < 4'. If 4 is
reduced then ¢ is an isomorphism of 4 onto the root system ¢(4) < A" If A’ is also
reduced and IT' is a base of 4’ then @(4) =

Problem 40. Prove this theorem.

Now consider the case when 4 = 4, is the root system of a reductive algebraic
group G with respect to a maximal torus T. Consider the map v: n— (Ad n)|t(R)
of N(T) in the group of orthogonal transformations of the space F = t(R).
Clearly, this map is a homomorphism. Let W” be its image. It is clear from
Problem 1.37 that W < W".

Problem 41. The kernel of the homomorphism v: N(T) — W” coincides with T.

Problem 42. The group W” acts simply transitively on the set of Weyl chambers
and coincides with W.

Therefore, we have proved

Theorem 10. The homomorphism v defines an isomorphism of the group N(T)/T
onto the Weyl group of the root system 4.

Problem 42 gives also another proof of simple transitivity of the Weyl group
action on the set of Weyl chambers (cf. Theorem 7).

The Weyl group of the root system 4 is called the Weyl group of the reductive
algebraic group G or of its Lie algebra g.

Example. Let G = GL,(C) and let T be the subgroup of all invertible diagonal
matrices (see 1.5°). In t(R), consider the basis {E;(i = 1,...,n)}. Clearly, the
reflection r,  transposes E;; with Ej; and preserves all other vectors of the basis.
Therefore, W S,. The group N(T) is the group of all monomial matrices, i.e.
matrices with exactly one nonzero element in each row and column.
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5°. Dynkin Diagrams. Let I = {y,,...,7,} be a system of nonzero vectors in
a Euclidean space E. A graph may be assigned to I” which clarifies how this
system decomposes into indecomposable components in the sense of 1°. Namely,
to each vector y; assign a vertex of the graph and join the vertices corresponding
- to the vectors y; and y; if and only if (y,7;) # 0. Clearly, the indecomposable
components of I” correspond exactly to the connected components of this graph.
The edges of the graph may be endowed with additional labels which help us to
recover the data on the angles between the vectors y; and the ratios of their
lengths. We will only do this for one special class of vector systems.

A system of nonzero vectors I" = {y,,...,7,} of a Euclidean space E is admissi-
ble if a; = {yly;> is a nonpositive integer for any i # j. The integer matrix
A(I') = (a;;), where a;; = <y,]y;, is called the matrix of I'.

The condition a; < 0 means that the angle 0; between y; and y; is not acute.
Indeed, the numbers a;;, m;; = a;a; and 6 for an admissible system can only take
the values indicated in Problem 8. In particular, m; =0, 1, 2, 3 or 4 and
0; = n(l — 1/ny), where n;; = 2, 3, 4, 6 or co, respectively.

The Dynkin diagram of an admissible system is constructed as follows:

1) a vertex of the diagram corresponds to each vector y;;

2) the i-th vertex is joined with the j-th (i # j) by an edge of multiplicity m;; (in
particular, for m;; = 0 the vertices are separated);

3) if|a;| < |a;| then the corresponding edge is oriented by an arrow with the
Jj-th vertex as the source and the i-th as the target.

A principal submatrix of a matrix is one located at the intersection of rows
and columns indexed by the same numbers. The principal submatrices of the
matrix A(I") correspond to the subsystems of I" and the subdiagrams of its
Dynkin diagram.

Clearly, A(I") is obtained from the Gram matrix of I” by multiplying the
columns of the latter by 2/(y;,7;) > 0. Therefore det A(I") > 0 and det A(I") > 0
if and only if I is linearly independent.

Problem 43. The Dynkin diagram of an admissible system of vectors determines
this system up to an isomorphism (in the sense of 1°).

Problem 44. If I" = {y,,...,7,} is an admissible system of vectors then so is
rY ={y’,...,y,"}, where 3, = 2u, /(;,7:): u,,is the vector of E* corresponding
to y; under the natural isomorphism. The Dynkin diagram of I"¥ is obtained
from the Dynkin diagram of I" by reversing the orientation of all oriented edges.

An example of an admissible system of vectors is the base of any root system
4 (see Problem 13). By Theorem 7 the Dynkin diagram of IT does not depend
on the choice of the base of 4; therefore this diagram might be called the Dynkin
diagram of 4. Theorem 9 implies that the Dynkin diagram of a reduced root
system determines this system uniquely up to an isomorphism. We will denote
this diagram in the same way as the reduced root system to which it corresponds.
Problems 24 and 42 imply that the passage to the dual root system reverses the
orientation of all (oriented) edges of the Dynkin diagram.
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If 4 = 4; = 4,is aroot system of a reductive algebraic group G or its tangent
algebra g then the Dynkin diagram of 4 is also called the Dynkin diagram of G
or g. In §3 we will prove that a semisimple Lie algebra is determined uniquely
up to an isomorphism by its Dynkin diagram. Note also that a semisimple Lie
algebra is simple if and only if its Dynkin diagram is connected and the connected
components of a general Dynkin diagram are in one-to-one correspondence with
the simple ideals of the corresponding semisimple Lie algebra (see Theorem 2).

Example 1) The Dynkin diagrams of the root systems described in Fig. 1 are of
the form

Ay, BC, | A, + A4, | A, | B,, BC, | G,
¢} ‘ o o I o—o0 ' oc—0 ’ o=
a o o oy oy oy A oy o

Example 2) The Dynkin diagrams of the classical simple Lie algebras (see
Example 2 of 2°) are of the following form (here [ is the rank of the Lie algebra,
equal to the number of vertices of the diagram; in the right column the standard
notation of the Dynkin diagram is indicated):

sl,,(C), 1> 1 A= S LN’}
@ & Qo Ay
502[+1(C), l > 2 o—-O0— - - - _m Bl
a _ _
s05(C) o) a, A(=B, =C()
o 3] Qg2
$0,,(C), 1 >3 o—o0— - - —o<: D,
e
) 273 Xy
€122 oo ... e G
Qy

All of the above admissible systems of vectors are linearly independent. Now
we will give examples of linearly dependent admissible systems.

Problem 45. Let I" = {y,....,7,} be an indecomposable linearly dependent
system of nonzero vectors of a Euclidean space with pairwise nonacute angles.
Then all proper subsystems of I” are linearly independent. In particular, the rank
of I'is s — 1. Any linear relation among y,, ..., 7, is proportional to one fixed
relation of the form } ; ;< ¢;7: = 0, where ¢; > 0 for all i.

Let 4 be a root system. In 4, choose a base IT and consider the corresponding
partial order (see 2°). Clearly, in T there are elements maximal with respect to
this order, i.e. roots § € 4 such that y € 4,y > 6 implies y = 4.

Problem 46. For any maximal root ¢ € 4 we have (J,a) > 0 for all « € /T and
(6, ) > 0 for some B e I1.
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Problem 47. An indecomposable root system 4 contains a unique maximal
with respect to [T root d and § = ), _ 7n,&, where n, are positive integers.

Let 4 be an indecomposable root system. Problem 47 implies that the unique
maximal root § € 4 is the largest element of this system. The root 4 is called the
highest root and ay = —& the lowest root of 4. If IT = {ay,...,o,}, then I =
{0, 0ty,...,0,} is called the extended system of simple roots (extended base) of 4.
Problem 46 implies that [T is an indecomposable linearly dependent admissible
root system. The Dynkin diagram of /7 is called the extended Dynkin diagram of
Aa4.

When 4 is a root system of a simple noncommutative algebraic group G (or
Lie algebra g) one speaks about the extended system of simple roots and the
extended Dynkin diagram of G (or g).

Example 3. Extended Dynkin diagrams of simple classical Lie algebras are of
the following form (each diagram contains / + 1 vertices; in the right column the
standard notation for each diagram is given):

[e

sl (C), 1> 2 i E AfD

s,(C) &y =D A

50241(C >>_O' -—0==0 B!
SOZI(C >_O‘ < D(1J

5p,(C), [ =22 o0=0— -+ —0—00 (!
The extended Dynkin diagram for G, is of the form
oE=0—0 a, GV

Example 4. Reversing orientation of multiple edges in the diagrams B{", C{"),
G (i.e. passing to the dual root system, Problem 44) we get the following
connected Dynkin diagrams (the first two have [ + 1 vertices):

Ay :>>——o— . —0&=D0
o=—0—0— -

- —O0—O0=—0

D o0—O0=D
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It is easy to verify that these diagrams also correspond to admissible systems of
vectors obtained from the bases IT of root systems 4 of types C,, B, G, by
adjoining the roots —(g, + ¢,), —¢;, —(20; + «,) respectively (in notation of
Examples 2 and 1 of 2°). The adjoined root is the smallest of the roots of the
minimal length in 4. The left-end vertex of the Dynkin diagram corresponds to
it (for A%, any of the two left-end vertices).

Example 5. Adjoining the vector —2¢, to the base of the root system of type
B, we also get a linearly dependent admissible system of vectors. Its Dynkin
diagram is of the form

AP 1>2 o=0—0— - - —0—O0=30
and the adjoined vector corresponds to the left-end vertex of the diagram.

6°. Cartan Matrices. Here we will find out which matrices might serve as
matrices of admissible systems of vectors. Clearly, the matrix A(I") = (a;;) of an
admissible system of vectors I" = {y,,..., 7} has the following properties:

)a;=2(@(=1,...,s)

2) if i # j then a; < 0 and if a;; = 0 then a;; = 0;

3) aje Zand m; = a;a; =0,1,2,3 or 4.

Together with A(I") we will also consider the matrix G(I") = (g;), where
gy = cos b; and 0;; is the angle between y; and y;. This is the Gram matrix of the
normalized system of vectors y, /|y 1, ..., ¥s/I7sl-

Problem 48. The elements of G(I") are of the form

gi=1(=1,...,5,  gy=—%/my (i #J). (3)

Therefore we have one more property of A(I'):

4) a symmetric matrix (g;;) whose elements are defined by formulas (5) is
positive semi-definite, i.e. determines a positive semi-definite quadratic form.

A square matrix A = (a;;) is admissible if it satisfies 1)-4). An admissible matrix
is called a Cartan matrix if the corresponding matrix (g;) = G(A) is positive
definite (which is equivalent to its invertibility) and an affine Cartan matrix if
G(A) is singular.

The above makes it clear that the matrix A(I") of a linearly independent
admissible system of vectors /" is a Cartan matrix and the matrix of a linearly
dependent admissible system of vectors is an affine Cartan matrix. In particular,
the Cartan matrix A(/T), where I1 is a base of 4, corresponds to any root system
4, and if 4 is indecomposable the affine Cartan matrix A(I") corresponds to it.

Notice that to any admissible matrix 4 = (a;) we may assign the Dynkin
diagram which uniquely determines the matrix up to the same permutation of
rows and columns. In this correspondence the vertices of the diagram correspond
to the columns of A and the edges are constructed by the rules 2), 3) given
in 5°.
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Clearly, if A is an admissible matrix then so is A” and G(A4) = G(AT) while the
Dynkin diagram for A7 is obtained from the Dynkin diagram for A by reversion
of the orientation of the edges. If A = A(I"), where I"is an admissible root system,
then AT = A(I"V) (see Problem 44). A principal submatrix of an admissible
matrix A is obviously admissible; a subdiagram of the Dynkin diagram of A
corresponds to it.

We say that the matrix A4 is decomposable into the direct sum of A; and A, if
there exists a permutation of rows and the same permutation of columns that

A .
reduces A to the form < 0 0 >; and A is indecomposable otherwise. Clearly,

0 4,
any matrix uniquely presents as the direct sum of indecomposable matrices (we
assume that the matrices are considered up to the same permutation of rows and
columns). A splitting of the Dynkin diagram into the union of its connected
components corresponds to this decomposition, if the matrix is admissible.

Now we will prove that any admissible matrix is a matrix of an admissible
system of vectors.

Problem 49. Any positive semi-definite symmetric matrix G of order [ is the
Gram matrix of a system of [ vectors of a Euclidean space. The rank of this
system of vectors equals rk G.

Problem 50. Let the Dynkin diagram of an admissible matrix 4 do not contain
cycles and let u, ..., u; be a system of vectors of a Euclidean space E whose
Gram matrix is G(4). Then thereexist p;, > 0(i = 1,...,[)such that 4 is the matrix
of the system y, = pyuy, ...,y = p,u;and (y;,7;) € Q for all i, j.

Before we consider the case when the Dynkin diagram contains a cycle, let us
make the following remark. If B is a principal submatrix of 4, then G(B) is a
principal submatrix of G(A). Therefore if A is a Cartan matrix then so is B.
Furthermore, if A is an indecomposable affine Cartan matrix then applying
Problem 45 to the system of vectors whose Gram matrix is G(A4) we see that any
proper principal submatrix of A is a Cartan matrix.

Problem 51. If the Dynkin diagram of an indecomposable admissible matrix
A contains a cycle then A = A(JT), where /T is the extended system of simple roots
of sl,4,(C),[ = 2, and the Dynkin diagram is of the type A{" (see Example 3 of 5°).

Problem 50 and 51 immediately imply

Theorem 11. Any admissible matrix A is the matrix of an admissible system of
vectors I' = {y,,...,y} of a Euclidean space such that (y;,y;) € Q for all i, j.

Corollary. If A is an admissible matrix of order | then detA >0 and A is a
Cartan matrix if and only if det A > 0.

Notice also the following fact.

Problem 52. If the Dynkin diagram of an indecomposable admissible matrix
A contains an edge of multiplicity 4 then A is an affine 2 x 2 Cartan matrix.
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7°. Classification. In this section we will classify (up to an isomorphism) all
admissible systems of vectors. With Theorem 9 this implies the classification of
root systems.

As follows from Theorem 11 the classification of admissible systems of vectors
is equivalent to the classification of admissible matrices or of Dynkin diagrams
corresponding to these matrices. It suffices to list all the indecomposable admissi-
ble systems, i.e. connected Dynkin diagrams. For brevity we will call the Dynkin
diagram of a Cartan matrix a Dynkin diagram and the Dynkin diagram of an
affine Cartan matrix an affine Dynkin diagram. The rank of a diagram is the rank
of the corresponding admissible system of vectors (or the admissible matrix). For
a Dynkin diagram the rank equals the number of its vertices and for a connected
affine Dynkin diagram it equals the number of its vertices minus 1 (see Problem
44).

Each connected Dynkin diagram is denoted by a symbol of the form L,, where
L is a Latin capital and [ is the rank of the diagram. This notation will be
introduced during the classification. We already know the following connected
Dynkin diagrams: A, (I > 1), B,(I = 1), C, (I = 1), D, (I = 3), G, (see 5°, Examples
1, 2). The Dynkin diagrams of the first four series are called classical; they
correspond to the classical complex Lie groups SL,,,(C), SO,;.,(C), Sp,(C),
SO,,(C) respectively.

G, is the first example of a nonclassical Dynkin diagram. Note that A, = B, =
C,,B,=C,,A;=D;,.

Each of the listed above Dynkin diagrams L, can be extended to a connected
affine Dynkin diagram L{! of rank [ by adjoining one vertex (see 5°, Example
3). Other connected affine Dynkin diagrams are listed in Examples 4, 5 of 5°.
Notice that the connected affine Dynkin diagrams are denoted by the symbols
L%, where k = 1, 2, 3 and [ coincides with the rank of the system if k = 1 but
does not coincide with the rank for k > 1. The meaning of this notation will be
explained in §4.

Notice the following properties of Dynkin diagrams which are consequences
of Problems 51, 52 and Remarks in 6°:

(D1) Any subdiagram of a Dynkin diagram is a Dynkin diagram.

(D2) A diagram obtained from a Dynkin diagram (or an affine Dynkin dia-
gram) by reversing orientation of all its edges is a Dynkin diagram (affine Dynkin
diagram).

(D3) The multiplicity of an edge of a Dynkin diagram equals 1, 2 or 3.

(D4) A Dynkin diagram does not contain cycles.

(D5) An affine Dynkin diagram is not a Dynkin diagram and vice versa.

(D6) Any proper subdiagram of a connected affine Dynkin diagram is a
Dynkin diagram.

(D7) The multiplicity of an edge of a connected affine Dynkin diagram of
rank > 1 equals 1, 2 or 3.

(D8) Thediagrams A{") (I > 2)are the only affine Dynkin diagrams with cycles.

Problem 53. The only Dynkin diagrams of rank 1 and 2 are A4,, 4,, B,, G,.
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The only connected affine Dynkin diagrams of rank 1 are the following ones:
1). 2).
AV = AP =0

The following proposition describes all the three-vertex diagrams we are
interested in:

Proposition 1. Any connected Dynkin diagram of rank 3 is one of the diagrams
Ay, By or C4. Any connected affine Dynkin diagram of rank 2 is one of the diagrams
A(l) C(l) D(Z) A(Z) G(l) D(3)

Proof. By Problem 49 a linearly independent system of vectors u;, u,, uz in
the three-dimensional Euclidean space E® whose Gram matrix is G(A4) corre-
sponds to a Dynkin diagram of rank 3 (or to a 3 x 3 Cartan matrix A). The
angles between these vectors are 0; = n — n/n;;, where the values of ny 5, n, 3, ny;
can be only 2, 3, 4, 6. The planes orthogonal to u; cut out a trihedron whose
bihedral angles are n/n,,, n/n,;, n/n,5. Notice that the bihedral angles of a
trihedron are the angles of a spherical triangle and the latter exists only if the
sum of its angles is greater than n. Therefore 1/n,, + 1/n;3 + 1/n,3 > 1. Only
the following two sets of n;/s satisfy this inequality (under the assumption of
indecomposability): {2,3,3} and {2,3,4}. The corresponding sets of m;/’s are
{0,1,1} and {0, 1, 2}. The Cartan matrices with such numbers m,; correspond to
the root systems A4;, By, C;.

Similarly, a connected affine Dynkin diagram of rank 2 determines a rank 2
system of vectors u,, u,, uy in E3. The sum of the angles §; = = — n/n;; between
Uy, Uy, Uz is 2w implying 1/n,, + 1/ny5 + 1/n,3 = 1. Only the followmg sets of
ny's satisfy this equation: {3,3,3}, {2,4,4}, {2,3,6}. The corresponding sets of
m’s are {1, 1,1}, {0,2,2}, {0, 1,3}. All affine Dynkin diagrams with such m;’s are
listed in the statement of Proposition. (]

Proposition 1 and (D1), (D3), (D6) imply

Corollary. A connected (affine) Dynkin diagram of rank = 3 contains only the
edges of multiplicity 1 and 2.

Problem 54. The sum of multiplicities of the edges that originate at a vertex
of a connected Dynkin diagram of rank > 3 does not exceed 3. The same applies
for the connected affine Dynkin diagrams of rank 3 if we exclude the diagrams
BV, A, DYV,

A vertex of a diagram connected with more than two vertices is called a branch
vertex and a vertex connected with exactly three vertices by edges of multiplicity
1 a simple branch vertex. It follows from Problem 54 that a branch vertex of a
Dynkin diagram is always simple. The same applies to the connected affine
Dynkin diagrams except D", B{"), 4.

The branch vertices and multiple edges of a diagram will be called its singu-
larities.
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Problem 55. A connected Dynkin diagram may possess no more than one
singularity. The only connected affine Dynkin diagrams with at least two singu-
larities are the diagrams BV (I > 3), C{V (1>2), DV (I = 5), D, (1 = 2), AR
(1=2),A4% ,(1=)3).

It easily follows from (D4) that the connected Dynkin diagrams without
singularities are the diagrams A;, | > 1. Similarly, properties (D8) and (D5) imply
that the connected affine Dynkin diagrams without singularities are the diagrams
AV 1 > 2. By Problem 55 it only remains to list the diagrams containing exactly
one singularity. We may assume that the rank of the diagram is > 3 and the
singularity is either a simple branch vertex or an edge of multiplicity 2 (see
Corollary of Proposition 1).

A connected Dynkin diagram of rank > 3 with a singularity different from B,
C,, D, should contan a subdiagram of the form

O O O
or Oo—-O0o—0—0

The same applies to any connected affine Dynkin diagram of rank > 3 with
exactly one singularity which is either a simple branch vertex or a double edge.
Consider the following diagrams with [ vertices which for the indicated values of
I are not classical Dynkin diagrams:

E,l>6: o_o__I_o__o_o

F,l=z4 O—O—0—0— - - - —0—0

FY,l1> 4 O—O0=—=0—0— + - - —0—0
Denote by (L) the determinant of the admissible matrix with Dynkin diagram L.

Problem 56. 6(E,) = g — I, 6(F)) = 6(F,Y) = 5 — |. The diagram E, is a Dynkin
diagram for I = 6, 7, 8, F, and F,¥ are Dynkin diagrams for/ =4 and F, = F,’.
The diagrams Eq = E{V, Fs = F{V, FY = E, are connected affine Dynkin dia-
grams.

Problem 57. The diagrams E, and E, are subdiagrams of the following con-
nected affine Dynkin diagrams

(1).
E6 .

EL: o—o—j—o—o—o
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Problem 58. Any nonclassical connected Dynkin diagram of rank > 3. i‘s one
of the diagrams Eg, E4, Eg, F,. Any connected affine Dynkin diagram with one
singularity which is a simple branch vertex or a double edge is one of the diagrams
B, B, B, F{Y, EQ.

Let us summarize the obtained results.

Theorem 12. The connected Dynkin diagrams are exhausted by the diagrams A,
(I=1),B(=1),C(=1),D,(I>3),E (=6,7.38), F,, G, (see Table 1). The
connected affine Dynkin diagrams are exhausted by the diagrams L{" where L, is
a connected Dynkin diagram of rank | and the diagrams AS)_, (1= 3), AR (1> 1),
D3 (I = 2), EZ, DY (see Table 6).

The Dynkin diagrams Eg, E,, Eg, F, and G, are called exceptional. We have
not decided yet if the first 4 of them are the Dynkin diagrams of some reduced
root systems. One can show that this is actually so e.g. by explicitly constructing
the corresponding root systems (in § 3 we give another proof making use of Lie
algebras).

Problem 59. The systems of vectors of the types Eg, E4, Eg, F, given in Table
1 are the reduced root systems with the Dynkin diagrams Eg, E,, Eg, Fy,
respectively. Their extended Dynkin diagrams coincide with the diagrams E{",
EM, EQ, F{V.

As a result of the classification of reduced root systems we get the following
theorem.

Theorem 13. The indecomposable reduced root systems are exhausted up to an
isomorphism by the systems of the types A, (I = 1), B, (1= 2),C, (1= 3), D, (I = 4),
E¢, E;, Eg, F,, G, of Table 1.

Now list the nonreduced indecomposable root systems.

Problem 60. If 4 is an arbitrary root system then 4, = {a e 4: j0 ¢ 4} is a
reduced root system, indecomposable if and only if so is 4. The root systems 4
and 4, have the same Weyl chambers, the same bases and the same Weyl groups.

Problem 61. If 4 is a nonreduced indecomposable root system then 4, is of
type B;.
Problem 62. Prove the following theorem:

Theorem 14. The only indecomposable nonreduced root system of rank | is the
root system of type BC, (I > 1), the union of the systems B, and C, (see Table 1).

8°. Root and Weight Lattices. Let V be a finite-dimensional vector space over
R. As we know (see Problem 1.2.30), any discrete subgroup of the vector group
V is a free abelian subgroup whose basis is a linearly independent system of
vectors. Such subgroups of V will be called lattices.

Let /" be a lattice in V such that V = {(I"). Then the subgroup of V'*

r*={ieV* ilx)eZforalxe I}
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is also a lattice and generates V'*. Indeed, let e, ..., e, be a basis of I"; by the
definition this basis is a basis of V. In V'*, consider the dual basis ef, ..., e¥ given
by the formulas e¥(e;) = J;;. Then, clearly, e}, ..., e¥ is a basis of I'*. The lattice
I'* is naturally identified with the group Hom (I, Z); it is called the dual lattice
of I'. If we naturally identify V with (V*)*, then I" is identified with (I"*)*.

Let I" = I be two lattices in V. Then I/Iis a finitely generated abelian group
which can be described as follows. Consider a basis y,, ..., y, of I" and a basis 7,

..., Jnof . Then
i = Z cjij;j (l= 15'--91)5

1<jgm

where C = (c;;) is a matrix with integer entries. It is known (see [3]) that

Ir~ @ Zz, @2,

1<i<s

where m,|m,|...|mg are the invariant factors of C different from 0 and 1. In
particular, if | = m then [/ is finite and

|I/I| = |det C|.
Problem 63. If " I are lattices in V = (I"Y = (") then I'* =« I'* and
[)Ir ~TI*T*

Let 4 be a root system in a Euclidian space E. Denote by Q the additive
subgroup of E generated by 4. If IT is an arbitrary base of 4 then [T is a basis of
the abelian group Q. Therefore Q is the lattice with basis /7. It is called the root
lattice.

Further, let E = {(4) and set

P={yeE: (yladeZ forall x€ 4}.
Let IT = {ay,...,}. Determine r; € P by the formula
<Tfi|05j> = 511'-

Clearly, P is a lattice with basis n, ..., m;; this lattice is called the weight lattice
and its elements are called weights. The weights n,, ..., m, are called fundamental
weights (with respect to I7). Simple roots are expressed in terms of fundamental
weights by formula

O(i = Z CIUTEJ, (6)

1<j<t

where A = (a;) is the Cartan matrix of 4.

Problem 64. The lattices Q and P are invariant with respect to the Weyl group
wY.
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The definition of a root system implies that Q = P. The group n(4) = P/Q is
called the fundamental group of 4.

Problem 65. The fundamental group m(4) is isomorphic t0 @ <i<sZm,s
where m; are the invariant factors of the Cartan matrix A of 4 different from 1. In

particular,
|m(4)| = det A.

In Table 3 are listed the fundamental groups m(4) of all indecomposable
reduced root systems 4 calculated with the help of Problem 65. Notice that n(4)
is a cyclic group in all cases except when 4 is of the type D,;, s > 2.

Consider also the dual root system 4V < F = E*. The root and weight lattices
QY < PY in the space F correspond to it. By Problem 64 they are invariant with
respect to the Weyl group W = (W V)V,

Problem 66. Q¥ = P*, P¥ = Q* n(4") ~ ().

By Problem 1.29 our constructions are applicable in the case when 4 = 4 is
a root system of a semisimple algebraic group G with respect to a maximal torus
T. As we have seen in 1.4°, the group Z/(T) is identified with a lattice in the space
E = t(R)*. Its dual lattice Z(T)* < (R) coincides with t(Z).

Problem 67. Q < Z(T) = Pand Q" c t(Z) < P".

Notice that the lattices P, Q, P¥, Q" are determined by the root system
4 = 44 which, as we have seen above, does not depend on the choice of an
algebraic group G with tangent algebra g. At the same time, Z(T) and t(Z)
depend, in general, not only on g but also on the global structure of G. In §3 we
will show that a connected semisimple algebraic group G is determined up to an
isomorphism by the root system 4 and any of the lattices Z(T), t(2).

If p is a linear representation of a semisimple Lie algebra g then &, < P (see
Problem 1.43), i.e. any weight of p is a weight in the above sense.

Exercises

Let E be a finite dimensional Euclidian space, O(E) the group of all its
orthogonal transformations and I(E) the group of its isometries. If 2 < E is a
finite system of nonzero vectors then Aut £ denotes the group of all automor-
phisms of Q in the sense of 1°. In Exercises 3-19 we assume that 4 is a root
system in E and /7 a fixed base of 4. We denote the Weyl group of 4 by W and
the Weyl group of the dual root system by W " ; the root and weight lattices are
denoted by Q and P, respectively.

1) If 2 is indecomposable then Aut 2 < O({2)).

2) If Q is admissible then Aut £ is isomorphic to the group of automorphisms
of the Dynkin diagram of .

3) The scalar product in E may be redefined so that in the new Euclidian space
E, the system 4, would become a root system and Aut4 = O(<{4)).

4) If a € IT then r, maps 4%\ {a, 2a} into itself.

5) Let 4 be reduced and p = §) ,. 4- o Then ry(p) = p — fand {p|f> = 1 for
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all p e I1, hence p coincides with the sum =, + --- 4 m, of all fundamental
weights.

6) Let 4 be reduced, we WV and t = I(w) (cf. Problem 38). Then ¢ coincides
with the number of the « € 4 such that w(x) < 0.

7) A root system 4 is indecomposable if and only if W acts irreducibly on
4.

8) An indecomposable reduced root system contains roots of only one or two
different lengths and the Weyl group acts transitively on the set of all roots
of the same length.

9) Roots of the maximal and minimal length of an indecomposable reduced
root system 4 form two root systems 4,,,, and 4, of the same rank as 4.
If 4 contains roots of two different lengths then 4, and 4,,;, are determined
by the following table:

4 B,1>2 C,l>2 F, | G,
Ain D, A; + -+ A, (I summands) D, A,
A max A, + -+ A, (I summands) D, D, A,

(we denote D, = A, + A,).

10) Under the conditions of Exercise 9 the highest root of 4 belongs to 4,,,,. In
4 i there exists a unique maximal element (the highest short root).

11) The indecomposable components (4"); of the root system dual to 4 are
(4,)Y, where the 4, are the indecomposable components of 4. If 4 is an
indecomposable root system different from B, and C,, n > 3, then 4" ~ 4.
Moreover, B, ~ C,.

12) Under the conditions of Exercise 9 (dmax)” = (4" )min and (dpin)¥ =
(4" )max- If 2 is the highest root (with respect to I7) then oy is the highest
short root (with respect to I7 V) and vice versa.

13) The group W does not contain reflections with respect to hyperplanes
different from P,, o € 4.

14) Ifw e W preserves y € E then w can be presented as a product of reflections
r, (@ € 4) each preserving 7.

15) Autd = WY x Aut Il

16) If Aut 7 is trivial then —e e W. (Hint: make use of the opposite Weyl
chamber.)

17) Calculate the Weyl groups W of g = s0,(C) (n = 3), sp,,(C) (n = 1) and
compare the results with Table 4. Prove that —e € Wif g = sl,(C), $0,,+,(C)
(n=1),s0,,(C)(n=>1)and —e ¢ Wif g =sl,(C)(n=>3)and g = 504,+,(C)
(n=1).

18) Each automorphism a € Aut 4 transforms the lattices Q and P into them-
selves and therefore induces an automorphism d of the group n(4). lfae W
then @ = e. This implies that if —e € W then the order of any element of n(4)
is < 2.



176 Chapter 4. Complex Semisimple Lie Groups

19) Let 4 be an indecomposable reduced root sytem. Then —e ¢ W if 4 is of the
type A, (n = 2), D,,.4 (n = 1), E; and —e € W otherwise.

An algebraic subgroup P of a connected algebraic group G is parabolic if G/P
is a projective algebraic variety. The corresponding subalgebra p of the tangent
algebra g of G is also called parabolic.

20) A subgroup P < G is parabolic if and only if P contains a Borel subgroup
of G. A parabolic subalgebra of a semisimple Lie algebra is regular.

Let G be a connected reductive complex algebraic group, T a torus in G and
X, € t(R). Consider the root decomposition of g with respect to T and let H, N*,
P* be the connected algebraic subg.oups of G corresponding to the algebraic
subalgebras b = @ (x =08 1° = D a(x0)>0 %z and p* =h@n".

21) P* is a parabolic subgroup of G.

22) P* coincides with its normalizer; the coset space G/P* is simply connected.

23) P* is the semidirect product of the reductive subgroup H and the unipotent
normal subgroup N*.

24) If a(xo) # O for all « € A4(T) then H = N(T)n P* and H coincides with the
centralizer of T.

Let T be a maximal torus in a connected reductive algebraic group G, 4, the
corresponding root system and IT < 4; a base. Let M < IT be a set of simple
roots. Denote by 4 (M) the set consisting of all positive roots and the negative
roots which are linearly expressed in terms of simple roots from M.

25) The subset 4*(M) <= 4 is closed.

Set p™ = g(4*(M),1) (see Exercise 1.21).

26) The connected algebraic subgroup P of G corresponding to p™ < g is
parabolic; any parabolic subgroup is conjugate to a unique subgroup of this
form.

27) Any parabolic subgroup of G can be obtained by the method described just
before the Exercise 21, where for T one can take a maximal torus.

28) Let g be a semisimple complex Lie algebra. Select basis elements e, € g,
(x€d,) as in 1.6°. Set h =) , 4+ h,. Then h =Y g rghs, where r; are
positive integers. If

er=Y rep  eo= Y rey
Bell pell
then (h,e,,e_) is a simple three-dimensional subalgebra of g (called the
principal three-dimensional subalgebra).

A subsystem I” of a root system 4 is called symmetric if —a e I'forany a e I'.
Asin§1 I'is called closed ifa, fe I', 0 + f € 4 imply o + f € I'. Exercises 1.21,
1.22, 1.24, 1.25 determine a one-to-one correspondence between the classes of
conjugate semisimple regular subalgebras of a semisimple Lie algebra g and the
closed symmetric subsystems of 44 considered up to the action of the Weyl group.

In Exercises 29-38 4 denotes a reduced root system. A subsystem I" = 4 is
called a n-system if « — 8 ¢ 4 for any a, f € I'. For any subsystem M < 4 denote
by [M] the set of all roots 4 which are linear combinations of the roots of M
with integer coefficients. Let [ be the rank of 4, W its Weyl group.
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29) Any m-system is an admissible system of vectors.

30) Any symmetric closed subsystem M < 4 is a root system. Any base I’ =« M
is a m-system and M = [I"]. Conversely, if I" = 4 is a linearly independent
n-system then M = [I"] is a symmetric closed subsystem and [ is a base of
M.

31) Linearly independent n-systems Iy, I, = 4 can be transformed into each
other by an element of W" if and only if so can [I";] and [I,].

32) Let I" = 4 be a linearly independent n-system. Then the system I obtained
from I” by adjoining the corresponding lowest roots to some of its indecom-
posable components is also a n-system.

33) Any indecomposable n-system is isomorphic either to a base or to an
extended base of a root system.

34) If I = 4 is indecomposable and admissible then I" is a n-system.

35) Any linearly independent n-system in 4 is contained in a linearly independent
n-system consisting of [ elements.

Let I' c 4 be a linearly independent n-system and I” a n-system obtained by
adjoining to an indecomposable component I'; of I" the corresponding lowest
root a,. Set I'" = I'\{a}, where « € I',. One says that the n-system I’ is obtained
from I’ by an elementary transformation.

36) We have [I'] = I" and these systems coincide if and only if « occurs in the
expression for —a, with coefficient 1.

37) Any linearly independent n-system in 4 consisting of [ elements can be
obtained from a base /T = 4 by a sequence of elementary transformations.

38) If A=4, v~ U 4, is a decomposition of 4 into indecomposable com-
ponents then a subsystem M < 4 is symmetric and closed if and only if

M N 4, is a symmetric closed subsystem of 4; foranyi=1,...,r.
In Exercises 39-43 we assume that 4 is indecomposable, IT = {ay,...,q,} its
base, o, the lowest root, —ag = Y <1 Mm%, I = {ag,%y,..., %}

39) We have n, = 1< T\{a;} is a base of 4 <> there exists we W " such that
w(IT) = IT and w(ay) = a;.

40) Any maximal symmetric closed subsystem of 4 is of rank [ or [ — 1.

41) Let I' c 4 be a linearly independent n-system consisting of / elements. If [ 1]
is a maximal closed symmetric subsystem of 4 then I is obtained from a
base /T = A by applying one elementary transformation.

42) Let I' = [T\{x;}, where i > 0. A symmetric closed system [I"] is maximal if
and only if n; is prime. (Hint: see [5], §8.3).

43) Let I" < 4 be a linearly independent n-system of | — 1 elements. A symmetric
closed subsystem [/7] is maximal if and only if I" = IT\{«;}, where [T is a
base of 4 and n; = 1.

Hints to Problems

2. Similar to Problem 1.35.
7. Make use of Problems 1.31, 1.32.
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Let (%, f) > 0. By Problem 8 we may assume that {a|f)> = 1 which, thanks

to Problem 1, lmnhpc o — R =rAe A

(9105 5v1 § 84 LS & A A

Let p, g be the max1mal nonnegative integers such that f — pa, § + qa € 4.
Problem 9 implies that the «-string through f has no gaps (ie. f + ka € 4
for all k, —p < k < q). Since the a-string is invariant with respect to r, (and
therefore r (8 + qo) = B — pa), then p — g = {f|a).

Make use of formula (1). In particular, prove that

(r(B)” =1 (BY)  (0.B)ed

Consider the cases « — f € 4% and a — B € 4™ and apply Problem 9.

Set v=a,v;, + "+ au, =byv; + -+ bv;. Considering (v,v) we derive
from (vi,» V5 ) <Othatv=0 and ( Vi, 05,) = O for all p, q. Let u be a vector
such that (u v;)>0(@(=1,...,s). Tlfen (u,v) = 0 implies a, = b, = 0 for all
P, 4.

Let C, = {x e F:a(x) > 0 for all « € I7(C)}. Clearly, C = C,. But C, = F,
and C, is convex and therefore connected, hence C = C,.

By Problem 16 C is a nonempty connected subset of F,,. Therefore C = C,,
where C, is a Weyl chamber. Clearly, the set 4% of positive (with respect
to IT) roots coincides with the set of C,-positive roots implying /T < I1(C,).
Therefore IT = I1(C,) and by Problem 15 C = C,.

Let x € F be such that a(x) > Oforall o € IT(C). If we fix x, € C then Problem
15 implies that x + (x,/n) € Cforalln = 1,2,.... Therefore x € C. Applying
Problem 16 to the restrictions of linear forms of /7(C)\{«} onto the hyper-
plane P, for some o € I1(C), we see that P, n C contains a nonempty open
set, i.e. P, is a wall of C. Conversely, if P is a wall then P contains an open
ball U such that U = C\C < | J,c e Po- Wesee that P = |, 7, P.- There-
fore P coincides with one of the hyperplanes P,.

Within the open set F\| J;c 4.5 c, Py choose a ball U such that U n P, # 0.
The component U, = {x e U: a(x) > 0} of U\P, is contained in a Weyl
chamber C for which P, is a wall. By Problem 18 « = ¢f§, where f§ € I1(C) and
¢ > 0. Next apply Problem 2.

If (z, B) < Oforall B € IT, we get a contradiction with Problem 14. Next apply
Problem 9. Since all the coefficients of the expression of a — § in terms of
simple roots should be of the same sign, then « — § > 0.

Let/IT< Abeabase. If4=4,ud,, where 4, # &, 4, # &J,and (¢, ) =0
forallae d,,Bed,then T=(ITnd,)u(IlIn4,). Wehave IIn 4, # J
and ITn 4, # ¢ since II is a basis of {4). Conversely, let 1T = I1, u IT,,
where 17, # &, I, # & and (¢, f) = 0 for all « € 1, B € I1,. Denote by 4
the set of roots of 4 linearly expressable in terms of /7, (i = 1,2). Let us show
that 4 = 4, u 4,. If this is not so, Problem 21 implies that there exist
xed, nA"andBell,(orae 4,n4* and B e IT,)suchthaty = a + B e 4.
Since x — B ¢ 4, then («, ) > 0 by Problem 10. Contradiction.

To prove the linear independence of IT first show that the statement of
Problem 13 holds for IT and then apply Problem 1.
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Make use of Problem 18.

By Problem 1.26 (n*,n*) = 0 hence n* is a solvable Lie algebra. Since
b*/n* ~t, then b* is also solvable. Clearly, n* = [b*,b"] implying the
unipotence of n*.

Since b* o t, then any subalgebra h = g containing b* is of the form h =
b @ @16 4 §-,, where §_, is a subspace of g_,. The existence of simple
three-dimensional subalgebras constructed in 1.6° implies that [y cannot be
solvable except for h = b*. To prove the second statement of the problem,
it suffices to notice that if §_, # O then [§_,,t] =g_, # b".

Problem 25 implies that TN* = T x N is an algebraic subgroup of B*.
This subgroup coincides with B* since b* is its tangent algebra.

If B,, B, are the Borel subgroups corresponding to the Weyl chambers C,,
C, then B, = B, implies that the unipotent radicals of these subgroups
coincide. Making use of Problem 27 we deduce that the sets of C,-positive
and C,-positive roots coincide. Now apply Problem 15.

By Theorem 3.2.12 there exists g € G such that gBg™' = B*. Then gTy™' <
B* and by Problem 3.2.23 there exists b € B* such that b(gTg )b~ = T.
Set a = bg.

The algebraic group N™ NG, = H is unipotent and therefore irreducible
(Corollary 2 of Theorem 3.2.1). On the other hand, its tangent algebra is
n~ nb* = 0. Therefore, H = {e}. By Problem 2.1.20 a,: N~ = N7(p) is an
isomorphism. Since g = b* @ n~, then dimD = dim N~ = dim N~ (p) and
the orbit N™(p) is open in D.

Consider the manifold G/N(B) endowed with a quasiprojective algebraic
variety structure such that the canonical G-action on it is algebraic. By
Problem 25 N(B)° = B. Therefore, it suffices to prove that G/N(B) is simply
connected which one does as in the proof of Theorem 4.

By Problem 3.2.21 the subgroup Ng(T) is irreducible and it is contained in
the centralizer of T. Now, apply Problem 1.28.

First prove that the centralizer of T is contained in N(B™).

The elements of W are expressed by matrices with integer entries in the
basis consisting of simple roots.

First prove that the set obtained by deleting from F the union of all the
pairwise intersections of the hyperplanes P, (« € 4) is simply connected.

Let C and C’ be two Weyl chambers and C =C,, Cy, ..., C, = C the
sequence of Weyl chambers constructed in Problem 35. We may assume that
IT = I1(C). By induction in r prove the existence of w e W’ such that C' =
w(C). Let exist w, € W’ such that wy(C) = C,_;. Let p,, where a € 4 and
1o ¢ 4, be the common wall of C,_; and C, = C'. Then wg'(p,) = p,,, where
%, € 1. Furthermore, r, = wor, wo' € W’ and (r,w,)C = C'.

It suffices to prove that r, € W’ for any a € 4. For this make use of Problems
19 and 36.

We may assume that E = (4), E' = {(4"). Problem 1 implies that r,,, =
or,@ " for any a € I1. Applying Theorem 7 we see that the map w— pwep ™"
is an injective homomorphism of the Weyl groups WY — W'Y corre-
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sponding to 4 and 4'. By the same Theorem 7 any « € 4 presents in the form
o« = w(y), where we WY, y e IT. Hence @() = (pwp™")(¢(y)) € 4". Making
use of Problem 1 again, it is easy to show that {o(a)|@(B)) = {a|B) for all
a, B e 4. When 4' is a reduced root system and /T" = ¢(IT) is its base, apply
the above to ¢ 7.

Make use of Theorem 6.

Let ne N(T) and let the corresponding transformation w map the Weyl
chamber C into itself. Then nBn~' = B, where B is the Borel subgroup
corresponding to C. Applying Theorem 4 and Problem 1 we see thatne T
and w = e. Thus W” acts simply transitively on the Weyl chambers. Since
any transitive subgroup of a simply transitive group coincides with the latter,
we have W = W".

If Dynkin diagrams of the systems I = {y,,...,%,} and I = {y,..., 7} are
isomorphic then there exists a bijection ¢: I"— I"" such that ¢(y;) = vi, a;; =
a; (i,j = 1,...,r), where a;; = {y|y;>, a; = <yily;>- We may assume that y,,
..., 7, is a maximal linearly independent subsystem of I". Considering the
principal minors of A(")and A(/™') it is easy to see that yi,...,, is a maximal
linearly independent subsystem of /™.

Therefore there exists a linear isomorphism f: (/") = {(I"') such that
f(7:) = o(y;) fori =1, ..., r. We then prove that this holdsfori=r + 1, ...,
s, too. For this it suffices to verify that for any k such that r + 1 < k < s the
coefficients c; in the expression y, = Y| ;< ¢;}; are completely determined
by the principal submatrix of A(I") corresponding to the subsystem 7, ...,
7, % But these coefficients constitute the unique solution of the system
ZISiSr <7i|)’j>ci = <Vk|'}’j> (j=1,....,n.

Make use of (1).

Make use of Problem 14.

Make use of Problems 9, 10 and 20.

The inequalities n, > 0 follow from Problem 45 applied to the system
1o {—4}. If &' is another maximal root then it follows from Problem 46
that (¢,8) > 0. If 6 # &’ then with the help of Problem 9 we get a contradic-
tion.

Let b be a bilinear form in R’ with matrix G in the standard basis e, ..., e,.
Consider the images of the vectors ey, ..., ¢, in the space E = R'/N where
N is the kernel of b.

It suffices to consider the case when A is indecomposable. Forany i =2, ...,
| there exists a unique sequence of numbers | = iy, iy, ..., iy = i such that
Qi ., #* Oforp=0,1,...,k— 1. Set

= y 1 =
a,;a

P fiy e @iy i

and note that p?/p? = a;;/a; for any i, j. Since p} € Q, then (y;,7;) € Q for all
i,j.

If the Dynkin diagram is a cycle then
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2 ay 0 a '\
a,; 2 0 0
A= oo
0 0 2 ay,
a, 0 ... a,, 2

and my,, mys, ..., my_y ;, m;; are positive integers. Since the sum of all
elements of a positive semi-definite matrix is nonnegative, we get from
) 1= (/M ++my + \/r—n:) > 0. It follows that m;, ==
m,_, , = m;; = 1. In general case make use of the fact that any principal
submatrix of A4 is a Cartan matrix.

Notice that otherwise there can be found a subdiagram of one of the types
listed in the statement. Next, make use of Proposition 1 and properties (D1),
(D3), (DS6).

Notice that any diagram with two or more singularities contains one of the
subdiagrams listed in the problem.

Make use of Corollarv of Theorem 11 and the recurrent
ACAn iidai i A MWVULWILIL 11 Qililv LIV L 11w L

AV WOV Vi UL J i i 1

20(L;—y) — 6(L,-,), where L, = E,, F,or F,".

. Prove that the corresponding matrices are not invertible.
. Make use of Problem 56, 57 and properties (D1), (D5), (D6).

The system 4, is reduced thanks to Problem 2.

. In 4,, select a base I1. Theorem 7 implies the existence of x € IT such that

2aeA. If BeIl, B # a and (a, B) # O then {Blad = 2{B|22> = —2 so that
|B|?> = 2|a|*. Theorem 13 implies that the type of 4, is B,.

Make use of Problem 61 and prove that 4\4,, is the set of all doubled short
roots from 4,.

Notice that the invariant factors of a matrix with integer entries are preserved
under transposition.

Follows from (6).

First prove that P = (Q " )*. The fact that fundamental groups are isomorphic
follows from Problem 63.

Make use of Problems 1.34 and 66.

§ 3. Existence and Uniqueness Theorems

In this section we will prove that any Cartan matrix (see 2.6) corresponds to the

root system of a unique (up to an isomorphism) semisimple complex Lie algebra.
After that we will study connected complex semisimple Lie groups globally. In
particular, we will prove that all these groups are algebraic and we will classify
them up to an isomorphism. We will also describe irreducible finite-dimensional
linear representations of connected complex semisimple Lie groups. Everywhere
except 1° the ground field is C.
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1°. Free Lie Algebras, Generators and Defining Relations. Let a be a Lie
algebra over k, X = a a subset. Denote by b the intersection of all subalgebras
of a containing X. Clearly, b is the smallest subalgebra of a containing X; it is
called the subalgebra of a generated by X. In particular, if b = a then one says
that X is a system of generators of a; this means that there is no proper subalgebra
of a contaning X. In what follows we will consider the case when X = {x,,...,x,}
is finite. A Lie algebra admitting a finite system of generators is called finitely
generated. For instance, any finite-dimensional Lie algebra is finitely generated.

Problem 1. A set x4, ..., x, is a system of generators of a Lie algebra a if and
only if each element of a is a linear combination of elements of the form

[""[[xil’xiz]:xi;,]’-~~]9xim] (1 Sil""’imgn)' (1)

Let us now construct an imnortant examnle of a Lie aleebra with a given system
retusn 1struct an important exampi€ ol a Li€ aigeora a gven system
of generators X = {x,,..., x,}. Define by induction non-associative words in the

alphabet X in the follo wmg way: a word of length 1 is any element x; € X; a word
of length m > 1 is a pair (y,z), where y and z are words of length p and g
respectively for p > 1, ¢ > 1, p + ¢ = m. Thus the set X, of words of length 1
coincides with X and the set X,, of words of length m > 1 is defined by induction

as follows:

X.= 1] X,xX,.

ptq=m

Intheset My = [[,>, X thereisa binary algebraic operation assigning to each
y€ X, and ze X, the word (y,z) e p+q Let us consider the corresponding
algebra k[M,] over the field k. This is the vector space over k consisting of
elements of the form ) ., c.z, where ¢, €k, ¢, =0 for all z except a finite
number, and endowed with a multiplication which extends by linearity the
operation in M. The algebra k[ M,] is called the free algebra over k generated
by the set X. The set My is its basis over k.

Problem 2. Let A be any algebra over k with fixed elements a,, ..., a,. Then
there exists a unique algebra homomorphism ¢: k[M,] — A, such that ¢(x;) =
a;foranyi=1,...,n

Denote by I the two-sided ideal of k[ M ], generated by elements of the form
x;x; and (x;x;)x, + (x;x,)x; + (xX;)X;, where 1 < i, j, k < n. The algebra

(X) = 1(xys...,x,) = k[My]/I

is, clearly, a Lie algebra. It is called the free Lie algebra generated by X (over k).

Problem 3. Let a be any Lie algebra over k, with fixed elements a,, ..., a,. Then
there exists a unique Lie algebras homomorphism ¢: [(x,,...,X,) — a, such that
o(x;) =a;foranyi = 1,..., n. Every finitely generated Lie algebra is isomorphic
to a quotient of a (finitely generated) free Lie algebra.
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Let a be again an arbitrary Lie algebra over k and X a subset of a. Consider
the intersection i of all ideals of a containing X; this is the smallest ideal of a
containing X. We say that i is generated by X.

In particular, let (f;); ., be a family of elements of a free Lie algebra [(x,,...,X,)
and i the ideal of [(x,,...,x,) generated by this family. The quotient algebra
I(xy,...,x,)/t is called the Lie algebra with generators y; = x;+i(j=1,...,n)
and defining relations fi(y,,...,y,) =0 (i € I).

2°. Uniqueness Theorems. Let g be a complex semisimple Lie algebra, t its
maximal diagonalizable subalgebra, IT = {«,,...,a,} a system of simple roots of
g with respect to t. Under the notation of 1.4° and 1.6° set

hi=ha,-’ei=ea,’f;'=e—a,- (i=1...,1.

Let A = (a;) be the matrix of IT; we will call it the Cartan matrix of g.

Problem 4. The elements h;, e;, f; (i = 1,...,]) form the system of generators of
g and satisfy

[hn j] -
Lh:, ej] — a;¢; = 0, [hi’fj] +a;f;=0, (2)
le, i1—hi=0, [e,f;1=0 for i#]j.

The system {h;,e;, fi:i = 1,...,1} is called the canonical system of generators
of g associated with t and I1.

Now denote by § = §(A) the Lie algebra with generators h,é, fi(i=1,..1)
and defining relations obained from (2) by replacing h;, e;, f; by h, é., f.
respectively. Problems 3 and 4 imply that there exists an epimorphism 7: § — g
such that

nhy=h, w@é)=e, n(f)="rf (3)

In particular, the elements A, ..., h, are linearly independent. The subspace t
generated by them is a commutative subalgebra of §.
Denote by fi*(fi7) the subalgebra of § generated by é,, ..., é (resp. f1, ..., fi)

Problem5.§ =t + A" + f".

Forany a € t* set

A

3, = {xe§ [hx] =ah)xforall het) (4)

Problem 6. § = P, §,. §o = t

Problem 7. Any ideal of § is the sum of its intersections with the subspaces §,.
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Problem 8. Among the ideals of § that do not contain any ﬁ. there exists the
largest ideal m and m = m* @ m™, where m*™ = m N it~ are 1deals ol g.

Problem 9. Kerr = m

Therefore g ~ §/m. Since m is determined uniquely we have proved the
following

Theorem 1 (The first uniqueness theorem). 4 semisimple Lie algebra is deter-
mined uniquely up to an isomorphism by its Cartan matrix (or Dynkin diagram).
More precisely, if g and § are semisimple Lie algebras with canonical generators
{h,e, fi(l <i<)} and {h;,é,f;(1 <i<]1)} respectively and equal Cartan ma-
trices then there exists a (unique) isomorphism @:g — § such that ¢(h;) = hi,

(p(ez) - en (p(.f;) f;

Now let p: g — gl(V) be a finite-dimensional linear representation, @, its
weights system. Each weight A€ P and, in particular, each weight A€ &, is
completely determined by the integers A(h;) = {Ala;> (i = 1,...,1) which are its
coordinates in the basis of fundamental weights 7, ..., 7, (see 2.8°).

The numbers A(h;) are called the numerical labels of A.

Let V = @;c0,V; be the weight decomposition. A weight vector ve V, is
called a highest vector if

plejJv=0 for i=1,...,1L (5)

The corresponding weight A € @, is called a highest weight of p.

Example. If p = ad for a simple Lie algebra g then the root vector e, corre-
sponding to the highest root (see 2.5°) is a highest vector and the highest root
J is a highest weight of the representation.

Problem 10. For any weight 4 € @, there exist simple roots «; , ..., &; such
that A + «; + -+~ + a,,_is a highest weight. In particular, a highest weight exists
for any finite-dimensional p.

Fix a highest weight 4 € &, and a highest vector v, € V4. Denote by 4; the
numerical labels A(h;) of the highest weight. Consider the vectors

Vi g =P p(fiJua (I<ip i <D, vy =0y (6)

and
k

Clearly, v; ;€ V4

—a; _"'_ai

p(hi)UQ = AiUQ’

p(h)vi, i, = (A; — @i — " — Ay )i, iy
p(fi)vil...ik = Vi, . iy (7)
p(ei)vg = 09

p(e)v;, . i = (0, p(h)) + p(f;)p(e))vs,. i,
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These relations imply that the subspace of V spanned by v; ., vy is p(g)-
invariant.
An element 4 € t(R)* is called dominant if (4, ;) > 0 (i = 1,...,1). This means
that 4 belongs to the closure of the Weyl chamber CV corresponding to the base
\ Vv \
ay, ..., of 4.

Problem 11. Any highest weight 4 is dominant, i.e. A4; > 0.

Now suppose that p is irreducible. Clearly, in this case v;, __ ; for all k and v
generate V.

Problem 12. If p is irreducible and A is its highest weight then dim V,; = 1. Any
other weight A€ @, is of the form A =4 — o, — -+ —a,, where ; € [I. The
representation p has a unique highest weight.

Now we wish to prove that an irreducible linear representation p is determined
uniquely up to an equivalence by its highest weight. For this we will make use
of the following construction.

Consider a vector space V over C with basis {0g,0;,. i1 <iy,...,ix <Lk>1}
Define a linear representation p = p, of the above Lie algebra § in ¥ by deter-
mining it on generators by formulas (7) with h;, e;, f;, v;, ;. vz and p replaced
by h;, é;, fi, Ui, .. i, vy and p respectively. (The latter of these formulas should be
considered as a recurrent definition of §(é;)).

Problem 13. Prove the existence of p 4.

For an arbitrary A e t* set

Vi={veV:pho=Ai(hvforall het). (8)
Clearly,
V=" 9
Aet*

Problem 14. Among the subspaces of ¥ invariant with respect to 4(3) and not
coinciding with V there exists the largest subspace M.

Problem 15. There exists a unique linear map p: ¥ — V with the following
properties:

a) pliy) = vy;

b) The diagram

plx)

vV — V7
1% plr(x)) v

commutes for any x € § and p(V) = V.
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Problem 16. Ker p = M.

Problem 17. The ideal m is contained in the kernel of the induced representation
of § in /M,

Thus p uniquely determines a linear representation of the Lie algebra §/m = g
in V/M'D. This representation is completely determined by 4, and the statement
b) of Problem 15 implies that it is equivalent to p if we identify §/m and g with
respect to the above isomorphism. Therefore the following theorem holds.

Theorem 2 (The second uniqueness theorem). An irreducible finite-dimensional
linear representation of a semisimple Lie algebra is determined uniquely up to an
isomorphism by its highest weight.

In what follows we will often make use of the following method of describing
irreducible linear representations of a semisimple Lie algebra g: on the Dynkin
diagram of g mark the numerical labels of the representation above the corre-
sponding vertices. By Theorem 2 the obtained diagram, called the diagram of
this representation, determines it uniquely.

3°. Existence Theorems. Let A = (a;)) be an arbitrary [ x [ matrix over C and
A =(A,,...,4,) an arbitrary set of | complex numbers. Exactly as in 2° we can
construct the Lie algebra § = §(A), the vector space V and the linear representa-
tion p = p,: § — gl(V) (it does not matter here whether A is a Cartan matrix and
whether /A, are nonnegative or integer).

Clearly, the statements of Problems 5, 7, 13, 14 and formulas (5) and (9) remain
true. The algebras f, fi™ and i~ are defined as in 2° but the linear independence
of the elements ﬁl, ﬁ, has to be proved.

Problem 18. The elements /,, ..., A, are linearly independent.

This implies that if A is invertible then the statements of Problems 6 and 8
remain true.

In what follows let A be invertible. Construct the quotient algebra g = g(4) =
§/m and the quotient space V = V(4) = V/M, where m and M are defined
as in 2°. Denote by n: § — g and p: V — V the natural maps. Set

A

ho=nh), e =n@) fi=n(f) t=nd
nt =n(rt), vy = p(Og), v, i = P(0i, . i)

Finally, denote by p’ the linear representation of § in V induced by p. By
construction p’ is irreducible.

Let us decompose V into weight subspaces with respect to p’(f). Namely, for
any 4 € t* set

V.,={veV:ip'(hv=Aihjvforallhe f}.

Clearly, V, = p(V,). It follows from (9) that



§3. Existence and Uniqueness Theorems 187

V=9V,

AeQ
where @ = {A e t*: v, # 0}
On t, define the linear functions a,, ..., o; and A setting
alhy) =az  Alh) =4, (10)

Clearly, vz e V.

Problem 19. We have dim V; = 1. Any element A e Q presents in the form
A=A —a; —- —a . IfV;contains a nonzero element annihilated by all p’(&;)
then A = A (cf. Problem 12).

Problem 20. dim V, < oo for all 1 € Q.

Problem 21. p’'(m) = 0.
This shows that p’ determines an irreducible linear representation p = p(A):
g = gl(V).

Problem 22. Any nonzero element of g contains at least one of the elements h;.

Problem 23. If xen™ and [e;,x] =0 (i=1,...,]) then x = 0. Similarly, if
yentand[f,,y]=0(@(=1,...,])theny = 0.

Suppose now that A4 is a Cartan matrix and the numbers A; are nonnegative
integers. Our aim is to prove the following statements:

1) V and g are finite-dimensional;

2) g is semisimple and its Cartan matrix coincides with A;

3) The numerical labels of the highest weight of p(A) are 4,.

These statements obviously imply the following theorems.

Theorem 3 (The first existence theorem.) Any Cartan matrix is the Cartan
matrix of a semisimple Lie algebra.

Theorem 4 (The second existence theorem.) For any semisimple Lie algebra g
and any dominant weight A € p there exists an irreducible finite-dimensional linear
representation p(A) of g with highest weight A.

Theorems 3 and 1 imply in particular that each of the exceptional Dynkin
diagrams E¢, E,, Eg, F,, G, (see 2.7°) is a Dynkin diagram of a uniquely
determined noncommutative simple Lie algebra. These Lie algebras are called
exceptional and are denoted in the same way as their Dynkin diagrams. Their
dimensions are listed in Table 1. The root systems of these Lie algebras are the
root systems corresponding to the exceptional Dynkin diagrams whose existence
has been established by an explicit construction in § 2.

First of all let us prove that V is finite-dimensional. Problem 20 implies that
it suffices to prove the finiteness of €.

In t*, consider the subgroup

L={yetyphyezi=1,..0.
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Clearly, L is a lattice in its real linear span E. Furthermore, the elements a,, ...,
a, and A defined by formula (10) are contained in L.

Problem 24. Q < L.

Since A is invertible, a4, ..., a, constitute a basis of E over R. Theorem 2.9
implies that there exists a positive definite scalar product -, -)> on E such that
{a;la;) = a;; for all i, j. Let r; be the orthogonal reflection in E with respect to
the hyperplane orthogonal to «;. Problem 2.1 implies that r,(L) = L. Therefore
the group W generated by r; (i = 1,..., 1) is finite (cf. Problem 2.34). Now let us
prove that Q is W-invariant. .

Problem 25. [¢,, adfj)"’ {1 =[f.(adé ) %11 =0 for any i#j and
any k.

Problem 26. (ad f;)™*'f; = (ad ;) "i*!e; = O for any i # j.

Problem 26 implies that

plad )™ f) =adp(f))™ " p(f) =0 (i #)). (11)

Problem 27. Let p and g be two elements of an associative algebra such that
(ad p)'q = 0. Then any product of them containing m factors equal to p and n
factors equal to q presents as a linear combination of products of the form
p'qp'aq...piqp'o where [, =2 0,Y ociculi=m ;< lfori=1,...,n

A linear operator p is locally nilpotent if for any vector v there exists m such
that p™v = 0. (If p acts on a finite-dimensional space then p is nilpotent.)

Problem 28. p(f;)"*'v = 0.

Problem 29. p( f;) and p(e;) are locally nilpotent in V.

Denote by g the subspace of g spanned by h;, e;, f;. Clearly, this is a subalgebra
isomorphic to sl,(C).

Problem 30. The space V splits into the direct sum of finite-dimensional
subspaces invariant with respect to p(g) (for a fixed i).

Let p; be a liear representation of sl,(C) in V which sends the matrices h, e, f
in p(hy), p(e;), p(f;), respectively. By Problem 30 there exists a linear representation
R;: SLi(C) —» GL(V) preserving the finite-dimensional subspaces appearing in
this problem and such that dR; = p; in each of these subspaces. Set

n((2)

Let us extend r; onto t* by linearity and denote the dual reflection in t also by
r.. Since 7: t — t (by the definition of m) is an isomorphism, we will identify t and
t with the help of =.

Problem 31. w,p(h)w;* = p(ri(h)) (het = }).
Problem 32. We have V,

ri(A)

= w,;V; for any 4 € t*; in particular, r,(Q) = Q.
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Problem 33. For any y € E there exists w e W such that (w(y),«;) > 0 for all
i=1,..,1L

Problem 34. We have (4, 1) < (4, A) for any A € Q.

Therefore, 22 is a bounded subset of L and hence it is finite. We have proved
that V is finite-dimensional. Now let us go over to studying g.
For o € t* set

g, = {x € g: [h,x] = a(h)x for all h e t}.

Clearly,
3=t® D g..

a#0
Problem 35. If A; # 0 for all i then Kerp = 0.
Problem 36. The Lie algebra g is finite-dimensional and semisimple.
Problem 37. The subalgebra t is a maximal diagonalizable subalgebra of g.

Problem 38. The linear functions a,, ..., %, ont = t form a system of simple
roots of g with respect to t and {h;,e;, fi(1 <i <)} is a canonical system of
generators.

Problem 39. The Cartan matrix of {a,,...,,} coincides with the Cartan matrix
of g.

Problem 40. The weight A is the highest weight of the linear representation p.
Example. Let g = sl,(C). By theorems 4 and 2 there exists a unique up to an

equivalence irreducible representation p, of g with the diagram

k
o (12)

where k is an arbitrary nonnegative integer. Let V be the space of this representa-
tion. The highest weight of p, is of the form A = ka/2 where x is the positive root
of sI,(C). By Problem 12 all the weights of p, are of the form A — sa = (k — 2s)a/2
where s is an integer. Since the system of weights @, is symmetric (Corollary of
Theorem 1.5), we have 0 < s < k so that

d5pk= {pa/21p=k,k—2,...,2— k,——k}-.

The weight basis consists of the vectors of the form v; _; determined by (6). Here
itisclear thatdim V; = 1forall 4 € @, and that as the weight vectors we can take

vA—sazpk(f)sUA (S=O,l,,..,k),



190 Chapter 4. Complex Semisimple Lie Groups
where v, is a highest vector. Therefore dim V = k + | and
pk(e)UA—sazs(k_S+ 1)U/i—(s—l)a (S= l”k)

o) = 0.

For k =0 we get the trivial one-dimensional representation, for k = 1 the
standard representation in C?, for k = 2 the adjoint representation.

4°. The Linearity of a Connected Complex Semisimple Lie Group. Let G be a
connected semisimple algebraic group over C, T its maximal torus, Q < P < t(R)*
the root and weight lattices of the root system 4 (see 2.8°).

Theorem 5. The group G is simply connected if and only if
Z(T) = P. (13)

First we prove the sufficiency of the condition (13) and then we apply it to
prove Theorem 6. The latter proof will also imply the necessity of this condition.

Let {x,,...,2} be a system of simple roots of G with respect to T, G*¥' = G*
the three-dimensional subgroup of G corresponding to «, (see 1.6°), T the

maximal torus of G* belonging to T.
Problem 41. Under condition (13) all groups G* are simply connected.
Problem 42. Under the same condition T = TV x --- x TV,

Problem 43. For any connected reductive algebraic group G the homomor-
phism i : 7, (T) - n,(G) generated by the embedding of the maximal torus
i: T — G is surjective.

Therefore it suffices to prove that (13) implies i, = 0. To do this consider the
diagram

T=TWDx - x T® ' G
"(ll X X ”l“ m

GV x -+ x G(l)

where i%: T® - G® is an embedding and m(g,,...,g,) = ¢, ..., (see Problem

42). Clearly, the diagram commutes, hence i, = m,(i{" x -~ x i{), but i =0
by Problem 42. Therefore i, = 0 and the sufficiency of (13) is proved.

Theorem 6. Any connected semisimple Lie group admits a faithful finite-
dimensional linear representation.

Corollary. Any connected semisimple Lie group admits a unique structure of an
algebraic group.
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Problem 44. Reduce the proof of the theorem to the case of a simply connected
group.

Problem 45. For any semisimple Lie algebra g there exists a linear representa-
tion p whose weights generate the weight lattice P of the root system 4,. Such a
representation p is always faithful.

Now we will prove Theorem 6 for a simply connected semisimple group G.
Let g be the tangent algebra of G. By Theorem 1.2.6 there exists a linear
representation R of G such that dR = p is the representation of g satisfying the
condition of Problem 45. Let us prove that R is faithful. Clearly, R(G) is a
connected algebraic group with tangent algebra p(g) ~ g. If we identify the
maximal diagonalizable subalgebra t of g with p(t) with the help of p, the weights
of p are identified with the weights of the identity representation of R(G) which
are the differentials of characters of the maximal torus of R(G). Therefore R(G)
satisfies the condition (13) and is, as we have already proved, simply connected.
Thus the covering R: G — R(G) is bijective. Theorem 6 is proved. (]

If G is a simply connected semisimple algebraic group then Problem 45 implies
the existence of a representation R of G whose weights generate P. Therefore,
(13) holds thereby completing the proof of Theorem 5. (J

5°. The Center and the Fundamental Group. Let T be an algebraic torus, t its
tangent algebra. We will now establish a one-to-one correspondence between
the finite subgroups of T and the lattices in t(R) containing t(Z). To this end
consider the homomorphism &: t — T defined by the formula

&(x) = exp(2mix). : (14)
Problem 46. Ker & = t(Z).

Problem 47. For any finite subgroup S = T its pre-image &(S) is a lattice in
t(R). The map S+ &(S) establishes a bijective correspondence between finite
subgroups of T and lattices in t(R) containing t(Z). We also have

S ~ £ (S)H(D).

Now apply these considerations to calculate the center and the fundamental
group of a semisimple Lie group in terms of the lattice of characters of its maximal
torus. Recall (see Theorem 2.6) that the center Z(G) of a connected semisimple
Lie group G is contained in any its maximal torus T. Consider, as in 2.8°, the
root and the weight lattices Q = P < t(R)* and their dual lattices Q¥ < P¥
t(R).

Theorem 7. Let G be a connected semisimple Lie group, T its maximal torus.
Then &~ (Z(G)) = P and

Z(G)~ PY/H(Z) = Z(T)/Q.
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Problem 48. Prove this theorem.

Corollary. If G is a simply connected semisimple Lie group then Z(G) ~ P/Q =
n(dg).

Problem 49. Let G, G be connected semisimple Lie groups and let a homomor-
phism p: G — G be a covering, If T < G and T < G are maximal tori then p(T)
and p~(T) are maximal tori of G and G respectively. If T = p(T), we have the
commutative diagram

T L5 T :
& ’J (15)
t —df—-> t

where dp is an isomorphism and where & and & are defined by (14).

Theorem 8. Let p: G — G be a simply connected covering of a semisimple Lie
group G. Then & '(Ker p) = t(Z) and

m,(G) = t(2)/QY ~ P(Z(T)).
Problem 50. Prove this theorem.

6°. Classification of Connected Semisimple Lie Groups. In this section we will
prove the following two theorems.

Theorem 9 (The global uniqueness theorem.) A connected semisimple Lie group
G is determined uniquely up to an isomorphism by its Dynkin diagram and the
character lattice Z(T) of a maximal torus T = G. More precisely, if G,, G, are
two connected semisimple Lie groups, T; = G; their maximal tori, IT; the correspond-
ing systems of simple roots then for any isomorphisms: IT, — IT, which maps Z(T,)
onto Z(T,) there exists an isomorphism ®: G, - G, mapping T, onto T, and
inducing .

Theorem 10 (The global existence theorem). Let 4 < E be a reduced root system,
Q < P c Eitsroot and weight lattices. For any lattice L < E suchthatQ < L < P
there exist a connected semisimple Lie group G, its maximal torus T and a root
system isomorphism A; — A mapping Z(T) into L:

Proof of Theorem 9 is based on the following problem.

Problem 51. Let G, G, be two connected semisimple Lie groups, T, = G, their
maximal tori. For any isomorphism ¢: g, — g, such that ¢(t,(Z)) = t,(Z) there
exists an isomorphism &: G, — G, such that d® = ¢.

Problem 52. Prove Theorem 9.
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To prove Theorem 10 consider a semisimple Lie algebra g whose Cartan
matrix coincides with the Cartan matrix of A4 (see Theorem 3). By Theorem 2.9
we may identify 4 with the root system 4, with respect to a maximal diagon-
alizable subalgebra t. Let G be a simply connected Lie group with the tangent
algebra g, T = expt a maximal torus and &: t » T the homomorphism defined
by formula (14). Set N = &(L*), where L* = P" is the dual lattice of L. By
Theorem 7 N < Z(G). The group G = G/N is the desired one. In fact, L* =
&™Y(N) since Q¥ = Ker & by Theorem 5 and L* > QV. Considering diagram
(15), where T = T/N and p: G — G is the natural homomorphism, we see that
t(Z) = L* and therefore Z(T) =

Notice that a lattice L such that Q = L < P is completely determined by the
subgroup L/Q of the finite group P/Q = n(4). Therefore the classification of
connected semisimple Lie groups can be given in terms of subgroups of ().
(Notice that by Theorem 7 the group L/Q is isomorphic to the center of the
semisimple Lie group G corresponding to L.) Let us give the corresponding
formulation in terms of Cartan matrices.

Let A be an [ x | Cartan matrix. Then its rows generate a lattice Q, in R' such
that Q, = Z". Set n(4) = Z'/Q,. By an isomorphism of Cartan matrices A, and
A, we will mean a pair of identical permutations of rows and columns of A4,
that transforms 4, to 4,. Any such isomorphism determines an isomorphism
7(A4,)~ 7(Ay).

Problem 53. There is a bijection between the connected semisimple Lie groups
G (considered up to an isomorphism) and the pairs (4, Z), where 4 is a Cartan
matrix and Z is a subgroup of n(A), considered up to an isomorphisms of Cartan
matrices A that transform subgroups Z into each other. If a pair (4, Z) corre-
sponds to G then A4 is the matrix of g and Z =~ Z(G).

Example 1. Let g be a simple Lie algebra. Let us see what the classification of
connected Lie groups G with the tangent algebra g looks like. If g # D,,, s > 2,
then n(d,) is a cyclic group. Therefore any of its subgroups is invariant under all
the automorphisms of the group n(4,). Therefore in this case G is determined up
to an isomorphism by g and the center Z(G) which may be isomorphic to an
arbitrary subgroup of n(4,).

Emmple 2. Let g = D, = 50,,(C), s > 2. Then n(4,) =~ Z, ® Z,. Clearly, for
> 3 the only nontrivial automorphism of the Dynkm diagram (or the Cartan
matrix) permutes the summands of this direct sum. Therefore there exist exactly
two nonisomorphic connected Lie groups G with the tangent algebra so, (C)
(s = 3) and the center Z(G) ~ Z,. Furthermore, for ¢ = D, the automorphism
group of the Dynkin diagram, isomorphic to S;, acts as the automorphism group
of the group Z, @ Z,. Therefore, in this case there exists a unique connected Lie
group with the given center.

7°. Classification of Irreducible Representations. Let G be a connected semi-
simple Lie group. To any finite-dimensional linear representation R: G - GL(V)
one can associate a representation p = dR: g — gl(V) of the tangent Lie algebra



194 Chapter 4. Complex Semisimple Lie Groups

g. The weight system @ of R with respect to a maximal torus T = G coincides
with the weight system @, with respect to the corresponding subalgebra t of g.
The highest vectors and the highest weights of R are the highest vectors and the
highest weights of p. If R is irreducible then so is p and Problem 12 implies that
R possesses a unique highest weight 4 € Z(T). By Problem 11 A is dominant.
The diagram of an irreducible linear representation R is the diagram of p.

Theorem 11. An irreducible finite-dimensional linear representation of a con-
nected semisimple Lie group G is determined uniquely up to an equivalence by its
highest weight. For any dominant character A € Z(T) there exists an irreducible
finite-dimensional linear representation of G with highest weight A.

Problem 54. Prove this theorem.

Example. Since SL,(C) is simply connected, it has a representation R, with
diagram (12) such that dR, = p, (k is any nonnegative integer). Clearly, R,(—E) =
E if and only if k is even. Therefore the irreducible representations of SO, (C) ~
C)/{ £ E} are determined by diagrams (12) with arbitrary even k > 0.

Now, introduce lowest weights which are sometimes more convenient than
highest weights. Let R be a finite-dimensional linear representation of a con-
nected semisimple Lie group in a space V and p = dR the corresponding tangent
representation. A lowest vector of R (or p) is a (nonzero) weight vector v € V such
that p(f;)v =0 (i = 1,...,1). The corresponding weight is called a lowest weight.
For instance, the lowest root of a simple Lie algebra (see 2.5°) is the lowest weight
of its adjoint representation. Let us establish the connection between the highest
and the lowest weights of a representation.

Let Cy be the Weyl chamber corresponding to a base I1. Denote by w, the
(unique) element of W sending C, to the opposite Weyl chamber — C,. Clearly,
wi = e.

Problem 55. The transformation ‘w, sends the highest weights of the represen-
tation R (or p) into the lowest weights and vice versa. If n, € N(T) is an element
such that (Ad ny)|t(R) = w, then R(n,) transforms the highest vectors in the
lowest ones and vice versa.

Problem 55 implies that the properties of the lowest weights are completely
similar to the known properties of the highest weights. Thus, any weight A of a
representation R is expressed in the form A = M + o; + - + a;, , where M is a
lowest weight and «;, € I1. If R is irreducible then there exists a unique lowest
weight M € &g, dim VM = | and the representation is determined by M uniquely
up to an equivalence.

Exercises

1) The Lie algebra ft* of Problem 5 is freely generated by the elements é,, ...
é, (ie. there exists an isomorphism l(xl,...,x,) — fi* sending x; to é;). Simi-
larly, fi™ is freely generated by fl, ...,f.

2) The relations of Problem 26 together with relations (2) form the complete
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set of defining relations of a semisimple Lie algebra g. (Hint: See [17],
Appendix to Ch. VI).

3) Under the notation of 2° v € V, belongs to M“ if and only if p4(é;)v € MD
for all i. (This gives a recursive method for constructing M'1.)

4) Under the notation of 2° let 4 be a highest weight of p and 4 a dominant
weight of the form A — «; a;,, Where «; € IT. Then A€ @,. (Hint:
present A — 7 as the sum of a m1n1mal number of positive roots: A —i=
By + ‘- + B, and then by induction in k prove that A — §; — - — B, € B,.)

Since any weight of p can be transformed into a dominant weight by a
transformation from the Weyl group, we have a method for recovering all the
weights of a representation from its highest weights.

In Exercises 5)-14) R stands for a finite-dimensional linear representation of

a connected semisimple Lie group G in a space V, p = dR: g — gl(V) the corre-
sponding tangent representation, /7 a system of simple roots of G.

5) We have @z, = — &g, where R* is the representation dual to R. If R is the

irreducible representation with the highest weight A and the lowest weight

M then R* is the irreducible representation with the highest weight — M =

—'wo and the lowest weight —4 = —'wy M, where w, € W is the element
defined in 7°.
6) The transformation v = —'w, is an automorphism of /7. If g is simple and

different from sl,(C) (n = 3), 504,+,(C) and E then v = e. For the remaining
simple Lie algebras v is determined by the only nontrivial symmetry of
the Dynkin diagram of /7. If g is not simple then v acts on /7 componentwise.
(Hint: apply Exercise 2.19).

A representation R is called self-dual if R* ~ R.

7) If g is a simple Lie algebra different from sl,(C), (n > 3), s0,4,.,(C) or E¢ then
any irreducible representation of g is self-dual. For the remaining three types
an irreducible representation is self-dual if and only if its numerical labels
are symmetrically located on its Dynkin diagram.

8) Let H be the three-dimensional connected simple subgroup of G corre-
sponding to the principal three-dimensional subalgebra by = g (see Exercise
2.28). If R is an irreducible representation with the highest weight 4 and the
lowest weight M then there exists in V a subspace invariant and irreducible
with respect to R(H) and containing V4, Vj,. Iu this subspace, R induces an
irreducible representation R,, of H, where m = Y, gr, 4,

9) A linear representation R is self-dual if and only if there exists a non-
degenerate bilinear form on V invariant with respect to R(G).

10) If for an irreducible representation R there exists a nonzero bilinear form on
V invariant with respect to R(G) then this form is non-degenerate and either
symmetric or skew-symmetric; any two invariant bilinear forms are propor-
tional to each other.

A linear representation R is called orthogonal if it preserves a non-degenerate
symmetric invariant bilinear form and symplectic if it preserves a non-degenerate
skew-symmetric invariant bilinear form. Any self-dual irreducible representation
is, clearly, either orthogonal or symplectic.
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The representation R, of SL,(C) is orthogonal if k is even and symplectic if
k is odd. Any irreducible representation of SO;(C) is orthogonal.

Let R be an irreducible self-dual representation with highest weight A and
A, = A(h,)(x € IT) the numerical labels of the highest weight. R is orthogonal
if ), nre, is even and symplectic if this number is odd. Here r, are the
coordinates of the vector 2p¥ =3, gz in the basis [TV = {h,:a e Il}.
Thanks to Exercise 2.5p" =3, p7,v, Where n,v € t(R)are the fundamental
weights of the root system 4,’.

Deduce from Exercise 12 the following rule for determining whether a
self-dual irreducible representation of G is orthogonal or symplectic. Find
the sum of numerical labels of the highest weight corresponding to the black
vertices in the connected components of the Dynkin diagram of G of the
types indicated below (other types give zero contribution). The representa-
tion is orthogonal if and only if this sum is even and symplectic if it is odd.

A4q+y 0—0— - —e@—---—o—o0 (the black vertex is the middle one).

Bygi1s Bager o—0— ... —c—e

Caq 0 o - —e=0
C241+1 *—O0—eo— - - -

Dyyer o—o——o<:
E, o—-o- TH °

Express the criterion of Exercise 12 in the following form: let z, € Z(G) be
the element defined by the formula

2o =6(p") = exp(2mip");

an irreducible self-dual representation R is orthogonal if R(z,) = E and
symplectic if R(zy) = —

A connected semisimple Lie group G is called a group of adjoint type if it
satisfies either of the following equivalent conditions: Z(T) = Q or Z(G) = {e}
or m,(G) = n,(4g).

For any semisimple Lie algebra g there exists a unique up to an isomorphism
group of adjoint type with the tangent algebra g. Such a group is the adjoint
group Ad G for any connected Lie group G with the tangent algebra g.

Any self-dual irreducible linear representation of a group of adjoint type is
orthogonal.
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Let G be a connected semisimple Lie group, R, ..., R,, its linear represen-
tations, R = R, ... R,,.

17) The weights of R are of the form 4, +---+ A,, where 4;€ @z . Then
M), ® @Va,, c(V1® - ® Vm)xl+---+;.,,,-

18) If v,, is a highest vector of R; then vy =v, ® - ® v, is a highest vector
of R.

Suppose G = G, x ‘** x G, where G/s are simple groups.

For any irreducible representation R;: G, —» GL(V,) we can define an irre-
ducible representation R;: G - GL(¥;) setting R(g,,...,9,) = Ri(gy).

19) Let R;: G, — GL(V}) be an irreducible representation for eachi= 1, ..., m.
Then R, ... R,, is an irreducible representation of G in the space V, ® - ®
V... Recover its highest weight from the highest weights of R;’s.

20) Conversely, any irreducible representation of G factors into the product of
R;’s obtained by the above method from some irreducible representations
R, of G,. The representations R; are determined uniquely.

Let TPV be the p-th tensor power of a vector space V. Let A7V and SPV be its
exterior and symmetric powers. Any representation R: G — GL(V) induces the
p-th tensor power T?R = RP” in the space T*?V, the p-th exterior power A”R in
APV and the p-th symmetric power SPR in S?V.

21) T?R ~ A*R @ S*R. (For p > 2 the similar statement is false!)

22) Find the representations of the tangent algebra g corresponding to A”R and
SPR. .

) Vi~ AV S MPV )i wenas Vag Vi, € (SPV)g i,

24) If v, is a highest vector of R, then v} is a highest vector of SPR and its weight
is pA.

25) Let R be an irreducible representation with the highest weight 4 and
{vy,...,v,}, wherev; € V, , alinearly independent system of its weight vectors
with the minimal possible sum Y, ¢; <, ht(A — 4;), where ht(y) (the height of
a weight y € P) is the sum of coordinates of y in the basis consisting of simple
roots. Then v, A -+ A v, is a highest vector of A”R.

26) The diagrams of the identity representations Id of the classical simple Lie
groups are the following:

SLn(C)a n=2: o—-O0— —O——0
SOZrH—l(C)’ nz 2 o—O0— —O=0
SO,(C): )

§0,,(C),n= 3 0—o— <

Sp2a(C),n = L o0—o0— —0o&=0
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27) For the indicated values of p the representations A Id are irreducible and
their diagrams are the following:

SL,(C),n=2: 0_0__c1>._ . —0—0 psn—1,
§$O2,41(C),n = 2: O—O——-—Cl)——0=>0 psn—1,
50,,(C).n >3 DI O _< p<n—2

(the unit occupies the p-th place.)
28) The representation S? Id of SL,(C) is irreducible for all p, its diagram is
p

0—o0—+—o—oand S’ Id ~ R, forn = 2.

29) Using Theorem 5 prove that SL,(C) and Sp,,(C) are simply connected and
n,(S0,(C)) = Z, forn = 3.

In Exercises 30-33 R is a locally faithful linear representation of a connected

semisimple Lie group G, p = dR, T a maximal torus of G.

30) If we identify t(R)* with its image with respect to ‘p™' then the character
lattice Z(R(T)) is identified with the sublattice Ly = #(T) generated by the
weights of R. The lattice L is generated by the lattice Q and all highest (or
all lowest) weights of R, and the dual lattice is of the form

L,"{} = {x e p”: A(x) € Z for all the highest (lowest weights of R}
31) Z(R(G)) = p"/LE = Lg/Q; KerR = L¥/{(Z) = Z(T)/Lg.
32) A representation R is faithful if and only if its weights generate Z(T) or if
*
33) R?G; is(Za)‘group of adjoint type if and only if Lg = Q. If R is irreducible

then this is equivalent to the fact that the weight system ®g contains a zero
weight.

Denote by Spin,(C) the simply connected covering group for SO,(C),
n>=3.
34) We have the following isomorphisms:

Spin;(C) = SL,(C),
Spin,(C) = SL,(C) x SL,(C),
Spins(C) = Sp,4(C),

Sping(C) = SL,(C).
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35) A connected semisimple Lie group admits a faithful irreducible representation

if and only if its center is cyclic.

36) The following representations of Spin,(C) are faithful:

10.

11.

13.
17.
18.
21

23.

o—o0— -+ - —0—0 for odd n

0——0—< ’ forn=4k +2,keZ
O_o,__c<z + o—o—‘o<: forn=4k, keZ

. By induction in the length m of a word verify that the words of the form (1)

constitute a subalgebra of a.

Make use of Problems 1.44 and 2.21.

Making use of Problem 1 and relation (2) show that t+a" +f isa
subalgebra of §.

The identity §, = t follows from the invertibility of 4 and the linear indepen-
dence of the elements ﬁ,-.

First prove that the ideal m = § does not contain any h; if and only if
m At = 0. Then show that any ideal m is of the form m = @, mn§,. To
prove that m* are ideals notice that

[f,itlci+at, [e,i]ci+a.

Follows from the fact that any non-zero ideal of g contains at least one of
the elements h;.

Apply Problem 1.25 (more precisely, its generalization to any linear represen-
tations of g).

Let r; = r,, be the reflection corresponding to the root «;. By Problem 1.40
r(A4) = A — A;a; is a weight of the representation p in the subspace spanned
by the vectorsv; _; ,vg. By Problem 1.25v; ., € VA—:.~;~~- —a, This implies
that 4, > 0.

Make use of Problem 3.

Follows from the commutative diagram of Problem 15.

Make use of the existence of the representation p, for any 4,,..., 4;.
Problem 8 implies that the subspace p'(m™)(V) is g-invariant. If p'(m™) # 0
then p’(m™)(V) = V,vg € p'(m”)(V)which contradicts Problem 19. To prove
that p’(m*) = 0 consider the subspace (), - Ker p'(x) invariant with respect
to g and containing vg.

Prove that the elements of the form (adfil)...(adfip)(ad h;,)...(ad h; )(x)
(p,q = 0) form an ideal of g belonging to n™.
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Expanding (ad p)'q = 0 we see that the product p'q is presented in the desired
form.

The vector v = p(f;)" *lpg is obviously a weight vector of weight A —
(4; + 1)a;. Bya stralghtforward verification p(e;)v = O for all k. Problem 19
shows that v = 0.

For p(e;) this is clear from Problem 19. To prove the local nilpotency of p(f;)
consider the subspace U; = ( J,,Ker(p(f;))". Problem 28 shows that U; # 0.
By a straightforward verification U, is invariant with respect to p(h,) and
p(e,) for all k. Finally, with the help of formula (11) and Problem 27 applied
to p = p(f;) and q = p(f,), it is not difficult to show that U; is invariant with
respect to p(f,) for any k. This implies that U; = V.

It suffices to prove that any weight vector belongs to a finite-dimensional
subspace invariant with respect to p(g”). Let 4 € Q. Consider the subspace

U=V,® <@ p(e,-)’"V;) ® (@ p(f;)'"Vx>-

It is easy to verify that U is invariant with respect to p(g"”’) and Problems 20
and 29 imply that U is finite-dimensional.

It suffices to consider two cases: h = h; and a;(h) = 0. In the first case the
statement of the problem reduces to the statement concerning SL,(C) which
can be verified directly. In the second case it is necesary to prove that p(h)
commutes with w; but this follows from the fact that p(h) commutes with
p(hy), pley), p(f).

In the orbit of y under W, choose an element y, with the minimal sum of the
coefficients in its linear expression in terms of «, ..., o, and consider the
elements r,(y, ).

Thanks to Problems 32 and 33 we may assume that (4,«;) > 0 for all i.
Making use of Problem 19 we get (4 — 4,1) = 0.

Under the conditions of the problem, h; ¢ Kerp for any i. Then apply
Problem 22.

Let a be a commutative ideal of a and a # 0. By Problem 22 h; € a for some
i but then ¢; = 1[h;,e;] € a contradicting the commutativity of a.

Make use of Problem 5 and linear independence of the forms a4, ..., «,.
The group G" is the image of the simply connected group SL,(C) with
respect to the homomorphism &, = @, (see 1.6°); it is simply connected if
and only if &, is injective, i.e. t, = & (—E) # e. It is easy to see that ¢, =
exp(mih,). The condition (13) implies the existence of a character y € Z(T)
such that (dy)(h,) = 1. Then x(t,) = exp(ni(dy)(h,)) = —1so that ¢, # e.
Clearly, T = T ... T". Lett, € T be elements such that ¢, ...t, = e. Con-
dition (13) implies the existence of characters y; € Z(T) (i = 1,. ) such that
dy; = m; (fundamental weights). We have y,(t,...t) = ;(k(t,,) =1. Lett, =
exp(2mnic, hy), where ¢, € C. Then y,(t,) = exp(2nic,)so thatc, € Zand ¢, = e.
Make use of Theorems 1.2.4, 2.4 and Problem 2.27.

Make use of Theorem 3.1.10.
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Such is e.g. the sum of the irreducible representations with highest weights
m,,..., m existing thanks to Theorem 4. The representation is faithful thanks
to Problem 1.39.

Make use of the fact that Z(G) = {expx xet,e®™ = 1forallaedg}

Make use of the relation Ker p < Z(G).

Make use of Diagram (15).

Let p;: G, — G; be a simply connected covering of G; (i = 1,2) and T; < G,,
T; < G, the maximal tori corresponding to t;. The isomorphism ¢ determines
an isomorphism &: G, — G, such that the diagram

~ ~

S
AN

T, T,

D1 ty —t t, D2

where &, &, are defined as in (14), commutes (see Problem 49). Theorem 8
implies that ®(Ker p,) = Ker p, so that @ determines the desired isomorphism
@: G, - G,.
Make use of Theorem 1 and Problem 51.
Let A be the Cartan matrix of g. It follows from (2.6) that the isomorphism
7' — P sending the set (ky,..., k) to Y | <;< kim; maps Q, onto Q and there-
fore induces an isomorphism 7(A4) = n(d,). With the subgroup Z(T)/Q <
n(d,) associated is an isomorphic subgroup Z < 7(A). Theorems 9
and 10 imply that the correspondence G+ (A4,Z) determines the desired
bijection.
The uniqueness of the representation with given highest weight follows from
Theorems 2 and 1.2.4. Let A4 € Z(T) be a dominant character. By Theorem
4 there exists an irreducible finite-dimensional linear representation p: g —
gl(V) of g with the highest weight 4. By Theorem 1.2.6 p = dR for an
irreducible representation R: G — GL(V), where G is a simply connected
covering group of G. By Theorem 8 the kernel of the covering ¢: G-Gis
of the form Ker ¢ = &(t(Z)). On the other hand, it follows from Problem 10
that @z e Z(T) whence we derive that R(Ker ¢) = e so that R determines the
desired linear representation R: G = GL(V).
Let B* and B~ be the Borel subgroups of G corresponding to the Weyl
chambers C, and —C, (see 2.3°). It follows from Problem 1.24 that
noB*ny' = B~ and noB™ng' = B*.
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§4. Automorphisms

In this section we study automorphisms of the complex semisimple Lie alge-
bras. First we prove that the group of outer automorphisms (see 1.3.10°) of a
semisimple Lie algebra is isomorphic to the group of automorphisms of its
Dynkin diagram. We then study semisimple automorphisms of a semisimple Lie
algebra g up to conjugacy in Aut g. The main result is an explicit description of
classes of semisimple automorphisms whose eigenvalues are of absolute value 1.
This description, involving the affine Dynkin diagrams, is due (in case of periodic
automorphisms) to V.G. Kac, but its proof presented in this book essentially
differs from the original one (for an exposition of the latter see [6]) and goes back
to the well-known paper by F.R. Gantmacher [38]. Especially important for us
is the description of classes of involutive automorphisms since it will be used in
Ch. 5 in the classification of real simple Lie algebras. At the end of the section
we consider semisimple automorphisms of simply connected semisimple Lie
groups and we prove that the set of fixed points of such an automorphism is
connected. All Lie groups and Lie algebras are defined over C; (-, -) denotes the
Cartan scalar product on a semisimple Lie algebra.

1°. The Group of Outer Automorphisms. Let g be a semisimple Lie algebra. In
this section we calculate the group Aut g/Int g of its outer automorphisms (see
1.3.10°). As it is known, Aut g is a linear algebraic group whose tangent algebra
is the algebra of derivations der g. The ideal ad g = Der g is isomorphic to g and
therefore is algebraic. Clearly, the corresponding connected algebraic normal
subgroup of Aut g coincides with Intg.

Let b be a maximal diagonalizable subalgebra in g. Let 4, be the root system
with respect to b and IT = 4, a base. Each automorphism 9 € Aut g is the dif-
ferential d@ of an automorphlsm O of the connected algebraic group G with the
tangent algebra g (e.g. of the automorphism @(a) = 0ab™* of G = Int g). Applying
Problem 1.24 we see that if 6(h) = b then O(h(R)) = h(R) and ‘0(d,) = 4,. Since
8 preserves the Cartan scalar product, ‘0 € Aut 4,. Now consider the subgroup

Aut(g,b, [T) = {6 € Autg: 6(h) = b,'0(IT) = IT}.

Assigning to an automorphism 6 € Aut(g, b, IT) the automorphism (‘0|17)™"
Aut [T we get a homomorphism

n: Aut(g, b, I7) - Aut I1.
Let us prove that 5 is surjective. For this fix a canonical system of generators
thy.e,,e_y(ae IT)} of g associated with b and 7T (see 3.2°). By Theorem 3.1 for

any t € Aut /7 there exists a unique automorphism ¢ € Aut(qg, b, /7) such that

th) = hery  He) = €y E(e—y) = e iy (a € IT). (1)
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Clearly, the map {: t+ 1 is a homomorphism of Aut /7 into Aut(g, b, IT) such
that n{ = id. We see that n isomorphically maps the subgroup Autll = Im{ c
Aut(g, b, IT) onto Aut 1. It is also clear that

Aut(g, b, IT) = Kern x Aut /T,

Denote by H = exp ad b the maximal torus of Int g correspondmg toadh ~ b
Clearly, H = Kern.

Problem 1. Kern = Aut(g,b, IT)nIntg = H, therefore Aut(g,b,I7T) =
Aut 1.

Now we extend # to a homomorphism of the whole group Autg onto Aut I7
(the extended homomorphism will be denoted by the same letter 7).

Problem 2. Autq = Aut(g, b, I7) - Intq.
Problems 1 and 2 imply

Theorem 1. Autg = Intg x AutIl. In particular, Autg/Intg ~ Aut/l. The
corresponding homomorphism n: Aut g — Aut I coincides with n: 0+ ('0|IT)"* on
Aut(g,b, I7).

Problem 3 (Corollary). The group Int g coincides with the identity component
of Aut g and the different connected components of Aut g are the sets 7' (1) =
(Int g)7 for different T € Aut /1. The Lie algebra der g coincides with ad g.

2°. Semisimple Automorphisms. Let § be an automorphism of a semisimple
Lie algebra g which is a semisimple linear transformation, g(4) < g the eigenspace
of 0 corresponding to 4 € C*. Then

g= @ g(d).

AeC*
Problem 4. [g(4), g(1)] < g(4p) for any A, u € C*. In particular, g(1) = {x e g:
6(x) = x} is a subalgebra of g.
Denote g(1) by g°.

Problem 5. (g(4), (1)) = O for any A, u such that Au # 1. The scalar product is
non-degenerate on g(4) + g(1/4) for any 1 e C*.

Theorem 2. If g # 0 is a semisimple Lie algebra and 6 € Autg is a semisimple
automorphism then g° # 0.

Proof of this theorem is an immediate corollary of the following Problems 6-9.

Problem 6. Any nilpotent element x € g presents in the form x = [x, y], where
yeg.

Problem 7. If g° = 0 then g(4) does not contain non-zero nilpotent elements
for any 4 e C*.
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Problem 8. If 1 € C* is not a root of 1 then g(4) consists of nilpotent elements.
If all eigenvalues of 6 are roots of 1 then, clearly, §™ = e for certain positive
integer m so that all eigenvalues are of the form ¢', where & = e2™/™.

Problem 9. If 6™ = e and g(¢') = 0 for 0 </ < k < m then g(¢*) consists of
nilpotent elements.

Problem 10. The subalgebra g is a reductive algebraic subalgebra of g.

Our aim is the classification of semisimple automorphisms up to conjugacy in
Autg. The first step in this direction is the proof of the fact that any semisimple
automorphism 6 is conjugate to an element of Aut(g,b, I7) where b and I7T are
defined in 1°. For this we make use of ¢’. Let t be a maximal diagonalizable
subalgebra of g° and 3(t) its centralizer in g.

Problem 11. The subalgebra 3(t) is invariant with respect to 6 and is a maximal
diagonalizable subalgebra of g.

Problem 12. In t, there exists an element regular with respect to ), = 3(t). There
exists a system of simple roots I7, of g with respect to b, such that ‘0(/7,) = IT,.

Problem 13. There exists a € Int g such that afa™! € Ht < Aut(g, b, IT), where
T = n(6).

Therefore it suffices to consider automorphisms taken from cosets Ht = tH,
where 7 are different elements of Aut /7. Denote by T, the subtorus of H which
is the identity component of the subgroup Z(?) = {h e H: tht™! = h}. Clearly,
T, = exp(ad t,), where t, = b° = h n g°. Now we wish to show that any element
of tH is conjugate to an element of the subset 7T,.

Problem 14. The subspace Im(‘t — e) < § coincides with t}. The torus H locally
splits into the direct product of tori: H = T,H,, where H, = {{"'hth™': he H}.

Problem 15. For any 6 € tH there exists he H such that h6h™' € tT,. In
particular, tH consists of semisimple automorphisms.

Problems 13 and 15 imply

Theorem 3. Any semisimple automorphism 6 € Autg is conjugate to an auto-
morphism from the set tT,, where T = n(0), T, = exp(ad b°).

Problem 16. If automorphisms a,, a, € Aut g are conjugate in Aut g then n(a,),
n(a,) are conjugate in Aut /7. Conversely, if 1, = o1,067!, where 7, 7,, 0 € Aut 17,
thent, T, = 6(¢, T, )¢ ™"

Theorem 3 and Problem 16 imply that the problem of classification of semi-
simple automorphisms of g up to conjugacy reduces to the following two
problems:

a) find the conjugacy classes of Aut IT;

b) for some representatives t of various conjugacy classes of Aut /7 classify the
elements of T, up to conjugacy in Autg.
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Problem a) belongs to the theory of finite groups. We will only consider this
problem for simple Lie algebras g, when it is trivial. Most of this section is devoted
to the solving of Problem b).

Let again 7 € Aut I. Consider the automorphism ¢ and the subspace t, = b,
Let r: h* — t¥ be the restriction map. Clearly, r(4,4(h) U {0}) = 4(t.) U {0}.

Problem 17. dim t, equals the number of orbits of the cyclic group {t) in IT.
For a, f € IT we have r(x) = r(f) if and only if « and B belong to the same orbit.
If a € 44(b) and r(x) € r(IT) then a € I1. The different elements of 17, = r(/T) form
a basis of t} and each element of r(4,), the set coinciding with 4(t,), is expressed
in terms of elements of 77, with integer coefficients of the same sign. The central-
izer 3(t.) coincides with b. For any 6 € TH the subalgebra t, is a maximal diago-
nalizable subalgebra of g°.

Problem 18. Let automorphisms 0,, 8, € £T, be conjugate in Autg, i.e. 6, =
g0,g7! for some g € Aut g. The automorphism g can be chosen so that g(t,) = t.,
gtg ' e tT,.

In Aut g, consider the subgroup S, = () T.. Clearly, S, = () x T.. Therefore
S, is a quasitorus in Autg and S? = T, (see 3.2.3°). Let N, be the subgroup of the
normalizer N(S,) of S, in Aut g consisting of g € N(S,) such that a(g) transforms
£T, into itself, i.e. induces the identity automorphism of S,/T.. Let 2, be the group
of automorphisms w(g) of S, induced by the automorphisms a(g) for g € N..
Problem 18 implies

Theorem 4. Two automorphisms 0,, 0, € €T, are conjugate in Aut g if and only
if 6, = w(6,) for some w € Q,.

To describe the orbits of the group 2, on the set T it is convenient to go over
to the simply connected covering space a of the manifold £T,, which is an affine
space with the associated vector space t,. Here, instead of €2,, the group of trans-
formations of a covering the transformations from £, is to be considered. This
group turns out to be very close to the group of affine transformations generated
by reflections with respect to some affine hyperplanes. These hyperplanes corre-
spond to some affine functions on a, which will be called affine roots of the pair
(g, 7). The following two subsections are concerned with the construction of affine
roots and the corresponding root decomposition.

3°. Characters and Automorphisms of Quasi-Tori. Consider an algebraic quasi-
torus of the form

S=<a)x T,

where T = S°is a torus and a an element of order k. Let t be the tangent algebra
of the groups T and S. As we have seen in 3.3.2°, any character y of T is uniquely
determined by its differential d,x € t*. We want to show that any character of
the quasi-torus S is determined by a family of affine functions on an affine space
with the associated vector space t.
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Denote 4 = aT and let n: a - A be a covering with the simply connected
covering space a. Observe that t may be considered as the simply connected
covering space of T, the covering &: t — T being defined as &(x) = exp(2mix). Let
u: T x A — A be the natural simply transitive action of the group T on 4, i.e.
p(t,b) = bt. Fix a point d € q, such that n(d) = a. By the property (F) of simply
connected coverings (see 1.3.3°) there exists a unique differentiable map fi:
t X a — a covering u and such that /i(0,d) = a.

Problem 19. The map /i is a simply transitive action of the group t on a and
thus defines on a a structure of an affine space with the associated vector space
t. The action /i does not depend on the choice of a point d such that 7(d) = a.

Denote by t,: a — a the translation by x e t, i.e. set

t(y) =ilx,y) (xetyea

A character 4 € Z(S) is uniquely determined by its values on A. In fact, if 4|4
is known, then so is A(a) e C* and for any te T we know A(t) = i(at)A(a)™".
Consider the covering &: C — C* defined by the formula &(z) = 2niz. By the
property (F) of simply connected covering spaces there exists a differentiable
function iia—C covering 4. This function is uniquely determined by its value
4(a@) which is chosen up to an arbitrary integer summand.

Problem 20. Any function A covering A € Z(S) is an affine function with the

. ) > 1 .
linear part di e t* and 4i(d) e EZ' Conversely, an affine function &: a — C such

1
that £(@) € — Z whose linear part is the differential of a character of T covers some

character of the quasi-torus S.
Set

a(R) = {y e a: A(y) e R for any A € Z(S)}.

Problem 21. We have a(R) = {¢,(@): x € t(R)}. Thus a(R) is a real affine space
with the associated vector space t(R). Each function A covering e Z(S) is
completely determined by its restriction to a(R).

Therefore, to each character 41 € Z(S) we have assigned a family of real affine
functions on a(R), any two of them differing by an integer summand. Any of these
functions 4 completely determines A.

Similar considerations may be applied to the automorphisms of the quasi-
torus S transforming A into itself, i.e. identical on S/T. An automorphism ¢ of
this sort is uniquely determined by its restriction to A. Moreover, the transforma-
tion ¢|A admits a covering ¢: a — a, which is uniquely determined by its value
¢(a) = z. The element z € a may be an arbitrary element satisfying 7(z) = ¢(a).

Problem 22. Any covering transformation ¢: a — a is affine and has d,¢ as its
linear part. The transformation ¢ maps a(R) onto itself and is uniquely determined
by its restriction to a(R).
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4°. Affine Root Decomposition. Now we consider the quasi-torus S, = {t) X
T., where 7 is a fixed automorphism of a system of simple roots /7 (see 2°). The
tangent algebra of S, is ad t,. It is convenient to identify it with t, with the help
of the isomorphism ad. Thus in our case t = t,. We also have A = 1T,,a = 1.

For any affine space B over a field k denote by B” the vector space of all affine
functions B — k. Clearly, dim B* = dim B + 1. If ¢: B, — B, is an affine map of
affine spaces then the formula

(‘o(@)(x) = a(o(x))

determines a linear map ‘¢: B;' — B/.
Let ¥ < Z(S) be the set of all weights of the identity representation of S in g.
Then

g= @ g4

ey
where g* # 0 is the weight subspace corresponding to A. The affine functions
/. € a(R) corresponding to the weights 1 € ¥ will be called affine roots of the pair
(g, 7);_the set of all affine roots will be denoted by 4° < a(R)". Since the affine
root 4 covering a weight 4 is completely determined by its linear part « = d4 and
the number s = A(d), we write 4 = («, s). Clearly, here « € 4(t,) U {0} is a weight

1

of the identity representation of Int(g) with respect to 7, and s € —’EZ, where k is
the order of t. We will write gI = g" If(a,s) € 4" then(x,s + m) € 4 foranym e Z
and g*¥ = g***™. We have g = ) ;. sg°

Problem 23. 4° generates a(R)".

Problem 24. If & = (a,s) € 4" then g* = g, N g(¢*), where g, is the root subspace
corresponding to a € ®,, and g(*) is the eigenspace of ¢ with ¢ = ¢*™/*. Further-
more,

gE)= Y g% = ) &
&=(a,s) &=(a.s)

Problem 25. For any ¢, € 4° we have

e q et ifE+ A
[g%9"19 _ :
=0 otherwise.

The roots with zero linear parts are called imaginary and the other roots are
called real ones. Denote the sets of imaginary and real roots by 4}, and 4},
respectively. Problem 24 implies that

b= Y ¢
Sedi,
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It turns out that the real roots have a number of properties similar to the usual
properties of roots and weights. To prove this we will make use of some three-
dimensional subalgebras of g as in 1.6°. For any & = (a,s), n = (B,t) € 47 write
(&, n) = (2, B), {EIn) = {a| ). If & € A7, then the element h, € t,(R) determined by
(1.5) will also be denoted by h,.

Problem 26. For any ¢ € 4° we have — ¢ € 4% If £ € 4}, then [g%,g7°] = <h;).

Let e;€ g, e_.€g™° be elements such that [e;,e_.] = h,. Then the map
Y. sl,(C) — g defined by the formulas

t/fg(e) = €, '//;(f) =é€_; ¢¢(h) = hé

is an isomorphism of sl,(C) onto the subalgebra {e;, e_s,h;) < g.
Let e 4f.,ne 4" The set {{ € 4. { = n + I&(l € Z)} is called the &-string of
roots through n.

Problem 27. Let ¢ € 4},. Then thc- E-string of roots through n € 47 is of the
form {n + I&(—p <1< q)}, wherep, g > 0and p — g = (n|&). If (1, ) < O then
n+c¢ed,andif(n,£) >O0thenn — & e 4°

Problem 28. For any ¢ € 4, we have dimg® = 1. If £ € 4%, c € R then ¢ € 4°
ifand only ifc = —1, 0, 1.

Problem 29. Under the notation of Problem 28 we have (ad e;)?*4g" ™% # 0. If
Sedi.and n,n+ € 4" then [g% g"] # 0and if ¢ + 5 € 47, then [g%,g"] = g**".

In g, consider the reductive algebraic subalgebra g° = g(1). By Problem 17
t, = g'>? is a maximal diagonalizable subalgebra of g°. Problem 24 implies that

= P ¢ ®)
§=(a,0)

Problem 30. The subalgebra g° has the zero centralizer in g and, in particular,
is semisimple. The system 17, = r(IT) is its system of simple roots with respect to
t.. The root system 4: coincides with the set of a € t(R)* such that (a,0) € 47,.

A root & = (a,s) € 47 is called positive if either s = 0 and a belongs to the set

J¢ of positive (with respect to IT,) roots of g or s > 0. If 4** is the set of all
positive roots then 4° = 4" U {0} U (—4). A positive root is called simple if it
does not split into the sum of two positive roots. Let IT° = A®* be the system of
simple roots. Clearly, (¢,0) e [T ifa e I1,. If E, ne IT*and ¢ #nthené — ne 4°.

Problem 4 applied to 0 = 7 implies that for any s = m/k, where m € Z, the
adjoint representation of g° in g transforms the eigenspace g(&°) of * into itself.
The corresponding representation of g° in g(¢*) will be denoted by ad,. Clearly,
(x,1) € 4" <> € ®,4 . Now we will establish the relationship between simple roots
and lowest weights of the representations ad,. (See 3.7°.)

Problem 31. The lowest weights of all representations ad, are non-zero.
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Problem 32. If (a,s) € IT° and s > 0 then « is a lowest weight of the representa-
tion ad,. In particular, I7° < 47,. If « is a lowest weight of ad,, then (x — ', s) ¢
4" for all o’ € 4,1. If, moreover, (B,t) ¢ 4" for all B # 0 and 0 <t <stheny =
(o,5) € IT7 and e, is the corresponding lowest vector.

Problem 33. Any ¢ € 4°* presents in the form & =Y, .k, where k, are
non-negative integers.

5°. Affine Weyl Group. Let again a be the complex affine space covering the
manifold A4 = £T,, a(R) its real form defined in 3°. Notice that the associated
vector space t,(R) is a Euclidean space with respect to the Cartan scalar product
on g. So a(R) is an affine Euclidean space. Denote by I(a(R)) its group of motions.

Let Q. be the set of all affine transformations @& of a covering the transforma-
tions w|A4, where w € Q,. By Problem 22 we may identify O, with the corre-
sponding set of transformations of a(R).

Problem 34. The set &, is a subgroup of I(a(R)). The natural homomorphism
Q. — Q, is surjective and its kernel is {t,: x € t,(2)}.

Problem 35. For any w e 3, we have w(4°) = 4°. If w = ar)(\gJ), where g € N,
then g(g°) = g™ '@ (£ € 4").

The definition of 3, easily implies that Theorem 4 can be reformulated as
follows:

Theorem 4'. The automorphisms 0, = n(y,), 6, = n(yz) where y,, y, € a, are
conjugate in Aut g if and only if y, = w(y,) for some w e 3,.

Each real root ¢ € 4}, determines the hyperplane P, = {y € a(R): £(y) = 0} in
a(R). The connected components of the set a([R)\U‘:e 4:, P; will be called chambers.
Clearly, the chambers are open convex sets in a(R). Problem 35 implies that 3,
permutes the hyperplanes P: and chambers. Let us show that it acts transitively
on the set of all chambers. To this end denote by r: the orthogonal reflection
with respect to the hyperplane P;, where £ € 4;., and prove that r; € Q..

Consider the homomorphism ¢, = (ad)- ¥,: sl,(C) - ad g (see Problem 26)
and denote by @;: SL,(C) — Int g the Lie group homomorphism such that d®, =

0 1
@ Letn, = @, ((_1 0>>elntg.

Problem 36. We have n.(t,) = t.. If { = («,5) then n,|t(R) coincides with the
reflection r, with respect to the hyperplane Kera.

Problem 37. If & = («, s) then

Therefore n; € N,. The reflection r, covers the transformation w(n,) and there-
fore belongs to £,.

Let W, be the subgroup of €, generated by the reflections r; for all ¢ € 4},. The
group W, is called the affine Weyl group associated with t € Aut IT.
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Now we will establish certain properties of the affine Weyl groups similar to
those of the Weyl groups (see 2.4°). In precisely the same way as for the Weyl
chambers we define the notion of a wall of a chamber.

Problem 38. The walls of any chamber are of the form P, where ¢ € 4.
Conversely, any hyperplane P, £ € 47, is a wall of a chamber.

Theorem 5. W, acts simply transitively on the set of all chambers. If Dy is a fixed
chamber and P. , ..., P; , where &, ..., & € A}, are its walls then the reflections
Ie,, ..., I, generate the group W,.

Theorem 6. The closure D of any chamber D is a fundamental set for the group
W,, i.e. intersects each orbit of this group at a single point.

Problem 39. Let y,, y, € D, where D is a chamber, and let w € &, be such that
y> = w(y,). Then w can be chosen so that w(D) =

Now, show that the system of simple roots IT¢ defined in 4° determines a
chamber D, in the same way as any system of simple roots of a usual root system
determines a certain Weyl chamber (see 2.2°). Set

Dy = {y€a(R):y(y)>Oforallye IT*}. (4)

Let us prove that D, # J. From formula (2) we see that the correspondence
ar(,0) is a bijection of the root system 4, of g’ with respect to t, onto the
subset of affine roots of the form («,0), a # 0. The bijection x — t () of the space
t.(R) onto a(R) maps the hyperplane P, = Ker a onto P, o, and the Weyl chamber
{x e t,(R): «(x) > O for all a € [1,} onto an open cone C, < a(R) with vertex 4.
Clearly, D, > U C, # &.

Our arguments also imply that the Weyl group W(g* ) of g° is identified with
the subgroup of W, generated by the reflections of the form r, ), (¢, 0) € 4¢..

Problem 40. The set D, defined by (4) is a chamber. We have
Dy = {y e a(R): y(y) > Oforall y € IT°}.

The chamber D, defined by formula (4) will be called the fundamental chamber.

Cleary, any element x € t, is uniquely expressed in the form x = u + iv, where
u, v € t(R). We will write u = Rex, v = Imx. Any y € a is uniquely expressed in
the form y = t,,(z), where v € t,(R), z € a(R). We write z = Re y.

An automorphism 0 € ¢ T, will be called canonical if & = n(y) where y € a and
Re y € D,,. Theorems 4', 6 and Problem 39 imply.

Theorem 7. Any automorphism from tT, is conjugate to a canonical automor-

phism. If canonical automorphisms 0, =n(y,)and 6, = n(yz) where y; € t,Re y; €
D, (i = 1,2), are conjugate then there exists a motion w € Q. mapping D onto itself
such that w(Re y,) = Re y,.

Let us consider the case t = id. In this case t(R) coincides with the Euclidean
vector space h(R) considered as an affine Euclidean space. The system of real
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roots is of the form

41 = {(a,5): x € A, 5 € 7).

We will denote the group W,y by W. It contains the Weyl group W of the root
system 4, as a subgroup.

Problem 41.r, yr, = t_;, foranyae d,andse Z.

Problem 42. The group W splits into the semidirect product W = Q¥ x W
(here Q is identified with the corresponding group of parallel translations in the
space h(R)).

Problem 43. Let t = id and let D be an arbitrary chamber. Then theset D n Q"
consists of a single point.

6°. Affine Roots of a Simple Lie Algebra. In this subsection we assume that g
is simple and we find an explicit form of the system of simple roots /7 and the
fundamental chamber for all t € Aut /1.

Problem 44. For any t € Aut /7 the algebra g’ is simple.

The groups Aut I7 of all simple Lie algebras are listed in Table 3. This list
shows that a non-trivial automorphism t € Aut /7 exists only when g is a Lie
algebra of type A, (n = 2), D, or E¢. For all these algebras except D, there exists
a unique automorphism t # id of order 2. If g = D, then in Aut [T >~ S5 there
exist, beside {id}, two classes of conjugate elements containing all elements of
order 2 and 3 respectively. Thus k can only equal 1, 2, 3.

Problem 45. The set 4}, is the cyclic subgroup of a(R)" generated by the root
(0, 1/k).

Let IT* = 4° be the system of simple roots defined in 4°. Problem 27 implies
that (¢,7) < 0 for any &, n € IT", £ # n. Therefore the linear parts of the roots of
IT* (non-zero by Problem 32) are different and constitute non-acute angles. Let
¥ < 4(t,) be the system of linear parts of affine simple roots.

Problem 46. Let 1T, = {«,,...,o}. The system of simple roots I7° is of the
form IT* = {y5,,,..., %}, where y; = (2;,0) (j = 1,...,n), yo = (%, 1/k), a is the
(unique) lowest weight of the representation ad, ;. The system ¥ = {a,,a,,...,
a,} is indecomposable. The system /77 is linearly independent and forms a basis
of a(R)". If T = id then a, is the lowest root and ¥ = IT is the extended system
of simple roots of g.

Problem 47.
%= — 3y no, (5)

where n; are positive integers. If we set ny = 1 then

ny; = (0, 1/k). (6)

o<j<l
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Problem 48. The matrix A4 of ¥ with the elements a; = {«;|o;> is an indecom-
posable affine Cartan matrix.

Recall that all indecomposable affine Cartan matrices were listed in 2.7°. Now
we will find the affine Dynkin diagrams corresponding to the automorphisms
e Aut/l. Tt suffices to choose a representative of each conjugacy class of
elements of Aut /1.

Problem 49. To the above mentioned automorphisms t € Aut /7 the affine
Dynkin diagrams denoted in Table 6 by L%®, where L, is the type of a
simple Lie algebra g and k is the order of t correspond. Thereby, to the identity
automorphism of the system of simple roots of L, the extended Dynkin diagrams
LY corresponds.

In Table 6 listed are also the numbers m; defined in Problem 47. By Problem
2.43 these numbers are uniquely determined by ¥ as non-zero and non-negative
relatively prime coefficients of a Z-linear relation between the elements of this
system.

Problem 49 implies that any connected affine Dynkin diagram corresponds
to an automorphism t associated with a simple Lie algebra. Therefore there
is a bijection between the automorphisms of the systems of simple roots of
simple Lie algebras considered up to conjugacy and the connected affine
Dynkin diagrams.

Problem 50. The fundamental chamber D, is a simplex and under the notation
of Problem 46 it is determined by the inequalities

yi(y) >0 (j=0,1,...,0.

The walls of D, are the hyperplanes Pyj (j=0,1,...,1).

7°. Classification of Unitary Automorphisms of Simple Lie Algebras. An auto-
morphism 6 € Aut g is called unitary if 6 is semisimple and all its eigenvalues u
satisfy |u| = 1. For instance, any automorphism of finite order is unitary. In this
section we will describe the classes of conjugate unitary automorphisms of simple
Lie algebras g. By theorem 3 and Problem 16 it suffices to consider the unitary
automorphisms taken from the sets £T,, where t runs over the set of representa-
tives of classes of conjugate elements of Aut I7, IT being a system of simple roots
of g, and by Theorem 7 we may confine ourselves to canonical automorphisms.

Problem 51. An automorphism 6 = n(y), where y € qa, is unitary if and only if
y € a(R). In particular, the canonical unitary automorphisms are the automor-
phisms of the form n(y), where y € D,,.

Let g be simple. Then by Problem 46 the system of simple roots IT* < 4" is of
the form IT° = {y,,7,,...,7}, where

y0=(a0a1/k)7 V]=(ijs0) (j=1,,l)
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{ay,...,0} = IT, is a system of simple roots of g. An element u € a(R) is com-
pletely determined by the real numbers u; = y;(u) (j = 1,...,1). Set uy = yo(y). By
(6) we have

Y mu;=1/k. (7)

o<j<!
Thanks to Problem 40 the condition y € D, is expressed in the form

w20 (j=0,1,..,I) ®)

J

Clearly, for any u;e R (j = 0,1,...,1) satisfying (7) and (8) there exists a unique
u € t(R) for which y;(u) = u; (j = 0,1,...,]).

A connected affine Dynkin diagram whose vertices are endowed with real
numerical labels u; satisfying (7) and (8), where k is the number corresponding
to this diagram, will be called a Kac diagram. Clearly, the Kac diagrams based
on the affine Dynkin diagram corresponding to an automorphism t € Aut /7 for
a simple Lie algebra g depict different elements of D, < a(R). Two Kac diagrams
are called isomorphic if there is an isomorphism of the underlying affine Dynkin
diagrams such that the corresponding vertices are endowed with the same labels.

Problem 52. If g is simple and canonical automorphisms 6, = n(y,), 6, = n(y,),
where Re y,, Re y, € D,, are conjugate in Autg, then Rey,, Re y, are depicted
by isomorphic Kac diagrams.

Now we formulate the main result of this section.

Theorem 8. Let g be simple. Then two unitary canonical automorphisms n(y,)
and n(y,) are conjugate in Autg if and only if y,, y, € D, are depicted by
isomorphic Kac diagrams. Therefore there exists a bijective correspondence be-
tween the classes of conjugate unitary automorphisms of a simple Lie algebra of
type L, and the classes of isomorphic Kac diagrams of types L¥ for all possible
k. Under this correspondence with the classes of inner automorphisms associated
are Kac diagrams of type LY and to the classes of outer automorphisms Kac
diagrams of types L' and L> correspond.

Proof is based on Problems 53-56.

Problem 53. Let g be simple and let { € Aut ¥ be a linear transformation of
t.(R)*. Then there exists an automorphism n € N, of g commuting with £ such
that 'n = { in t,(R)*.

For any a € 4(t,) set k, = dim g,. Problems 24 and 28 imply that k, equals the
number of residue classes s + kZ € Z/kZ such that (a,s/k) € 4°. On the other
hand, k, coincides with the number of § € 4, such that r(8) = «. If « € 11, then
Problem 17 implies that k, is the length of the orbit with respect to (t) of any
B € IT such that r(f) = a. In particular, k,|k. If g is simple then k, = 1 or k for
any a € I1,,.

1
Problem 54. Let v € t,(R) be a vector such that a(v) € k—Z for all « € I1,. Then

a

there exists x € [ orthogonal to t, such that v — x € §(2).
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Problem 55. Let v € t,(R) satisfy the conditions of Problem 54. Then ¢, = w(h)
forsome he H N N,.

Problem 56. Let a motion w & I(a(R)) be such that ‘w(/T?) = IT*. Then we Q..

Proof of Theorem 8. By Problem 52 it remains to prove that if y, and y, are
depicted by isomorphic Kac diagrams then 7n(y,) and n(y,) are conjugate. The
isomorphism of the Kac diagrams determines an affine transformation w of a(R)
such that y, = w(y,) and 'w(IT*) = IT*, and that the corresponding linear trans-
formation { belongs to Aut ¥. By Problem 53 { is an orthogonal transformation,
hence w is a motion. By Problem 56 we @,, and the theorem follows from
Theorem 4'. ]

A special class of unitary automorphisms is formed by the finite order auto-
morphisms.

Problem 57. Let g be a simple Lie algebra, m a positive integer. The order of
a unitary canonical automorphism 6 € Aut g equals m if and only if the numerical
labels on the corresponding Kac diagram are of the form u; = s;/m, where s;

(j=0,1,...,1) are non-negative relatively prime integers, such that

o<jsl

Problem 57 implies that the Kac diagram corresponding to a periodic auto-
morphism is completely determined by the underlying affine Dynkin diagram
and a set of relatively prime non-negative integers sq, Sy, ..., 5. If we want to
classify automorphisms of order m they should satisfy condition (9).

8°. Fixed Points of Semisimple Automorphisms of a Simply Connected Group.
Let G be a simply connected semisimple complex Lie group. Recall (see 1.2.10°)
that the group Aut G of automorphisms of G is naturally isomorphic to the group
Aut g of automorphisms of its tangent algebra. By Corollary of Theorem 3.6, G
is an algebraic group and by Theorem 3.3.4 any automorphism of G is poly-
nomial. An automorphism @ of G is called semisimple if so is the corresponding
automorphism 6 = d@ € Autg.

The aim of this subsection is to prove that the algebraic subgroup G® = G
consisting of the fixed points of a semisimple automorphism & € Aut G is con-
nected. By Problem 1.2.31 the tangent algebra of this subgroup coincides with
g°. Applying Theorem 2 and Problem 10 we see that G is reductive and of
positive dimension if G # {e}.

Theorem 9. If O is a semisimple automorphism of a simply connected semisimple

Lie group G then G®is connected.

Let g be a semisimple element of G. Then the inner automorphism a(g) is
semisimple so that the subgroup Z(y) = G*? is reductive. By Corollary 1 of
Theorem 3.3.9 there exists a maximal torus H of G such that g e H < Z(9)°. An
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element g is called regular if H = Z(g)° and singular otherwise. Clearly, the
regularity (or singularity) of an element is preserved under the action of any
automorphism of G. In particular, two conjugate semisimple elements of G are
either simultaneously regular or simultaneously singular. Therefore in order to
describe the set of singular elements it suffices to describe singular elements
belonging to a fixed maximal torus.

As above, consider the covering &: ) — H defined by the formula &(x) =
exp(2nix). Problem 3.46 and Theorem 3.5 imply that Ker & coincides with the
lattice Q¥ generated by the dual root system 4, (h). For any a € 44 and se Z
denote by P, ;, the hyperplane in § (not in h(R) as in 5°), defined by the equation
a(x) + s = 0. Clearly, x € P, ;,<>Rex € P, ;and Imx € P, ) = P,.

Problem 58. An element &(x), where x € b, is singular if and only if x e P,
for some x € 4, and s € Z.

Proof of Theorem 9. By Theorem 3.2.1 every unipotent element of an algebraic
group belongs to its identity component. Thanks to the Jordan decomposition
(The%rem 3.2.6), it suffices to prove that every semisimple element g € G® belongs
to (G°)°.

First let g be a regular element of G and H = Z(g)° the unique maximal torus
that contains it. Then ©(H) = H. Consider x € [ such that g = &(x). Problem 58
implies that Re x belongs to one of the chambers D into which the space h(R) is
divided by the hyperplanes P, ,,. Since the boundary of every chamber contains
an element of 0¥, we may assume that 0 € D. The identities £(6(x)) = O(&(x)) =
&(x) imply that y = 6(x) — x € Q. Clearly, 6 transforms h(R) into itself, permutes
the hyperplanes P, ;) and the chambers. Since y = 6(Re x) — Re x, the chamber
0(D) = D + y contains on its boundary the points 0 and y of the lattice Q.
Problem 43 implies that y = 0. Therefore x € h? and g € £(b°) = (H®)° < (G®)°.

Now consider the general case. Set U = Z(g)°. Then @(U) = U. A maximal
torus of U® will be denoted by S.

Problem 59. The group H = (Z(g) n Z(S))° is a maximal torus of G containing
g and S.

Let us prove that the coset gS = H contains a regular element. Let all elements
of this coset be singular. Choose x € b such that g = &(x). Then by Problem 58
the plane x + s is contained in one of the hyperplanes P, .

Problem 60. If x + s = P, ,, then G = H.

Since G is a simple three-dimensional subgroup, this contradicts Problem
59. Therefore there exists s, € S such that gs, is a regular element. Since gs, € G°
the above implies that gs, € (G®)°. Therefore g e (G®)° too. Theorem 9 is
proved. [

This proof is due essentially to A. Borel. For another proof of this theorem (in
a somewhat more general setting) see [48].

Concluding, let us show how to calculate the subalgebra g’ for a unitary
canonical automorphism 6 of a simple Lie algebra g with the help of the Kac
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diagram. Let ug, u;, . .., u, be the numberical labels of the Kac diagram of 6 such
thatu; =--- =u; = 0and the other u; # 0.

Problem 61. dim Z(g?) = n — t and the derived algebra (g°) is a semisimple
subalgebra of g whose system of simple roots s {«; , ..., ®; }. The Dynkin diagram
of (%) is the part of the Dynkin diagram of the system ¥ = {0, a,,...,0,}
formed by the vertices with the numbers iy, ..., i, and the edges that connect
these vertices.

Exercises

In exercises 1-4 the notation of subsections 2°—5° is used.

1) If y € a(R) is stable with respect to some w € W, then w is the product of
reflections with respect to the hyperplanes P; passing through y.

2) The group W, does not contain reflections with respect to the hyperplanes
different from p; (¢ € 4},).

In Exercises 3—-16 we assume that g is simple and we use the notation of 6°
and 7°. In particular, ¥ = {ag,a,,...,,} and 4 = (a;) is the matrix of ¥. As it
is known, the angle between a; and «; equals 6; = n(1 — 1/n;), where n; = 1,
n;=2,3,4,6 00 (i #)), if mjy=a;a;=0, 1, 2, 3, 4 respectively. Set r, =r,,
(i=0,1,...,1). By Theorem 5 and Problem 46 the ;s generate W,.

3) The generatorsr; (i =0, 1,...,1) of W, satisfy the relations

(ri"j)""j =e (11)

foranyi,j=0,1,...,nsuch that n; < c.

Consider the group W with generators #; (i = 0, 1,...,1) and defining relations
(11) with r; replaced by #.. Denote by ¢ the homomorphism of W onto W, sending
# in r,. Consider an auxiliary topological space X = (W x D,)/S, where W is
assumed to be endowed with the discrete topology and S is the equivalence
relation defined by the formula

(w, x) 2 (wh,x) if r(x)=x
extended via transitivity. Determine the W-action on X by setting
Wy (w,x) = (W, W, %)
and the map n: X — a(R) by setting
n((w, x)) = o(w)x.

Finally, let Y be the set of points of a(R) that belong to the intersections of
no more than two hyperplanes P; and set X, = n7(Y).
4) The space X, is pathwise connected and the map n: X, — Y is a covering.
5) The map misa homeomorphism and ¢ is a group isomorphism. The relations
(11) are defining relations for W,.



§4. Automorphisms 217

_ 1
6) The vertices of D, are the points f(—k—n—

basis of the lattice t,(Z) dual to I1, and n, is the same as n; (see (5)).

7) The group &, coincides with the subgroup of motions w e I (t(R)) such that
‘w(d®) = 4~

8) Let A < t (R) be the lattice consisting of v € t,(R) such that a(v) € 7{— Z for all

xa> (o € IT,), where {x,},cp, is the

a

a € IT, (see Problem 54). Let us identify 4 with the group of translations ¢,
(v € A) of t(R). Then A is a normal subgroup of &, and O, = 4 x Q,, where
Q, is the stabilizer of 0 in &,, isomorphic to the group of orthogonal
transformations of t,(R) induced by the automorphisms of g commuting
with 1.

9) We have W, = A, x W(g®), where A, = 4 is the sublattice with the basis

{kia h,0): * € Ho}.

10) The elements e, (i = 0,1,...,]) generate the algebra g.

11) Let 0 be a unitary canonical automorphism of g, and u, u, ..., 4, the corre-
sponding numerical labels of the Kac diagram. Denote by ad, the adjoint
representation of g® in the eigenspace g(e*™) of 6. Any «; € ¥ is a lowest
weight of ad, . If s, is the minimal of s > 0 such that g(e*™*) # 0 then s,
coincides with one of the u;, the lowest weights of ad,  are the a; such that
u; = 5o and the lowest vectors are the e, .

In Exercises 12-16 we assume that t = id. In this case t,(R) coincides with the
Euclidean vector space h(R) considered as an affine space. The normalizer of
W = W, in I1((R)) is denoted by N(W). The lattices in h(R) are identified with
the corresponding groups of translations.

12) W:; W x QY, N(W)=Autd, x p¥ = Q.

13) N(W) = Aut T x W.

14) The group Aut /7 coincides with the group of motions of h(R) transforming
D, into itself.

15) AutfT = Aut IT x L, where L is a commutative normal subgroup isomorphic
to n(4,) ~ m,(Int g).

16) The group m(d,) acts simply transitively on the set {a; € T:n;=1}. In
particular, the number of elements of this set equals |n(4,)|.

Hints to Problems

1. It suffices to prove that Kern < H. If 0 € Kern, then 0|h = e, e, = c,e,,
fe_, = c;le_, (x € IT), where ¢, € C*. With the help of Theorem 3.1 verify
that § = exp(ad x), where x € fj is an element such that a(x) = logc, (« € IT).

2. Make use of the fact that Intg acts transitively on the set of pairs f < b,
where by is a maximal diagonalizable subalgebra and b a Borel subalgebra
of g.

3. If (Autg)® # Intg then the algebraic group (Autg)® is reducible since by
Theorem 1 it is the union of a finite number of disjoint algebraic varieties:
cosets modulo Int g. Concerning the last statement see 1.2.10°.
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. Make use of Problem 1.6.

If x € gis nilpotent and z € 3(x) then (ad x)(ad z) is nilpotent implying (x, z) =
0. The invariance and non-degeneracy of the scalar product imply that
3(x)* = Im(ad x) so that x e Im(ad x).

. If x € g(4) is nilpotent then by Problem 6 x = [x, y], where y € g. Taking

Problem 4 into account we may assume that y € g(1). If x # O then y # 0.

. Foragivenintegeri, 0 < i < m, select a positive integer r such that k(r — 1)<

m — i < kr.Thenkr + i = m + t, where 0 < t < k, implying (ad x)"|g(¢’) = 0.
Make use of Theorem 1.1 and Problem 5. To prove the algebraicity note that
ad(g’) is the tangent algebra of the algebraic subgroup {g € Int g: g6 = 6g}.
Since 3(t) is reductive (see Problem 1.28), it suffices to prove that 3(t) = 0.
Notice that 6(3(t)) = 3(t)’ and apply Theorem 2 and the equality 3(t)° = t.
If t consists of singular elements then t = Kera for some root a € 4(h,)
contradicting Problem 11. Take for I7, the system of simple roots corre-
sponding to a Weyl chamber in ), intersecting with t.

Take for a an automorphism sending [ into b, and transforming the Weyl
chambers corresponding to /7 and /7, one onto another (see Theorem 2.7).
Make use of the fact that g: h— t~'hth™! is an endomorphism of the torus
Handd,g="—e.

Let 6 = th, where h € H. Applying Problem 14 and expressing h in the form
h=tt"'h th{* = t7'h,tth]', where t € T,, h, € H, we see that h;'0h, € tT..
Under the isomorphisms h(R)* — b(R) and t,(R)* — t,(R) associated with the
Cartan scalar product (see 1.4°) the automorphism t: h(R)* — h(R)* is iden-

. s . . 1
tified with ¢ = 77! and r with the averaging operator = = X Y. 17, where
0<j<k—1

~ k is the order of 7. Clearly, the different elements n(u;) (8 € IT) form a basis

of t(R). This implies the statements on dimt, and r(/7T). Since each y € 4, is
expressed in terms of /7 with the coefficients of the same sign, r(y) is expressed
in terms of 77, with the coefficients of the same sign. In particular, r(y) # 0
for all y € 4. Therefore 3(t,) = b and 3(t,) N g’ = t, for any 6 € tH.

Make use of the conjugacy of the maximal diagonalizable subalgebras of g%.
Follows from the fact that 4(t,) generates t,(R)* (see 1.4°) and that (0, 1) € 4°.
Similar to Problems 1.27 and 1.30.

Similar to Problem 1.42.

Similar to the proof of Theorem 1.6.

Similar to Problems 1.43 and 1.44.

The description of the root system 4,¢ given in the problem follows from (2).
To prove that IT, is a system of simple roots for g, it suffices (thanks to
Problem 17) to verify that [T, = 4,z Butif f € ITthen x = Y o<j<i—1 €y # 0
and x € g"#-9 implying r(f) € 44:. If z € 3(g°) then by Problem 17 z € b, and
[z,x] = 0 implies f(z) = Oforall f e I1,ie. z = 0.

Let x, be a lowest vector of the representation ad, corresponding to the
weight 0. Then [e,, x,] = 0 for all « € 4. Indeed, if this is not so then the
system of weights of the representation of the three-dimensional subalgebra
<h,,e,,e_,> in the invariant subspace spanned by the vectors (ad e,)"x, (see
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3.2°) is not symmetric. Therefore x, belongs to the centralizer of g° con-
tradicting Problem 30.

Use the invariance of the Cartan scalar product with respect to all auto-
morphisms.

Similar to Problem 1.37.

Verify that tp,(x)t ™" = @ (cxc™")forall x € sl,(C), where ¢ = diag(e™,e™™").
This implies that t®P,(g)t™" = P,(cgc™) for all ge SL,(C). Setting g =

1 . . .
< (1) 0 we get (3). Since r, is the linear part of the affine transformation

re, (3) implies, by Problems 22 and 36, that n(r,(y)) = n.n(y)n;* for y € a(R).
Similar to Problems 2.18 and 2.19.

Use Theorems 5 and 6.

To prove that D, is a chamber make use of Problem 33. The formula (4) is
proved similarly to the corresponding statement of Problem 2.18.

. Make use of the inclusion Q¥ = W and Theorem 6.
. Identifying r with the projection n: h(R) — t,(R) (see Hint to Problem 17) it

is easy to show that (r(a),r(B)) = 0 for a, € IT if and only if the orbits of «
and f§ are orthogonal to each other. By Theorem 2.2 this implies the statement
of the problem.

By Problem 45, g(¢) # 0. If a, is a lowest weight of the representation ad,
then y, = (g, 1/k) € IT* (Problem 32). Since 11, is indecomposable and a, #
0, we see that ¥’ = {a,0,,...,a,} is indecomposable. By Problem 2.45 the
indecomposable component of ¥ containing ¥’ coincides with ¥’ implying
¥ = ¥ The linear independence of IT* follows from Problem 33 and from
the equality dima(R)* =1+ 1.

Problem 17 implies validity of the expression (12), where n; € Z. Since ¥ is
indecomposable, Problem 2.45 implies that n; > 0 for all j.

The admissibility of ¥ follows from Problem 27.

Problem 2.18 implies that the P, (j = 1,...,1) are the walls of the chamber
D,. Formula (5) implies that Cy n P, # (J. Therefore p,_ is also a wall of
this chamber.

By Problem 5 there exists w € &, such that w(Re y,) = Re y, and w(D,) = D,
Applying Problems 46 and 28 we see that w determines an automorphism
of the Dynkin diagram of ¥ which is an isomorphism of our Kac diagrams.
Notice that {(/1,) = 44 In case © = id this is obvious since ¥ = 1 (Problem
46). If  # id then { = id except for the cases when ¥ is of the type A2, or
D{%) (see Table 6). In the latter two cases the only nontrivial automorphism
{ is the transposition of a, with one of the roots «; € IT,. As is clear from
Example 4 in 2.5°, we have a, € 4,¢. Theorem 2.9 implies that { € Aut 4
and {(I1,) is a base of 44:. Applying Theorem 3.1 we get an automorphism
u € Aut(g®) transforming t, into itself and such that ‘u = (ont*. Incase t = id
the desired automorphism is p. If 7 # id and { # id then g is of the type B,
or C, (see Table 7). By Theorem 1 all automorphisms of g° are inner ones so
that u extends to an automorphism of g commuting with .

We have h(Z) = Q*, where Q is the root lattice in h(R)*. If {z,: fe [T} is a
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basis of h(Z) dual to IT then the elements x, = Y =4 25 (¢ € IT,) form a basis
of the lattice t,(Z) dual to IT,. It is directly verified that x,/k, — z € t; if
a = r(pB). Foreach o € IT, choose f € ITsuch that r(f) = a. If v € t,(R) satisfies
the conditions of the problem it presents in the form v = Y ae T, l(ky) *x,,
where |, € Z, implying v — Y, 7. 1,25 € 17
Problems 54 and 14 imply that v = tx — x + z, where x € b, ze h(2). If
h=&(x)e H then hth™ = t&(v), so that he N,. It is easy to verify that
w(h) = yt,.
Let s € O(t,(R)) be the linear part of w. Then t, € Aut ¥. By Problem 53 s
extends to an automorphism (denoted by the same letter) belonging to N,
and commuting with £. Express w in the form w = t,0, where ¢(@) = d and
t,(@) = w(a). Clearly, o covers the transformation w(s) so that ¢ € &,. To show
that ¢, € &, it suffices to verify that v satisfies the conditions of Problem 55.
We may assume that v # 0. Then ‘w(y;) = y, for some j > 0. We deduce from
this that a;(v) = 1/k, a;(v) = 0 for i # j. If k = 1 then the needed conditions
are clearly satisfied. If k > 1 then k = 2 (see Hint to Problem 53). Since
s'a; = ay and since s commutes with £, we have Ga; N g(—1) = s(g’) # 0.
Therefore (o), 1/2) € 47 implying ke, = 2,and v satisfies the desired conditions.
Apply the following statement, which is a consequence of Problem 2: if
¢ed and ¢ =) o¢j<iky;, where k;eZ then 0|g* = c-id, where ¢ =
2™ Lo<i<tkiv; Formula (9) follows from (7).
S@how that the tangent algebra of the subgroup Z(&(x)) coincides with b @
2(x) e Z Qa-
Deduce from Problem 1.28 and the fact that Adg is a semisimple auto-
morphism of the Lie algebra g that H is reductive. Let H = VZy, where V
is a connected semisimple normal subgroup and Z,, the identity component
of the center of H. Then S = Zj. Clearly, @(V)= V. If dimV > 0 then
dim ¥ > 0 (Theorem 2) contradicting the maximality of the torus S in U®.
Therefore H = Zj is a torus. Making use of Problem 3.3.26 we see that g € H
and H is a maximal torus.
See hint to Problem 58.
By Problem 10 ¢’ is a reductive algebraic subalgebra and by Problem 17 t,
is its maximal diagonalizable subalgebra. If 6 = n(u), where u e D,, then
=t @Y ez =1, DY ecu 8% where 4, = {4 ¢u) =0} It is
clear from (9) that 4, consists of the roots expressed in terms of y; , ..., ¥;,
only. By (8) t <, hence {a; ,...,%;} is a linearly independent system. This
implies that the linear parts of roots from 4, constitute the root system for
g’ and {;,..., } is its base.



Chapter 5
Real Semisimple Lie Groups

Our study of real semisimple Lie groups and algebras is based on the theory
of complex semisimple Lie groups developed in Ch. 4. This is possible because
the complexification of a real semisimple Lie algebra is also semisimple (see 1.4.7).
However, the correspondence between real and complex semisimple Lie algebras
established with the help of the complexification is not one-to-one; any complex
semisimple Lie group has at least two non-isomorphic real forms. As it turns out,
to describe the real forms of a given complex semisimple Lie algebra g is the
same as to classify the involutive automorphisms of g up to conjugacy in Autg.
This classification is easily obtained from the results of 4.4. The global classifica-
tion of real semisimple Lie groups makes use of the so-called Cartan decom-
position of these groups which also plays an important role in various applica-
tions of the Lie group theory.

§ 1. Real Forms of Complex Semisimple Lie Groups
and Algebras

The main goal of this section is to classify real semisimple Lie algebras. After
we discuss some general properties of real forms of complex semisimple Lie
groups and algebras we reduce the classification to the listing (up to conjugacy)
of the involutive automorphisms of complex simple Lie algebras. The latter
problem is easily solved by methods of 4.4.

1°. Real Structures and Real Forms. Recall (see 2.3.6) that the real forms of a
complex Lie algebra g are in a one-to-one correspondence with the involutive
antilinear automorphisms of this algebra. Namely, to each real form § < g
associated is the complex conjugation o: g — g with respect to b and to each
involutive antilinear automorphism o¢: g — g associated is the real form g° =
{x € g: o(x) = x} of g. Therefore, the involutive antilinear automorphisms of a
complex Lie algebra g will be called real structures on g.

Problem 1. If ¢ is a real structure on a complex Lie algebra g and ¢ € Aut g,
then @og ™' is also a real structure and g°°* "' = ¢(g°). Let ¢’ be another real
structure, then the real forms g° and g” are isomorphic if and only if ¢° = ¢(g°)
or, equivalently, ¢’ = pa@ ™" for some ¢ € Autg.

Let G be a complex Lie group, H its real Lie subgroup (i.e. a Lie subgroup of
G considered as a real Lie group). The subgroup H is a real form of G if
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a) its tangent algebra b is a real form of g;
b) H has a nonzero intersection with any connected component of G.
Theorem 1.3.1 implies that b) is equivalent to the identity

G = HG®. (1)

Problem 2. If G is a complex algebraic group then its real form H in the sense
of 3.1.2 is also its real form in the sense of the above definition.

Problem 3. If H is a real form of a complex Lie group G then the center Z(H)
of H coincides with H n Z(G). :

A real structure on a complex Lie group G is an involutive differentiable in a
real sense homomorphism S: G — G, such that dS is a real structure on the
tangent algebra g of G. For instance, the complex conjugation of a complex
algebraic group G with respect to its real form (or, which is the same, an involutive
antiholomorphic automorphism of G) is a real structure on G. If S is a real
structure on a connected complex Lie group G then by Problem 1.2.31 the
subgroup G is a real form of G and its tangent algebra coincides with g**. For
algebraic groups the similar fact was proved in Ch. 3 (Problem 3.1.10).

In what follows an involutive antiholomorphic automorphism of an algebraic
group will be called an algebraic real structure and a real form in the sense of the
theory of algrbraic groups will be called an algebraic real form.

Example 1. Let T= (C*)" be the n-dimensional algebraic torus. The alge-
braic real structure (z,,...,z,)~ (Z},...,Z,) determines the real form (R*)"
of T. Its tangent algebra is the real form t(R) = R" of t = C" considered in
3.3.2.

Example 2. The algebraic real structure (z,,...,z,)—(Z; ..., Z, ') determines
the real form T" = {(z,,...,2,): |2z;| = -~ = |z,| = 1} of T with the tangent alge-
bra iR" < C".

Example 3. The algebraic real structure A— A4 on GL,(C) determines the real
forms GL,(R) =« GL,(C) and gl,(R) = gl,(C). The same example can be given in
a coordinate-free form. Let V be a finite-dimensional vector space over R. Then
on the group GL(V(C)) a real structure S is defined by the formula

S(A)(v) = A@)  (ve V(C)). )

The corresponding real form is the subgroup of the group of linear transforma-
tions defined over R, naturally identified with GL(V). The Lie algebra gl(V) is
embedded into gl(V(C)) as the real form tangent to GL(V).

Example 4. If V is a finite-dimensional algebra over R then an anti-
automorphism S defined by (2) transforms the group Aut(V(C)) into itself and
determines an algebraic real structure there. The corresponding real form is
Aut V. Passing to tangent algebras we get the real form der V' of der(V(C)) (see
Example 2 in 1.2.3).
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Example 4 enables us to generalize one of important properties of complex
semisimple Lie algebras to real ones.

Problem 4. If g is a real semisimple Lie algebra then derg = adg and Intg =
(Aut g)°.

As we have seen in 3.1.1, any real algebraic group G is embedded as a real
form in a complex algebraic group G(C). The following example shows that for
the Lie groups (even semisimple ones) the similar statement fails.

Example 5. Considering the natural transitive action of SL,(R) in R?\{0} and
applying Theorem 1.3.4 it is easy to show that n,(SL,(R)) ~ n,(R*\{0}) ~ Z.
Let G = SL,(R) be the simply connected covering for SL,(R). Then G cannot be
embedded as a real form in any complex Lie group G. In fact, let f: G — G be
such an embedding. We may assume that the tangent algebra of G is sl,(C) and
df is the natural embedding sl,(R) — sl,(C). The group G is connected and its
simply connected covering is SL,(C). Therefore f is covered by the injective
homomorphism f: G — SL,(C) such that df = df. Clearly, f(G) = SL,(R) which
leads to contradiction.

The fact proved also implies that S~LZ(R) does not admit any real algebraic
group structure and cannot even be isomorphic to the identity component of an
irreducible real algebraic group. Since any semisimple linear Lie algebra is
algebraic (Problem 4.1.8) the group SL,(R) does not admit a faithful linear
representation.

Now consider the realification of complex Lie algebras. Let g be a complex
Lie algebra and g® the same algebra considered as an algebra over R.

In the Lie algebra g® the multiplication by i is defined:

Ix =ix (xeg®).
It is a linear transformation over R such that
I’ = —E, 3)
Ixyl=[xIy]  (xyegh. (4)

In general, given a real Lie algebra g we call a complex structure on it a linear
transformation of g satisfying (3) and (4).

Problem 5. Given a real Lie algebra g with a complex structure I we make g
into a Lie algebra § over C such that §® = g by setting

(a + bi)x = ax + blx (a,be R, x e qg).
Notice that if [ is a complex structure on g, then so is — /. Therefore from each

complex Lie algebra g over C we may construct another Lie algebra over C
obtained from g by reversing the sign of the complex structure; this Lie algebra
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will be denoted by §. Clearly, g® = g® A homomorphism g — g is nothing but
an antilinear endomorphism of g. Therefore g ~ g if and only if g admits an
antilinear automorphism. In particular, if g possesses a real form then g ~ g.

Problem 6. Let g be a complex semisimple Lie algebra and {h; e f; (i =
1,...,1)} its canonical system of generators. Then the real subalgebra ) < g gener-
ated by h;, ¢;, f; is a real form of g. The corresponding real structure on g
transforms each of h;, ¢;, f; into itself. Therefore, any semisimple complex Lie
algebra g is isomorphic to g.

A real form b of a semisimple complex Lie algebra g constructed in Problem
6 is called a normal one. By Theorem 4.3.1 any two normal forms (constructed
from different canonical systems of generators) are isomorphic.

For any complex Lie algebra g the complex Lie algebra g*® = g @ g will be
called the double of g.

Problem 7. The transformation o: g*' — g?"' defined by the formula o(x, y) =
(y,x) is a real structure on g*® and the map (x, x) — x is an isomorphism of (g**')°
onto g®. Therefore g®(C) ~ g®'. Under this isomorphism g and § are sent into
the eigenspaces of the operator I (extended by linearity to g®(C)) corresponding
to the eigenvalues i and —i respectively.

Problem 8. If g is a semisimple complex Lie algebra then g®(C) = g @ g. If b
is another semisimple complex Lie algebra and g® = h® then g = b.

Problem 9. Let (-, -) be the Cartan scalar product in a complex Lie algebra g.
Then the Cartan scalar product in g® is of the form (x, y)® = 2Re(x, y). If h is a
real form of g then the restriction of (-, -) onto b coincides with the Cartan scalar
product in b. For any antilinear automorphism y of g we have

(x),y(y) =(x,y) (x,yeg).

As it was proved in 1.4.7, a real Lie algebra is semisimple if and only if so is
its complexification. Now let us investigate the relation between simple non-
commutative Lie algebras over R and C.

Problem 10. If g is a non-commutative simple Lie algebra over C then any real
form of g is simple and the Lie algebra g® is simple.

Problem 11. If g is a simple real Lie algebra then either g(C) is simple or g
admits a complex structure.

Problems 10 and 11 imply

Theorem 1. A non-commutative real Lie algebra is simple if and only if it is
isomorphic to either algebra g®, where g is a simple complex Lie algebra, or to a
real form of a simple complex Lie algebra.

Theorem 1 and Problem 8 imply that the classification of simple real Lie
algebras reduces to the classification of simple complex Lie algebras obtained in
4.3 and to the classification of non-isomorphic real forms of each of them.
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2°. Real Forms of Classical Lie Groups and Algebras. In this subsection we
specify several real forms of classical complex Lie groups GL(C), SL,(C), O,(C),
SO,(C), Sp,(C) and their tangent algebras. Actually, as we will see in § 3, the real
forms listed here exhaust up to an isomorphism all real forms of the classical
complex Lie algebras. It is easy to observe that all real structures and real forms
of classical groups listed below are algebraic.

Recall (see Example 3 of 1°) that GL(R) is a real form of GL,(C) and gl,(R) is
a real form of gl,,(C). The corresponding real structure on GL,(C) is the complex
conjugation: S(4) = A.

Example 1. The complex conjugation A+ A transforms each of the groups
SL,(C), O,(C), SO,(C), Sp,(C) into itself and determines real structures in them.
Therefore the following real forms of the classical groups are defined:

SL,(R) = SL,(C), 0, = O,(C),80, = SO,(C), Sp,(R) = Sp,(C)
The corresponding real forms of the Lie algebras are:
sl,(R) = sl,(C), 50, = 50,(C), 5p,(R) = sp,(C).

The following series of examples has to do with quadratic forms. In 1.3.1°
the pseudoorthogonal group O, ; = GL,,,(R) of signature (k,[) preserving the
quadratic form

2 2 2 2
Xy 4 X = X — 0 — X (5)

and the special pseudoorthogonal group SO, ; had been defined.
E 0 . E, O
Let I, , = ( Ok —Ez> be the matrix of the form (S)and let L, , = ( Ok iE,>‘
Then L’il = Ik,l‘

Example 2. The transformation S(A4) = I ;AI, , is a real structure on the
complex Lie groups G = O,,(C), SO,,,(C), the corresponding real forms G°
coincide with L, ,O, ,L, , and L, ;SO, L, ] respectively. The cooresponding real
form L, ;so0, L} of s0,,,(C) consists of the matrices of the form

X iY
—-iY?T z
where X, Y, Z are real matrices, X and Z of sizes k x k and | x [ respectively,
XT= ——X,ZT= —Z

The pseudounitary group of signature (k,l) is the group U, , of all linear
transformations of C**! preserving the pseudohermitian quadratic form

|21|2 + 0+ lzklz - lzk+1|2 - = !zkle'
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In particular, U, = U, , is the group of unitary matrices (or the unitary group).
The groups SU, ; = U, ;" SL,,,(C) and SU, = SU,, , are called special pseudo-
unitary and special unitary groups. The corresponding tangent algebras will be
denoted by u, , u,, siy ;, sit,.

Example 3. The transformation S(4) = I,",A_T"I,“, defines a real structure on
the complex groups G = GL,,,(C), SL,,,(C), the corresponding real forms G°
coincide with U, ; and SU, , respectively. To these real forms of Lie groups
correspond the real forms u, , < gl,,,(C) and su, ; = su,,,(C) consisting of the

matrices of the form
X Y
Yr z)°

where XT = — X, ZT = —Z, X and Z of sizes k x k and [ x I respectively, and
for su, , additionally satisfying tr X + trZ = 0.

Finally, the last group of examples results from the existence of a quaternionic
structure in C*™. Consider the right quaternion vector space H™ over the quater-
nion field H. Its linear transformations are identified with m x m matrices over
H. Let GL,,(H) be the group of invertible quaternion matrices. Its tangent algebra
is the Lie algebra gl,,(H) of all quaternion matrices.

Consider C as a subfield of H generated by 1, i. Each vector g € H™ uniquely
presents in the form g = z + jw, where z, w € C™. The correspondence g+ (z, w)
is an isomorphism H™ — C*™ of vector spaces over C that maps g/ into (—w, 2).
Therefore gl,,(H) is identified by this isomorphism with a subalgebra of gl,,,(C)
consisting of all transformations commuting with the antilinear transformation
J: C*™ - C*™ given by J(z,w) = (—W,Z). Notice that J = §,,7, where t is the
standard complex conjugation in C*" and S,, = <1:? :'")

Example 4. The transformation S(4) = JAJ ™! = —S§,, AS,, determines a real
structure on the complex Lie groups G = GL,,(C), SL,,(C), SO,,(C). The
corresponding real form of GL,,,(C) is identified with GL,,(H). The real forms
G3 of the groups G = SL,,,(C), SO,,,(C) are denoted by SL,,(H), U¥(H) respec-
tively. The latter notation is chosen since U(H) is identified with the subgroup
of GL,(H) consisting of all linear transformations C of H™ preserving the
skew-Hermitian quadratic form

m

Y 4.Jq

1<r<m

i.e. satisfying CT(jE)C = jE. The tangent algebras of SL,,(H), U¥*(H) are denoted
by sl,,(H), u¥(H). These Lie algebras are real forms of sl,,,(C), s0,,,(C). The Lie
algebras gl,,(H), sl,,(H), uX(H) are subalgebras of gl,,(C) consisting of matrices

of the form
X Y
-Y X/
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where X, Y € gl,,(C),such thattr X + tr X = Oforsl (H)yand X" = —X,Y" =Y
for u*(H).

In GL,,,(H), consider the subgroup Sp, , consisting of the transformations
preserving the Hermitian quadratic form

g+ + @l = | Ger P = = | qund (6)

Under the isomorphism H**! — C2**! described above the form (6) is mapped
into the Hermitian quadratic form

YodzlP= ) mlP+ Y wlP - Y wl (7)

1<i<k k+1<j<k+l 1si<k k+1<j<k+!

A

Therefore Sp, , is identified with a subgroup of GL,.,(C) consisting of the
matrices A such that

A= _Sk+lA—Sk+b A—TK“A =Ky,

Ik.l

0 I,
ply that A(K, Si+)A" = K, S+, 1.€. Spy, is contained in the complex sym-
plectic group preserving the form with the matrix K, ,S,,,. Setting M, , =

where K, , =< ) is the matrix of the form (7). These conditions im-

L 0
( 5’1 L > (see Example 2) we see that the group M, ,Sp, M, | is contained in
k.l

the standard symplectic group Sp,.,(C) and coincides with the subgroup of all
elements of the symplectic group preserving (7).

Example 5. The transformation S(4) = K, ,AT"'K,, is a real structure on
G = Spyu+y(C) and G° = M, ;Sp, ;M |. In what follows we will identify the
subgroup G* with Sp,,. The corresponding real form sp, ; = sp, .+, (C) consists
of the matrices of the form

k l k l
k(X Xoo X, X
! X1, X1 X1TA X34
k __Xu Xx_o, X1 —_an
PAXL =X =X X

where XT, = — X, XJ, = — X550, X{3 = X153, X34 = Xo.

In particular, the group Sp,, , coincides with the group Sp,, = GL,(H) n U,,,
of unitary quaternion matrices (see Exercise 1.1.3) and its tangent algebra sp,, ,
coincides with the Lie algebra sp,, = gl,.(H) N u,,, (here M, , = E).

3°. The Compact Real Form. In this section we will show that each connected
semisimple complex Lie group has a compact real form. This will enable us to
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establish a one-to-one correspondence between the reductive complex algebraic
groups and compact real Lie groups.

A finite-dimensional Lie algebra g over R is called compact if there exists a
positive definite invariant scalar product in g. Clearly, any subalgebra of a
compact Lie algebra is compact.

Problem 12. The tangent algebra of any compact Lie group is compact.

Problem 13. The Cartan scalar product on a compact Lie algebra is always
negative semi-definite. A real Lie algebra is semisimple compact if and only if its
Cartan scalar product is negative definite. '

Problem 14. For a compact Lie algebra g the derived algebra g’ is semisimple
and g = g’ @ 3(g)-

Problem 15. For any compact Lie algebra g there exists a connected compact
Lie group G with the tangent algebra g. If g is semisimple then we may take
G = Intg.

Now let g be an arbitrary complex Lie algebra, o a real structure on g. Define
the Hermitian form on g by setting

ho‘(x’ }’) = _(xa 0'(}’)), (8)
where (-, -) is the Cartan scalar product.

Problem 16. The form h, is invariant with respect to ad g i.e.

h,([z,x],y) + ho(x,[2,y]) =0  (x,yeg,zeq’).

The restriction of the form — h, onto g° coincides with the Cartan scalar product
in g°.

Problem 17. If y € Aut g is an automorphism commuting with ¢ then

hy(yx,7y) = ho(x,y)  (x,y €g).

Now assume that G is a connected complex semisimple Lie group, g its tangent
algebra, S a real structure on G such that ¢ = dS.

Problem 18. The following conditions are equivalent:
a) G® is compact;

b) the Lie algebra g° is compact;

c) the Hermitian form h, is positive definite.

Fix a maximal torus T = G and a base {a,,...,a,} of the root system 4; with
respect to T. Consider the canonical system of generators {h.e;, fiii=1,...,1}
of g defined in 4.3.2. As it is known, {—a,,..., —a,} is also a base. The system

{—h;, — fi, —e; i =1,...,1} is the canonical system of generators associated with
this base. By Theorem 4.3.1 there exists a unique automorphism u of g such that
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pth) = —h, we)=—f, p(fy=—-e (=1,
We have u? = id.
Problem 19. There exists a unique antilinear automorphism ¢ of g such that
oh)= —h;, ole)=—f,, o(f)= —e (i=1...,1.
This automorphism is involutive, i.e. o is a real structure on g.
Problem 20. There exists a real structure S on G such that dS = 0.

Problem 21. The subspaces g,, g5 (®, B € 45,2 # ff) are orthogonal with
respect to h,. The subspace t is orthogonal to any g,, « € 4.

Problem 22. The Hermitian form h, is positive definite on t and on any g,
i=1,..0D.

Let G = G be the simple three-dimensional (complex) subgroup of G
corresponding to a simple root «;. It is the image of SL,(C) under the homo-
morphism F; = F, (see 4.1.6°).

Problem 23. We have F,(g" ™) = S(Fi(g)) (g € SL,(C)).

Problem 24. Each element of the Weyl group of G with respect to T is induced
by an element of N(T) n G5.

Problem 25. The Hermitian form h, is positive definite on g.
Problems 18, 20 and 25 imply the following.

Theorem 2. Any connected semisimple complex Lie group G has a compact real
form. The tangent algebra of this formis a compact real form of the tangent algebra
gof G.

Problem 26. A compact Lie algebra admitting a complex structure is
commutative.

Problem 27. A complex Lie algebra is simple if and only if it has a simple
compact real form.

As it will be shown in 4°, a compact real form of a semisimple complex Lie
algebra is unique up to an inner automorphism of this algebra.

Example. The following real forms of classical groups and their tangent
algebras are compact: U, < GL,(C), SU, < SL,(C), O, < O,(C), SO, = SO,(C),
Spn < szn(C), un < gIn(C)’ sun < 5[,,((8), 50,, < SOn(C), Spp < SpZn(C)'

4°. Real Forms and Involutive Automorphisms. Let g be a complex Lie algebra.
Consider the problem of classifying the real forms of g up to an isomorphism.
By Problem 1 the classes of isomorphic real forms are in one-to-one correspon-
dence with the involutive antilinear automorphisms considered up to conjugacy
in Autg. In this section we will show that for a semisimple Lie algebra g the
antilinear automorphisms in this classification can be replaced by the linear ones.
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Let ¢ and t be two real structures on a Lie algebra g. The real forms g° and
g° are said to be compatible if 61 = 10.

Problem 28. The following conditions are equivalent:
a) g” and g* are compatible;

b) ©(g”) = ¢
¢) a(g’) = g7
d) ¢"=g"ng ®g’ N (ig"); ©)
€) ¢'=g"Ng’® g'N(ig’); (10)

f) the automorphism 6 = o7 of g is involutive.

Notice that if ¢ and 7 are compatible then 6 transforms g° and g' into
themselves, hence 0|g° = t|g” and 0|g° = o|g". Clearly, (9) and (10) coincide with
the decompositions of g and g into the eigenspaces of 6 corresponding to the
eigenvalues 1 and —1.

Example. All real forms of the classical groups GL,(C), SL,(C), O,(C), SO,(C),
Sp,.(C) listed in 2° are compatible with their compact real forms U,, SU,, O,
SO,, Sp,, respectively.

Problem 29. Two compact real forms of a semisimple complex Lie algebra are
compatible if and only if they coincide.

Our next goal is to prove the following.

Theorem 3. Any two compact real forms of a semisimple Lie algebra g over C
are conjugate. Any real form of g is compatible with a compact form. If a real form
b is compatible with two compact real forms u, and u,, then there exists an
automorphism ¢ € Int g, such that ¢(u,) = u, and p(h) = b.

Let us fix a compact form u existing thanks to Theorem 2 and let t be the
corresponding structure on g. Let ¢ be an arbitrary real structure on g. We wish
to show that the real forms g° and u can be made compatible by applying an
inner automorphism of g to one of these forms.

Consider the automorphism 6 = ¢t and a positive definite Hermitian form h,
on g defined by (8).

Problem 30. The operator 6 is self-adjoint with respect to the form h., ie.
h(6x,y) = h(x,0y) (x,y € g).

This implies that p = 6 is a positive definite self-adjoint operator.

Problem 31. Let E be a finite-dimensional Euclidean or Hermitian space, S(E)
the space of all its self-adjoint linear operators and P(E) = S(E) the open set of
positive definite operators. Then exp bijectively maps S(E) onto P(E).

Let log = exp™!: P(E) — S(E). For p e P(E) and t € R set p' = exp(tlogp).

Problem 32. If G = GL(E) is a real algebraic group and p € G n P(E), then
p' e G for all t € R and log p belongs to the tangent algebra g of G. Therefore,
exp bijectively maps g n S(E) onto G n P(E).

Applying Problem 32 to the element p = 6% of Aut g we get a one-parameter
subgroup p'(t € R) in Aut g consisting of positive definite self-adjoint (with respect
to h,) operators such that p! = p. By Corollary of Theorem 4.4.1 p* € Intg.
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Problem 33. We have op'c = tp't = p™".

Do Ll .. 24 PRI T DRI § : SEDURPL I SNy DR § WY NP W
Problem 34. The automorphism ¢ =p satisiies o(@QTY ") =(PTP "jo.

Therefore g° is compatible with the compact real form ¢(u). If a real structure ¢
on g commutes with ¢ and t then ¥ commutes with ¢ as well.

Problems 28 and 34 immediately imply Theorem 3.
Theorems 2, 3 and Problem 27 imply

Corollary. The map g+ g(C) determines the bijection between the classes of
isomorphic compact semisimple Lie algebras and the classes of isomorphic complex
semisimple Lie algebras assigning to a simple compact Lie algebra a simple complex
Lie algebra and vice versa.

Theorem 3 enables us to establish a correspondence between the real forms of
a semisimple complex Lie algebra g and its involutive automorphisms. Namely,
let o be a real structure on g. By Theorem 3 there exists a compact real structure
7 commuting with ¢. Then 6 = o7 is an involutive automorphism of g. If 7, is
another compact real structure commuting with ¢, then, as easily follows from
Theorem 3, the automorphisms 6 and 6 = g7, are conjugate in Aut g. Therefore
there is a map assigning to each real structure (or a real form) in g a class of
conjugate involutive automorphisms of g.

Theorem 4. The constructed map defines a bijection of the set of isomorphism
classes of real forms of g onto the set of classes of conjugate involutive automor-
phisms of g.

To prove this theorem let § be an involutive automorphism of g. Making use
of Theorem 2 choose a compact real structure T on g. Then g = (A7)? is an
automorphism of g.

Problem 35. The automorphism q is a positive definite self-adjoint operator
with respect to the Hermitian form h,.

Problem 36. There exists a compact real structure 7, commuting with 6. This
structure is determined up to conjugacy by an automorphism of g commuting
with 6.

As it follows from Problem 36, 0 = o7,, where ¢ is a real structure commuting
with 7,. This makes transparent the surjectivity of the map constructed above.

It is clear that two real structures which are conjugate by an automorphism
define the same class of involutive automorphisms. Let us prove that the converse
is also true. Let o; (i = 1,2) be two real structures, T; a compact real structure
commuting with g;, 6, = g,7;. Let 6, = @0, ¢, where ¢ € Autg. Since 7, and 1,
are conjugate, we may assume that t; = t, = 1. Then the structures 7 and ¢ '7¢
commute with 6,. By Problem 36 ¢ 'tp = Y1) ™!, where y € Autg and Y0, =
0,4. Clearly, 6, = wo, ™" for o = @Y. Theorem 4 is proved. []

It is useful to indicate an explicit construction of the real form b of g corre-
sponding to an involutive automorphism 8 € Autg. For this it is convenient to
fix a compact real form u of g. Problem 36 implies that replacing 6 by a conjugate
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automorphism we may assume that 6(u) = u. Let
=u(l)@u(-1)

be the decomposition of u into the eigenspaces of 6 corresponding to the eigen-
values 1 and —1.

ahlam 27 The real form h of
i -~ } Vi

1 ro0:iCm fe 111V 1VQ1 1VURLLL &

4 is of the form
h=u(l) @ iu(-1) : (11)

In particular, to the identity automorphism 6 = id the class of compact real forms
of g corresponds.

5°. Involutive Automorphisms of Complex Simple Lie Algebras. Here we de-
scribe the classes of conjugate involutive automorphisms of complex simple Lie
algebras with the help of the method of 4.4°. Let g be a non-commutative complex
simple Lie algebra of type L,. It suffices to consider non-identical involutive
automorphisms 8 € Aut g, i.e. automorphisms 6 of order 2. By Theorem 4.4.8 and
Problem 4.4.57 the classes of conjugate in Autg automorphisms of order 2 are
in one-to-one correspondence with the considered up to an isomorphism Kac
diagrams of types L* whose numerical labels u; are of the form u; = s;/2, where
s;(j = 0,1,...,]) are non-negative integers, relatively prime and satisfying

kY ns;=2. (12)
0<<!
Here ny, ny, ..., n, are relatively prime positive integers listed in Table 6. It

follows from (12) that k = 1 or 2.

Problem 38. Kac diagrams satisfying (12) belong to one of the following three
types:

I) k =1;u; = 0for all i except some i = p;u, = 1/2;a, = 2,

IT) k=1; u; =0 for all i except some i =p, q, p#q; u,=u, = 1/2; a, =
a,=1,

IIT) k = 2;u; = 0 for all i except some i = p;u, = 1/2;a, = 1.

In case IT we may assume that g = 0 if we consider Kac diagrams up to an
isomorphism.

Making use of Problem 38 and Table 6 it is not difficult to list all up to
isomorphism Kac diagrams satisfying (12). The results are given in Table 7 (in
case IT we assume that g = 0). Problem 4.4.61 helps also to determine the type
of the corresponding subalgebras g° (note that g° is semisimple in cases I and III
and has a one-dimensional center in case II).

Problem 39. Let 6,, 6, be involutive automorphisms of a simple noncommu-
tative Lie algebra g over C. Then g’ = g% if and only if 6, and 8, are conjugate
in Autg.
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As an application, let us explicitly describe the classes of conjugate involutive
automorphisms of simple classical complex Lie algebras. We make use of nota-
tion of 2°.

Theorem 5. The following automorphisms 0 of simple classical complex Lie
algebras g form the complete system of representatives of classes of conjugate
involutive automorphisms (for 0 # id the type of the corresponding Kac diagram
is indicated, see Problem 39):

1) g=sl,(C),n=2

a) (X)= —XT II
b) 6(X) = —AdS,(XT),n=2m 11
¢ 0=AdI,, ,(p=0,1,...,[n/2]) IMforp>0
2) g=250,(C),n=30rn>=5
a) 0=AdI,,_,(p=0,1,...,[n/2]) Iand IIforp#0,2; Il forp=2

b) 6 = AdS,,,n =2m III
3) g=5p,(C),n=2m>2
a) 0 =AdS, II

b) 0 = AdK,,._,(p=0,1,...,[m/2]) Tforp>0

Problem 40. Prove this theorem.

6°. Classification of Real Simple Lie Algebras. The results of 4° and 5° enable
us to list up to an isomorphism all real forms of non-commutative complex simple
Lie algebras. For the classical Lie algebras this list is given by the following
theorem.

Theorem 6. Any real form of a clasical simple complex Lie algebra g is isomor-
phic to exactly one of the following real forms b < g:
1) g=5sl(C),n>2
a) b =sl,(R)
b) h =sl,(H),n=2m
c)b=su,, ,(p=01,...,[n2])
2) g=1950,(C),n=30rn=5
a) b =950, u—p (P =0, 1»’[’1/2])
b) h = uX(H),n=2m
3) g=95p,(C),n=2m=2
a) b =sp,(R),n=2m
b) b=15p, m—p, (p=0,1,...,[m/2]).

Problem 41. Prove this theorem.

Noncompact real forms of the exceptional simple complex Lie algebras are
listed in Tables 7 and 9.

Theorems 1, 6 and Problem 8 imply the following final result of classification
of real simple Lie algebras.

Theorem 7. Non-commutative real simple Lie algebras are exhausted up
to an isomorphism by the real forms Y listed in Theorem 6, by the real forms
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of the exceptional simple complex Lie algebras and by the Lie algebras g~
where g are different non-commutative complex simple Lie algebras.

Notice that Theorem 7 completely solves the classification problem for
an arbitrary semisimple Lie algebra over R since by Theorem 4.1.3 any
semisimple Lie algebra uniquely decomposes into the direct sum of non-
commutative simple algebras.

Exercises

1) Let G = PSL,(C) x SL,(C), where PSL,(C) = SL,(C)/{E, —E}, and H be
the subgroup of G consisting of the pairs (n(X), X), where 7: SL,(C) —»
PSL,(C) is the natural projection. Then H is a real form of G which is not of
the form G5, where S is a real structure in G (and not even an open subgroup
of a group of the form G%). In particular, H is not an algebraic real form.

2) Let S be a real structure on a complex algebraic torus T. Then there exists
an isomorphism T =~ (C*)" such that in appropriate coordinates S is
expressed in the following form

. — (7 s = . 5 5 -1
S(.\l,...,z,,)--(zl,...,zp,,_p+q+1,zp+l,...,zp+2q,zp+q,zp+zq+1,...,z,, ).

In particular, any real structure S on T is algebraic.

3) Any real structure on a connected complex reductive algebraic group is
algebraic.

4) A real semisimple Lie group G with a finite number of connected components
admits a faithful linear representation if and only if G admits an embedding
as a real form in a complex Lie group.

5) The groups SL,(R) and PSL,(R) = SL,(R)/{E, —E} are the only (up to an
isomorphism) connected Lie groups with the tangent algebra sl,(R) admit-
ting a faithful linear representation.

6) The center of SL,(R) (see Example 1.5) is infinite and isomorphic to Z.

7) Let G = (T x SL,(R))/{(t,z)), where t € T, be an element of infinite order
and z a generator on(SlZ(R)). Then the commutator group G’ is not a Lie
subgroup of G.

8) Let G be a Lie group, b a semisimple subalgebra of its tangent algebra g. If
G is simply connected or if the simply connected Lie group with the tangent
algebra | has a finite center then there is a connected Lie subgroup H of G
with the tangent algebra b.

Let g be a real semisimple Lie algebra. As follows from Example 4, formula
(2) determined an algebraic real structure on the irreducible algebraic group
Int(g(C)). The corresponding algebraic real form

Int(g(C))(R) = Int(g(C)) N Autg

is called the group of quasi-inner automorphisms of g; denote it Q Int g. Clearly,
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(QIntg)° = Intg. The group Intg is an algebraic linear group (over R) if and
only if Intg = QIntg.
9) If g = sl,(R), (n = 2) then Q Int g consists of two connected components for
even n and coincides with Int g for odd n.
10) If g = so, ,, where p > 0, g > 0, then the number of connected components
of Q Int g can be found from the following table:

p+q psqeven, p=4q p, q odd, p=q
odd P#q even pP#q odd
2 2 4 1 2

11) The connected simple Lie group PSL,(R) ~ O , ~ Intso, , has no real
algebraic group structure.

12) The linear group Int(sl;(R)) is algebraic (see Exercise 9). The adjoint repre-
sentation Ad: SL;(R) — Int(sl;(R)) is a polynomial isomorphism of Lie
groups but it is not a real algebraic group isomorphism.

13) The real algebraic groups SL;(R) and Int(sl5(R)) are not isomorphic. There-
fore on the connected simple Lie group SL;(R) there are at least two
non-isomorphic real algebraic group structures.

14) Let g be a semisimple complex Lie algebra. A real form of g @ g correspond-
ing by Theorem 4 to the automorphism 6: (x, y)—(y,x) (x,y € g) is iso-
morphic to g®.

15) There are the following isomorphisms between the classical real Lie algebras
of different series (see 2°):

S0; & SlU,  SP,,

50y, =~ suy ; = sl,(R) = sp,(R),

s0, =~ su, @ su,,

S0, 3 SIZ(C)R,

50, 5 = sl,(R) @ sl,(R),

S0 = 5P,,
S04 =SSPy

50, 3 = 5P4(R),

$0g = Sl
50,5 = sl,(H),
S0, 4 = SU, 5,

503. 3= 514(R)9

12

uz(H) ~ su, @ sL,(R),

u¥(H) ~ su, 5,

ui(H) =~ so, 4.

Let g be a real Lie algebra, p: g — gl(V) its finite-dimensional real linear
representation. Then p extends to a complex representation p(C): g —

gl(V(©)).



236 Chapter 5. Real Semisimple Lie Groups

16) If p is irreducible then p(C) is irreducible if and only if there is no complex
structure on V (i.e. no operator I satisfying (3)) commuting with all p(x), xe g.

17) If p is irreducible and complex, i.e. V admits a complex structure I commut-
ing with p, then p(C) ~ p + p (as representations over C), where p is
the representation p considered in the space ¥ with the complex structure
-1

Hints to Problems

1. Notice that any isomorphism of real forms of a complex Lie algebra extends
to an automorphism of this algebra.

2. Make use of the identity H = G (in Zariski topology) and the fact that the
connected components of G coincide with its irreducible components (see
Theorem 3.3.1).

3. Ifze Z(H), then Adz = E in ) and therefore in g = h(C). Next, apply Theo-
rem 1.2.4 and formula (1).

4. Make use of Corollary of Theorem 4.4.1.

6. Show that there exists a unique antilinear automorphism of § (see 4.3.2°),
fixing A;, é;, f;. Clearly, this automorphism maps m into itself and therefore
induces an antilinear automorphism ¢ of g fixing h;, e;, f;. Clearly, o* = id
and b < g° Since the complex linear span of b coincides with g, we have
h=g"

8. To prove the second statement make use of Theorem 4.1.3.

10. If a is a non-zero ideal of g®, then the complex linear span of a in g coincides
with g. Therefore the ideal b = g® complementary to a must belong to the
center of g implying b = 0.

11. Deduce from the simplicity of g that if a # 0 is a proper ideal of g(C), then
g(C) = a @ a. Next, define the transformation I: g — g by the formula Ix =
iy—iy for x=y+yeag, y€a, and prove that I is a complex structure
on g.

12. Follows from Theorem 3.4.2.

13. Make use of the fact that in an orthonormal basis of a compact Lie algebra
g all operators ad x (x € g) are expressed by skew-symmetric matrices.

14. Problem 4.1.7 implies that g = 3(g) ® g". With the help of Problem 4.1.2 it is
easy to deduce that any commutative ideal of g is contained in 3(g). This
implies that g’ is semisimple (see Problem 1.4.13).

15. Make use of Problem 4. The compactness of Int g follows from its closedness
in Aut g and the compactness of Aut g (thanks to Problem 13).

18. The implication a) = b) follows from Problem 12, the equivalence b)<>c)
from Problem 13. To prove the implication c¢) = a) consider the finite-sheeted
covering Ad: G »AdG = G.0OnG, a real structure S(Adg) = S(Adg)S™! =
Ad S(g) is defined such that Ad(G%) = G5. Therefore, the subgroup Ad(G%)
is closed in GL(g). On the other hand, by Problem 17 Ad(G®) is contained
in the compact group of all operators unitary with respect to h,. Hence
Ad(G%) and G® are compact.
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Set o = oou = pa,, where gy, is the real structure determining the normal real
form (see Problem 6).

By Theorem 1.2.6 the statement holds if G is simply connected. It follows
from Problem 4.3.47 that S acts as the identity on Z(G). Therefore, a real
structure with the differential o is defined on any group of the form G/N,
where N is a subgroup of Z(G).

It suffices to prove this for the generators r, (i = 1,...,[). But by Problem

4.1.37 r,, is induced by the element n, = E(( (1) é))eN(T). Since

( (1) (1)> € SU,, then n, € G® by Problem 23.
By Theorem 1.2.6, Problems 1.1.24 and 24 any root subspace g, is trans-
formed into the subspace g, corresponding to a simple root o; by an appro-
priate automorphism Ad g, where g € N(T) n G5. Therefore Problems 22 and
17 imply that h, is positive definite on t and on each subspace g,. Then apply
Problem 21.

The complex structure I transforms g’ into itself and induces there a self-
adjoint linear transformation. If g # O then this contradicts the fact that the
characteristic roots of I are +i.

Let g, t be real structures on g defining its compatible compact real forms
and 6 = ot. Problem 18 implies that (6x, x) < 0 for all x € g°. It follows from
Problem 28 that Ox = x(x € g?), whence § = id and ¢g° = g'.

Let X € S(E) and E = @), <;<. E;, be the decomposition of E into the or-
thogonal sum of eigenspaces with respect to X. Then E;_ is the eigenspace
of exp X corresponding to the eigenvalue e* > 0. Therefore, exp X € P(E).
Conversely,if A € P(Eyand E = @1 <i<j E“‘_ is the corresponding eigenspace
decomposition then define log 4 € S(E) setting (log A)|E, = (logi,)E. It is
easy to verify that the map log: P(E) - S(E) is inverse to exp.

Let us prove that p’ € G for all ¢t € R. Let us express the linear operators in
E by matrices in an orthonormal basis. We may assume that logp is a
diagonal matrix with the real diagonal elements a,, ..., a,. If F is a poly-
nomial function on the space of all the matrices vanishing on G and F the
restriction of F onto the subspace of diagonal matrices then F(e**1, ..., e*) =
0 for all k € Z since p* € G. If o(t) = F(e*,...,e*™) does not vanish iden-
tically then it is of the form ¢(t) = ) ;c;e™, where ¢; # 0 and b, > b, > -+
are real numbers. Clearly, the absolute value of ¢, e for t = k grows as
k — oo faster than the absolute value of the sum of other terms. This leads
to contradiction.

Set 7, = q'4tq~"* (cf. Problem 34). The proof of the second assertion is
similar to that of the corresponding assertion of Theorem 3.

In one direction the statement is obvious, in the other direction it follows
from the obtained classification (see Table 7).

Make use of Problem 39.

Make use of Theorem 4, Example 2 from 4° and Theorem 5.
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§2. Compact Lie Groups and Reductive
Algebraic Groups

The main goal of this section is to establish a one-to-one correspondence
between the compact Lie groups and the reductive complex algebraic groups and
also between homomorphisms of compact and reductive groups. In the language
of category theory this means that there is an equivalence between the categories
of compact Lie groups and reductive complex algebraic groups. An important
corollary is the theorem on complete reducibility of linear representations of
semisimple Lie algebras. An essential role in the theory developed here is played
by the theorem on polar decomposition which we prove in the real setting having
in mind its different applications. One of them is the proof of the connectedness
of the set of real points of a simply connected complex semisimple Lie group G,
defined over R.

1°. Polar Decomposition. In linear algebra the theorem on polar decomposi-
tion of a linear operator in a finite-dimensional Euclidean or Hermitian space
E is well-known: any element 4 € GL(E) uniquely presents in the form 4 = XY,
where X is an orthogonal (or unitary) operator and Y is a positive definite
self-adjoint operator. In this subsection we distinguish a class of algebraic linear
groups for which a similar theorem holds. In the complex case all algebraic
groups possessing a compact real form belong to this class (we shall see later that
these algebraic groups are exactly the reductive ones).

At first we want to refine the above theorem on polar decomposition for
the group GL(E). Set K = O(E) (respectively U(E)). Consider the map ¢: K x

S(E) = GL(E) defined by
o(k,y) = kexp y. (1)

The uniqueness of the polar decomposition and Problem 1.31 imply that ¢ is
bijective. Actually, the following lemma holds.

Lemma 1. The map ¢: K x S(E) - GL(E) given by (1) is a diffeomorphism.

Proof. Show that the map d , ¢ is injective for all k, € K, y, € S(E). Using
the left translation by k, we reduce the proof to the case k, = e. The tangent
algebra f or K consists of all skew-symmetric (skew-Hermitian) operators. It is
easy to see that

die.y@(X.y) = xexpy, + (d, exp)y (x € I,y € S(E)).

Set po = expy,, z = (d, exp)y. Suppose d ,,¢@(x,y) = xp, +z =0. Then
poAxpy* = —pg'Pzpg; the right-hand side of this identity is, clearly, a self-
adjoint operator, but on the left we have an operator whose characteristic roots
are purely imaginary. Hence, x = z = 0. Therefore, we have to prove that y = 0,
L.e. the injectivity of d,, exp.

Consider the curves g(t) = y, + ty and z(t) = exp y(t) and differentiate the
identity y(t)z(t) = z(t)y(t) with respect to t. Since z = 0, we have yp, = p,y. Since
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yo and p, have the same eigenspaces, yy, = yoy. It follows from Problem 1.2.27
that z(t) = poexpty. Hence, poy =0and y = 0.

For an arbitrary g € gl(E) denote by g* its adjoint operator. A linear group
G < GL(E) is called self-adjoint if g* € G for any g € G.

Theorem 1. Let E be a finite-dimensional Euclidean (Hermitian) vector space,
G = GL(E) a self-adjoint algebraic (real or complex) group, K = G n O(E) (resp.
GnNnU(E))and P = G~ P(E). Then

G=KP, (2

each element g € G being uniquely presented in the form g = kp, wherek € K,p € P.
More precisely, denote p = g N S(E), then the map ¢: K x p — G defined by (1)
is a diffeomorphism. For any g € G we have

gPg* = P. A3)

Proof. Formula (2) is proved by a trick well known in the linear algebra. If
g € Gthen g = g*g € P. Problem 1.32 implies that p = ¢q'/> € P. Clearly, k = gp~*
is an orthogonal (unitary) operator, whence k € K and g = kp. It follows from
Lemma 1 that ¢ is a diffetomorphism. Formula (3) is obvious. []

The decomposition (2) is called the polar decomposition of a self-adjoint alge-
braic linear group G.

Corollary 1. A4 self-adjoint algebraic linear group G is diffeomorphic to K x R™,
where K is the compact subgroup defined in Theorem 1 and m = dim p. In particu-
lar, G is connected if and only if so is K, and in this case n,(G) ~ n,(K).

Problem 1 (Corollary 2). Under the assumptions of Theorem 1
Z(G) = (Z(G)n K) x (Z(G)n P),

and Z(G) n P ~ R* for some s > 0. If G is semisimple then Z(G) < K.

Problem 2 (Corollary 3). Under the same assumptions L n P = {e} for any
compact subgroup L < G. In particular, K is a maximal compact subgroup of
G (i.e. is not contained in any larger compact subgroup of G).

Now we may consider a special case which is convenient to formulate as a
separate theorem because it is important in what follows.

Theorem 2. Let G = GL(V) be a complex algebraic linear group with a compact
real form K and p = if. The map ¢: K x p — G defined by (1) is a diffeomorphism
of real manifolds. A real form K is an algebraic one.

Praof. Make V into a Hermitean space E fixing a positive definite Hermitian
form in it invariant with respect to K (see Theorem 3.4.2). Then f consists of
skew-Hermitian operators and p = if consists of self-adjoint operators so that
p =gn S(E).
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Problem 3. G is self-adjoint.
Problem 3 implies that Theorem 1 is applicable to G, where the role of K is
played by K, = G n U(E).

Problem 4. K, coincides with K.

Therefore it only remains to prove the last statement of Theorem 2. Consider
the automorphism S: g— (g*)™! of G. Clearly, S is an algebraic real structure on
G and by Problem 4 K = G5. J

Corollary 1. Under the assumptions of Theorem 2 G is diffeomorphic to K x R™,
where m = dim¢ G. '
Problems 1 and 1.3 imply

Corollary 2. Under the assumptions of Theorem 2
Z(G)=Z(K) x (Z(G)n P).

If G is semisimple then Z(G) = Z(K).

Corollary 3. Under the assumptions of Theorem 2
N(K)= K x (Z(G)n P).

If G is semisimple then N(K) = K.

Proof. Clearly, N(K) = K(N(K) n P). If g € N(K) n P then the uniqueness of
the polar decomposition and (3) imply that g € Z(K). Since g = {(C), then
Adg = E. One easily deduces that gpg™" = p for all p € P, whence g € Z(G). [

Let us apply the polar decomposition to the proof of the following statement.

Theorem 3. Let S be a real structure on a simply connected complex semisimple
Lie group G. Then the real form G® is algebraic and connected.

Proof. Set ¢ = dS. Let us show that there exists a compact real form K of G
such that the corresponding real form f of g is compatible with g”. By Problem
1.33 there exists on g a real structure t commuting with o such that g* is compact.
By Theorem 1.2.6 there exists an automorphism T of G (considered as a real Lie
group) such that t = dT.

Clearly, T is a real structure in G commuting with S. Thanks to Problem 1.18
the real form K = GT is compact.

By Theorem 3.3.4 the involutive automorphism @ = TS of G is polynomial.
Therefore the algebraicity of the real structure T (Theorem 2) implies that S is
also an algebraic real structure.

As in the proof of Theorem 2, we may assume that G = GL(E), where E is a
Hermitian vector space, whose scalar product is K-invariant. Moreover, T(g) =
(g*)~! and G is a self-adjoint algebraic linear group. Since T commutes with §
and O, the groups G* and G® are also self-adjoint. Clearly, the compact parts
GS ~ K and G® A K of the polar decompositions coincide. By Theorem 4.4.9 G®
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is connected. Applying Corollary 1 of Theorem 1 we derive from here that the
subgroup G® n K = G n K is connected and therefore so is G°. [J

2°. Lie Groups with Compact Tangent Algebras. By Problem 1.15 each com-
pact Lie algebra is isomorphic to the tangent algebra of a compact Lie group.
However, a non-compact Lie group can have a compact tangent algebra: the
simplest example is the additive group R. In this subsection we will study the
structure of Lie groups with a finite number of connected components whose
tangent algebra is compact. First consider connected groups. Recall (see Problem
1.14) that a compact Lie algebra f presents in the form f = 3 @ ¥, where 3 is the
center of f and the derived algebra ¥’ is a semisimple compact Lie algebra.

Problem 5. Any simply connected Lie group K with a compact semisimple
tangent algebra is isomorphic to a compact real form of a simply connected
complex semisimple Lie group.

Problem 5 implies that a simply connected (hence an arbitrary connected)
semisimple Lie group with a compact tangent algebra is compact and therefore
has a finite center.

Problem 6. Any connected compact Lie group K has a finite-sheeted covering
Z x L - K, where Z is a compact torus and L is a simply connected semisimple
compact Lie group.

Problem 7. Any connected compact Lie group K is isomorphic to an algebraic
real form of a connected complex reductive algebraic group. In particular, K
admits a faithful linear representation.

Problem 7 implies the following theorem describing the structure of connected
compact Lie groups.

Theorem 4. Let K be a connected compact Lie group. Then K' is a connected
semisimple compact Lie subgroup of K and K admits the locally direct decomposi-
tion K = ZK’, where Z = Rad K is the compact torus coinciding with the identity
component Z(K)° of the center of K.

Problem 8. Prove this theorem.

Now pass to arbitrary connected Lie groups with compact tangent algebras.
The simplest class of these groups are connected commutative groups. Recall
(see Proposition 1, 2, 3) that any connected commutative group G presents in
the form G = 4 < B, where 4 ~ RP” is a vector group and B ~ T a compact
torus.

Problem 9. B is the largest compact subgroup of the connected commutative
group G, i.e. contains all compact subgroups of this group, and therefore is
uniquely defined. For 4 one can take any subgroup of the form exp a, where a
is a subspace of the tangent algebra g of G such that g = a @ b, where b is the
tangent algebra of B.

A and B are called the non-compact and compact parts of the connected
commutative group G respectively.
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Theorem 5. Let G be a connected Lie group with a compact tangent algebra
and A and B the non-compact and compact parts of Z(G)°. Then G = A x K,
where K = BG' is a compact Lie subgroup. K is the largest compact subgroup
of G.

To prove this theorem we will need the following

Problem 10. Let 7: G — G, be a finite-sheeted covering and G, satisfy Theorem
5. Then G also satisfies Theorem 5.

Now let G be a connected Lie group with a compact tangent algebra. Let us
construct a finite-sheeted covering G — G, satisfying the conditions of Problem
10. Let 7: G — G be a simply connected covering of G. Clearly, G = Z x G,
where Z is a vector group, G’ a semisimple compact Lie group (see Problem 6). Set

N =Kern, N,=NZ(G), G,=G/N,.

Problem 11. N, = N, x Z(G’), where N, is a discrete subgroup of Z and
G, = Z/N, x G'/Z(G'). There exists a finite-sheeted covering ny: G — G,.
Since G/Z(G’) is compact, G, satisfies Theorem 5. By Problem 10 so does G. (]

Now we can prove the main result of this subsection.

Theorem 6. Let G be a Lie group with a finite number of connected components
and a compact tangent algebra and Z = Z(G°)°. We can choose a non-compact
part A of Z which is a normal subgroup of G. For any such a choice of A we have
G=AxK,G°=A x K° where K is a compact Lie subgroup.

Let b = 3 be the tangent algebras of the compact part B of Z and Z itself,
respectively. Clearly, the automorphisms a(g)(g € G) transform Z into itself. By
Problem 9 B is also mapped into itself by all the a(g). Therefore 3 and b are
invariant with respect to the adjoint representation of G.

Problem 12. In 3, there exists a subspace a invariant with respect to Ad G such
that3=a@®b.

Problems 9 and 12 imply the existence of a subgroup A < G described in
Theorem 6. Applying Theorem 5 to G° we get G° = 4 x K,,, where K is a
compact Lie subgroup. To finish the proof of Theorem 6 we need the following.

Lemma 2. Let G be a Lie group with a normal vector Lie subgroup A of finite
index. Then G = A x L, where L is a finite subgroup.

Proof. Let L, = G/A, n: G — L, the natural homomorphism. It suffices to
construct a homomorphism ¢: L, — G such that np =id; then G = A4 x L,
where L = ¢(L,). Choose a map y: L, — G such that nyy = id and seek ¢ in the
form

@(x) = h(x)¥(x)  (x e L), (4)

where h: L, — A is a map. Observe that
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P (y) = flx, ¥(xy)  (x,y€Lo) )

where f(x, y) € A. The condition ¢(xy) = @(x)@(y) is equivalent to the following
identity relating 4 with the map f: Ly X Ly — A:

f06,9) =Y @h(y) ) h(x)TTh(y) (%, y € Lo) (6)

We will express the group operation in 4 additively. As follows from Problem
1.2.26 any automorphism of the vector group A is a linear transformation.
Therefore the formula

R(g)=a(@lA4 (geG) (7

determines a linear representation R: G — GL(A). Since A = Ker R, there arises
a linear representation Ry: L, — GL(V) such that R = R,n. Formula (6) takes
the form

flx,y) = h(xy) = h(x) = Ro(x)h(y)  (x,y € Lo) (8)

Thus, it suffices to choose a map h: L, — A satisfying (8) with f defined by (5);
then (4) defines the desired homomorphism ¢.

Problem 13. For any x, y, z € L, we have
fx.y2) + Ro()f(y,2) = flxy, 2) + flx, ).

Problem 14. The map h: L, — A4 defined by the formula

1
h(x) = == 3, f(x,y),

|L0| yeLo

satisfies (8).
Therefore Lemma 2 is proved. (]

Problem 15. Prove Theorem 6.

A subgroup K of a Lie group G is a maximal compact subgroup of G if K is
compact and is not contained in any larger compact subgroup of G. We will not
assume that K is a Lie subgroup. (This is automatically so since K is closed in G
(see 1.2.9°; this fact will not be used though).) Any automorphism of G permutes
its maximal compact subgroups.

The following theorem shows that the subgroup K mentioned in Theorem 5
is maximal compact in G and is unique up to conjugacy.

Theorem 7. Let G = A x K, where A is a vector group, K a compact Lie group.
Then K is a maximal compact subgroup of G. For any compact subgroup K, < G
there exists a € A such that aK ;a™! = K and if K, is a maximal compact subgroup
this inclusion is actually an equality.
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Before proving this theorem make several general remarks on semidirect
products of Lie groups. Let G = 4 x K, where A is a vector group. Then the
automorphisms a(g)| 4 (g € G) are linear transformations of the space 4 (see the
proof of Lemma 2). Therefore formula (7) defines linear representation R: G —
GL(A). Now, consider the vector space A as an affine space. Then we may define
a natural affine G-action on A4:

Problem 16. There exists a unique affine action R: G - GL(A) such that
R(a) =t, (ae A) and R(k) = R(k) (k € K). This action contains all transla-
tions and in particular it is transitive on A. The subgroup K is the stabilizer of
Oe A.

Since the stabilizers of any two points are conjugate for a transitive action of
a group, Problem 16 implies that the subgroup K; =« G = A x K is conjugate
to a subgroup contained in K if and only if A contains a point fixed under R(K ).
An element a € G such that aK,a™! = K may be assumed to belong to A.

Proof of Theorem 7. Since A does not contain non-trivial compact subgroups,
K is a maximal compact subgroup of G = A x K. The conjugacy follows from
the above remarks and the existence of a fixed point for any affine action of a
compact group (Theorem 3.4.1). (]

3°. Compact Real Forms of Reductive Algebraic Groups. In this subsection we
will generalize Theorem 1.2 on the existence of a compact real form of a connected
complex semisimple Lie group to arbitrary reductive algebraic groups. Besides,
we will prove the conjugacy of compact real forms. The main results are formu-
lated as follows:

Theorem 8. Any reductive complex algebraic group possesses an algebraic
compact real form.

Theorem 9. Any two compact real forms of a reductive complex algebraic group
G are transformed into each other by an automorphism of the form a(g), where
ge G

Proof of Theorem 8. Let G be a reductive complex algebraic group, H = (G°),
Z = Rad G = Z(G°)°. In a connected semisimple Lie group H choose a compact
real form L (see Theorem 1.2) which is connected thanks to Corollary 1 of
Theorem 2 and let U = N(L). Applying Corollary 3 of Theorem 2 to H and L
and using the decomposition G° = ZH, we get U N G° = ZL. In particular, the
group U n G is connected implying U® = U G° = ZL and u = 3@ L. There-
fore the tangent algebra of U is compact.

Problem 17. G = HU, G/G° ~ U/U°.

Thus, U has a finite number of connected components. In the tangent
algebra 3 of the torus Z, consider the real form 3(R) defined in 3.3.2° and set
A = exp 3(R), B = exp(i3(R)). Then Z = A x B, A being the non-compact and B
the compact parts of Z (see Example 2 in 1.1°). Since 3(R) is stable under all
automorphisms of Z and Z is a normal subgroup of G, A is also a normal
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subgroup of G. Applying to U Theorem 5 we see that U = A x K, where K « U
is a compact subgroup such that K° = BL.

Problem 18. The subgroup K is a real form of G.

The algebraicity of the real form K follows from Theorem 2. Therefore Theo-
rem 8 is proved. []

Proof of Theorem 9. Let K be a compact real form of G constructed in the
proof of Theorem 6 and K, another compact real form of G. Let ¢ be a real
structure on g such that f, = g°. Then ¢ transforms the center 3 and the derived
algebra b of g into themselves and induces on each of these subalgebras a real
structure. We have f; = 3° @ b”. Since K, N Z is compact, it is contained in B so
that 37 = f, n 3 < i3(R) implying 3° = i3(R) and K, n Z = B. Further, h? is a
compact real form of f). Applying Theorem 1.3 we may assume that §” = . Then
f, = f, hence K¢ = BL. Therefore, K, = N(BL) = N(L) = U.

Problem 19. There exists a € A4, such that aK,a™! = K.
Thus Theorem 9 is proved. (]

4°. Linearity of Compact Lie Groups. Thanks to Problem 7 any connected
compact Lie group admits a faithful linear representation. Now let us extend this
statement to arbitrary compact Lie groups. Therefore we will prove

Theorem 10. Any compact Lie group admits a faithful linear representation.

Let G be a Lie group. A differentiable function f: G — C is said to be represen-
tative if the functions r,(g)f(g € G) determined by (3.1.3) generate a finite-
dimensional subspace of the space C*(G) of all differentiable complex functions
on G. For instance, if G is a complex algebraic group then all polynomial
functions on G are representative (see Theorem 3.1.9). Denote by A the set of
all representative functions on G.

Problem 20. A is a subalgebra of C*(G) and coincides with the linear span
of matrix elements of all finite-dimensional complex linear representations
of G.

Lemma 3. If G is a compact Lie group then for any g € G, g # e, there exists
f € Ag such that f(g) # f(e).

Proof. If g ¢ G° then we may take for f the function which vanishes on G° and
equals 1 on all the other coniiectcd components of G; clearly, its orbit with respect
to right translations is contained in the finite-dimensional space of all functions
which are constant on connected components. Let a € G°. Since G° admits a
faithful representation thanks to Problem 7, there exists a matrix element of this
representation f, € Ago such that fy(g) # fo(e). Let us extend f, to a function f
on G setting f(x) = 0, if x € G\G°. Clearly, the linear span L, of the orbit of f
under right translations by elements g € G° is finite-dimensional. Furthermore,
if g and g’ belong to the same component of G thenr,(g)L, = r,(g')L,. Therefore
the orbit of f under right translations is contained in ) , r«(g)L;, where g runs
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through the set of representatives of the connected components of G. Hence,
f € Ag and Lemma 3 is proved. []

Problem 21. Any strictly descending chain of Lie subgroups in a compact Lie
group is finite.

Proof of Theorem 10. Let R, be a linear representation of a compact Lie group
G. If KerR, # {e} then choose some ge KerR,, g #e. By Lemma 3 and
Problem 20 there exists a representation S of G such that a matrix element f of
this representation satisfies f(g) # f(e). Then g ¢ Ker S. Setting R, = R, + S we
have strict inclusion Ker R, o Ker R,. If Ker R, # {e} then we similarly con-
struct a representation R with the strict inclusion Ker R, . Ker R;, etc. Due to
Problem 21 this process terminates and we get a faithful representation. []

5°. Correspondence Between Compact Lie Groups and Reductive Algebraic
Groups. In this subsection we will show that the complexification of real algebraic
groups leads to a one-to-one correspondence between compact Lie groups
(considered up to a differentiable isomorphism) and reductive complex algebraic
groups (considered up to a polynomial isomorphism).

Let K be a compact Lie group. By Theorem 10 K admits a faithful linear
representation which may be considered as a real one. Therefore Theorem 3.4.5
implies that K possesses a real algebraic group structure. This structure a priori
depends on the choice of a faithful representation though actually it is unique as
it will follow from our future arguments.

Consider the complexification K(C) of a compact real algebraic group K.

Problem 22. The algebraic group K(C) is reductive.

Now we wish to prove that the algebraic group K(C) does not depend (up to
an isomorphism) on the choice of the algebraic group structure on K. This is a
consequence of the following

Theorem 11. Let K, K, be compact real algebraic groups. Then any differen-
tiable homomorphism ¢: K, — K, uniquely extends to a polynomial homomor-
phism ¢(C): K,(C) = K,(C). If y: K, — K; is another differentiable homomor-
phism of compact real algebraic groups then

W) (C) = ¥ (C)o(C). ©)

Corollary. Under the assumptions of Theorem 10 any differentiable isomorphism
¢: K, = K, extends to a polynomial isomorphism ¢(C): K,(C) » K,(C) and is a
polynomial isomorphism itself.

Therefore the group K(C) and the algebraic structure on the compact Lie
group K are uniquely defined.
Let us precede the proof of Theorem 11 by the following

Problem 23. If under the conditions of Theorem 11 the extending homomor-
phism ¢@(C) exists and the homomorphism de¢ is injective then Ker ¢(C) =
Kergp < K.
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Proof of Theorem11. Let G; = K;(C)(i = 1,2). Then G, x G, = (K, x K,)(C).
Let n; be the projection G, x G, — G; onto the i-th component. Consider the
graph I" = {(k, ¢(k)): k € K, } of ¢ which is a compact Lie subgroup of K, x K,.
By Theorem 3.4.5 I'is an algebraic subgroup. Clearly, ,: I" — K is a polynomial
and bijective homomorphism. Consider an algebraic subgroup I'(C) = G, x G,.
The projection n,: I'(C) - G, extends n,: I > K, and therefore is injective by
Problem 23. Theorem 3.1.6 implies that this is a polynomial isomorphism of 7(C)
onto G,. The homomorphism ¢(C) = n,n7': G, — G, is the desired extension.

The uniqueness of the extension ¢(C) follows from the fact that K, is dense in
G, in Zariski topology and the relation (9) follows from the uniqueness. []

Now let us state the final result.

Theorem 12. On any compact Lie subgroup K there exists a unique real algebraic
group structure and the complex algebraic group K(C) is reductive. Any reductive
complex algebraic group possesses an algebraic compact real form. Two compact
Lie groups are isomorphic (as Lie groups or as algebraic groups over R) if and only
if the corresponding reductive algebraic groups over C are isomorphic.

Proof of this theorem follows from Corollary of Theorem 11, Problem 22,
Theorems 8 and 9.

Problem 24 (Corollary). Any compact subgroup L of a compact Lie group K
is an algebraic subgroup in K. In K(C), there exists a unique algebraic subgroup
containing L as a real form and isomorphic to L(C); its intersection with K
coincides with L.

6°. Complete Reducibility of Linear Representations. In this subsection we will
prove that a complex algebraic linear group is completely reducible if and only
if it is reductive. The proof'is based on the complete reducibility of compact linear
groups proved in 3.4. Furthermore, the completely reducible real algebraic linear
groups are real forms of complex reductive groups. In particular, it turns out
that any linear representation of a real semisimple Lie algebra is completely
reducible. This method of the proof of complete reducibility of semisimple linear
groups due to H. Weyl [49] is often called the unitary trick. All considered linear
groups and linear representations act in finite-dimensional vector spaces over C
or R.

First discuss some general questions having to do with the definition of
complete reducibility (see 3.4.2°). A linear group G = GL(V), where V is a vector
space over R or C is completely reducible if V splits into the direct sum of
irreducible G-invariant subspaces or, equivalently (see Problem 3.4.2), if for any
G-invariant subspace V; < V there exists a G-invariant direct complement. In
this setting it clearly suffices to verify the latter property for the irreducible
subspaces V,. A completely reducible linear group G determines a completely
reducible linear group in any G-invariant subspace of V.

Problem 25. Let G be a linear group in a vector space V over R. Consider it
as a subgroup of GL(V(C)) making use of the natural embedding GL(V) —
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GL(V(C)). The group G is completely reducible in V if and only if so it is in
V(C).

Problem 26. A linear group G in a vector space V over C is completely reducible
if and only if G is completely reducible (over R) in VR

Problem 27. A linear group G in a vector space V over C or R is completely
reducible if and only if so is its algebraic closure G* = GL(V).

A real algebraic group G is reductive if its complexification G(C) is a reductive
complex algebraic group. For instance the compact and semisimple real alge-
braic groups are reductive.

Theorem 13. A reductive (complex or real) linear algebraic group is completely
reducible.

Proof. A reductive complex algebraic group G is an algebraic closure of a
compact subgroup (see Theorem 7) which is completely reducible thanks to
Corollary of Theorem 3.4.2. By Problem 27 G is also completely reducible. If G
is a real reductive linear algebraic group in a real vector space V then G(C) is a
complex reductive group in ¥(C). Therefore due to Probiems 25 and 27 G is
completely reducible over R. Now if a real reductive group G acts in a complex
space then its complete reducibility follows from Problem 26. (]

Let us point out several corollaries for linear representations. Recall that a
linear representation of a group (or of a Lie algebra) is called completely reducible
if its image is a completely reducible linear group (linear Lie algebra). This is
equivalent to the existence in the space of the representation of a complementary
invariant subspace for any invariant subspace.

Since the image of a reductive algebraic group under a linear representation
is reductive (see Problem 4.1.22), Theorem 13 implies

Corollary 1. A linear representation of a reductive complex algebraic group is
completely reducible.

Corollary 2 (Problem 28). If G is a semisimple real Lie group with a finite number
of connected components then any linear representation of G over C or R is
completely reducible.

Problem 29. Let G be a connected Lie group, R its linear representation. The
representation R is completely reducible if and only if so is the representation
dR of the tangent algebra g.

Problem 29 and Theorem 13 imply

‘Corollary 3. A linear representation of a complex or real semisimple Lie algebra
is completely reducible.

Note some applications of this corollary.

Problem 30. Let g be a complex or real Lie algebra. If radg = 3(g), then
g = g’ @ 3(g), the derived algebra being semisimple.
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Problem 31. If a connected complex algebraic group G contains a normal
subgroup T which is a torus, then T = Z(G). A complex algebraic group is
reductive if and only if its radical is a torus.

Let g be a semisimple complex Lie algebra. Corollary 3 implies that any
finite-dimensional linear representation p of g is equivalent to the sum p; + - +
p, of irreducible representations p; which are determined uniquely up to an
isomorphism. The representations p; are called the irreducible components
of p.

Corollary 4. A linear representation of a semisimple complex Lie algebra is
determined up to an isomorphism by the system of its highest (or lowest) weights
their multiplicities (the dimensions of the corresponding weight subspaces) counted.

Now we prove a theorem converse to Theorem 13.

Theorem 14. Any completely reducible complex or real algebraic linear group is
reductive.
Proof. Thanks to Problems 25 and 27 the real case is reduced to the complex

T at T (I W latal
Oone. Lt U © Ui o€ a compiCiciy reducible ccmplex algﬁbralC group.

see from Problem 31, it suffices to show that Rad G is a torus.

By Lie’s theorem (see 1.4.5°) Rad G possesses weight vectors in V. Denote by
Ay, ..., A, the complete set of distinct weights of Rad G in V and by V; the
corresponding weight subspaces. Then the subspace V' =V, @@V, isin-
variant with respect to G. Therefore V = V' @ V", where V" is another invariant
subspace. If V" # 0, then by Lie’s theorem Rad G possesses a weight vector in
V" which is impossible. Thus, V = V'. It follows that Rad G is a torus (see
Problem 3.2.17). (J

7°. Maximal Tori in Compact Lie Groups. In this subsection we consider
connected compact Lie groups and their generalization—connected Lie groups
with compact tangent algebras. We will study some properties of maximal
connected commutative subgroups of these groups similar to the properties of
maximal tori in complex algebraic groups. The term “torus” means a compact
torus, i.e. a Lie group isomorphic to T" Recall that any connected compact
commutative Lie group is a torus (see Proposition 1.2.3).

Let K be a compact Lie group.

Problem 32. Any maximal connected commutative subgroup A4 of K is a torus.
The tangent algebra a of 4 is a maximal commutative subalgebra of Lie algebra
fand A = exp a. Conversely, for any maximal commutative subalgebra a = f the
subgroup 4 = expa = K is a maximal connected commutative subgroup with
the tangent algebra a.

A maximal connected commutative subgroup of a compact Lie group K is
called a maximal torus of K.

Problem 33. A compact subgroup A4 of K is a (maximal) torus if and only if
A(C) is a (maximal) algebraic torus of K(C).
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Problem 34. A maximal torus A of a connected compact Lie group K coincides
with its centralizer in K. The subgroup A contains Z(K) and is maximal among
commutative (not necessarily connected) subgroups of K.

Theorem 15. Any two maximal tori of a compact Lie group K are conjugate.

Proof. Let A, A, be maximal tori of K. By Problem 33 A4,(C) and A,(C) are
maximal algebraic tori in K(C). Therefore (see Problem 3.2.24), there exists
g € K(C) such that g4,(C)g~" = 4,(C). Since 4, and A, are the largest compact
subgroups of 4,(C) and 4,(C), then y4,g~! = A,. Since K(C) can be considered
as a linear group, we have the polar decomposition K(C) = KP, where P =
exp(if) (see Theorem 2). Let g = kp, where k € K, p € P.Set [ = pap™. Thenl e K
for any a € A implying a™*pa = a™!Ip. It follows from (3) and the uniqueness of

the polar decomposition that a™pa = p. Therefore pap™ = a for any a € A4,,
hence ‘AZ _ kAlk 1. MM

Now consider a more general situation, when K is a connected Lie group
whose tangent algebra f is compact. By Theorem 4 we have the direct product

d_e(‘nmnnqhnn K = L x C, where L o K'is the largest compact qnhormm of K

b LD K st COINNPALL UV 0RY O I,

C ~ R the non-compact part of the commutative group Z(K)°

Theorem 16. If K is a connected Lie group with a compact tangent algebra t
then any maximal connected commutative subgroup A in K is of the form A =
(AN L) x C, where A L is a maximal torus of L. The subgroup A coincides with
its centralizer and, in particular, contains Z(K). All maximal connected commuta-
tive subgroups of K are conjugate. The map exp:f— K defines a one-to-
one correspondence between the maximal commutative subalgebras of t and the
maximal connected commutative subgroups of K.

Problem 35. Prove this theorem.

Exercises

1) Let E be a finite-dimensional Euclidean (or Hermitian) space, G a subgroup
of GL(E), K = GNO(E) (or GNU(E)), P =G n P(E). If G = KP then G is
a self-adjoint linear group.

2) Let G = GL(V)be a reductive algebraic complex linear group, K its compact
real form and S an algebraic real structure in G such that S(K) = K. In V,
introduce a Hermitian K-invariant scalar product. Then the linear group
H = G is self-adjoint.

3) Let G be a connected reductive algebraic group over C, H its algebraic real
form. Then there exists a compact real form of G such that the corresponding
real form of g is compatible with b.

4) An irreducible reductive real algebraic group G is diffefomorphic to L x R,
where L is a maximal compact subgroup of G.

5) A reductive real algebraic group consists of a finite number of connected
components (in the usual topology).
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6) Real algebraic linear groups G = GL,(k), where k = R, C or H listed in
Examples 1.2.1-1.2.5 are self-adjoint with respect to the standard scalar
product in R" (the standard Hermitian products in C" and H", respectively).
Find the corresponding polar decompositions G = KP (i.e. determine K, the
subalgebra f and the subspace p or g).

7) The groups U, ;, SU, ,, GL,,(H), SL,,(H), U*(H), Sp, ,, are connected.

8) The fundamental groups of the classical groups (except those studied in 1.3°)
are of the following form:

1 (U,) = 7, (Sp2a(R)) =~ n, (UX(H)) = Z;

T (U) =2 Z (k, 1> 0);
T, (SU, )~ Z (k,1 > 0);
n,(SL,(R)) ~ Z, (n=3)

n,(O7,) are contained in the table:

k1 k1> 2 k=1,1>2 k=21>2 k=1=2 k=11=2

m,(00)) 7,®7Z, z, 71® 2z, VASYA Z

9) Let E be a Euclidean (or Hermitian) space and let g € GL(E) and a € O(E)
(resp. U(E)) be such that gag™ € O(E)(U(E)). Then in the polar decom-
position g = kp, where ke O(E) (U(E)), p € P(E), the factor p satisfies
ap = pa.

10) Each element of a connected compact Lie group is contained in a maximal
torus.

11) The center of a connected compact Lie group coincides with the intersection
of all of its maximal tori.

12) Let A be a connected closed commutative subgroup of a connected compact
Lie group K. Then the centralizer Z(A) of 4 in K is connected.

13) Let K be a simply connected compact Lie group and @ € Aut K. Then K®
is connected.

14) Let K be a compact Lie group. The algebra of polynomial functions R[K]
on K considered as a real algegraic group coincides with the algebra of real
representative functions.

15) Let G be a reductive algebraic complex group. The algebra of polynomial
functions C[G] coincides with the algebra of holomorphic representative
functions A%. If K is a compact real form of G then the restriction map
determines an isomorphism A% — A,.

16) A compact real algebraic group is irreducible if and only if it is connected
(in the usual topology).

17) Let p be a linear representation of a semisimple complex Lie algebra. Let us
represent its decomposition into irreducible components in the form
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P=P1+"'+Ps+Pf+"'+Ps*+Ps+x+"'+ps+1,

where p, £ p¥ for i, j > s and i # j. The representation p is self-adjoint if
and only if so are all p; (i > s). Moreover, p is orthogonal (symplectic) if
and only if so are all p; (i > s).
A complex or real Lie algebra g is called reductive, if rad g = 3(g).

18) A Lie algebra is reductive if and only if its adjoint representation is com-
pletely reducible.

19) If an arbitrary finite-dimensional representation of a Lie algebra g is com-
pletely reducible then g is semisimple. :

Hints to Problems

1. Apply Theorem 1 to Z(G). It follows from Problem 1.31 that Z(G)n P is a
Lie subgroup of G isomorphic to R¥, s > 0.

2. If pe P and p # e then {p°* = exp(slogp): s = 1,2,...} is an infinite discrete
sequence. Therefore p cannot belong to any compact subgroup of G.

3. First verify that x* € g for any x € g. Since S: g+ g* ™! is an automorphism
of GL(E) (as a real Lie group) and (dS)x = —x*, then S(G°) = G°. Since
G = KG° and K consists of unitary operators, this implies the statement of
the problem.

4. By Theorem 1 G = K, P with K < K, and K° = K9 since K and K, have
the same tangent algebra. Since K is a real form of G, we have G = KG° =
K(K9P) = KP which easily implies that K, = K.

5. Let t be a compact semisimple Lie algebra and let G be a simply connected
semisimple algebraic group over C with the tangent algebra f(C) existing
thanks to Theorem 4.3.6. By Corollary 1 of Theorem 2 the compact real form
K of G is a simply connected Lie group with the tangent algebra .

6. Let Z=Z(K)° and let L be a simply connected Lie group with the
tangent algebra . The group L is compact thanks to Problem 5. There
exists a covering n: 3 x L - K such that n|3 = exp: 3 » Z. Clearly, I' =
Kerexp < Kern. Therefore there exists a covering n': Z x L — K such
that 7n'(exp x id) = n. The kernel Kern' ~ Kern/I" is finite since so is
Z(L).

7. Consider the covering 7': K = Z x L — K from Problem 6. Problem 5 and
Example 2 of 1.1° imply that K is isomorphic to a compact form of a
connected complex reductive algebraic group G. Let N = Kern/, then N <
Z(G) by Problem 1.3 and K is isomorphic to a real form of the reductive
group G/N.

8. By Problem 7 we may assume that K is a linear group. Then K’ is a Lie
subgroup since ¥’ is algebraic. The decomposition K = ZK’ follows from
Problem 4.1.21.

10. Let G, = A, x K, be a decomposition satisfying the conditions of Theorem
4. Prove that A = 17 1(4,)°, K =7n7"(Ky)®and G = 4 x K.

12. Consider the representation of the compact group G/Z in 3 induced by the
adjoint representation and make use of Corollary of Theorem 3.4.2.



15.

17.

18.
19.
20.

22.

23.

24.

25.

26.
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Since K, is a maximal compact subgroup of G°, then K, is normal in G. The
group G = G/K, contains a normal Lie subgroup of finite index, 4, iso-
morphic to 4. By Lemma 2 G = A x L, where L is a finite subgroup. Then
the preimage K of L with respect to the natural homomorphism G — G is
the desired subgroup.

Consider the G-action on the set of compact real forms of § determined by
the adjoint representation. The subgroup H < G acts on this set transitively
(Theorem 1.3) and U is the stabilizer of . This implies that G = HU.

The identity G = KG° follows from Problem 17.

Make use of Theorem 7.

In 3.1.6° we have actually proved that the matrix elements of any represen-
tation belong to Ag. Conversely, let f € A;, f # 0, and let V be the linear
span of {r,(9)f: g € G}. In ¥, choose a basis f, = f, f,, ..., f, and let a;; be
the matrix elements of the representation r,: g r,(g) of G in the space V
with respect to this basis. Then

g = ai(g ") file),

1<k<n

i.e. fislinearly expressed in terms of the functions b, (g) = a,;(g™"), the matrix
elements of the representation (r,)*.

Let K = GL(V) be a compact real linear group. Theorem 3.4.2 implies that
the scalar product (4.1.2) is negative definite on the tangent algebra . There-
fore a similar scalar product in sl(V(C)) is non-degenerate on f(C). The
reductivity of K(C) follows from Theorem 4.1.2.

Let p;=if;, P,=expp; (j=1,2). Then do(C)(p,) = p, and therefore
¢(C)(P,) = P,. Let N = Ker ¢(C). The uniqueness of the polar decomposi-
tion (32) implies that if g = kp € N, where ke K,,pe P;,thenk,pe N. It is
clear from Problem 1.31 that p = e and g = k € Ker ¢.

The algebraicity of L follows from Theorem 3.4.5. If ¢: L — K is an embed-
ding then ¢(C) is injective by Problem 23. The subgroup ¢(C)(L(C)) is the
desired one.

Let G be completely reducible in V and let W, < V(C) be an irreducible
G-invariant subspace. Then V; = (W, + W,)n V is a G-invariant subspace
of V such that V,(C) = W, + W, and either W, AW, =0 or W, = W,. If
¥, is a G-invariant complement to V| in V then the G-invariant complement
to W, in V is either W, @ V,(C) or V,(C), respectively. Conversely, let G be
completely reducible in V(C), let ¥, be an irreducible G-invariant subspace
in ¥V and W, the G-invariant complement to V,(C) in V(C). Then V =
Vi@V, where V, = {x + X: x e W, }.

Let usembed G in GL(V®(C)) asin Problem 25 and let us extend the complex
structure operator I from V onto V®(C) (cf. 1.1°). Then VR(C)=V,® V_,,
where V., ; are eigenspaces of I corresponding to eigenvalues +i. The sub-
spaces V., are invariant with respect to G, the projections V = VR > ¥, and
V= V® - V_, commute with the G-action and are an isomorphism and
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an antilinear isomorphism of complex vector spaces respectively. This im-
plies that G is completely reducible in V if it is completely reducible in V#(C).
Now apply Problem 25.

27. First prove that G and G* have the same invariant subspaces.

28. The image G, of G under a linear representation is a semisimple linear group
(see Problem 4.1.16) and (G{)° = G?. Therefore, the statement follows from
Theorem 13 and Problem 27.

29. Make use of Problem 1.2.19.

30. Consider the representation of the semisimple Lie algebra g/radg in g in-
duced by the adjoint representation.

31. Let G be an algebraic subgroup of GL(V). Consider the weight decomposi-
tion V=P <i<, V;, of V with respect to T. Each ge G permutes the
subspaces V; , thereby a homomorphism G — S, is defined. Its kernel is a
closed subgroup of a finite index in G and, therefore, coincides with G. Thus,
all the V, ’s are G-invariant, whence T < Z(G).

32. Note that for any connected commutative subgroup 4 < K the closure 4 is
a compact connected commutative subgroup, hence a torus.

33. If A is a torus then the reductive group A(C) is connected (e.g. by Corollary
1 of Theorem 2) and commutative, i.e. is an algebraic torus. Conversely, if
A(C) is an algebraic torus then the compact commutative group A4 is con-
nected thanks to the same Corollary.

34. Pass to the maximal algebraic torus A(C) = K(C) and apply Theorem 4.2.5.

35. If A is a maximal connected commutative subgroup of K, then AC is also a
connected commutative subgroup, hence A = AC > C. Therefore 4 =
(AN L) x C, where A N L is a maximal connected commutative subgroup
of L. The other statements of the theorem follow from Problems 32, 34 and
Theorem 15.

§ 3. Cartan Decomposition

In this section we will study the so-called Cartan decomposition of a real
semisimple Lie group. It is an analogue of the polar decomposition considered
in 2.1° and for semisimple algebraic groups these decompositions coincide. The
Cartan decomposition leads to an important theorem on conjugacy of maximal
compact subgroups of any real semisimple Lie group with a finite number of
connected components. It also enables us to give a global classification of
connected semisimple Lie groups.

1°. Cartan Decomposition of a Semisimple Lie Algebra. Let g be a real semi-
simple Lie algebra, (-, -) the Cartan scalar product in g. A decomposition of g
into the direct sum of vector spaces

g=t®p (1)
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is a Cartan decomposition if
1) the map 6: x + y—x — y(x e f,y € p) is an automorphism of g;
2) the bilinear form

by(z,y) = —(x,0y) 2

is positive definite on g.
Note that 6% = id, therefore b, is a symmetric bilinear form.

Problem 1. Condition 1) is equivalent to the following condition:

(Eflct [Eplep [pplct 3)

Problem 2. If 1) holds then (x,y) = 0 for x e {, y € p and 2) is equivalent to the
following condition:

(x,x) <0 for xef, x#0; (y,y)>0 for yep, y#0. (4

Therefore the decomposition (1) is a Cartan one if and only if (3) and (4) hold.

Example. If u is a compact real form of a semisimple complex Lie algebra g
then the decomposition

R =udIu (5)

ia a Cartan decomposition of g®. Here 6 = t is the real structure corresponding
to the real form u and the scalar product b, coincides with h, (see Theorem 1.2).

We will now describe Cartan decompositions of an arbitrary real semisimple
Lie algebra g. For this consider the complex semisimple Lie algebra g(C). Let u
be a compact real form of g(C) compatible with g. By Problem 1.28

g=t®p, where T=gnu, p=gni(u). (6)

Problem 3. The decomposition (6) is a Cartan one and 6§ = g1, where ¢ and ©
are the real structures corresponding to the real forms g and u. Conversely, any
Cartan decomposition (1) is of the form (6) for a compact real form u = { @ (ip)
compatible with g.

Therefore we have established a one-to-one correspondence between Cartan
decompositions of g and compact real forms of g(C) compatible with g. Note
that any automorpnism of g transforms a Cartan decomposition into a Cartan
decomposition.

Problem 3 and Theorem 1.3 imply

Theorem 1. Any real semisimple Lie algebra g possesses a Cartan decomposition.
Any two Cartan decompositions of g are transformed into each other by an inner
automorphism.

Now we will establish certain proporties of Cartan decompositions. Let g =
I @ p be a Cartan decomposition of a semisimple Lie algebra g over R. It is clear
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from (3) that f is a subalgebra of g and p is an invariant subspace with respect
to ad f, where ad is the adjoint representation of g. The subspace p is calied the
Cartan subspace of g.

Let us consider g as a Euclidean space with the scalar product b, given by
formula (2).

Problem 4. We have ad 8(x) = —(ad x)* for any x € g. In particular, the opera-
tor ad x is symmetric if and only if x € p and skew symmetric if and only if x € .

Problem 5. Let g = P, <;<,;, where g; are simple ideals, and let, g, = f; ® p;
(i=1,...,s) be their Cartan decompositions. Then f'= P, ;< f; and p =
@1 <i<s Pi determine a Cartan decomposition of g and any Cartan decomposi-
tion of this algebra can be obtained in this way.

Problem 6. A Lie algebra g is compact if and only if f = gand p = 0.

2°. Cartan Decomposition of a Semisimple Lie Group. Let G be a real semi-
simple Lie group (not necessarily connected) and let a Cartan decomposition (1)
of its tangent algebra be given. In this section we will prove the existence of the
corresponding global decomposition G = KP, where K is a Lie subgroup of G
with the tangent algebra f and P = expp. This decomposition described in
Theorem 2 will be called a Cartan decomposition of G.

Denote by 0 the involutive automorphism of g corresponding to the decom-
position (1) and consider g as a Euclidean space with the scalar product b, defined
by formula (2).

Problem 7. For any a € Autg we have 0af~! = (a*)~!. In particular, Autg is
a self-adjoint linear group.

Theorem 2. Let G be a real semisimple Lie group and let a Cartan decomposition
1) of its tangent algebra be given. Set K = {g € G: Adg € O(g)}, P = exp p. Then
G = KP and every element g € G uniquely presents in the form g = kp, where
ke K,peP. The map ¢p: K x p — G given by the formula

@(k,y) =kexpy  (keK,yep)
is a diffeomorphism. The map ©: kp— kp~' is an automorphism of G.

Proof. It follows from Problem 9 and Theorem 2.1 that Autg admits the polar
decomposition Autg = KP, where K = (Autg) n O(g), P = (Autg) n P(g). By
Problem 1.4 the tangent algebra of Autg is ad g and it is clear from Problem 4
that (ad g) n S(g) = ad p. Therefore P = expad g (see Theorem 2.1).

It follows from the commutative diagram

P
l Ad (7)
p

exp
_

|



§ 3. Cartan Decomposition 257

that P = Ad P and the maps exp: p - P and Ad: P — P are one-to-one. If ge G
then Adg=kp where keKk, p eP. Since p=Adp, where peP, then
Ad(gp™') = k e 0(g) implying gp™* =ke K and g = kp. If there is another
decomposition g = k'p’, where k" € K, p’ € P, then (Ad k)(Ad p) = (Adk')(Ad p’ )
which thanks to the uniqueness of the polar decomposition implies Ad p = Ad p’.
Therefore p = p’ and hence k = k’. This also implies that ¢ is bijective.

Since the diagram

pr—¢> G

Adxad\ J Ad

R xp —— Autg

where ¢ determines the polar decomposition of Autg, commutes, d ,,¢ is
injective for any k € K, y € p. In fact, ¢ is a diffeomorphism by Theorem 2.1 and
the differential of the left-hand column map is injective. Therefore, ¢ is a
diffeomorphism.

Presenting g € G in the form g = kp, where k € K, p € P, we get

AdO(g) = (Adk)(Adp)™" = ((Adg)*)™".

Therefore (Ad)@ is a homomorphism and Ad(@(g,9,)0(g,)"'0(g,)™!) = id for
any ¢,, g, € G, hence

¥(g1.92) = 0(9192)0(9,)"'O(g,)"" € Ker Ad.

The subgroup Ker Ad is discrete since (Ker Ad) n G° = Z(G°) (see Problem
1.2.17). Therefore ¥(g,,g,) depends only on the connected components of G to
which the elements g,, g, belong. Since P = G°, an element of K is contained in
each connected component of the group G = KP. But ¥(g,,9,) =id for g,,
g, € K, hence y(g,,9,) =id forall g,,g, € K. O

Corollary 1. G is diffeomorphic to K x R™, where m = dim p.

Problem 8 (Corollary 2). K coincides with the subgroup G® = {g e G: O(g) =
g}; its tangent algebra is f.

Problem 9 (Corollary 3). K coincides with N(K°).

Problem 10 (Corollary 4). The Cartan decomposition of G° corresponding to
decomposition (1) is of the form G° = K°P, where K° = K n G° and K/K° ~
G/G°.

The definition of K and Corollary 4 imply

Corollary 5. Z(G) < Z(K), Z(G°) = Z(K°).
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Problem 11 (Corollary 6). K is compact if and only if G has a finite number of
connected com
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Proof of Theorem 2 (see (7)) also implies
Corollary 7. The map Ad: P — P = Aut g~ P(g) is a diffeomorphism.

Remarks. 1) Let G = GL(V) be a complex semisimple algebraic linear group,
K its compact real form. Then the Cartan decomposition of G corresponding to
the Cartan decomposition g = t @ (if) of its tangent algebra (see Example of 1°)
coincides with the polar decomposition described in Theorem 2.2. In fact, these
decompositions are defined by the same set P = exp(if), and Corollary 3
of Theorem 2 implies that K coincides with the subgroup from the Cartan
decomposition.

2) Let G = GL(V), where V is a vector space over R, be a real semisimple
linear Lie group. Then Z(G°) is finite since it is contained in the center of the
connected semisimple complex algebraic group (G°)* = GL(V(C)). Therefore if
G has a finite number of connected components then the subgroup K of Theorem
2 is compact (Corollary 6).

3) Ifthe subalgebra f = gissemisimple and G has a finite number of connected
components then K is compact by Problem 2.5 and Corollary 4 of Theorem 2.
If T is not semisimple then by Corollary 1 of Theorem 2 applied to a simply
connected group G the subgroup K is also simply connected, hence is not
compact. The simplest example of such a group is G = SL,(R) (see Example 5
of 1.1°). Here t = sl,, K ~ R, therefore by Corollary 1 G is diffeomorphic to R>.

4) Let G = PSL,(R) = SL,(R)/{ £ E} and m: SL,(R) = PSL,(R) the natural
homomorphism. If SL,(R) = SO, - P is a Cartan decomposition, then PSL,(R) =
n(SO,)n(P). This is a Cartan decomposition of PSL,(R). Since n(SO,) =
SO,/{+E} ~ SO,, then n,(PSL,(R)) ~ Z, implying Z(ﬁ,z(R)) ~ 7.

Suppose g is a simple Lie algebra over R admitting no complex structure,
ie. a real form of a complex simple Lie algebra. Then the automorphism 6
extended by linearity onto g(C) is the involutive automorphism of g(C) that
corresponds to the real form g by Theorem 1.4 (see Problem 1.37) and £(C)
coincides with g(C)’. According to the classification of Problem 1.38 the case of
a semisimple subalgebra f corresponds to types I, I, and that of a non-semisimple
subalgebra to the type III; in the latter case f has a one-dimensional center.

3°. Conjugacy of Maximal Compact Subgroups. In this subsection we will
describe maximal compact subgroups of semisimple Lie groups with a finite
number of connected components. In particular, we will prove that all maximal
compact subgroups are conjugate. First, we consider the general case and for-
mulate a conjugacy theorem for subgroups more general than compact ones.

A subgroup M of a semisimple Lie group G is called pseudocompact if the linear
group Ad M < GL(g) is compact. Any compact group is pseudocompact.

Problem 12. The subgroup K considered in Theorem 2 is a maximal pseudo-
compact subgroup of G.
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Theorem 3. Let G = KP be a Cartan decomposition of a semisimple Lie group
G. For any pseudocompact subgroup M < G there exists g€ P such that
gMg™! = K.

Before we prove this theorem let us deduce from it several corollaries. If G has
a finite number of connected components then so has K by Corollary 4 of
Theorem 2. Since f is compact, Theorems 2.5 and 2.6 imply that K = 4 x L,
where 4 ~ RS and L is a maximal compact subgroup of K.

Problem 13 (Corollary 1). If G has a finite number of connected components
then any maximal compact subgroup L of K is a maximal compact subgroup of
G. Any maximal compact subgroup of G is conjugate to L by an automorphism
of the form a(g), where g € G°.

Corollary 2. A semisimple Lie group G with a finite number of connected
components is diffeomorphic to L x RN, where L is any maximal compact subgroup

of G.

Problem 14 (Corollary 3). Let g be a real semisimple Lie algebra and let M be
a compact subgroup of Aut g. Then g admits a Cartan decomposition invariant
with respect to M.

The classical proof of Theorem 3 due to E. Cartan (see [6]), as well as its
simplified versions (see, e.g., [31]), are based on the study of geometry of the
symmetric space G/K. The proof that follows, exploiting an idea presented in
[31], does not use Riemannian geometry at all.

Observe that GL(E) acts on the manifold P(E) of positive definite self-adjoint
operators in a Euclidean space E by the formula

Sq(A)(X) = AXA* (X € P(E), A € GL(E)).

As it is known from linear algebra, this action is transitive, and the stabilizer of
the identity operator E € P(E) is the orthogonal group O(E). Consider the differ-
entable function r of two variables on P(E) given by the formula

rX,Y)=tr(XY ™). (8)
Problem 15. r(Sq(A4)(X), Sq(A4)(Y)) = r(X, Y) for any A € GL(E).
Let Q2 be a compact set in P(E). Let

p(X) = max r(X,Y), 9
YeQ

Problem 16. The function p is continuous on P(E).
Set SP(E) = P(E) n SL(E). Clearly, SP(E) is closed in SL(E) and therefore is
closed in the space gl(E).

Lemma 1. For any compact set 2 < P(E) the function p defined by formula (9)
assumes its minimum on any closed subset F = SP(E).
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Proof. First, prove that
p(X)=blX| (X e P(E), (10)

where b > Ois a constantand || X | is the norm of an operator X in E. Fix X € P(E)
and choose an orthonormal basis of E in which X is expressed by a diagonal
matrix diag(x,, ..., x,). If (y;) is the matrix of Y € P(E) then y; > 0 and

X, Y)= ) xi/yu 4 (11

1<i<n

Since 2 and the orthogonal group are compact, there exists b > 0 such that
1/ys =2 b(i=1,...,n)forall Y € Q and all orthonormal bases of E. Then

r(X,Y)= (tr X)/b > ( max x,-)/b = | X|/b forany Y e Q
1<i<n
implying (10).

It follows from (10) that for any N > 0 the set {X € SP(E): p(X) < N} is
compact. In fact, p(X) < N implies | X|| < N/b and the intersection of the com-
pact ball {X € S(E): | X|| < N/b} with the closed set SP(E) is compact.

Now it is easy to prove the existence of a minimum point. Let X, € F. Consider
the set B = {X € F: p(X) < p(X,)} containing X, and compact by the above
considerations. Problem 16 implies the existence of X; € B such that p(X,) <
p(X) for all X € B. The point X, is a minimum point of p on the whole F since
p(X) > p(Xo) = p(X,) for X € F\B. [

Now we want to show that under appropriate conditions the minimum point
of p is unique. We want to prove that the functions r and p possess some convexity
property.

Problem 17. For any fixed X, Y € P(E), X # E the functions

Srx(©) =r(X,Y), ox(t) = p(X")

are strictly convex on the whole real axis.

Return to the situation of Theorem 3. Consider the tangent algebra g of G as
a Euclidean space with the scalar product (2) corresponding to our Cartan
decomposition. Set P = expad p.

Problem 18. P is a closed submanifold of SP(g), coinciding with the orbit of
the point E under the action (Sq)(Ad) of G on P(g). The subgroup K = G is the
stabilizer of E with respect to this action.

Lemma 2. For any compact set Q in P(g) the function p defined by (9) has a
unique minimum point in P.

Proof. Let A, B € P be two different minimum points of p. Apply to A4, B and
Q the map Sq(B~'?) which transforms P into itself, B into E and Q into a new
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compact set. Making use of Problem 15, we shall reduce our problem to the case
B = E. Clearly, A" € P for all t € R. By Problem 17 the function ¢,(t) = p(4") is
strictly convex on the segment [0, 1]. Therefore, it can not assume its minimum
on both ends of this segment. []

Proof of Theorem 3. Let M be a pseudocompact subgroup of G. Consider the
action of the subgroup B = G on P(g) defined in Problem 18. Since Ad M is
compact, the orbit 2 = Sq(Ad M)(E) is also compact. By Problem 15 the func-
tion p on P(g) given by (9) is invariant with respect to M. Thus, its unique
minimum point 4, € P (see Lemma 2) is fixed under M. Since G acts transitively
on P, it follows that gMg~! < K for some g € G. It is easy to see that we may set
g = p~ "2, where p € P = expp is such that 4, = Ad p.

4°. Canonically Embedded Subalgebras. Given a Cartan decomposition (1) of
a real semisimple Lie algebra g we call a subalgebra by = g canonically embedded
in g with respect to the decomposition (1) if 6(h) = b, where 6 is the automorphism
corresponding to the Cartan decomposition, or, equivalently, if

h=OHnh@ () (12)

As it is known, any semisimple Lie algebra g (over R or C) can be identified
with the linear Lie algebra ad g < gl(g) over the same field. Therefore we may
introduce the notion of an algebraic subalgebra of a semisimple Lie algebra. A
subalgebra b of a complex semisimple Lie algebra g is called a (reductive) algebraic
subalgebra if ad by is a (reductive) algebraic linear Lie algebra in the sense of 4.1.1°.
A subalgebra b of a real semisimple Lie algebra g is called reductive algebraic if
h(C) is a reductive algebraic subalgebra of a complex Lie algebra g(C). For
instance, any semisimple subalgebra of a semisimple Lie algebra (over C or R)
is reductive algebraic.

Problem 19. Let g be a real semisimple Lie algebra. Any canonically embedded
algebraic subalgebra §) = g is reductive algebraic. If § is semisimple then the
decomposition (12) is its Cartan decomposition.

Our aim is to prove the following statement inverse to the first statement of
Problem 19.

Theorem 4. Any reductive algebraic subalgebra of a real semisimple Lie algebra
g is canonically embedded in g with respect to a Cartan decomposition.

Proofis based on the following refinement of one of the statements of Theorem
1.3.

Lemma 3. Let Y be a reductive algebraic subalgebra of a complex semisimple
Lie algebra g and let o be a real structure on g such that a(h) = V). Then on g, there
exists a real structure t such that g° is compact, 6t = to and t(h) = ).

Proof. Represent b in the form b = 3@ Iy, where 3 is the center of . Clearly,
o(b’) =1, o(3) = 3. By Theorem 1.3 there exists a real structure t, on the
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semisimple Lie algebra b’ such that (})"* is compact and 1,0 = g7, on ). The
corresponding compact real form L of the group Inth’ = Int g satisfies cLo = L.
The algebraic torus Z = expad 3 < Int g determines a real form 3(R) of 3. The
subgroup B = expad(i3(R)) is the compact part of Z so that ¢Bs = B. Then
M = BL is a compact Lie subgroup of Intg, its tangent algebra m = i3(R) ®
(b)) is a real form of ) and cM¢ = M. Now consider g as a real semisimple Lie
algebra g® and denote by M, the subgroup of Aut g® generated by M and {¢).
Clearly, M, = {(o)M, so M, is compact. By Corollary 3 of Theorem 3 there is
an M,-invariant Cartan decomposition of g*. This means (see Example of 1°)
that there exists a compact M,-invariant real form of g. The corresponding real
structure 7 satisfies, as is easy to verify, the requirements of Lemma. [J

Problem 20. Prove Theorem 4.

5°. Classification of Connected Semisimple Lie Groups. This section is devoted
to the global classification of connected real semisimple Lie groups. It turns out
that as in the complex case this classification can be given in terms of the tangent
algebras and lattices in some commutative subalgebras of these algebras. By a
“torus” we always mean a compact torus.

Let G be a connected semisimple Lie group. A connected subgroup A < G
will be called a pseudotorus if Ad A is a torus. Fix a Cartan decomposition
G = KP.

Problem 21. The maximal connected commutative subgroups of K are the
maximal pseudotori of G belonging to K. All maximal pseudotori of G are
conjugate.

A commutative subalgebra a of a semisimple Lie algebra g will be called
pseudotoral if expad a < Int g is compact, i.e. is a torus.

Problem 22. Let g be the tangent algebra of a semisimple Lie group G. A
subalgebra a < g is (maximal) pseudotoral if and only if it is the tangent algebra
of a (maximal) pseudotorus in G. Any maximal commutative subalgebra of f is
pseudotoral. All maximal pseudotoral subalgebras of a semisimple Lie algebra
g are conjugate.

Let A be a maximal pseudotorus of a connected semisimple Lie group G and
let a be the corresponding maximal pseudotoral subalgebra of g. The kernel of
the homomorphism exp = expg: a — A4 is a lattice in a which, as we will see,
determines together with the Lie algebra g, the group G uniquely up to an
isomorphism. But it is more convenient to consider the lattice L(G) = Keré& <
a(C), where & = &;: ia » G is the homomorphism defined by &(x) = exp 2mix.
The lattice L(G) is called the characteristic lattice of G.

Problem 23. Let G,, G, be two connected semisimple Lie groups with the same
tangent algebra g, a < g a maximal pseudotoral subalgebra. The characteristic
lattices of G, and G, satisfy L(G,) = L(G,) if and only if there exists a homo-
morphism n: G, — G, such that drn = id. In this case &; ' (Ker n) = L(G,), whence
Kern >~ L(G,)/L(G,).
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Theorem 5. Let G; (j = 1,2) be two connected semisimple Lie groups, a < g;
maximal pseudotoral subalgebras of their tangent algebras, L(G;) < ia; their char-
acteristic lattices. G, and G, are isomorphic if and only if there exists an isomor-
phism ¢: g, — g, such that ¢(a,) = a, and ¢(C)(L(G,)) = L(G,).

Problem 24. Prove this theorem.

To complete the classification we need to find out which lattices in ia might
be characteristic ones.

Let G be again a connected semisimple Lie group and a a maximal pseudotoral
subalgebra of g. The lattice L, = L(G) < ia corresponds to the simply connected
covering G of G. On the other hand, the lattice L, = L(Intg) c iada < iadg
corresponds to Int g. Identifying g and ad g with the help of the isomorphism ad
we get L, < ia. Problem 24 implies that L, < L(G) = L,.

Probiem 25. 67 '(Z(G)) = L,, Z(G) = (L) ~ L,/L(G), n,(G) ~ L(G)/L,.
Problem 26. Any lattice L such that L, = L < L, is the characteristic lattice
of a connected Lie group with the tangent algebra g.

Now describe the lattices L, and L,. Fix a Cartan decomposition g = @ p.
Denote by 6 the involutive automorphism of g associated to this decomposition
and the extension of this automorphism onto the complex semisimple Lie alge-
bra. Then {(C) = g(C)’. By Problem 21 we may assume that a is a maximal
commutative subalgebra of . We have f = ¥ @ 3(f). By Theorem 2.15a =a;, @
3(t), where a, is a maximal commutative subalgebra of t'.

Problem 27. The subalgebras t = a(C) and t, = a,(C) are maximal diagonaliz-
able subalgebras of the reductive algebraic subalgebra {(C) = g(C) and the semi-
simple Lie algebra I'(C) = {(C) respectively.

Problem 28. The lattice L, coincides with QY (f'(C)) < a,, where Q¥ (f'(C)) i
the dual root lattice of I'(C) = £(C) with respect to t,.

By Problem 4.4.11 the centralizer b of t in g(C) is the only maximal diagonaliz-
able subalgebra of g(C) containing t and 6(bh) =

Problem 29. We have L, = P¥ nt, where P is the weight lattice of the dual
root system 4 ¢, of g(C) with respect to b.

For a lattice L, we may find another expression with the help of 8. By Problem
4.4.12 there is a base T of 4, invariant with respect to ‘0. Let t = '07' € Aut [T
and let 7 be the automorphism of g(C) defined by (4.4.1). By Problems 4.4.17 and
4.4.29, t is a maximal diagonalizable subalgebra of the semisimple Lie algebra
g(C)-.

Problem 30. The lattice L, coincides with }’_V(g(C)f), the weight lattice of the
dual root system 4 ¢,: of the Lie algebra g(C)* with respect to t.

Problems 25, 26, 2830 imply the following statements:
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Theorem 6. Let a be a maximal commutative subalgebra of t. The lattice L <
ia is characteristic for a connected Lie group with the tangent algebra g if and
only if )

0"(s(C)") = L = P¥(8(C)),

where © = n(0) and n: Aut g(C) — Aut IT is the homomorphism defined in 4.4.1°.

Theorem 7. For any connected Lie group G with the tangent algebra g we have
&71(Z(G)) = PY(g(C)), implying

Z(G) ~ P (g(C))/L(G).
We have also

7,(G) = L(G)/Q" ((8(0))°)-
In particular, for a simply connected group G we have

Z(G) = P*(g(C))/Q" ((8(C)))

and

m,(G) = L(G)/Q" ((3(C))).

6°. Linearizer. Let G be a Lie group. Denote by 4(G) the intersection of the
kernels of all linear representations of G. As follows from Theorem 1.4.2 A(G) is
a normal Lie subgroup of G. Call it the linearizer of G and set G;;, = G/A(G).

Problem 31. Let R: G - GL(V) be a linear representation. Then there exists a
unique linear representation R,: G;, = GL(V) such that R = Ryn, where n:
G — Gy, is the natural homomorphism.

Our aim is to prove the following theorem which justifies the term “linearizer”
in case when G is connected and semisimple.

Theorem 8. Let G be a connected semisimple Lie group. The linearizer A(G) is
discrete, belongs to Z(G) and Gy;, admits a faithful linear representation.

Proof. It suffices to prove the existence of a locally faithful linear representation
R, of G such that A4(G) = Ker R,,. Let n: G — G be a simply connected covering,
I'=Kerm, and let H be a simply connected complex Lie group with tangent
algebra g(C). By Theorem 1.2.6 there exists a homomorphism j: G — H such that
dj is the identity embedding g — g(C). Then j(G) is a real form of H with the
tangent algebra g. Problem 1.3 implies that j(I") = Z(H). Clearly, there exists a
homomorphism @: G — H/j(I") such that the diagram

G—j—-»H

|

G —> H[(I)
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where 7 is the natural homomorphism, commutes. By Theorem 4.3.6 H/j(I")
admits a faithful linear representation. Therefore there exists a representa-
tion R, of G such that Ker R, = Ker @. Let us prove that this representation
is the desired one, i.e. the kernel of any linear representation of G contains
Ker @.

Let R: G - GL(W) be an arbitrary linear representation of G. The tangent
representation dR: g — gl(W) extends to a complex representation (dR)(C):
g(C) = gl(W(C)). By Theorem 1.2.6 there exists a representation R:H-
GL(W(C)) such that dR = (dR)(C). Since Gis connected, Theorem 1.2.4 implies
that Rw = Rj. Hence, R(j(I")) = {e} so that R = R#, where R is a representation
of H/j(I'). Therefore R = R#tj = Rdn and R = R&. It follows that Ker ® =
KerR. O

Notice that the proof of Theorem 7 gives a method of finding linearizer A(G):
it coincides with Ker @ from (13). Therefore, G;;, >~ @(G).

Example. Let G = SL,(R) (see Example 5 of 1.1°). Then H = SL,(C)
and A(G) = Kerj. Clearly, j is the covering G — SL,(R) < SL,(C). Since
Z(SL,(R)) ~ Z, and Z(G) ~ Z (see Remark 4 of 2°), we have 4(G) = 2Z(G) ~ Z.
Furthermore, G;;, ~ SL,(R).

Now, we will express the linearizer 4(G) in terms of the characteristic lattice
of G. Suppose, as in 5°, that we are given a Cartan decomposition g = { @ p. Let
a be a maximal commutative subalgebra of f, t = a(C) < ¥(C), h a maximal
diagonalizable subalgebra of g(C) containing t.

Theorem 9. For any connected Lie group G with tangent algebra g we have
&7HA(G)) = L(G) +(Q" nY)
where QY is the dual root latice of the Lie algebra g(C) with respect to ). Therefore

A(G) = (@" nH/(Q” n L(G)).
In particular, for a simply connected group G = G we have

EMNAG) = Q" nt, A(G) = (G nt)/Q"((CY).

Problem 32. Prove this theorem.

Exercises

In exercises 1-4 some Cartan decomposition g = @ p of a real semisimple
Lie algebra g is fixed.
1) If g is simple then the adjoint linear representation of f in p is irreducible
and t is a maximal subalgebra of g.
2) If g contains no non-zero compact ideals, then [p,p] = f and the adjoint
representation of  in p is faithful.
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3) In p, no one-dimensional ad f-invariant subspaces exist. In particular,
dimp > 2 if g is non-compact.
4) T coincides with its normalizer in g.

In exercises 5-7 a Cartan decomposition G = KP of a semisimple Lie group

G is fixed.

5) The formula T(x) = gxO(g)~! (g, x € G) defines a G-action on G. The orbit
of e under this action is P and the stabilizer of e is K. Therefore P is a
homogeneous space of G isomorphic to G/K.

6) P is the connected component of unit in each of the sets {g € G: @(g) = g7'},
{ge G:Adg e P(9)}.

7) If g€ G, ae K are such that gag™ € K then in the decomposition g = kp,
where k € K, p € P, the factor p satisfies pa = ap.

8) The polar decomposition G = K P of a real semisimple algebraic linear group
(see Exercise 2.2) is a Cartan one, If H is an open subgroup of G then its
Cartan decomposition is of the form H = (K N H)(P N H).

9) The maximal compact subgroups of an irreducible reductive algebraic real
linear group G are conjugate with respect to automorphisms of the form
a(g), where g € G°.

10) Let G be a semisimple Lie group, H its semisimple Lie subgroup with a finite
number of connected components. Then there exists a Cartan decompsotion
G = KP such that H = (H n K)(H n P). This decomposition of H is a
Cartan one.

11) Let G be a connected Lie group, H its connected normal subgroup and
dim G/H = 1. Then there exists a Lie subgroup C = Gsuchthat G = H x C.
(Hint: reduce the general case to the cases of a solvable and of a semisimple
group H. In the solvable case see Exercise 1.4.15. In the semisimple case
make use of the fact that Z(H) is contained in a pseudotorus (see Problem
25).)

Hints to Problems

3. To prove the converse statement make use of Problem 1.3.17.
8. Make use of Problem 4.
9. If k e N(K°) then the automorphism Ad k preserves the decomposition (1)
and therefore commutes with 6. Next, make use of Problem 7.
10. The decomposition G° = (G® n K)P implies that G° n K is connected and
therefore coincides with K°.
11. Notice that the group Ad K° = Ad(G° n K) = (Int g) n O(g) is compact and
make use of Corollaries 4 and 5 of Theorem 2.
12. First prove that Ad K = (Ad G) n O(g) is a maximal compact subgroup of
Ad G, making use of Corollary 3 of Theorem 2.1 and Problem 7.
13. Theorems 3 and 2.7 imply that for any compact subgroup M < G there exists
g € G°such that gMg™! < L. If L = L, where L, is a compact subgroup of
G, then applying this statement to L, we get gL,g~! = L for some g € G°.
Therefore gLg™ < gL,g~" = L implying gyLg™' = L, since L is a compact



14.

17.

18.

19.

20.

23.

25.
26.
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Lie group. Therefore L = L,. If M is a maximal compact subgroup then
obviously gMg™" = L.

Fix a Cartan decomposition g = t @ p of g and consider the corresponding
Cartan decomposition Autg = KP of the group Autg. If a € Autg is an
element such that aMa™ < K then the Cartan decomposition g = a™'(f) @
a”!(p) is M-invariant.

In E, choose an orthonormal basis, such that log X = diag(4,,...,4,) for
4; € R. Then by (11)

Sx.y(t) = Z e'/y; where y;>0.

1<i<n

Therefore fy y is strictly convex. The strict convexity of ¢, follows from the
equality ¢.(t) = maxy.q fy, 4(0) )

By Problem 4.1.8 Ad G < SL(g), whence P = SP(g). Lemma 2.1 implies that
P is closed in P(g). By Problem 7 and Corollary 7 of Theorem 2 the action
(Sp)(Ad) transforms P into itself. Since any Y = expad y, where y € p, pre-
sentsin the form Y = (Ad exp(y))* = Sq(Ad exp(y))(E), then P coincides with
the orbit of E.

Verify that the Cartan scalar product in g(C) is non-degenerate on b(C) if
b is canonically embedded and make use of Theorem 4.1.2.

Apply Lemma 3 to h(C) and the real structure o: z+ = on g(C). The sub-
algebra b is canonically embedded in g with respect to the Cartan decom-
position g = (g N u) @ (g N iu), where u = g(C)".

. Theorem 2.16 implies that if 4 is a maximal connected commutative sub-

group of K then Ad A is a maximal torus in the compact Lie group Ad K,
whence A is a pseudotorus in G. This makes it obvious that a maximal
pseudotorus belonging to K is a maximal connected commutative subgroup
of K. The conjugacy follows from Theorems 3 and 2.16.

Let 4; = expg,(a). If there exists a covering n: G — G, such that dn = id then
we have the commuting diagram

4 A, <G,

ia l n (14)

A, < G,.

Corollary 5 of Theorem 2 and Theorem 2.16 imply that Kerz = A,. There-
fore L(G,) = &;!(Kern) > L(G,). To prove the existence of n provided
L(G,) = L(G,), consider a simply connected group G covering G, and G,
and prove that the kernel of the covering G — G, is contained in the kernel
of the covering G — G,.

Make use of Problem 23.

Let G be a simply connected Lie group with the tangent algebra g. Problem
25 implies that N = &g(L) is a subgroup ofZ(G)and L = &5 *(N). Verify that
L = L(G) for G = G/N.



268 Chapter 5. Real Semisimple Lie Groups

28. If G is simply connected then so is K (Corollary 1 of Theorem 2). Making
use of Theorem 4.3.5 we deduce that L(G) = Q" (£(C)).

29. Use Theorem 4.3.7.

30. Apply Problems 29 and 4.4.30.

32. Let A =expga, A =expga. Consider the commutative diagram which
follows from (13) and (14):

It implies that
expg! (Ker @) = expg' (1 (j(I)))
= expg!(I"Ker )
= exp3!(I') + exp3! (Ker j)
= Kerexpg + Kerexpy

= L(G) + Kerexpy.

Theorem 4.3.5 implies that Kerexpy = 2mi(QY N t).

§4. Real Root Decomposition

In this section we consider the root decomposition of a real semisimple Lie
algebra with respect to a maximal subalgebra expressed in the adjoint represen-
tation by diagonal matrices. The study of the corresponding root system enables
us to assign to a real semisimple Lie algebra the so-called Satake diagram which
can be considered as a generalization of the Dynkin diagram. Satake diagrams
can be used in the classification of real semisimple Lie algebras which we carried
out in on § 1 by another method (cf. [33]). Another application of a real root
decomposition is Iwasawa’s theorem generalizing the classical Gram-Schmidt
orthogonalization method.

1°. Maximal R-Diagonalizable Subalgebras. Let g be a real Lie algebra. A
subalgebra a < g is called R-diagonalizable if there is a basis in g with respect to
which all operators ad x (x € a) are expressed by diagonal matrices. In this case
we have a decomposition
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3=80® @D g, (1)
ied

where 4 is a finite set of non-zero elements of a* and g;(1 € 4 U {0}) denotes the
non-zero subspace {x € g: [a,x] = A(a)x(a € a)}. The set 4 is called the root
system of g with respect to a and the decomposition (1) is called the root
decomposition. As in the complex case, for any 4, u € 4 U {0} we have

S Gy A+ peduf0},
(819.] {= 0  otherwise

In particular, g, is a subalgebra of g (the centralizer of a).

Now suppose that g is semisimple. Clearly, any R-diagonalizable subalgebra
a c g is commutative. If x e a and a(x) =0 for all « € 4 then x € 3(g) and
therefore x = 0. This makes it obvious that 4 generates the space a*.

Problem 1. Any R-diagonalizable subalgebra a of a real semisimple Lie algebra
g is contained in some Cartan subspace p. Conversely, if p is a Cartan subspace
of g then any subalgebra of g contained in p is R-diagonalizable.

Let a be a maximal diagonalizable subalgebra of a semisimple Lie algebra g.
By Problem 1 there exists a Cartan decomposition

g=t@p, ()

such that a = p and a is maximal among the subalgebras of g contained in p.

Problem 2. Any subalgebra a of g contained in p and maximal among such
subalgebras is a maximal R-diagonalizable subalgebra of g. The centralizer g,
of such a subalgebra is of the form

go=m@®a, (3)

where m =g, N L.

Let 2 < a* be the root system associated to a maximal diagonalizable sub-
algebra a. Notice that X~ # ¢J if and only if a # 0. Any « € 2’ determines the
hyperplane P, = Kera in a. The elements of the non-empty open set

areg = a\ U Pa
ael

are called regular.
Problem 3. The centralizer of any regular element of a coincides with g,.

Theorem 1. Let K be the maximal compact subgroup of Int g corresponding to
the subalgebra t of the decomposition (2). Any two maximal subalgebras of p are
transformed into each other by an element of K. Any two maximal R-diagonalizable
subalgebras of g are conjugate.
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The second statement of Theorem 1 reduces to the first one with the help of
Problem 1 and Theorem 3.1. It suffices to prove the first statement.

Problem 4. Deduce the first statement of Theorem 1 from the following
lemma.

Lemma 1. Under the assumptions of Theorem 1, for any x, y € p there exists
k € K such that [k(x),y] = 0.

Proof. On K, consider the smooth function ¢(k) = (x, k(y)). Since K is compact,
¢ possesses a minimum point, k,. Then for any z € t the function

¢(t) = p(koexp(tad3))
assumes its minimum at t = 0. Therefore
0 = ¢'(0) = (x,ko([z,¥])) = (ko' (x), [2,¥])
= —([kg'(x),y],2),

implying [kq(x),y] = 0.

The dimension of a maximal R-diagonalizable subalgebra a of a real semi-
simple Lie algebra g (independent by Theorem 1 of the choice of a) is called the
real rank of g and is denoted by rkgg.

Problem 5. rkz g = 0 if and only if g is compact.

Problem 6. If a real semisimple Lie algebra g splits into the direct sum of ideals
g =g, @ g, then the maximal R-diagonalizable subalgebras a of g are of the
form a = a; @ a,, where q; (i = 1,2) is an arbitrary maximal R-diagonalizable
subalgebra of g;. In particular,

rkRg = rkR q; + rkRgz.

Under the natural identification of a* with a¥ @ a¥ the root system 2 of g with
respect to a is identified with 2, U X, where X; < a¥ is the root system of g; with
respect to a;(i = 1,2).

2°, Real Root Systems. Let g be a real semisimple Lie algebra with a fixed
decomposition (2), a = g a maximal R-diagonalizable subalgebra of g, 2" the
corresponding root system. Problem 5 implies that 2 # (J if and only if g is
non-compact. By Problem 3.3 a is a Euclidean space with respect to the Cartan
scalar product in g. Let us naturally transport the scalar product from a to a*.
Our next aim is to prove the following theorem.

Theorem 2. The root system £ < a* of a semisimple Lie algebra g with respect
to a maximal R-diagonalizable subalgebra a is a root system in the sense of 4.2°
(not necessarily reduced).
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Proof is close to the proof of the similar fact for complex Lie algebras (see
4.1.6°). For any a € 2" denote by h, the element of a uniquely determined by the
following property:

y(hy) =<ylay  foramy yea*

Problem 7. Let 6 be an automorphism of g transforming a into itself. Then
tB(Z) = Z, 6(91) = gtg—l(a)(a € 2 ) {O}), e(ha) = h:o—l(a) (a € Z)

Apply Problem 7 to the involutive automorphism 6 of g defined by the
formula

Ox+y)=x—y (xelyep)

Since 0]a = —id, we see that —2' = X' and 0(g,) = g_, (x € Z U {0}).

Problem 8. For any x € g,, where o € 2, we have
[x,0(x)] = (&, )/2 (x, 6(x))h,
and (x,0(x)) < 0if x # 0.

Fix « € 2 and a non-zero x € g,. Problem 8 easily implies the existence of a
ce R, c #0,such that x, = cx € g, and y, = —cO(x) € g_, satisfy [x,,y,] = h,.

As follows from Problem 2, the maximal commutative subalgebras b of g
containing a are of the form b = h* @ a, where h* is any maximal commutative
subalgebra of m. Now pass to the complexification g(C) of g and consider its
commutative subalgebra

t =H(C) =H"(C) @ a(C).
Let us extend 8 to g(C) by linearity. Denote by ¢ the complex conjugation in
g(C) with respect to g.

Problem 9. The subalgebra t is maximal diagonalizable in g(C) and invariant
with respect to o and 6. The subalgebras t~ = a(C) and t* = §*(C) are algebraic
and diagonalizable in g(C) and t* is a maximal diagonalizable subalgebra of the
reductive algebraic subalgebra m(C). We have

tR) = (H") D a. 4)

Under the natural identification a* = t7(R)* the root system X is identified with
the root system 4(t7) of g(C) with respect to t™.

Consider the homomorphism ¢,: sl,(C) — g(C) defined by the formulas

(pa(e) = Xg» (pa(f) = Vo> (pa(h) = ha'

Problem 10. ¢, is an injective Lie algebra homomorphism over C such that
0,(31(R)) = g, @,(s0,) = L.
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Denote by F, a Lie group homomorphism SL,(C)— Int(g(C)) such that
dop, = (ad)g,. Problem 10 implies that F,(SL,(R)) = Intg (Intg is naturally
embedded into Int g(C), see Example 4 of 1.1°). If K is the maximal compact
subgroup of Intg corresponding to f then F,(SO,) = K. In particular, h, =

MR

Problem 11. The automorphism n, transforms a into itself and induces in a the
orthogonal reflection r, with respect to P,.

Proof of Theorem 2. Let a € X. Denote also by r, the orthogonal reflection in
a* with respect to the hyperplane L, = {y € a*: (a,y) = 0} (this reflection coin-
cides with 'r,). Problems 11 and 7 imply that r,(Z') = Z'(cf. Theorem 4.1). Further,
h, € t™(Z) implying {Bla) = B(h,) € Z for all § € X (cf. Problem 4.1.34).

Now consider the relation between 4 = 4(t7) and the root system 4(t) = 4 of
the Lie algebra g(C) with respect to t. Clearly, the restriction map p: t(R)* —
t7(R)* = a* transforms 4 into X U {0}. Set

do={xed:p(a)=0}, d,=d4\4,.
Problem 12. The map p: 4,4, U {0} - 2 U {0} is surjective. We have

mC) =t® @ 9(0s (0= D 9(C), (Ae).

aedy p(a)=4

In particular, 4, is the root system of the semisimple Lie algebra m(C) with
respect to t n m(C).
Since 6(t) = t, Problem 4.1.10 implies that '6(4) = 4.

Problem 13. Ker p = {; € t*: '0(y) = y}. In particular, 4, = {a € 4: '0(x) = a}.
Set

‘o(7)(x) =y(a(x))  (yet*,xet)

Then ‘o(y) € t*. Therefore an antilinear transformation ‘c: t* — t* is defined.

Problem 14. The transformations ¢ and ‘o send t(R) and t(R)* into themselves
and coincide on these subspaces with —6 and —(‘0) respectively. We have
a(3(C),) = 8(Cryay = 8(C)eg(ay for all a € 4.

3°. Satake Diagram. We retain the notation of 2°. In t(R), choose a basis v,
..., v;such thatv,, ..., v, is a basis of a and consider the lexicographic orderings
with respect to these bases in t(R)* and a* (see 4.2.2°). Then p(4) > 0 implies
4> 0for 4 € t(R)*. Denote by 4%, 2" (resp. 47, 2~ ) the sets of positive (negative)
roots with respect to these orderings. Set 47 = 4, 4% (i =0, 1).

Problem 15. p(4%) = 3%, '0(AF) = AF, '0(4F) = 4F. Let I < 4* and O c
Z* bebases.Set [T, = 4, ~ IT(i = 0, 1).
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Problem 16. 71, is a base of 4, and p(/1,) o 6.
Actually, as we will show, p(11,) = 6.
Let us prove the following important statement.

Lemma 2. There exists an involutive transformation w: I1; — II, such that for
any a € I, we have

te(a) = —CO(CX) - Z Cayya

vello
where c,, are non-negative integers.

Problem 17. Let C be a square matrix with non-negative integer entries such
that C? = E. Then C is the matrix corresponding to an involutive permutation
of elements of the basis.

Problem 18. Prove Lemma 2.

Problem 19. For «, § € I, we have p(a) = p(f)ifand only ifax = fora = w(p).
The system p(/1,) is linearly independent and therefore coincides with @.

Lemma 2 enables us to assign to any real semisimple Lie algebra g the Satake
diagram obtained from the Dynkin diagram of the complex Lie algebra g(C) as
follows: the vertices corresponding to the roots from 77, are blackened and the
pairs of different roots from 77, transformed into each other by an involution @
are joined by arrows.

Problem 20. rk g(C) = rkgg + |I1,| + s, where s is the number of arrows on
the Satake diagram.

Problem 21. Let g,, g, be real semisimple Lie algebras. Then the Satake
diagram of g, @ g, 1s the disjoint union of the Satake diagrams of g, and g,.

Problem 22. A real semisimple Lie algebra is simple if and only if its Satake
diagram is connected.

Example 1. The Satake diagram of a semisimple compact Lie algebra g is
obtained from the Dynkin diagram of g(C) by blackening all vertices. Any
semisimple Lie algebra over R, all verices of whose Satake diagram are black, is
compact.

Example 2. Let g be a semisimple complex Lie algebra. Then the Satake
diagram of g® is obtained from the Dynkin diagram of g by doubling and joining
the corresponding vertices of the two diagrams by arrows. For instance, the
Satake diagram of sl,,,(C)® contains 2! vertices and is of the form

B
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In fact, consider a compact real form u = g. If h* is a maximal commutative
subalgebra of u then b = h*(C) is a maximal diagonalizable subalgebra of g and
a = Ih* is a maximal R-diagonalizable subalgebra of g®. Furthermore, a®(C) is
identified with g @ g and the maximal diagonalizable subalgebra t = §(C) of this
algebra with h @ b. Moreover, o(x, y) = (¥, X) (X, y € g), where z+—Z (z € g) is the
complex conjugation with respect to u (see Problem 1.8). The root system 4 of
g®(C) with respect to t is of the form 4 = 4, L ‘6(d,), where 4, is the root system
of g with respect to b. Similarly, IT = I1, L ‘o(I1,), where II; = 4g, IT < 4 are
bases, and w = ‘0.

As is clear from Problem 22, Examples 1 and 2, to list the Satake diagrams of
semisimple Lie algebras g over R we may confine ourselves to the case when g
is a non-compact real form of a simple Lie algebra g(C). The Satake diagrams
of all such Lie algebras g are listed in Table 9, which also contains the Dynkin
diagrams of the corresponding root systems Z, the types of these systems and
dimensions of root subspaces m; = dimg; (1€ Z). This Table quite easily
implies

Theorem 3. Two semisimple Lie algebras over R are isomorphic if and only if
so are (in the natural sense) their Satake diagrams.

4°. Split Semisimple Lie Algebras. A real semisimple Lie algebra is called split
if any of its maximal R-diagonalizable subalgebras is a maximal commutative
subalgebra.

Problem 23. The following conditions are equivalent: g is split; a(C) is a
maximal diagonalizable subalgebra of g(C) for any maximal R-diagonalizable
subalgebra a of g; rkgg = rk g(C); the Satake diagram of g has neither black
vertices nor arrows.

If g is split then under the notation of 2° we have m = a, 4 = X, g(C), = g,(C)
for all o« € 4. Therefore, dimg, = 1 for all « € 4.

Problem 24. Any ideal of a split semisimple Lie algebra is split. The direct sum
of two split Lie algebras is split.

Theorem 4. Any semisimple Lie algebra g over C has a unique up to an iso-
morphism split real form s which is simple if and only if so is g.

Problem 25. Let g be a semisimple complex Lie algebra. The normal real form
of g associated with an arbitrary canonical system of generators (see Problem
1.6) is split. Conversely, any split real form of g is normal with respect to a
canonical system of generators.

The first statement of Theorem 4 follows from Problem 25 and Theorem 4.3.1.
If s is simple then by Theorem 1.1 so is g since a complex Lie algebra considered
as a real one is not split (see Example 2 of 3°).

Example. Simple split Lie algebras over R are sl,(R) (n = 2), 50, 4 (k = 1),
so, i (k = 3), sp,(R)(n = 2), EI, EV, EVIIL, F1, G. This is clear: look at the values
of the real rank listed in Table 9.
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5°. Iwasawa Decomposition. Let again g = I @ p be a Cartan decomposition
of a real semisimple Lie algebra, a = g a maximal R-diagonalizable subalgebra,
2 the root system with respect to a. In 4, choose a system of simple roots @ and
denote by 2+ < X' the corresponding subsystem of positive roots. Set

n= @ gl‘

AelXt

Problem 26. The subspace n is a unipotent algebraic subalgebra of g. We have
[a,n] = nso that D = a @ n s a solvable algebraic subalgebra of g.

Theorem 5. The following decompositions into direct sums of subalgebras take
place:g=t@a@n=IPDd.

Problem 27. Prove this theorem.

We want to construct decompositions of a connected semisimple Lie group
into products of its Lie subgroups corresponding to the decompositions of
Theorem 5. Let G be a connected semisimple Lie group with the tangent algebra
g. As is shown in §3, there exists a connected Lie subgroup K < G with the
tangent algebra . If G has a finite center then K is a maximal compact subgroup
of G.

Problem 28. In G, there exist simply connected Lie subgroups 4, N, D with
the tangent algebras a, n, d respectively and D = 4 x N.

Problem 29. In g, there exists a basis by means of which all elements ad x (x € D)
and Ad ¢g(g € D) are expressed by upper triangular matrices (for Ad g, g € D, with
positive diagonal entries) and D N K = {e}.

Problem 30. Prove the following theorem:

Theorem 6. Let G be a connected semisimple Lie group and K, A, N, D its
connected Lie subgroups defined above. Then the maps

KxAxN-QG, (k,a,n)r kan
and
K x D -G, (k,d)— kd

are diffeomorphisms. In particular, G = KAN = KD.

The decompositions of g and G described in Theorems 5 and 6 are called the
Iwasawa decompositions.

Now we will characterize the subalgebra d = g and the subgroup D = G
without incorporating the root decomposition.

Let g be a real Lie algebra. A subalgebra ¢ < g is called triangular if in a basis
of g all operators ad x (x € ¢) are expressed by upper triangular matrices. Let G
be a Lie group with the tangent algebra g. A subgroup C = G is called triangular
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if there is a basis in g with respect to which all operators Ad g (g € C) are expressed
by upper triangular matrices.

Problem 31. A connected virtual Lie subgroup of G is triangular if and only if
its tangent subalgebra of g is triangular. A maximal connected triangular sub-
group is a Lie subgroup of G; its tangent algebra is a maximal triangular
subalgebra of g. Any maximal triangular subalgebra of g is tangent to a maximal
connected triangular subgroup of G.

Problem 32. Let G be a connected semisimple Lie group, g its tangent algebra.
The subgroup D = G and the subalgebra d < g defined in problems 26 and 28
are a maximal connected triangular subgroup and a maximal triangular sub-
algebra, respectively.

Example. Let G = SL,(R), g = sl,(R). Under an appropriate choice of a base
in 2 = 4 () the subalgebra d defined in Problem 26 is the subalgebra of all
upper triangular traceless matrices, D is the subgroup of all upper triangular
matrices with determinant 1 and positive diagonal entries. The group K coincides
with SO,. Theorem 6 easily follows in this case from the classical theorem on
the reducing of a positive definite quadratic form to the normal form with the
help of a triangular change of basis.

Concluding this section we prove the following theorem which is a real
analogue of Theorem 3.2.12 on conjugacy of Borel subgroups.

Theorem 7. The maximal connected triangular subgroups (maximal triangular
subalgebras) of a connected semisimple real Lie group (semisimple Lie algebra over
R) are conjugate. :

Proof is based on the following fixed point lemma.

Lemma 3. Let V be a finite-dimensional vector space, X its linear transformation
whose characteristic roots are all real. For any point p € P(V) there exists the limit

po = lim (exptX)(p) € P(V).

t—=x
The point p,, is stable with respect to the group {exptX:t € R}.

Proof. Express X by a triangular matrix in a basis of V. The diagonal entries
of this matrix are the eigenvalues 4, ..., 4, of X (multiplicities counted). The
entries of the matrix exp tX are functions in ¢t of the form

Y Qe

1<isr

where Q; are polynomials. The coordinates of the vector (exp tX)v, where ve V
is a non-zero vector such that {v) = p, are of the same form. Let 4 be the maximal
of the numbers 4; among the coordinates of this vector and M the highest of the
degrees of the corresponding polynomials Q;. Then (exp tX)v = tMe (v, + £(t)),
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where v, # 0 and &(t) > 0 as t — co. Clearly, (v, > = lim,_,(exptX)(p) and p, =
(v is fixed under exp tX(t € R). (]

Using Lemma 3 we will prove that the connected triangular linear group in
V over R has a fixed point in any invariant closed subset of the flag variety F(V).
For this we need the embedding j of F(V) into the projective space constructed
in 2.2.7°. Recall that this embedding is of the form

F(V) - Gr (V) x =+ x Gr,(V) = P(V) x P(42V) x -+ x P(A"V)
SPVRAV® @ AV),

where the last arrow is described in 2.2.6° (here n = dim V).

Problem 33. The embedding j: F(V) - P(W), where W =V @ AV ® -
A"V, constructed in 2.2.7° has the following property: j(gf) = R(g9)j(f) (g €
GL(V), f € F(V)), where R: GL(V) - GL(W) is the natural representation.

Problem 34. Let F be the flag variety of a finite-dimensional vector space V
over R and C = GL(V) a connected virtual Lie subgroup with a fixed point in
F. Then any non-empty closed C-invariant subset Q < F contains a point fixed
under C.

Problem 35. Prove Theorem 7.

Exercises

Let G be an irreducible semisimple real algebraic group, g its tangent algebra.
An algebraic torus T < G(C) is called split if in a basis of g(C) contained in g all
elements of the torus Ad T are expressed by diagonal matrices.

1) An algebraic torus T <= G(C) is split if and only if t = a(C), where a is an
R-diagonalizable subalgebra of g.

2) The maximal split tori in G(C) are conjugate with respect to the inner
automorphisms generated by the elements of G°.

3) gis split if and only if G(C) has a split maximal torus.

Let a be a subalgebra of the real Lie algebra g and p:g— gl(V) a real
linear representation. The subalgebra a is called p-diagonalizable (or p-triangular)
if all p(x) (x € g) are expressed by diagonal (triangular) matrices in a basis
of V.

4) Let g be a semisimple real Lie algebra. Any R-diagonalizable (i.e. ad-diagon-
alizable) subalgebra of g is p-diagonalizable for any linear representation p.
Conversely, if a < g is a p-diagonalizable subalgebra for some faithful repre-
sentation p then a is R-diagonalizable.

5) Any triangular subalgebra of a semisimple real Lie algebra g is p-triangular
for any linear representation of g. Conversely, if the subalgebra ¢ = g is
p-triangular for some faithful representation p of g then ¢ is triangular.

6) Under the notation of 2° denote by W = GL(a) the Weyl group of the root
system X (see 4.2.4°). Set



278 Chapter 5. Real Semisimple Lie Groups

Ni(a) = {k € K: k(a) = a},

Zg(a)={ke K:k(x)=x forany xea}.

Then Ni(a) and Z(a) are Lie subgroups of K with the tangent algebras
isomorphic to m. The correspondence k+— k|a is the surjective homomor-
phism of Ng(a) onto W with the kernel Zg(a), whence

W = Ni(a)/Zg(a).

7) Let, under the same notation, dimg; = 1 for all A€ 2 and let g have no
compact ideals. Then g is split.

8) In a complex semisimple Lie algebra g with a maximal diagonalizable
subalgebra ) there exists a unique up to a conjugacy in Autg involutive
automorphism # such that §(x) = —x for all x e h. The corresponding
automorphism 7(#) € Aut IT coincides with the automorphism 6 of Exercise
4.3.6. The correspondence established in Theorem 1.4 assignes to 0 the class
of the normal real form of g.

9) For the classical Lie algebras g the automorphism 0 of Exercise 8 is conjugate
to the following automorphism (under notation of 1.2°):

0: X - —XT for g=5s,(C),n>=2
9 =Ad In,n+1 for g= 502"+1(C), nz la
0=AdI,, for g=190,,(C),n=2

0 =AdS, for g=9p,(C),n>=2.

A subalgebra p of a real semisimple Lie algebra g is called parabolic if p(C) is

a parabolic subalgebra of g(C) (see Exercises to 4.2°). Let, under the notation of

3°, M be a subset of a base @ = XZ*. Denote by Z™ the subset of 2 consisting

of all positive roots and those negative roots which can be linearly expressed in

terms of M.

10) For any M < @ the system ™ is closed.

11) The subalgebra p™ = g, ® Py xwn 8, of g is parabolic.

12) Any parabolic subalgebra of g is conjugate to exactly one of the p

13) Prove Theorem 2.15 by the method used in the proof of Theorem 1 of this
section.

14) Let p: g — gl(V) be a finite-dimensional irreducible linear representation of
a split real semisimple Lie algebra g over R. Then the complex representation
p(C): g(C) = gl(V(C)) is irreducible and p+ p(C) is a one-to-one corre-
spondence between the classes of equivalent real irreducible representations
of g and the classes of complex irreducible representations of g(C). Similar
statement holds for arbitrary finite-dimensional representations.

(M)
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Hints to Problems

. Clearly, the algebraic closure a* < g is also an R-diagonalizable subalgebra.

Therefore we may assume that a is an algebraic subalgebra. Obviously, a(C)
is a diagonalizable subalgebra of g(C), whence a is a reductive algebraic
subalgebra. The inclusion a = p follows now from Theorem 3.4. Conversely,
any subalgebra a c g is commutative and ad x is diagonalizable for any
x € a (see Problems 3.1 and 3.4) implying that a is an R-diagonalizable
subalgebra.

First prove that g, is of the form (3).

Apply Lemma 1 to the regular elements of two maximal subalgebras of p
and use Problems 3 and 2.

The subalgebra t is a maximal commutative subalgebra of g(C) and consists
of semisimple elements. Therefore t is a maximal diagonalizable subalgebra.
Let T be the corresponding maximal torus of H = Intg(C), © the auto-
morphism of H defined by the formula ©&(g) = 0g0~* (g € H). Then®(T) = T.
The subalgebras t~ and t* are tangent to the algebraic subgroups T~ =
{geT:0(9)"' =g} and T* = {g e T: O(g) = g} respectively. Formula (4)
follows from the fact that h* @ (ia) belongs to the compact real form t @ (ip)
of g(C) and therefore the differential dy of any character y € Z(T) has only
purely imaginary values of h* @ (ia).

Is similar to Problem 4.1.37.

Problem 15 implies that for any « € 17, we have

IO(a)___ - Z Cuﬂﬂ_ Z Cay?s

Bell, vello

where c,g, ¢,, are non-negative integers. Verify that (c,4)Z 5. 7, = E and apply
Problem 17 to the matrix C = (c,p).

Make use of Lemma 2 and Problem 13.

Let the Satake diagram of g be not connected and 4 = 4" U 4” the corre-
sponding decomposition of the root system of g(C) into the union of non-
empty disjoint subsystems. Then 4’ n I1, and 4” n 1, are w-invariant. With
the help of Problem 14 we deduce from here that ‘a(4’) = 4', 'a(4") = 4".
Therefore, the ideals i, h” of g(C) corresponding to 4’ and 4” (see Problem
4.1.32) are o-invariant implying g = h’ @ h"°.

Let s be a split real form of g, a a maximal R-diagonalizable subalgebra of
s. By Problem 23 t = a(C) is a maximal diagonalizable subalgebra of g and
a = t(R) by Problem 9. Let I7 be a system of simple roots of the root system
2 = 4,. Then the elements h,, x,, y,(a € IT) of s constructed in 2° form a
canonical system of generators of g. Clearly, s coincides with the subalgebra
generated by these elements over R.

Make use of (1), (3) and the inclusion g_; = f + g;.

First, let G = Intg = (Aut g)°. The unipotent subalgebra n c g determines a
connected unipotent algebraic subgroup N < G and exp: n — N is a diffeo-
morphism. The algebraic subalgebra a determines the commutative algebraic
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subgroup 4 = Autgand 4 = 4° = expa < G. Since ais an R-diagonalizable
subalgebra, 4 ~ R, where | = kg g. In an arbitrary connected semisimple
Lie group G with tangent algebra g, consider the Lie subgroups A=
(Ad™'4)° and N = (Ad™*N)°. The simple connectedness of A and N implies
that 4 and N are simply connected and 4 Z(G) = N 1 Z(G) = {e}. If
ge An N then Adg e An N implying g € Z(G) and g = e. Clearly, 4 nor-
malizes N so that AN = 4 x N is a Lie subgroup of G.
Consider the ascending filtration of g by the subspaces g(4) =Y ,>18,
(A€ 2 U {0}), where > is the partial ordering determined by ®. Comple-
menting this filtration by the subspaces of missing dimensions we get a flag
in g invariant with respect to all ad x (x e ) and Adg (9e D). Ifge DnK
then Ad g is a diagonalizable operator with all eigenvalues equal to 1 so that
Adg = E and g € Z(G). Since the group Ad G = (Ad A) x (Ad N) is simply
connected, Z(G)nD = {e} and g = e.
Let u: K x D — G be the map defined by the formula pu(k,d) = k. Since
K N D = {e}, then p is injective. Theorem 5 implies that the map d . u:
f x D — g sending (x, y) into x + y is injective. Therefore so is d, , u for any
ae K, beD. In fact, u(l(a)u, r(b~")o) = l(a)r(b *)u(u,v) (u € K,v € D), implying
(A, py)(d.l(a) x d,r(b~1)) = (d l(a))(d.r(b"))d . Therefore p is a diffeo-
morphism of K x D on an open set KD < G. In particular, (Ad K)(Ad D) is
open in Intg = Ad G. Since Ad K is compact, the set (Ad K)(Ad D) is closed
in Int g, implying Int g = (Ad K)(Ad D) = Ad(KD). Taking into account that

Z(D) c K (by Corollary 2 of Theorem 3.2) we deduce that G = KD.
Let F be the flag variety of the vector space g. Consider the G-action on F
defined by the adjoint representation Ad. A subgroup C < G (a subalgebra
¢ < g) is triangular if and only if C < G; (resp. ¢ < g;) for some f € F. By
Theorem 1.1.1 G, is a Lie subgroup of G with the tangent algebra g,. This
implies the first statement.

Any maximal connected triangular subgroup coincides with G for some
f € F, hence is a Lie subgroup; similarly, any maximal triangular subalgebra
coincides with g, for some f € F. This easily implies the other statements of
the problem.
If ¢ is a triangular subalgebra containing d then by Theorem 5¢ = (¢ f) + .
If x € ¢~ T then ad x is a semisimple (in g(C)) operator with zero eigenvalues
implying adx = 0 and x = 0. Thus ¢ = D.
Let us carry out the induction in dim C. The existence of a C-invariant flag
implies that C is solvable. Therefore C = C, C,, where C,, C, are connected
virtual Lie subgroups of GL(V), Cy is normal in C and dim C; = 1,dim C, =
dim C — 1 (Problem 1.4.7). By the inductive hypothesis we may assume that
the closed set Q, = {fe Q: gf = f for all ge C,} is non-empty. The sub-
group C, transforms €, into itself. It is clear from Problem 33 that under
the embedding j: F(V) — P(W) the group C, = {exptX:t e R} where X €
gl(V), is identified with the group of projective transformations {exptY:
t € R}, where Y = (dR)X. By hypothesis all characteristic roots of X are real.
Since R is equivalent to a subrepresentation of a power (Id)° of the identity
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representation, so is Y. Lemma 3 implies that there exists a flag f, € &,
invariant with respect to C; and therefore with respect to C.

Consider the G-action on F(g) defined by the adjoint representation. Let D
be the maximal triangular subgroup of G described in Problem 38 and let
fo € F(g) be a D-invariant flag. It follows from Theorem 6 that the orbit
Q2 = Gf, < F(g) is compact. Now let C be any maximal triangular subgroup
of G. Applying Problem 34 to the linear group Ad C we get the flag f; € 2
invariant with respect to C. If f; = gf,, where g € G, then C = gDg™'.



Chapter 6
Levi Decomposition

In this chapter, which owing to its brevity is not divided into sections, we prove
Levi’s theorem on the decomposition of an arbitrary Lie algebra into a semidirect
sum of a solvable ideal (radical) and a semisimple subalgebra and the theorem
on the uniqueness of this decomposition due to A.I. Malcev. Levi’s theorem
implies the result which concludes the classical Lie group theory—the existence
of a Lie group with an arbitrary given tangent algebra. Next we will consider an
analogue of Levi decomposition for algebraic groups.

1°. Levi’s Theorem. Let g be a finite-dimensional Lie algebra over K = C or
R. A subalgebral  gis called a Levi subalgebra if g splits into the semidirect sum

g=radg®L (1)
Decomposition (1) is called the Levi decomposition of g.

Problem 1. The natural homomorphism n: g — g/rad g isomorphically maps
any Levi subalgebra [ < g onto the semisimple Lie algebra s = g/rad g. Any Levi
subalgebra is a maximal semisimple subalgebra of g.

Problem 2. An automorphism of a Lie algebra transforms any of its Levi
subalgebras into a Levi subalgebra.

In this section we will prove the following.

Theorem 1 (Levi). Any finite-dimensional Lie algebra g over K =C or R
contains a Levi subalgebra.

First, prove Theorem 1 when g has a commutative radical and the center of g
is trivial.
Problem 3. The kernel of any derivation of a Lie algebra is a subalgebra.

It follows from Problem 3 that it suffices to construct a derivation 6 € Derg
which is the projection of g onto rabd g, i.e. such that §(g) = radg and d(x) = x
(x e radg).

Problem 4. Suppose there exists a projection h of g onto rabd g belonging to the
normalizer of the subalgebra ad g = gl(g). If 3(g) = O then g contains a Levi
subalgebra.

Now let us construct a projection h: g — rad g satisfying the conditions of
Problem 4. Let P = {v € gl(g): v(g) = rad g and v|rad g is a scalar operator} and
Q = {ve P:v|radbg = 0}. Set R = ad(rad g) = {ad x: x € rad g}.
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Problem S. The sets P, Q, R are subspaces of gl(g) such that R < Q < P and
dimP —dimQ = 1.

Consider the linear representation p of g in the space gl(g) defined by the
formula

p(x) = ad(ad x) (x € g).

Problem 6. The subspaces P, Q, R are p(g)-invariant and p(x)P < Q for all
x € rad g. If rad g is commutative then p(x)P < R for all x € radg.

Now suppose radg is commutative and 3(g) = 0. Problem 6 implies that p
induces a representation p of s = g/rad g in P/R such that p(¢)(P/R) = Q/R for
all {es. By Problem 5 dim P/R — dim Q/R = 1. Since s is semisimple, p is
completely reducible (Corollary 3 of Theorem 5.2.13). Therefore there exists
vo € P\Q, such that p(£)(vy + R) = 0 for all £ € 5. This means that [ad x,v,] €
R < ad gforall x € g, i.. vy normalizes ad g. Furthermore, vy|radg = AE, where
4 # 0, and the operator h = v,/A satisfies the conditions of Problem 4. Therefore
Theorem 1 is proved under the above assumptions.

Notice that Problem 5.2.30 implies that Theorem 1 holds in another particular
case: when rad g = 3(g).

To prove Levi’s theorem in the general case we will need two properties of the
radical of a Lie algebra.

Problem 7. An ideal ) < g contains rad g if and only if g/b is semisimple.

Problem 8. Let r be a solvable ideal of g. Then rad(g/r) = (rad g)/r. The image
of any Levi subalgebra of g under the natural homomorphism g — g/r is a Levi
subalgebra of g/r.

Now we prove Theorem 1 by induction in dim(rad g). Suppose it holds for Lie
algebras with radicals of dimensions < dim(rad g). Consider, separately, the cases
of non-commutative and commutative radical.

Let(radg) # 0. Then 0 < dimrad g/rad g)') < dim(rad g) and (rad g)' is an ideal
of g. By Problem 8 radg/(radg) is the radical of g, = g/(radg)’. Therefore g,
contains a Levi subalgebral,. Letg, = n7'(l,) = g, where n: g — g, is the natural
homomorphism. Then g,/(radg) =1, so that (radg) is the radical of g, by
Problem 7. Applying the inductive hypothesis to g, we see that g, contains a
Levi subalgebra [. Clearly, [ is a Levi subalgebra of g.

Let rad g be commutative. By what we have already proved we may assume
that dim 3(g) > 0. Then dim(rad g/3(g)) < dim(rad g). By Problem 8 rad g/3(g) is
the radical of g/3(g). By the inductive hypothesis g/3(g) contains a Levi subalgebra
[,.If g, is the preimage of || with respect to the natural homomorphism g — g/3(g)
then 3(g) = radg,. By Problem 5.2.30 g, contains a Levi subalgebra which is
clearly a Levi subalgebra of g.

2°. Existence of a Lie Group with the Given Tangent Algebra. In this section
we will make use of Theorem 1 to prove the following theorem which is one of
the fundamental facts of the Lie group theory.
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Theorem 2. Let g be a finite-dimensional Lie algebra (over C or R), | its Levi
subalgebra. Then there exists a simply connected Lie group G (either complex or
real respectively) whose tangent algebra is isomorphic to g. Moreover,

G=AxL, (2

where A = Rad G, L is a simply connected Lie subgroup with the tangent algebra l.

Proof. As it was shown in 1.4.4 there exists a simply connected Lie group 4
whose tangent algebra is isomorphic to rad g. On the other hand, it is clear that
there exists a simply connected Lie group L with the tangent algebra isomorphic
to I (e.g. the simply connected covering group for Intl, see Problem 5.1.4).
Applying Problem 1.2.39 to the adjoint representation ad: [ — der(radg) we
get the simply connected Lie group G = A4 x L with the tangent algebra

(radg) Pl=g. O

3°. Malcev’s Theorem. Our goal is the proof of the following statement.

Theorem 3 (A.I. Malcev [43]). Let | be a Levi subalgebra of g. For any
semisimple subalgebra s — g there exists ¢ € Intg such that ¢(s) < |. The auto-
morphism ¢ can be chosen from the connected virtual Lie subgroup of Intg with
the tangent algebra ad(rad g).

To prove it we will need an embedding of the group of affine transformations
of an affine space into the group of linear transformations of a vector space of
dimension greater by 1. Let V be a vector space over K = C or R. Consider the
vector space W = V P K. The affine hyperplane A = (¥, 1) = Wis an affine space
with the associated vector space V. Consider the subgroup G(W; W, V) = GL(W)
consisting of transformations preserving V and inducing on W/V the identity
transformation (see Example 3 of 3.1.1°).

Problem 9. The subgroup G(W; W, V) coincides with the subgroup of all
invertible linear transformations of W preserving A. If X € G(W; W, V) then X
induces an affine transformation of A. Conversely, any affine transformation of
A is obtained in this way from a uniquely determined element of G(W; W, V).

Therefore the group GA(A) is naturally identified with the subgroup G(W;
W, V)< GL(W).

Lemma 1. If all finite-dimensional linear representations of a Lie group H are
completely reducible then any affine action of H has a fixed point.

Proof. Let R: H - GA(A) be an affine H-action. By Problem 9 R may be
considered as a linear representation of H in the space W so that V is an invariant
subspace. The complete reducibility implies that there exists a vector v, € A, such
that R(h)v, = cv,, where ¢ € k, for any h € H. Since R(h)v, € A, then ¢ = 1, hence
v, is a fixed point for R. []

Proof of Theorem 3. First suppose that rad g is commutative. Consider a simply
connected Lie group G with the tangent algebra g constructed in 2°. Its radical
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A = Rad gis a vector group. A connected semisimple virtual Lie subgroup S < G
corresponds to the subalgebra s by Theorem 1.2.8. Consider the affine action R
of G in A defined in Problem 5.2.16. Since all linear representations of S are
completely reducible (Corollary 2 of Theorem 5.2.13), Lemma | implies that S
has a fixed point in A. As in 5.2.2° we derive from here that aSa™' < L for some
a € A. Therefore (Ada)s = L. It remains to notice that Ada = exp(ad), where
z € rad g is an element such that expz = a.

Now consider the general case and apply the induction in dim(rad g). Suppose
the theorem is proved for all Lie algebras whose radical is of dimension
<dim(rad g). Set g, = g, /(rad g)’ and let [, s, be the projections of [, s into g;.
By Problem 8 [, is a Levi subalgebra of g, having the commutative radical
rad g/(rad g)'. Therefore there exists z, € rad g such thatexpad(z, + (radg))s; <
[,implying exp(adz,)s < (radg) + [. Since dim(radg) < dim(radg), we may
apply the inductive hypothesis to g, = (rad g) + [ = g. Therefore there exist z,,
..., z, € (rad g), such that (expad z,)---(expad z,)(expad z,)s = 1. O

Corollary 1. Any two Levi subalgebras of g are transformed into each other by
a product of automorphisms of the form exp(adz), where z € rad g.

Corollary 2. Any maximal semisimple subalgebra of a Lie algebra is its Levi
subalgebra.

4°. Algebraic Levi Decomposition. In this section we consider algebraic groups
over C.

Let G be an algebraic group. By Problem 3.3.10 the radical Rad G of G is an
irreducible solvable algebraic subgroup. Consider the unipotent radical of Rad G,
i.e. the set of all unipotent elements of this group (see 3.2.7°). We will call it the
unipotent radical of G and denote by Rad, G.

Problem 10. Rad, G is the largest unipotent normal subgroup of G.

Problem 11. An algebraic group is reductive if and only if its unipotent radical
is trivial.

Problem 12. Let N be an algebraic normal subgroup of an algebraic group G.
The algebraic group G/N is reductive if and only if N > Rad, G.

The reductive Levi subgroup of an algebraic group G is an algebraic subgroup
H < G, such that

G =Rad,G x H. (3)

Problem 13. Any reductive Levi subgroup H of an algebraic group G is

a maximal reductive algebraic subgroup of this group and is isomorphic to
G/Rad, G.

Problem 14. If a reductive algebraic subgroup H = G satisfies G = (Rad, G) H,
then H is a reductive Levi subgroup of G.
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Problem 15. Let U be a unipotent algebraic normal subgroup of G. Then
Rad,(G/V) = (Rad, G)/V. The image of a reductive Levi subgroup of G under the
natural homomorphism G — G/H is a reductive Levi subgroup of G/U.

The decomposition (3) is called the algebraic Levi decomposition of G. Our goal
is to prove the existence and the uniqueness (up to inner automorphisms) of an
algebraic Levi decomposition.

Theorem 4. In any algebraic group G there exists a reductive Levi subgroup.

Proof of this theorem will be divided into two parts. First, we consider the
case when the radical of G consists of unipotent elements and then the general
case.

Suppose that Rad, G = Rad G. In this case the proof will be carried out along
the same lines as for Theorem 1, i.e. first we consider the subcases a) Rad G is
commutative and 3(g) = 0; b) rad g = 3(g) and then reduce the general case to
these two ones.

a) Let Rad G = Rad, G be commutative and 3(g) = 0. Let h be a Levi sub-
algebra of the tangent algebra g of G existing by Theorem 1. Set H = N(b) =
{g € G:(Adg)h = b}. Clearly, H is an algebraic subgroup of G. Its tangent
algebra is n(h) = (n(h) nradg) D b. Clearly, n(h) nradg = 3(g) =0, so that
n(h) =b and H is semisimple. By Problem 14 it remains to prove that G =
(Rad G)- H. To do this consider the action of G on the set of all Levi subalgebras
of g by inner automorphisms a(g) (g € G). The stabilizer of iy is H and (by Theorem
3) the subgroup Rad G acts transitively on the set of all Levi subalgebras. This
implies the required decomposition.

b) Let radg = 3(g). Then g is a reductive Lie algebra, i.e. G° = (Rad G)(G°)
(Problem 5.2.3). In this case we apply the same arguments as in the proof of
Theorem 5.2.5. Consider the algebraic group G, = G/(G°). Clearly, G? is a
unipotent commutative group. By Theorem 3.2.2 G? ~ C?. By Lemma 5.2.1
G, = G? x H,,where H, is a finite subgroup. The preimage H of H, with respect
to the natural homomorphism G — G, is a reductive Levi subgroup of G.

Problem 16. Prove Theorem 4 when Rad, G = Rad G.

Now prove Theorem 4 in the general case. For this fix a maximal torus T in
Rad G. By Theorem 3.2.10 Rad G = Rad, G x T. Set G, = N(T).

Problem 17. We have G = (Rad, G)G,.

Problem 18. Rad, G, coincides with (Rad, G) n G,.

Now let us carry out the induction in dim(Rad, G). Suppose that Theorem 4
is proved for all algebraic groups whose unipotent radical is of dimension
<dim(Rad, G). By Problem 18 Rad,G, = Rad,G. If dim(Rad,G,) <
dim(Rad, G) then by the inductive hypothesis G, = (Rad, G,) % H, where H is
a reductive algebraic subgroup. Then problems 17, 18 and 14 imply that H is a
reductive Levi subgroup of G. If dim Rad, G; = dim Rad, G, then by Problem 17
G = G, so that T is a normal subgroup of G. Problem 8 implies that the radical
of the algebraic group G, = G/T coincides with (Rad G)/T ~ Rad, G and there-
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fore consists of unipotent elements. By what we have proved above, G, possesses
a reductive Levi subgroup H, which is actually semisimple. Let p: G — G, be the
natural homomorphism and H = p~!(H,). Then T = Rad H (see Problem 7)
whence H is a reductive algebraic subgroup by Problem 5.2.31. Clearly, H is a
reductive Levi subgroup of G. Proof of Theorem 4 is completed. [J

Theorem 5. Let G = Rad, G x H be an algebraic Levi decomposition of G. Then
for any reductive algebraic subgroup Q < G there exists u € Rad, G such that
uQu™' < H.

Proof will be carried out along the same lines as that of Theorem 3. First prove
Theorem 5 when the unipotent radical of G is commutative. By Theorem 3.2.2
Rad, G is a vector group in this case. Therefore the argument used in 3° in the
proof of Theorem 3 for the case of a commutative radical is applicable (Lemma
1 is applicable to Q thanks to Corollary 1 of Theorem 5.2.13).

Problem 19. Prove Theorem 5 in the general case. []

Corollary 1. If H, and H, are two reductive Levi subgroups of an algebraic group
G then there exists u € Rad, G, such that uH,u™" = H,.

Corollary 2. Any maximal reductive algebraic subgroup of an algebraic group
is its reductive Levi subgroup.

Exercises

Let G be a Lie group. A Levi subgroup of G is a virtual Lie subgroup L < G,
such that G = (Rad G)L, dim((Rad G)n L) = 0.

1) If L is a Levi subgroup of G then its tangent algebra [ is a Levi subalgebra
of g.

2) If G is connected then any of its virtual Lie subgroups whose tangent algebra
is a Levi subgroup of g is a Levi subgroup.

3) In a connected Lie group there always exists a connected Levi subgroup.
4) If L is a Levi subgroup of a Lie group G then for any connected semisimple
virtual Lie subgroup S = G there exists g € Rad G such that gSg™! < L.

5) In a connected Lie group all connected Levi subgroups are conjugate.

6) A connected virtual Lie subgroup L of the connected Lie group G is a Levi
subgroup if and only if L is a maximal connected semisimple virtual Lie
subgroup of G.

7) Let a (not necessarily connected) Lie group G is such that Rad G is commu-
tative and Z(G") is discrete. Then there exists a Levi subgroup L of G such
that G = Rad G x L and Rad G is a vector group. (Hint: for L take N(I),
where | is a Levi subalgebra of the tangent algebra g and make use of
Theorem 3.)

8) In a simply connected Lie group G the radical is simply connected, any
connected Levi subgroup L is a simply connected Lie subgroup and G =
Rad G x L.

9) Let G be a simply connected Lie group, b an ideal of its Lie algebra g. Then
G contains a connected normal Lie subgroup H with the tangent algebra b.
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(Hint: consider a connected Lie group Q with the tangent algebra g/bh and
the homomorphism G — Q whose differential is the natural homomorphism
g—g/b.)

10) Let G be a unipotent (i.e. consisting of unipotent elements) real algebraic
linear group. Then exp: g — G is an isomorphism of real algebraic varieties.
If G is commutative then G ~ R?,

11) A real algebraic linear group G is unipotent if and only if so is G(C).

Therefore we may speak about unipotent real algebraic groups.

12) Let G be a real algebraic group (which may be considered linear). The
set Rad, G of all unipotent elements contained in Rad G is a normal algebraic
subgroup of G and Rad, G(C) = (Rad, G)(C).

Rad, G is called the unipotent radical of G.

13) Rad, G is the largest unipotent normal subgroup of a real algebraic group G.

14) Let N be a normal algebraic subgroup of a real algebraic group G. The
algebraic group G/N is reductive if and only if N o Rad, G.

15) A real algebraic group has a finite number of connected components (in the
usual topology). (Hint: make use of Exercises 14 and 5.2.5.)

A reductive Levi subgroup of a real algebraic group G is an algebraic subgroup

H < G, such that G = Rad, G x H.

16) Any real algebraic group G has a reductive Levi subgroup. (Hint: reduce to
the case when Rad, G is commutative. In the latter case consider the group
G(C) and making use of Theorem 4 and Corollary of Theorem 3.4.1 prove
the existence of a reductive Levi subgroup H of G(C) such that o(H) = H,
where ¢ is the complex conjugation in G(C) with respect to G.)

17) Prove the analogue of Theorem 5 for real algebraic groups.

Hints to Problems

4. Since ad h: gl(g) — gl(g) induces a derivation of the algebra ad g and since
ad: g - ad g is an isomorphism, there exists 0 € der g such that

[h,ad x] = ad 6(x) (x € g).

Clearly ¢ is a projection of g onto rad g.

10. Follows from the fact that any unipotent normal subgroup is connected and
solvable (Theorem 3.3.7) and therefore is contained in Rad G.

11. Make use of Problem 5.2.31.

14. Problem 11 implies that (Rad, G) " H = {e}.

16. Carry out the induction in dim(Rad G) as in the proof of Theorem 1.

17. Consider the G-action on the set of maximal tori of Rad G via inner auto-
morphhisms and take into account the fact that the subgroup Rad G = G
acts transitively on this set (Problem 3.2.23).

18. Problem 17 implies that the algebraic group G,/(Rad, G)n G, ~ G/Rad, G
is reductive so that (Rad, G) n G, > Rad, G, by Problem 12. The converse
inclusion follows from Problem 10.

19. Carry out the induction in dim(Rad, G) as in the proof of Theorem 3.
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§ 1. Useful Formulae

1°. Weyl Groups and Exponents. Let G be a simply connected non-
commutative simple complex Lie group, g its tangent algebra, W the Weyl group,

(ag,2y,--.,) the extended system of simple roots. Denote by ng, ny, ..., n, the
coefficients of the linear relation among o, «,, ..., o, normed so that n, = 1 (see
Table 6).

Let us arrange the positive roots of g in a table in such a way that the k-th
row consist of the roots of height k (see Exercise 4.3.25) with aligned last elements
of all rows. The lengths of the rows of this table form a non-increasing sequence
with the first row of length . Let m; be the number of elements in the i-th column.
The numbers m, ..., m, are called the exponents of G (or g). (See Table 4).

Define the Killing—Coxeter element c € W:

c=ry...1,

where r,, ..., r; are the reflections associated with the simple roots. The ele-
ment ¢ does not depend on the numbering of simple roots up to conjugacy
in W.

In this notation we have the following formulas.

(F1) The number of roots of g equals IZni =2) m,.

(F2) The order z of Z(G) equals the number of 1’s among n;’s.

(F3) The order of W equals

20 In;=T](m; + 1).

(F4) If g, is the number of elements of W, whose space of fixed elements is of
dimension | — k, then

Yoat =TT +m)
(F5) The order h of ¢ (the Coxeter number) equals
Y n;=max m; + 1.

(F6) The eigenvalues of ¢ are ¢™, ..., ¢™, where ¢ is a primitive root of degree
hof 1.
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(F7) The algebra of W-invariant polynomials on a maximal diagonalizable
subalgebra is freely generated by homogeneous polynomials of degrees m; + 1,
mp+ 1L

(F8) The Poincaré polynomial of G is [ (1 + ™).

2°. Linear Representations of Complex Semisimple Lie Algebras. Let g be a
semisimple complex Lie algebra. We will use the following notation:

R(A) is the irreducible linear representation of g with the highest weight A,

V(A) is the space of this representation; :

V,(A) is the weight subspace of V(A) corresponding to 4;

m;(A) = dim V(A1) is the multiplicity of the weight 1 in R(A);

A" = v(A) is the highest weight of R(A)*;

A; = A(h) (i = 1,...,1) are the “numerical labels” of the weight A;

p is the half sum of positive roots (see Exercise 4.2.5 and Tables 1 and 2).

The following formulas are valid:

(F9) H. Weyl’s formula

dim R(4) = ljo%)’—al-

(F10) Freudenthal’s formula (see [37] and Exercise 5 to §9 of Chapter VIII
in [3]):

[A+pA+p)—(A+pAi+p)ImA)=2 Y (A+ ko,a)m,(A).

a>0,k>0
(F11) The multiplicity of R(N) in R(A1) ® R(M) equals

dim{v € Vy_,(M): dR(M)(e;)"*'v =0 for i=1,...,1}
=dim{v e Vy_p(N): dR(N)(e)"*'v =0 for i=1,...,1}

(see [47] and Exercise 14 to §9 of Ch. VIII in [3]).

3°. Linear Representations of Real Semisimple Lie Algebras. Let g be a real
semisimple Lie algebra. We will use the following notation.

If p: g— gl(V) is a real linear representation, then p(C): g — gl(V(C)) is the
complex extension of p.

If p: g = gl(V) is a complex linear representation then p is the representation
p considered in the space ¥V obtained from V by the change of the sign of
the complex structure and p® is the representation p considered in the real
space VR,

We will say that a complex representation p admits a real (quaternionic)
structure if there is an antilinear operator J in V such that J?> = E (resp. —E)
commuting with any p(x) (x € g). A real structure exists if and only if p =
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po(C), where po: g — gl(V’) is a real representation, and a quaternionic struc-
ture is the same as a quaternionic vector space structure on ¥ compatible with
p.
The irreducible real representations of g are divided into two classes (see [40]):
a) 1rredu01ble representations p, for which p(C) is irreducible (over C); b) repre-
sentations p®, where p is a complex irreducible representation that admits no
real structure In the class a) p; ~ p,<>p;(C) ~ p,(C) and in the class b)
pR ~ p® < either (p, ~ p,) or (p, ~ p,) (see Exercises 5.1.16 and 5.1.17). There-
fore the description of the irreducible real representations reduces to the follow-
ing two questions on irreducible complex representations: When p, ~ p, (in
particular, when p ~ p)? Which irreducible representations such that p ~ p
admit a real structure? These questions are answered in terms of highest weights.
The highest weight of a real irreducible representation p of g is the highest
weight A of the extension of this representation to g(C); we will write p = p(A),
since A defines p up to an isomorphism (theorem 4.3.2). Let 6 be the canonical
involutive automorphism of g(C) corresponding to the real form g and © = 7(6)
the corresponding automorphism of the system of simple roots. Then

p(4) = p(ve(4)). (F12)
In particular,
p(A) ~ p(A)<>vt(A) = A. (F13)

Now let p: g — gl(V) be an irreducible complex representation such that p ~ p.
Then there exists an invertible antilinear operator J in V, commuting with
p(x) (x € g), such that J* = cE, where ¢ € R*. The number &(p) = signc = +1
does not depend on the choice of J and is called the index of p (see [41]).

Suppose = id, i.e. § € Int g(C). Then p(A) ~ p(A) is expressed as v4 = A and
the index is calculated via the formula

e(p(A)) = (= )HCP7), (F14)

where exp(2riu) = 6 and pY = 1/2} .0k, = Y 1 <i<i T,y (see [42]). In par-
ticular, for compact Lie algebras g we have &(p(A4)) = (—1)>1*) =1 or —1
depending on whether the nondegenerate bilinear form invariant with respect to
p is symmetric or skew-symmetric, respectively (Exercise 4.3.12). If t # id and
g(C) is simple then p(A) ~ p(A) if and only if Azp-y = A, for g(C) = s0,,(C)
and it is always so if g(C) is of the type 4, (I > 1), D,,,,, E¢. The corresponding
indices were calculated in [41].

In the following table listed are the indices of irreducible complex representa-
tions of non-compact real forms g of simple complex Lie algebras; for g not
mentioned in the table ¢(p) = 1:*

* We are thankful to B.P. Komrakov for a correction of this table.
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q SUy 35—k uf(H) sl,(H) S034 -1 200-k)+1
g(p(/l)) (_1)(k+lip:lp 1 (—l)"'*"l*“‘*/'zun—. (_1)A,+A3+<--+Al,,,l (__l)<k+1)+(lvnu—2)/2)(m 1+ AD

g S02x, 201-k)+1 502k, 2(2p—k) SP.1-k EVI]
8(p(/1)) (_l)(kﬂ(l—l)/ZM, (—1)‘k+p)(42p-l*'42p) (—1)A|+A3+~-+Azm»n,z| ' (_1)/'1*‘/13*/17

Let g = g5, where g, is a simple Lie algebra over C. Making use of the normal
real form of g, we may identify g(C) ~ g, @ g, With go ® go A dominant weight
of g(C) is expressed in the form 4 = (4,, A4"), where A4, A" are dominant weights
of go. The condition p(A) ~ (A) is expressed by the identity 4, = A' with
e(p(A) = L.

Finally, let us describe how to caicuiate the index of a representation of any
semisimple Lie algebra g over R. Let g = (P, <i<, 8> Where g; are simple, and
., A;), where 4; is a dominant weight of g;(C). Then p(A) ~ p(A) if

for all ,sand g(p(A)) = [ 1 <i<se(p(4)).

A= (4
and only if p{A,) = p{A,;) foralli = 1,

1

jav

§2. Tables

Table 1. Weights and Roots. The weights of the groups B,, C;, D, and F, are
expressed in the table in terms of an orthonormal basis (¢,,...,¢) of t(Q). The
weights of the groups A4,, E,, Eg and G, are expressed in terms of vectors ¢, ...,
¢+1 € t(Q)*, such that ) ¢; = 0. For these vectors

(&,8) =1+ 1), (e8) = =1/l + 1) for i#j.
It is convenient to remember, however, that if Y a; = 0, then (Y a;e;, Y bjg;) =
Y a;b.. The weights of E¢ are expressed in terms of vectors ¢, , ..., & € t(C)* con-
structed as for A5 and of an auxiliary vector ¢ € t(Q)*, which is orthogonal to
all ¢; and satisfies (¢,¢) = 1/2.

The indices i, j, ... in the expression of any weight are assumed to be different.

In all cases the Weyl group contains all permutations of the vectors ¢;. For B,
C, and F, the Weyl group contains also all transformations of the form ¢;— +¢;
and for D, all such transformations with an even number of minus signs. The
Weyl group of E¢ contains the transformation ¢;— ¢;, e —e. The Weyl groups
of E,, Eg and G, contain —id.

In the column “Dynkin diagrams™ the numbering of simple roots accepted in
all tables is given.

In the column “Simple roots” given is also the highest root § and in the column
“Fundamental weights” there is also indicated their sum (equal to the half sum
of positive roots).
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Table 1
type of G Dynkin diagrams dim G Roots and simple roots
4 . & — &
: 12 -1 ®
(=1 o—0— -+ —0—0 12421 a; = & — €415
S=¢ —&uy =T + W
te Lg, tg
B 12 -1 2 4= g — gy (i < D),
(1=2) o—o0— -+ —0=0 202 + 1 S
1= b
d=¢ +&=m,
+e g, £2¢
G 1 2 -1 =& — gy (i <),
(=2 o0—O0— - =00 202 +1 .
{ 15
6 =2¢ =2m,
tetg
-1 ]
D, ! ) Q2 @ =& — &y (i <),
(I=3) 22— | oy=g-y +&,
n, for | > 4,
¢ S=e,+e=4 "
n, + myforl=3
& — &, +2e,
! 2 3 4 3 & tegte e
o0—>o0 I O o 7
Ee 8 o =& — &4, (i <6),
6 g = €4 + &5 + &g + &,
6 =2¢e=mg
& — &,
! 2 3 4 3 0 g +e+e +g
l 133
& o =6 =& (i<T),
7 Ay = €5 + &g + €7 + &g,
0= —¢,+ &g =Tg
1 2 3 4 5 6 7 & — &, t(& + & + &)
Eq | 248 o =& — &4 (1 <8),
og = &g + €7 + Eg,
8
d=¢ —& =,
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Table 1 (cont.)

type of G Dynkin diagrams dim G Roots and simple roots
te tg, te
(e, te te;tes)?2
ay =g — & — &3 —&)/2,
F, 1 2 3 4 52
o—-O&—0—0 oy = &y,
0y = &3 — £,
oy =&, — €3,
d=¢ +& =1,
g — &, Tg
G, 1 2 14 oy = —&y,
[ ——¢]
Uy =&, — &
d=¢ —&3=",
Type . dim .
of G Fundamental weights R(z,) Weights of R(n,)
A, =gt g,
I+1 &
(I=1) p=1le, + (1= ey + - +¢
B =g ot (<)
(>2 m=1( + - +¢&)2 20+ 1 +¢;,0
p=[RI—=1De, + Q21 —=3)e; +--- +¢]/2
G m=&+ g,
2! +¢
(=2 p=le; +(l—Dey + -+ ¢
m=g +c+e (i<l—1),
b Ty =&+ + e —&)/2 2l .
&
(1=3) =6+ 4 &y +8)2
p=(—=1e, +(—2e;+ -+ g
m=¢ + o +g+min{i,6—i}-e (i<6)
g e,
Eq me = 2¢, 27
—& —§
p=2>5¢ +de + - +es+ e
=g 4+ +g+min{i,8—il-gg (i<7),
E, ny = 2eg, 56 t(& +¢)
p =066 + 5e,+ 465+ leg
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Table 1 (cont.)
Type Fundamental weights dim Weights of R(n,)
of G R(my)
m=¢& + +&—min{i15—-2i}e (i<8), & — &,
Eq ng = —3é,, 248 +(5 + & + &)
p="Te + 66y + -+, — 22¢ 0 (of multiplicity 8)
T, =&y,
te;,
m, = (3¢, + &, + &3 + &4)/2
(e, e
F, Ty =26 + &y + &3, 26
+ &5 1 &4)/2
Ty =81+ &, e
0 (of multiplicity 2)
p=(11e, + Se; + 3e5 + &,)/2
n, =g,
G, Ty =8 — &3, 7 +¢,0

Table 2. Matrices Inverse to Cartan Matrices. The matrix (4°)"! inverse to the
transposed Cartan matrix A is the matrix of the passage from a system of simple
roots to the system of fundamental weights, i.e. its i-th column contains the
coefficients of the expression of n; via simple roots. In particular, the doubled
sum of all of its columns (shown in the last column of the table) contains the
coefficient of the expression of the sum 2p of positive roots via simple roots. The
matrix diag{d,,...,d;} (A7)!, where d; = (o;,2;)/2 (these numbers are indi-
cated in the column “d”) is the Gram matrix of the system of fundamental

weights.
Table 2
type Ty-1
of G (4%) 2
l -1 -2 .. 2 1 l
-1 20-1 20-=2 ... 22 2 2(-1)
P 1 lu=2 20-2 3¢-2 ... 32 3 3(1—2)
ol R
2 22 3-2 (=12 1-1 (=12
1 2 3 -1 / l
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Table 2 (cont.)
X ]
2.2 2. 2 1 1 20 -1
2 4 4 4 2 1 2021 - 2)
1246 ... 6 3 1 321 - 3)
& 2 )
2 46 20—-1) I-1 1 (=D +1)
2 4 6 20-1 I 12 12
222 .. 2 2 1 21
/2 4 4 .. 4 4 1 2020 —1)
C, 1‘2 4 6 .. 6 6 1 320 -2)
2
246 ... 20-1) 21=1) 1 (1= 1(l+2)
\1 2.3 ... -1 ! / 2 I(I+1)/2
4 4 4 .. 4 2 2 1 20-2
4 8 8 .. 8 4 4 1 221 - 3)
4 8 12 ... 12 6 6 1 320 —4)
Dy | =l
4 8 12 ... 4l-2) 20-2 2-2 1 (=2 +1
2.4 6 ... 21-2 I 1-2 1 (1=l
2.4 6 ... 20-2 I1-2 ! 1 11— 1y2
4 5 6 4 2 3 1 16
5 10 12 8 4 6 1 30
E, e 128 12 6 9 1 42
3 4 8 12 10 5 6 1 30
2 4 6 5 4 3 1 16
3 6 9 6 3 6 1 22
3 4 5 6 4 2 3 1 27
4 8 10 12 8 4 6 ! 52
5 10 15 18 12 6 9 | 75
E, 6 12 18 24 16 8§ 12 I 96
4 8 12 16 12 6 8 1 66
2 4 6 8 6 4 4 1 34
3 6 9 12 8 4 7 | 49
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Table 2 (cont.)
2 3 4 5 6 4 2 3 1 58
3 6 8 10 12 8 4 6 1 114
4 8 12 15 18 12 6 9 1 168
E, 5 10 15 20 24 16 8 12 1 220
6 12 18 24 30 20 10 15 1 270
4 8 12 16 20 14 7 10 1 182
2 4 6 8 10 7 4 5 1 92
3 6 9 12 15 10 5 8 1 136
2 3 4 2 12 22
. ( 3 6 8 4 12 2
2 4 6 3 1 30
\ 1 2 302 / 1 16
6, 2 3) 1/3 10
1 2 1 6

Table 3. Centers, Outer Automorphisms and Bilinear Invariants. Here there are
listed centers and groups of outer automorphisms of simply connected simple
complex Lie groups.

The fifth column contains the order of the automorphism v of the Dynkin
diagram that transforms the numerical labels of the highest weight of an irreduc-
ible representation into the numerical labels of the highest weight of the dual
representation (see Exercise 4.3.6).

In the space of the representation R(A), there exists a nondegenerate symmetric
or skew-symmetric invariant bilinear form if and only if R(A) is self-adjoint, i.e.
Ay = A;fori=1,...,1(see Exercises 4.3.9 and 4.3.7). This form is symmetric if
and only if Ker R(A) contains the element of the center Z(G) ~ PY/Q" corre-
sponding to the element b € PV, indicated in the last column, i.e. if A(b) € Z (see
Exercises 4.3.12 and 4.3.13).

For the groups Eg, F, and G, not mentioned in the table the centers and the
groups of outer automorphisms are trivial and any their linear representation
possesses a nondegenerate symmetric invariant bilinear form.
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Uy + Sy +y) 1 {2} Uy + Sy +ty) z tg
0 4 z /5y — Ty + Ty — y) €7 °q
asImIay1o ( v =]10) g Yy + ly) e (uana )
I zZxz
T+ by =q1057/("y + ''y) <1107 Y+ + Tyt Ty) 'a
3aSIMIAYI0 ( (ppo )
(4 z v/ — ) + /YA -+ By 4 y) vz
‘¢ + by =105 7/('"y + y) 'a
Y-+ Sy + Sy + Ty) 1 {2} UG-+ 5y + Ty + 'y z D
3SIMIAYIO
1 {2} Uy 'z 'g
‘THbY 1+ by =101/
'y I {2} UM 7 'y
3SIMIAYI0 () a<n
4 iz (1 +n/Cyp+ -+ g + 'y "z
T+br=q1057/(y +--- + Yy + Ty) ) 4
q la] | Dwp/piny ~O/ »d JO s101€10U33 3y |, @A\Em ~ DJjoadky
€ 91qeL
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Table 4. Exponents. On exponents m,, ..., m, see 1.1°. Besides the exponents,
the table contains the order | h| of the Killing-Coxeter element and the order | W/|
of the Weyl group.

Table 4
Type of g my,my,...,m |h| |W|
A 1,2,3,...,1 I+1 (I+ 1)
B, G L,3,5...,21-1 21 2t
D, 1,3,5..,201-1,1—-1 2(-1) 2t
Eq 1,4,5,7,8,11 12 27-3*-5
E, 1,579, 11,13,17 18 210.34.5.7
Eg 1,7,11, 13,17, 19, 23, 29 30 214.35.52.7
F, 1,57, 11 12 27-32
G, 1,5 6 223

Table 5. Decomposition of Tensor Products and Dimensions of Certain Repre-
sentations. This table contains the decomposition into the irreducible com-
ponents of tensor products and also of exterior and symmetric powers of certain
irreducible linear representations of simple complex Lie groups. Besides, there
are listed the dimensions of all the irreducible representations occuring in the
formulas of the table. The following notation is used:

R = R(m,) the simplest representation,

n=dimR =1+ 1,2l + 1, 2], 2 for the groups A4,, B,, C;, D,, respectively,

Ad = R(9) the adjoint representation.

1 = R(0) the unit (trivial) representation,

4(p,q), p = q =0 the set of pairs (x,y) € Z2 such that x+ y<p+q, x —
y=p—gq,x—y=p—q(mod2),see Fig. 2.

If a representation on the right-hand side of a formula is denoted by a
meaningless symbol (e.g., R(—n; + 7,)) it is meant to be zero.

)

p—q p ptq X



Table 5

4,

1. SPR = R(pm,).
2. R(pnl)R(qn,)=oz R((p+q—-2im,), p=gq;
<i<q

SzR(P"x) = ‘zo R((2p — 4i)my).

dimR(pn,)=p+ 1

4, 122 (n=1+1)

In the right hand sides of formulas we assume that 7y = 7, = 0.
1. /\’R = R(r,).
2. S’R = R(pm,).
3' R(np)R(nq) = .ZO R(“;Hri + nq—i)y p = q;

S?R(m,) = 3, R(Mpsz; + Mpe2y).

iz0

4. R(pm,)R(1)) = R(p; + 7)) + R(p = Dy + 7puy).
5. R(pm)R(qn;) = Y. R((p+q—2in, +in,), p=g;

0<igq

S?R(pm,) = Y. R((2p — 4i)m, + 2im,).

i20
6. R(pn,)Ad = R((p + I)n, + m)) + R(pm,) + R((p — D7y + my + 1) + R((p — 27, + 7).
7. R(n,)Ad = R(n, + n, + m) + R(n; + 7,_,) + R(n .y + 7)) + R(n,), 2<p<!-1L
8. R(pm)R(gm) = ¥ R((p — i)m; +(q — D)m)).

9. A\*Ad = RQ2n, + m—,) + R(n, + 2m,) + Ad;
§2Ad = RQn, +27)+ R(n, + m_y) + Ad+ 1,  [>3,
T |RQmy +2m,) +Ad+ 1, =2

A dim R()

n
n"
n+p—1
pmy
p—q+1 +1
+
SR p+1 <p>< )
n+p\/n
pn, +
e p+q< ><q>
n+ptq-—1lin+p=2\In+q- 2
py +qm
a1
p+1 <n+p+q—1>(n+q—2>
pt+q

p+q+1
n(n — n+p+1\/n+1
pry + 1, +m, ( 24 ( P )< )
(p+ q)n+p)

pmy + qm;
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Table 5 (cont.)

B, 1>2 (n=20+1)

Notation:
m, forl<p<i—1|,
#,=<2m forp=1LI1+1, o =1

14
.4 forl+2<p<2l,

n=p
1. APR = R(#,).
2. S’R =Y R((p — 2i)m,).
i>0
3. R(#,)R(R)= 3 R@. +1), q<p<l
(x,y)ed(p.q)
SZR(r‘c,,) = Z R(#, + 7)), p<l
(x,y) € 4(p,p)
x=y(mod 4)
4. R(pn,)R(2,) = R(pm, + ) + R((p — D7y + fig-y)

+R(p— D1y + Rgey) + R((p— D, + 7)), 2<q<n—2
5. R(pmy)R(gm,) = Z R((x = y)m, + ymyp);
(x,y)€ dip.q)
SZR(PTH) = Z R((x = y)n; + ymy).

(x.y)€ d(p.p)
x=y=0(mod 2)

6. R@,)R(m)= Y R@#,;+m) p<l

o<isp

7. R(pny)R(m) = R(pr, + m) + R((p — Dmy + 7).
8. R(m)* = Z R(#,-);

o<i<l!
S*R(m) = Z, R(#,-)).
0<igli=0, 3(mod 4)
A dim R(A)
. n
ﬂ, P
n+2p—-2(n+p-2

Pt n+p-2 p

(p—q+1)(n—p~q+1)(n><n+2>
#, + # , gs<psl
P (p+Dn—p+1) p/\ 4

(n + 2p)q <n+p—l><n—l>
— S s £ , lsggsn—1
T p+dn+p—g\ p q

p—q+D)n+2p—-dn+p+q-3)Yn+29q—4)/n+p—-4\(n+q-5
(p—q@m, + qm,

(p+ Dn—2)n-3)n-4 P q

, 2!
n—2p+1(n

i R , <l
T, + 1 n—p+l(p> 14

n+p—2
pm, +m 2‘( I; >
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Table 5 (cont.)

1 dim R{A)

c, 12 (n = 2I)

In the right-hand sides of formulas we assume that my = 0.
L. NR=Y R(m,-), p<lL
i>0

2. SR = R(pm,).

3. Rm)R(n)= Yy R, +m), p=q;
(x,y)€4(p.q)
x-y<n-p-q
S*R(r,) = Y R(n, + m,).
(x.y)ed(pi;)
x=y<n—

x=y=p(mod 2)
4. R(pm,)R(n,) = R(pn; + n,) + R((p — D), + Tgs1)

+ R((p — D7y + m,—y) + R((p — 2y + my).
5. R(pn)R@gn)= Y R((x = ym + ymy);

(x,y)e d(p.q)
S?R(pm,) = > R((x — y)m; + ym3).
(=9 €d(p.p)
x—y=2p{mod 4)
A dim R(A)

n——2p+2/n-+-l\
’ n-p+2\ p )

( >
1
14

(p—q+1)(n—2p+2)(n——p—q+3)(n—2q+4)<n+l><n+3>
P+ Dn—p+dn—p+Nn—q+d p )\ qa )?

- (n—2q9+2)q n+p+1\/n+1
P (p+ain+p—q+2) p q

(p—q+1)(n+p+q—1)<n+p—2><n+q—3)
(p+ D=1 P q

n,+ 7,

(p—qm, +qm,

D, 1>3 (n=2l)

Notation:

m, forl<p<l-2
f,=<m+m forp=I-11+1 o =7,=0
foril+2<p<2l—1,

Ty p

R(#)) = RQ2m,_y) + R(2m)),
R(#, + A) = R(2n,-, + A) + RQ2m; + A),
R(2#,) = R(4m_y) + R(4m)).

Formulas 1-5 are the same as for B,.
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Table 5 (cont.)
3a. RQu)R(#,) = Y RQm+#,,)+ Y R@#.+#), p<li—1
i>0 (x‘y)xeﬁﬂ-q)
3b. RQ2n)R(2m;—y) = Y R(#, + #,).

y<x<l
x=y=1—1(mod 2)

3c. RQ2m)? = R@m) + Y, RQm, + #,_5;) + Y R(#, + #,);
i1 y<x<l
x=y=Il(mod 2)

S?R(2m) = R(ém) + Y RQm + #4)+ 3, Rl +1,).
21 xs,vysstf.:;d 2)
x=y(mod 4)

4a. R(pm,)R(2m) = R(pm, + 2m)) + R((p — D)7y + #,-,) + R((p — 2)m, + 2m)).
6. R(#,)R(m) = z R(#p_yi + m) + Zo R(#tp—zi—y + my), p<l

i>0
6a. R2m)R(m) = RG3m) + Y, R(#_y; + my).
i>1

7. R(pn,)R(n;) = R(pm; + 1) + R((p — D7y + 7).
8. R(m)R(m-,) = :Zn R(#)-3i-1)-

9. R(m)* = RQ2m) + ¥ R(#-)

i1

S?R(m) = R2m) + ¥ R(M-4).

i1

4 dim R(4)

#

n+2p—2<n+p—2>

n+p-—2 p
—gq+Hin—p—qg+)/n\/n+2
ioan, (pP—g+Hin—p—q )()( ) d<p<l
(p+Dn—p+1) P q
n+2 n+p—1\/n—-1
— _<-PL_( P )( ) l<qen—1.
(p+qn+p—q p q

(p—q+1)(n+2p—2)(n+p+q—3)(n+2q—4)(n+p—4><n+q—5>
(p+ D —2)(n—3)(n—-4) p q

2m, <n—1>
-1
2(1 - ) (n—=1\/n+1
mn, | AV e
an, 2 <n - 1><n + l>
+Dn+2\U-1 I
I (n=1\/n+p—1
pny + 2m m(1-1>< » )

(p—qn, + qm,
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Table 5 (cont.)

A dim R(A)
m, 2!-1
ﬁ’p-l-ﬂ.'[ 2!—1.!’_?_221 n s p<l
n—p+1\p
pr, + 1, 2‘_l<n+P—2>
p
3, . 1 (n—1
I+ 1\I-1
Eq
1. A’R = R(m,);
SR = R(2m,) + R*.
2. RR* = R(ny + n5) + Ad + 1.
3. R-Ad = R(n, + ng) + R(n,)* + R.
4. A*Ad = R(n;) + Ad;
S*Ad = R(2ng) + R(m, + ms) + 1.
(R=R(m,),  Ad = R(ng))
4 T, T T, 2m, n, + ms my + T 2ng T
dim R(A) 27 78 351 351 650 1728 2430 2925
E;
1. A’R=R(n,) + 1;
S2R = R(2m,) + Ad.
2. R-Ad = R(n; + ng) + R(n;) + R.
3. A\?Ad = R(n) + Ad;
S?Ad = R(2mg) + R(n,) + 1.
(R=R(m,),  Ad = R(r).)
A m, g n, 2m, T, T, + 7 2mg s
dim R(A) 56 133 912 1463 1539 6480 7371 8645
Eg

I. A’R = R(n,) + R;
S2R = RQ2m,) + R(n,) + 1.
(R = Ad = R(n,).)
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Table 5 (cont.)
A Ty n, 27!1 L33
dim R(A) 248 3875 27000 30380
F,
1. AR = R(n,) + Ad;
S?R = R(2n,) + R+ 1.
2. R-Ad = R(n, + n,) + R(n,) + R.
3. A\*Ad = R(n;) + Ad;
S?2Ad = R(2n,) + R(2n,) + 1.
(R = R(m,), Ad = R(m,))
A T, T, T, 2m, Ty, + Ty 2n, s
dim R(A) 26 52 273 324 1053 1053 1274

G,

1. A’R=Ad + R;
S?R = R(2m;) + 1.

2. R-Ad = R(n, + n,) + RQm,) + R.

3. A\2Ad = R(31,) + Ad;
S?Ad = R(2m,) + R(2m,) + 1.

4. RQ2n,) R = R(3m,) + R(n, + m,) + R2n,) + Ad + R.
(R=R(m,), Ad=R(t,))

A m, T, 2m, Ty + Ty 2, 3n,

dim R(A) 7 14 27 64 77 77

Table 6. Affine Dynkin Diagrams. The table lists connected affine Dynkin
diagrams. On each diagram there are indicated the coefficients of the linear
relation among vectors of the corresponding admissible system. They are positive
integers normed so as to be relatively prime (see Problem 4.4.47).
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Table 6
Type Affine diagram Type Affine diagram
| 1 2 3 2 1
o0—O0—0—0—0
A .
(1)
(1>2) & £ 02
1 1 1 1
o1
i 2 3 4 3 2
o—O0—0—0—0—0—=0
AP =1 E®
02
B ! 2 2 2 2 3
- —0==30 | E{ |
(i=3) 107 6
3
av 2 2 2
2 4 3 2 1
o=—=0—0— - - - ! o>—0
iz | o1 | o000
(1) 1 1
Dy 2 2 o 2 G 3 2 1
(=4 | Ll o=—>0
A% o2 2 2 2 | oo 12 1
o=—0—0— - - —0==0 0—O0=
(1>2) ¢
AP 1E&0?2
AR l 2 2 21
=3 | X
D D B Il
o&—0—0— - - —0=0
(1=2
E® | 2 3 2 1
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Table 7. Involutive Automorphisms of Complex Simple Lie Algebras. In the
table there are listed all the Kac diagram of all order 2 automorphisms 8 of
complex simple Lie algebras g (up to conjugacy in the group Aut g). Since all the
nonzero numerical labels of Kac diagrams of automorphisms of order 2 equal
1/2, it suffices to distinguish the vertices of the corresponding affine Dynkin
diagram endowed with nonzero numerical labels. Therefore the numerical labels
are omitted and the vertices with nonzero labels are black, the other being white.
The vertices of an affine Dynkin diagram L% are numbered so that if ¥ =
{ag,0y,...,0,} is the corresponding numbered admissible system of vectors then
IT" = {(ag, 1/k), (24,0), ..., (,,0)} is the system of simple roots of the pair (g, 7),
where T = #(0) € Aut [T, and I1, = {a,,...,,} is the system of simple roots of g°
numbered as in Table 1. There are also indicated: the type of g and the real form
of g corresponding to 0. The automorphisms 6 are divided into the following
three types (see Problem 5.1.38): type I—the inner automorphisms with a semi-
simple g°, type II—the inner automorphisms with a nonsemisimple g°, type
III—the outer automorphisms.

Table 7
Type I
Type of
g affine Kac diagram of Type of ¢° Real form
diagram
2 3 p -1 Q
50,5,4+,(C) e —e— - —O=0
(I=3) B D,® B, $02p.2(1-p)+1
- (2<p<)
0 1 p -1 R
5p2,(C) . oc—0— - —@— - —O¢—D0
Cl( ) Cp@ Cl—p spp‘l—p
(=2 (I<p<[¥2])
Q-1
2 P -2
50,,(C) e —e— -
I>4 ot > b,®D,, 502p.20-p)
(=4 (2<p<[22]) ¢
1 2 3 4 5
Eq EY 6 A, ® A Ell
0
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Table 7 (cont.)
Type I
Type of
g 'afﬁne Kac diagram of 0 Type of ¢° Real form
diagram
1 2 3 4 5 6 0
i 4, EV
E, EP !
1 2 3 4 5 6 0
i A, ® D EVI
7
0 1 2 3 4 5 6 7
i Dy EVII
E, B °
0 1 2 3 4 S 6 7
! A, ®E, EIX
8
1 2 3 4 0
F, joi) O—O0—0—e—0 o4, FI
1 2 3 4 0
G (1) 1 2 0
2 Gz =0 A, @4, G
Type 11
0
sl (C
(1H>l(2 ) A A_._ AN su
> PN oo NES T
) ) p 2 A-,®C e
(I<p<[(+1)/2 )
(1 0 1
SIZ(C) Al == C Suy
$0,,4,(C) 0
20+1 BV 2 3 -1 £
(>3 | | SRR ———'¢) B_,®C S0,y 21-1
sp(C) cm ] Q-1
! A, ®C spy(R)

(122

0e=—0— -+ —O0—»¢




Table 7 (cont.)

Type I1
Type of
g affine Kac diagram of 6 Type of g° Real form
diagram
>O—-4~ s D_,@®C $03,21-2
50,/(C) Do
(=4
:>0_<k 32 4.,8C ur(H)
E¢ EY) { Ds®C EIlI
0—0—0—‘1—0—4—‘ 0
E, EY E,®C EVII
7
Type 111
sly141(C) 0 1 2 _
(1>2) AR *«=—>0—O0— - - - _Qol=)(% B, sly1(R)
s1,(C) AP — A, sly(R)
0 2 3 -1 g
s —O—® D, sl (R)
sl,,(C) ey 1
(=3 0
Q-
oo -0 o sl (H)
1
50,,42(C) 0 | =1k
2) o&=—0— - —8— - —0=0
Dy} B,® B, S02p+1,201-p)+1
(1=2 0<p<[Y2])
0 1 2 3 4 C, El
Eq EQ — .
-
R n |

Table 8. Matrix Realizations of Classical Real Lie Algebras. In the table are
given matrix realizations of real forms g of classical complex Lie algebras, their
Cartan decomposition g = @ p and the maximal R-diagonalizable subalgebras
a c g. The matrices are real for g = s, (R), so, ,, sp,(R) and complex otherwise.
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X-=Ix"'x—-=]x

dsfsq 4 T >
Fledo | feder, 0="°X b a X LA\ b (h>d)
("3 D D 0=y 0=24 os @ “0s A> ;\v J bage
b d
0=°xn+'xn
. z — Ty el =1
s X—=1X"X—=,X
dsfsy =1 L4 LA >~
’a . - 0="°% b>d
(g + """y P 0=y 0=4 P ns 5'G AN A_..a:mv
A 'x) d
b d
0=Xn3y
u Ty ] A— =4
0=X+...+'xY3x .OI\/\: \AHh\w uds h/\ \Iﬂl u ANME
aAEKa...;K.-.R.a...:Kvw.&mv nx _ x .X| — hk \ﬁ y\ u A_I:JG
1A u u
0="x+.+x 0=xn X— =,X “as 0=x4 (20)"1s
.Atx.....ﬁkvwm_ﬂv .V\ = hx €L Agv:_c R e N
v d uonduosap adA 1 uondiosap xujep adA L
1 B
831qeL




n n
sP2(®) n (X T XT=—X, XT=X, .
T u, diag(xy,..., Xy —Xq5.-05 —X,)
n=1 n Y, —-X Y,=-Y, Y,=Y,
W=Yv,Y,="
p q p q
X1 X2 X3 X4
X7, X3, X, X4
SPp. = = = = X,=X,3=0 R(E; p+j + E,4j )
o —Xi3 Xia X =Xy, sp, @ sp, Xi;=X14=0 “_ 13__ 15(—2,; her P
(P<gq) T " T " Xy, =X5,=0 _E _E )
q Xia —X —Xp X32 ptqtj.2p+qtj 2p+qtiptqt)
XXTI = “‘Xu’xzrz = =X,
X;’J = X:s» XzTa = X24
non iR(E,, — E5, — E
_ — 1 - - L n
" n X Y X=X, X=—X, 12 21 . +2
U, (H) n _ }—, X— u, )7 _ Y )—, _ Y + En+2.n+l)@lR(E34 - E43

XT=-X,YT=Y

—E, i3 mia+ Envanes) @

s9qel 7§

1€
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Table 9. Real Simple Lie Algebras. In the table are listed noncompact real Lie
algebras g that do not admit a complex structure, i.e. the real forms of complex
simple Lie algebras g(C). The column “Type of 2 contains the type of the system
2 of real roots. The column “r” describes the restriction map r: I7, - @, where
O is the base of 2. The simple roots from /T are denoted by «;, those from @ by
/;; the numbering in both these systems is the same as in Table 1.

Table 9
9(C) 8 t dimt dimp kg g
sl (R) 5074 I+ 1)/2 I+ 3)/2 1
slpei(H)
5Pyt (p+1)(2p+3) p2p+3) p
(I=2p+1,p>1)
su +1—
s (© iy su,@u,_, |pPHU+1—-pP—1|2p(+1=p)| p
(=1 I<sp<1/2)
suw
su,®u, 2p2—1 2p? p
(I=2p—1,p>2)
p(2p+1)
$02141(C) 80, 20+1-p
50,D50;/4, -, +QI+1-=p) | pR2I+1-p) p
(I=1) (I1<p<g)
(4l +3—2p)
sp,(R) it 12 I(l+1) i
SPp.i-p p2p+1)+(l—p)
5p(C) sp,Dsp;-, 4p(l-p) p
(1<p<i(i-1)) (21=2p+1)
SpPJ 2
sp,®sp, 2p(2p+1) 4p p
(I=2p)
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Table 9 (cont.)
Satake diagram T”; of r dimg,, dimg,;,
1 2 -1 4 r)=4 | 0
0O~ 7900 ' (1<j<h
r(a,;)=4;
2 2p 4, 2j j 4 0
(1<j<p)
1 2
o—o0— -
2(jsp+1 0
r(“j) = r(aﬂvl—j)
BC, =%
(1<j<p)
l+1-2p)(j=p) 1
o0—o0— -
L -1 +1—p
1 2 p—1
ria;) = r(ag,-;)
TP 2<e-y
p c, = 0
L(j=p)
. (I<j<p)
2p—1 2p-2 ptl
2 p 5 r(a)=4 L(j<sp-1 o
O—0— " —O0—0— " —&=0 ’ (1<j<p) |20 =p+1(j=p)
12 o1 c riy)=4 \ o
© O— -+ - —0—0 ' (1<j<h
r(ag)=4; 4(jsp—1 0
2p BC, 2j) =4 (j<sp-1
*—O0—e— - - —O—O— - —&—® <js ‘
<i<p) 41-2p) (j=p) | 3
2 2p_’7 2]3 c "(111):‘7 4(j<p-1) 0
*—Oo—e— --- . _
’ (I<j<p) 3(j=p
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Table 9 (cont.)
9(C) g t dimt dimp kpg
$05,21-p p(p—1)/2+(2l-p)
50, X 5031, p(21—p) P
(I1<p<i=2) ‘(2l-p-1)/2
(-0(1-2)2
S0;-1,141 80,y X 504y ) 21 I—1
+I(+1)2
50,(C)
S0, 50, X 50; (-1 12 I
(=49
uz,(H)
Uz, 4p? 2p2p-1) | p
(1=2p)
u3,. (H)
Uzpsy 2p+ 1)? 2p(2p+1) p
(I=2p+1)
El P, 36 Y3 6
Ell su, Dsug 38 40 4
Es
EllI 50, ®R 46 32 2
EIV F, 52 26 2
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Table 9 (cont.)
Satake diagram Ty;;, of r dimg,, dimg,;,
1 p . ra)=4; 1G<p—1)
oO—O0—  ++ —O—@— - - - B, 0
(Isj<p) 20-p)(i=p
N=A,
2 ) ‘Q—‘ =4 1(j<i-2)
O——O— - - - v B, (<jgi=1), 0
Q 2(j=1-1)
rla)=4,_,
2 -2 f-1 rla)=4;
o—o— --- D, ! 0
2 (1<j<h
2 2p-2 c rlag)=14; 4(j<sp-1 0
oe—o—eo— -
p ’ (1<j<p) Li=p)
rlay;)=4;
2p-2 421’ v 0Gi<p-1)
*e—O0—e—. o ' BC, (u<j<p 4 '
\o 2p+l 1(j=p
r(agpe)=4,
1 2 3 4 5
O O O r(e)=4;
l Eq 1 0
(I1<j<6)
6
Q rlay)=r(as)=4,, 2(j=12)
1 2 3 4 5 F, r(ay)=r(ty)=4,, L(=34 0
6 r(a3)='{3)r(a6):14
O A g ——0O rla)=r(as)=4,,
1 5 BC, )
6 rie= 8(j=2 L
1 5
rla)=4,,
‘ A, 8 0
rlas)=4,
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Table 9 (cont.)
9(C) 8 t dimt dimp rkgg
EV sug 63 70 7
E, EVI su,Pso,, 69 - 64 4
EVIl E;®R 79 54 3
EVIII 50,6 120 128 8
Eq
EIX su,®E, 136 112 4
FI su,Dsp; 24 28 4
Fy
FII 504 36 16 1
G, G 50;@s0, 6 8 2
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Table 9 (cont.)
T .
Satake diagram yr;t of r dimg,, dimg,;,
1 2 3 4 5 6
O O O -0 O——O0 rloy)=4;
E, 1 0
1<j<7
7 (I1<j<7)
2 4 5 6
e O e ‘o) rlay)=2,, r(@s)=4,, 4(j=12
F, 0
rlas)=A3, r{ae) =44 1(j=34
1 2 6
(e} O L 4 ——O c rlag)=4,, r(ay)=4,, 8(j=12 0
’ )= s =3
1 2 3 4 S 6 7
O O O O o
o O O O O o} rap) =,
Es 1 0
(1<j<8)
8
1 2 3 7
o0—O0—°0 —O r(a;) =4y, rias)=4,, 8(j=12) 0
| F,
r(ay)=4y, r(2,) =4, 1(j=39)
r(a;)=4;
1 2 3 4 F, e 1 0
: (1<j<4)
ol “—o o BC, Hay) =4, 8 7
Olaz G =4 1 0
2
(j=12)
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Table 10. Centers and Linearizers of Simply Connected Real Simple Lie Groups.
Denote by g a noncompact real simple Lie algebra that does not admit a complex
structure, G the corresponding simply connected Lie group. Denote by {Z),
the cyclic group of order m =2, 3, ..., co with generator Z. In the column
“Generators” representatives of the generators of Z(G) in the lattice P (dy¢c)) N
f(C) (see Theorem 5.3.7) are listed. In the fifth column the group G;, = G/4(G)
is given (for classical g); here Spin, , denotes the connected real form of the group
Spin,, ,(C) (see exercises to § 4.3) corresponding to the real form so, , of s0,,,,(C).
In the column “b,” indicated is a representative of an element b, € Z(G) with the
property R(b,) = &(dR)id, where R is an irreducible complex representation of G

such that dR ~ dR (see 1.3°).
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Table 10 (cont.)

9 Z(G) Generators of Z(G) A(G) G bo
{2Z,,(1=2p)
$03,21-2 Z,=mY,, Z,ifl=4g9+2
(Z,> x{Z3), QQZ,+2,) Spin; 3-,
(1=3) Z,=(hy-, +h)/2 or 4q+ 3, 0 otherwise
(I=2p+1)
5025, 2-p)
Z,=mnY,, )
I=2q+1 (Z,)4x{Z3), Zeh {Z3), Spiny,, 24-p) (P+9Z,
@<p<ri2)) T
$02p,201-p)
Z,=mY,, X
2<p<l)2) (Z, )4 x{2Z4>, Z,>, Sping, 24-p) (1+92Z,
Zy=h,+(h_y+h)2
1=2q,podd
$02p.2(1~p) Zy=m¥,,
(219, %x{Zs), .
(2<p<if2) Zy=h,+(h_,+h)/2 (Z\+2,+Zs), Spiny,, 24-p) q9Z,
x<{Zs),
I, peven, I=2q Zs=mY
S02p41,2(1-p)~1 Zz=(h1—1+hl)/2 .
(2392 %{Z3), {Z3), Spingp+1, 20-p)+1 0
(I<p<[U-1/2]) Zy=h,
uf(H)
(hy+hy+---+hy, )2
I=2p+1 Ze>x Zg=mY,—plh_y+h)/2 4Z), e h
+( - + 4
(p=l) The two-sheeted 2 hapn)f
covering of the
uf(H) group U¥H)
Zy=m¥, —plh- +h),
I=4p+2 (Z%;xKZg)y QZg), (hl+h_,+"'+h4pﬂ)/2
Zg=mn¥ —p(h-, +h)
(p=0)
uf(H) Zy=m) —p(h-y +h),
(24, x{Z0Y0 Z,) (h1+h3+"'+h4p—1)/2
I=4p(p=1) Zyo=m~2y—plh-y+h)

(0743

101dey)) 20UAIRYPY
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Table 10 (cont.)

g 2(G) Generators of Z(G) A(G) bo
El (Zy>, Z, = hg (Z), 0
ElI {Zy Zy=(h, — hy + h, — hg)/3 (3Z,), 0

EIlI {Z) Zy = (hy — hy + hy — h)/3 32, | 22,
EIV {e} {e} 0

EV (Z:>s Z, = (h, +hs + hy)/2 QZ,>, 0

EVI | <Z,% % <{Zy), Zy = (b + s + a2 Zy, | z
Z,=h,

EVII {Z, ) Z, = (hy + hy + h,)/2 QZ,), 0

EVIII {Z:>, Z, =h, (Z,>, 0

EIX {Z;), Z,=h, {Zy), 0

FI (2>, Z=h, (25, 0
FII {e} {e} 0

G (Z), Z=h, KZ), 0
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