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Preface 

This book is based on the notes of the authors’ seminar on algebraic and Lie 
groups held at the Department of Mechanics and Mathematics of Moscow 
University in 1967/68. Our guiding idea was to present in the most economic 
way the theory of semisimple Lie groups on the basis of the theory of algebraic 
groups. Our main sources were A. Borel’s paper [34], C. Chevalley’s seminar [14], 
seminar “Sophus Lie” [15] and monographs by C. Chevalley [4], N. Jacobson 
[9] and J-P. Serre [16, 171. 

In preparing this book we have completely rearranged these notes and added 
two new chapters: “Lie groups” and “Real semisimple Lie groups”. Several 
traditional topics of Lie algebra theory, however, are left entirely disregarded, 
e.g. universal enveloping algebras, characters of linear representations and 
(co)homology of Lie algebras. 

A distinctive feature of this book is that almost all the material is presented 
as a sequence of problems, as it had been in the first draft of the seminar’s notes. 
We believe that solving these problems may help the reader to feel the seminar’s 
atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and 
sometimes solutions, are contained in hints given at the end of each section. The 
proofs of certain theorems, which we consider more difficult, are given directly 
in the main text. The book also contains exercises, the majority of which are an 
essential complement to the main contents. 

As a rule, the generally accepted terminology and notation is used. Neverthe- 
less, two essential deviations should be mentioned. Firstly, we use the phrase 
tangent algebra of a Lie group for the Lie algebra associated with this group, 
with a view to emphasizing the construction of this Lie algebra as the tangent 
vector space to the Lie group. Secondly, in contrast to some monographs and 
textbooks, we call a Lie subgroup of a Lie group any of its subgroups which is an 
embedded (and necessarily closed) submanifold, while an immersed submanifold 
endowed with the structure of a Lie group is called a virtual Lie subgroup. 

The reader is required to have linear algebra, the basics of group and ring 
theory and topology (including the notion of fundamental group) and to be 
acquainted with the main concepts of the theory of differentiable manifolds. 

Numbering of subsections, formulas, theorems, etc. is performed inside each 
section and sections are numbered inside a chapter. In references we generally 
use triple numbering: for instance, Problem 2.3.17 refers to Problem 17 of 9 3, 
Chapter 2. However, we skip the number of a chapter (or a section) in references 
inside of it. The last chapter is not divided into sections but in references is 
considered consisting of one section: 8 1. 



Preface 

In compiling the first draft of seminar’s notes we enjoyed the help provided 
by E.M. Andreyev, V.G. Kac, B.N. Kimelfeld and A.C. Tolpygo. In computing 
the decompositions of products of irreducible representations (Table 5) B.N. 
Kimelfeld, B.O. Makarevich, V.L. Popov and A.G. Elashvili took part. Besides, 
we would like to point out that certain nice proofs were the result of seminar’s 
workout. 

We are grateful to D.A. Leites thanks to whose insistence and help this book 
has been written. 



The Translator’s Preface 

In my 20 years of work in mathematics, I have never met a Soviet mathe- 
matician person&y involved in any aspect of representation theory who would 
not refer to the rotaprint notes of the Seminar on algebraic groups and Lie groups 
conducted by A. Onishchik and E. Vinberg with the participation of A. Elashivili, 
V. Kac, B. Kimelfeld, and A. Tolpygo. The notes had been published in 1969 by 
Moscow University in a meager number of 200 copies. 

Ten years later A. Onishchik and E. Vinberg rewrote the notes and considerably 
enlarged them. This is a translation of the enlarged version of the notes; its 
abridged variant was issued in Russian in 1988. 

The reader might wonder why one should have the book: why not Bourbaki’s 
book, or S. Helgason’s, or one of the excellent (text) books, say, by J. Humphreys 
or C. Jantzen. Here are some important reasons why: 

-Nowhere are the basics of the Lie group theory so clearly and concisely 
expressed. 

-This is the only book where the theory of semisimple Lie groups is based 
systematically on the technique of algebraic groups (an idea that goes back to 
Chevalley and is partly realized in his 3 volumes on the theory of Lie groups 
(1946, 1951, 1955)). 

-Nowhere is the theory of real semisimple finite-dimensional Lie groups 
(their classification and representation theory included) expressed with such 
lucidity and in such detail. 

-The unconventional style- the book is written as a string of problems- 
makes it useful as a reference to physicists (or anyone else too lazy to bother with 
the proof when a formulation suffices) whereas those interested in proofs will 
find either complete solutions or hints which should be ample help. (They were 
ample for some schoolboys, bright boys I must admit, at a specialized mathe- 
matical school in Moscow.) 

-The reference chapter contains tables invaluable for anybody who actually 
has to compute something pertaining to representations, e.g. the table of decom- 
positions into irreducible components of tensor products of some common 
representations, which is really unique. 

The authors managed to display in a surprisingly small space a quite large 
range of topics, including correspondence between Lie groups and Lie algebras, 
elements of algebraic geometry and of algebraic group theory over fields of real 
and complex numbers, basic facts of the theory of semisimple Lie groups (real 
and complex; their local and global classification included) and their representa- 
tions, and Levi-Malcev theorems for Lie groups and algebraic groups. 



VIII The Translator’s Preface 

There is nothing comparable to this book by the broadness of scope in the 
literature on the group theory or Lie algebra theory. 

At the same time, the book is self-contained indeed since only the very basics 
of algebra, calculus and smooth manifold theory are really needed to understand 
it. It is this feature that makes it compare favourably with the books mentioned 
above. 

On the other hand, as far as algebraic groups are concerned, it cannot replace 
treatises like those by Humphrey or Jantzen, especially over fields of prime 
characteristic. Nevertheless, this book might serve better for the first acquaintance 
with these topics. 

. 

The algebraic groups, however, though vital in the approach adopted, are not 
the main characters of the book while the theory of Lie groups is. Still, the 
viewpoint of algebraic group theory enabled the authors to simplify some proofs 
of important theorems. Other novelties include: 

-44alceu closure which enabled the authors to give a new proof of existence 
of an embedded (here: virtual) Lie subgroup with given tangent algebra; 

-a proof of the fixed point theorem for compact groups of affine transforma- 
tions that does not refer to integration over the group and corollaries of this 
theorem, such as Weyl’s theorem on unitarity of a compact linear group and the 
algebraicity of compact linear groups; 

-a generalization of V. Kac’s classification of periodic automorphisms based 
on ideas different from those put forward by Kac originally; 

-a simple proof of I?. Cartan’s theorem on the conjugacy of the maximal 
compact subgroups, that does not require any Riemannian geometry. 

Lastly, I believe that some further reading on the rapidly developing gener- 
alization of the topic of the book should be recommended, including: 

(Twisted) loop algebras and, more generally, Kac-Moody algebras: 
V. Kac: Infinite-dimensional Lie algebras, 2nd ed. Cambridge Univ. Press, 

Cambridge, 1983; 
V. Kac., A. Raina: Bombay lectures on highest weight representations of 

infinite dimensional Lie algebras, Adv. Series in Math. Phys. 2, World Sci., 
Singapore, 1987; 

A. Pressley, G. Segal: Loop groups. Clarendon Press. Oxford, 1986. 
Lie superalgebras and stringy Lie (super) algebras: 
V. Kac: Lie superalgebras. Adv. Math. 26, 1977, 8-96. 
M. Scheunert: The theory of Lie superalgebras. An introduction. LN in Math. 

# 716, Springer, Berlin, 1979. 
D. Leites (ed): Seminar on supermanifolds, ~01s. 1 and 3. Kluwer, Dordrecht, 

1990. 
Finally, I wish to contribute one more problem to this compendium of prob- 

lems. The importance of Table 5 has been rapidly increasing of late, in particular 
with the introduction of new ideas and problems in theoretical physics by 
V. Drinfeld (“quantum groups”, quadratic algebras, etc.). The time and ingenuity- 
consuming task of acquiring similar data should be solved once and for all: 



The Translator’s Preface IX 

Problem. Write a program for a computer to calculate data similar to those 
of Table 5, e.g. S”@(A)) @ A”(R(M)), etc., together with an explicit expression 
for the h ighest (lowest) weight vectors oft he irreducible components of the tensor 
product in terms of the vectors from the initial spaces- factor6 

I am sure that the reader will enjoy the book and treasure it as does everybody 
I know, who was lucky enough to get a copy in Russian. 

Petrozavodsk-Moscow-Stockholm, 1979-89 Dimitry Leites 

’ As far as I know, some partial results in this area were obtained recently in Montreal and at Moscow 
University. 
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Commonly Used Symbols 

Z-ring of integers 
Q, R, @-fields of rational, real and complex numbers respectively 
U-group of complex numbers with absolute value 1 
O-U-skew field of quaternions 
A n -n-dimensional coordinate afflne space 
P-n-dimensional coordinate projective space 
P(V)-projective space associated with a vector space V 
F(V)-flag manifold (variety) associated with a vector space V 
I/* -vector space dual to a vector space V 
+--linear map of dual spaces dual to a linear map q 
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L( V)-(associative) algebra of linear transformations of a space V 
GL( T/)-group of invertible linear transformations of V 
GA(V)-group of invertible affine transformations of V 
L,(K)-(associative) algebra of n x y2 matrices over a field K 
GL,(K)-group of invertible yt x yt matrices over a field K 
det, tr-determinant and trace of a matrix or a linear transformation 
E-unit matrix or identity linear transformation 
id-identity map (for nonlinear maps) 
0 -sign of the direct sum of vector spaces or algebras 
+)--sign of the semidirect sum of algebras (the ideal is to the left) 
xl -sign of the semidirect product of groups (the normal sub group is to the left) 
@-sign of the tensor product of vector spaces or algebras 
(Q-linear span of a subset S of a vector space; subgroup generated by a 

subset S of a group 
c -sign of inclusion, possibly identity 
- -sign of isomorphism - 



Chapter 1 
Lie Groups 

Here the notions of the differentiable (smooth) manifold, differentiable 
(smooth) map, direct product of differentiable manifolds, tangent space and 
the differential of a map (the tangent map) are assumed to be known. Several 
other notions and theorems on differentiable manifolds will be recalled in the 
sequel. 

The ground field K is either IR or C. 
Unless otherwise stated, the differentiability of functions of real variables is to 

be understood in such a way that in every case there are as many derivatives as 
needed. The differentiability of manifolds and maps is understood accordingly. 
The differentiability of functions of complex variables is, clearly, equivalent to 
their analyticity. 

The Jacobi matrix of a system of differentiable functions fi, . . . , fm of variables 

Xl, “‘9 x, is denoted by 

denoted by Wf f) 1”*” ’ 
W *Al) 

The tangent &ace to 
differential of a map f: 

@f f) l,**-:, m 
a( 

For m = n its determinant (Jacobian) is 
X19-9 x,)’ 

a manifold X at a point x is denoted by T,(X). The 
X + Y at a point x is a linear map T,(X) + T,,,,(Y) 

denoted by d,f. When it is not misleading we omit the index and write T(X) 
instead of T,(X). 

We assume that every differentiable manifold has a countable base. In par- 
ticular this is so in all the cases when a manifold arises as a result of some 
construction which start with a manifold possessing a countable base, e.g. as a 
submanifold, quotient manifold, covering manifold, direct product of manifolds. 

5 1. Background 

lo. Lie Groups. A group G endowed with a structure of a differentiable 
manifold over K so that the maps 

,LC G x G ---) G, where p:(x,y)~xy 

and 
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I: G-+G, where I: XHX-‘, 

are differentiable is called a Lie group over K. In other words, the coordinates 
of the product must be differentiable functions of the coordinates of factors, and 
the coordinates of the inverse element must be differentiable functions of the 
coordinates of the element itself. 

A Lie group over UZ is also called a complex Lie group and a Lie group over 
II3 is called a real Lie group. Any complex Lie group may be considered as a real 
Lie group of doubled dimension. 

Examples of Lie groups. 1) The additive group of K. It will be denoted by K, 
but it is also denoted in the literature as G,(K). 

2) The Multiplicative group K* of K (also denoted in the literature as G,(K)). 
3) The CivcEe lJ = (2 E UZ*: I.21 = 11 is a real Lie group. 
4) The general linear group GL,(K) of invertible yt x yt matrices over K. The 

differentiable structure on GL,(K) is defined as on the open subset of the vector 
space L,(K) of all n x n matrices. 

5) The group GL(V) of all invertible linear transformations of an n- 
dimensional vector space V over K may be considered as a Lie group under the 
isomorphism GL( V) + GL,(K) which to any linear transformation assigns its 
matrix in a fixed basis of K The formula describing how a matrix of a linear 
transformation changes under the change of basis implies that the differentiable 
structure on GL(V) does not depend on the choice of a basis in T/. 

6) The group GA(S) of (invertible) affine transformations of an n-dimensional 
affine space S over K is also naturally endowed with a differentiable structure 
which makes it a Lie group. Namely, in an affine coordinate system on S the 
affine transformations are expressed by formulas of the form X F-+ AX + B, where 
X is the column of coordinates of a point, A an invertible square matrix and 
B a column vector. The entries of A and B can serve as (global) coordinates on 
GA(S). The differentiable structure on GA(S) defined by them does not depend 
on the choice of an affine coordinate system in S since under a change of affine 
coordinates in S they are transformed in a differentiable way. 

7) Any finite or countable group with discrete topology and the structure of 
a O-dimensional differentiable manifold. 

The direct product of Lie groups is the direct product of abstract groups 
endowed with the differentiable structure of the direct product of differentiable 
manifolds. 

Problem 1. The direct product of Lie groups is a Lie group. 
The direct product K” of y1 copies of the additive group of the field K is called 

the n-dimensional vector Lie group. 

2’. Lie Subgroups. A subgroup H of a Lie group G is called a Lie subgroup if 
it is a submanifold of the manifold G. By a submanifold of codimension m of a 
differentiable manifold X we mean a subset Y c X such that in an appropriate 
neighbourhood of any of its points it may be determined in some local coor- 
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dinates by a system of equations 

f( i X1,***yXpj) = 0 fori= l,...,m, 

where fi, . . . . fm are differentiable functions and rk a(f f) ” l ’ ’ ’ m = m at this 
point. a( Xl,***, X?l) 

(Sometimes the terms “submanifold” and “Lie subgroup” respectively are 
understood in a wider sense. In our book to this more general interpretation 
would correspond the term “virtual Lie subgroup” (cf. 2.9).) 

The submanifold Y is uniquely endowed with the structure of an (n - m)- 
dimensional differentiable manifold compatible with the induced topology so 
that the identity embedding Y r, X is a differentiable map of constant rank 

Nf f) n- m. If, in the above notation, 
I?***, m 

W 
# 0 at a given point then the 

1,***9 xm) 

restrictions of x,+~, . . . , x, may serve as local coordinates on Y in a neighbour- 
hood of this point. 

Problem 2. A Lie subgroup is a Lie group. 

Examples. 1) Any subspace of a vector space is a Lie subgroup of the vector 
Lie group. 

2) The group U (see Example 1.3) is a Lie subgroup of C* considered as a real 
Lie group. 

3) Any discrete subgroup is a Lie subgroup. 
4) The group of n x n invertible diagonal matrices is a Lie subgroup of 

ms~~* 
5) The group of n x n invertible (upper) triangular matrices is a Lie subgroup 

of GL,(K). 

Problem 3. Let H be a subgroup of a Lie group G. If there is a neighbourhood 
O(e) of the unit of G such that H r\ o(e) is a submanifold, then H is a Lie subgroup. 

A Lie subgroup of GL(V) (in particular, that of CL,(K) = GL(K”)) is called a 
linear Lie group. 

Problem 4. The group SL,(K) of unimodular (i.e. of determinant 1) n x n 
matrices is a Lie subgroup of codimension 1 in GLJK). 

Problem 5. The group O,(K) of orthogonal n x n matrices is a Lie subgroup 
of dimension n(n - 1)/2 in GLJK). 

Problem 6. The group U,, of unitary n x n matrices is a real Lie subgroup of 
dimension n2 in GL,(@). 

Problem 7. Any Lie subgroup is closed. 

3’. Homomorphisms, Linear Representations and Actions of Lie Groups. Let G 
and H be Lie groups. A map f: G -+ H is called a Lie group homomorphism if it 
is both a homomorphism of abstract groups and a differentiable mapping. 
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A homomorphism f: G -+ H is an isomorphism if there exists an inverse homo- 
morphism f-l : H -+ G, i.e. if f is an isomorphism of abstract groups and at the 
same time a diffeomorphism of manifolds (however, see Corollary of Theorem 5). 

Examples. 1) The exponential map x I+ ex is a homomorphism of the additive 
Lie group K into the multiplicative Lie group K*. 

2) The map A H det A is a Lie group homomorphism of GL,(K) onto K*. 
3) For any g E G the inner automorphism 

a(g): x t--, gxg-’ . 

is a Lie group automorph .ism. 
4) The map x I+ eix is a Lie group homomorphism of IF!! onto U. 
5) The map assigning to each affine transformation of an affine space S its 

differential (linear part) is a homomorphism of the Lie group GA(S) (cf. Example 
1.6) into the Lie group GL(V), where T/ is the vector space associated with S. 

6) Any homomorphism of finite or countable abstract groups is a homo- 
morphism of zero-dimensional Lie groups. 

Clearly, the composition of Lie group homomorphisms is also a Lie group 
homomorphism. 

A Lie group homomorphism of G into GL(V) is called a linear representation 
of G in the space K 

Problem 8. Let us assign to any matrix A E GL,(K) the linear transformations 
Ad(A) and Sq(A) in the space L,(K) by the formulas: 

Ad(A)(X) = AXA-‘, Sq(A)(X) = AXA’. 

Prove that Ad and Sq are linear representations of the Lie group GL,(K) in the 
space L,(K). 

Sometimes one considers complex linear representations of real Lie groups or 
real linear representations of complex Lie groups. In the first case one assumes 
that the group of linear transformations of a complex vector space is considered 
as a real Lie group, in the second one that the given complex Lie group is 
considered as a real one. 

A group homomorphism a of a Lie group G into the group Diff X of diffeo- 
morphisms of a manifold X (which is not a Lie group in any conceivable sense) 
is called a G-action on X if the map G x X + X, where (g, x)~-+a(g)x, is 
differentiable. 

Examples. 1) For any Lie group G we may define the following three G-actions 
on G itself: 

r(g)x = xg-’ 

a(g)x = gxg-’ 
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2) The natural GL,(K)-action on the projective space P(P) is a Lie group 
action. 

3) Any linear representation T: G --+ GL( V) of a Lie group G may be con- 
sidered as a G-action on the space V. 

4) Similarly, any homomorphism f: G + GA(S) may be considered as an 
action of the Lie group G on an affme space S. Such an action is called affine. 

Clearly, the composition of a homomorphism f: H + G and an action 
a: G + DiffX is the action a 0 f: H -+ Diff X. 

When it is clear which action we are speaking about we will write gx instead 
of cc(g)x. 

4’. Operations on Linear Representations. Suppose R and S are linear repre- 
sentations of a group G in spaces V and U respectively. The sum of R and S is the 
linear representation R + S of G in the space V @ U defined by the formula 

(R + wm + 4 = Rkl)v + s(g)u. 

The product of R and S is the linear representation RS of G in the space V @ U 
defined on simple (i.e. decomposable) elements by the formula. 

RS(g)(v 0 u) = R(g)v 6.3 S(g)u. 

The sum and the product of any finite number of representations are defined 
similarly. 

The dual (or the contragradient) of the representation R of a group G in a space 
I/ is the representation R* of G in the space V* defined by the formula 

W*(df N-4 = fvW-‘d* 

Problem 9. If R and S are linear representations of a Lie group G, then R + S, 
RS and R* are also Lie group representations (i.e. they are differentiable). 

For any integers k, I >, 0 the identity linear representation Id of the Lie group 
GL( V) in V generates the linear representation G l = (Id)k(Id*)z of GL(V) in the 
space V @ l l . @ V @ I/” @ l l l @ V* (k factors V and I factors V*) of tensors of 

(V), in type (k, I) on K Let us give convenient formulas for Tk ,(A), where A E GL 
the two cases which occur most often: k = 0 and k = i. 

The tensors of type (0, I) are l-linear forms on Y For any such a forn 
have 

n f we 

(T,*,(A)f)(v,,.*.,u,) = f(A-lv,,...,A-‘u,). (1) 

The tensors of type (1,1) are I-linear maps F: V x l l . x V + K For any such 
\ J 

1 factors 

a map F we have 

(T,,,(A)F)(v,,.. .,vJ = AF(A-‘v, ,..., A-‘II,). (2) 
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Problem 10. Prove (1) and (2). 

Problem 11. The representations Ad and Sq considered in Problem 8 are 
exactly the natural linear representations of GL,(K) in the spaces of tensors of 
types (1,1) and (2,0) respectively written in the matrix form. 

If R is a linear representation of a group G in a space V and U c V is an 
invariant subspace then the subrepresentation R,: G + GL(U) and the quotient 
representation R,,,: G + GL (V/U) are defined naturally. 

Evidently, any subrepresentation and any quotient representation of a linear 
representation of a Lie group are its linear representations (as of a Lie group). 

A special role in group theory is played by one-dimensional representations 
which are nothing but homomorphism of a given group G into the multiplicative 
subgroup of the ground field. They are called characters’ of the group G. 
Characters form a group with respect to the multiplication of representations; 
the inversion in this group is the passage to the dual representation. 

In the context of the Lie group theory characters are supposed to be differen- 
tiable. In this book we will only consider complex characters of (real and 
complex) Lie groups. The group of complex characters of a Lie group G will be 
denoted by x(G). 

The additive notation is traditionally used in the group of characters: 

(Xl + x2)(9) = xl(s)x2(sx (Xl 9 x2 E Jw% 9 e G)* 

5’. Orbits and Stabilizers. Suppose a is an action of a Lie group G on a 
manifold X and let x E X be a point. Consider the map 

a,: G -+ X, where a,: g+-+cc(g)x. 

Its image is the orbit a(G)x of the point x and the inverse image of x is nothing 
but its stabilizer 

G, = {g E G: a(g)x = x}. 

The inverse images of the other points of the orbit are left cosets of G with respect 
to Gx. 

Problem 12. Prove that cc, is differentiable and its rank is constant. 

Recall that a differentiable map f: X --) Y of constant rank is linearizable in a 
neighbourhood of any point of X. This implies that 

(1) the inverse image of any point y = f(x) is a submanifold of codimension 
k = rkfin X and T,(f-‘(y)) = KerdJ; 

’ In the representation theory the term “character” is more often understood in a wider sense as a 
trace of any (not necessarily one-dimensional) linear representation. However, we will not consider 
characters in this wider sense and the term “character” will always be understood as above. 
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(2) for any point x E X the image of any sufficiently small neighbourhood O(x) 
is a k-dimensional submanifold in Y, and 7”&(f(0(x))) = Im d,J 

Besides, 
(3) if f(X) is a submanifold in Y then dimf(X) = k. 
Indeed, if we had had dimf(X) > k, then by (2) the manifold f(X) would have 

been covered by a countable set of submanifolds of a smaller dimension, but this 
is impossible. 

The listed properties of constant rank maps and Problem 12 immediately 
imply 

Theorem 1. Suppose a is an action of a Lie group G on a differentiable manifold 
X. For any x E X the map a, is of constant rank. Let rk a, = k, then 

1) the stabilizer GJ: is a Lie subgroup of codimension k in G and TJG,) = 
Ker &cc,; 

2) for any sufficiently small neighbourhood o(e) of the unit of G the subset 
c@(e))x is a submanifold of dimension k in X and T,(a(O(e))x) = Imd,a,; 

3) if the orbit a(G)x is a submanifold in X, then dim cx(G)x = k. 

Note that an orbit is not always a submanifold. (A counterexample will be 
given in the following subsection.) 

Therefore the following statement is of interest to us: 

Problem 13. Any orbit of a compact Lie group action is a closed submanifold. 

The most important examples of compact Lie groups (besides finite ones) are 
the n-dimensional torus -IT” (the direct product of n copies of U), the orthogonal 
group On( = O,(R)) and the unitary group Un. To prove the compactness of On 
note that it is distinguished in the space L,(R) of all real matrices by algebraic 
equations Ck UikLZj, = 6,, hence is closed in L,(Iw). These equations imply 1 aij/ < 1 
which means that 0, is bounded in L,(R). The compactness of U, is proved 
similarly. We will continue the discussion of properties of compact Lie groups 
and their orbits in 6 3.4. 

Statement 1) of the theorem may be used to prove the fact that a given 
subgroup H of a Lie group G is a Lie subgroup. For this it suffices to realize H 
as the stabilizer of a point for some action of the Lie group G. Most (if not all) 
interesting Lie subgroups arise in this way. If the orbit of a given point under this 
action is a submanifold of a known dimension, then the dimension of H may be 
computed using statement 3). 

We can apply this to the representation of the Lie group GL(V) in the space 
of tensors (see 4”) to find that the group of invertible linear transformations 
preserving a tensor is a linear Lie group. 

Examples. 1) Consider the representation of GL( V) in the space B+(V) of 
symmetric bilinear forms (i.e. symmetric tensors of type (0,2)). The group 0( V, f) 
of invertible linear transformations preserving a symmetric bilinear form f 
is a linear Lie group. If f is nondegenerate, then its orbit is open in B+(V), 
hence 
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dimO(T/,f) = dimGL(V) - dimB+(V) = n2 - 
n(n + 1) n(n - 1) 

= 2 2 , 

where n = dim I/. 
2) Similarly, consider the representation of GL(V) in the space B-(V) of 

skew-symmetric bilinear forms. The group Sp(l/,f) of invertible linear trans- 
formations preserving a skew-symmetric bilinear form f is a linear Lie group. If 
f is nondegenerate, then 

dim Sp( VJ) = dim GL(V) - dim B-( i/‘) = n(n + 1)/2 

3) Consider the representation of GL(V) in the space of algebras on V (i.e. 
tensors of the type (1,2)). We find that the group of automorphisms of any algebra 
is a linear Lie group. 

6’. The Image and the Kernel of a Homomorphism. Suppose f: G -+ H is a Lie 
group homomorphism. Consider the action a of G on the manifold H defined by 
the formula 

where the right-hand side is the product of elements of H. In other words, a is 
the composition off and the action 1 or H on itself by left translations. 

Let e be the unit of H. Then a, = f and cc(G)e = f(G); the stabilizer of e with 
respect to a coincides with Kerf. Theorem 1 being applied to the action a and 
the point e E H yields the following theorem. 

Theorem 2. Suppose f: G + H is a Lie group homomorphism. Then f is a 
mapping of constant rank. Let rk f = k. Then 

1) Ker f is a Lie subgroup of codimension k in G and T,(Ker f) = Ker d,f; 
2) for any sufficiently small neighbourhood o(e) of the unit of G the subset f (O(e)) 

is a submanifold of dimension k in H and T,( f (O(e))) = Im d, f; 
3) if f (G) is a Lie subgroup in H, then dim f(G) = k. 

Example. Consider the homomorphism det: GL,(K) -+ K*. Its kernel is the 
group SL,(K) of unimodular matrices. Since det(GL,(K)) = K*, we have 
rk det = 1. Hence SL,(K) is a Lie subgroup of codimension 1 in GL,(K). 

Clearly, if f (G) is a submanifold then f (G) is a Lie subgroup in H. The following 
example shows that f(G) is not always a submanifold. 

Problem 14. Let f: II2 ---+ U” be a Lie group homomorphism defined by the 
formula 

f(x) = (eia+, . . . , eiunx), where a,, . . . , a, E R. 

Its image f (IF!) is a Lie subgroup in -IT” if and only if a 1,. . . , a, are commensurable 
(i.e. their ratios are rational). 
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For y1 = 2 and incommensurable a,, a2 the subgroup f(R) is a dense winding 
of a (two-dimensional) torus. 

It can be shown that, for any ~1, if a,, . . . , a, are not related by any nontrivial 
linear relation with rational coefficients the subgroup f(R) is dense in -IT”. 

Problem 13 implies that the image of a compact Lie group under a homo- 
morphism is always a Lie subgroup. 

7O. Coset Manifolds and Quotient Groups. On the coset space of a Lie group 
with respect to a Lie subgroup, a differentiable structure can be naturally defined. 
To formulate the corresponding theorem we need several definitions. 

Let X and Y be differentiable manifolds and p: X + Y a differentiable surjec- 
tive map. For any function f defined on a subset U c Y we determine the 
function p*f on p-‘(U) by the formula 

(P*f )(x) = f(P(x)). 

The map p is called a quotient map if 
1) a subset U c Y is open if and only if p-‘(U) is open in X; 
2) a function f, defined on an open subset U c Y, is differentiable if and only 

if so is p*f. 
A map p is called a trivial bundle with the fibre 2 (where 2 is also a differentiable 

manifold), if there is a diffeomorphism 

v:YxZ+X 

satisfying 

A map p is called a locally trivial bundle with the fibre Z if Y can be covered 
by open subsets such that p is a trivial bundle with the fibre isomorphic to Z 
over each of these subsets. 

Problem 15. Any locally trivial bundle is a quotient map. 

Problem 16. If a quotient map p enters the commutative triangle 

where Z is a differentiable manifold and 4 is a differentiable map, then q is 
differentiable. If in the above triangle the map 4 also is a quotient map and cp is 
bijective, then q is a diffeomorphism. 
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The second assertion of Problem 16 may be interpreted as follows: given a 
map p of a differentiable manifold X onto a set Y there exists on Y no more than 
one differentiable structure such that p is a factorization with respect to this 
structure. 

Theorem 3. Let G be a Lie group and H its Lie subgroup. There is a unique 
differentiable structure on the space G/H of left cosets such that the canonical map 

p: G-+G/H, where p: g HgH, 

is a quotient map. With respect to this structure 
1) p is a locally trivial bundle; 
2) the natural G-action on G/H (by left translations) is differentiable; 
3) if H is a normal subgroup then the quotient group G/H is a Lie group. 
Proof In G/H, introduce a topology assuming a subset U c G/H open if and 

only if p-‘(U) is open in G. 

Problem 17. p is continuous and open. 

Problem 18. G/H is a Hausdorff space. 

The key point in the proof of Theorem 3 is the following 

Problem 19. There is a submanifold S c G containing the unit e and such that 
the map 

v:S x H-+G, where v: (s, h) F-+ sh, 

is a diffeomorphism of the direct product S x H onto an open subset of G. 

Under p the submanifold S is bijectively mapped onto a neighbourhood U of 
the point p(e) = H in the space G/H. Let us transport the differentiable structure 
from S to U by means of p. Then p is a trivial bundle on U. 

Further, for any g E G transport the differentiable structure from U to gU by 
means of the left translation by g. Since p commutes with the left translations, 
and by the definition of the differentiable structure on gU the map p defines a 
trivial bundle structure on g U. In particular, it is a quotient map over gU 
(Problem 15). This implies that for any g,, g2 E G the differentiable structures 
defined on g1 U and g2 U coincide on g1 U n g2 U (Problem 16). Thus, our 
definition of the differentiable structure on G/H implies that p is a locally trivial 
bundle with respect to this structure. 

To prove statements 2) and 3) of the theorem we need 

Problem 20. Let pi: Xi --+ Y be a locally trivial bundle with the fibre Zi for 
i= 1, 2. Then 

PI x p2: x, x x2 -+ yl x y2, where Pl x P2: (X1,X2)~(P1(X1),P2(X2)), 

is a locally trivial bundle with the fibre 2, x Z,. 
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The natural G-action on G/H is defined by the map 

A-: G x G/H -+ G/H, where A: (g',gH)wg'gH, 

which enters the commutative diagram 

GxG 2 G 

idxpj \I Ip " 

G x G/H i G/H 

where ,U is the multiplication in G. The map id x p is a locally trivial bundle, 
hence a quotient map. Applying Problem 16 to the commutative triangle made 
of id x p, q = p 0 ,u and ;1 we see that A is a differentiable mapping. 

Similarly, from the commutative diagram 

G/H x G/H ---% G/H 

we deduce the differentiability of the multiplication ,Q in the quotient group G/H 
when H is a normal subgroup. 

In conclusion, note that the tangent map 

is onto and its kernel is T,(H). (This follows for instance, from heading 1) of the 
theorem). Therefore T,,,,(G/H) is naturally identified with T,(G)/T,(H). 

Problem 21. Let a Lie group G act on a differentiable manifold X and let N c G 
be a normal Lie subgroup contained in the kernel of this action. Then the induced 
action of the Lie group G/H on X is differentiable. 

Running ahead, note that the kernel itself is a (normal) Lie subgroup of 
G. This follows from Theorem 4.2 since the kernel is the intersection of all 
stabilizers. 

Problem 22. Let H be a Lie subgroup of G and N a normal Lie subgroup 
contained in H. Then H/N is a Lie subgroup of G/N. 

8’. Theorems on Transitive Actions and Epimorphisms. An action a of a group 
G on a set X is called transitive if for any x, x’ E X there is a g E G such 
that a(g)x = x’. In this case the map cc, is onto and we have the commutative 
triangle 
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(3) 

where fix is a bijection commuting with the G-action. 

Theorem 4. Let G be a Lie group and a its transitive action on a differentiable 
manifold X. For any x E X the map 

Px: G/G, + X, where fix: gG,H a(&, 

is a diffeomorphism commuting with the G-action. 

Proof. Since p is a quotient map, the commutativity of (3) implies that /Ix is a 
differentiable map (Problem 16). By Theorem 1 

rk a, = dim X = dim G/G, 

so the tangent map da, is onto (at each point). Hence, the map dB, is an 
isomorphism of tangent spaces. Therefore px is a diffeomorphism. 

Now, let f: G + H be an epimorphism of Lie groups. Then the G-action a on 
H defined in 6” is transitive. Applying Theorem 4 to this action we obtain the 
following theorem. 

Theorem 5. Let f: G ---) H be a Lie group epimorphism. The map 

f: G/Kerf + H, iserf t-+fko 

is a Lie VOUP isomorphism. 

Corollary. A bijective Lie group homomorphism is an isomorphism. 

9O. Homogeneous Spaces. A differentiable manifold X with a transitive 
action of a Lie group G on it is called a homogeneous space of G. By Theorem 4 
any homogeneous space of G is isomorphic to G/H, where H c G is a Lie 
subgroup, with the canonical G-action. Homogeneous spaces are the most im- 
portant and interesting objects of geometry. 

In geometry significant is not the G itself but its image in Diff X. Therefore in 
the study of homogeneous spaces from this point of view we may confine 
ourselves to effective actions (see Problem 21). 

The linear group d,G,(x E X) is called the isotropy group of the homogeneous 
space X (at x). 

Examples. 1) The spaces of constant curvature-the Euclidean space E”, the 
sphere S” (n > 2) and the Lobachevsky space L” (n > 2)-may be considered as 
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homogeneous spaces of their groups of motions which are in a natural sense (real) 
Lie groups and act in a differentiable way. 

The group of motions of the Euclidean space is a Lie subgroup of the group 
of affrne transformations (cf. Example in 10’). Its construction is described in 
Example 11.2. The sphere S” is naturally embedded in W+l so that its motions 
are induced by orthogonal transformations of If?? This establishes an isomor- 
phism of the group of motions of S” with the Lie group On+l. Similarly, L” is 
embedded in [W”+l as a connected component of the two-sheeted hyperboloid 
x;-+***-x,2= 1, so that its motions are induced by the pseudoorthogonal 
(preserving the quadratic form X; - x: - l . 9 - ~1) transformations of IIF’ 
mapping each connected component of this hyperboloid onto itself. This estab- 
lishes an isomorphism of the group of motions of Ln with the subgroup of index 
2 of the Lie group 0, n , of all pseudoorthogonal transformations (cf. Problem 
3.10). 

In these three cases the stabilizer of a point is isomorphic to On. More precisely 
it is isomorphic (via the differential) to the isotropy group which coincides with 
the full orthogonal group of the tangent space. 

The spaces of constant curvature may be characterized as simply connected 
homogeneous spaces of real Lie groups satisfying one of the following equivalent 
conditions (see e.g. [47]): 

a) there exists an invariant Riemannian metric of constant sectional curvature; 
b) the isotropy group coincides with the full orthogonal group of the tangent 

space (with respect to some Euclidean metric). 
2) The Grassmann variety Gr, ,(K) of all p-dimensional subspaces of K” is a 

homogeneous space of GL,(K).‘The stabilizer of the subspace determined by 
xp+l = l ** = x, = 0 consists of matrices of the form 

where A E GL,(K), B E GL,_,(K), 

and its codimension in GL,(K) is ~(n - p). Therefore dim Gr, ,(K) = * 
Pb - P)* 

3) The manifold of positive definite symmetric real n x n matrices is a homo- 
geneous space of GL,((W) with respect to the action Sq defined in Problem 8 (cf. 
Example 5.1). Since the stabilizer of the unit matrix under this action coincides 
with the orthogonal group On, this homogeneous space is isomorphic to 
GLntR)/on* 

4) The group manifold of a Lie group G may be considered as a homoge- 
neous space of the Lie group G x G with respect to the action p defined by the 
formula 

The stabilizer of eeG 1s thediagonal of G x G (isomorphic to G) and the isotropy 
group coincides with th .e adjoint group Ad G (see 2.4). 
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10’. Inverse Image of a Lie Subgroup with Respect to a Homomorphism 

Theorem 6. Suppose f: G -+ H is a Lie group homomorphism and H, is a Lie 
subgroup in H. Then G, = f -‘(HI) is a Lie subgroup in G and 

Proof. Consider the composition a = p 0 f of the natural H-action /? on 
H/H, and the homomorphism f: 

The subgroup G, = f -‘(HI) is the stabilizer of the point p(e) E H/H,, where p 
is the canonical projection of H onto H/H,. By Theorem 1 G, is a Lie subgroup 
and 

T,(G) = Ker dppte). 

Clearly, cc,(.) = p 0 f. Hence, . 

da e p(e) = dep 0 def. 

Since Kerd,p = T,(H,), we have 

Ker 4 Up(e) = (de&f )-‘KW, >I* 

The theorem is proved. q 

Example. Let S be a Euclidean affme space, V the associated Euclidean vector 
space and d: GA(S) -+ GL(V) the homomorphism assigning to each affrne trans- 
formation its differential, cf. Example 3.5. Then d-‘(O( V)) is the group of motions 
of S. Theorem 6 enables us to deduce that the group of motions of a Euclidean 
space is a Lie subgroup in the Lie group of all affine transformations. 

Let us show several applications of Theorem 6 which will be used in what 
follows. 

Problem 23. Let H, and H, be Lie subgroups of G. Then H, n H, is also a Lie 
subgroup and T,(H, n Hz) = T,(H,) n T,(H,). 

Observe that the intersection of submanifolds is not, in general, a submanifold. 
For example, in c3, the intersection of the nonsingular surface z = x2 + y3 with 
the plane z = 0 is a singular curve (cuspidal cubic curve) which is not a 
submanifold. 

The statement of Problem 21 can be easily extended to any finite number 
of subgroups. It is also valid for an infinite number of subgroups (see Theorem 
-I 2) . . 
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In the following two problems Theorem 6 is applied to a linear representation. 
Since GL( V) is an open subset in the space L(V) the tangent space to GL( V) (at 
any point) is naturally identified with L(V). 

Problem 24. Let R: G -+ GL( V) be a linear representation of a Lie group G 
and U c V a subspace. Then 

G(U) = (g E G: R(g)U c u> 

is a Lie subgroup in G and 

TWJ)) = (5 E T,(G): bkR)(mJ = u}* 
Problem 25. Under the conditions of Problem 22 let W be a subspace of U. 

Then 

G(U, W) = (9 E G: (R(g) - E)U c w} 

is a Lie subgroup in G and 

WV9 W) = {t E T,(G): (d,R)(W = w}. 
11’. Semidirect Product. In many cases it is convenient to describe the struc- 

ture of Lie groups in terms of semidirect products. 
Recall that the semidirect product of abstract groups G, and G, is the direct 

product of sets G, and G, endowed with the group structure via 

~~l4lZwbh2) = (sl Wg,)h,,g,h,), (4) 

where b is a homomorphism of G2 into the group Aut G1 of automorphisms of 
the group G,. We will denote the semidirect product by G, x G, or more 
precisely, by G, >ob G,. The elements of the form ( gl, e) (resp. (e, 92)) form a 
subgroup in G, xb G, isomorphic to G, (resp. G2). This subgroup is usually 
identified with G, (resp. G2). The subgroup G, is normal and 

The subgroup G, is normal if and only if b is trivial i.e. b(G,) = e; in this case the 
semidirect product coincides with the direct product G, x G,. 

One says that a group G splits into a semidirect product of subgroups G, and 
G, if 

1) G, is normal; 
2) G, G, = G; 
3) G, n G, = {e}. 
In this case we have the isomorphism 

(6) 



16 Chapter 1. Lie Groups 

where b: G, + Aut G1 is the homomorphism defined by (5) and we will write 
G=G, xlG,orG=G,P<G1. 

A semidirect product of Lie groups G1 and Gz is defined as a semidirect product 
of abstract groups endowed with a differentiable structure as the direct product 
of differentiable manifolds. It is additionally required that b define differentiable 
G,-action on G,, i.e. that the map 

be differentiable. (In particular, the automorphism b(g2) of G, must be differen- 
tiable for any g2 E G2). This ensures the differentiability of group actions in the 
semidirect product. 

One says that a Lie group G splits into a semidirect product of Lie subgroups 
G1 and G, if it splits into their semidirect product as an abstract group. In this 
case the action b of G, on G, defined by (5) is differentiable and the abstract 
isomorphism (6) due to the corollary of Theorem 5 is a Lie group isomorphism. 

Examples. 1) Let R: G -+ GL(V) be a linear representation of a Lie group G. 
Then we may form a semidirect product V >aR G where Vis considered as a vector 
Lie group. 

2) Let Id be the identity linear representation of GL(V) in I/. Then there is an 
isomorphism 

V ~~~ GL(V) r GA(V) 

assigning to each u E V a parallel translation 

t,: xwx + v, (x E V). 

3) Every Lie subgroup G c GA(Y) containing all parallel translations splits 
into the semidirect product of the group of parallel translations and some linear 
Lie group 

H = dG c GL(V). 

In particular, the group of motions of the Euclidean space E” splits into the 
semidirect product of the group of parallel translations and the orthogonal group 
0 n* 

4) The Lie group of invertible triangular matrices splits into the semidirect 
product of the normal Lie subgroup of unitriangular matrices (triangular with 
the units on the diagonal) and the Lie subgroup of invertible diagonal matrices. 

Exercises 

1) If a group is endowed with the structure of a differentiable manifold 
such that the multiplication is differentiable, then the inversion is also 
differentiable. 
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2) Consider the group GL,(W) of invertible n x n matrices over HI as an open 
subset of the real vector space of all quaternionic n x n matrices. Show that 
GL,(W) thus endowed with a differentiable manifold structure is a real Lie 
group of dimension 4n2. 

3) The group Sp, of unitary quaternionic matrices is a Lie subgroup of dimen- 
sion 2n2 + n in GL,(W). 

4) Find all the Lie subgroups of the additive Lie group K. 
5) Any homomorphism f of the additive Lie group K into GL,(K) is of the 

form f(t) = exp(tX), where X E L,(K). 
6) The centralizer Z(g) of any element g of a Lie group G is a Lie subgroup. 
7) The dimension of the centralizer of any element of GIJK) is not less 

than n. 
8) The Lie group Sp, (see Exercise 3) is compact. 
9) The action of GL,(K) on Gr, ,(K) is differentiable. 

10) Let IV c U be subspaces of a vector space V over K. Let H be a Lie subgroup 
of GL( U/W). Then the set of invertible linear transformations of V preserv- 
ing U and W and inducing on U/W transformations from the group H is a 
Lie subgroup in GL(V). 

11) The Lie group GL,(K) splits into the semidirect product of SL,(K) and a 
one-dimensional Lie subgroup. 

Hints to Problems 

3. Note that the left translation by any element of H is an H-preserving 
diffeomorphism of the manifold G. 

7. As any submanifold, the Lie subgroup H is open in its closure g. If 
g E H, then gH is also open in H, hence intersects with H, and therefore 
g E H. 

9. Compute the matrix elements of the representations R + S, RS and R* in 
convenient bases. For example, if {ei} is a basis of the space V and {fj) is a 
basis of U then {ei @ h} is a basis of V @ U. The matrix elements of the 
representation RS in this basis are products of matrix elements of the repre- 
sentations R and S. 

10. It suffices to prove these formulas for simple tensors f and F, respectively. 
11. It suffices to look at the action of Ad(A) and Sq(A) on simple tensors 

(corresponding to matrices of rank 1). 
12. Use the commutative diagram 

13. It suffices to show that the orbit c;l(G)x is a submanifold in a neighbourhood 
of x. Let O(e) be a neighbourhood of the unit of G such that U = a(Cr(e))x is 
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14 . 

a submanifold in X. The orbit a(G)x is the union of the two nonintersecting 
subsets: U and rr(C)x, where C = G\O(e)G,. Since O(e)G, = uqEG O(e)g is 
open in G, its complement, C, is closed and therefore compact; but then 
a(C)x = cc,(C) is compact, hence closed in X. Thus the intersection of a(G)x 
with the open subset X\a(C)x of X containing x is a submanifold. 
Suppose a,, # 0. The intersection of the subgroup f(R) with the subgroup 

lJ- n-l - - 
{( q,***, 2,) E 7: 2, = l> 

is a cyclic group with generator 

t = (e 2NaAJ 
7 ’ l l 7 

e2ni(% - l/a,) 1 
) 7 l 

If at least one Of a&l,, . . . , a,-,/ a, is irrational, then t is an element of infinite 
order, and f(R) n IF”-’ is not closed in lJ”? But then f(R) is not closed in 
lJ”, hence is not a Lie subgroup (see Problem 7). 

18 . 

Conversely, suppose a,, . . . , a, are commensurable. Let us assume that not 
all of them are zero. Then Kerf = bZ, where b > 0. Let U be a neighbour- 
hood of the origin of R such that f(U) is a submanifold in U”. The comple- 
ment of the open submanifold U + bZ in II% will be denoted by C. Since 
f(c) = f(c n co7 bl) an d since C n [0, b] is compact, f(C) is closed in U”. The 
complement of f(C) is open and contains the unit of U”; the intersection of 
f(R) with this open set coincides with f(U). Hence, f(R) is a Lie subgroup 
(see Problem 3). 
Let y,H and g,H be different cosets. Then gT1g2 4 H. Since the group 
operations are continuous and H is closed (Problem 7), there are 
neighbourhoods O(gl) and 0(g2) of g1 and g,, respectively, such that 
O(g,)-%(g,) n H = 0. Then O(g,)H n O(g,)H = 0. Hence p(O(g,)) and 
p@(g,)) are nonintersecting neighbourhoods of the cosets g,H and g,H in 
the space G/H. 

19 . Let S, be a submanifold transversal to H at the point e, i.e. such that 

Since 

d (e g(ds, dh) = ds + dh, , 

then d (e e)~ is an isomorphism of the tangent spaces. Hence, there exist neigh- 
bourhoods S2 and O,(e) of the point e in the manifolds S, and H, respec- 
tively, such that v diffeomorphically maps S2 x o,(e) onto an open subset 
of G. Since v(s, hh’) = v(s, h)h’, the mapping v is a local diffeomorphism 
everywhere on S2 x c?,(e). Let S be a neighbourhood of e in S, such that 
S-lS n H c c,(e). Then v is locally diffeomorphic and injective on S x H, 
thus S is the desired submanifold. 
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Consider the commutative diagram 

GXX -x 

p x id 

I / 

G/N x X0 

where the horizontal arrow is the map defined by the given G-action on X 
and use the fact that p x id is a quotient map. 
Apply Problem 21 to the canonical G-action on G/H. 
Apply Theorem 6 to the identity embedding H, < G and the subgroup 
Hz c G. 
Apply Theorem 6 to the homomorphism R and the subgroup 

GL(V; U) = (A E GL(V): AU c U) c GL(V). 

It is easy to see that GL(V; U) is an open subset in the space 

L(V; U) = {x E L(V): xu c u}. 

Hence, GL( V; U) is a linear Lie group and 

T,(GL(V; U)) = L(V; U). 

Apply Theorem 6 to the homomorphism R and the subgroup 

GL(V; U, W) = {A E GL(V): (A - E)U c W} c GL(V). 

It is easy to see that GL(V; U, W) is an open subset in the plane E + 
L( V; U, W), where 

L(V; u, W) = {x EL(v): xu c W}. 

Hence, GL( V; U, W) is a linear Lie group and 

T,(GL( V; U, W)) = L(V; U, W). 

8 2. Tangent Algebra 

lo. Definition of the Tangent Algebra. The structure of a Lie group in a 
neighbourhood of the unit is determined by an algebra structure in the tangent 
space T,(G). The most straightforward way to define it is the following one. 
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Choose a coordinate system in a neighbourhood of the unit e of G such that 
all the coordinates of the point e are zero. The column of coordinates of a point 
.X will be denoted by X. Consider the Taylor series expansion of the coordinates 
of the product xy. Since ey = y and xe = X, we have 

xy = x + j7 + cc(X, 7) + ’ - l 
(1) 

where a is a bilinear vector-valued function and dots stand for the terms of degree 
23. 

The transposition of x and y yields 

yx= y+ x+ a@,X) + l .* 
(2) 

We see that the noncommutativity of the multiplication in G can only manifest 
itself in terms of degree >2. The noncommutativity is measured by the group 
commutator (x, y) = xyx-‘y-l. The second order terms in the Taylor series 
expansion of coordinates of (x, y) are easy to find from the relation (x, y)yx = xy. 
Comparing (I) and (2) we get 

(XJ) = y(xy) + “‘9 (3) 

where 

Y (x, 7) = a(%, jq - a@, x), (4) 

and dots stand for the terms of degree 23. 
In the tangent space T,(G), define a bilinear operation known as the bracket 

or commutator (5, q) w [c, q] by the formula 

where c is the column of coordinates of a tangent vector [ in the coordinate 
system of T,(G) associated with the chosen local coordinate system on G. Let us 
prove that this operation does not depend on the choice of the coordinate system. 

Consider another local coordinate system with the origin at e. The column of 
coordinates of x in the new coordinate system will be denoted by 7. Then 

where C is the Jacobi matrix of the old coordinates with respect to the new ones 
at e and dots stand for the terms of degree 22. Hence, 

(x, y) = c-‘y(Cx=, cj7) + l ** ) 
(6) 

where dots stand for the terms of degree 2 3. 
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The coordinates of a tangent vector r E T,(G) are transformed via the formula 

hence 

C5,rl= c-‘y(CT, cg. (7) 

Here [[, q] stands for the bracket defined in the old coordinate system. Formulas 
(6) and (7) show that [c, q-1 coincides with the bracket of 5 and q defined in the 
new coordinate system. 

The space T,(G) endowed with the above defined bracket e is called the tangent 
algebra of the Lie group G and is denoted by g. In the sequel we also denote Lie 
groups by Latin capitals and the corresponding tangent algebras by the corre- 
sponding small Gothic letters. 

It is clear (see formula (4)) that the tangent algebra is anticommutative, i.e. 

cb7-1 = --I39 51 
for any 5, YJ E g. 

Problem 1. The tangent algebra of a commutative Lie group is an algebra with 
the zero bracket. 

Let V be a finite dimensional vector space over K. We will naturally identify 
the tangent space of the Lie group GL(V) at E with the space L(V). 

Problem 2. The tangent algebra of GL( V) is the space L(V) with the bracket 

The tangent algebra of GL( V) (resp. GLJK)) is denoted by gl( V) (resp. gI,(K)). 

2’. Tangent Homomorphism. Let f: G + H be a Lie group homomorphism. 
Let d,f: T,G -+ T,H be its differential at e. 

Problem 3. The map d,f is a homomorphism of tangent algebras. 
We will sometimes call the map d,f the tangent homomorphism off and, by an 

abuse of notation denote it simply by d! 

Problem 4. The tangent algebra of a Lie subgroup of a Lie group G is a 
subalgebra of the tangent algebra g. In particular, the bracket in the tangent 
algebra of any linear Lie group is defined by the formula (8). 

By Theorerr) 1.2 the tangent algebra of the kernel of a Lie group homomor- 
phism coincides with the kernel of the tangent homomorphism. 

For example, the kernel of the homomorphism 

is SL,( K). 

det: GLJK) + K*. 
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Problem 5. (dE det)(X) = tr X. 

Thus, the tangent algebra of SL,(K) consists of all traceless matrices. It is 
denoted by 51,(K). 

Problem 6. Let H be a normal subgroup of G. Then lo is an ideal of g and, under 
the canonical identification of the tangent space T,(G/H) with the quotient space 
T,(G)/T,(H) the tangent algebra of G/H coincides with g/h. 

A particular case of the tangent homomorphism is the differential of a linear 
representation. The differential of a representation G --) GL(V) is a homomor- 
phism g --) gl( V). 

Problem 7. The differentials of the linear representations Ad and Sq defined in 
Problem 1.8 are of the form 

(dAd)(Y)(X) = Yx - xr, (dSq)(Y)(X) = YX + XY’. 

Let R and S be linear representations of a Lie group G in spaces I/ and U, 
respectively, and let dR and dS be their differentials. Let us compute the differ- 
entials of R* and RS. 

Problem 8. ((dR*)(c)f)(v) = - f((dR)(&). 

Problem 9. (d(RS))(c)(v @ U) = (dR(c))v @ u + v @ (dS(c))u. 

Using these formulas we may compute the differential of the product of any 
number of given linear representations and their duals. 

For example, the natural linear representation Tk z of GL(V) in the space of 
tensors of type (k, 1) is the product of k copies of the identity representation and 
I copies of its dual (see 1.4). Denote the differential of Tk 1 by zk zo Let us give 
convenient formulas for z0 I(X) and rl I(X), where X E gl(i/). ’ 

If f is an I-linear function on I/ then’ 

(Zg,l(X)f)(vl,***,vI)= -~f(v~~~~~~v~-~,Xv~~vi+l~*~~~V~)* (9) 
i 

If F: V x l l l x V -+ V (E factors in the source) is a multilinear map then 

(~~,~(X)F)(V~,**=,VZ) = ~F(v,,***,v,) - C F(v~,***,V~-~,XV~,V~+~,***,VI)* (10) 
i 

Problem 10. Prove formulas (9) and (10). 

3O. The Tangent Algebra of a Stabilizer. When a Lie subgroup H of G is defined 
as the stabilizer of a certain point for some G-action, the tangent subalgebra 
corresponding to H may be found using Theorem 1.1. 

Consider the case of a linear action R: G -+ GL(V). The differentiation of the 
identity R,(g) = R(g)u with respect to g at e gives 

VM~) = (dR)(ov, 



5 2. Tangent AIgebra 23 

where dR on the right-hand side stands for the differential of R. Therefore, the 
second part of heading 1) of Theorem 1.1 can be reformulated in this particular 
case as follows. 

Theorem 1. Suppose R is a linear representation of G in V and H is the stabilizer 
of v E V. Then 

b = (5 E g: dR(C)v = 01. 

In particular, using this theorem we can find the tangent algebra of a linear 
Lie group that preserves a tensor. 

Examples. 1) The group G of invertible linear transformations of a space V that 
preserve a fixed bilinear form f is the stabilizer off with respect to the natural 
linear representation TO 2 of GL(V) in the space of bilinear forms on V (see 
formula 1.1). Formula (6) implies that the tangent algebra of G consists of all 
linear maps which are skew-symmetric with respect to J 

2) Let A be a finite-dimensional algebra over K. The group Aut A of the 
automorphisms of A is the stabilizer of the structure tensor of A with respect to 
the natural linear representation Tl 2 of GL(A) in the space of tensors of type 
(1,2) on A (see formula (1.2)). Formula (10) implies that the tangent algebra of 
Aut A consists of all linear transformations D that satisfy 

D(ab) = D(a)b + aD(b), (a, b E A) (11) 

Such transformations are called derivations of A. Hence, they form an algebra 
with respect to the bracket. (This, however, may be verified directly.) This algebra 
is denoted by her A. 

4’. The Adjoint Representation and the Jacobi Identity. Any Lie group G has a 
natural linear representation in its tangent algebra g. It is defined as follows: 

For any g E G consider the inner automorphism 

a(g): xt-+gxg-l, where x E G. 

Denote by Adg the differential of a(g) at e. It is an automorphism of the tangent 
algebra. 

Problem 11. The map Ad: G + GL(g) is a linear representation of the Lie 
group G. 

Ad is called the adjoint representation of G. Let us compute the corresponding 
tangent homomorphism g -+ gI(g). 

Problem 12. In local coordinates in a neighbourhood of the unit we have 

gxg-‘= x+ y(g,x) + “‘9 

where dots stand for the terms of degree 23. 
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If we confine ourselves to terms of the first degree in X we obtain 

where dots stand for the terms of degree 22 in g. This implies that 

i.e. 

Since d Ad is a Lie algebra homomorphism g -+ gl(g), we have 

for any t, q, [ E g. Taking into account the anticommutativity of the bracket we 
may rewrite this identity in a more symmetric form: 

The identity (14) is called the Jacobi identity. 

Problem 13. Prove the Jacobi identity starting from 

AdG c Autg. 

An a 
algebra 

nticommutative algebra that satisfies the Jacobi identity is called a Lie 
2. We have prov ed 

Theorem 2. The tangent algebra of any Lie group is a Lie algebra. 

In particular, gI( V) is a Lie algebra. This however is easy to deduce directly 
from (8). 

A Lie algebra homomorphism g -+ gI( V) is called a linear representation of go 
By Problem 3 the differential of a linear representation of a Lie group is a linear 
representation of its tangent algebra. 

The Jacobi identity written in the form (13) means that for any Lie algebra g 
themapad:g--+ gI(g) defined by the formula 

is a linear representation of g. This representation is called the adjoint represen- 
tation of g. We have proved (formula (12)) the following statement: 

2 When the groun 
condition: “[t, <] 

.d field is of characteristic 2 the ant icommutativity 
= 0 for all < E 11”. . 

be replaced by a stronger 
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Theorem 3. The differential of the adjoint representation of a Lie group coincides 
with the adjoint representation of its tangent algebra. 

A Lie algebra with the zero bracket is called commutative. By Problem 1 the 
tangent algebra of a commutative Lie group is commutative. 

5’. Differential Equations for Paths on a Lie Group. By means of left or right 
translations we may define natural isomorphisms between tangent spaces to the 
Lie group G at different points. Let r(g) be a left translation by g E G, i.e. the 
transformation x I-+ gx, and r’(g) the right translation by 9, i.e. the transformation 
x++-xg. For any 5 E T,(G) put 

In particular, if t E g then g& {g E: T,(G). 
Evidently, if G c GL(V) is a linear Lie group and its tangent spaces at 

different points are naturally embedded into L(V), then gc and cg are the usual 
products of linear transformations. 

Problem 14. Let G be a Lie group. Then 

for any g, h E G, 5 E g. 
Also, note that by the definition of the adjoint representation we have 

s&l -’ = (Adg)t (5 E 9) 

Problem 15. Suppose a coordinate system with the origin at the unit e of a Lie 
group G is chosen in a neighbourhood of e. This naturally determines coordinate 
systems on the tangent spaces. Then the Taylor series expansions of coordinates 
of “products” gc and &, where 5 E g, are of the form 

where a is the bilinear vector-valued function from formula (1) and dots stand 
for the terms linear in c and of degree 2 2 in a. 

Problem 16. Let f: G + H be a Lie group homomorphism. Then 

df(sG = fm!f(5) 

df KS) = df (Of (9) 

for any g E G and 5 E T(G). 
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One of the constructed parametrizations of tangent spaces of a Lie group G 
with the elements of the tangent algebra g may be used to describe the differen- 
tiable paths in G in terms of g. This description will play an important role in 
the remainder of this section. 

A continuous map of a connected subset of the real line into the manifold X 
is called a path in X. 

For any differentiable path t I+ g(t) in a Lie group G define a path t w c(t) in 
the Lie algebra g of G by the equation 

The path c(t) is called the velocity of the path g(t). 
A velocity t(t) being given, equation (15) may be considered as a differential 

equation for g(t). Written in local coordinates it is of the form 

- 
dg(t) - = F(&),g(t)), dt 

where i&t) and z(t) are the columns of coordinates of the elements g(t) E G and 
c(t) E g, respectively, and F is a differentiable vector-valued function, that de- 
pends only on the chosen coordinate system on G and on the coordinate system 
on g. 

The uniqueness theorem for a system of ordinary differential equations implies 
that the velocity c(t) and the initial value g(t,) = go uniquely determine the curve 
g(t). The latter relation in Problem 14 shows that the set of solutions of (15) is 
invariant with respect to right translations. Since we can obtain any initial value 
by an appropriate right translation, any two solutions of (15) are obtained from 
each other by a right translation. 

Let us now discuss the existence of a solution of (15). 

Proposition 1. Let t I+ c(t) be a dqferentiable map of a connected subset S c R 
into the tangent algebra of a Lie group G. Then there exists a solution of (15) 
defined for all t E S. 

Proof. Clearly, it suffices to prove the proposition in the case when S is a 
segment. Furthermore, it suffices to show that there exists E > 0 such that for 
any t, E S there exists a solution of (15) defined for 1 t - t,l < E. Since the set of 
solutions is invariant with respect to right translations, we may assume that 
g(t,) = e. Choose a coordinate system in a neighbourhood O(e) of the unit of G, 
which sends the unit to zero. Let R be a positive number such that the neigh- 
bourhood o(e) in the local coordinate system contains the ball llxll < R. (Here 
after IIxII stands for the Euclidean norm of the column-vector x). Choose a 
coordinate system in the tangent algebra g and put C = rnaxles II((t Suppose 
that equation (15) in the above coordinate systems is of the form (16) and put 
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M - - max IIW, YN 
IId GC IIYII GR 

Then by the known existence theorem for a system of differential equations [43], 
equation (16) has a solution defined for I t - t, I < R/M and t E S. Since R/M does 
not depend on t,, it may be taken as the desired E. 0 

6’. Uniqueness Theorem for Lie Group Homomorphisms 

Theorem 4. A homomorphism of a connected Lie group G into a Lie group H is 
uniquely determined by the corresponding tangent homomorphism of Lie algebras. 

Proof. Let 4p = df be the tangent homomorphism of the homomorphism 
f: G + H. Let us show how f can be recovered from q. 

Let us join an arbitrary element g E G with the unit by a differentiable path 
g(t), where 0 < t < 1. Let c(t) be the velocity of this path. Put h(t) = f(g(t)). 
Problem 16 implies that 

This relation may be considered as a differential equation for h(t). Together with 
the initial condition h(0) = e it uniquely determines the path h(t) and therefore 
the element f(g) = h(1). 0 

Theorem 5. Let f be a homomorphism of a connected Lie group G into a Lie 
group H. Let H, be a Lie subgroup of H. If df(g) c Ijl, then f(G) c H,. 

Proof. If Ip(g) c E> then equation (17) may be considered as an equation in the 
group H,. Its solution in H, is at the same time a solution in H. Hence, h(t) E H, 
for any t E [0, l] and, in particular, f(s) = h( 1) E H,. 0 

Theorems 4 and 5 have plenty of important corollaries. 

Problem 17. The kernel of the adjoint representation of a connected Lie group 
G coincides with the center Z(G) of G. 

Define the center of a Lie algebra g to be the set 3(g) = (i E g: [c, <] = 0 for 
any 4: E g>* 

Problem 18. The tangent algebra of the center of a 
coincides with the center 3(g) of the tangent algebra g. 

connected Lie group G 

Problem 19. Let R be a linear representation of a connected Lie group G in a 
space V. A subspace U c V is invariant with respect to R if and only if it is 
invariant with respect the tangent representation dR of the Lie algebra g. 

Problem 20. Let G, and G2 be connected Lie subgroups of G. Then 

Gl = G2-91 = 92 and 

G 1= G,-g1 = 920 
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Problem 21. A connected Lie subgroup H of a connected Lie group G is normal 
if and only if its tangent algebra h is an ideal of go 

7’. Exponential Map. A differentiable path g(t) in a Lie group G defined for all 
t E R is called a one-parameter subgroup if 

(and then we automatically have g(0) = e and g( - t) = g(t)-‘). 
In other words, a one-parameter subgroup is a homomorphism of the Lie 

group R into G. Sometimes one defines a one-parameter subgroup to be the 
image of such a homomorphism. As Problem 1.14 shows a one-parameter 
subgroup in the latter sense may fail to be a Lie subgroup. 

Problem 22. The path g(t) defined by the differential equation (15) is a one- 
parameter subgroup if and only if c(t) = const and g(0) = e. 

For any 5 E g put g&t) for the one-parameter subgroup defined by equation 
(15), where c(t) = r. Call 4: its directing vector. For G = GL(V) it is known (and 
constitutes the theory of systems of linear differential equations with constant 
coefficients) that 

gs(t) = exP(t5) 

where the exponent is understood as the sum of the series 

Xk 
expX = C - 

k>O k! 
w E L(V)* 

The same is obviously true for any linear Lie group. 
For an arbitrary Lie group G put 

q(t) = g&l), where 5 E g* 

The map exp: g -+ G thus defined is called the exponential map. Here are some 
of its properties. 

Problem 23. g&t) = exp(t5). 

Problem 24. exp i; differentiable. 

Problem 25. do exp = Id. 
This implies the following statement. 

Proposition 2. The map exp is a diffeomorphism of a neighbourhood of zero of 
the tangent algebra g onto a neighbourhood of the unit of G. 

However at the global level, the exponential map does not possess, in general, 
any nice properties. It may be neither injective, nor onto, nor open, etc. (see 
Exercises 9 and IO). 



fj 2. Tangent Algebra 29 

Problem 26. Let f: G -+ H be a Lie group homomorphism. Then 

f(exPm = expk!f (0) for any 5 E g. 

In particular, 

Ad exp 5 = expadc for any 5 E g. 

As an example consider the homomorphism det: GL,(K) + K*. Since 
d(det) = tr (Problem 5), we have 

det expA = etrA 

for any A E L,(K). 

Problem 27. If [t, q] = 0 then exp(c + q) = exp c l exp q. 

In particular, if G is a commutative Lie group then the same applies to any 
5, q E g, i.e. exp is a homomorphism of the vector group g into G. Proposition 2 
implies that the kernel of this homomorphism is discrete and its image is an open 
subgroup of G. This can be used to classify the connected commutative Lie 
groups. 

Problem 28. If G is a connected commutative Lie group then exp g = G. 
Therefore, any n-dimensional connected commutative Lie group over K is iso- 
morphic to F/l-‘, where ris a discrete subgroup of K”. 

Problem 29. If G1 and G, are isomorphic commutative Lie groups then 
there exists an isomorphism of their tangent algebras which maps the kernel 
of the homomorphism exp: g1 + G, into the kernel of the homomorphism exp: 
!3r-+G2e 

Therefore, if r1 and rz are two discrete subgroups of K” then the groups V/T, 
and K*/I; are isomorphic (as Lie groups) if and only if & can be transformmed 
into & by a nondegenerate linear transformation of K”. 

When K = R there is a simple classification of discrete subgroups of K”: 

Problem 30. Any discrete subgroup Tof the vector Lie group IF!” is transformed 
by a nondegenerate linear transformation into a subgroup of the form 

This implies 

Proposition 3. Any n-dimensional connected commutative real Lie group is 
isomorphic to a Lie group of the form Uk x Rnwk. 

When K = C the classification of connected commutative Lie groups is con- 
siderably more complicated (see Exercises 12 and 13). 

Let us demonstrate one more application of the exponential map. 
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Problem 31. Let o be automorphism of a Lie group G. Then 

Ga = (9 E G: a(g) = g} 

is a Lie subgroup with the tangent algebra 

g” = (r E g: da(C) = r}. 

8”. Existence Theorem for Lie Group Homomorphisms 

Theorem 6. Let G and H be Lie groups and let G be simply connected. Then for 
any Lie algebra homomorphism (o: g -+ t> there exists a Lie group homomorphism 
f: G + H such that df = p 

Proof. Let us try to construct f following the lines of the proof of Theorem 4. 
Namely, in order to define the image of an element g E G let us connect it with 
the unit by a differential path g(t), where 0 < t < 1, and find the velocity t(t) of 
this path. Furthermore, consider a solution h(t) of equation (17) with the initial 
value h(0) = e. Set f(g) = h(1). 

Since there is an arbitrariness in the choice of g(t), we must prove that f(g) is 
well defined. This constitutes the bulk of the proof of the theorem. 

We will use the fact that in a simply connected differentiable manifold X 
for any two differentiable paths a, and aI that join some points x0 and x1 
there is a differentiable homotopy of a0 into a,, i.e. a differentiable map of the 
square 

z2 = {(t&z) E R2: 0 < t,, t, < l} 

into X such that the bottom line is transformed into cc0 and the top line is 
transformed into ‘x,, while the side lines are transformed into x0 and x,, 
respectively. 

Lemma. Let (tl, t,)t-+ g(t,, t2) be a differentiable map of I2 into a Lie group 
G. Let 

1 
&At9 s) - = 5(4 s)g(t,s) at 

i 
w s) 
- = q(t, s)g(t, s), as 

where &,s), vJ(t,s) E 9. Then 
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Proof of the lemma. Since t(t, s) and q(t, s) do not change under the multiplica- 
tion of g(t, S) on the right by any element of the group, then, proving (19) at a 
point (t,,s,) we may assume that g(t,,s,) = e. 

Choose a coordinate system in a neighbourhood of the unit of G and 
write (18) in coordinates in a neighbourhood of (to, so). By Problem 15 we 

get 

I 

y = z(t,~) + ct(@, ~),g(t,s)j + - 

ai% 4 
- = q(t,s) + cc(@t,s),g(t,s)) + l * l I) as 

where dots stand for the terms of degree >/ 2 in (t - t,, s - so). The differentiation 
of the first of these equations with respect to s and of the second one with respect 
to t performed at (to, s,> yields 

whence 

This means that 

The lemma is proved. q 
Let us continue with the proof of theorem. Let go(t) and gl(t) be two differen- 

tiable paths in G that join e with g. The corresponding paths in H obtained as 
the solutions of equation (17) will be denoted by h,(t) and h,(t). We must show 
that h,( 1) = h,( 1). 

There is a differentiable map t I-+ g(t, s) of the square Z2 into G satisfying 
1) g(t, 0) = cloo, sk 1) = s10; 
2) g(W = e, g(b) = 9. 
Find <(t, s) and r7(t, s) from equations (18). The property 2) implies that 

u1(O,s) = q(l,s) = 0. 



32 Chapter 1. Lie Groups 

NOW, define the differentiable map (t, S) I--, h&s) of 12 into H as the solution of 
the initial value problem for the differential equation in t with s as a parameter: 

Clearly, h(t,O) = h,(t) and h(t, 1) = h,(t). 
Let 

ayt, S) 
- = at, s)w,sj, as 

where [(t, s) E lj. Let us prove that [(t, S) = cp(q(t, s)). This will imply that C( 1, s) = 
0, hence h( 1, s) = const. In particular, we get h,(l) = h,( 1). 

By Lemma, 

at[(tJ) -= 
at 

a(p(5@J)) + [&(t s)) [(t s)] 
as 9 7 9 l 

. 
Thr 
ing 

s relat ion may be considered as a differential equation (in t) for a4 s)* 
v to ( 19) we obtain the same differential equation for cp(q(t, s)). Since 

Apply- 

Ut, s) = cP(q(t, s)) for any t. 
Thus, we have defined the mapping f: G -+ H. Let us prove that f is a 

homomorphism. 
Suppose gJt) and g2(t), where 0 < t < 1, are differentiable paths in G that join 

e with g1 and g2, respectively, &(t) and t2(t) are their velocities. The path that 
connects e with g1g2 may be defined by 

s(t) 
_ g2W) 

1 

for 0 < t < l/2 - 
g1(2t - lb2 for l/2 \< t < 1. 

Under an appropriate choice of paths g1 (t) and g2(t) the path g(t) is differentiable. 
Its velocity c(t) is defined by 

5(t) 252(t) for 0 < t < l/2 - - 1 25,w - 1) for l/2 < t < 1. 

I&(t), h2(t) and h(t) are paths in H corresponding to the paths gl(t), g2(t) and 
g( 0, then 

h(t) h, (20 for 0 < t < l/2 - - 
h,(2t - l)h,(t) for l/2 < t < 1. 
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In particular, 

f(m2) = 41) = h,(W,(l) =f(gl)f(gd= 

From the construction off we see that f(exp(5)) = exp ~(5) for any 5 E g, i.e. 
the diagram 

cp 
9 ’ b 

CXP 

I I 

=P 

G-H 

is commutative. Proposition 2 and Problem 25 show that f is differentiable in a 
neighbourhood of the unit of G and d,f = q. The homomorphism f is differen- 
tiable at any point g E G because the diagram 

I 
G-H 

I I 
kl) 4h) 

G’H 

where h = f(g) is commutative. Theorem is proved. [7 

Corollary. Simply connected Lie groups are isomorphic if and only if their 
tangent Lie algebras are isomorphic. 

9O. Virtual Lie Subgroups. As we have seen (Problem 1.14), the image of a Lie 
group under a homomorphism is not always a Lie subgroup. More general 
subgroups obtained in this way can sometimes serve as substitutes of Lie 
subgroups. 

A virtual Lie subgroup of a Lie group G is a subgroup endowed with a Lie 
group structure so that the identity embedding i: H ---) G is a Lie group homo- 
morphism. We will assume that lj is embedded into g via di. 

Clearly, any Lie subgroup (endowed with the induced Lie subgroup structure) 
is a virtual Lie subgroup. 

Problem 32. Let f: H + G be an arbitrary Lie group homomorphism. Then 
the group f(H) endowed with a Lie group structure as the quotient group 
H/Ker f is a virtual Lie subgroup of G with the tangent algebra df(b). 

The topology of a virtual Lie subgroup can be different from the topology 
induced by the ambient group. This is the case for a dense winding of the torus 
U2 which carries the Lie group (in particular, the topology) structure of If3 but 
intersects with any nonempty open subset of the torus on an unbounde&subset ‘3 , :: 
of R. .: ,. 
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However, Theorem 1.2 implies that any sufficiently small neighbourhood O,(e) 
of the unit of a virtual Lie subgroup H is a submanifold of the ambient Lie group 
(in particular, possesses the induced topology) and T,@,(e)) = l$ 

The following problem elucidates the topological structure of virtual Lie 
subgroups. 

Problem 33. Let H be a virtual Lie subgroup of G. There exists a neighbour- 
hood 0,(e) of the unit of H and a submanifold S c G containing the unit such 
that the map 

v: S x O,(e) -+ G, (s; h) w sh, 

is a diffeomorphism of S x O,(e) onto a neighbourhood O,(e) of the unit of G 
and 

H n O,(e) = TO,(e), 

where T = H n S is finite or countable. If o,(e) is connected, it is a connected 
component of H n O,(e) in the induced topology. 

Theorem 7. Let G,, G, be virtual Lie subgroups of G. If G, c G, then G, is a 
virtual Lie subgroup of G, and g1 c g2. Conversely, if gI c g2 and GI is connected 
then G, c G,. 

Problem 34. Prove this theorem. 

Corollary 1. If virtual Lie subgroups G,, G, of G coincide as subsets then they 
carry the same Lie group structure. 

Corollary 2. A connected virtual Lie subgroup is uniquely determined by its 
tangent algebra (the subalgebra of the tangent algebra of the ambient Lie group). 

Introducing virtual Lie subgroups makes the correspondence between Lie 
subgroups and subalgebras of the tangent algebra more complete. Namely, the 
following holds: 

Theorem 
the tangent 
H . 

8. Any suba lgebra lj of the tangent algebra of a Lie group G is 
algebra of a (uniquely determined) connected virtual Lie subgroup 

Proof of this theorem will be given in n. 4.3. 
There exists a simple topological characterization of Lie subgroups and virtual 

Lie subgroups of real Lie groups. By E. Cartan’s theorem any closed subgroup 
of a real Lie group is a Lie subgroup (proof of this theorem can be found e.g. in 
[4] or [l]). Th ere ore f Lie subgroups of real Lie groups are the same as closed 
subgroups. 

Any pathwise connected subgroup of a real Lie group is a virtual Lie subgroup 
(Yamabe’s theorem, see [40]). Therefore virtual Lie subgroups of a real Lie group 
are just the subgroups with a finite or countable number of pathwise connected 
components (in the induced topology). 
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IO*. Automorphisms and Derivations. Let G be a connected Lie group and 
Aut G the group of its automorphisms (as of a Lie group). 

Any group automorphism of G generates an automorphism of its tangent 
algebra g. If G is simply connected then the converse is true (Theorem 6); in this 
case Aut G is naturally isomorphic to Aut g, the automorphism group of the Lie 
algebra g. The latter group is a linear Lie group (Example 1.53). Therefore, Aut G 
is naturally endowed with a Lie group structure provided G is simply connected. 

Problem 35. The action of the Lie group Aut G on a simply connected Lie 
group G is differentiable. 

Similarly as for abstract groups, the inner automorphisms of a Lie group G 
constitute a normal subgroup of Aut G isomorphic to the quotient group G/Z 
(where Z is the center of G) and denoted by Int G. Accordingly, their differentials 
Ad g, g E G, called the inner automorphisms of the Lie algebra g, constitute the 
normal subgroup of Aut g. This subgroup is denoted by Int g. 

The quotient group Aut G/Int G (resp. Aut g/Int g) is called the group of outer 
automorphisms of the Lie group G. (resp. Lie algebra g). (Clearly, this term should 
not be understood literally. Moreover the outer, i.e. not inner, automorphisms 
do not constitute a group at all.) For a simply connected group G we have the 
natural isomorphism Aut G/Int G v Aut g/Int g. 

The group Int g, being the image of G under the adjoint representation, is a 
virtual Lie subgroup of Aut g. However, it might be not a genuine Lie subgroup: 
cf. Exercise 19. 

The tangent algebra of Aut g is the Lie algebra berg of derivations of 
g (Example 3.2). The tangent algebra of Int g is the image of g under the 
homomorphism 

ad=dAd:g-,berg 

This shows, in particular, (see Corollary 2 of Theorem 7) that Int g does not 
depend on the choice of G from connected Lie groups with the tangent alge- 
bra g. 

The derivations of the form ad 5, 5 E g, are called the inner derivations of the 
Lie algebra g. 

Problem 36. The inner derivations constitute an ideal of her g. More precisely 

[D, ad 51 = ad DC foranyDEberg+g. (20) 

Examples. 1) If g is a commutative Lie algebra then 

Aut g = GL(g), Int g = (E). 

2) Let 9 be the Lie algebra of nil-triangular (triangular with zeroes on the 
diagonal) 3 x 3 matrices, This is the tangent algebra of the Lie group of unitrian- 
gular 3 x 3 matrices. For its basis take: 
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X - - 

with the commutation relations 

LX, Yl = 2, [X,2] = [y,Z-J = 0. 

Chapter 1. Lie Groups 

The subspace 3 = (2) is the center of g. Any automorphism should transform 
3 into itself, i.e. multiply 2 by some c # 0. It is subject to a straightforward 
verification that such an automorphism induces in g/j a linear transfor- 
mation with determinant c. Conversely, any linear transformation with these 
properties is an automorphism of g. The inner automorphisms are of the 
form 

XwX + aZ, YwY + bZ, 2~2 (a,bE K). 

The group Int g in this case is a Lie subgroup of Aut g and is isomorphic to the 
two-dimensional vector group. The quotient group Aut g/Int g (the group of 
outer automorphisms of g) is isomorphic to GL,(K). 

3) Let g be the Lie algebra of matrices of the form x Y 

( ) 
o o , where x, y E K. 

This is the tangent algebra of the Lie group G of matrices of the form 
a b 

( ) 0 1’ 
where a, b E K, a # 0. The group G is isomorphic to the group of 

affine transformations of the line. For the basis of g take X = 
1 0 

( > 0 0 
, and 

Y 
0 1 - - 

( ) 
o o , satisfying [X, Y] = Y A straightforward calculation shows that the 

inner automorphism defined by 
a b 

( > 0 1 
E G acts as follows: 

Xt-+X-bY, Y++aY. 

On the other hand, any automorphism of 4 is, clearly, of this form. Thus, in this . 
case 

Aut g = Int g N G. - 

1 lo. The Tangent Algebra of a Semidirect Product of Lie Groups. To semidirect 
products of Lie groups there correspond semidirect swzs of Lie algebras (which 
could as well have been called semidirect products). 

A semidirect sum of Lie algebras g1 and g2 is the direct sum of vector spaces 
gr and y2 endowed with the bracket . 
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where b is a Lie algebra homomorphism g2 --) her gl. We will denote the semi- 
direct sum by g1 + g2, or more prudently by g1 @ g2. 

Problem 37. A semidirect sum of Lie algebras is a Lie algebra. 

The elements of the form (&, 0) (resp. (0, c2)) constitute a subalgebra of g1 -D g2 
isomorphic to g1 (resp. g2), usually identified with g1 (resp. g2). The subalgebra 
g1 is an ideal and 

The subalgebra g2 is an ideal if and only if fl = 0. In this case the semidirect sum 
is isomorphic to the direct sum g1 @ g2. 

Example. Let V be a vector space considered as a commutative Lie algebra. 
Then her V = gl( V). For any linear representation p: g --) gl( V) of g we may 
construct the semidirect sum V +$ g which is also a Lie algebra. The space I/ is 
a commutative ideal in it. 

One says that a Lie algebra g splits into a semidirect sum of Lie subalgebras g1 
and g2 if 

1) gr is an ideal; 
2) g is the direct sum of subspaces g1 and g2 as a vector space. 
In this case we have an isomorphism 

where p: g2 -+ her g1 is the homomorphism defined by formula (22). In this 
situation we will write g = g1 -D g2 or g = g2 Q- gl. 

Theorem 9. The tangent algebra of the semidirect product G, >Q~ G, of Lie 
groups G1 and G2 is th’e semidirect sum g1 -88 g2 of their tangent algebras and 
p = dB, where B: G, + Aut g1 is a Lie group homomorphism defined by the formula 

B(g2) = 4&l,)) for any 92 E G2* 

Problem 38. Prove this theorem. 

Examples. 1) Let R: G + GL(V) be a linear representation of a Lie group G. 
The tangent algebra of the semidirect product V >Q, G (see Example 1.11.1) is 
the semidirect sum V +p g, where p = dR. 

2) The Lie group GA(V) of affme transformations of a vector space V is 
identified with the semidirect product V M,, GL(V) (see Example 1.11.2). Its 
tangent algebra is identified with the semidirect sum V Bid gl(V), where id is the 
identity linear representation of the Lie algebra gl(V) in K 

Problem 39. Let G, and G, be simply connected Lie groups. For any homo- 
morphism/k g2 --+ her g1 there exists a homomorphism b: G, + Aut G1, such that 
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the G2-action on G, defined by b is differentiable and the tangent algebra of the 
semidirect product G1 >ab G, is g1 & g2. 

1) 

2) 

3) 

4) 

5) 

6) 

7) 
8) 

Exercises 

The tangent algebra of the group of invertible triangular matrices is the Lie 
algebra of all triangular matrices. 
Let A be a finite-dimensional associative algebra with unit 1 over a field K. 
Then the multiplicative group A* of invertible elements of A endowed with 
the induced differentiable structure (as an open subset of the space A) is a 
Lie group. Prove that under the canonical identification of the tangent space 
T,(A*) with the space A the bracket in the tangent algebra of the group A* 
is defined by the formula [[, q] = &jv - ~5. 
With the notation of lo, define a bilinear operation *in the space T,(G) by 
the formula 

Prove that for a suitable coordinate system this operation coincides with 
any given commutative bilinear operation in T,(G). 
The tangent algebra of the centralizer Z(g) of an element g E G (see Exercise 
1.6)) coincides with 

3(g) = (4: fE $3: (A&7)5 = t} = {t E 9: St = ts>* 

Suppose c is an element of the tangent algebra g of a Lie group G. Its 
centralizer Z(c) in G defined as 

Z(5) = (9 E G: wg)5: = r> 

is a Lie subgroup whose tangent algebra coincides with the subalgebra 
3(5u) = {q E g: [c, q] = 0) called the centralizer of 5 in the Lie algebra g. 
Let H be a connected Lie subgroup of G. Its normalizer 

N(H) = (9 E G: gHg-’ = H} 

is a Lie subgroup and the tangent algebra of N(H) coincides with the algebra 

called the normalizer of lj in g. 
The tangent algebra of Un consists of all skewhermitian y1 x yt matrices. 
Deduce the Jacobi identity in the tangent algebra of a Lie group directly 
from the associativity of the product in the Lie group. (Consider the terms 
of degree < 3 in the Taylor series expansions of coordinates of products of 
any three elements close to the unit.) 
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9) 
10) 
11) 

12) 

13) 

14) 

15) 

16) 

17) 

18) 

19 

20) 

2 . 

For GL,(C) the exponential map is onto, but it is neither open nor injective. 
For SL,(lR) the exponential map is not onto. 
If the tangent algebra of a connected Lie group G is commutative then G is 
commutative. 
Any noncompact connected one-dimensional complex Lie group is iso- 
morphic to either C or C*. 
Any compact connected one-dimensional complex Lie group is isomorphic 
to a Lie group of the form A(u) = C/(Z + Zu), where u E @, Im u > 0. The 
Lie groups A(u) and A(v) are isomorphic (as complex Lie groups!) if and only 

au + b 
ifu=- 

cu+d’ 
where 

Any connected compact complex Lie group G is commutative. (Hint: For 
any 5 E g the linear transformation ad c is diagonalizable and its eigenvalues 
are purely imaginary.) 
If the center 2 of a connected Lie group G is discrete then the center of the 
quotient group G/Z is trivial. 
A connected Lie group is nilpotent (as an abstract group) if and only if its 
tangent algebra is nilpotent. (A Lie algebra g is called nilpotent if there exists 
a sequence of subalgebras 

such that [g, gJ c gi+l.) (Hint: Prove that the center of a connected nilpotent 
Lie group is of positive dimension.) 
The connected components of open sets in the induced topology on a virtual 
Lie subgroup constitute a base of its inner topology. 
Let g be the Heisenberg algebra i.e. the Lie algebra with basis {x1,. . . , 
&Yl,***, y,,z} such that [xi,yi] = z (i = 1,. . . , n), all the other brackets of 
base elements being zero. Find Aut g, Int g and Aut g/Int g. 
Let g be the Lie algebra of diagonal complex 3 x 3 matrices whose diagonal 
elements x1, x2, x3 satisfy the condition x1:x2:x3 = c1:c2:cJ, where c,, c2, 
c3 are fixed real numbers. The group Int g is a Lie subgroup of Aut g if and 
only if the differences c, - c2 and c2 - c, are commensurable. 
Let a Lie group G split (as an abstract group) into a semidirect product of 
its virtual Lie subgroups G, and G,. Then G, and G, are genuine Lie 
subgroup. 

Hints to Problems 

In V; choose a basis and assign to any linear transformation X E GL(V) the 
matrix X = [X] - E, where [X] is the matrix of X in this basis. The elements 
of X may be taken for local coordinates in a neighbourhood of the unit E; 
then E has zero coordinates. A straightforward verification shows that 

zF=x+ r+xr. 
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Hence, a(X, Y) = XYandy(X,Y)=XY- YX for any X, Y In the asso- 
ciated coordinate system of the tangent space L(V) of the Lie group GL( V) 
(at E) the coordinates of a linear transformation coincide with the elements 
of its matrix. Therefore 

[X, Y] = XY - YX for any XY E L(V). 

3. Choose coordinate systems in neighbourhoods of the units of G and H. Let 
yG and yH be bilinear vector-functions defined by formula (3) in these coor- 
dinate systems on G and H, respectively. Let C be the Jacobi matrix of the 
map f at e E G. Then 

f(x) = cx + ’ ’ ’ , 

where dots stand for the terms of degree 22. Hence 

f((x, Y)> = CY&, L) + l  l  l  1) 

(f Wf(Y)) = Y&K 0) + l  l  l  $ 

where dots stand for the terms of degree > 3. Since f((x, y)) = (f(x), f(y)), we 
have 

Furthermore 

Therefore, the above formula and the definition of the brackets in g and E, 
imply that 

dfNsv9~1) = Cdf(5Mf(rH for any 5, vl E g, 

i.e. 4f is a tangent algebra homomorphism. 
4. Apply Problem 3 to the identity embedding of the subgroup. 
5. Find the coefficient oft in the polynomial det(E + tX). 
6. Apply Problem 3 to the canonical homomorphism p: G + H. 
7. In the definitions of the representations Ad and Sq put A = E + tY and 

differentiate with respect to t at t = 0. 
10. It suffices to prove these formulas for simple tensors f and F, respectively. 

It can be done using Problems 8 and 9. The other possible approach is to 
take a derivative of formulas (1.1) and (1.2) with respect to A (at E). 

11. Use the fact that a is a G-action, i.e. a(g,g,) = a(g 
12. The simplest approach is to start from the relation (gxy-‘)g = gx. 
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13. If we consider Ad as a Lie group homomorphism G -+ Aut g, then ad is a Lie 
algebra homomorphism g + her g (see Example 3.2). Hence ad 4: is a deriva- 
tion of the Lie algebra g for any 5 E g. By anticommutativity this is equivalent 
to the Jacobi identity. 

15. The Taylor series expansion of the coordinates of gc (resp. <g) is obtained 
from the Taylor series expansion of the coordinates of the group products, 
when we choose only terms linear in the second (resp. first) factor. 

17. By the definition, Adg is the differential of the inner automorphism a(g) of 
the group G. By Theorem 4 Adg = E if and only if a(g) is the identity 
automorphism, i.e. when g E Z(G). 

18. Since Z(G) is the kernel of Ad, the tangent algebra of Z(G) is the kernel of 
the tangent representation ad (see 2”), and the latter is just j(g). 

19. Apply Theorem 5 to the homomorphism T: G + GL( V) and the Lie sub- 
group GL( I/; U) c GL( V). (See the solution of Problem 1.24). 

20. Apply Theorem 5 to the identity embedding G, [- G and the subgroup 
G, c G. 

21. The subgroup H is normal if and only if it is invariant with respect to the 
inner automorphisms of the group G. By Problem 20 this is equivalent to 
the invariance of the tangent algebra E, with respect to the adjoint represen- 
tation of G. Next, apply Problem 25 and Theorem 2. 

22. If g(t) is a one-parameter subgroup, then 

ddt) MS + 0 -- = 
dt dt 

Conversely, if the path g(t) satisfies (15), where c(t) = const, then for any fixed 
s E R’ the path h(t) = g(t + s) satisfies the same equation with the initial value 
h(0) = g(s). If, moreover, g(0) = e, then h(t) = g(t)g(s). 

23. Make a linear change of the variable t in equation (15). 
24. The differentiabilitv in a neighbourhood of zero follows from the theorem 

on smooth dependence of solution of a system of differential equations on 
parameters. The global differentiability can be proved using the fact that by 
Problem 23 exp 5 = (exp r/m)m for any m E Z. 

25. Problem 23 and the definition of g&t) imply that (do exp)(c) = c. 
26. Use Problem 16. 
27. Prove that (Adexp t<)q = q, next prove that 

d 
-j$eXp t5 l  exp tq) = (5 + ye) exp tt l  exp trf. 

28. Follows from Problem 20. 
29. Follows from Problem 26. 
30. Show by induction in n that r is generated by a linear independent set of 

vectors. For this choose an indivisible vector e, E rand prove that f,/Ze, is 
a discrete subgroup of the (n - Q-dimensional vector group lR”/Re,. 
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3 1. Make use of the fact that 

OXP 5) = exp d&t) for any 5 E g. 

32. Make use of Proposition 1.16. 
33. The neighbourhood o,(e) and the submanifold S c G are constructed as in 

the solution of Problem 1.19. The countability of 7’ follows from the fact that 
H can only contain a finite or countable family of mutually nonintersecting 
open subsets. To prove the latter statement one should make use of the fact 
that any countable subset of R” is discrete. * 

34. In order to prove the first statement of the theorem it is necessary to show 
that the identity embedding of G, into Gz is differentiable. With the help of 
Problem 33 applied to G, one can show that a sufficiently small connected 
neighbourhood of the unit of G, is contained in a neighbourhood of the unit 
of G, which is a submanifold of G. This implies the required differentiability. 

The second part of the theorem is proved as Theorem 5. 
35. The differentiability of the (Aut c&action on g and the fact that automor- 

phisms commute with the exponential map imply the differentiability of the 
map 

(Aut G) x G + G, (6 9) I-+ a(s) (23) 

on (Aut G) x F(e), where O(e) is a neighbourhood of the unit of G. On the 
other hand, the theorem on differentiable dependence of a solution of a 
system of differential equations on parameters implies that cx(g) is differen- 
tiable with respect to a for any g. The differentiability of the map (23) at any 
point (q,,g,) follows from this with the help of the identity 

38. Calculate the differential of the adjoint representation of G1 >ap G,. 
39. The desired homomorphism b is obtained from p by “integrating”, i.e. the 

procedure inverse to the one described in the formulation of Theorem 9. 
The differentiability of the G,-action on G, defined by it follows from 
Problem 35. 

5 3. Connectedness and Simple Connectedness 

As shown in 5 2 (Theorems 2.4 and 2.6) connectedness and simple connected- 
ness play an important role even at the first stages of the Lie group theory. That 
is why we have devoted to them a separate section. 

The definition of the fundamental group and the proof of topological theorems 
used in this section (the existence of the simply connected covering, the exactness 
of the homotopy sequence of a locally trivial bundle, etc.) can be found e.g. in 
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[56]. One should have in mind that these theorems hold and are naturally proved 
for more general topological spaces and their maps rather than differentiable 
manifolds and differentiable maps we deal with in this book. 

lo. Connectedness. A topological space is called connected if it is not a union 
of two non-intersecting non-empty open subsets and p&rwise connected if any 
two of its points can be joined by a continuous path. For a differentiable manifold 
these notions coincide. Moreover, any two points of a connected differentiable 
manifolds can be joined by a differentiable path. Connected components of a 
differentiable manifold are both open and closed. The assumption of existence 
of a countable base implies that a differentiable manifold has a finite or countable 
number of connected components. 

Denote by Go the connected component of a Lie group G, which contain e. 

Theorem 1. Go is a normal Lie subgroup of G. Other connected components of 
G are cosets with respect to Go. The quotient group G/Go is discrete. 

Problem 1. Prove Theorem 1. 

Problem 2. Any open Lie subgroup of G is closed and contains Go. 

Problem 3. A connected Lie group is generated (as an abstract group) by any 
neighbourhood of the unit. 

Problem 4. Any closed subgroup of a finite index of a Lie group is open. 

Theorem 2. Let G be u Lie group and a its transitive action on a connected 
differentiable manifold X. Then 

1) the Lie group Go also acts transitively on X; 
2) G/Go z GJG, n Go for any point x E X; 
3) if the stabilizer G, is connected for some x E X then so is G. 

Problem 5. Prove Theorem 2. 
Theorem 2 enables us to answer the question whether the classical linear Lie 

groups are connected. 

Problem 6. SL,(K) is connected. 

Problem 7.0,(K) has two connected components. One that contains the unit 
is the subgroup SO,(K) of unimodular orthogonal matrices. 

An 12 x n matrix (n being even) is called symplectic if the corresponding linear 
transformation of K” preserves the skew-symmetric bilinear from with the 

matrix . The group of symplectic matrices is denoted by Sp,JK). 

This is a Lie group of dimension n(n + 1)/2 (see 1.5”, Example 2). 

Problem 8. SpJK) is connected. 

Consider a more complicated example. Let k, I > 0 and k + I = n. A real 
matrix of order n is called pseudoorthogonal of signature (k, 1) if the corresponding 
linear tran sformation preserves the quadratic form 
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The group of pseudoorthogonal matrices of signature (k, I) is denoted by Ok I. It 
is a Lie group of dimension n(n - 1)/2 (see Example 1.5.1). Clearly Ok l Z b, ke 
AS in the case of usual orthogonal matrices, the subgroup SO, I of unimodular 
pseudoorthogonal matrices is an open subgroup of index 2 in’Ok z* But, as we , 
will see, it is not connected. 

Problem 9. The upper left minor &(A) of order k of any pseudoorthogonal 
matrix A E ok,I is nonzero. 

SO, z contains matrices with both positive and negative values of d,. Such 
matricks are easy to find even among diagonal matrices. Since the subsets that 
are distinguished by inequalities d, > 0 and d, < 0 are open, the group SO, z is , 
not connected. 

Problem 10. SO, l has two connected components. The connected component 
containing the unit is distinguished by d, > 0. 

2’. Covering Homomorphisms. The principal technique of Lie group theory 
consists in replacing the study of Lie groups by the study of their tangent 
algebras. The applicability of this method depends on the extent to which a Lie 
group can be recovered from its tangent algebra. Such a recovery is possible and 
unique for simply connected Lie groups (Corollary of Theorem 2.6), and con- 
nected Lie groups are determined up to covering homomorphisms. 

Recall that a covering is a locally trivial bundle with a discrete libre. 

Problem 11. Let f be a homomorphism of a connected Lie group G into a Lie 
group H. The following conditions are equivalent: 

1) f is a diffeomorphism of a neighbourhood of the unit of G onto a neigh- 
bourhood of the unit of H; 

2) the kernel off is discrete; 
3) f is a covering; 
4) df is a tangent algebra isomorphism. . 
Homomorphisms satisfying conditions of Problem 11 will be called covering 

homomorphisms. 

Examples. 1) The homomorphism 

f: R + lr, where f: x I+ e’“, 

is covering since its kernel, i.e. 271Z, is discrete. 
2) Consider the adjoint representation Ad of the Lie group SL,(@). The 

transformations 

Ad A: Xw AXA-’ (A E =,(a=), x E &(@)) 

preserve the function det which is a nondegenerate quadratic form on sl,(@) and 
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Ad SLA@) c O(&(@),det) = O&Q The kernel of Ad is the center of SL,(@) 
which consists of E and -E. 

Since dim SL&) = dim O,(C) = 3 and SL,(C) is connected, Ad SL,(@) coin- 
cides with the connected component of O(sI,(@),det), i.e. with the subgroup 
SO&(@), det) N SO@). Thus, there is a covering homomorphism SL,(@) + 
SO&) whose kernel consists of E and -E. 

Problem 12. Any discrete normal subgroup of a connected Lie group G is 
contained in the center of G. 

Thus, for a given connected Lie group G the description of covering homo- 
morphisms G ---) H boils down to the description of discrete central subgroups 
of G. 

3’. Simply Connected Covering Lie Groups. A connected differentiable mani- 
fold is called simply connected if any closed path in it is homotopic to a trivial 
one. It is known [45] that any connected differentiable manifold can be covered 
by a simply connected manifold. For the sake of brevity we call it the simply 
connected covering. 

The following functorial property holds. 
(8’) Let X and Y be connected manifolds, f: X ---) Y a differentiable map. Let 

p: X -+ X and 4: y + Y be the simply connected coverings. Then for any points 
Z0 E x and j$, E F such that f(p&)) = q(j$) there exists a unique differentiable 
map 7: X --) P such that the diagram 

i X-F 

I I 
P 4 (0 

f X-Y 

commutes and {(l,) = JO. In this case we say that f cOuerS J 
Let p: X -+ X be the simply connected covering. The diffeomorphisms of X 

covering the identity diffeomorphism of X form the group T(p) called the group 
of the covering p. By (F), for any Z, , Z2 E X such that p&) = &Z2) there exists 
a unique element of r(p) which transforms E1 into 2,. 

The group T(p) is isomorphic to the fundamental group zl(X) of X; the 
isomorphism is obtained as follows. Choose a point go in X and let x0 = ~(2,). 
Then to any element y of T(p) we assign the class of closed paths in X with 
the origin in x0 which are images under p of those paths in X which join ZO 
with y&). 

Theorem 3. Any connected Lie group G is isomorphic to the quotient group c/N, 
where C is a simply connected Lie group, and N is its discrete central subgroup. 
The pair (c, N) is defined by these conditions uniquely up to an isomorphism, i.e. if 

($9 N,) and (C2, N2) are two such pairs, then there is a Lie group isomorphism 
G, -+ G, that transforms N, into N2. 
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The canonical homomorphism G + G/N is covering and therefore the group 
G is called the simply connected covering Lie group of G. 

Proof. Let p: C + G be a simply connected covering of the group manifold G 
and Z E G a pullback of the unit e of G. The mapping p x p: c x c + G x G is 
the simply connected covering of the manifold G x G. Define the multiplication 
ii: G x Z; + G to be the covering map for the multiplication p in G which 
transforms (Z, Z) into E. Define the inversion Z G + G to be the covering map 
of the inversion I in G which transforms Z into itself. 

Problem 13. The multiplication ji and the inversion isatisfy group axioms for 
G with Z as the unit. 

. 

Thus, we have turned the manifold G into a Lie group. The definition of 
multiplication in G implies that p is a homomorphism. Its kernel N is a discrete 
central subgroup (Problems 11 and 12) and G z G/N (Theorem 1.5). 

Now, let e1 and G, be simply connected Lie groups, N, and A$ their discrete 
central subgroups and f: G1/N1 + &IN, a Lie group isomorphism. The cano- 
nical homomorphisms pl: $ -+ cl/N1 and pz: G, + G,/N, are covering. By (F) 
there is a diffeomorphism f: G, + Gz that covers f and transforms the unit Z1 of 
G, into the unit Z, of G,. Since the diagram 

P2 

GllNl f_, G2lN2 

commutes, f(N1) = N,. 

Problem 14. The map f is a group isomorphism. 

The theorem is proved. 0 

Problem 15. Under the assumptions of the theorem, N z QG). 

In particular, this implies that the fundamental group zl(G) of any connected 
Lie group G is abelian. 

Theorem 3 and corollaries of Theorem 1.6 imply that the connected Lie groups 
whose tangent algebras are isomorphic to a given Lie algebra, if exist, are 
described as follows: among them there exists a simply connected one, unique 
up to an isomorphism and the other ones are obtained from it taking quotients 
modulo different discrete central subgroups. In Chapter VI we will show that for 
any finite-dimensional Lie algebra g there exists a Lie group whose tangent 
algebra is isomorphic to g. 

Theorem 3 may be viewed as a generalization of the description of connected 
commutative Lie groups obtained in 2.7. 

4O. Exact Homotopy Sequence. In order to calculate fundamental groups of 
Lie groups it is convenient to use a part of the exact homotopy sequence of a 
locally trivial bundle. 
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Let X and Y be connected differentiable manifolds, p: X -+ Y a locally trivial 
bundle with fibre Z. Let i: Z -+ X be a diffeomorphism of Z with p-l(y,), the 
inverse image of a distinguished point y, of Y. Fix points x0 and z. in X and 
2 respectively so that i(zo) = x0 and therefore p(x,) = y,. Then the canonical 
homomorphisms 

p*: MmJ -+ n:,(Y,y,) 

are defined. Let no(Z) be the set of connected components of Z. For any closed 
path p in Y beginning at y. there is a path a on X beginning at x0 such that 
p(a) = b. A connected component of 2 whose image contains the end of the path 
cx depends only on the homotopy class of p. Therefore the map 

is well-defined. 
The part of the exact homotopy sequence we need is of the form 

Here, the exactness means the following: 
1) Ker p* = Im i,; 
2) the fibres of d are the cosets of 7t1 (Y) with respect to Im p*; 
3) a is surjective. 
Also, if n,(Y) = 0, i.e. any continuous map of a two-dimensional sphere into 

Y is homotopic to a trivial one, then i, is injective. 
Let us apply the above to the locally trivial bundle p: G + G/H, where G is a 

connected Lie group, H its Lie subgroup. Take the unit e of G to be the 
distinguished point of G and let p(e) = H be the distinguished point of G/H. 
Deline i to be the identity embedding of H into G. 

In this case no(Z) is the group H/H’. Denote by I the inversion in this group. 

Problem 16. The map I 0 a: q(G/H) -+ H/Ho is a homomorphism. 
Thus, the following theorem holds. 

Theorem 4. Let G be a connected Lie group, p: G -+ G/H the canonical map, 
i: H -+ G the identity embedding. Then the sequence of groups and homomorphisms 

q(H) i*+ q(G)* JwlW--+ lsa H/Ho-O 

is exact. Moreover, if q(G/H) = 0, then i, is injective. 

Corollary 1. If x1 (G/H) = nz(G/H) = 0, then n,(G) z q(H). 

Corollary 2. If G is simply connected, then zl(G/H) s H/Ho. 

Now we will apply Corollary 1 in order to calculate the fundamental groups 
of classical complex Lie groups. 
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Problem 17. SL,(C) and Sp,,(C) are simply connected. 
Since SO,(@) N SL,(C)/{E, -4) ( see E xample 2.2) and SL,(@) is simply con- 

nected, we have n,(SO,(@)) z Z2. 

Problem 18. nl(SOn(C)) z Z2 for yt 2 3. 1 

1) 

2) 

3) 
4) 
3 

6) 
7) 

8) 
9) 

10) 

11) 

Exercises 

A Lie subgroup H of a Lie group G contains Go if and only if the manifold 
G/H is discrete. 
If in the definition of a Lie group we omit the assumption that the group 
manifold possesses a countable base then any connected Lie group still 
possesses a countable base. 
GL,(@) is connected and GL,(R) has two connected components. 
Un and SU, = (A E Un: det A = 1} are connected. 
The group Ok JO&, where k, I > 0, is the direct product of two cyclic groups 

’ of order 2. 
Construct the covering homomorphism SU, ---) SO,. 
Suppose a is an action of a simply connected Lie group G on a connected 
differential manifold X and p: x + X the simply connected covering. Then 
there exists a G-action E on X such that p(it(g)Z) = a(g)p(T). 
SU,, and Sp,, (see exercise 1.3) are simply connected. 
q(S0,) 2 Z2 for n 2 3. 
Any connected two-dimensional real Lie group is either commutative of 
isomorphic to the group of orientation preserving affine transformations of 
the line. 
For any connected Lie group G the differentials of all its automorphisms 
form a Lie subgroup in Aut g. (Hint: characterize a sufficiently small neigh- 
bourhood of the unit of this subgroup in terms of the (Aut g)-action on the 
simply connected covering Lie group of G.) 

Hints to Problems 

Use the fact that the inversion, left and right translations, and inner auto- 
morphisms are diffeomorphisms of the group manifold, and therefore can 
only permute connected components. 
An open subgroup is closed since its complement is the union of cosets and 
each coset is also an open subset. 
Prove that the subgroup generated by a neighbourhood of the unit is open 
and use Problem 2. 
Let ,‘c E X. Theorem 1.1 yields rk a, = dim X. Applying this theorem to the 
restriction of the action a to Go we find that the orbit a(G’)x contains a 
neighbourhood of x. Hence, all the orbit of Go are open in X. Since X is 
connected, there is actually only one orbit, i.e. Go acts transitively on X. 
Hence, in any connected component of G, there is an element of the subgroup 
Gx (for any given point x E X). The other statements of the theorem are 
deduced from here. 
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6. Consider the natural SL,(K)-action on the punctured space K”\(O). Prove 
that the stabilizer of any point is diffeomorphic to the direct product 
SL,-,(K) x K”-? 

7. Clearly, Son(K) is an open subgroup of index 2 in On(K). Therefore, it suffices 
to show that Son(K) is connected. In order to do this consider the natural 
SO,(K)-action on the sphere x: + l  .* + x,’ = 1 and prove that the stabilizer 
of any point is isomorphic to Son-JK). 

8. Consider the natural Sp&(K)-action on the punctured space K2n\{O}. Prove 
that this action is transitive and the stabilizer of any point is difleomorphic 
tO Spn-,(K) X K2n-1a 

9. If d,(A) = 0 then the image of the subspace spanned by the first k basic vectors 
has a nonzero intersection with the subspace spanned by the last I basic 
vectors. This is impossible, since the quadratic form q is positive definite on 
the former and negative defmite on the latter. 

10. For k > 2 and I 2 1 consider the SO, ,-action on the hyperboloid , 

Prove that this action is transitive and the stabilizer of any point is iso- 
morphic to SO,_, z. Use the isomorphism SO, l rv SOI k to prove that the 
number of connecked components of SOk,l does not exceed the number of 
connected components of SO1 1 which equals 2. 

11. The equivalences 1) c=+ 2) - 4) hollow from Theorem 1.2 and the implication 
2) =B 3) follows from Theorems 1.3 and 1.5. 

12. Let N be a discrete normal subgroup of a connected Lie group G. For any 
n E N consider the map 

G + IV, where g wgng-‘. 

Its image is connected, hence consists of one point yt. That means that y1 
belongs to the center of G. 

13. Since each of the maps 

,ii 0 (ji x id), p 0 (id x ,ii): G x G x C + G, 

where 

,il 0 (ji x id): (2, j7, Z) w ,ii(ji(Z, jj), Z), 

ji 0 (id x jl): (2, J, Z) I+ ,6(2, p( 7, g), 

is covering for the map 

GxGxG-+G, (x, y, 2) m XYG 

and transforms (2, c, c) into Z we obtain the associativity of the multiplication 
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,iX We similarly prove that 

and 

Each of the maps 

ZI, x G, 

covers the map 

c5 

and transforms (ZI, Zl) into e”,. Hence, &jJ = &Z)!(j). 
Let p: G -+ G be a covering homomorphism with kernel N. Prove that the 
elements of the group T(p) are multiplications by elements of N. 
Let PI and p2 be closed paths on G/H with the source at p(e). Let a, and cc, 
be paths on G beginning at e such that p(q) = PI and p(a2) = p2- Let the 
ends of a, and cc2 be h, E If and h, E H, respectively. Consider the path ai1 
obtained from a2 via the right multiplication by h,. This path begins at h, 
and terminates at h,h,. We have p(c~,@) = p1p2. Therefore d transforms 
the homotopic class of the path DIP2 into h2hJYo = (h21Yo)(hIHo), i.e. d is 
an antihomomorphism. Therefore, I. 3 is a homomorphism. 
Consider the action of these groups on the punctured spaces F\(O) and 
C’“\(O}, respectively. (See hints to Problems 6 and 8). 
For yt > 3 consider the SO,(@)-action on the complex sphere in the space c” 
(see hint to Problem 7). Prove that the complex sphere is homotopically 
equivalent to the real sphere of the same dimension. 

5 4. The Derived Algebra and the Radical 

This section is devoted to the part of the Lie group theory related to the 
construction of the derived algebra. We will define here two opposite types of 
Lie groups: solvable and semisimple. Any Lie group is constructed from groups 
of these two types in the sense that it possesses a connected solvable normal Lie 
subgroup the quotient group modulo which is semisimple. 

lo. The Commutator Group and the Derived Algebra. Recall that the commu- 
tator group of a group G is the subgroup (G, G) = G’ generated by all the 
commutators (x. 19) - = SV.X+JI-~, d where X, y E G. This subgroup is normal and it 
is the smallest normal subgroup the quotient group modulo which is commu- 
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tative. The derived algebra of a Lie algebra g is the subalgebra [g, g] = 9’ 
generated by the brackets [5, ~1, where c, 7 E g. It is the smallest ideal such that 
the corresponding quotient algebra is commutative. 

Theorem 1, For a connected Lie group G, G’ is a connected virtual Lie subgroup 
with the tangent algebra 9’. If G is simply cannected then Gf is a genuine Lie 

subgroup. 

Proof. First, let G be a simply connected Lie group. Consider the quotient 
algebra g/g’. It is commutative and therefore may be identified with the tangent 
algebra of a suitable vector Lie group T/. By Theorem 2.6 the canonical homo- 
morphism cp: g + g/g’ is the differential of a homomorphism f: G + K The kernel 
off will be denoted by H. It is a normal Lie subgroup whose tangent algebra 
coincides with the kernel of q, i.e. with g’. Since G/H 2 ~/is commutative, H I> G’. 
Since G and G/H are simply connected, H is connected (Theorem 3.4). 

Let us show that G’ contains a neighbourhood of the unit of H: this will imply 
that G’ = H. 

Problem 1. For any t, q E g there exists a differentiable Cl-path g(t) in G defined 
in a neighbourhood of zero such that 

1) g(o) = e, g’(O) = cry, VI; 
2) g(t) is a commutator in the group G for any t. 
Now choose a basis {cl,. . . , cm} in the space g’ over IR consisting of brackets. 

Let gJt), where 1 tl < E, be a path satisfying the conditions of Problem 1 for 
[<, 213 = &. Let U be the neighbourhood of zero in II?” defined by the inequalities 
) liI < Ei. Consider the map 

f: U + H, where (tl,... 
7 cd  w g, (0 l  l  l  srnkn>* 

The properties of the paths gi(t) imply that d,f is an isomorphism of tangent 
spaces. Hence, f(U) contains a neighbourhood of the unit of H, but f(U) c G’ 
and therefore G’ also contains a neighbourhood of the unit of H. 0 

For an arbitrary connected Lie group G consider its simply connected covering 
p: G -+ G. By what we have already proved, G’ is a connected Lie subgroup of G 
with the tangent algebra 3’. However, it is obvious that G’ = p(@. It follows 
that G’ is a connected virtual Lie subgroup of G with the tangent algebra 
dp(ij’) = g’ (Problem 2.32). The theorem is proved. 0 

If G is not simply connected then G’ might be not a genuine Lie subgroup (see 
Exercise 4). 

Problem 2. If G is a connected Lie group and g’ = g, then G’ = G. 

Problem 3. SL,(K) coincides with its commutator group. 

2O. Malcev Closures. In the tangent algebra of a Lie group may exist sub- 
algebras that do not correspond to any Lie subgroups. The following example 
is in a sense a model one. 
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Problem 4. The one-dimensional subalgebra of the tangent algebra of the Lie 
group U”, generated by (ia,, . . . , ia,), where a,, . . . , a,, E 08, is the tangent algebra 
of a Lie subgroup if and only if numbers a,, . . . , a, are commensurable. 

Nevertheless, as we will soon see, there is always a Lie subgroup whose tangent 
algebra is only “a little bit” larger than the initial subalgebra. 

Theorem 2. Let {H,,} be an arbitrary collection of Lie subgroups of G. Then 
H = n H,, is also a Lie subgroup and its tangent algebra coincides with EJ = 

nb V’ 
Problem 5. Prove Theorem 2. 

Now let lo be an arbitrary subalgebra of the tangent algebra g of a Lie group 
G. By Theorem 2 there exists the smallest Lie subgroup of G such that its 
tangent algebra bM contains I$ The subalgebra b” will be called the Malcev 
closure of IJ. 

Theorem 3. ([43]) Let ij be a subalgebra of the tangent algebra of the Lie group 
G and ljM its Malcev closure. Then (lj”)’ = If. 

Proof. Apply Problem 1.25 to the adjoint representation of G with subspaces . 
b and t>’ serving as U and FV’, respectively. We see that 

H, = {g E G: (Adg - E)b c b’} 

is a Lie subgroup in G and its tangent algebra is 

Clearly, E> c bl. Hence, bM c bl, i.e. [b”, 61 c I$‘. Now apply Problem 1.23 again 
taking bM instead of U. We see that 

H, = (9 E G: (Adg - E)ljM c Ij’} 

is a Lie subgroup and 

b2 = {t (2 9: w3bM = 6’). 

By what we have proved above, E> c &. Hence, bM c &, meaning that (b”)’ c E>‘. 
Cl 

Problem 6. The Malcev closure of an ideal is an ideal. 

3O. Existence of Virtual Lie Subgroups. Let us prove Theorem 2.8. Let b be a 
subalgebra of the tangent algebra of a Lie group G. Consider its Malcev closure 
b M = f. By Theorem 3 f 2 I$ 2 f’ = b’. Let F be a connected Lie subgroup of G 
with the tangent algebra i and F its simply connected covering Lie group. Since 
F/F’ is a vector group, it contains a connected Lie subgroup (a subspace of a 
vector space) with the tangent algebra b/b’ c f/f’. (We identify the tangent algebra 
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of F with f). Therefore, the group F itself contains a connected Lie subgroup n 
with the tangent algebra h. The image of this subgroup in F is the desired virtual 
Lie subgroup of G. 0 

During the proof we have actually obtained a description of arbitrary con- 
nected virtual Lie subgroups. Namely, any connected virtual Lie subgroup H of 
a Lie group G may be obtained as follows: there exists a connected Lie subgroup 
F of G and a connected Lie subgroup g of the simply connected covering 
Lie group F containing its commutator subgroup such that H = o(g), where 
p: F -+ F is the covering homomorphism. (Clearly, I? is the simply connected 
covering Lie group for H.) 

4’. Solvable Lie Groups. Recall that the iterated commutator groups Gtk) 
(k = 0, 1,2,. . . ) of G are defined by induction: 

G(O) = G 9 
G(1) = G’ 

9 
G(k+l) = (G’k’)‘. 

A group G is called solvable if there exists an m such that G@) = {e}. Any 
subgroup and any quotient group of a solvable group is solvable. Conversely, if 
a normal subgroup N c G and the quotient group G/N are solvable then so is G. 

A Lie group is called solvable if it is solvable as an abstract group. 

Example 1. The group B, = B,(K) of invertible (upper) triangular n x yt 
matrices over K. Denote by & k (k = 0, 1,. . . , ,n) its subgroup consisting of the 
matrices A = (aij) with aij = 6, for j - i < k. Clearly, I?; c B, , 1 and the map 

is a homomorphism of B,, k onto the vector group KnBk. The kernel of this 
homomorphism coincides &ith B, k+l. Therefore & k c &, k+lo Since Bn n = {e}, , , * , 
we have Br) = {e]. 

Similarly, the iterated derived algebras gtk) (k = 0, 1,2,. . .) of a Lie algebra g 
are defined by induction as: 

g 
(0) - - 9 

(1) (k+U 
f 8 

= g’, 
!3 

= (g’k’)’ . 

A Lie algebra g is called solvable if there exists an m such that g(“) = 0. 
Subalgebras and quotient algebras of a solvable Lie algebra are solvable. Con- 
versely, if an ideal n c g and the quotient algebra g/n are solvable then so 

Example 2. The tangent algebra of B,(K) is the Lie algebra b, = b,(K) of all 
upper triangular yt x n matrices over K. Let us prove that b, is solvable. Let 
b, k(k = 0, I,... 9 , n) be its subalgebra consisting of matrices X = (xij) with xii = 0 

. for J - i < k. Clearly, 6; c 6, 1 and the map (1) is a homomorphism of 6, k onto 
a commutative Lie algebra Kn-k. The kernel of this homomorphism comcides 
with 6, k+l. 9 Therefore bk k c b, k+l. Since b, n = 0, we have b!,? = 0. t 9 * 
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The induction shows that the iterated commutator group Gfk) of a connected 
Lie group G is its connected virtual Lie subgroup with the tangent algebra g(? 
This implies 

Theorem 4. A connected Lie group G is solvable if and only if so is its tangent 
algebra. A4ore precisely, Gfm) = {e} if and only if gfm) = 0. 

Problem 7. Any nontrivial solvable Lie algebra splits into a semidirect sum of 
an ideal of codimension 1 and a l-dimensional subalgebra. 

Applying Problem 2.39 and induction in dim g we see that for any solvable 
Lie algebra g there exists a simply connected Lie group whose tangent algebra 
is isomorphic to g. Simultaneously we establish the following fact. 

Problem 8. Any nontrivial simply connected solvable Lie group decomposes 
into a semidirect product of a normal Lie subgroup of codimension 1 and a 
one-dimensional Lie subgroup (isomorphic to K). 

5’. Lie’s Theorem. The most important tool in the study of solvable Lie groups 

Theorem 5 (Lie’s theorem). Let R: G --+ GL( V) be a complex linear represen- 
tation of a connected solvable (real or complex) Lie group G. There exists a 
one-dimensional subspace U c V invariant with respect to R(G). 

Before we prove this theorem let us introduce certain definitions and prove 
several simple statements on linear representations of abstract groups. 

Let R: G -+ GL( V) be a linear representation (over an arbitrary field). For any 
character x of G (see definition of character in 1.4) set 

I/,(G) = (V E V: R(g)v = x(gjv for all g E G}. (2) 

If V’(G) # 0 then x is called a weight of R, the subspace V’JG) a weight subspace 
and its nonzero elements the weight vectors corresponding to x* In other words, 
the weights of a representation are the characters that occur in it as one- 
dimensional subrepresentations and the weight vectors are the vectors generating 
one-dimensional invariant subspaces. 

Problem 9. The weight subspaces corresponding to different weights are 
linearlv independent. d 

This implies, in particular, that a linear representation may only have a finite 
number of weights. 

Now let N be a normal subgroup of G. 

Problem 10. For any character x of H and any g E G we have 

R(g) I/,(H) = V-&-f), 

where f(h) = x(g-‘hg) for h E H. 
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Therefore the operators corresponding to elements of G can only permute 
weight subspaces of H. 

Proof of Theorem 5 will be carried out by induction in dim G. Suppose that 
dim G > 0 and that the theorem holds for groups whose dimension is less than 
dim G. Passing to the simply connected covering Lie group we can reduce the 
proof to the case when G is simply connected. In this case by Problem 8 we have 

G=H>aP, 

where H is a normal Lie subgroup of codimension 1 and P is a one-dimensional 
Lie subgroup. 

By inductive hypothesis there exists a one-dimensional subspace of V invariant 
with respect to R(H). This means that T/,(H) # 0 for a character x of H. Since the 
operators R(g), g E G, can only permute weight subspaces of H and since G is 
connected, then I/,(H) is invariant with respect to R(G), hence with respect to 
Wg)* 

Now let c be a nonzero element of the tangent algebra of P and U a one- 
dimensional subspace of I/,(H) invariant with respect to dR(<). Then it is also 
invariant with respect to R(P), hence with respect to R(G). The theorem is proved. 

cl 
Problem 11 (Corollary). Under the conditions of the theorem there exists a 

basis of V in which all the operators R(g), g E G, are expressed by (upper) 
triangular matrices. 

6’. The Radical. Semisimple Lie Groups. 

It 

Problem 12. The sum of solvable ideals of a Lie algebra is a solvable ideal. 

It follows, that in any Lie algebra g there exists the largest solvable ideal. 
is called the radical of g. We will denote it by rub g. 

Theorem 6. In any Lie group G there is the largest connected solvable normal 
Lie subgroup. Its tangent algebra coincides with rub g. 

Proof. Consider the Malcev closure (rab g)! By Theorem 3 ((ra’D g)“)’ = 
(rub 9)‘. Hence, (rub g)M is a solvable Lie algebra. By Problem 6 (rab g)M is an 
idea; Since rab g is the largest solvable ideal of g, then (rab g)M = rab g. This 
means that there exists a connected Lie subgroup R c G such that its tangent 
algebra coincides with rab g. 

The definition of rabg implies that rab g is invariant with respect to all 
automorphisms of g. Hence, R is invariant with respect to ail automorphisms of 
G. In particular, R is normal. By Theorem 4 it is solvable. 

Any connected solvable normal Lie subgroup H c G must be contained in R 
since its tangent algebra E, being a solvable ideal of g is contained in rab g. Thus, 
R is the largest connected solvable normal Lie subgroup of G. 0 

The subgroup satisfying the hypotheses of Theorem 5 is called the radical of 
the Lie group G. We will denote it by Rad G. 
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A Lie group G (a Lie algebra CJ) is called semisimple if Rad G = (e} (resp. 
rub CJ = 0). Obviously, a Lie group is semisimple if and only if its tangent algebra 
is semisimple. For any Lie group G (resp. Lie algebra g) the quotient group 
G/Rad G (resp. the quotient algebra g/rub g) is semisimple. 

Problem 13. A Lie algebra g is semisimple if and only if it has no commutative 
ideals. 

In Chapters IV and V we will show that the classical Lie groups SL,(K), SO,(K) 
for n > 3, Sp,(K) and several other groups are semisimple. The theory of semi- 
simple Lie groups is the most difficult and significant part of the Lie group theory. 

7’. Complexification. Complex Lie algebras have a simpler structure than real 
ones. Therefore the usual way to study real Lie algebras is to complexify them. 
In order to prove anything in this way we should know which properties of a 
Lie algebra are preserved under the complexification. In this section we will prove 
that solvability and semisimplicity are among these properties. 

Let V(C) = V OR @ be the complex$cation of a real vector space I/. Any vector 
z E V(C) can be uniquely presented in the form z = x + iy, where X, y E V. The 
vector Z = ,‘c - iy is called the complex conjugate to z. The complex conjugation 
is an antilinear transformation of the space V(C). Therefore if W c V(C) is a 
subspace then so is l%? 

Problem 14. A subspace W c V(c) is the complexilication of a subspace U c V 
if and only if w = W 

Now let g(a3) = g @R a3 be the complexification of a real Lie algebra g. Clearly, 
a subspace h c g is a subalgebra (resp. ideal) if and only if its complexification 
h(Q is a subalgebra (ideal) of g(c). Obviously, the complex conjugation is an 
antilinear automorphism of g(c). 

Problem 15. (g(Q) = g’(a3) 
This implies that g(c) is solvable if and only if so is g. 

Problem 16. ra‘o g(@) = (rab g)(c). 
It follows, that q(C) is semisimple if and only if so is g. . 

Exercises 
1) (GLJK))’ = SLJK). 
2) WK))’ = SQ(K). 
3) I-J; = su,. 
4) Let H be the Lie group of 3 x 3 unitriangular real matrices and G = 

(H x U)/N, where N is the cyclic subgroup generated by 

If c is an element of infinite order of U then G’ is not a Lie subgroup. 
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5) A subspace of the tangent algebra of -IT” is the tangent space to a Lie sub- 
group if and only if it is generated by vectors of the form (ia,, . l  l  , ia,), where 
a,, l *.7 a, E Cl. 

6) Let Q and b be subalgebras of the tangent algebra of a Lie group such that 
[a, b] c a n 6. Let a”, bM be their Malcev closures. Then [a”, b”] = 
[a, b]. (Here [a, b] is the subspace generated by the brackets [J q], where 
r E Q, q- E b). 

7) The Malcev closure of a commutative subalgebra is a commutative 
subalgebra. 

8) If a Lie group (resp. Lie algebra) is not semisimple it has a connected 
commutative normal Lie subgroup (resp. a commutative ideal) of positive 
dimension. 

9) Let R be a connected solvable normal Lie subgroup of G. If G/R is semisimple 
then R = Rad G. 

10) SL,(K) is semisimple. 
11) A direct product of semisimple Lie groups is a semisimple Lie group. 
12) Let U be a subspace of a complex vector space K The radical of the Lie group 

GL(V; U) = (A E GL( V): AU c U} 

consists of all the transformations A E GL(V; U) that act as multiplications 
by scalars on U and on V/U. 

13) The radical of a complex Lie group coincides with the radical of this group 
considered as a real Lie group. 

14) Any nontrivial connected solvable real Lie group has a connected normal 
Lie subgroup of codimension 1. 

15) Let G be a connected solvable real Lie group and H its connected solvable 
Lie subgroup of codimension 1. Then G = H x P, where P is a connected 
one-dimensional Lie subgroup. 

Hints to Problems 

1. Let x(t) and y(t), where 0 < t < E, be differentiable paths in G such that 
x(0) = y(0) = e, x’(0) = 5, y’(0) = q. Then we may take 

3. Let E, be a matrix unit, i.e. its (i, j)-th entry is 1 and the other entries are 
zeros. Clearly, 

CE ** - Ejj, Eijl = 2E, 

~~:,, Eji] = Eii - Ejj 

for i # j. This implies that 41,(K)’ = 51,(K), hence SL,(K)’ = SL,(K). 
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4. If the required Lie subgroup exists, it is the image of R under the homomor- 
phism R -+ U” such that its differential maps 1 into (ia,, . . . , ia,). This homo- 
morphism is of the form . 

x t+ (eialx, . . . , eianx). 

Further, use Problem 1.14. 
5. For a finite number of subgroups the statement is just the contents of 

Problem 1.23. In the general case the subalgebra n h,, coincides with the 
intersection of a finite number of subalgebras, say t>,,, . . . , l&, and by the 
above it is the tangent algebra of the Lie subgroup fi = Q1 n l  n H,,km For 
any v the Lie subgroup fi n Hy has the same tangent algebra as fi. Hence 
fi n H, is contained in fi and contains Ho and therefore so is and does H. 
Thus H is a Lie subgroup and its tangent algebra coincides with n l&. 

6. Clearly, if a is an automorphism of the Lie group G, then (da(t)))M = da(b”)) 
for any Lie subalgebra b c g. In particular, ((Ad s)b)” = (Ad g)b”. Further, 
use the fact that b is an ideal if and only if (Adg)t) = t> for any g E Go. 

7. For an ideal take any subspace of codimension 1 containing the derived 
algebra and for a subalgebra take any complementary subspace. 

9. The proof is similar to that of the theorem on linear independence of 
eigensubspaces of a linear operator. 

11. Take a one-dimensional invariant subspace U c V which exists due to the 
theorem and consider the quotient representation of G in V/U. Apply the 
theorem again to this representation, etc. 

13. Consider the last nonzero iterated derived algebra of rad g. 
14. If W= W then with any z = x + iy (x, y E V) the subspace W contains both 

1 
x=$z+Z) and y=+-- 

21 
Z), which means that IV is the complexifica- 

tion of U = W n I/. 

16. Notice that rab g(@) is a solvable ideal of g(@) hence is contained in rab g(@). 



Chapter 2 
Algebraic Varieties 

The objects that occur in this chapter (vector spaces, algebras, algebraic 
varieties, etc.) are considered over a fixed ground field K. In subsections U-3.3 
it is assumed to be algebraically closed! Sometimes we require that it be of zero 
characteristic. The reader, however, would not lose much by restricting himself 
to the cases K = C or (where the algebraic closedness is not required) K = If%. 
Only these cases are needed for future applications to the Lie group theory and 
we only consider more general fields in order to elucidate the algebraic nature 
of the theory discussed. 

Denote by A” (resp. IP) the n-dimensional affine (resp. projective) space over 
K. The point of A” with coordinates X,, . . . , Xn is denoted by (X,, . . . , Xn). 
A point of P” with homogeneous coordinates U,, U,, . . . U, is denoted by 
(u~:u,:...:u,). 

Hereafter the word “algebra” means “commutative associative algebra with 
unit” except the subsection 3.6 where arbitrary algebras are also considered. 
Subalgebras are supposed to contain unit, homomorphisms to transform the unit 
into the unit. 

QA stands for the full quotient algebra of an algebra-A, i.e. the quotient ring 
of A with respect to the multiplicative system consisting of all elements that are 
not zero divisors (see [44]), considered as an algebra over the ground field. If, in 
particular, A is an algebra without zero divisors then QA is a field. 

If L,, L,, . . . are some capitals then A [L,, L,, . . .] denotes the polynomial 
algebra of L,, L,, . . . with coefficients in A. 

5 1. Afhe Algebraic Varieties 

In subsections lo-4’ the ground field K is an arbitrary infinite field. 

lo. Embedded Affine Varieties. An algebraic variety in A” or an embedded 
affine algebraic variety is a subset in An defined by a system of equations 

fW l?““, Xn) = 0 (f E Sk (1) 

* In many cases this assumption is superfluous but we decided not to overburden our narrative with a 
perpetual change of scenery. 
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where S is a (not necessarily finite) set of polynomials. An algebraic variety 
defined by system (I) will be denoted by M(S). 

The collection I of polynomials of the form zgifi, where gi E KIXI, . . . , XJ 
and h E S, is an ideal of the algebra K[X,, . . . , XJ. It is the smallest ideal 
that contains S. We will say that the ideal I is generated by the set S or that S is 
a system of generators of the ideal I. Evidently, M(S) = M(I). 

An algebra is noetherian if one of the following conditions is satisfied 
a) each its ideal is finitely generated; 
b) any nondescending chain of its ideals JI c I, c l  l  . stabilizes, i.e. Zm = 

I m+l = l  * for some m. 

Problem 1. Conditions a) and b) are equivalent. 

Theorem 1 (Hilbert’s ideal basis theorem). If R is noetherian then SO is R[X]. 
In particular, K [Xl,. . . , Xn] is noetherian. 

Proof: see e.g. [S]. 

Problem 2 (Corollary). Any affine algebraic variety can be determined by a 
finite system of equations. 

Let I be an ideal of K [Xl,. . . , Xn] and A = K[X,, . . . , XJI. The natural 
homomorphism of K[X,, . . . ,Xn] onto A will be denoted by n; put n(Xi) = Xi. 
The algebra A is generated over K by x1,. . . , x,, i.e. any element of A is presented 
(in general, non uniquely) as a polynomial in x1, . . . , x, with coefficients in 
K. We will express this fact as follows: A = K [x,, . . . , x,]. Clearly, if f E I, 
then f(x,,...,x,) = 0 and for any homomorphism q: A -+ K we have 
.fcP(x,),.- . , cp(x,)) = 0. This means that for any homomorphism cp: A -+ K the 
point k&l ), l  l  

. , cp(x,)) belongs to the variety M(I). 

Problem 3. This correspondence between the homomorphisms A -+ K and the 
points of M(Z) is one to one. 

Now let A = K[x,,.. . , x,3 be an algebra generated by its elements x, , . . . , x,. 
There is the unique homomorphism 7t: K [X,, . . . , X,] + A such that n(Xi) = xi. 
If I = kern, then A = KCX,,.. .,X,]/I. By Problem 3 the homomorphisms 
A -+ K are in one-to-one correspondence with the points of M(I). Thus we may 
speak about an affine algebraic variety defined by an algebra with a fixed finite 
system of generators. 

Different ideals (algebras) may define the same variety. For example, the ideals 
(X) and (X2) in K [X] define the subvariety in A’ that consists of the single point 
(0). Among all the ideals defining a given variety M there is the largest one, 
namely, the ideal generated by all polynomials that vanish on A4. 

Let A4 c A” be an algebraic variety. For any polynomial f E K [X,, . . . , X,] 
denote by f (M its restriction (as of a function) onto M. The map f t+ f jM is a 
homomorphism of K [X,, . . .,X,1 into the algebra of functions on A4 and the 
kernel of this homomorphis is I(M). Therefore, elements of the algebra 

K CM1 = K Lx, 7 l  l  l  7 xn]/J(M) (2) 
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may be interpreted as functions on A4. These functions will be called polynomials 
on A4 and the algebra K[M] will be called the algebra of polynomials on A4 or 
the coordinate algebra of M. 

Problem 4. Suppose A = K [x, , . . . , x,l defines a variety M. Then there exists 
a unique homomorphism p: A + K[M] such that p(~,) = XJM. 

In the sequel, as long as it is clear what M is meant and unless mentioned 
otherwise we will write xi for XJ,; then K [M] = K[x,, . . . , x,]. 

An element a E A is called nilpotent if ak = 0 for a certain k. Clearly, K[M] 
does not have nilpotent elements. (When talking about algebras without zero 
divisors or nilpotent elements one obviously has in mind nonzero elements.) 

Let L be a field extension of K. The space An is naturally embedded into the 
n-dimensional afine space A”(L) over L. For any algebraic variety M c A” one 
may consider the algebraic variety 

M(L) = {x E An(L): f(x) = 0 for all f E Z(M)} 

in N’(L). Obviously, ikf = M(L) n A”. 

2’. Morphisms. A morphism of an algebraic variety M c A” into an algebraic 
variety N c A* is any polynomial map f: A4 -+ N i.e. a map that (in coordinates) 
may be determined by polynomials. More precisely, it means that there are 
polynomials fi, . . ., fm E K[X,,. . ., Xn] such that the map f transforms a point 
x E M into the point of the variety N with coordinates fi(x), . . . , f*(x). 

As any map, a morphism f: M + N induces a homomorphism of algebras of 
functions defined by the formula 

(f “d(x) = df(x)) (3) 

(Here g is a function on N, x E M). The definition of the morphism clearly implies 
that if g is a polynomial on N, then f*g is a polynomial on A4. So we get a 
homomorphism of algebras: f*: k[N] + k[M]. 

Problem 5. For any algebra homomorphism q: K[N] + K[M] there exists a 
unique morphism f: M -+ N such that f* = q. 

Thus, to define a morphism of embedded afine algebraic varieties is the same 
as to define a homomorphism of algebras of polynomials on these varieties. 

Clearly, the product gf of morphisms f: M --) N and g: N --+ P is a morphism 
and (gf)* = f*g*. A morphism f: M + IV is called an isomorphism if there exists 
an inverse morphism f-’ : N -+ M, i.e. if f is bijective and the inverse map is also 
a polynomial one. This is equivalent to the fact that f* is an isomorphism of 
algebras. 

The class of isomorphic embedded affine algebraic varieties is called an (ab- 
stract) affine algebraic variety (or, in short, a-fine variety) and its representatives 
will be called embeddings of this variety into the affme space, or models. Practi- 
cally, an affine variety is identified with one of its models (always having in mind, 
however, the possibility to pass to any other model). 
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A polynomial on an affine variety is a function which is a polynomial on a 
model of this variety (it does not matter on which one). The polynomials on an 
affme variety A4 constitute the algebra denoted by K[M]. Similarly, a morphism 
or a polynomial map of affine varieties is a map which is a morphism of their 
models (it does not matter of which ones). 

By Problem 3 there is a one-to-one correspondence between the points of an 
affine variety M and algebra homomorphisms of K[M] into K. Explicitly, to 
each point x E A4 the homomorphism qX corresponds which assigns to each 
polynomial f E K[M] its value at X: 

It is clear from the above that to determine an afine variety A4 is-the same as 
to determine the algebra K[M] and to determine an embedding of A4 in an 
affine space is the same as to choose a system of generators in the algebra 
K[A4]. To determine a morphism of affme varieties is the same as to determine 
a homomorphism of their polynomial algebras. This makes it principally possible 
to translate any statement about affme varieties from the geometric language into 
the algebraic one and, the other way around, to translate statements on poly- 
nomial algebras into the geometric language. 

Thus, the question arises what are the algebras that are algebras of polynomials 
on affine varieties? 

An exact answer to this question in the case of an algebraically closed K will 
be given in n. 7’. For the time being we can say that they can only be finitely 
generated algebras without nilpotent elements. In algebraic geometry more 
general geometric objects (affine schemes) are also considered which correspond 
to arbitrary finitely generated algebras. However, for our purposes affine varieties 
in the above “naive” sense will do. 

Let L be a field extension of K. Clearly, any morphism A4 + N of embedded 
a&e varieties extends to a morphism M(L) + N(L) determined by the same 
polynomials. Therefore we may speak about an abstract affine variety M(L) over 
L determined by an abstract afine variety A4 over K and about an embedding 
M c M(L). 

3O. Zariski Topology. Let us consider algebraic varieties as closed subsets of 
A n 

. 

Problem 6. This system of closed subsets determines a topology in A” (i.e. the 
intersection of closed subsets and the union of a finite number of closed subsets 
are closed). 

This topology in An is called the Zariski topology. Clearly, a point is closed in 
the Zariski topology. 

The Zariski topology of A” induces a topology on any algebraic variety 
M c A” which is called the Zariski topology on M. According to this definition 
the closed subsets are distinguished in A4 by systems of equations of the form 
f(x) = 0, where f E K[M]. In particular, the Zariski topology on M is defined 
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by K[M), and that is why we may speak about the Zariski topology on an 
abstract affine variety. Clearly, morphisms of affine varieties are continuous in 
Zariski topology. Closed subsets N of an affine variety 2M are canonically 
endowed with an affine variety structure so that 

where Z,(N) is the ideal of K [A41 consisting of the polynomials that vanish on N. 
Notice that the Zariski topology on An+m does not coincide with the direct 

product topology on A” x Am (e.g. the set in A2 determined by the equation 
X 1 = X2 is closed but it is not closed in A1 x Al). 

In the sequel, unless otherwise stated, all the topological terms, excluding 
connectedness and simple connectedness are referred to the Zariski topology. 

The space A” x Am is supposed to be endowed with the Zariski topology of 
the space An+m. 

A topological space X is noetherian if it satisfies the descending chain condition * 
for closed subsets. 

Problem 7. A subspace of a noetherian space is noetherian. 

Problem 8. The space A” endowed with the Zariski topology is a noetherian 
topological space. 

This implies that any affme variety is a noetherian topological space. 
A topological space A4 is irreducible if it is nonempty and one of the following 

three conditions is satisfied: 
a) any nonempty open set is dense in M; 
b) any two nonempty open sets intersect; 
c) it is impossible to present A4 as a union of two of its proper closed subsets. 

Problem 9. Prove the equivalence of these conditions. 

Theorem 2. Any noetherian topological space M can be presented as a union of 
a finite number of closed irreducible subsets Mi, SO that Mi Q: Mj for i #j. This 
decomposition is unique up to a renumbering of the Mi. 

The subsets Mi defined in Theorem 2 are called irreducible components 
of M. 

Problem 10. Prove Theorem 2. 

Problem 11. An affine variety M is irreducible if and only if K[M] does not 
have zero divisors. More precisely, zero divisors in K[M] are the polynomials 
which vanish on an irreducible component of M. In particular, A” is irreducible. 

The closure of a subset M in a topological space will be denoted by M. 

Problem 12. Let M be a subset of a noetherian topological space. If M = ui Mi 
is the decomposition of M into irreducible components, then M= Ui Mi is the 
decomposition of A4 into irreducible components. In particular, M is irreducible 
if and only if so is M. 
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Let A4 be an afine variety. The open subsets of the form 

Mh = {x E M: h(x) # o} (h E KCMI) 

are called principal open subsets of M. Clearly, 

It follows from Problem 11 that Mh is dense in M if and only if h is not a zero 
divisor in K[M]. 

of 
Problem 13. The principal open subsets of an affine variety constitute a base 
the Zariski topology (i.e. any open subse t is a union of principal open subsets). 

If h E K[M] is not a zero divisor then the elements of K[M] [l/h] c QK[M] 
can be naturally considered as functions on Mh since for x E Mh the homo- 
morphism (4) uniquely extends to a homomorphism K[M] [l/h] + K. On the 
other hand, for x $ M, such an extension is clearly impossible. This means that 
Mh can be considered as an afine variety with the polynomial algebra 

K[MJ = K[M] ; . [I 
If h is a zero divisor and M’ is the union of irreducible components of M on 

which h does not vanish identically then A4h = ML!, where h’ = hlMt E K[M’]. 
Since h’ is not a zero divisor in K CM’], then Mh can be considered as an affine 
variety with the polynomial algebra K[MJ = K[A4’] [l/h’]. Keeping the above 
in mind, we will speak from now on about principal open subsets of affine 
varieties as about affine varieties. 

Let L be a field extension of K. 

Problem 14. The Zariski topology on An coincides with the topology induced 
by the Zariski topology on A”(L). The closure in N’(L) of any algebraic variety 
M c An coincides with M(L) and 1(M(L)) = H(M). 

4’. The Direct Product. Let M and N be algebraic varieties in A” and A”, 
respectively. Then M x N is an algebraic variety in A” x Am = An+m. 

Problem 15. If M and iV are irreducible then so is M x IV. 
In order to describe the polynomial algebra on M x N it is necessary to 

introduce the notion of the tensor product of algebras. The tensor product A @ B 
of algebras A and B is the tensor product of the vector spaces A and B with the 
multiplication 

(al 0 bl)(a2 0 b2) = ala2 63 blb2. 

The maps I,: a-a @ 1 and zg: bw 1 @ b determine natural embeddings of 
algebras A and B into A @ B. 
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The tensor product of algebras is characterized by the following universality 
condition: for any algebra C and algebra homomorphisms q: A + C and @: 
B -+ C there exists a unique homomorphism cr): A @ B -+ C such that the diagram 

C 

commutes. This homomorphism is defined by the formula 

w(a 0 b) = q(a)$(b). 

When o is an isomorphism, we say that C is the tensor product of A and B with 
respect to homomorphisms cp and $. If it is clear which homomorphisms cp and 
$ we have in mind, we write C = A @ B. For example 

K[X,,. ..,x,, Yl,. “, Ym] = K[X,,. l  l ,Xn] @ K[Y,,..., ym]- 

Let A4 c An and N c Am be algebraic varieties. Put nM and nN for projections 
of A4 x N onto A4 and N, respectively. 

Problem 16. K[M x IV] = K[M] @ K[N] with respect to homomorphisms 
7t;t; and $$. The ideal I(A4 x N) of the algebra K[X,, . . . , Xn, Y1, l  . , Ym] is gener- 
ated by the ideals Z(M) and I(N) of the algebras K [X, , . . . , Xn] and K [ Y1,. . . 9 Ym] 
naturally embedded into K[X,, . . . , Xn, Y1,. . . , Ym]* 

In the sequel we will identify the algebras K[M x N] and K[M] @ K[N] 
having in mind the isomorphism constructed in Problem 16. Under such an 
identification an element f @ g E K[M] @ K[N] is presented as the function on 
A4 x N defined by the formula 

(f 0 dk Y) = f (&l(Y)* 

An important corollary of Problem 16: The polynomial algebra on A4 x N is 
defined by polynomial algebras on A4 and N, hence does not depend on em- 
beddings of M and N into affine spaces. This enables us to define the direct 
product of abstract affine varieties M and N as the affine variety M x N whose 
model is the direct product of any models of M and N. 

It also follows from Problem 16 that (M x N)(L) = M(L) x N(L) for any field 
extension L of K. 

So. Homomorphism Extension Theorems. From here and till the end of the 
chapter ($5 3.4-3.7 excluded) we will assume that K is algebraically closed. 

Suppose A is a subalgebra of B. For any subset U c B put A [ U] (or A [u,, . . .] 
if U = {q,.. . }) for the subalgebra in B generated by the set U over A, i.e. for 
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the collection of all elements of B presentable as polynomials in elements of U 
with coefficients in A. If A[ U] = B we will say that U is a system of generators 
of the algebra B Ouer A (do not confuse with the notion of generators of an ideal!) 
The algebra B is called finitely generated ouer A if it has a finite number of 
generators over A. Clearly, if B is finitely generated over K then so it is over A. 

Algebras finitely generated over K will be simply called finitely generated. 
Suppose B is without zero divisors. An element b E B is called algebraic over 

A if there is a nonzero polynomial f E A[X] such that f(b) = 0; otherwise b is 
called transcedental (over A). If b is transcedental over A, then A[b] h/ A[X]. An 
algebra B is called an algebraic extention of A if any of its elements is algebraic 
over A. It is convenient to introduce the quotient field QB into which the algebra 
B and the field QA are isomorphically embedded. 

Problem 17. An element b E B is algebraic over A if and only if QA[b] is a 
finite-dimensional vector space over QA. 

Problem 18. If B = A[b,, . . . , &I, where bl, . . l  , b, are algebraic over A, then B 
is an algebraic extension of A. 

Theorem 3. Suppose B is an algebra without zero divisors finitely generated 
over its subalgebra A. Then for any nonzero element b E B there exists a nonzero 
element a E A such that any homomorphism q~: A -+ C that does not annihilate a 
extends to a homomorphism $: B -+ C which does not annihilate b. 

Problem 19. Prove Theorem 3 when B = ALU], where u is transcedental over A. 

Problem 20. Prove Theorem 3 when B = A[u], where u is algebraic over A. 

Problem 21. Prove Theorem 3. 

Corollary. If B is a finitely generated algebra without zero divisors then for any 
nonzero b E B there exists a homomorphism I/: B + C which does not annihilate b. 

Theorem 4. Let char K = 0. Suppose B is a finitely generated algebra without 
zero dicisors and A is its finitely generated subalgebra. If there exists a nonzero 
element b E B such that any homomorphism A --) C has no more than one extension 
to n homomorphism B + C which does not annihilate b, then B c QA. 

Problem 22. Prove Theorem 4. 

6’. The Image of a Dominant Morphism. A morphism f: M -+ N of irreducible 
affine varieties is called dominant if f(M) = N. 

Problem 23. A morphismfis dominant if and only if the corresponding algebra 
homomorphism f*: K[N] -+ K[A4] is injective. 

A dominant morphism may be not surjective. For instance let A4 = 
((x,.X,) E iv: x,x, = 11, N = A’ and f:(X,,X++(X1); then f(M) = 
A ’ \,{Oi. Nevertheless 7 the image of a dominant morphism is sufficiently large as 
it is shown by the following theorem. 
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A subset of an irreducible topological space is called @ais if it contains a 
nonempty open subset. Clearly, any epais subset is dense. The intersection of a 
finite number of epais subsets is epais itself. 

Theorem 5. Let f: M + N be a dominant morphism of irreducible affine varieties. 
The image f (M,) of any ipais subset M, c M is an ipais subset in N. 

Proof. It suffices to prove that the image of any nonempty principal open 
subset of M contains a nonempty principal open subset of N. This is the 
geometric equivalent of Theorem 3 appled to A = K[N] and B = K[M] if we 
identify the elements of K[N] with their images under f *. 

Indeed, the points of M and N can be considered as homomorphisms into K 
of K [M] and K [N] respectively. Then f can be viewed as a restriction onto 
K[N] of the homomorphisms K[M] --) K. By Theorem 3 for any nonzero 
g E K[M] there exists a nonzero h E K[N] such that any homomorphism 
K[N] -+ K that does not annihilate h extends to a homomorphism K[M] + K 
that does not annihilate g; but this means that f(M,) I A$. 0 

7’. Hilbert’s Nullstellensatz. An ideal I of A different from A is prime if 
A/I does not have zero divisors. This means that if ab E I then either a E I or 
6 E 1. For example, in K[X], the ideal generated by a polynomial f is prime if 
and only if f is a first degree polynomial. 

Clearly, a prime ideal contains all nilpotent elements. The set of all nilpotent 
elements of A is an ideal called the radical of A and is denoted by RA. 

Theorem 6. The radical of an algebra A coincides with the intersection of all the 
prime ideals of A. 

Proof see e.g. in [8], [53]. 

Problem 24. The kernel of the homomorphism p defined in Problem 4 equals 
RA. 

In particular, a finitely generated algebra A coincides with the polynomial 
algebra on the affine variety that A defines if and only if A has no nonzero 
nilpotent elements. 

A reformulation of Problem 24 is 

Theorem 7 (Hilbert’s Nullstellensatz which in German means ‘theorem 
on zeroes’). Suppose M = M(I) c 14” is the variety defined by an ideal I c 

KC&,..., Xn]. For any f E I(M) there exists k such that fk E I. 
Applying this theorem to f = 1 we obtain 

Corollary. If M(I) = 0 then I = K [X,, . . . , Xn]. 

Problem 25. Let M be an affine variety and I an ideal of K[M]. If there is no 
point of M at which all the polynomials of I vanish, then I = K[M]. 

Problem 26. Suppose an affine variety M is presented in the form of a union 
of non-intersecting closed subsets M,, . . . . Mq. Then the homomorphism 
K[M] -+ K[M,] x l  - x K[MJ, f m(f lMl,. . . , f IAM,) is an isomorphism. 
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In other words, any function on A4 whose restrictions to M,, . . . $ M, are 
polynomials is a polynomial itself. 

8O. Rational Functions. Let A4 be an affme variety. The algebra QK [M] is 
called the algebra of rational functions cwz M and is denoted by K(M). Problem 
11 shows that if M is irreducible then K(M) is a field. In particular, K(An) = 

K&.*.9 X,) is the field of rational functions in Xl, . . . , Xn* 
The elements of K(M) are called rational functions on A4. A function f E K(M) 

is defined at a point x E M if f can be presented in the form of a ratio g/h, where 
g, h E K[M], such that h(x) # 0. In this case the element g(x)/h(x) is called the 
value off at x and is denoted by f(x). The value does not depend on the choice 
of representation off in the form of’ such a ratio. 

The set of all points x E M where a rational function f E K(M) is defined is 
called the domain off. This set will be denoted by DJ. 

The following properties of rational functions are obvious: 
(Rl) the domain Df off E K(M) is a dense open subset in M; 
(R2) the map f: Ds -+ K is continuous (K is considered here as A1 with the 

Zariski topology); 
(R3) f as an element of K(M), is uniquely determined by its restriction to any 

dense open subset; 
(R4) the operations on the elements of K(M) coincide with the usual operations 

on functions where these functions are defined. 
Let f be a rational function on M. The denominators of all possible presenta- 

tions off in the form of a ratio of two polynomials are precisely the nondivisors 
of zero contained in the ideal 

Problem 27. The ideal If is generated by the nondivisors of zero contained in 
it. The domain off is the complement of the variety of zeros of this ideal. 

Problem 28. Any rational function defined at all points of M is a polynomial, 
i.e. belongs to K[A4]. 

Problems 29. Any rational function defined at all points of a principal open 
subset M,, where h E K[M] is a nondivisor of zero, can be presented in the form 
ok (9 E w3m i.e. belongs to K[A4] [l/h] c K(M). 

Let M’ be the union of some irreducible components of A4. Since the restriction 
homomorphism K [A41 -+ K[A4’] maps the nondivisors of zero into nondivisors 
of zero, it extends to a homomorphism K(M) --) K(W). The image of a rational 
function f E K(M) under this homomorphism is called its restriction to M’ and 
is denoted by f IM#. 

Problem 30. If f is defined at x E M’ then so is f IMt and f IMt(x) = f(x). 

Let M” be the union of the irreducible components of A4 which do not occur 
in M’. 
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Problem 31. Iffl,# is defined at x E M’\M” then so is J 

Problem 32. Let A4 = M, v l  l  l  u Mq be the decomposition of M into irreduc- 
ible components. Then the homomorphism 

is an isomorphism. 

9O. Rational Maps. A rational map of an aiZne variety M into Am is a map of 
the form 

where fi, . . . , fm E K(M). The map f is considered as defined at a point x E M if 
all the functions fi, . . . , fm are defined at this point. 

Problem 33. The domain of a rational map is an open dense subset of M. A 
rational map is continuous on its domain. 

Now let N be another affme variety. Considering N as embedded into Am 
define a rational map f: M + N as a rational map f: M + Am such that f(M) c N. 

Problem 34. The notion of a rational map into a variety N does not depend 
on the embedding of N into an affrne space. 

Under the inversely directed homomorphism of the algebras of functions 
defined by formula (3) the coordinate functions are mapped into the functions h 
while the polynomials on N are mapped into the rational functions on M. Thus, 
a rational map f: M + N induces a homomorphism f *: K[N] + K(M). Formula 
(3) means here that if f is delined at x then so is f*g and (3) holds. 

Problem 35. For any homomorphism q: K[N] --+ K(M) there is a unique 
rational map f: M --+ N such that f * = 4p. 

Thus, to define a rational map of a variety M into a variety N is the same as 
to define an algebra homomorphism K[iV] + K(M). If the image of K [N] under 
this homomorphism is contained in K[M], then the corresponding rational map 
is a morphism. 

Suppose that a rational mapf: M + N is defined by formula (5) and h E K [M] 
is a polynomial which is not a zero divisor in K[M] such that h. E K[M] for 
i = 1, . . . . m (e.g. we may take for h the product of denominators of some 
presentations of the functions f;- in the form of a ratio of polynomials). Then 
.L E wa CWl9 i.e. the functions fi, where i = 1, . . . , m, are polynomials on the 
affine variety Mh (see Problem 30). Thus the restriction of a rational map to a 
suitable dense principal open subset is a morphism. 

A rational map f: M -+ N of irreducible affine varieties is called dominant if 
f(M) = N. 

Problem 36. A rational map f is dominant if and only if f * is injective. If f is 
dominant then f * extends to an algebra homomorphism K(N) + K(M) (also 
denoted by f*). 
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Formula (3) is valid for any rational function 9 defined at the point f(x). 
The superposition of a dominant rational map f: A4 -+ N and a rational 

map y: N -+ P can be defined as a rational map gf: A4 --+ P such that (yf)* = 
SJ *c * 

Clearly, if f is defined at x E M and g is defined at f(x) E N then gf is defined 
at x and (sf)M = s(fW 

Note that the map gf may be defined not only at points satisfying the above 
condition. For example, let M = N = P = A’ and f= g: (X)+-+(1/X); then gf 
is the identity morphism which is defined everywhere, whereas f is not defined 
at 0. 

10’. Factorization of a Morphism 

Theorem 8. Let char K = 0, let M, N, P he irreducible affine varieties and let 
f: M -+ N, h: M -+ P be dominant morphisms. If f(d) = f(x”> implies h(x’) = h(Y) 
f;r any points xl, x” of an 6pais subset MO c M, then there exists a rational map 
g:NLPsuchthath=gf. 

The situation is illustrated by the following commutative diagram 

h 
M- P 

. 
. .(/ 

Proof. First consider a particular case, when P = M and h = id. In this case 
the condition of the theorem means that f is one-to-one on M,. Let Mh, where 
b E K [M], b # 0, be a principal open subset contained in M,. 

The same arguments as in the proof of Theorem 7 yield the following algebraic 
formulation of the bijectiveness off on M,: any homomorphism off *K[N] 2 
K [N] into K extends in no more than one way to a homomorphism K [M] --+ K 
that does not annihilate b. By Theorem 4 this implies that K[M] c f*K(N). In 
other words, there is a homomorphism cp: K[M] --+ K(N) such that f *Ip = id. 
The rational map g: N -+ M defined by this homomorphism is the required 
inverse off. 

In general case, consider an auxiliary rational map 

1: M -+ N x P, x t---, (f(x), h(x)) 

The closure of its image will be denoted by L. Furthermore, let p1 and p2 be the 
restrictions onto L of the projections of the product N x P onto the first and 
second factor, respectively. The conditions of the theorem imply that p1 is a 
bijection onto the epais subset l(M,) c L. By the above there exists a rational 
map k: N -+ L inverse to pl. The map g = p2k is the one sought for. Proof is 
illustrated by the following commuting diagram: 



The ground field K is assumed to be algebraically closed. 
1) 

2) 
3) 
4) 
5) 

6) 

7) 

8) 
9 

10) 

It) 

12) 

13) 

14) 

15) 

Let M and N be algebraic varieties in An and N c M. Then K[N] is a 
quotient algebra of K[M]. 
What is the Zariski topology in A’? 
The Zariski topology in An is not the Hausdorff one. 
Any open covering of a noetherian topological space has a finite subcovering. 
Supposef = ptl . . . pis is a decomposition of a polynomial f E C [Xl,. . . , X,] 
into irreducible factors. Then M(f) = u M(pJ is the decomposition of the 
variety M(f) into irreducible components. 
Give an example of two nonisomorphic algebras that define the same alge- 
braic variety in An. 
An affine algebraic variety defined by a finite-dimensional algebra consists 
of a finite number of points. 
A finitely generated algebra which is a field coincides with K. 
Suppose A is a finitely generated algebra, I its maximal ideal. Then A/Z z K. 
There is a one-to-one correspondence between the points of an affine alge- 
braic variety M defined by a finitely generated algebra A and the maximal 
ideals of this algebra: to a point x E M the kernel of the homomorphism 
cpx: A --+ K corresponds. 
If two finitely generated algebras do not have zero divisors (or nilpotent 
elements) then so does their tensor product. (Prove geometrically.) 
The radical of a finitely generated algebra coincides with the intersection of 
all its maximal ideals. 
An ideal I of an algebra A is called a radical ideal if f” E I implies 
j-d. 
Any radical ideal of a finitely generated algebra is the intersection of a finite 
number of prime ideals. 
Find the domain of the rational function x1/x, on the algebraic variety in 
A4 defined by the equation X,X, = X2X3. 
Find the image of the variety M = A’ under the rational map (X) ++ 
((1 - X2)/(1 + X2),2X/(1 + X2)). 
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Note that the assumption char K = 0 is essential. Indeed, suppose that 
char K = p > 0. Then the morphism f: A1 -+ Al, (X) I+ (Xp) is a bijection but 
the inverse map is not rational. 

Exercises 
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16) 

17) 

18) 

19 

20) 

21) 

5 . 

6 . 
8 . 

10 . 

11 . 

14 . 
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Suppose A4 = Al, and f: (X) b(X2, X3). There is an inverse rational map 
f? f(M) -+ A1 but it is not defined at f(O). 
Suppose fi, . . . , fk, g are rational functions on A”. If g is constant on the level 
surfaces of the family (fi, . . . ,fk), then it may be presented in the form of a 
rational function in fi, . . . , fk. 
An elementary algebraic predicate in variables x E A”, y E A”, z E Ap, l  . . 
is a predicate of the form “F(x, y, z,. . .) = 0”, where F is a polynomial in 
n+m+p+ l  l  l  variables. Furthermore an algebraic predicate is any predi- 
cate obtained from elementary ones within the framework of the logic of 
predicates, i.e. by making use of (a finite number of) conjunctions, disjunc- 
tions and negations and also quantifiers of existence and generality. 
AsetA4cAmxAnxApx-• is constructible if there exists a predicate P 
comaining free variables x E An, y E Am, z E Ap, . . . (and containing no other 
free variables), such that (a, b, C, . . .) E M if and only if P(a, b, c, . . .) = 0. 
An irreducible component of a constructible set is constructible itself. 
The image of an irreducible constructible set under a rational map into A4 
is a constructible set in Aq. 
Any constructible set can be presented as a finite union of sets of the form 
F\G, where F and G are closed sets. 
An irreducible constructible set is epais in its closure. 

Hints to Problems 

The desired morphism is of the form x I--+ (fi (x), . . . ,fm(x)), where A = q(yi), 
wherey,, . . . . y, are the restrictions on JV of coordinates in Am. 
M(S,) v M(S,) = M(S), where S = { fi f2: fi E S, and f2 E S,}. 
This is a geometric equivalent of Theorem 1. 
The topological spaces that are not representable as unions of finite numbers 
of closed irreducible subsets will be called bad spaces. Suppose M is bad. 
Then, in particular, M can not be irreducible, therefore M = M, u M,, where 
M, j M, are proper closed subsets and at least one of M,, M, is bad. Suppose 
M, is bad. Then M, = M,, u M12, where Mll, Ml2 are proper closed 
subsets and at least one of M, 1, Ml2 is bad. Suppose this is Ml 1. Continuing 
the process, we obtain an infinite descending chain M 2 Ml 2 Ml 1 1 l  l  l  of 
closed subsets of M. If M is noetherian, this is impossible. 

Suppose M = u 1 <i<k Mi, where Mi is a closed irreducible subset such that 
Mi $ Mjfori #j.Th;‘enM,,.. . , Mk are all the maximal irreducible subsets of 
M, and therefore the Mi are uniquely defined. 
Suppose there are nonzero elements fl, f2 E K [M] such that fl f2 = 0. Then 
M = Ml v M,, where Mk = (x E M: h(x) = 0} so that Ml # M and M, # 
M. Thus, if K [M] has zero divisors then M is reducible, and each zero divizor 
vanishes on an irreducible component of M. 
Let (uZ} be a basis of L as of a vector space over K. Any polynomial 
f E LCX,,.. . , X,] is representable in the form f = xa u,f,, where f, E 
K [Xl,. . . , X,] and for a point x E An the condition f(x) = 0 is equivalent to 
the conjunction of the conditions f&c) = 0. Therefore the intersection of any 
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closed subset of An(L) with A” is closed in A”. Proof of the remaining 
statements is similar. 

15. Suppose A4 x N = P, u p2, where P, and PZ are closed subsets. For any 
x E A4 consider the closed sets 

P~(x)={~EN:(x,Y)EP~)cN for k= 1,2. 

Since PI(x) u Pz(x) = .N, one of the sets PI(x) or P&) coincides with N. Now 
consider the closed sets & = (x E A4: (x,y) E Pk for any y E N} c M, where 
k = 1, 2. By the previons results A4 = M, u M,. Hence, A4 coincides either 
with M, or with M,. If A4 = j&, then A4 x N = pk, therefore A4 x N = PI 

16. Let {fi,f2,... } be a basis of K[A4]. The homomorphism co: K[A4] @ 
K[N] + K[M x N] defined by Z& and 7c;I; assigns to u = Iif;: @ gi (gi E 
K [N]) the function h(x, y) = C,f;,(x)gi(y) (x E M, y E N). Therefore gi(y) = 0 
for any i and y E N, but then u = 0. This proves the injectivity of cr). Its 
surjectivity is clear. The second statement of the problem follows from the 
first one. 

19. For any f E A [X] put f” for a polynomial of K [X] which is obtained from 
f by applying the homomorphism cp coefficient-wise. Let b = g(u) and a E K 
be any number which is not a root of gY Define the homomorphism $ setting 
@(f(u)) = fV@). In this case gp # 0 is the only restriction on cp. This condition 
is verified if we take for a any nonzero coefficient of g. 

20. Let p E A[X] be the minimal polynomial of u. Denote by a, the highest 
degree coefficient of p. If 4 E A[X] is such that q(u) = 0, then 4 is divis- 
ible by p in QA [X] and there exists k such that a! q is divisible by p in 
ACXI* 

Therefore, if cp(al) # 0 and cc E K is a root of p(p, then the homomorphism 
$: B -+ K that coincides with q on A is well-defined by the formula $(f(u)) = 
f vd* 

Now let us make ti(b) # 0. By Problem 18 b is algebraic over A. Let 
h E A[X] be a nonzero polynomial such that h(b) = 0. We may assume that 
the constant term a2 of h is nonzero (otherwise we divide h by X). If q(b) = p, 
then hV(/3) = 0. Let &a,) # 0. Then p is a root of a polynomial with a 
nonzero constant term and therefore p # 0. Thus we may put a = a, a2. 

21. The induction in the number of generators of the algebra B over A reduces 
the proof to the cases considered in Problems 19 and 20. 

22. The induction in the number of generators of the algebra B over A enables 
us to reduce the proof to the case B = A[u]. In this case we are under the 
conditions of Problems 19 or 20. Let a E A be a nonzero element constructed 
while solving the corresponding problem. By Corollary of Theorem 3 there 
is a homomorphism cp: A + K that does not annihilate a. The solutions of 
Problems 19 and 20 show that the homomorphism (o uniquely extends to a 
homomorphism $: B -+ K only when u is algebraic over A and pV has a 
unique root, i.e. pip = c(X - c#, where c E K and c # 0. 
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Let us show that if m = degp > 1, then q can be chosen SO that the 
polynomial p@ is not of this form. Since p is irreducible over QA, then, in 
particular, p is not proportional to any power of a linear binomial. Let 

p = p. + p,X + l  ** + pmXm, where pi E A, pm # 0. 

There exists i \( m - 2 such that pi # p,(~)(p,-l/mp,)m-‘, i.e. m”-‘p,“-‘-‘pi # 
m 

( )P . zzf, otherwise p 
tilon: cp(m Pm 

= p,(X + (pm~l/mpm))m. If we require an extra condi- 
m-i m-i-l pi - (T)p,“If ) # 0, then pq also is not proportional to any 

degree of a linear binomial. 
Thus, degp = 1. But this means exactly that u E QA and hence B c QA. 

First show that the kernel of p coincides with the intersection of the kernels 
of all the homomorphisms A -3 K. Further, apply Theorem 5 and Corollary 
of Theorem 3. 
Consider an embedding A4 -+ An and apply Theorem 7 to the preimage of 
the ideal Z with respect to the restriction homomorphism K[X,, . . . , X,] --+ 
K[M)andtof= 1. 
The proof reduces to the case 4 = 2. In this case Problem 25 implies that 
ZM(M1) + Z&MJ = K[M]. This means that the considered map is surjective. 
Its injectivity is obvious. 
Let M = M, v l  - u Mq be the decomposition of M into irreducible com- 
ponents. By Problem 11 the set of zero divisors of K[M] is the union of the 
ideals I,(M,), s = 1, . . . , 4. Since Z,- contains at least one nondivisor of zero, 
then I, n Z&M,) is a proper subspace of If for any s. If all the nondivisors of 
zero contained in Zf had belonged to some of its proper subspaces, then If 
would have been a union of a finite number of proper subspaces which is 
impossible. 
Let f be such a function. The conditions of the problem imply that the variety 
of zeros of If is empty. By Problem 25 this implies that If 3 1, i.e. f is 
presentable in the form f = g/l, where g E K[M], as required. 
Is solved like Problem 28 but with the help of the Hilbert’s Nullstellensatz 
itself. 
Passing to an appropriate dense principal open subset reduce to the case 
when M’ n M” = (25 and use Problem 26. 
Passing to an appropriate dense principal open subset reduce to the case 
when irreducible components of M do no intersect and use Problem 26. 
Let N be embedded in the affine space A* with coordinates Y1, . . . , Ym. 
Then the required map is of the form x I--+ (fi (x), . . . J*(X)), where f;: = v(Y,), 
Yi = YilN* 

5 2. Projective and Quasiprojective Varieties 

lo. Graded Algebras. Before we start to define projective varieties recall certain 
elementary facts on graded vector spaces and algebras. 
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A vector space V is graded if there are distinguished subspaces Vk (k E Z) in it 
called grading subspaces such that V = Ok I$. The nonzero elements of I$ are 
then called homogeneous elements of degree k. By definition any nonzero element 
is uniquely presentable as the sum of homogeneous elements called its homo- 
geneous components. A subspace U c V is called homogeneous if together with 
each of its elements it contains all its homogeneous components. This is equi- 
valent to the fact that U = Ok Uk, where Uk c I$ If U is a homogeneous sub- 
space then the quotient space V/U inherits the grading such that (V/U), = T/k/&. 

A grading is called nonnegative if I$ = 0 for k < 0. In this chapter we will only 
consider nonnegative gradings. 

An algebra A is called graded if it is graded by subspaces A, (k E Z) as a vector 
space and &A, c Ak+l for any k, I E Z. If I is a homogeneous ideal of a graded 
algebra A then A/Z is also a graded algebra. 

A polynomial algebra possesses a standard nonnegative grading: the homo- 
geneous elements of degree k are just the forms (homogeneous polynomials) of 
degree k. Notice, that in this case all the grading subspaces are finite dimensional 
(though the algebra itself is infinite dimensional). 

Problem 1. The radical of a graded algebra is a homogeneous ideal. 

Problem 2. If there are no homogeneous zero divisors in a graded algebra A 
i.e. pq = 0 for p E A,, 4 E A, implies either p = 0 or q = 0, then there are no zero 
divisors in A at all. 

2’. Embedded Projective Algebraic Varieties. Let IY be an n-dimensional 
projective space over K and U,, U,, . . . , Un homogeneous coordinates in IFP”. Since 
homogeneous coordinates of a point are only defined up to a simultaneous multi- 
plication by a nonzero element of K, it is impossible to speak about the value of 
a polynomial p E K[U,, &,..., UJ at a point x E IF? But if p is a form (i.e. a 
homogeneous polynomial) the equality p(x) = 0 is meaningful. If p and q are 
forms of the same degree and q(x) # 0, then the ratio p(x)/q(x) is well defined. 

An algebraic variety in lP)” or an embedded projective algebraic variety is a 
subset in [FD” singled out by the system of equations 

where S is a set of forms. The variety defined by system (1) will be denoted by 
MPr(S). 

Problems 3. Any homogeneous ideal of K [U,, U, , . . . , U,] possesses a finite 
system of homogeneous generators. 

Let M be an algebraic variety in V. Consider a subspace of K [ U,, U, , . . . , U,] 
generated by all forms that vanish on M. This subspace is a homogeneous ideal. 
Denote it by P’(M). If S is a system of its homogeneous generators, then 
M = MP’(S). Therefore Problem 3 implies that any algebraic variety in IF can 
be defined by a finite number of homogeneous equations. 
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Call the algebraic varieties in IFD” its closed subsets. This introduces a topology 
in IID” (cf. Problem 1.6) called the Zariski topology. 

Problem 4. The space IFP” endowed with the Zariski topology is an irreducible 
noetherian topological space (see 1.3). 

Now define rational functions on an algebraic variety A4 c IPY Consider the 
algebra 

K [Ml”’  = K [ uo, Ul, . l  l  , Un]/ZP’(M). 

Since Ipr(M) is a homogeneous ideal, K[A41Pr inherits the grading of K [ &, U, 9 
. ..) Ul 

Unlike in the afIine case, the elements of KIMIpr cannot be considered as 
functions on A4. However, if p E K[M]Pr is a homogeneous element then the 
identity p(x) = 0 makes sense for x E M; if p, q E K[j’WJPr are homogeneous 
elements of the same degree and q(x) + 0, then the ratio p(x)/q(x) makes sense. 

Problem 5. A4 is irreducible if and only if K [M]P’ has no zero divisors. More 
precisely, the homogeneous zero divisors of KIMlpr are its homogeneous ele- 
ments which vanish on an irreducible component of A4. 

In QKIMIPr, consider the subalgebra generated by the ratios of the form p/q, 
where p, q are homogeneous elements of the same degree (and q is not a zero 
divisor). This subalgebra is denoted by K(M) and is called the algebra of rational 
functions on A4. Problem 5 shows that if A4 is irreducible then K(M) is a field. 

The elements of K(&f) are called rational functions on A4. A function f E K(M) 
is. considered defined at x E A4 if it is presentable in the form p/q, where p, 
q E KIMIPr are homogeneous elements of the same degree and q(x) # 0. In this 
case the ratio p(s),‘q(x) E K (independent of the choice of such a presentation) is 
called the value of-f at x and is denoted by f(x). As in the affine case, the properties 
(Rl)--(R4) of 1.8 hold. 

Let f be a rational function on A4. The denominators of all possible representa- 
tions off in the form of a ratio of two homogeneous elements (of the same degree) 
of K[A4)P’ are exactly the homogeneous nondivisors of zero contained in the 
homogeneous ideal 

I, = {h E KIMIPr: fh E KIMlpr}. 

Problem 6. The domain Dr off is the complement of the set of zeros of If, i.e. 
of the set of points where all homogeneous elements of I, vanish. 

The following theorem demonstrates the crucial difference between projective 
varieties and affine ones. 

Theorem 1. Let AI c IP be an irreducible algebraic variety. Any rational func- 
tion f E K(M) drf’ind [It all points of M is a constant, i.e. belongs to K. - 

Proof: Consider the affme space An+’ with coordinates UO, U,, l  . l  , U,. Let I 
be the pre-image of I,- with respect to the canonical homomorphism 
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The absence of zeros of I/ on A4 means that the unique zero of I on A”+l is the 
origin. Applying Hilbert’s Nullstellensatz to the ideal 1 c KC &,, U,, . . , Un] and 
the coordinate functions U,, U1,. . . , un we see that I contains some powers of all 
coordinate functions and therefore contains all homogeneous polynomials of a 
sufficiently high degree. Therefore I, contains all homogeneous elements of r 
wa pr of a sufficiently high degree. 

Let V be one of the grading subspaces of K[M]P’ belonging entirely to If. The 
map h wfh (h E V) is a linear transformation. Consider an eigenvector h, of this 
transformation. We have fh, = ch, (c E k) and since h, is not a zero divisor (A4 
is irreducible!), we have f = c, as required. 

Developing the arguments contained in the first part of this proof we may 
assign to every algebraic variety A4 c IJD” an algebraic variety fi c An+l, “the 
cone over M”, defined by the same equations as A4 (but in which UO, U,, . . . , U, 
are considered as coordinates in A”+‘). Then K[M]Pr is identified with KC@] 
and K(M) with a subfield of K(a). Problems 6 and 1.27 imply that the domain 
off E K(M) on Q is a cone (perhaps without the vertex) over its domain on M. 
Problems 5 and 1.11 show that the irreducible components of fi are cones over 
the irreducible components of A4. 

Problem 7. The subfield K(M) c K(a) consists of all functions invariant with 
respect to homotheties, i.e. constant on genera&es of fi. 

The described trick enables one to apply the afine theory to the study of 
projective varieties. In particular, it enables one to derive from Problems 1.30-1.32 
their projective analogues. 

Namely, let M c V be an algebraic variety, A4’ the union of some of its 
irreducible components and A4” the union of the remaining components. In 
exactly the same way as in the affme case the restriction homomorphism K(M) ---) 
K(M) is defined. 

Problem 8. If a function f is defined at x E M’ then so is flMt and flizl+) = 
.f( ) x. 

Problem 9. If a function flM# is defined at x E M’\M” then so is J 

Problem 10. Let A4 = M, u l  . l  u A4q be a decomposition of A4 into irreducible 
components. Then the homomorphism 

K(M) -+ K(M,) x ... x K(M,), 
P--+ (flM,, ’  l  l  9.f lA4,) 

is an isom orphism. 

3O. Sheaves of Functions. To consider aftine and projective algebraic varieties 
from a unified point of view and to be able to define abstract projective and more 
general algebraic varieties introduce the notion of a topological space with a 
sheaf of functions or, briefly, of sheafed space. 
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One says that on a topological space A4 the sheaf 0 of functions (or, more 
precisely, of algebras of functions) is defined if for any open subset U c M a 
subalgebra O(U) is distinguished in the algebra of all continuous functions on U 
with values in K so that 

(Sl) if I/ c U and f E O(U) then fl,, E O(V) 
(S2) if U = Ua Ua and f is a function on U such that flu 

a 
E O( UE) for all a 

then f E O(U). 
When needed we will write 0, instead if 0. 
A continuous map f: M --+ N of sheafed spaces is a morphism if f*&(V) c 

O,(f-‘(V)) for any open subset V c N. Clearly, the composition of morphisms 
is a morphism. 

A subspace N of a sheafed space M is canonically endowed with a sheaf of 
functions. Namely, a functon f on an open subset V on M is assumed to belong 
to O,(V) if there exist open subsets U, of A4 and functions fa E o,(u,) such that 
v = N n cua u,) and flivnU, = LJNnU, for all a* 

Problem 11. This structure on N satisfies the axioms of the sheaf of functions. 

The sheaf GN is called the restriction of OM onto N. Its definition implies that 
the identity embedding N c M is a morphism. If N is open in A4 then O,(V) = 
C&(V) for any open V c N. 

Problem 12. The restriction of sheaves of functions is a transitive operation 
meaning that if P c N c M then the sheaf of functions on P obtained by 
consequtive restrictions of 0, first onto N and then onto P coincides with the 
sheaf obtained by directly restricting 0, onto P. 

Let A4 and N be two sheafed spaces. 
Problem 13. If f: A4 -+ N is a morphism and f(M) c NO c N then f: 1M -+ No 

is a morphism. 

Problem 14. Let h/l = ubl U, be an open covering. If a map f: A4 --+ N is such 
that its restriction onto any subset U, is a morphism (into N) then f is a 
morphism. 

Now suppose M is irreducible (see 1.3). Any morphism of a nonempty open 
subset U c n/r into N will be called a partial morphism of A4 into N. Two partial 
morphisms are called equivalent if they coincide on the common domain. 

Problem 15. The above is an equivalence relation on partial morphisms. 

Problem 16. An equivalence class of partial morphisms contains a (unique) 
morphism whose domain contains the domains of all partial morphisms of the 
given class. 

A partial morphism satisfying the conditions of this problem is called a rational 
map of M into V. Clearly, an everywhere defined rational map is a morphism. 

A rational map J: A4 -+ N is called dominant if f(M) = N. (In this case N is 
also irreducible). 

The product of a dominant rational map f: M + N and a rational map 
y: N -j P is a rational map & M -+ P equivalent to any partial morphism of the 
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form go&, where f0 and go are partial morphisms equivalent to f and g respec- 
tively and the image of fo is contained in the domain of go. It is easy to see that 
such pairs (fo, go) exist and if f is defined at x E A4 and g is defined at f(x) E N 
then &is defined at x and (gf)(x) = g(f(x)); h owever sf may also be defined at 
points which do not satisfy these conditions. 

4*. Sheaves of Algebras of Rational Functions. Let 1M be an embedded affine i 
or projective algebraic variety. In both cases the notion of a rational function is 
defined. For any open subset U c 1M denote by O(U) the algebra of functions on 
U defined by restrictions onto U of rational functions whose domains contain 
I/. (If U is dense in 1M then O(U) is identified with a subalgebra of K(M).) 

Problem 17. This structure 0 on M is a sheaf of functions. 

This sheaf is called the sheaf of (algebras of) rational functions. 

Problem 18. The sheaf 0 on 2M coincides with the restriction onto A4 of the 
sheaf of rational functions on the hosting affine or projective space. 

The open subset in IP” defined by U, # 0 can be identified with A” and the 
functions Xi = Ui/UO (i = 1,. . . , n) form a coordinate system in this A”. Therefore 
a point (Xi,. . . , X,) E A” is identified with the point (1 :X1 :. . .: Xn) E P”. 

Problem 19. The sheaf of rational functions on An coincides with the restriction 
of the sheaf of rational functions on P”. 

Problem 20. Let M, (h E K[M]) be a principal open subset of an affine variety 
1M. The sheaf of rational functions on & as on an affine variety (see 1.8”) 
coincides with the restriction of the sheaf of rational functions on A4. 

Problem 21. The morphisms of affine varieties are the same as their morphisms 
as of sheafed spaces. 

This means that affine varieties can be considered as special objects in the 
category of sheafed spaces. Namely an (abstract) affine algebraic variety is a 
sheafed space isomorphic to a closed subset of an affine space. 

Problem 22. The rational maps of irreducible affine varieties (see 1.9’) are the 
same as their rational maps as of sheafed spaces (see 3”). 

Similarly, an (abstract) projective algebraic variety is defined as a sheafed space 
isomorphic to a closed subset of a projective space. The morphisms of projective 
varieties are by definition the morphisms of sheafed spaces. 

5*. Quasiprojective Varieties. A quasiprojective algebratic variety (or simply a 
yuasiprojective variety) is a sheafed space isomorphic to an open subset of a 
projective variety or, which is the same, a locally closed subset of a projective 
space. 

Affine and projective algebraic varieties are particular cases of quasiprojective 
ones. These cases exclude each other. More precisely, if an irreducible quasipro- 
jective variety A4 is simultaneously affine and projective then it consists of one 
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point. Indeed, if A4 is affine then S(M) = K[M], and if A4 is projective then 
G(M) = K (Theorem 1). Therefore if it is both affine and projective then K[M] = 
K, but for an affine variety this means that it consists of one point. 

A locally closed subset of a quasiprojective variety A4 (endowed with the 
induced topology and a sheaf of functions which is the restriction of the sheaf 
GM) is called a subvariety of M Clearly, it is also a quasiprojective variety; any 
closed subvariety of an affine (resp. projective) variety is affme (resp. projective). 

By definition any quasiprojective variety M can be embedded as an open 
subvariety into a projective variety P. Assuming that M is dense in P (we can 
always do this without loss of generality) setX(A4) = K(P) and consider each 
element of K(M) as a function on M which is the restriction of the corresponding 
rational function on P. The functions on A4 obtained in this way will also be 
called rational ones. They are characterized in inner terms as the functions from 
CrAW whose domains cannot be extended. 

On the other hand, 0, is completely defined by the algebra of rational 
functions on M since for any open subset U c A4 the functions from 6,(U) are 
nothing but the restrictions of rational functions. 

Clearly, if M, c A4 is a dense open subvariety then there exists a natural 
isomorphism of algebras K(M) and K(M,) which to any rational function on A4 
assigns its restriction onto M,. 

The following problems show that quasiprojective varieties can be in a 
sense approximated by affine ones and their morphisms by morphisms of affine 
varieties. 

Problem 23. For any finite set of points of a quasiprojective variety there exists 
a dense open affrne subvariety containing it. 

Problem 24. For any morphism f: A4 -+ N of quasiprojective varieties there 
exist dense open afine subvarieties M, c A4 and N, c N such that f(M,) c N, 
(and then the map f: M, + No is automatically a morphism, cf. Problem 13). 
Moreover, we may require that MO and NO contain any prescribed finite sets of 
points of A4 and N respectively. 

Due to this, Theorems 1.5 and 1.8 are obviously generalized to any quasipro- 
jective varieties. Let us formulate theorems thus obtained. 

Theorem 2. Let f: M + N be a dominant morphism of irreducible quasiprojective 
t-arieties. Then f(M) is an ipais subset of N. 

Theorem 3. Let char K = 0, let M, N, P be irreducible quasiprojective varieties, 
and let f: A4 --+ N. h: A4 -+ P be dominant morphisms. If f(i) = f(C) implies 
h(Y) = h(Y) for any x’, x” E A4 then there exists a (dominant) rational map 
g:N+Psuchthath=gf. 

Clearly, a complex quasiprojective variety is projective if and only if it is 
compact in a real topology. 

6’. The Direct Product. The direct product A4 x N of affme varieties A4 and 
V defined in 1.4” is their set-theoretic direct product endowed with an affine 
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variety structure. Let us characterize this structure in terms meaningful for any 
quasiprojective varieties. 

Problem 25: The projections of the direct product M x N onto A4 and N are 
morphisms. For any afIine variety P and morphisms f: P + A4 and g: P + N the 
map 

is a morphism. 

Taking this as a guide, give the following axiomatic definition of the direct 
product of quasiprojective varieties M,, . . . , Mk: it is their set-theoretical direct 
product M, x  l  * x Mk endowed with a quasiprojective variety structure so that 

(Pl) the projections pi: M, x l  l  l  x Mk + Mi (i = 1,. . . , k) are morphisms; 
(P2) for any quasiprojective variety P and any morphisms L: P -+ Mi (i = 1, 

. . . , k) the map 

is a morphism. 

Problem 26. On M, x l  l  l  x Mk, there exists no more than one quasiprojective 
variety structure satisfying these axioms. 

(The existence of such a structure, however, is not clear from the definition.) 
Thanks to Problem 14 and the existence of an open covering of any quasipro- 

jective variety by afine subvarieties (Problem 23) one may confine oneself in the 
above definition to afflne varieties P. Therefore the direct product of affine 
varieties in the sense of 1.4 is also their direct product in the sense of the new 
definition. 

The direct product topology of quasiprojective varieties should not coincide 
with the topology of the direct product of topological spaces and in nontrivial 
cases never coincides with the latter (see 1.3). However, the following problem 
shows that in any case the direct product topology is not weaker than the latter 

Problem 27. Let M, x l  l  x Mk be the direct product of quasiprojective va- 
rieties M,, . . . , Mk and Ni c Mi (i = 1,. . . , k) be locally closed (resp. open, closed) 
subsets. Then N, x l  = Nk is a locally closed (resp. open, closed) subset of M, x 
l  l  l  Mk. Endowed with a quasiprojective variety structure as a subvariety of 
M, x 0-a x Mk it is the direct product of varieties N,, . . . , Nk. 

Now, let us consider the question of the existence of the direct product. 

Theorem 4. For any quasiprojective varieties M,, . . . , Mk there exists their direct 
product M, x l  * x Mk and if M,, . . . . Mk are affine (resp. projective) varieties 
then so is M, x l  - x Mk. The direct product of irreducible varieties is an irreducible 
variety. 

The following problem enables us to reduce the proof to the case of two factors. 
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Problem 28. Let M1 x l  l  * x M,_, = N be the direct product of quasiprojective 
varieties M,, . . . , MkBl, and N x & be the direct product of N and Mk. Then 
N x Mk naturally identified with M, x l  l  l  x Mk is the direct product of M,, . . . , 
M k* 

Furthermore, since any quasiprojective variety is by definition a subvariety of 
a projective space, Problem 27 shows that it suffices to prove the existence of the 
direct product of projective spaces. For this let us make use of the following 
criterion. 

Problem 29. Let M = ub Ma and N = Us A$ be open coverings of quasipro- 
jective varieties M and N and let a quasiprojective variety structure on M x IV 
be introduced so that the subvariety M, x Ns c M x N is the direct product of 
varieties Ma and N, for any a, /?. Then A4 x N is the direct product of M and N. 

Now let IFD” and IFDm be the projective spaces with homogeneous coordinates 
U( i i=O,l,... ,n) and 5 (j=O,l,..., m) respectively. Consider the projective 
space OD’*+n+m with homogeneous coordinates Vi$ (i = 0, 1,. . . , n;j = 0, 1,. . . , m) 
and the map 

q: pn x pm --;) pnm+n+m 

defined by the formulas H$ = Ui 3. 

Problem 30. The map v is one-to-one. Its image is closed in pnm+n+m. 

Identifying IFD” x ED” with its image under v we introduce on it a projective 
variety structure. 

Let us identify the open subsets of [FD”, pm and IFDnm+n+m distinguished by the 
inequalities 

u, + 0, vo # 0, w&-J # 0, (2) 

respectively, with the affine spaces A”, Am and Anm+n+m (see 4”). We have 

q-(An x A”) c Anm+n+m. 

Problem 31. The map q induces the isomorphism of A” x Am = An+m onto a 
closed subvariety of Anm+n+m. 

This means that the projective variety structure introduced on IFP” x pm in- 
duces a direct product structure on A” x A”. Since instead of U,, V. and Woo 
in (2) we might have taken Ui, 5 and I+$ with any i, j, then the conditions of 
Problem 29 are satisfied, hence IFP” x UDrn is actually the direct product of pn and 
P m 

. 

We have therefore simultaneously proved the first statement of the theorem 
and the fact that the direct product of projective varieties is a projective variety. 
The fact that the direct product of affine varieties is an affme variety had actually 
already been proved in 5 1. The irreducibility of the direct product of irreducible 
varieties is proved as in the afflne case (Problem 1.14). 
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It is useful to describe the topology of P” x Pm in the inner terms. 

Problem 32. A subset F c IF x P” is closed if and only ifit can be defined by 
a system of equations of the form 

where p is a polynomial homogeneous separately in Q,, U,, . . . , U, and in I& 
V V 19-**9 m* 

‘7O. Flag Varieties. Let V be an n-dimensional vector space. 
A flag in V is a set {VI,..., Vn> of its subspaces such that dim Vk = k and 

G c I$+1 (k = l,...,n - 1). 
In this subsection we aim to introduce a natural structure of a projective 

algebraic variety on the set of flags. This variety is called the flag variety and 
plays an important role in the theory of algebraic groups. 

Let W) = Ok30 A”(V) be the exterior (Grassmann) algebra of V(see [SO, 521). 
The elements of Ak(V) are called k-vectors. There is a canonical isomorphism 0 
between the space AkV and the space of the k-th degree skewsymmetric tensors, 
defined by the formula 

where 0 runs through all permutations. 
A nonzero k-vector is called simple (or decomposable) if it can be presented in 

the form x, A l  mm A Xk, where xi E V. The above isomorphism defines a coordi- 
nate system in /IkV in which coordinates of a simple k-vector x1 A l  l  l  A x k  are 

the k-th order minors of the matrix formed by the coordinates of vectors x1, . . . , 
.xk in a fixed basis of V. These are the Pliicker coordinates. 

Problem 33. Suppose u = x1 A l  l  . A xk is a simple k-vector. The subspace 
V(U) c V spanned by the vectors x1, . . . , xk is uniquely recovered from u as 
follows: 

v(U) = {X E v: U A X = 0) (3) 

Clearly, a simple k-vector u is defined by the subspace V(U) up to a factor. 
Thus, there is a one-to-one correspondence between the k-dimensional subspaces 
of V and the one-dimensional subspaces of /ikV consisting of simple k-vectors. 

Problem 34. If a nonzero k-vector u is not simple then dim V(u) c k, where 
V(u) c V is constructed in (3). 

Let P(U) be the projective space associated with the vector space U. (The 
points of P(U) are the one-dimensional subspaces of U). In accordance with the 
above, the set of all k-dimensional subspaces of V is identified with some subset 
Grk( V) c P(Ak V) called the Grassmann variety. 
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Problem 35. Gr,( V) is closed in P(kV). 

Let us prove that the Grassmann variety is irreducible. Let E(V) be the set of 
all frames of V There is a surjective map 

g,: E(V) -+ Gr,(V), 

which to each basis assigns the &space spanned by the first k of its ele- 
ments. The set E(V) is endowed with the structure of an irreducible affine 
variety as a principal open subset of the irreducible afflne variety V x l  . l  x V 
(n factors). 

Problem 36. The map gk is a morphism of E(V) into P(k‘V). 

Since the image of an irreducible topological space under a continuous mapping 
is irreducible, the above implies that GrJV) is irreducible. 

Let 1 < k < I < n. Consider the subset Gr, ,(V) c GrJV) x Gr,(V) consisting 
of pairs (W, U) of subspaces, such that dim k = k, dim U = I and VV c U. 

Problem 37. The subspace Gr, 1(V) is closed in Grk( V) x Gr,( V). . 
The set F(V) of ail flags of V is a subset in the direct product Gr,( V) x l  l  l  x 

WV- 

Problem 38. The set F(V) is closed in Gr, (V) x - l  l  x Gr,( V). 

Problem 39. The set F(V) is irreducible. 
Thus, the set F(V) is an irreducible closed subset of the projective variety 

Gr,(V x 0.0 x Gr,(V) and due to this fact it is endowed with an irreducible 
projective variety structure. This variety is called the flag variety of V. 

Exercises 

1) The projective variety IMP’(S) defmed by (1) is empty if and only if there exists 
k such that the ideal of K[U,, U,, . . . , UJ generated by S contains all the 
forms of degree k (therefore all forms of greater degrees as well). 

2) Lets = {pl,p2,-. . } be the set of forms of degrees k,, k,, . . . respectively. For 
given k,, k,, . . . the necessary and sufficient conditions for W”(S) to be 
nonempty can be expressed in the form of a system of algebraic relations in 
the coefficients of forms pl, p2, . . . each of relations being homogeneous in 
the coefficients of each form. (Each relation contains coefficients of only a 
finite number of forms.) 

3) Let A4 c P” be an irreducible algebraic variety. An ordered set (p,, pl,. . . , p,) 
of homogeneous elements of equal degree from K[MJP is admissible if 
it contains at least one nonzero element. Admissible sets (p,, pl,. . . , p,) and 
kwh- . , qm) are equivalent if Piqj = Pjqi for all i, j. 

This equivalence relation is well-defmed. 
4) Each equivalence class of admissible sets defines a map (perhaps not every- 

where defined) f: h/l -+ P” according to the following rule: f is defined at 
x E M if the given class contains a set (p,, pl,. . . , p,) such that pi(x) # 0 for 
some i and in this case 
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f(x) = (Po(x):P,(~):*..:Pm(~)). 

This is a rational map (in the sense of 3”). 
5) Any rational mapf: M ---) lP)* is defined in the above sense by an equivalence 

class of admissible sets. 
6) Any rational map f: IF)1 + [FDm is a morphism, i.e. is defined everywhere. 
7) Find the image of the morphism pf -+ IV defined by the set (Ut, U0m-l U,, . . . , 

U) 
m 

8) Fi&l the domain and the range of the rational map f: p2 + [FD2 defined by 
(U, U,, U, Q-,, U. U,). Prove that f 2 = id. 

9) Let M c p2 be the conic defined by Ui - Uf - Vi = 0 and f: M --) P’ the 
rational map (stereographic projection) defined by the set (u, - ul, u,), 
where uo, ul, u2 are the images of Uo, U,, U, under the canonical homo- 
morphism K [ U,, U,, U,] + K[M]Y Prove that f is an isomorphism. 

10) The image of any morphism of a projective variety into a quasiprojective 
variety is closed. (Hint: make use of Exercises 5 and 2.) 

11) Let M = M(S) be an algebraic variety in An defined by the system of 
equations (1.1) and fi an algebraic variety in IID” defined by the system 

u:-ff($,...,$)= 0 

The closure @of M in IID” coincides with the union of irreducible components 
of I\;i which are not entirely contained in the hyperplane U, = 0. 

12) In the notation of Exercise 11, if S = {X,, X: + X2} then a# fi. 
13) In any quasiprojective variety the open affine subvarieties constitute a basis 

of its topology. 

Hints to Problems 

1,2. Consider the highest components of nilpotent elements and of zero divisors 
respectively. 

3. Deduce from Hilbert’s theorem on the basis of an ideal. 
5. Is proved similarly to Problem 1.11. 
6. Let M = M, v -0 u Mq be a decomposition of M into irreducible com- 

ponents and I, (s = 1,. . . ,q) the ideal of KIMIPr generated by the homo- 
geneous elements that vanish on Ms. Since I, contains homogeneous non- 
divisors of zero, then there exists a homogeneous element 4 E If which does 
not belong to any of the I,. Let x E M be a point which does not belong to 
the set of zeros of I, and r E I, a homogeneous element such that r(x) # 0. 
Replacing 4 and r by their appropriate powers we may achieve that deg 4 = 
deg r. An appropriate linear combination of 4 and r is then a nondivisor of 
zero contained in Z,- and does not vanish at x. Therefore x E Df. 

7. If f E K[fi] is invariant with respect to homotheties then so is the ideal If 
ofK[M] = KIMIP', i.e. I, is homogeneous. We must prove that it contains 
homogeneous nondivisors of zero. Since it contains some nondivisors of 
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zero, then in the notation of the solution of Problem 6 IJ $ I, for any S. 
Therefore, for any s there exists a homogeneous element q3 E If such that 
ys $ I,. We may assume (see the solution of Problem 6) that the degrees of 
all these elements are equal. Then their appropriate linear combination is 
the required homogeneous nondivisor of zero. 

10. Make use of Problem 7. 
17. To verify axiom (S2) in the affine case make use of Problem 1.31 and 1.32 

and in the projective case make use of Problems 9 and 10. 
18. Due to axiom (S2), it suffices to prove the statement for an irreducible A4. 
23. Let a given quasiprojective variety M be embedded as a subvariety into IF? 

By an appropriate projective transformation we can achieve that none of 
the given points and none of the irreducible components of A4 belong to 
the hyperplane U0 = 0. Then A4 n A” is a dense open subset of A4 containing 
all the given points. Furthermore in the affrne variety Mn A” there exists a 
principal open subset contained in M n A” and containing all the given 
points. This is the desired subvariety of A4. 

24. First, choose a subvariety N, c N which contains at least one point of the 
image of every irreducible component of IM. 

25. This is a geometric reformulation of the properties of the tensor product of 
algebras (see 1.4). 

27. Make use of Problem 13. 
29. For any morphismsf: P -+ A4 and 9: P -+ N consider their restrictions onto 

P ,rp = f-‘(M,) n g-‘(,yS) and make use of Problem 14. 
30. If we arrange the homogeneous coordinates of a point of lYm+n+m into an 

(n + 1) x (m + 1).matrix then the image of q consists of the points whose 
matrix of coordinates is of rank 1 and is determined by the conditions that 
the second order minors of this matrix vanish. 

31. Follows from the fact that among the coordinates of the point 

some are equal to X 13 “‘$ x,, Yl, “‘7 Ym and the remaining ones are their 
products. 

32. Let the subset F be defined by equations of the form mentioned in the 
conditions of the problem. Suppose one of these equations is of the form 
p = 0, where p is a quasihomogeneous polynomial of degree k in U,, U,, 

U, and of degree I in VO, VI, . . . , 
by ‘all monomials of degree li 

r/m- If, say, k > I then multiplying p = 0 
- I in VO, VI, . . . . Vm we obtain a system 

of equations equivalent to the initial equation and consisting of equations 

of homogeneity degree k in each group of coordinates. Therefore, we may 
require that each of equations that determine F have the same homogeneity 
degree in both groups of coordinates. The equations of this form can be 
presented as homogeneous equations in the products Ui~, where i = 0, 1, 
l **7 yt and j = 0, 1, . . . , m, yielding th e closedness of F. The converse is 
obvious. 



$3. Dimension and Analytic Properties of Algebraic Varieties 87 

34. Let (x1,..., x,) be a basis of the subspace V(U). Let us complete this basis 
to a basis of the space V by vectors X~+~, . . . , x,. Let u = xi <...+ u~,..,~~x~, A 
l  ** A X&. The relations u A xi = 0 for i = 1, . . . , I imply that uil . . . ik = 0 if at 
least one of 1, . . . , I is not one of i,, . . . , i,. It follows that I < k and if I = k 
then u = cxl A l  =* A xl for c E c. 

35. Problems 33 and 34 imply that a k-vector x is simple if and only if the rank 
of the linear map xt-+ u A x is not greater than yt - k (and in this case it 
equals yt - k). The latter is equivalent to the vanishing of all minors of order 
yt - k + 1 of the matrix of this map. 

36. The map gk is dehned by the k-th order minors of the matrix constructed 
from the coordinates (in a fixed basis) of the first k vectors of a basis. 

37. Let u be a simple k-vector and v a simple I-vector. Problem 33 implies that 
V(u) c V(o) if and only if the rank of the linear map 

v-+ Ak+‘v@ A’+‘V, Xk-+(U A X,0 A X) 

is not greater than y2 - k (and in this case it automatically equals yt - k). 
38. Follows from Problem 37. 
39. The proof follows the line of the proof of irreducibility of Gr,( V). 

5 3. Dimension and Analytic Properties of Algebraic Varieties 

In this section “algebraic varieties” are understood as quasiprojective alge- 
braic varieties (but other varieties will do if the reader knows what those concepts 
mean). \ 

lo. Definition of the Dimension and its Main Properties. Let A be an algebra 
without zero divisors. Elements ul, . . . , u, E A are called algebraically independent 
(over K) if they do not satisfy any nontrivial algebraic relation with coefficients 
in K. In such a case K [u,, . . . , u,] z K [X,, . . . , X,]. A maximal algebraically 
independent system of elements is called a transcendence basis of A. 

Problem 1. Algebraically independent elements u, , . . . , u, E A form a trans- 
cendence basis if and only if A is an algebraic extension of a subalgebra 
KC Ul,--, u,] (see 1.5). 

Problem 2. Let A = k’ [u,, . . . , u,] and {u l,. . . , urn> be a maximal algebraically 
independent subsystem of { ul,. . . , un}. Then (ul,. . . , urn) is a transcendence basis 
ofA. 

Problem 3. Any transcendence basis of A is a transcendence basis of QA. 

Theorem 1. If A has a transcendence basis of m elements, then any n > m of its 
elements are algebraically dependent. 

Proof see e.g. in [52]. Another proof will be given in 2”. 
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Corollary. All transcendence bases of A contain the same number of elements. 

This number is called the transcendence degree of A and denoted tr. deg A. If A 
has no (finite) transcendence basis we set tr. deg A = CO. 

Clearly, the transcendence degrees of a subalgebra and a quotient algebra do 
not exceed the transcendence degree of the algebra. By Problem 3 tr. deg A = 
tr. deg QA. Finally, tr. deg K[X,, . . . , XJ = n. 

The dimension of an irreducible algebraic variety M is dim A4 = tr. deg K(M). 
The dimension of an arbitrary algebraic variety is the maximum of dimensions 
of its irreducible components. Clearly, the dimension of a variety equals the 
dimension of any of its dense open subvarieties and dim IY = dim A” = n. 

Problem 4. If N is a subvariety of an algebraic variety M then dim N < dim A4. 

Problem 5. Under the conditions of Problem 4, if M is irreducible and N is 
closed in M, then dim N = dim A4 implies N = A4. 

Theorem 2. Any non-descending chain N, c N, c l  ** of irreducible closed 
subsets in an algebraic variety M is stable. 

Problem 6. Prove Theorem 2. 

2’. Derivations of the Algebra of Functions. Let cp be a homomorphism of an 
algebra A without zero divisors into a field L containing K (and considered as a 
K-algebra). A linear map d: A + L is called a q-derivation of A into L if 

for any a, b E A. It is easy to see that a(1) = 0. The set of all cp-derivations of A 
into L is a vector space over L with respect to the natural operations: 

(4 + a,> (4 = a, (a) + a,(a), (2) (M)(a) = M(a) for II E L. 

This space will be denoted by D(A, L). 

Problem 7. Let A = K[X,, . . . , Xn]. Then for any &, . . . , IE, E L there exists a 
unique q-derivation 2: A + L which transforms Xi into lli for i = 1, . . . , n. 

Clearly, under the conditions of Problem 7 dim D(A, L) = n. 
Consider a particular case, when A c L and cp = id. In this case we will simply 

speak about a derivation of A into L. 

Problem 8. Any derivation d: A -+ L uniquely extends to a derivation QA + L. 

Problem 9. Let B c L be a subalgebra finitely generated over A. If B is an 
algebraic extension of A, then any derivation d: A -+ L uniquely extends to a 
derivation B -+ L. 

Problem 10. If A c L is a finitely generated algebra, then dim D(A, L) = 
tr. deg A. 
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Theorem 1 easily follows from Problem 10: take QA instead of L. 
Thus, if A4 is an irreducible algebraic variety then 

dim M = dim D(K(M), K(M)). (3) 

Theorem 3. Let M c A” be an irreducible algebraic variety and { fi, . . . , fm> a 

system of generators of I(M). Let r be the rank of J = a(f “* ’ ” 
W 

(as of a 
17***9 

matrix with entries in K(M)). Then dim M = n - r. 

To prove the theorem first of all note that dim M = dim D(K[M], K(M)). 
Further, K [M] h/ K [X,, . . . , Xn]/I(M). Let 71 be a homomorphism of K[X,, . . . , 
Xn] into the field K(M) defined by the formula n(f) = f 1,: To any derivation 
d: K CM] + K(M) assign a n-derivation 8: K [X,, . . . , Xn] + K(M) by the formula 
8f= an(f). 

Problem 11. The map 8~ 8 is an isomorphism of the space D(K [M], K(M)) 
onto the space of n-derivations of K[X,, . . . , Xn] into K(M) that vanish on 
We* 

Problem 12. Prove Theorem 3. 

3’. Simple Points. Let M be an irreducible algebraic variety in A” and J a 
matrix with entries from K[M] constructed as in Theorem 3. A point x E M is 
simple, if rk J(x) = rk J. 

This definition has, actually, an intrinsic sense. Moreover, for any point x E M 
the number n - rk J(x) does not depend on an embedding of M into an affine 
space. The proof of this fact is similar to that of Theorem 3. Consider the 
homomorphism 

4%: KCMI + K, f HfW 

and denote by D,(K[M], K) the space of all cp,-derivations of K[M] into the 
field K. The elements of this space are the linear maps 8: K [M] ---) K satisfying 

a(fg) = af l  g(x) + f(x). ag* 

Problem 13. dim Dx(K[M], K) = n - rk J(x). 

In particular, since rk J(x) < rk J = r, then dim D,(K [M], K) > n - r = 
dim M, and the equality holds if and only if x is a simple point of M. This gives 
an intrinsic characterization of simple points of irreducible affine varieites. 

The notion of a simple point may be extended to arbitrary algebraic varieties. 
To do this let us give a local definition of a simple point of an irreducible affine 
variety M that does not involve K[M]. 

For a point x E IV define its local algebra 0, as the algebra of all rational 
functions on iU defined at x. 



90 Chapter 2. Algebraic Varieties 

Problem 14. Any cp,-derivation of K[M] into K uniquely extends to a v,- 
derivation of 0, into K. 

Now, denote by I&(0,, K) the space of all cp,-derivations of 0, into K. Problems 
13 and 14 imply that x is simple if and only if 

dim L&(0,, K) = dim A4. (4) 

For an irreducible quasiprojective variety A4 the equality (4) is understood as 
a definition of a simple point. The local algebra 0, in this situation is defined 
exactly as in the affrne case, i.e. as the algebra of all rational functions on A4 
defined at x. 

The set of all simple points of A4 is denoted by Meg. 

Problem 15. Let N be an open subvariety of an irreducible algebraic variety 
A4. Then Nreg = IV n We? 

Problem 16. The set Meg is non-empty and open in M. 

Finally, a point of a reducible algebraic variety A4 is simple if it is a simple 
point of an irreducible component of ~4 of the maximal dimension and is not 
contained in any other irreducible component. 

All points of an algebraic variety A4 which are not simple are called singular. 
A variety A4 is called non-singular if it has no singular points. Clearly, it is so if 
and only if all irreducible components of A4 are non-singular, have the same 
dimension and have empty intersections. 

Problem 16 and the definition of simple points of reducible varieties imply that 
the set of singular points is always a closed subvariety whose dimension is strictly 
less than that of the variety itself. 

Problem 17. Any algebraic variety M is the union of a finite number of 
nonintersecting nonsingular subvarieties. 

4’. The Analytic Structure of Complex and Real Algebraic Varieties. The 
dimension of n ;eal nffine variety A4 is the dimension of its complexification 
M(Q; a point . . E M is simple if it is a simple point of M(@). Clearly, simple points 
constitute a nonemptv open subset of A4. It is denoted by IMreg. d 

Theorem 4. Let A4 be a d-dimensional irreducible algebraic variety in a complex 
or real affine space A”. Then Meg is a d-dimensional analytic subvariety of A”. 

In both cases the theorem is proved similarly. Let K stand for (lI in the first case 
and for R in the second case. Let fi, . . . , fm E K[X,, . . . , XJ be a system of 
generators of Z(M) and J a matrix with entries from K[A4] constructed as in 
Theorem 3. 

Let ,Y E M(K) be a simple point. We may assume that the minor d = 
Wf 

. 

D(i 
J) 17-**7 )- of the matrix W f) 17-*-Y m -- 
Xl 17--*7 r W X) 

is non-zero at x and all the bordering 
17”“Y n 

minors vanish identically on A4. 
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Problem 18. There exist gik E K[X,, . . . , X,], where i = 1, . . . , m and k = 1, . !. , 
r, such that 

A a! 2-S - ax c afk (modZ(M)) (i = l,..., m;j = L...,n) 
i l,<k<r 

gik ax 

j 

Consider the algebraic variety M’ c A” defined by the equations A(x) = 0, 
wherei= l,...,r. 

Problem 19. There exists a neighbourhood U of zc in the real topology of A” 
such that A4’ n U is a d-dimensional analytic subvariety of An and A4 n U = 
M'nU. 

The theorem is proved. 0 
Notice that if K = II2 then Meg is at the same time a real analytic subvariety 

of the complex analytic variety IWeB and any of its tangent spaces is a real 
form of the tangent space of Meg(C) at the same point. 

Problem 20 (Corollary). Any d-dimensional algebraic variety M in a complex 
or real afflne space A” is the union of a finite number of nonintersecting analytic 
subvarieties of A”, the maximal of their dimensions being equal to d. 

Theorem 4 proved enables us to introduce a natural analytic structure on an 
arbitrary nonsingular complex algebraic variety. 

Theorem 5. Any d-dimensional nonsingular complex algebraic variety possesses 
a unique structure of a d-dimensional complex analytic variety such that 

1) all rational functions are analytic in their domains; 
2) in an appropriate neighbourhood of any point a system of analytic coordinates 

may be chosen from the restrictions of rational functions. 

Problem 21. The analytic structure on an embedded nonsingular affine com- 
plex algebraic variety defined as on an analytic subvariety of an affine space 
satisfies the conditions of Theorem 5. 

Problem 22. Prove Theorem 5. 

Problem 23. Any morphism of nonsingular complex algebraic varieties is an 
analytic map. 

Problem 24. The analytic structure of the direct product of nonsingular com- 
plex algebraic varieties, coincides with the analytic structure of their direct 
product as of analytic varieties. 

5O. Realification of Complex Algebraic Varieties. A complex analytic variety 
can be considered as a real analytic variety (of doubled dimension), and similarly 
a complex algebraic variety can be considered as a real algebraic variety. We 
confine ourselves to the construction of the realification functor for affine 
varieties. 
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First, let us agree to consider the n-dimensional complex affine space An 
also as the 2ndimensional real affine space A’“@) identifying (Z,, . . . ) Zn) E A” 
with (X,, . . . , X,,, Y1,. . . , Y,) E A2”(R), where Xk + i& = Zke 

Now let 1M be an algebraic variety in An. Rewriting the equations which define 
it in real coordinates, it is easy to see that it is an algebraic variety in A2”(rW), too. 
The variety A4 determined in this way will be called a realification of M and 
denoted by M”. 

Similarly, passing to real coordinates it is easy to see that any morphism of 
embedded complex affine varieties is at the same time a morphism of the corre- 
sponding real varieties. Therefore the realification makes sense independently of 
an embedding. 

Problem 25. dim M’ = 2 dim M. 
Let us describe the polynomial algebra on A4’. Let zl,. . . , z, be the restrictions 

onto A4 of coordinate functions on An. By the definition cW[A4’] is generated by 
the real and imaginary parts of these functions. Sometimes it is more convenient 
to consider the algebra c[M*] = iw[MR] orw @ of “complex polynomials” on 
M’ that contains functions zl, . . . , Z, themselves. The above implies that 

@[M”] = a=[Z1,.*.,Zn,Z,,...,Z,] (5) 

Therefore, c [A4’] is generated by @[A41 = @ [zt,. . . , zn] and m = c[Z1 7 
l  l  ’  > 2,1- 

This shows, in particular, that closed subsets of M” are the subsets defined by 
algebraic equations with respect to zl, . . . , z, and Z1, . . . , Z,= Considered as real 
algebraic varieties, they are called (closed) veal subvarieties of M. 

A map f: hl -+ N of complex affme varieties is an antiholomorphic morphism 
if f*UJN] c c [Ml. Clearly, antiholomorphic morphisms, as well as genuine 
(holomorphic) morphisms, are morphisms of realified varieties. 

Problem 26. Any antiholomorphic morphism is continuous in the complex 
Zariski topology. 

Problem 27. Let A4 be a real affme variety. Then there exists a unique antiholo- 
morphic automorphism X+-G (complex conjugation) of M(@) identical on A4. 
Moreover, we have 

A4 = (x E M(C): x = x} 

and ? = x for any x E M(c). 

In conclusion notice that (A4 x N)’ = &P x AP for any complex affine va- 
rieties A4 and N. 

6’. Forms of Vector Spaces and Algebras. Let V be a vector space or algebra 
(not necessarily commutative or associative) over an arbitrary field K and k a 
subfield of K. One says that a k-subspace (resp. k-subalgebra) V0 c V is a k-form 
of the space (resp. algebra) V if the identity embedding V0 c V extends to an 
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isomorphism V0 & K 2; I/, i.e. a basis of V0 over k is a basis of I/ over K. A 
subspace U c V is defined over k (with respect to IQ if it is generated by vectors 
of I$. In this case U, = U n VO is a k-form of U and V,Iv, is a k-form of V/U. 

For instance k[X,, . . . , X,] is a k-form of K[X,, . . . , XJ. More generally, let 
1M = M,(K) be an affine variety over K obtained by a field extension from an 
affrne variety M, over k. Assuming M, embedded in the n-dimensional affrne 
space we deduce from Problem 1.14 that I(M) = KI(M,) and therefore k[M,] = 

W . , XJZ(M,) 
A&linear map q: V 

is a k-form of K[M] = K [X,, . . . , X,1/I(M). 
-+ V of vector spaces with distinguished k-forms UO, V. is 

defined over k if cp(U,) c VO. Clearly, the kernel and the image of such a map 
are defined over k. 

If K is the Galois extension of k then it is convenient to describe the k-forms 
in terms of the Galois group action. In particular, this is so in the only important 
for us case K = @, k = R when the Galois group is generated by the complex 
conjugation. We will only consider this case and instead of “R-form” we will say 
“real form ‘)‘. 

A real form V. of a complex vector space (resp. algebra) V defines an involutive 
antilinear automorphism z of this space (resp. algebra)-the complex conjugation 
with respect to V&-so that V. = {v E V: z(v) = v}. 

Problem 28. Conversely, let z be an involutive antilinear automorphism of a 
complex vector space (resp. algebra) V. Then the set V0 of the fixed points of z is 
a real form of the space (resp. algebra) K 

Problem 29. A subspace U c V is defined over R if and only if z(U) = U. 

Problem 30. A linear map of complex vector spaces with fixed real forms is 
defined over R if and only if it commutes with the complex conjugation. 

7O. Real Forms of Complex Algebraic Varieties. A real form of a complex affine 
variety A4 is its closed real subvariety M, such that the identity embedding 
M, c 1M extends to an isomorphism 

M,(c) 2; M. (6) 

Therefore the passage to a real form of an algebraic varietv is an operation 
inverse to the complexification. However, unlike the complexification and 
the realification, this operation is not uniquely defined and does not always 
exist. 

The complex conjugation on M,(C) is transported onto M via (6). The involu- 
tive antiholomorphic automorphism z of M obtained in this way is called the 
complex conjugation (with respect to M,). Clearly M, = (x E M: z(x) = x}. 

With certain reservations the converse statement, similar to Problem 28, 
holds. 

Theorem 6. Let z be an involutive antiholomorphic automorphism of an irre- 
ducible complex affine variety M. If the set M, of its fixed points contains at least 
one simple point then M, is a real form of M. 
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Proof. For any f E @[A41 set 

f 'M = fo) (x E M). 

The map f t-+ fr is an involutive antilinear automorphism of C[M]. By Problem 
28 

~[~]()={fEc[Ml:f'=f}, 

is a real form of C[A4]. Let @[Ml0 = R[x,, . . . . x,] and let fi, .-, 
fmE ~cx,,..., X,] be generators of the ideal of relations between x,, . . . , x,. 
Suppose that A4 is embedded into the complex afline space A” so that x1, . . . , x, 
are the coordinate functions. Then z is just a coordinate-wise complex conjuga- 
tion and M, is the set of real points of M. The ideal Z(M) is generated by the 

polynomials fi, . . . , a(f f) fm. By Theorem 3 rka(xl’*‘*‘X) =r=n-d, where 
17*--Y n M 

d=dim1M. 
Let x E M, be a simple point of h/l. Without loss of generality we may assume 

that Wf 
D(Xl’ 

f) 
l  l *’ ’ 

X) 
# 0 at x. Then by Problem 19 there exists a neighbourhood 

U of x in’areal’topology of A” such that M n U is defined by the equations 
fi(x)=O,i= l,..., r. On the other hand, if U is sufficiently small then the real 
solutions of these equations in U constitute a d-dimensional real analytic sub- 
variety. Therefore dim M, = dim M,(C) = d. Since M,(C) c M and A4 is irre- 
ducible, M,(C) = M (Problem 5), as required. q 

1) 

2) 

3) 

4) 

5) 

6) 
7) 

8) 

Exercises 

Any (n - 1).dimensional irreducible algebraic variety in A” (resp. in IY) can 
be defined by a single (resp. homogeneous) equation. 
Any nontrivial (resp. homogeneous) equation defines in A” (resp. in IFD”) a 
variety of dimension n - 1. 
The line X, = 1, X, = 0 in A3 cannot be singled out of the surface Xf + 
x,x, = 1 by a single equation. 
Let f: M --+ N be a dominant morphism of irreducible algebraic varieties. 
Then dim N < dim M. 
If, under the conditions of Exercise 4, dim N = dim M then there exists a 
nonempty open subset N, c N such that any point of N, has only a finite 
number of preimages. 
In Theorem 2 it is impossible not to require irreducibility of Nk. 
pn satisfies the ascending chain condition for irreducible quasiprojective 
algebraic varieties (see 2.6). 
If char K = 0 and an irreducible algebraic variety M c A” is singled out 
by the equations h(x) = 0 for i = 1, . . . , m, then rk J < n - dim M (see 
Theorem 3). Give an example (one can do it even for n = m = 1) when 
rkJ<n-dimM. 
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9) The derivations a/ax, constitute a basis of the space D(K(X,, . . . , XJ, 
K(X, 7  l  l  l  9  Xn)). 

12) Under the notation of Theorem 4 let x be a simple point of M. For any 
tangent vector 5 E T,(Mreg) put d, for the derivation along t. Then the map 
5 I-+ a; is an isomorphism of T,(M) onto D,(K[M], K), where K = c or IR. 
In Exercises 13-16 we assume char K = 0. 

13) Let A and B be subalgebras of the field L that contains K, such that A c B 
and B is finitely generated over A. Then the restriction map D(B, L) + D(A, L) 
is an epimorphism. 
Letf: xt-+(j+),... ,fm(x)) be a morphism of an irreducible algebraic variety 
M into Am. Further, let {a,, . . . ,a,> be a basis ofthe space D(K(M),K(M)). 
Consider the matrix @A) with entries from K(M). Suppose that rk(ajf,) = 1. 
Then dim f(M) = 1. 

14 

15 l A E K(&,**., XJ are such that 4.f 
D(X1’ 

f> 
l  * ” ’ # 0 then these func- 

x) 19-*-Y n 
tions are algebraically independent. 

16) Let M c A” be an irreducible algebraic variety and f E K(A”). If (aflaXi)lM = 
0 for i = 1, . . . , n, then flM = const. 
The Poincari series of a nonnegatively graded vector space V with finite 
dimensional grading subspaces Vk is the formal power series 

10) Let A4 c A2 be defined by the equation X: + Xi = 1. Find a basis of the 
space D(K(M), K(M)). 

11) Under the notation of the proof of Theorem 4 the variety M is an irreducible 
component of the variety M’. 

Pv(t) = 1 (dim Vk)tk. 
k>,O 

Clearly, if U c V is a homogeneous subspace then 

eqdt) = PdO - &J(t)* 

If A is a graded algebra then a graded A-module is an A-module M graded 
as a vector space so that A& c Mk+I for any k, l E z. 

17) Let A = K[U,,U,,..., QJ and M a finitely generated graded A-module. 
Then PM(t) = p(t)/( 1 - t)kfl, where p is a polynomial with integer coefficients 
and k < ~1. (Hint: prove by induction in n with the kernel of the multiplication 
by u, considered as a graded K[ U,, U,, . . . , U,-J-module). 

18) Let p(t) = C kaO aktk be a formal power series with rational coefficients. It 
may be presented in the form p(t) = p(t)/( 1 - t)d+‘, where p is a polynomial 
and p( 1) # 0, if and only if ak = f(k) for sufficiently large k, where f is a 
polynomial of degree d. 

19) Let M c IP” be a d-dimensional algebraic variety and A = K [Ml”‘. Then 
PAW = PWlU - od+‘7 where p is a polynomial with integer coefficients and 
P(l) # 0. 
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20) The same as in Exercise 19 but with K[i’WJP’ replaced by any graded algebra 
of the form K[U,, &,..., u,]/& where I is a homogeneous ideal whose set 
of zeros is M. 

21) Let M c IFP” be an irreducible algebraic variety and M, = (x E M: p(x) = 0}, 
where p E K[M)P’ is a nonzero homogeneous element. Then dim M, = 
dimM - 1. 

22) The dimension of an irreducible algebraic variety equals d if and only if the 
maximum of the dimensions of its proper closed subvarieties equals d - 1. 

23) Let M be an irreducible algebraic variety in a complex afline space and M 
its complex conjugate. There is an isomorphism M”(C) 2; M x awhich to 
any x E M’ assigns (x,X) E M x M. 

24) Let A4 be an irreducible complex &fine variety. Prove that (MR)reg = Mreg. 

2. Apply Problem 1.18. 
Hints to Problems 

3. Let B c A be a subalgebra generated by a given transcendence basis. It 
suffices to verify that if a E A, where a # 0, then a-’ E QA is algebraic over 
B. Let b,+b,a+*=*+b,a” = 0, where bi E B and b. # 0. Then a-l = 
-h,‘(b, + b,a + 0.0 + bmam-l), i.e. a-l E QB[a]. Next, apply Problem 1.14. 

4. Reduce to the case when M and N are irreducible and M is an affine variety. 
Next, make use of the fact that if M is an irreducible afine variety then 
dim M = tr. deg K[M]. 

5. Reduce to the case when M is an afine variety. Then there is a homomor- 
phism 0: K[M] -+ K[N]. We must prove that its kernel is zero. Let 
If . , fk} be a transcendence basis of K [N] and f;-, where i = 1, . . . ) k, are 
ele’ments of K[M] such that ~(f;-) = fi. Then {fl, . . . ,fk) is a transcendence 
basis of K[M]. Put A = K[f,,...,f,] and 1etfE Kera, where f # 0. Then 
f is algebraic over A, i.e. there are a,, a,, . . . , a, E A, where a, # 0, such that 
q) + a, f + l  ** + a,f m = 0. Applying 0 to this equality we get ~(a,) = 0 
which is impossible because of algebraic independence of fi, l  l  . , fk- 

8. It suffices to put i?(a/b) = (a(a)b - aa(b))/b2. 
9. Reduce to the case B = A [u]. If f is a minimal polynomial of u over A then 

f’(u) # 0 and d u is determined from the linear equation f '(u)du + f"(u) = 0, 
where f' is the polynomial obtained from f by applying d coefficient-wise. 

IO. Follows from Problems 7 and 9. 
12. First prove that if a is a n-derivation of K[X,, . . . ,X,1 into K(M) which 

carries Xi into i,i then 

r c ,  

a(f) 
af - - 

Cn I 
.- 
1 

l<i<n a& M 

for any polynomial f E K[X,, . . . , Xn]. 
13. To each derivation a E &(K[M], K) assign the derivation a” = a l  71 E 

&(K t-x, ?  l  l  
.,X,1. K], where 71: is the restriction homomorphism onto M. 

The map 8 H 2 is an isomorphism of the space D,(K[M], K) onto the space 
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of cp,-derivations of K [X1,. . . , XJ into K that vanish on Z(M). The deriva- 
tion a” E D,(K[X,, . . . , XJ, K) is defmed by the numbers Ai = a’Xi and it 
vanishes on I(M) if and only if 

zAj-f$-(x)=O for i= l,...,m. 
j j 

Hence, these derivations form the space of dimension yt - rk J(x). 
14. Proved similarly to Problem 8. 
16. By Problem 2.23 and Problem 15 the proof reduces to the afine case for 

which the statement follows from the first definition of a simple point. 
17. Take Meg to be one of the required subvarieties. 
18. Consider the decomposition with respect to the last column of each minor 

of order r + 1 of the matrix a(f f) 
W 

” ’ ’ l  ’ 111 bordering A. 
X) 

19. The implicit function theorem implieithit in a neighbourhood U of the point 
x (in the real topology of A”) the equations of the variety A4’ can be written 
in the form 

X i = cPi(x,+l9 l  l  
l yXn) for i= 1, . . ..r 

where vi are smooth functions and the point (Xr+l,. . . , Xn) runs over an open 
(in the real topology) set V c Anmr. We may assume that A # 0 everywhere 
on U and V is pathwise connected. Let us prove that M’ n U = A4 n U. Let 
x = (X,“, . . . ,X,“). Consider a smooth path Xi = Xi(t), where i = r + 1,. . . , yt, 
in V satisfying Xi(O) = X0. The corresponding smooth path x(t) on A4’ 
satisfies x(O) = x. Problem 18 implies that along x(t) we have 

dfi - = C 1C/ik(t)fk for i= 1, . . ..m 
at l,<k<m 

where $ik are certain smooth functions. Since j+(O)) = 0 for i = 1, . . . , m, 
then j&c(t)) = 0 for any t i.e. x(t) E A4. 

22. The uniqueness if obvious. It suffices to prove the existence for the affme 
varieties (cf. Problems 2.23 and 15) in which case it follows from Problem 2 1. 

25. Compare the complex and the real analytic structure on A4 = MR described 
in Problem 20. 

28. If V is considered as a real vector space then z is its involutive linear 
transformation. The space V decomposes over R into the direct sum of 
eigensubspaces V0 and V1 of this transformation corresponding to the eigen- 
values 1 and - 1 respectively. Since z is antilinear over @, then V’ = iV#., 
hence, V0 is a real form of I/. 

29. See Problem 1.4.14. 



Chapter 3 
Algebraic Groups 

The definition of an algebraic group is similar to that of a Lie group, except 
that differentiable manifolds are replaced by algebraic varieties and differentiable 
maps by morphisms of algebraic varieties. In this book we will only consider the 
algebraic groups whose underlying varieties are affme ones. They are called 
“afflne” or “linear” algebraic groups. The difference between arbitrary groups 
and afflne ones is quite essential from the point of view of algebraic geometry 
and almost indiscernible from the group-theoretical points of view, since the 
commutator group of any irreducible algebraic group is an afflne algebraic 
group. Besides, the general linear groups and any of their algebraic subgroups 
are afflne algebraic groups. Therefore the affine algebraic groups are the most 
interesting ones for the Lie group theory. We will simply call them algebraic 
groups. 

In 1.4-3.7 of this chapter the ground field K is assumed to be algebraically 
closed. 

5 1. Background 

lo. Main Definitions. In this subsection the ground field K is an arbitrary 
infinite field. An algebraic group is a group G endowed with the structure of an 
af‘fine algebraic variety so that the maps 

p: G x G --+ G, (x9 Y) HXY 

1: G + G, m--KP 

are morphisms of algebraic varieties. 
The most important example of an algebraic group is the general linear group, 

i.e. CL,,(K) or, in another interpretation, the group GL( V), where V is an 
jr-dimensional vector space over K. Being a principal open subset in the vector 
space L,,(K), the group CL,(K) inherits the canonical structure of an affine variety 
(see 21.3). In this situation the rational functions in matrix elements whose 
denominators are powers of the determinant serve as polynomials on CL,(K). 
This implies that the multiplication and the inversion in CL,(K) are morphisms 
of algebraic varieties, i.e. CL,(K) is an algebraic group. 
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Similarly, the group of affine transformations of the n-dimensional aftine 
space over K can be considered as an algebraic group. 

Other important examples of algebraic groups are the additive group of the 
field K, which we will denote also by K, and the multiplicative group of K, which 
we will denote by K*. The latter is, however, just GL,(K). The direct product of 
algebraic groups is the direct product of abstract groups endowed with the 
structure of an affme variety as the direct product of aft& varieties (see 2.4.1). 
Clearly, the direct product of algebraic groups is an algebraic group. 

The algebraic group K” (the direct product of n copies of the additive group 
of K) is called the n-dimensional (algebraic) vector group. 

The definition of an 
the right translations 

algebraic group G implies that for any g E. G the left and 

r(g): x t+ xg-l 

and also the inner automorphism a(s) = r(g)r(g) are automorphisms of the 
algebraic variety G. 

Since left translations act transitively on G, all points of the variety G are on 
an equal footing. 

Theorem 1. Let G be an algebraic group. Put Go for the irreducible component 
of G that contains the unit. Then Go is a normal subgroup and other irreducible 
components of G are cosets with respect to Go. 

Problem 1. Prove Theorem 1. 
An algebraic subgroup of an algebraic group is a closed (in the Zariski topology) 

subgroup. Clearly, an algebraic subgroup is an algebraic group with respect to 
the same group operation and induced structure of the affrne variety. 

Problem 2. The closure of any subgroup of an algebraic group is an (algebraic) 
subgroup. 

Problem 3. Any irreducible subgroup of an algebraic group epais in its closure 
is closed. 

An algebraic subgroup of a general linear group is called an algebraic linear 
group. Let us emphasize that an algebraic linear group is not just an algebraic 
group but an algebraic group given in a linear representation (do not confuse 
this term with the term “linear algebraic group” which means in this text the 
same as just “algebraic group”!). 

Examples of algebraic linear groups. 1) The group SL( V) of unimodular linear 
transformations. The polynomials on SL( V), or an any of its algebraic subgroups, 
are simply polynomials in matrix elements. 

2) The groups O(Vf) (SpU4.f)) fl o inear transformations that preserve a non- 
degenerate (skew)symmetric bilinear form J 

3) The group 

GL(V; U) = {A E GL(V): AU c U}, 
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where U is a subspace of a space V, and more generally, the group 

WV; U, W) = {A E GL(V): (A - E)u c w}, 

where U, IV are subspaces of I/ such that IV c U. 
4) Any finite linear group. 

Problem 4. Linear groups in the above examples are algebraic. 

Let VI, . . . , T/n be vector spaces. The algebraic group GL( VI) x 0 l  9 x GL( T/n) 
is naturally identified with an algebraic linear group in the space V = VI @ l  l  l  @ 
Vn consisting of all invertible linear transformations that preserve each of the 
subspaces VI, . . . , T/n. In the basis of V, which is the union of bases of V’, . . . , V,, 
the elements of GL( VI) x l  l  l  x GL( Vn) are presented by block-diagonal matrices. 
In particular, (K*)” = GL,(K) x 9 l  l  x GL,(K) (n factors) can be presented as a 
group of invertible diagonal yt x y2 matrices. 

A homomorphism of algebraic groups is a map which is a group homomorphism 
and at the same time a morphism of algebraic varieties. An isomorphism of 
algebraic groups is an invertible homomorphism, i.e. a map which is simultane- 
ously an isomorphism of groups and of algebraic varieties. 

Let f: G --+ H be a homomorphism of algebraic groups and H, c H an 
algebraic subgroup. Clearly, f-l (H,) is an algebraic subgroup in G. In particular, 
Kerf is a (normal) algebraic subgroup in G. 

A linear representation of cly~ dgebraic group in a space V is its homomorphism 
into GL( V). 

Problem 5. If R and S are linear representations of an algebraic group G, then 
the representations R + S, RS and R* (see 1.1.4) are also its linear representations 
as of an algebraic group. (Cf. Problem 1.1.9). 

In particular, this implies that the natural linear representation q l of GL(V) 
in the space of tensors of type (k, I) (see 1.1.4) is its linear representation as of an 
algebraic group. 

The one-dimensional linear representations of an algebraic group G are called 
its characters. They constitute a group which will be denoted by X(G), cf. 1.1.4. 

Let L be a field extension of K. For any algebraic group G over K we may 
consider the algebraic group G(L) over L whose variety is obtained from the 
variety G by a field extension, cf. 2.1.1 and 2.1.2, and the group operations are 
the morphisms extending the operations of G. The group G is a dense subgroup 
of G(L) as is shown in Problem 2.1.14. 

2’. Complex and Real Algebraic Groups 

Problem 6. Any complex algebraic group is a nonsingular algebraic variety. 
Due to this fact any complex algebraic group possesses a canonical complex 

analytic manifold structure, cf. 2.3.4. Similarly, any real algebraic group possesses 
a canonical real analytic manifold structure. Since morphisms of nonsingular 
complex and real affme varieties are analytic, the following statement holds. 
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Theorem 2. Any complex (real) algebraic group is a complex (real) Lie group of 
the same dimension. Any algebraic subgroup of a complex or real algebraic group 
is its Lie subgroup. 

However, not any Lie subgroup is an algebraic subgroup. 

Problem 7. Subgroups {expt(A p>: t.Cj and {exp$ i): it@j of 

GL,(@) are Lie subgroups but not algebraic subgroups. 

Any homomorphism of complex or real algebraic groups is at the same time 
a Lie group homomorphism but not vice versa. If it is necessary to emphasize 
that we are speaking about an algebraic group homomorphism we will say 
“polynomial homomorphism”. We will also adopt the similar convention for 
linear representations. 

Problem 8. Any complex algebraic group connected in the real topology is 
irreducible. 

The converse is also true: see Theorem 3.1. Moreover, any irreducible complex 
algebraic variety is connected, see e.g. [53] 

The realilication of complex affine varieties (see 2.3.5) transforms any complex 
algebraic group G into a real algebraic group G” of the doubled dimension. 

As an example, consider GL,(C). The polynomial algebra on this group is 
generated by the matrix elements and the function AH (det A)-‘. By 2.3.5 this 
implies that the algebraic subgroups of GL,(@)’ ( we will call them real algebraic 
subgroups of GL,(@)) are the subgroups which can be determined by algebraic 
equations in the matrix elements and their complex conjugates. 

For instance, the unitary group Un is a real algebraic subgroup of GL,(@) and 
therefore a real algebraic group. 

A real algebraic subgroup G, is a real form of a complex algebraic group G if 
the identity embedding G, c G extends to an isomorphism G,(C) 2; G. 

Problem 9. Any subgroup G, c G which is a real form of a group variety G is 
a real form of the group G. The complex conjugation with respect to GO is an 
automorphism of G as of an abstract group. 

A map of complex algebraic groups which is a homomorphism of abstract 
groups and an antiholomorphic morphism of their group varieties is called an 
antiholomorphic homomorphism. By the above, the complex conjugation with 
respect to any real form G, is an involutive antiholomorphic automorphism of 
the group G. For the irreducible groups the converse statement is also true. 

Problem 10. The set of fixed points of any involutive antiholomorphic auto- 
morphism of an irreducible complex algebraic group is its real form. 

For instance the subgroups GL,(R) and U,, are real forms of the group GL,(@) 
since they are the sets of fixed points of the involutive antiholomorphic auto- 
morphisms A ++ ,& and A I+ (A’)-‘, respectively. 
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For the reducible groups the similar statement is false as the example of the 
complex conjugation in the group of cubic roots of unity shows. 

3’. Semidirect Products. A semidirect product of algebraic groups G, and G, 
is defined as the semidirect product G, >Q, G2 of abstract groups, cf. 1.1.11, 
endowed with the affine variety structure as the direct product of affrne varieties. 
Here it is required that the map (1.1.7) be polynomial which ensures the poly- 
nomiality of the group operations. 

Clearly, a semidirect product of complex or real algebraic groups is at the same 
time their semidirect product as of Lie groups.. 

Let an algebraic group G decompose into a semidirect product of its algebraic 
subgroups G, and G,, as an abstract group. Then the action b of G, on G, by 
conjugations is polynomial and we may form an algebraic group G, xb G,. 
Theorem 6 which will be proved in the following subsection shows that if 
the ground field K is algebraically closed and char K = 0 then the abstract 
isomorphism G, >ab Gz 2; G defined by (1.1.6) is an algebraic group isomorphism. 

If char K = p > 0 this might be false. For instance in this case the algebraic 
group (K*)2 = {(z,, 2,): zl, z2 E K*} splits as an abstract group into the direct 
product of algebraic subgroups distinguished by the equations z2 = 1 and 
Z2 = zf respectively. However, (K*)2 is not the direct product of these subgroups 
as an algebraic group. 

Examples. (cf. 1.1.11). 1) The group of affine transformations of a vector space 
V decomposes as an algebraic group into the semidirect product of the normal 
subgroup of parallel translations and GL( V). 

2) The group of invertible (upper) triangular yt x y2 matrices decomposes as 
an algebraic group into the semidirect product of the normal subgroup of 
unitriangular matrices and the subgroup of invertible diagonal matrices. 

4’. Certain Theorems on Subgroups and Homomorphisms of Algebraic Groups. 
Hearafter and till the end of 9 3 (subsection 3.8 excluded) the ground Geld K is 
assumed to be algebraically closed. This assumption is essential, in particular, 
for the subsequent theorems whose proof is based on the theorems on the image 
and the factorization of morphisms of algebraic varieties. 

Theorem 3. Let f: G + H be an algebraic group homomorphism. Then f(G) is 
an algebraic subgroup of H. 

Problem 11. Prove this theorem. 

Theorem 4. The subgroup H of an algebraic group G generated by an arbitrary 
family (Mzl~ E A} (A is an index set) of irreducible subsets that contain the unit 
and are Ppais in their closures is an irreducible algebraic subgroup. In particular, 
the subgroup generated by an arbitrary family of irreducible algebraic subgroups 
is an irreducible algebraic subgroup. 

Proof. For any finite sequence (Q,. . . , Q), where Ei = + 1, consider the mor- 
phism (k factors) 
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$l-Ek: G x  l  a- x  G -+ G, (gl ,..., g&--+g;l . . .gik. 

The subgroup H is the union of the subsets of the form 

M;::::~ = pE+k(MaL x l  .0 x Mak) (q,...,~ E A). 

Each of these subsets is irreducible and epais in its closure as the image of 
an irreducible subset which is epais in its closure, namely MdlI x 0.0 x Ma, c 
G x  l  . . x G (k factors), under the morphism pEl*+ (see Theorem 7 and Prob- 
lems 2.1.13 and 2.1.14). Besides, since each of the subsets Mdl. contains the unit, 

By Theorem 2.3.2 any non-decreasing chain consisting of the closures of 
M El . ..Ek stabilizes. Hence, among all such closures there is one that contains all 
th%%!hers. Denote it by N. Clearly, I? = N and H is epais in N. By Problem 7 
this implies that If = N. 0 

Theorem 5. The commutator subgroup of an irreducib le algebraic group is an 
irreducible algebraic subgroup. 

Problem 12. Prove Theorem 5. 
Note that the similar theorem for Lie groups is false (see Exercise 1.4.4). 

IS 

Corollary. The 
a Lie subgroup. 

commutator subgroup of an irreducible complex algebraic group 

Problem 13. Let G and H be irreducible algebraic groups and f: G -+ H a map 
which is an abstract group homomorphism and coincides with a rational map 
.fO: G -+ H on the latter’s domain. Then f is a polynomial homomorphism. 

Theorem 6. A bijective homomorphism of algebraic groups over a field of zero 
characteristic is an isomorphism. 

Problem 14. Prove this theorem. 
Over a field K of characteristic p > 0 the similar theorem fails. A counter- 

example is given by the Frobenius endomorphism x I-+ xp of K (or K*). 

5’. Actions of Algebraic Groups. An action of the algebraic group G on a 
quasiprojective algebraic variety M is a homomorphism a of G into the group 
of automorphisms of M such that the map 

GxM-+M, (Y, 4 w Q)x (1) 

is a morphism of algebraic varieties. 
For example, any algebraic group acts in three ways on itself: by the action 1 

by the left translations, the action r by the right translations and the action a by 
inner automorphisms. Any linear representation of an algebraic group may be 
considered as its action on the space of the representation. 
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When it is necessary to emphasize that we mean an action of an algebraic 
group and not of a Lie group or an abstract group we will use the term “an 
algebraic action”. 

Problem 15. The natural action of GL(V) on the projective space P(V) is 
algebraic. 

Problem 16. If an algebraic group G acts on a reducible quasiprojective variety 
A4, then the elements of Go transform each irreducible component of A4 into itself. 

Theorem 7. Suppose a is an action of an algebraic group G on a quasiprojective 
algebraic variety M and x E M. Then 

1) the stabilizer Gx is an algebraic subgroup of G; 
2) the orbit cx(G)x is a non-singular algebraic subvariety of M. 

Problem 17. Prove Theorem 7. 

Corollary. Under the conditions of the theorem G possesses at least one closed 
orbit on M. 

Proof. The boundary of any orbit is invariant with respect to G. The dimension 
of the boundary is less than that of the orbit itself and therefore the boundary 
consists of orbits of lesser dimension. Therefore any orbit of the minimal dimen- 
sion is closed. 0 

Clearly, any algebraic action of a complex algebraic group on a non-singular 
quasiprojective variety is also an action in the sense of Lie group theory, i.e. it 
is differentiable. In this situation the orbits are differentiable submanifolds due 
to the Theorem 7, which is in general false for arbitrary differentiable actions. 
(See Example in 1.1.6; its complexification gives a similar example for complex 
Lie groups). 

The local closedness of orbits and closedness of images of homomorphisms 
stand in favour of the theory of algebraic groups as compared to the theory 
of Lie groups, where the phenomenon of dense winding of a torus, that does not 
deserve such an attention, required lengthy discussions. Confining ourselves to 
algebraic Lie groups and their algebraic actions we may get rid of various 
nuisances without substantially impoverishing the Lie group theory. 

6’. Existence of a Faithful Linear Representation. In the theory of linear 
representations of compact topological groups one of the main methods is the 
study of the regular representation, i.e. the linear representation of the group in 
the space of functions on this group induced by its action on itself, say by right 
translations. This method turns out to be fruitful in the theory of algebraic 
groups as well. Making use of this method we will prove in this subsection the 
following 

Theorem 8. Any algebraic group is isomorphic to an algebraic linear group. H 

First, consider the following general situation. Suppose a is an action of any 
algebraic group G on an affine variety M. Put cc, for the corresponding linear 
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representation of G in the space K[M] of polynomials on M defined by the 
formula 

b*(df )(x) = f Md-‘~). (2) 

This representation is infmite-dimensional (unless A4 consists of a finite number 
of points). However, we will see that it is the inductive limit of finite-dimensional 
representations. 

By the definition of an algebraic action, the function 

is a polynomial on G x A4 for any f E K[M]. Since K[G x M] = K[G] @ 
K[A4] (see 2.1.4), there exist polynomials qi E K[G],J;: E K[M], where i = 1,. . . , 
n, such that 

f(akK’~) = 1 cpiwx~). 
1 ,<i<n 

For a fixed g E G we deduce that 

c(,Of = C cifi9 
l,<i<n 

where ci = vi(g) E K. In other words, the orbit of a polynomial f under the action 
a, of G is contained in the finite-dimensional subspace ( fi, . . . , fn) c K [A4]. Its 
linear span is a finite-dimensional invariant subspace containing f. Therefore, 
we have proved 

Theorem 9. For any action a of G on an affine algebraic variety M the space 
K [M] is the union of finite-dimensional subspaces invariant with respect to cc,(G). 

Problem 18. Any finite-dimensional subrepresentation of a, is a polynomial 
one. 

Now, let r be an action of an algebraic group, G on itself by right translations. 
The corresponding linear representation r* of G in the space K[M] defined by 
the formula 

(r*kdf )(x) = f h) (3) 

is called the (right) regular representation of G. 
Let V c K[G] be a finite dimensional subspace invariant with respect to r,(G). 

Denote by R the linear representation of G in the space V induced by r*. By 
Theorem 3 the image H = R(G) of G under this representation is an algebraic 
subgroup of GL(V). We will see that the space V may be chosen so that the 
map R: G -+ H is an isomorphism of algebraic groups. The homomorphism 
R*: K [H] + K [G] is injective by the definition of H and its image is a subalgebra 
generated by the matrix elements of R. 



106 Chapter 3. Algebraic Groups 

Problem 19. The linear span of the matrix elements of R contains V. 

If we take for V a subspace containing a system of generators of K [G], then 
the homomorphism R*: K[H] + K [G] is an algebra isomorphism, hence the 
map R: G -+ H is an isomorphism of algebraic groups. Therefore, Theorem 8 
is proved. 0 

With this theorem we easily prove the following important statement: the 
adjoint representation of a complex algebraic group G is polynomial. Indeed, 
if G is realized as a linear group, then its adjoint representation is a subrepresen- 
tatiOn Of the linear representation T. 1 IG whose pdynOmiality fOllOWS from 9 
Problem 5. 

7’. The Coset Variety and the Quotient Group. Let G be an algebraic group, 
H its algebraic subgroup. It is natural to ask: how to introduce an algebraic 
variety structure on the coset space G/H? The necessary requirement here is that 
the action of G on G/H be algebraic. When K is of zero characteristic this 
requirement already guarantees the uniqueness of the desired structure. 

Problem 20. Let char K = 0. Suppose, that a quasiprojective algebraic variety 
structure is introduced on G/H so that the canonical action of G on G/H is an 
algebraic one. Then for any action a of G on a quasiprojective variety A4 and 
any point x E A4 satisfying Gx => H the map 

p: G/H -+ M, gH +b el)x 

is a morphism of algebraic varieties. If p is a bijection (i.e. if GX = H and a is 
transitive), then p is an isomorphism. 

The existence of an algebraic structure on G/H is proved with the help of the 
following theorem. 

Theorem 10 (Chevalley’s theorem). Let G be an algebraic group, H its algebraic 
subgroup. There exist a linear representation R: G + GL( V) and a vector v. E V 
such that H = {h E G: R(h) v. E Ku,}. If H is a normal subgroup, then there exists 
a linear representation T of G such that H = Ker T. 

Proof of this theorem makes use of the regular representation r.+ of G. Let 
I,(H) be the ideal of K [G] consisting of all polynomials that vanish on H. 

Problem 21. H = {h E G: r,(h)l,(H) c I,(H)}. 

Choose a finite-dimensional subspace Vc K [G] invariant with respect to 
r*(G) and containing a system of generators of IG(H). Denote by wits intersection 
with I,(H) and by S a (polynomial) linear representation of G in U induced by 
r* (see Problem 18). 

Problem 22. H = {h E G: S(h)W c W>. 

Let (fl,. . . , fm) be a basis of W. Put V = A”U, v. = fi A 0.. A fm and denote 
by R the linear representation of G in V induced by S (the subrepresentation of 
T m.0 O 9. 
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Problem 23. H = (h E G: R(h)vo E Ku,). 

Thus, the first part of the theorem is proved. Now suppose that H is a normal 
subgroup. Denote by x0 the character of H defined from the identity 

R(h) vo = XOWO (h E H) 

By the definition (see 1.4.5) x0 is a weight of the representation RI, and v. the 
corresponding weight vector. 

Let x0, Xl, l **9 Xk be different characters of H constituting {xg: g E G}. By 
Problem 1.4.10 the sum @ O<i<k v,.(H) = I$ is invariant with respect to the , , 
representation R of G and the operaiors of the representation transitively per- 
mute its summands. (In particular, if G is irreducible the sum contains only one 
summand, i.e. the space T/x,(H) is already invariant with respect to R(G).) 

Consider the restriction 7’ of the natural linear representation of G in L(VJ 
onto the invariant subspace BogiGk L( V,,(H)) = L,( I$). 

Problem 24. H = Ker T. 
The Theorem is proved. 0 

Returning to the problem of defining an algebraic variety structure on G/H 
we can, under the notation of Theorem 10, identify G/H with the orbit 0 of the 
point Ku, E P(V) under the natural G-action in the projective space P(V) defined 
by the representation R. By Theorem 7 it is an (embedded) quasiprojective 
variety. The G-action on G/H by left translations coincides with the restriction 
onto 0 of the natural G-action in the space P(V), hence, it is algebraic. 

Similarly, if H is a normal subgroup, then we can, under the notation of 
Theorem 10, identify G/H with the group T(G) which is, due to Theorem 3, an 
algebraic linear group. 

These results combined with Problem 21 yield the following theorem. 

Theorem 11. Let char K = 0 and G an algebraic group, H its algebraic subgroup. 
Then, on G/H, there is a unique quasiprojective algebraic variety structure for 
which the canonical G-action on G/H is algebraic. If, in addition, H is normal, then 
G/H is an afjine variety and the quotient group G/H is algebraic. 

The reader has probably noticed the difference of our approaches to the 
definition of coset varieties for algebraic groups and coset manifolds for Lie 
groups. In fact we might base the definition of an algebraic structure on cosets 
for an algebraic group on the notion of factorization as we had done for Lie 
groups. 

A map p: A4 -+ N of algebraic varieties is called a quotient map if 
1) a subset U c N is open if and only if p-‘(U) is open in M; 
2) a function f defined on an open subset U c N belongs to O,(U) if and only 

if p*f E O,(p-l(U)). 
For the proof of the following theorem see e.g. [lo] 

Theorem 12. Let G be an algebraic group and H an algebraic subgroup. Then 
there exists a unique quasiprojective algebraic variety structure on G/H for which 
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the canonical map p: G + G/H is a quotient map. With respect to this structure the 
canonical G-action on G/H is algebraic and if H is normal then G/H is an algebraic 
group. 

Exercises 

1) In the definition of an algebraic group the requirement on the inversion to 
be a morphism is redundant. (Hint: analyze the proof of Theorem 8.) 

2) The automorphism group of an arbitrary finite-dimensional algebra is an 
algebraic linear group. 

3) If 1M and N are epais subsets of an irreducible algebraic group G then 
IMN=G. 

In exercises 4-6 the ground field K should be assumed algebraically closed. 
4) 

5) 

6) 

13) 

14) 

1 . 

Under the conditions of Theorem 4 there exist a,, . . . , ak and E,, . . . , Ed = + 1 - 
such that H = iME:. . . A4:;. 
Give an example which shows that the irreducibility of M,‘s in Theorem 4 
is essential for the algebraicity of H. 
The commutator group of any (not necessarily irreducible) algebraic group 
G is its algebraic subgroup. (Hint: first prove using Theorem 4 that (G, Go) 
is an algebraic subgroup; then make use of the theorem that if the center of 
a group is of finite index then its commutator group is finite.) 
Any connected real algebraic group is irreducible. 
Give an example of an irreducible real algebraic group which is not 
connected. 
Let G c GL,(@) be an irreducible complex algebraic group, G its complex 
conjugate. The map G”(C) 2; G x G which to any A E GR assigns (A, A) is 
an isomorphism. 
The set of fixed points of an action of an algebraic group G on a quasi- 
projective variety A4 is closed in A4. 
The kernel of an action of an algebraic group G on a quasiprojective variety 
A4 is a (normal) algebraic subgroup of G. 
For any action of an algebraic group G on an affme variety A4 there exists 
an embedding of 2M in a vector space V such that the action is induced by a 
linear representation of G in K (Hint: for V take the vector space dual to a 
finite-dimensional G-invariant subspace of K[AKj that contains a system of 
generators of this algebra). 
Reproducing the proof of Theorem 8 construct a faithful linear represen- 
tation of the-additive group of the field. 
Let H be an algebraic subgroup of a complex algebraic group G such that 
the quotient space G/H is compact in the real topology. Then G/H is a 
projective algebraic variety. 

Hints to Problems 

Make use of the fact that transformations of the form l(g), r(g) and a(g), 
where g E G, being automorphisms of the group variety, can only permute 
its irreducible components. 
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3. Proof is similar to that of Problem 1.1.7. 
6. Follows from the fact that all the points of a group variety are on equal 

footing. 

7. If A is one of the matrices (i y), (i i), then the map C+GL,(@), 

t H exp tA, is a proper one (i.e. the preimage of any compact is compact itself). 
This implies that these subgroups are Lie subgroups. The first of them is 
contained in the algebraic subgroup of diagonal matrices but is not algebraic 
itself since there is no nonzero polynomial f of two variables (the diagonal 
elements of the matrices) such that f(et, e”) = 0 for all t E C. The proof of the 
fact that the other subgroup is not algebraic is similar. 

9. Proof is deduced from the continuity of the group operations and the 
complex conjugation and from the density of Go in G. 

10. Follows from Theorem 2.3.6. 
11. For an irreducible G follows from Theorem 2.1.5 and Problem 7. 
12. Apply Theorem 4 to the set A4 of all commutators of elements of G. 
13. For any g E G the diagram of rational maps 

commutes. From here we deduce that f0 is defined everywhere, hence f0 is 
polynomial (see Problem 2.1.29). 

14. For irreducible groups this follows from Theorem 2.1.8 and Problem 13. In 
general case it is necessary to make use of Problem 2.2.14. 

17. The orbit a(G)x is the image of G under the morphism 

We may assume that G is irreducible. Theorem 2.2.2 implies then that the 
orbit is epais in its closure but, since all its points are on equal footing, it is 
open in its closure, i.e. is an algebraic subvariety of M. The same (“equality 
of rights” of points) considerations show that this subvariety is non-singular. 

18. Let (fi,... ,fn) be a basis of a G-invariant subspace V c K[M]. Then the 
definition of an algebraic action implies that 

where aij E K[G]. 
19. Let (fi, . . . ,fn) be a basis of V. Then 
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where aij are the matrix elements of the representation R. Substituting x = 
we find that & = xi ciaij, where ci = f;:(e). 

20. For an irreducible group G it follows from Theorem 2.2.3 and the homo 
geneity (equal rights of points) considerations. For a reducible group G it i 

necessary to make use of Problem 2.2.14. 
21. r(h)H c H*r,(h)I,(H) c I,(H). 
23. Follows from the fact that a subspace is uniquely determined by the exterio 

product of its basics’ vectors (see Problem 2.2.33). 
24. Follows from the fact that the centralizer of L&Q in L(V’) consists c 

operators acting as scalars on each of VI.(H). 
i 

5 2. Commutative and Solvable Algebraic Groups 

In this section, except lo, we assume that char K = 0. 

lo. The Jordan Decomposition of a Linear Operator. Let V be a finite 
dimensional vector space. For any linear operator A E L(V) and 2 E K conside 
the eigenspace 

V-(A) = (u E v: (A - AE)u = o} 

and ambient root subspace 

VA(A) = {u E V: (A - ;tE)“u = 0 for some m} 

The subspaces T/,(A) and V*(A) are invariant with respect to any linear operato 
commuting with A. As it is known, 

V = @ V’(A). 
A 

A linear operator A E L(V) is called semisimple if it satisfies any of the followin! 4 
equivalent conditions: 

1) in some basis A is expressed by a diagonal matrix; 
2) v = @i C/,(A); 
3) V;“(A) = V,(A) for any ;1 E K. 

Problem 1. Let A E L(V) be a semisimple linear operator and U c V a sub 
space invariant with respect to A. Then 

1) Al, is semisimple; 
2) there exists an invariant subspace complementary to U. 

Problem 2. Any family of commutating semisimple linear operators can bc 
simultaneously reduced to the diagonal form. 
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In particular, this implies that the sum and the product of commuting semi- 
simple operators are semisimple operators. 

A linear operator A E L(V) is called nilpotent (resp. unipotent) if Am = 0 (resp. 
(A - E)” = 0) for some m. This is equivalent to the fact that A” = 0 (resp. 
(A - E)” = 0), where yt = dim I! 

Clearly, the sum of commuting nilpotent operators is a nilpotent operator. . 
The product of commuting unipotent operators is a unipotent operator. 

If A is both semisimple and nilpotent (resp. unipotent) then A = 0 (resp. 
A = E). 

Let A E L(V) be an arbitrary linear operator. The semisimple operator A, 
defined by the condition 

for any 2 E K 

i.e. acting on each root subspace V’(A) of A as multiplication by A, is called the 
semisimple part of A. The definition of root subspaces implies that A, = A - A, 
is nilpotent; it is called the nilpotent part of A. If A is invertible then A, = AA,’ = 
E + AnA,’ is unipotent; it is called the unipotent part of A. The operators A,, A, 
and A, commute with each other and with any operator commuting with A. 

The decomposition A = A, + A, (resp. A = A,A,) is called the additive (resp. 
multiplicatioe) Jordan decomposition of A. The following problem gives its axio- 
matic characterization. 

Problem 3. The additive (resp. multiplicative) Jordan decomposition of a 
linear operator A is its unique decomposition into the sum (resp. product) of 
commuting semisimple and nilpotent (resp. unipotent) linear operators. 

2O. Commutative Unipotent Algebraic Linear Groups. Let X be a nilpotent 
operator. For any formal power series 

f(x) = c wk 
ka0 

cak E K, 

set 

fcx) = 1 a,Xk 
ka0 

(this sum is finite, actually). Clearly, 
1) &f(X) - a,E is nilpotent; 
2) f(AXA-‘) = Af(X)A-’ for any invertible linear operator A. 
In particular, set 

1 
expX = 1 -Xk, 

k>O k! 

log(E + X) = C k 
(-- ‘lk-’ Xk 

. 
k>l 



112 Chapter 3. Algebraic Groups 

Since any unipotent operator is of the form E + X, where X is a nilpotent 
operator, the (nilpotent) operator log A is defined for any unipotent A. 

Let L,(V) (resp. L,(V)) be the set of all nilpotent (resp. unipotent) operators 
in I/: Clearly, L,(V) and L,(V) are algebraic varieties in L(V). 

Problem 4. The maps 

exp: L,(V) -+ L,(V), log: L,(V) + L,(V) 

are morphisms inverse to each other. 

Problem 5. 1) If nilpotent operators X, Y commute then 

exp(X + Y) = expX*exp Y 

2) If unipotent operators A, B commute then 

logAB = 1ogA + 1ogB 

Theorem 1. The minimal algebraic linear group G(A) containing a unipotent 
linear operator A consists of all (unipotent) linear operators of the form 

A ’ = exp(t log A) @ E K) 

and 

is an algebraic group isomorphism provided A # E. 

Problem 6. Prove this theorem. 

Corollary 1. Any invertible linear operator A offinite order, i.e. such that Am = E 
for some positive integer m, is semisimple. 

Proof. We have A” = A,“Ar = E implying A,” = E, but due to Theorem 1 it is 
only possible if A, = E. 0 

An algebraic linear group is called unipotent if all its operators are unipotent. 

Corollary 2. Any unipotent algebraic linear group G is irreducible. 

Proof. For any A E G the subgroup G(A) c G is irreducible by Theorem 1. 
Therefore A E G(A) c Go. [7 

Problems 4 and 5 and Theorem 1 imply the following description of commuta- 
tive unipotent groups. 

Theorem 2. Let G c GL( V) be a commutative unipotent algebraic linear group. 
Then q = log G . c L(V) is a subspace consisting of commuting nilpotent linear 
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operators and exp: g + G is an isomorphism of the vector group g onto G. 
Conversely, if g c L(V) is a subspace consisting of commuting nilpotent linear 
operators then G = exp g c GL(V) is a commutative unipotent algebraic linear 
group. 

A similar description can be obtained for arbitrary unipotent groups the 
difference being that exp is an isomorphism of not algebraic groups but only of 
algebraic varieties. In 3.6 we will give such a description for K = UZ and see that 
9 = log G is nothing but the tangent algebra of G. 

3’. Algebraic Tori and Quasitori. An algebraic group isomorphic to the direct 
product of n copies of K* is called the n-dimensional algebraic torus. The adjective 
“algebraic” is applied here to distinguish algebraic tori from the tori in the sense 
of Lie group theory. In the context of the algebraic group theory over an 
algebraically closed field we will usually skip this adjective. 

Together with the tori it is useful to consider algebraic groups which are direct 
products of a torus and a commutative finite group; we will call them (algebraic) 
quasitori. Note that irreducible quasitori are just tori. 

Problem 7. In any quasitorus the elements of finite order form a dense 
subset. 

Theorem 3. Under any linear representation of a quasitorus its elements are 
mapped into semisimple operators which are simultaneously diagonalizable. 

Proof. If we confine ourselves to the elements of finite order then the statment 
of the theorem follows from Corollary of Theorem 1 and Problem 2; but Problem 
7 implies that the basis which diagonalizes operators corresponding to elements 
of finite order also diagonalizes all the operators of the representation. 

This theorem means that any linear representation of a quasitorus is a sum of 
one-dimensional representations. Now describe one-dimensional representa- 
tions, or characters, of tori. 

Theorem 4. Any character x of the torus (K*)” is of the form 

x(x,, . . . ,x,) = $I.. . x,kn, where k,, . . . , k, E Z. 

Problem 8. Prove this theorem. 

Let T be an n-dimensional algebraic torus. 

Problem 9. The characters of T form a basis of K[T] (as of vector space 
over K). 

Let X(T) be the character group of T. Theorem 4 implies that this is a free 
commutative group of rank n. A duality between T and T(T) holds, see Exercise 
4. One of the manifestations of this duality is that a representation of T in the 
form of the direct product of n copies of K* is equivalent to the choice of a basis 
of .X(T). More precisely the following statement holds. 
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Problem 10. Let (Ed, . . . , E,) be a basis of 3(T). Then the map 

E: T + (K*)“, xw(E1(X)9---9En(X)), 

is an isomorphism. Any isomorphism E: T 2; (K*)” is obtained in this way. 
Another manifestation of the mentioned duality is the following description 

of the algebraic subgroups of T. 

Theorem 5. There is a one-to-one correspondence between algebraic subgroup 
of an n-dimensional torus T and subgroups of X( T), which to a subgroup r c X( 7 
assigns the subgroup 

Tr = {x E T: x(x) = 1 for all x E r) c T. 

Let cl, . . . . c, (m < n) be nonzero invariant factors of r (as of a subgroup of th 
free commutative group X(T)). There exists an isomorphism E: T 2 (K*)” such tha 

&(Tr) = ((x~,...,x,)E(K*)“: xi1 = .=. = xLrn = l} (1 

Proof. Let S c T be an algebraic subgroup. By Chevalley’s theorem (Theorer 
1.10) there exists a linear representation of T whose kernel is S. Let x1, . . . , x4 b 
the weights of this representation. Then 

S={XET:XJX)=...=X~(X)= l} = Tr, 

where r c X(T) is a subgroup generated by x1, . . . , x4. 
Further, let r c X(T) be any subgroup and c,, . . . , c, (m < n) its non 

zero invariant factors. There exists a basis (Q,. . . , E,) of X(T) such that r = 
(C1&1,--, c,E,). We have 

Tr = {x E T: Earn = . . . = Em(X)cm = 1} 

and if 6: T 2; (K*)” is an isomorphism corresponding to the basis (q, . . . , E,) the. 
the subgroup E( Tr) is singled out in (K*)” exactly by (1). 

To complete the proof of the theorem it remains to show that rconsists of al 
characters whose value on Tr is 1. Let x = k,~, + . . = + k,r, be such a character 
Considering the values of x on the elements x E Tr all the coordinates q(x), . . . 
E,(X) of which except one are equal to 1 we easily deduce from the abov 
description that k,,, = 0.. = k, = 0, while k,, . . . , k, are divisible by c,, . . . , c 
respectively. But this means that x E r. 0 

Corollary. Any algebraic subgroup of a torus is a quasitorus. 

Notice two more corollaries of Theorem 5. 

Problem 11. The character group of a torus is generated by weights of an 
faithful linear representation. 
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Problem 12. Any torus has elements which are not contained in any of its 
proper algebraic subgroups. 

do. The Jordan Decomposition in an Algebraic Group. In this subsection we 
will prove the following theorems: 

Theorem 6. An algebraic linear group G c GL( V) contains together with any 
linear operator A the operators A, and A,. 

Theorem 7. Let R: G + GL(U) be a linear representation of an algebraic group 
G. If A E G is semisimple (resp. unipotent) then so is R(A). 

In general terms the reason why this is true might be explained as follows: 
1) the semisimple elements of an algebraic linear group are linked to its 

algebraic subgroups isomorphic to K* or to its finite subgroups and the uni- 
potent elements are linked to the subgroups isomorphic to K; 

2) the groups K* and K do not admit nontrivial homomorphisms into each 
other and thanks to this they do not “intermix”. 

Proof of Theorem 6. For any linear operator A E GL(V) denote by G(A) the 
smallest algebraic linear group containing A, i.e. the closure of the cyclic linear 
group generated by A. 

If A is unipotent then by Theorem 1 G(A) consists of unipotent operators and 
is isomorphic to K except for the trivial case A = E. 

Problem 13. If A is semisimple then G(A) consists of semisimple operators and 
is a quasitorus. 

In general, G(A) is contained in the smallest algebraic linear group G(A,, A,) 
containing A, and A,. The continuity considerations imply that G(A,,A,) is 
commutative. Since G(A,) consists of semisimple elements and G(A,) of unipotent 
ones, we have G(A,) n G(A,) = {E}. It follows, 

G(A) = G(A,,A,) = W,) x G(A,). (2) 

Problem 14. A quasitorus does not admit nontrivial homomorphisms into 
K. 

Problem 15. G(A) = G(A,) x G(A,). 
This immediately implies Theorem 6. 0 

Proof of Theorem 7. First, note that for any A E G we have G(A) c G and 
W(A)) = G(RPw* 

If A E G is semisimple then G(A) is a quasitorus. Applying Theorem 3 to 
RI G(A) we see that R(A) is semisimple. 

Now let A E G be unipotent. Set B = R(A). Suppose that B # E, otherwise we 
have nothing to prove. Then G(A) E K and G(B) = R(G(A)) 21 K. By Problem 
15 we have 

G(B) = G(B,) x W,), 
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but since G(B) does not contain elements of finite order different from the unit, 
G(B) = G(B,), i.e. B is unipotent. 0 

An element g of an algebraic group G is semisimple (unipotent) if for some 
faithful (and therefore for any) linear representation R of G the operator R(g) is 
semisimple (unipotent). 

Theorem 6 implies that any element g of an algebraic group G presents as the 
product of commuting semisimple and unipotent elements gs> gU E G. By Problem 
3 this decomposition is unique. The elements gs and gU are called semisimple and 
unipotent parts of g respectively and g = gsgu the Jordan decomposition of g. 

Theorem 7 implies that any algebraic group homomorphism transforms the 
semisimple elements into semisimple ones and the unipotent elements into uni- 
potent ones. 

Problem 16. Let f: G + H be an algebraic group homomorphism. For any 
semisimple (unipotent) element h E f(G) its pre-image f-l(h) contains a semi- 
simple (unipotent) element. 

Notice that the group K* and, more general, any quasitorus consists only of 
semisimple elements (Theorem 3). Conversely, the group K and, therefore, any 
vector group consists of unipotent elements only. 

An algebraic group all elements of which are unipotent is called unipotent. By 
Corollary 2 of Theorem 2 any unipotent algebraic group is irreducible. 

5’. The Structure of Commutative Algebraic Groups 

Problem 17. Any commutative algebraic group consisting of semisimple ele- 
ments is a quasitorus. 

Since the converse is true, this problem gives a convenient characterizations 
of quasitori (and therefore tori). 

Theorem 8. Any commutative algebraic group is a direct product of a quasitoru: 
and a vector group. 

Problem 18. Prove this theorem. 

Corollary. Any irreducible commutative algebraic group is the direct product OJ 
a torus and a vector group. 

6’. Bore13 Theorem. An algebraic group is called solvable if it is solvablt 
as an abstract group. An example of a solvable algebraic group is the group B,(K 
of invertible (upper) triangular n x n matrices over K (see Example 1.4.4; the 
arguments given there work for any field). 

For solvable algebraic groups an analogue of Lie’s theorem (see 1.4.5) holds 
It can be proved in almost exactly the same way as Lie’s theorem but we wil 
deduce it from a more general theorem whose proof is in a sense even simpler. 

The statement of Lie’s theorem may be formulated as a fixed point theoren 
for an action of the considered group in the projective space associated with thl 
space of the representation. Therefore Lie’s theorem for algebraic groups is ; 
consequence of the following theorem. 
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Theorem 9 (Borel’s theorem). Any action of an irreducible solvable algebraic 
group G on a projective algebraic variety M possesses a fixed point. 

Proof. We will prove the theorem by induction in dim G. Suppose dim G > 0 
and assume that for groups whose dimension is less than dim G the theorem 
holds. Let G’ be the commutator subgroup of G. By the inductive hypothesis G’ 
possesses fixed points on M. Let N be the set of all these points. It is easy to see 
that N is a closed subvariety. Since G’ is normal in G, then N is G-invariant. 

By the corollary of Theorem 1.7 there exists a closed orbit of the G-action on 
N. Let 0 be such an orbit. We have 0 = G/G, where GY is the stabilizer of some 
point y E 0. Since G,, 1 G’ and G/G’ is commutative, GY is a normal subgroup and 
G/G, is an irreducible algebraic group and therefore an irreducible affine variety. 
But 0 is a projective variety. Therefore 0 consists of one point (see 2.2.5) which 
is the fixed point for the G-action on M. 0 

Corollary 1 (Lie’s theorem for algebraic groups). Let R: G + GL( V) be a linear 
representation of an irreducible solvable algebraic group G. There exists a one- 
dimensional subspace U c V invariant with respect to R(G). 

This in its turn implies 

Corollary 2. Under the conditions of Corollary 1 there exists a basis of V 
in which all the operators R(g), g E G, are expressed by (upper) triangular 
matrices. 

7O. The Splitting of a Solvable Algebraic Group. Let G be an irreducible 
solvable algebraic group. 

u 
Problem 19. The unipotent elements of G form an algebraic normal subgroup 
in G containing G’. 
This subgroup is called the unipotent radical of G. 

Problem 20. G/U is a torus. 
Actually am ore precise statement holds. 

Theorem 10 . Any irreducible solvable algebraic group splits into the semidirect 
product of its unipotent radical and a torus. 

Proof. Under the above notation consider an element of the torus G/U which 
is not contained in any of its proper algebraic subgroups (see Problem 12). The 
pre-image of this element with respect to the canonical homomorphism p: G -+ 
G/U contains a semisimple element (Problem 16), say g. Denote by T the minimal 
algebraic subgroup of G containing g. It is a quasitorus (Problem 13). Therefore 
T n U = {e>. On the other hand, from the choice of g it is clear that p(T) = G/U. 
Therefore 

G=UxT. (3) 

and TE G/U is a torus. q 
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Example. For G = B,(K) the unipotent radical U is the subgroup of uni- 
triangular matrices and for T we may take the group of invertible diagonal 
matrices. 

Remarks about decomposition (3). Clearly, any algebraic subgroup of G con- 
taining T is the semidirect product of a unipotent subgroup contained in U, and 
T. In particular, this implies that T is a maximal torus in G, and any algebraic 
subgroup containing it is irreducible. 

Problem 21. The normalizer of T in G coincides with the centralizer of T. 

8’. Semisimple Elements of a Solvable Algebraic Group 

Theorem 11. Let G be an irreducible solvable algebraic group and T a torus 
complementary to its unipotent radical U. Then any semisimple element of G is 
conjugate to some element of T. 

Problem 22. Under the conditions of the theorem if U # (e> then there exists 
a unipotent algebraic normal subgroup U, of G of codimension 1 in U. 

Proof of Theorem 11 will be carried out by induction in dim U. If dim U = 0 
then G = T and we have nothing to prove. Let dim U = 1 and g = ut (u E U, t E T) 
a semisimple element. Consider two cases: when u and t commute and when 
they do not. In the first case the decomposition g = tu is the Jordan decomposi- 
tion of g; hence u = e and g E T. In the other case the conjugacy class of g 
coincides with Ug. Indeed, since G/U is commutative, the conjugacy class C(h) 
of any h E U is contained in Ug. It is an irreducible subvariety as an orbit of G 
and does not consist of one element h since uhz.? # h. Therefore, C(h) is Ug . 
without, perhaps, a finite number of points; but since this takes place for any 
h E Ug, then C(h) = C(g) = Ug. In particular, C(g) 3 t, as required. 

Now, let dim U > 1 and let the theorem hold for the groups whose unipotent 
radicals are of dimensions less than dim U. Let U, be an algebraic normal 
subgroup of G satisfying conditions of Problem 22 and p: G --+ G/U, the canonical 
homomorphism. Clearly, G/U, is an irreducible solvable algebraic group with 
the one-dimensional unipotent radical p(U) = U/U, and the complementary 
torus p(T) = T. For any semisimple g E G the element p(g) is, by the above, 
conjugate in G/U, to an element of p( 7’). This means that in G itself that element 
g is conjugate to a (semisimple) element gi of G, = U, T. However, by the 
inductive hypothesis g1 is conjugate in G1 to some t E T. Therefore g is conjugate 
in G to t. [I3 

Problem 23 (Corollary). All maximal tori in a solvable algebraic group are 
conjugate to each other. 

Now we may state that any maximal torus can be taken for T in (3). 

9’. Bore1 Subgroups. While studying arbitrary (not necessarily solvable) alge- 
braicgroups it is convenient to consider their maximal irreducible solvable 
algebraic subgroups. Such subgroups are called Bore1 subgroups. 
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For instance, by Lie’s theorem any irreducible solvable algebraic subgroup of 
GL,(K) is conjugate to a subgroup contained in B,(K). Therefore B,(K) is a Bore1 
subgroup of GL,(K) and any other Bore1 subgroup is conjugate to this one. 

Theorem 12. All Bore1 subgroups of an algebraic group G are conjugate to each 
other. The quotient space of a complex algebraic group modulo a Bore1 subgroup 
is a projective algebraic variety. 

Proof. We may assume that G is an algebraic linear group acting in a vector 
space I? The group G naturally acts on the flag variety F(V), see 2.2.7. Let 0 be 
a closed orbit of this action. Since 0 is a projective variety, then by Borel’s 
theorem any Bore1 subgroup of G has a fixed point in 0, i.e. is contained in the 
stabilizer of a flag F E 0. On the other hand, the stabilizer of any flag is solvable 
since in a basis of V’ compatible with this flag all the elements of this group 
are expressed by triangular matrices. Therefore the Bore1 subgroups of G are 
irreducible components of the stabilizers of the points of 0 and therefore are 
conjugate to each other. 

Let us prove the second statement of the theorem. Let G be a complex algebraic 
group and B its Bore1 subgroup. The quotient space G/B is a finite covering of 
the projective algebraic variety 0, encountered in the above arguments, and 
therefore is compact and is also a projective algebraic variety. 0 

Actually, the second statement of the theorem holds over an arbitrary algebrai- 
cally closed field t-81. Moreover, if G is irreducible then the stabilizers of points 
of 0 encountered in the proof are exactly the Bore1 subgroups of G. For the 
complex algebraic groups this latter assertion will be proved in 6 4.2. 

Problem 24 (Corollary). All the maximal tori of an algebraic group G are 
conjugate to each other. 

Exercises 

1) Let A = E + X be a unipotent operator. The linear operator Af can be 
defined, apart from the method proposed in subsection 2”, directly with the 
help of the binomial series: 

A t- t(t - 
- c l)...(t - k + l)Xk 

k>O k’ . 

2) Let g be an elem.ent of an algebraic group G. If gm is semisimple for some 
positive integer m then g is semisimple. 

3) If an irreducible component of the unit of an algebraic group G is a torus 
then all elements of G are semisimple. 

4) For each element x of a torus T denote by 6, the character of X(T) defined 
by the formula 6,(x) = x(x). The map 

6: T -+ X(X(T)), xt--dx, 

is a group isomorphism. 
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5) There is a one-to-one correspondence between the tori homomorphisms 
Tl -+ T2 and the group homomorphisms Z&( Tl) + X( T2) which to any homo- 
morphism f: Tl + T2 assigns the homomorphism f*: %( T2) -+ X( Tl) defined 
by the formula 

6) Generalize Exercises 4 and 5 and the first statement of Theorem 5 to 
quasi t ori. 

7) The intersection of the kernels of all characters of an algebraic group is a 
normal algebraic subgroup and the corresponding quotient group is a 
quasitorus. 

8) Let a nondegenerate linear operator A E GL( V) be expressed in a basis of V 
by a diagonal matrix diag (a,, . . . , a,). Then G(A) consists of all invertible 
linear operators 8 which in the same basis are expressed by the matrices of 
the form diag (b,, . . . , b,), where b,, . . . , b,, satisfy all the relations of the form 
xfl...x,kn= I&,,.. . , k, E Z) which are satisfied by a,, . . . , a,. 

9) Any nontrivial irreducible solvable algebraic group splits into the semidirect 
product of an algebraic normal subgroup of codimension 1 and an algebraic 
subgroup isomorphic to K* or K. 

10) Any nontrivial irreducible algebraic group has a nontrivial Bore1 subgroup. 
(Hint: analyze the proof of Theorem 12.) 

11) Any nontrivial irreducible algebraic group contains an algebraic subgroup 
isomorphic to K* or K. In particular, any one-dimensional irreducible 
algebraic group is isomorphic to K* or K. 

12) The closure of any solvable subgroup of an algebraic group is a solvable 
subgroup. 

13) Any subgroup of an irreducible solvable algebraic group consisting of semi- 
simple elements (in particular, any finite subgroup) is commutative. 

14) Give an example of a solvable finite linear group which cannot be expressed 
in any basis by triangular matrices. 

15) Any commutative linear group is expressed in some basis by triangular 
matrices. 

16) Give an example of a commutative finite subgroup in PGL,(K), the quotient 
of GL,(K) module its center, which is not contained in any Bore1 subgroup. 

17) A commutative algebraic subgroup of an algebraic group is contained in 
some Bore1 subgroup if and only if so is the subgroup of its semisimple 
elements. 

Hints of Problems 

1. To prove the first statement make use of condition 3) in the definition of a 
semisimple operator; to prove the second one make use of condition 2). 

2. By induction: consider the restrictions of operators of the given family onto 
eigensubspaces of any nonscalar of these operators. 

3. Let A = B + C, where B is semisimple, C nilpotent and BC = CB. For any 
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1 E K the subspace I/,(B) is invariant with respect to C and, since C is 
nilpotent, we have 

VJB) c V’(A). 

Since V = @* v,(B), 0-m V;(B) = V’(A) for any 1 E K, hence B = A,. The 
multiplicative decomposition is treated similarly. 

4. Consider the formal series e(x) = exp x - 1 and I(X) = log(1 + x). Since the 
constant terms of these series vanish, we may well substitute one of 
another one. To solve the problem it suffices to show that 

them into 

Wx)) = x9 e(l(x)) = x (4) 

For this make use of the fact that e(x) and I(X) have rational coefficients and 
define functions of a complex variable for which (4) holds in the functional 
sense for sufficiently small 1x1. 

5. Similarly to the proof of Problem 4 make use of formal series in two 
indeterminates. 

6. The map TV A’ is a homomorphism of K onto an algebraic linear group H 
containing A. If A # E then the kernel of this homomorphism is a finite 
subgroup of K and therefore is the trivial group (recall that char K = O!). 
Thus, H ‘V K and similar arguments show that G(A) = H. 

8. It suffices to prove that any character x of K* is of the form x(x) = xk, where 
k E Z. The simplest way to do this is to make use of the fact that a character 
x of K* is a polynomial in x and X-’ such that x(x)x(x-‘) = 1 and x( 1) = 1. 

12. These are the elements on which no nontrivial character takes the value 1. 
For instance, any element whose coordinates are different primes possesses 
this property. 

13. Consider a basis in which A is expressed by a diagonal matrix and make use 
of Corollary of Theorem 5. 

14. Make use of Problem 7. 
15. It suffices to prove that G(A) 3 G(A,). Assume the contrary. Then G(A)n 

G(A,) = (E), i.e. G(A) has an isomorphic projection onto G(A,). Therefore 
G(A) is a quasitorus. But then by Problem 14 it has the trivial projection 
onto G(A,) which is impossible. 

16. Take any pre-image and consider its Jordan decomposition. 
17. Follows from Problem 2 and Corollary of Theorem 5. 
18. Let G be a commutative abstract group. The Jordan decomposition implies 

that G splits, as an abstract group, into the direct product of the subgroups 
G, consisting of semisimple elements, and GU consisting of unipotent ele- 
ments. Let us prove that these subgroups are algebraic which implies the 
statement of the theorem with the help of Problem 17 and Theorem 2. 

Assume that G is an algebraic linear group acting in a vector space K Then 
G = G n L,(V) is an algebraic subgroup. Next, take a basis in which all the 
operators of G, are expressed by diagonal matrices. Equating to zero the 
nondiagonal elements of the matrix of A E G in this basis we get a system of 
algebraic equations distinguishing G,. 
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19. Apply Corollary 2 of Theorem 9 to a faithful linear representation of G. 
In a basis in which the operators of the representation are expressed by 
triangular matrices the unipotent elements of G are distinguished by the fact 
that all diagonal elements of the corresponding matrices are equal to 1. 

20. By Problem 17 it suffices to prove that G/U is commutative, consists of 
semisimple elements and is irreducible. The first follows from Problem 19, 
the second is proved with the help of Problem 16, the third is obvious. 

22. Passing to G/U’ we may reduce the proof to the case of a commutative U. 
In this case by Theorem 2 U is a vector group and the action of the torus 
T on it is linear. By Theorem 3 U splits into the direct product of one- 
dimensional subgroups normalized by T. For U, we may take the product 
of all these subgroups except any one of them. 

23. Make use of Problem 12. 
24. Follows from Theorem 12 and Corollary of Theorem 11. 

5 3. The Tangent Algebra 

The tangent Lie algebra can be defined for an algebraic group over an arbitrary 
field (see e.g. [lo]) but for simplicity we confine ourselves to (E and R. In these 
cases no special definition is needed since any complex or real algebraic group 
is at the same time a Lie group and its tangent algebra may be understood in 
the sense of the Lie group theory. 

lo. Connectedness of Irreducible Complex Algebraic Groups. The notion of the 
tangent algebra can be used to prove the following theorem. 

Theorem 1. Any irreducible complex algebraic group is connected. 

Problem 1. Any irreducible commutative complex algebraic group is connected. 

Proof of the theorem. Let G be an irreducible complex algebraic group, g its 
tangent algebra. Consider some one-parameter subgroups P,, . . . , P, of G whose 
generators generate g. Denote by G,(i = 1,. . . , n) the closure of Pi in the Zariski 
topology. This is a commutative algebraic subgroup. Since its irreducible com- 
ponents are closed in the real topology, Pi is entirely contained in one irreducible 
component; but this means that Gi is irreducible. 

The subgroup G c G generated by G,, . . . , G, is closed in the Zariski topology 
(Theorem 1.4). Its tangent algebra contains the tangent algebras of G,, . . . , G, 
and, in particular, the generators of P,, . . . , P,; therefore it coincides with g. Thus 
dim G = dim G and therefore G = G. 

By Problem 1 the subgroups G,, . . . , G, are connected and therefore, contained 
in the unit component of G. But by what we have already proved they generate 
G. Therefore G is connected. 0 

Thus, for a complex algebraic group its irreducibility is equivalent to its 
connectedness in the real topology. Notice that since irreducible components 
of an algebraic group do not intersect, its irreducibility is equivalent to its 
connectedness in the Zariski topology. All this being taken into account, we 
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will, speaking about complex algebraic groups, say “connected” instead of 
“irreducible” in order to avoid confusion with the irreducibility of linear groups 
which means the absence of nontrivial invariant &spaces. 

2’. The Rational Structure on the Tangent Algebra of a Torus. Since a complex 
algebraic torus is a commutative Lie group, the Lie algebra structure on its 
tangent space is trivial. However, this space is naturally endowed with the 
structure of another kind. 

Let T be an n-dimensional torus and t its tangent algebra. The differential do 
(at the unit) of any character x E X(T) is a linear function on t. Clearly, 

(Recall that x1 + x2 is by definition the product of functions x1 and x2 on T. The 
sum on the right-hand side of identity (1) is the usual sum of linear functions 
on t.) 

Problem 2. If (cl,. . . , E,) is a basis of X(T) then (& , . . . , do,) is a basis of the 
space t* of linear functions on t. 

For any additive number group A, set 

f(A) = (r ~fld~(c) E A for all x E X(T)) 

= (5 E fld~#f) e A for i = 1, . . . , n). 

If k is a number field, thenf(k) is a k-form of the spacef(see the definition in 2.3.6). 
In the sequel, while speaking about the field over which the linear maps and 

subspaces of the tangent algebras of tori are defined we will have these very 
forms in mind. 

Problem 3. The differential of any homomorphism (in particular, any auto- 
morphism) of a torus is defined over Q (and the more so over any other number 
field). 

Problem 4. The tangent algebras of algebraic subgroups of a torus are exactly 
the subspaces of its tangent algebra which are defined over Q. 

3O. Algebraic Subalgebras. Let G be a complex algebraic group. A subalgebra 
lj c g is called algebraic if it is the tangent algebra of an algebraic subgroup 
H c G or, in other words, if the corresponding connected virtual Lie subgroup 
of G is an algebraic subgroup. As shown e.g. in Problem 4, certainly not any 
subalgebra is algebraic. 

In this subsection we will find certain sufficient conditions for algebraicity 
of a subalgebra (and therefore sufficient conditions for this subalgebra to be 
the tangent algebra of a Lie subgroup). The existence of such conditions is one 
of the reasons why algebraic group theory is useful in the Lie group theory. 

Problem 5. The derived algebra of an algebraic subalgebra is an algebraic 
subalgebra. 
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Theorem 2. Let an algebraic subgroup H of a complex algebraic group G be 
generated by connected algebraic subgroups Ha, a E A for a set A. Then the tangent 
algebra t, of H is generated by the tangent algebras I& of H,‘s. 

Problem 6. Prove this theorem. 

Corollary. 
algebraic. 

The subalgebra generated by any family of algebraic subalgebras 

Obviously the intersection of any family of algebraic subgroups is an algebraic 
subgroup. Therefore for any subalgebra E, c g there exists the smallest algebraic 
subalgebra containing b. It is called the algebraic closure of Ij and is denoted 
bY b a 

. 

Problem 7. E)” is the tangent algebra of the closure (in the Zariski topology) of 
the connected virtual Lie subgroup H c G corresponding to lj. 

The properties of the algebraic closure are similar to those of the Malcev 
closure (see 1.4.2). 

Theorem 3. Let t> be a subalgebra of the tangent algebra of a complex algebraic 
group G and b” its algebraic closure. Then (ba)’ = If. 

This theorem is proved in exactly the same way as Theorem 1.4.3 (the sub- 
groups H, and H, turn out to be algebraic: see Example 1.1.3) 

In 
Corolla 
particu 

rY 1 . The derived algebra of a ny subalgebra is an algebraic subalgebra. 
lar 9 any subalgebra coinciding with its derived algebra is algebraic. 

Corollary 2. The algebraic closure of a commutative (solvable) algebra is 
commutative (solvable). 

Maximal solvable subalgebras of g are called its Bore1 subalgebras. 

Problem 8. Any Bore1 subalgebra of g is the tangent algebra of a Bore1 
subgroup of G. 

Problem 9. The algebraic closure of an ideal is an ideal. 

Problem 10. The radical of G is an algebraic subgroup. 

A linear Lie algebra h c gl( V) is called algebraic if it is algebraic as a subalgebra 
of the tangent algebra of GL(V), i.e. if it is the tangent algebra of an algebraic 
linear group H c GL(V). 

All that has been stated in this subsection surely holds for G = GL(V). In 
particular, Corollary 1 of Theorem 3 enables us to conclude that any linear Lie 
algebra coinciding with its derived algebra is algebraic. 

4’. The Algebraic Structure on Certain Complex Lie Groups 

Theorem 4. Let G be a connected complex algebraic group coinciding with its 
commutator group. Then any differentiable homomorphism of G into a complex 
algebraic group H is polynomial. 
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Proof. Let f: G -+ H be a differentiable homomorphism. Consider its graph 
r = {@J(g)) E G x H: g E G}. Clearly r is a connected Lie subgroup of G x H 
and its projection onto G is isomorphic to IY Its tangent algebra is isomorphic 
to the tangent algebra of G, hence it coincides with its derived algebra. Therefore 
I-’ is an algebraic subgroup of G x H (Corollary 1 of Theorem 3). By Theorem 
1.6 the map g w (g, f(g)), inverse to the projection I=+ G is polynomial. There- 
fore f is also polynomial. 0 

An algebraic structure on a complex Lie group G is an algebraic group structure 
on G compatible with the Lie group structure, i.e. generating the same Lie group 
structure. Since any algebraic group has a faithful linear representation, for the 
existence of an algebraic structure on a complex Lie group it is necessary that 
this group has a faithful linear representation (as a Lie group). 

Theorem 5. A connected complex Lie gro up coinciding with its commutator group 
and having a faithful linear representation admits a unique algebraic structure. 

Problem 11. Prove this theorem. 

5’. Engel’s Theorem. In this subsection we consider vector spaces and Lie 
algebras over an arbitrary field. 

A linear Lie algebra g c gI(V) is called unipotent if all its operators are 
nilpotent. (The origin of this term will become clear in the sequel: see Problem 
15) . 

Problem 12. If a linear Lie algebra g c gI(V) is unipotent then so is the linear 
Lie algebra ad g c 91(g). 

Theorem 6 (Engel’s theorem.) Let g c $(I/) be a unipotent linear Lie algebra. 
There exists a nonzero vector in V annihilated by all operators of g. 

Proof will be carried out by induction in dim g. Suppose dim g > 0 and 
the statement holds for all linear Lie algebras whose dimensions are less than 
dim g. Let h be a maximal subalgebra of g. Let us prove that t> is an ideal of 
codimension 1. 

Consider the linear representation p of h in g/h induced by the adjoint repre- 
sentation of g. Problem 12 implies that the linear Lie algebra p(b) is unipotent. 
By the inductive hypothesis there exists a nonzero vector in g/h annihilated by 
all operators of p(h), i.e. there exists an element C E g\t> such that [h, C] c 6. 
But then h + (C) is a subalgebra of g and the maximality of h implies that 
h + (C) = g. With the above this means that E> is ideal of codimension one. 

Consider the subspace V0 = {v e V: I$v = O> c V. By the inductive hypothesis 
V0 # 0. The fact that h is an ideal in g easily implies that V0 is g-invariant. Let C 
be any element of g which does not belong to h. Since C is nilpotent and V0 is 
invariant with respect to C, there exists a nonzero vector in V0 annihilated by C. 
Clearly, this vector is annihilated by all the operators of g. 0 

Corollary 1. Under the conditions of the theorem there exists a basis of V with 
respect to which all operators of g are expressed by niltriangular matrices. 
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This corollary is deduced from the theorem like the similar corollary of Lie’s 
theorem, cf. 1.4.6. This in turn implies 

Corollary 2. Any unipotent Lie algebra is solvable. 

Engel’s theorem implies not only the solvability but also the nilpotency of any 
unipotent linear Lie algebra. (For the definition of a nilpotent Lie algebra see 
Exercise 1.2.16.) In fact, the Lie algebra of niltriangular matrices is clearly 
nilpotent. Corollary 1 of Engel’s theorem shows that any unipotent linear Lie 
algebra is isomorphic to some of its subalgebras and therefore is also nilpotent. 
However, the converse is false: there exist nilpotent Lie algebras which are not 
unipotent, e.g. Lie algebra of triangular matrices with equal elements on the 
diagonal. 

6’. Unipotent Algebraic Linear Groups. Let V be a complex vector space. 

Problem 13. An operator X E gl(V) is nilpotent (semisimple) if and only if 
exp tX is unipotent (semisimple) for any t E c. 

For any nilpotent X E gI( V) the linear group {exp tX: t E: a=} is algebraic, see 
2.2. Clearly, its tangent algebra is generated by X. Therefore any one-dimensional 
unipotent linear Lie algebra is algebraic. 

Problem 14. Any unipotent linear Lie algebra is algebraic. 

Problem 15. A connected algebraic linear group is unipotent (see 2.2) if and 
only if its tangent algebra is unipotent. 

This explains the term “unipotent” applied to the linear Lie algebras. 

Theorem 7. Any unipotent complex algebraic linear group G c GL( V) is solvable 
and is expressed in some basis by unitriangular matrices. The map exp: g -+ G is 
an isomorphism of algebraic varieties. 

Problem 16. Prove this theorem. 

Notice that the last statement of the theorem makes sense independently of a 
linear representation of G. 

7O. The Jordan Decomposition in the Tangent Algebra of an Algebraic Group. 
Let G be a complex algebraic group. For any < E g denote by G(t) the smallest 
algebraic subgroup of G whose tangent algebra contains 5, i.e. the closure (in the 
Zariski topology) of the subgroup {exp tc: t E @}. This is an irreducible commu- 
tative algebraic group. By Corollary of Theorem 2.8 it splits into the direct 
product of a torus and a vector group. 

An element 5 E g is called semisimple (nilpotent) if G(c) is a torus (a vector 
@-OUP)* 

Problem 17. Let f: G -+ H be an algebraic group homomorphism. If 5 E g is 
semisimple (nilpotent) then so is df(t) E fj. 

Problem 18. Let R be a linear representation of G. If t E 9 is semisimple . 
(nilpotent) then so is the linear operator dR(t). 
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Theorem 8. Any element 5 of the tangent algebra g of a complex algebraic group 
G can be uniquely presented in the form of the sum of commuting semisimple and 
nilpotent elements c,, tn. 

The elements 5, and 5, are called the semisimple and nilpotent parts of < 
respectively and the decomposition 5 = & + 5, is called its Jordan decomposition. 

Problem 19. Prove Theorem 8. 

Problem 20. Let R be a locally faithful (i.e. with a finite kernel) linear represen- 
tation of G and 5 E g. If dR(c) is semisimple (nilpotent) then so is <. 

Problems 18 and 20 show in particular that semisimple and nilpotent elements 
of the tangent algebra of GL(V) are same as semisimple and nilpotent linear 
operators. 

Problem 21. Let f: G ---) H be an algebraic group homomorphism. For any 
semisimple (nilpotent) element q E df(g) its pre-image (d!)-‘(q) contains a semi- 
simple (nilpotent) element. 

8O. The Tangent Algebra of a Real Algebraic Group. Let G be a real algebraic 
group, g its tangent algebra (as of a real Lie group), G(C) its complexification, 
see 1.1. 

The tangent algebra of G(C) coincides with the complexilication g(C) of g, see 
2.3.4. If 7 is the complex conjugation on G(C) then dz is the complex conjugation 
on g(@). 

Problem 22. A connected algebraic subgroup of G(C) is a complexification of 
an algebraic subgroup of G if and only if its tangent algebra is defined over R (as 
a subspace of g(C)). 

A Lie subalgebra t, c g is called algebraic if it is the tangent algebra of an 
algebraic subgroup H c G. For any subalgebra h c g there exists the smallest 
algebraic subalgebra containing h. It is called the algebraic closure of h and is 
denoted by t)“. 

Problem 23. The subalgebra E, c g is algebraic if and only if its complexification 
h(C) is an algebraic subalgebra of g(C). In any case h”(C) = h(C)“. 

Due to this fact most of the results of 3” are routinely carried over to the real 
setting. In particular, in this way we obtain that the following subalgebras of g 
are algebraic: 

1) the derived algebra of any subalgebra; in particular, any subalgebra coin- 
ciding with its derived algebra; 

2) a subalgebra generated by any family of algebraic subalgebras; 
3) the radical of g. 

9O. The Union of Bore1 Subgroups and the Centralizers of Tori. 
connected complex algebraic group, g its tangent algebra. 

Problem 24. Any element of g is contained in some of Bore1 suba 1, 

Let G be a 

gebras. 
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Problem 25. The union of all Bore1 subgroups of G is an epais subset in G. 
Actually, the following statement holds: 

Theorem 9. Every element of a connected complex algebraic group is contained 
in some of its Bore1 subgroups. 

Proof. Let U be the union of all Bore1 subgroups of G. It follows from Problem 
25 that U is dense in G in the real topology. Therefore it suffices to prove that 
U is closed in the real topology. 

We have U = USEGgBg-l, where B is a fixed Bore1 subgroup of G. Let the 
sequence of elements gnbngil(g, E G, b, E B) converge to some g E G. Since G/B 
is compact (Theorem 2.12), then, passing to a subsequence, we may assume that 
aI = g&, where gk -+ h E G and CL E B, but then 

c,,b,,c,’ ---) h-‘gh = b E B 

hence, g = hbh-1 E U. q 
The combination of this theorem with Theorem 2.11 and Corollary of 

Theorem 2.12 yields the following two corollaries. 

Corollary 1. Every semisimple element of G is contained in a torus. 

corollary 2. Every central semisimple element of G is con 
section of all maximal tori of G. 

Problem 26. Let S c G be a torus and g E G a semisimple e 
with it. Then there exists a torus T c G containing S and g. 

ained in the inter- 

ement commuting 

Theorem 10. The centralizer Z(S) of any torus S in a connected complex 
algebraic group G is connected. 

Problem 27. Prove the theorem. 

Exercises 

1) The subgroup {(e’, e”): z E a=> c (@*)2 is a Lie subgroup but not an algebraic 
subgroup. 

2) Any differentiable linear representation of a complex algebraic torus is 
polynomial. 
Give an example of a nonpolynomial differentiable linear representation 
of @. 
The complex Lie group @/(Z + iZ) does not admit an algebraic structure. 
(For a broader interpretation of the notion of an algebraic group, which does 
not require that the group variety is affine, this Lie group admits an 
algebraic structure. However, there are examples of complex Lie groups 
which do not admit an algebraic structure in this broader sense either.) 

5) The complex Lie group UZ x UZ* admits a continuum of different algebraic 
structures. 

6) An algebraic normal subgroup of a connected complex algebraic group G 
which is a quasitorus is contained in the center of G. 
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7) An element 5 of the tangent algebra of a complex algebraic group G is 
semisimple if and only if exp 5: E G is semisimple. 

8) A Lie algebra g (over an arbitrary field) is nilpotent if and only if the linear 
Lie algebra ad g is unipotent. 

9) The derived algebra of any solvable subalgebra of the tangent algebra of a 
complex algebraic group is unipotent (i.e. all its elements are nilpotent). 

10) Given a linear operator X E gl(V) let g(X) be the smallest algebraic linear 
Lie algebra which contains it, i.e. the algebraic closure of the one-dimensional 
linear Lie algebra (X). If X = X, + Xn is the additive Jordan decomposition 
of X then g(X) = g(X,) @ (Xn). 

11) Under the notation of Exercise 10 if X is expressed in some basis by a 
diagonal matrix diag (x,, . . . ,x,) then g(X) consists of all operators which in 
the same basis are expressed by matrices of the form diag (yr , . . . , y,), where 
Yl,-9 y, satisfy all linear equations with integer coefficients satisfied by x1, 

xrl* 
12) Under the notation of 7” the dimension of the vector factor of G(c) does not 

exceed 1. 

Hints to Problems 

4. Make use of the description of algebraic subgroups of a torus given in 
Theorem 2.5. 

5. Follows from Theorems 1.5 and 1.4.1. 
6. Let h c t> be a subalgebra generated by h,, a E A, and @ c H the correspond- 

ing connected virtual Lie subgroup (cf. Theorem 1.2.8). For any a E A we 
have h => 6,, hence Q 3 Hd. Therefore fi = H and h = h. 

8. First prove that any Bore1 subalgebra is an algebraic subalgebra. 
9. Solution is similar to that of Problem 1.4.6. 

10. Prove that the radical of g is an algebraic subalgebra. 
12. It is subject to a straightforward verification that if Xm = 0 then (ad X)2”-1 = 

0 
13. First prove the “ only if” part. After this prove that exp tX = (exp tXs) 

(exp tX,) is the (multiplicative) Jordan decomposition of exp tX. 
14. Follows from the remark made just before the formulation of the problem 

and Corollary of Theorem. 
15. The “if” part is proved with the help of Corollary 1 of Engel’s theorem. The 

“only if” part follows from Problem 13. 
16. The first part of the theorem follows from Problem 15 and corollaries of 

Engel’s theorem. The surjectivity of exp: g -+ G follows from the fact that 
together with A the group G contains the subgroup G(A) = {exp tX: t E c}, 
where X = log(A), cf. Theorem 2.1. The remaining properties of the map exp 
are proved with the help of Problem 2.4. 

17. Notice that the element df(c) is contained in the tangent algebra of the 
algebraic subgroup f(G(<)) c H. 

18. Make use of the hint to Problem 17 and of Problem 13. 
19. Let G(r) = T x U, where T is a torus and U a vector group. If g(t) = t @ u 
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20 . 
21 . 
22 . 

23 . 

26 . 

27 . 

is the corresponding decomposition of the tangent algebra then the decom- 
position 5 = 5, + t,, where 5, E t and <n E u, is the desired one. The unique- 

ness of the desired decomposition follows, due to Problem 18, from the 
uniqueness of the additive Jordan decomposition of a linear operator. 
Consider the Jordan decomposition of Ty and make use of Problem 18. 
Take any pre-image and consider its Jordan decomposition 
Problem 1.10 implies that a connected algebraic subgroup H c G(c) is a 
complexification of an algebraic subgroup of G if and only if z(H) = H and 
this, in turn, is equivalent to the fact that dz(t)) = h. Next, make use of 
Problem 2.3.29. 
Notice that if the subalgebra h(c) is algebraic then the corresponding con- 
nected algebraic subgroup of G(c) is according to the Problem 22 a com- 
plexification of an algebraic subgroup of G. The second statement follows 
from the first one. 
By Corollary 1 of Theorem 9 g is contained in a torus. Let H c G be the 
subgroup generated by this torus and S. This is a connected algebraic 
subgroup by Theorem 1.4 and g belongs to its center. Let T be a maximal 
torus of H containing S. By Corollary 2 of Theorem 9 T3 g. 
It suffices to prove that any semisimple element of Z(S) is contained in Z(S)’ 
but this follows from Problem 26. 

54. Compact Linear Groups 

Compact linear groups give an example when the algebraicity follows from a 
topological assumption. Namely, any compact linear group acting in a real 
vector space is algebraic (and therefore, it is a Lie group). This will constitute 
one of the theorems of this section. 

lo. A Fixed Point Theorem. Proofs of all properties of compact linear groups 
contained in this section are based on the following theorem. 

Theorem 1. Let G be a compact subgroup of the group GA(S) of affine trans- 
formations of a real affine space S and let M c S be a nonempty convex G-invariant 
subset. Then Ad contains a fixed point of G. 

Before we proceed with the proof of this theorem define the center of mass of 
a nonempty bounded convex subset M of a real affrne space S to be 

c(M) = ,u(M)-’ 
s 

v(dx), 
M 

where ,U is the usual measure in S invariant with respect to parallel translations. 
The measure jl is defmed up to a constant factor but it is clear from the formula 
that the ambiguity in the choice of ,U does not affect the results The integral on 
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the right-hand side can be defined either 1) coordinate-wise or 2) directly, as the 
limit of integral sums which are (the factor preceding the integral being taken 
into account) linear combinations of points of S with the sum of coefficients being 
equal to 1, and therefore make sense. The first definition shows the existence of 
the integral and the second one its independence of the choice of a coordinate 
system. 

In general case let P be the smallest plane in S containing M. Then M has a 
nonempty interior as a subset of the affine space P and we define c(M) as above 
but with S replaced by P. 

Problem 1. c(M) E A4. 

Since the center of mass is defined in terms of affine geometry, c(gM) = gc(M) 
for any affme transformation g of S. In particular, if M is invariant with respect 
to an affine transformation then its center of .mass is a fixed point of this 
transformation. 

Proof of the theorem. If A4 is bounded then its center of mass will do as a fixed 
point. In general let A4’ be the convex hull of an orbit of G in A4. Clearly, M’ is 
an invariant subset. Since the orbit is compact, its convex hull is bounded. The 
point c(M’) E M’ c M is the desired fixed point. 

Applying the theorem to M = S we get 

Corollary. Any compact group of affine transformations has a fixed point. 

2O. Complete Reducibility 

Theorem 2. Let G be a compact group of linear transformations of a real 
(complex) vector space V. Then there exists a positive definite quadratic (Hermitian) 
form on V invariant with respect to G. 

In other words V can be made into a Euclidean (Hermitian) space so that all 
transformations of G are orthogonal (unitary). 

Proof is obtained by applying Theorem 1 to the image of G under the natural 
linear representation of GL(V) in a (real) space S of all quadratic or Hermitian 
forms on V For M take the subset of positive definite forms. 0 

Corollary. Any compact linear group in a real or complex vector space is 
camp letely reducible. 

Recall that a linear group G c GL(V) is irreducible if V # 0 and there are no 
nontrivial G-invariant subspaces in V and completely reducible if V decomposes 
into the direct sum of G-invariant subspaces so that the restriction of G onto any 
of them is irreducible. (Notice a linguistic inconsistency: any irreducible linear 
group is completely reducible!) 

Problem 2. A linear group G c GL(V) is completely reducible if and only if 
for any G-invariant subspace of V there exists a G-invariant complementary 
subspace. 
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If V is a Eucledean (Hermitian) space and all transformations from G are 
orthogonal (unitary) then for a complementary invariant space we can take the 
orthogonal complement which implies the above Corollary. 

3’. Separating Orbits with the Help of Invariants. Let V be a (finite-dimensional) 
vector space over an infinite field K. Every linear operator A E GL( V) determines 
an automorphism A* of the polynomial algebra K[ V] acting via the formula 

The map A t-+ A* is a linear representation of GL( V) in K [ V]. This representa- 
tion is infinite-dimensional but is the inductive limit of finite-dimensional ones: 
K [ V] is the union of the increasing chain of finite-dimensional GL( I/)-invariant 
subspaces K[ V-J’“), m = 0, 1, . . . , where K[ VI(“) consists of polynomials of 
degree < m. 

Now, let G c GL( V) be a subgroup. A polynomial f E K [ V] is G-invariant if 
A*f = f or, equivalently, if 

f&4x) = f(x) for any A E G, x E I/. 

In other words, a polynomial f is G-invariant if it is constant on every orbit of 
G. The invariant polynomials constitute a subalgebra of K[V] denoted by 
KIVIG. 

We say that two orbits of G are separated by invariants if for any x, y E V that 
belong to different orbits there exists f E K[ VIG such that f(x) # f(y). 

For example, let G = S,,, where n = dim V, be the symmetric group which acts 
in V permuting the vectors of a fixed basis. Then KIVIG is the algebra of 
symmetric polynomials (in the coordinate system corresponding to the basis). As 
is known, this algebra is generated by the elementary symmetric polynomials +, 
l  l  l  7  

a,. Let us prove that the orbits of G are separated by the invariants. To each 
x E V with coordinates xi, . . . , x, assign the polynomial 

q,(t) = (t - x,). . . (t - x,) = t” - a,(x)t”-’ + l  ** + (- l)?&(x) 

in a variable t with roots x1, . . . , x,. If x and y belong to different orbits of G, i.e. 
the coordinates of one of them cannot be obtained from the coordinates of 
another by permutation then (px # qY and therefore c+) # a,(y) for some k. 

It is possible to show that the orbits of any finite linear group are separated 
by the invariants. On the contrary, for infinite groups this is seldom so. For 
instance consider a classical situation. Let V = L,(K) be the space of matrices 
over an algebraically closed field K and let G c GL( V) be the group of trans- 
formations X ++ AXA-’ (X E L,(K), A E GL,(K)). Then the orbits of G are the 
classes of similar matrices and KIVIG, as it is not difficult to show, is generated 
by the coefficients of the characteristic polynomial (which are polynomials in the 
matrix elements). Therefore the matrices with the same characteristic poly- 
nomials but different Jordan forms are not separated by the invariants although 
they belong to different orbits. 
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Theorem 3. The orbits of a compact linear group acting in a real vector space 
are separated by the invariants. 

Proof. Let 0, and O2 be different orbits of a compact linear group G acting in 
a real vector space I;: Since 0, and 0, are nonintersecting compact subsets, there 
exists a continuous function q on V equal 1 on 0, and - 1 on Oz. Furthermore, 
by Weierstrass’s theorem there exists f E R[V] such that 

and therefore 

f(x) > 0 for x E 0, 2nd f(x) < 0 for x E 02 (1) 

Let m be the degree of this polynomial. 
In S = R[ VI(“), consider the subset M consisting of all polynomials satisfying 

(1). Clearly, A4 is convex and invariant with respect to the natural linear represen- 
tation of G in S. By Theorem 1 there exists ,a G-invariant polynomial in A4. It is 
clear from (1) that the values of this polynomial at the points of O1 are different 
from the values at the points of 0,. 0 

Example. Let V be the space of symmetric real matrices of order n. To each 
orthogonal n x n matrix A assign a linear transformation R(A) of V by the 
formula 

R(A)X = AXA-’ (X E V). 

Then we get a linear representation R: 0, + GL(V). Let G = R(0,). This is a 
compact linear group acting on the space V. As it is known from the linear 
algebra, each orbit of this group contains a diagonal matrix. Therefore the orbit 
which contains the symmetric matrix X is determined by the characteristic 
polynomial of this matrix. Since the coefficients of a characteristic polynomial 
are G-invariant polynomials in the elements of X, the orbits of G are separated 
by the invariants as it should be according to the theorem. 0 

4O. Algebraicity 

Theorem 4. The orbits of a compact linear group G acting on a real vector space 
V are algebraic varieties in V. 

Proof. Let 0 be an orbit and I an ideal of R[ V]” consisting of invariants which 
vanish on 0. By Theorem 3 for any orbit 0’ # 0 there exists an invariant which 
takes different values on 0 and 0’. Adding to it an appropriate constant we can 
get a polynomial f E I which does not vanish at any point of 0’. Thus, the set of 
zeros of I coincides with 0 implying that 0 is an algebraic variety in V. 0 

Theorem 5. Any compact linear group acting on a real vector space is algebraic 
(and therefore is a linear Lie group). 
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Proof. Let G c GL( V) be a compact linear group. Consider a linear represen- 
tation R of G in the space L(V) defined by the formula 

R(A)X = AX (A E GL(V),X E L(V)). 

The group G, as a subset of L(V), is an orbit of R(G) (namely G = R(G)E). By 
Theorem 4 this implies that G is algebraic. 0 

Notice that a similar theorem fails over c. More precisely, the following 
statement holds. 

Problem 3. Any compact complex algebraic group is finite. 

However, Theorem 5 implies that any compact linear group acting on a 
complex vector space V is an algebraic subgroup of the group of invertible linear 
transformations of V considered as a real vector space and therefore a real 
algebraic subgroup of GL( V). 

In Chapter 5 we will obtain a classification of connected compact linear groups 
and prove that any compact Lie group admits a faithful linear representation. 

Exercises 

1) Let G be an irreducible compact linear group acting on a real (complex) vector 
space V Then a G-invariant positive definite quadratic (Hermitian) form on 
V is unique up to a positive factor. 

2) A linear operator in a vector space over an algebraically closed field is 
semisimple if and only if the cyclic linear group it generates is completely 
reducible. 

3) The orbits of any finite linear group (over an arbitrary field) are separated by 
the invariants. 

4) Let V = L,(K) be the space of matrices over an algebraically closed field K 
and let G c GL( V) be the group consisting of transformations 

XI+ AXA-’ (X E L,,(K), A E GLJK)). 

Then K [ V]” is generated by the coefficients of the characteristic polynomial. 
(Hint: consider the restrictions of invariants onto the subspace of diagonal 
matrices.) 

5) In the notations of Exercise 4 the orbit of X E L,(K) is closed in L,(K) if and 
only if X is similar to a diagonal matrix. 

Hints to Problems 

1. We can assume that i‘LI has a nonempty interior. In this case suppose c(M) $ A4. 
Then there exists an affme function I on S positive at all interior points of A4 
and vanishing at c(ltl). But this is impossible since the definition of the center 
of mass implies that 

l(c(A4)) = p(M)-’ I(X)p(dx) > 0. 
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2. Let V = VI @ l  l  l  0 Vm be the decomposition of V into the direct sum of 
invariant subspaces on each of which G acts irreducibly and let U c V be an 
invariant subspace. Then as an invariant subspace complementary to U we 
can always take the sum of a certain number of subspaces VI, . . . , V*. 

3. More generally, an irreducible complex affme variety of positive dimension 
cannot be compact: see 2.2.5. 



Chapter 4 
Complex Semisimple Lie Groups 

This chapter deals with the most explored section of the theory of Lie groups 
and Lie algebras. Its main result is the complete classification of connected 
complex semisimple Lie groups and their irreducible linear representations. 
This classification is based on the theory of root systems, which because of its 
numerous applications deserves a special treatment. The theory is axiomatically 
developed in Q 2. During the whole chapter (except 1. lo- 1.3”) the ground field is 
C. All the vector spaces and Lie algebras considered are finite-dimensional. 

§ 1. Preliminaries 

lo. Invariant Scalar Products. Let G be a Lie group (real or complex). A bilinear 
function b on the tangent algebra g of G is said to be inuariant if it is invariant 
with respect to Ad G, i.e. if 

b((Ad g)x, (Ad g)y) = m Y) 

for any g E G, x, y E g. 

Problem 1. An invariant bilinear function b on g satisfies 

b(Cx,Yl,4 + b(Y,C~Jl) = 0 (1) 

for any x, y, z E g. If G is connected then the converse statement holds: any 
bilinear function b on g satisfying (1) is invariant. 

Now let g be a Lie algebra over an arbitrary field K. A bilinear function b on 
g satisfying (1) is called invariant. If, in addition, b is symmetric we will call b an 
invariant scalar product on g. 

Examples. 1) Let E be the three-dimensional Euclidean space with the scalar 
product (0, 0). Fixing an orientation on E we make E into a Lie algebra over IF3 
with respect to the vector product, and the scalar product (0, 0) is invariant. 

2) In gI( V), there is the canonical invariant scalar product 

(X, Y) = trXY. (2) 
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3) Let g be an arbitrary Lie algebra, p: g -+ gl(V) its linear representation. 
Then the bilinear function 

(X9Y)J-l = (P(x)9P(Y)) = trbw(Y~) 

is an invariant scalar product on g. In particular, on any Lie algebra g the 
invariant scalar product 

(x9 Y)ad = tr( (ad x) (ad y)) 

is defined; it is called the Cartan scalar product (or the Killing bilinear function). 
It is not difficult to verify that this scalar product is invariant with respect to all 
the automorphisms a of g: 

(W dY))ad = (x, YL 

Let ( l  , 0) be an invariant scalar product on 
a c g the orthogonal complement is defined: 

a Lie algebra g. For any subspace 

a’ = (X E g: (x, y) = 0 for all y E a}. 

Problem 2. If a is an ideal of g, then so is a’. 

Let V be a vector space over K and g a subalgebra of gI(V). The embedding 
g --+ gI( V) defines an invariant scalar product (0, .) on g (see Example 3); it is 
defined by (2). We wish to specify (for K = C) those algebraic linear Lie algebras 
for which this scalar product is nondegenerate. 

A complex linear Lie algebra 
all its elements are semisimple. 

called diagonalizable if it is commutative and 

Problem 3. A complex algebraic linear Lie algebra is diagonalizable if and only 
if it is the tangent algebra of a torus. 

Problem 4. Let t be a diagonalizable complex algebraic linear Lie algebra. Then 
the scalar product (2) is nondegenerate on t and positive definite on the real form 
t(R) (see 3.3.2”). 

Problem 5. Let n be a complex linear Lie algebra, on which the scalar product 
(2) vanishes identically. If n is algebraic then it is unipotent; in general case it is 
solvable. 

Problem 6. If n is a unipotent ideal of a linear Lie algebra g then (n, g) = 0. 

Problem 7. Let K = C or R and let g be a semisimple linear Lie algebra. Then 
the scalar product (2) is nondegenerate on g. 

Notice that any semisimple Lie algebra admits a faithful linear representa- 
tion, e.g. the adjoint one. Therefore it may always be assumed linear. Problem 7 
implies 
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Theorem 1. Any semisimple Lie algebra g over UZ or IF8 possesses a nondegenerate d 
invuriant scalar product. In particular, the Cartan scalar product on g is non- 
degenerate. 

Problem 8. If there is an invariant scalar product on a Lie algebra g then the . 
center j(g) is contained in g’l. If this scalar product is nondegenerate then 
3M = !P* 

Problem 9. A semisimple Lie algebra (complex or real) coincides with its 
derived algebra. Any semisimple linear Lie algebra g c gl( V) is contained in the 
subalgebra el( V) of traceless operators. 

A complex linear Lie algebra g is called reductive if g = 3 @ g1 where 3 is a 
diagonalizable and g1 is a semisimple ideal of g. Clearly, 3 coincides with j(g) and 
also with rub g. By Problem 9 g1 coincides with the derived algebra g’ of g. 
Problems 4, 7 and 8 imply that the scalar product (2) is nondegenerate on any 
reductive algebraic linear Lie algebra. 

Now let g be an algebraic linear Lie algebra over c such that the scalar product 
(2) is nondegenerate on it. 

Problem 10. The center j(g) of g is algebraic and consists of semisimple 
elements. 

Problems 10, 4 and 8 imply that g = j(g) @ g’. 

Problem 11. g’ is semisimple. 

Thus we have proved 

Theorem 2. Let g c gI(V) be an algebraic linear Lie algebra over c. The 
following conditions are equicalent: 

1) g is a reductice algebraic linear Lie algebra; 
2) the scalar product (2) is nondegenerate on g. 

2O. Algebraicitv. Let g c gl( V) be a semisimple linear Lie algebra over K = c 
or IR. By Problem 8 and Corollary 1 of Theorem 3.3.3 (valid also over IF! as had 
been mentioned in 3.3.8) g is an algebraic Lie algebra. This means that there 
exists an irreducible algebraic subgroup G c GL(V) with the tangent algebra g. 
For K = (IZ this subgroup is connected (see Theorem 3.3.1). 

Problem 12. Any connected semisimple virtual Lie subgroup G c GL( V) is a 
Lie subgroup, which is algebraic if K = QZ or which is the identity component 
of an irreducible algebraic linear group if K = R. 

A complex algebraic linear Lie group G is called reductive if its tangent alge- 
bra g is reductive. Problem 3.3.18 implies that this property of G does not de- 
pend on its representation as a linear group, so the notion of reductive complex 
algebraic group is well-defined. Any semisimple complex algebraic group is 
reductive. A reductive algebraic group G is semisimple if and only if j(g) = 0. 

Theorem 2 implies that a complex algebraic linear group is reductive if and 
only if the scalar product (2) is nondegenerate on its tangent algebra. 
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Problem 13. The classical complex linear groups SL,(C) (n >/ 3, SO,(C) (n > 3), 
Sp,(C) (n 2 2) are semisimple and GL,(C) is reductive. All these groups are 
irreducible. 

Example. Consider the real algebraic group SO,,,, where k, [ > 0, k + I = ~1, 
consisting of unimodular matrices corresponding to linear operators preserving 
a nondegenerate quadratic form q of signature (k, r). The group SO, @) is the 
group of unimodular complex matrices whose corresponding operato& preserve 
q. Since all nondegenerate quadratic forms in @” are equivalent, SO, #Z) is 
isomorphic to SO,&). Therefore SOk z is an irreducible semisimple algebraic 
group. At the same time it is not connected (see Problem 1.3.9). 

Problem 9 and Theorem 1.4.1 imply that a connected semisimple Lie group 
coincides with its commutator group. Therefore (see Theorem 3.3.4) any dif- 
ferentiable representation of a connected semisimple complex algebraic group G 
is polynomial. By Theorem 3.3.5 the algebraic structure on G is unique. (Actually 
these statements are also true for arbitrary reductive algebraic groups over @, 
see Exercise 10). In 5 3 we will show that any connected semisimple complex Lie 
group admits the structure of an algebraic group. 

Let g be the tangent algebra of an algebraic group G over UZ. Any commutative 
subalgebra of g consisting of semisimple elements is called diagonalizable. 

Problem 14. An algebraic subalgebra t c g is diagonalizable if and only if it is 
the tangent algebra of a torus T c G. The maximal diagonalizable subalgebras 
are algebraic and correspond to maximal tori of G. If a maximal diagonalizable 
subalgebra t is zero then Go is unipotent. 

Two subalgebras of a Lie algebra g are conjugate if they are transformed into 
each other by an automorphism from Int g. Problems 14 and 3.2.24 imply that 
all maximal diagonalizable subalgebras of the tangent algebra of a complex 
algebraic group are conjugate. 

The rank of a reductive algebraic group G (or of its tangent algebra g) is the 
dimension of a maximal torus of G (or of a maximal diagonalizable subalgebra 
of g and is denoted by rk G = rk g. 

3O. Normal Subgroups. We assume that the ground field K is either c or R. If 
g is simple, i.e. has no proper ideals, then either g is noncommutative or g is a 
one-dimensional commutative Lie algebra. Clearly, a noncommutative simple 
Lie algebra is semisimple. 

Let g be a semisimple Lie algebra; we may consider it as a subalgebra of gl( V), 
where I/ is a vector space over K. 

Problem 15. On any ideal a of g the scalar product (2) is nondegenerate and 
g= a @ a’. If b is an ideal of a, then b is also an ideal of g. 

Problem 16. If a is an ideal of g, then a and g/a are semisimple. 

Problem 17. g splits into the orthogonal direct sum of noncommutative simple 
ideals gi, and any ideal of g is the sum of some of gi’S. 

Problem 15 and 17 imply 
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Theorem 3. A semisimple Lie algebra splits uniquely into the direct sum of 
noncommutative simple ideals. 

The converse statement is also true: 

Problem 18. If a Lie algebra g splits into the direct sum of noncommutative 
simple ideals then g is semisimple. 

Now let us prove the corresponding results for Lie and algebraic groups. 
A Lie group (in particular an algebraic group) is called simple if its tangent 

algebra is simple. By Problem 1.221 and Theorem 1.2, a connected Lie group G 
is simple if and only if G has no connected normal virtual Lie subgroups, not 
coinciding with (e> or G. 

Problem 19. A connected simple Lie group or an irreducible simple algebraic 
group is either noncommutative and semisimple or commutative and one- 
dimensional. 

Problem 20. A connected complex algebraic group G is simple if and only if it 
does not contain proper connected normal algebraic subgroups. 

Let G be a Lie group, G,, . . ., G, its normal Lie subgroups. We say that G 
locally splits into the direct product of subgroups Gi’s if G = G1, . . . , G, and all 
the intersections Gi n (G, . . . Giel Gi+l . . . G,) (i = 1,. . . , s) are discrete. 

Problem 21. A connected Lie group G locally splits into the direct product of 
connected normal Lie groups Gi, i = 1, . . . , S, if and only if its tangent algebra g 
splits into the direct sum g = g1 @ l  l  l  @ gS, where gi is the ideal tangent to Gi. 

Theorem 3 and Problems 21, 18 imply 

Theorem 4. A connected semisimple Lie group G locally splits into the direct 
product of connected noncommutative simple normal Lie subgroups G = G, . . . G,. 
Given such a decomposition, any normal Lie subgroup of G is a product of some 
of Gi’S. Any Lie group that locally splits into the direct product of noncommutative 
simple normal Lie subgroups is semisimple. 

Problem 22. A connected complex algebraic group G is reductive if and only 
if it locally splits into the direct product G = ZG,, where Z is a torus and G, is 
a semisimple normal subgroup. In this case Z coincides with Z(G)’ and with 
Rad G, whereas G, coincides with the commutator group of G. A homomorphic 
image of a reductive group is a reductive group. 

4O. Weight and Root Decompositions. From now on and till the end of the 
section we will assume that the ground field is C. Algebraic tori will be briefly 
called tori. 

Let T be a nontrivial torus, t its tangent algebra. As follows from Problem 
3.3.2 the correspondence E,t-+ddE, is an injective homomorphism of the group of 
characters of T into t* sending any basis of the group S!(T) into a basis of the 
space t(R)*, where t(lW) is the real form oft defined by (3.3.2). It will be convenient 
for us to identifv the characters E, E X(T) with their differentials. Then 5?(T) is d 
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identified with the discrete subgroup of the space t(R)* generated by a basis of 
this space. 

We may assume that the group T is linear. By Problem 2 the space t(R) is a 
Euclidean one with respect to the scalar product (2). Consider the canonical 
isomorphism d I+ uJ of t* onto t defined by the formula 

(4, x) = 44 (x E 9 (3) 

which maps t(R)* onto t(R). With this isomorphism 
clidean space structure from t(R) into t(R)* setting 

we may translate the Eu- 

For any nonzero 1 E t(R)* choose an element h, on the line @u, c t(R), such that 
jL(hi) = 2. Clearly, h, is uniquely defined, belongs to t(R) and is of the form 

For any p E t* we have 

Now let G be an algebraic linear group containing a torus T and let R: 
G -+ GL( V) be a polynomial linear representation. By Theorem 3.2.3 all the 
operators of R(T) are expressed in some basis by diagonal matrices. This means 
that 

v= @ vi, AE!& (7) 

where QR c X(T) is the system of weights of the restriction RI T. The elements 
of the system QR will be called the weights of the representation R with respect 
to T and the decomposition (7) the weight decomposition with respect to T. Some- 
times we write QR instead of QR(T). 

Problem 23. The system QR spans the subspace {II E t(R)*: A(x) = 0 for all 
x E t n Ker dR) in t(R)*. In particular, if dR is faithful then QR spans t(R)*. 

Now take for R the adjoint representation Ad of G in its tangent algebra. For 
any jb E QAd we have 

gn= (xqJ:CW = ;l(h)x for all h E t). (8) 

In particular, go is the centralizer of the subalgebra t of g and therefore is an 
algebraic subalgebra containing t. 

The nonzero weights of GAd(T) are called roots and the weight subspaces ga 
(x # 0) root subspaces of g with respect to T. The root system is denoted by d(T) 
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or A, hence @Ad = d(T) u (0). The decomposition 

is called the root decomposition of g with respect to T. 
Let us study the action of automorphisms of G on weights and roots. Let 

0 E Aut G, 0 = d@ E Aut g. The automorphism 0 transforms T into T = O(T). 
By Problem 3.3.3 the isomorphism 0: t + ? maps t(R) onto ?(R) and therefore 
induces an isomorphism ‘0: i(R)* + t(R)*. We have ‘0(X(T)) = X(T) and under 
the assumed identification of the character with its differential the obtained 
isomorphism of the groups of characters is identified with the isomorphism 

Problem 24. If 0 = a(g), where g E G, then ‘0 = ‘(Ad g) maps QSR( T) onto OR 
and we have Q,, sJ-l;c = R(g)V”. For any 0 E Aut G we have ‘8@(T)) = d 
and !3w- l(a) = mLa)* 

Problem 25. For any representation R: G -+ GL( V), any a E C&~(T), 1 E QR 
and any x E ga we have 

wwi o 
i 

= vi+a if Jk + a E OR(T), 
- - otherwise 

In particular, for any 2, p E @JT) 

if a + P E @M(T) 
otherwise. 

Now let us investigate the behavior of the root decomposition (9) with respect 
to the invariant scalar product (2). 

Problem 26. If cx, /? E UbAd( T) and a + p # 0 then (gGI, gp) = 0. 

Problem 27. Let G be a reductive algebraic group. Then the scalar product (21 
is nondegenerate on go. If a E d(T) then -a E d(T) and the scalar product is 
nondegenerate on gn @ gBa. 

Problem 28. If G is a reductive algebraic group then the subalgebra go is a 
reductive algebraic algebra. If, in particular, T is a maximal torus of G then 
YO = t. 

Since all maximal tori in G are conjugate (Problem 3.2.24), Problem 24 implies 
that the weight system of a representation and the root system of G with respect 
to a maximal torus T are defined uniquely up to an isomorphism of the form 
‘(Adg), where g E G, of the corresponding spaces t(R)*. The roots with respect tc 
a maximal torus T are simply called the roots of G; the root system is denoted 
d, or d, since it is transparent from (8) that the root system is completely . 
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determined by the pair (g, t). The root subspaces with respect to a maximal torus 
are simply called root subspaces of g. 

In the sequel we assume that G is a reductive algebraic group and T is its 
maximal torus. The most interesting is the case when G is semisimple. 

Let us present g in the form g = 3(g) @ g’, where g’ is a semisimple ideal. 
Problem 28 implies that any maximal diagonalizable subalgebra t c g contains 
s(g) and therefore is of the form t = 3(g) @ t’, where t’ = t n g’ is a maximal 
diagonalizable subalgebra of g’. Conversely, any subalgebra t = 3(g) @ t,, where 
t I = t n g’ is a maximal diagonalizable subalgebra of g’, is a maximal diago- 
nalizable subalgebra of g. Assigning to each linear function on t its restriction 
onto t’ we identify the subspace (1 E t*: n(x) = 0 for all x E 3(g)} with t’. 

Problem 29. The root system d, is identified with dgt and d, = d,# spans the 
space t’(R)* while the vectors h, (a E AJ span t’#R). The algebra g is commutative 
if and only if d, = 0 and semisimple if and only if d, spans t(R)*. 

Problem 30. For any x E gol, y E gol, where a E d,, we have 

The subspace [g,, g-J is one-dimensional and is spanned by h,. 
It is clear from Problem 30 that the line Ch, for any given cc E d, is determined 

by the Lie algebra structure on g and does not depend on the chosen realization 
of g as a linear Lie algebra. The definition of h, implies that it is also uniquely 
defined. If g is semisimple then by Problem 29 the space t(R) is generated by the 
elements h, (a E Q. Therefore if g is semisimple, t(R) is completely determined 
bY !? 

Now let us investigate what is the root system of the direct sum g = 910 !32, 

where gl, g2 are semisimple Lie algebras. From Problem 28 we easily deduce 
that any maximal diagonalizable subalgebra t c g is of the form t = t 1 @ t,, 
where ti, i = 1, 2, is a maximal diagonalizable subalgebra of gi. The converse is 
true since a subalgebra t of such a form coincides with its centralizer in g. Let us 
identify in a usual way tT with the subspace (1 E t*: i(x) = 0 for all x E t2} and 
t;‘ with {J E t*: A(x) = 0 for all x E tl}. Then t* = ty @ tT and t(R)* = tJR)* @ 
tzw*. Let A,, 4J*, d9, be the root systems of g, gl, g2 with respect to t, t,, t,, 
respectively. U . 

Problem 31. We have d, = d,* u d,* and (cx, p) = 0 for any cc E 441, /? E dgZ. . . 

Problem 32. For any decomposition d, = d 1 u d, of the root system of a 
semisimple Lie algebra g into a union of two orthogonal subsystems there exist 
ideals Q, q2 c g such that g = gr @ g2 and di = dgi (i = 1,2). . . 

Concluding this section we generalize the notion of weight system and weight 
decomposition to an arbitrary linear representation p of a semisimple Lie algebra. 
We need this generalization since p need not a priori coincide with the differential 
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of a linear representation of any algebraic group whose tangent algebra is g. Note 
that this generalization does not actually give anything new since, as we shall see 
in 5 9, there always exists a simply connected algebraic group G with the tangent 
algebra g and p is the differential of a representation of G by Theorem 1.2.6. 

Let g be a semisimple Lie algebra, G an algebraic group with g as the tangent 
algebra. Problems 3.3.18 and 33.20 applied to the adjoint representation of G 
yield that x E g is semisimple (nilpotent) if and only if so is ad x in the space g. 
Therefore we may speak about semisimple and nilpotent elements of an abstract 
semisimple Lie algebra. 

Problem 33. A linear representation p of a semisimple Lie algebra g maps the 
semisimple elements in semisimple operators and the nilpotent elements in 
nilpotent operators. 

Let p: g -+ gI( V) be a linear representation of a semisimple Lie aglebra g, t a 
maximal diagonalizable subalgebra of g. Problem 33 implies that P(t) is a 
commutative subalgebra of gI( V) consisting of semisimple operators. By Problem 
3.2.2 we have 

V - - 
0 h? 

Adp 
(10) 

where 

V A = (u E v: p(x)u = l(x)u for ail x E t} 

and Q$ c t* is the set of linear functions 1, such that VA # 0. The elements of @p 
are called weights and the corresponding subspaces V’ weight subspaces of the 
representation p. If p = dR, where R is a linear representation of G, then $ 
coincides with QR and the decomposition (10) with the weight decomposition (7). 
It is also easy to verify that the statement of Problem 25 holds for (10). 

In 6” we will show that $ c t(R)*. 

5O. Root Decompositions and Root Systems of Classical Lie Algebras. In this 
section we will give explicitly the form of maximal diagonalizable subalgebras 
t,, root decompositions, roots and vectors h, for the classical Lie algebras 
g = 9Ll(@)7 %W~ so,(@), S&C) (see Problem 13). 

The identity, i.e standard, representation of the corresponding classical group 
is denoted by Id; it is convenient to express the roots by means of weights of Id. 

Let T be the torus in GL,(@) consisting of all invertible diagonal matrices. It is 
easy to verify that T coincides with its centralizer implying that T is a maximal 
torus of GL,(@). Its tangent algebra t c gI,(C) is the algebra of all diagonal 
matrices and the real form t(R) is the algebra of all real diagonal matrices. The 
scalar product (2) is determined in t by the formula 

(x7 ‘) = 1 -yiyiy where X = diag(x 1,. . . , x,), Y = diag( y, , . . . , y,). 
1 <i,<n 
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The vectors e, (i = l,..., n) of the standard basis of Cn are the weight vectors 
for the representation IdJ T. The corresponding weight &i (and also the element 
d&i E t(R)* identified with it) is of the form 

&i(diag&, . . . , Xn)) = Xi (i = 1, . . . , n). (11) 

In what follows &i also denotes the restriction of the linear function (11) onto the 
maximal diagonalizable subalgebra of a classical Lie algebra g. 

Example 4. For g = gl,(C) we have 

t 
g= 9 

t 

A 9 = %i = ‘i { - CjZ i # j, i,j = 1,. . . , n], 

9 - - 
aij 

CE ijy 

h arij = diag(O,. . . ,O, l,O,. . . ,O, - l,O,. . . ,O) with 1 (resp. - 1) at the i-th (j-th) 
place. 

Example 5. For g = d,,(C) (n > 2) we have 

t, = (x E t: tr x = 01, 

A 9 = %i = ‘i { - &jI i # j, i, j = 1,. . . , n}. 

The subspaces ga.. and vectors h,. . are the same as in Example 4 (see Problem 29). 
In the simplestcase n = 2 we have A, = (a, -a}, where a = a12. A basis of the 

Lie algebra C&(C) is (h,e,f}, where h = h, = diag(1, -l), e = E12, f = EZ1 such 
that 

[h, e] = 2e, [h, f] = -2f, [e, f] = h. 

In the following two examples we consider G = SO,(@). For our purposes it 
is convenient to choose a basis in C” so that the matrix of the G-invariant 
quadratic form is 

(n = 21) or (n = 21 + 1) 

Example 6. The Lie algebra g = so,,(@) (1 > 2) consists of matrices of the form 

(5 -‘XT) x, y, z E gl,(C), YT = - y, ZT = -2. 

We have 
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t, = {diag(x,,...,x, - xl,..., -x,): XiE C}, 

0 Id = { &I ,..., &I, --&I ,..., -El), 

A B = ‘0 = ‘i 1 - &j (i # j), Pij = Ei + &j(i Cj), -pij: i,j = l,..., r>, 

!J - - W . . - 
aij lJ 

E l+j,l+i 3 Sfiij = @tEi,l+j - Ej,l+i), S-S ) ij = @CEl+i,j - El+j,iJ, 

h 
lxij = diag(0,...,0,1,0,...,0, -1,0 ,..., 0, -1,0 ,..., O,l,O ,..., 0), 

with entries 1 on the positions i, I + j and - 1 on the positions j, I + i, 

hPij 
= diag(O,...,O,l,O ,..., O,l,O ,..., 0, -1,0 ,..., 0, -l,O,...,O). 

with entries 1 on the positions i, j and - 1 on the positions I + i, I + j. 

Example 7. The Lie algebra g = SO,,+,(@) consists of the matrices of the form 

We have 

t, = {diag(x,,. . .,xI, -x1,. . ., -x,,O): xi E Cl, 

0 Id = { E, )“‘$ El, -E, $...$ -Q,O), 

A 9 = ‘ii = &i { - &j (i # j), Pij = Ei + Ej(i <j), -pij,&i, -&i: i,j = 1,. . . , l}, 

gaij, gs.., g+. are determined by the same formulas as in Example 6. 
‘J lj 

!3 

- - 

Ei @(E i,21+1 - E > 21+1,l+i 7 9-Ei = W l+i, 21+1 - E 21+1 i), ha.., h,.. are deter- 
mined by the same formula as in Example 6, /zCi = diag(O, .: . $2, $, . . . ,*I- 2,0,. . . ,O) 
with 2( -2) on the ith ((I + i)-th) place. 

For G = Sp,,(C) we choose a basis in C2’such that the matrix of the invariant 

bilinear form is 

Example 8. The Lie algebra s&C) (n 2 1) consists of matrices of the form 

(z -g x, Y, z E gI,(@), YT = y, ZT = 2. 

The subalgebra t, and the weight system @]d are the same as in Example 6. 
We have * 

d, = (slij = Ei - &j(i #j),P, = Ei + &j(i <j) I T -p--* i j = 1 
1J’ 9 $“‘$ 

11; 
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ga. ., h,. . and h,. . (- i c j) are the same as in Example 6, gp.. = C(Ei,l+j + Ej,l+i), 
9’;. . gJc(El+i,)l+ E,+j,i), hp.. = diag(0,. . . $0, l,O,. . . ,O, - i:O,. . . $0) with 1 (resp. 
- ly at the i-th ((I + i)-th) pike. 

Note that sp&C) = sl#C). 

6’. Three-Dimensional Subalgebras. We retain the notation of 4’ and assume 
that G is reductive and T is a maximal torus of G. To each root a E d, we will 
assign a three-dimensional subalgebra of g isomorphic to s(,(@), a priori defined 
not quite uniquely. Let e, be a nonzero vector in ga. By Problem 27 there exists 
a nonzero vector e-, E gBa such that (e,,e-,) = 2&r). Then (5) and (6) imply 
that 

Ce,, e-J = h,, C4&1 = 2%, [h,, e-J = -2e,. 

Define the embedding (pa: sI,(@) --+ g by setting (see Example 5): 

The map cpol is an isomorphism of sI,(@) onto the subalgebra g@) = (e,, e-cr, h,) c 

cl . 
By Problem 1.3.17 the group SL,(@) is simply connected. Therefore (see 

Theorem 1.2.6) there exists a differentiable homomorphism F,: SL,(@) + G such 
that dF, = (Pi. Since SL,(C) is semisimple, For is a polynomial homomorphism. 
Its image is a connected algebraic subgroup G@) c G with the tangent algebra 
cl w . 

Problem 34. For any cx E d, we have h, E t(Z). 

Problem 35. If a, ca E d,, where c E R, then c = + l/2, + 1 or +2. 

Now consider the elements n, = Fa ((-; $G(al;cdg; 

Problem 36. (Ad na)h, = - h,; (Ad n,)x = X, if x E t and a(x) = 0. 

Problem 3% n,Tn,’ = T and Ad n, induces in the space t(R) the orthogonal 
reflection r, with respect to the hyperplane p31 = (X E t(R): cc(x) = O}. The map 
?-a is the orthogonal reflection of t(R)* with respect to the hyperplane L, = 
{A E t(R)*: (CCJ) = o}. 

This reflection will also be denoted by r,. 
Problem 24 and 37 imply 

Theorem 5. The weight system QR of any polynomial linear representation 
R: G + GL(V) of a reductive algebraic group G is invariant with respect to the 
reflections r, (cx E AG). Moreover VrzfA, = R(n,) VA for any A E OR. In particular, 

Y,(dG) = A, and %,(/I) = wn,)g, for any 6 P E A,. 
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Corollary. The weight system QP of any linear representation p of &(a3) is 
symmetric: if A E QP, then -A E $. 

We will use this corollary in the proof of the following important property of 
root decompositions. 

Theorem 6. The root subspaces of a reductive algebraic Lie algebra g are 
one-dimensional. If a E A,, then ccc 4 d, for c E R and c # + 1. - 

Proof. Consider the subspace m. = ?ja + g2a c g, where & = (x E gel: (e-,, x) = 
0} and gZar = 0 if 2a 4 A,. 

Problem 38. The subspace nt is invariant with respect to ad g? 

This problem and Corollary of Theorem 5 imply n-t = 0 which proves Theorem 
6. cl 

Theorem 6 shows, in particular, that go is of the form 

9 (a) = ga + g-a + ch,, 

hence it is uniquely determined by the root a. 
Let J E QR and a E A,. The set of all weights of R of the form R + ka, where 

k E Z’, is called the a-string of weights through h. Set 

where the sum runs through all the weights from the a-string. Denote p = dR. 

Problem 39. The subspace U is invariant with respect to the restriction of p 
onto gta) and all Vi+ka’ s are weight subspaces for pig@) with respect to the 
diagonalizable subalgebra (h,). 

Problem 40. The ix-string of weights through A E OR is of the form (3, + ka: 
k E Z, -p < k < q}, where p, 4 are nonnegative integers and p - q = R(h,). If 
;t(h,) < 0, then 2” + a E GR and if i,(h,) > 0, then d - a E Qs,. 

Problem 41. In notation of Problem 40 P(ea)P+W”‘4pa # 0. In particular, if 2, 
2 + cx E QR, then P(e,)V, # 0. 

Problem 42. If cx, p, cx + p E A,, then [g,, gs] = gZfS. 

Concluding this section we prove that the properties of the weight system QR 
listed above remain valid for the weight system Qp of any linear representation 
p of a semisimple Lie algebra g, as defined in 4’. For this notice that g = g1 @ g2, 
where gi, g2 are semisimple ideals, g2 = Kerp and p isomorphically maps g1 
onto p(g). Any maximal diagonalizable subalgebra t of g is of the form t = t, @ t,, 
where ti c gi. By Problem 31 d, = Agl u Aq2. Clearly, n(x) = 0 if 2 E Q$ and 
x E t, = t n Ker p implying Qp c t, *. The set QQ is identified with the weight 
system $, , where p1 = pi g1 is a faithful representation. 

Problem 43. For any 1 E QQ and a E A9 we have l(h,) E Z. In particular, 
$ c t(R)*. The representation p is faithful if and only if @$, spans t(R)*. 
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Reducing the general case to the case of a faithful representation p and using 
Theorem 5, one proves easily that the system Q)P is invariant with respect to all 
reflections ra, a E d. This implies that for any representation p the assertions 
analogous to those of Problems 40 and 41 are true. 

Exercises 

In exercises 1- 13 the ground field is either @ or a~ unless otherwise stated. 
1) If g c gl( V) is an algebraic Lie algebra then the kernel of the scalar product 

(2) in g is the largest unipotent ideal. (This ideal is called the z&potent 
radical of g). 

2) In a simple Lie algebra any nonzero invariant scalar product is nondegenerate 
and all invariant scalar products are proportional. 

3) Simple ideals of a Lie algebra are orthogonal with respect to any invariant 
scalar product. 

4) In a diagonalizable complex algebraic linear Lie algebra the orthogonal 
complement to an algebraic subalgebra with respect to the form (2) is an 
algebraic subalgebra. 

5) If a is an ideal of a Lie algebra g, then the restriction of the Cartan scalar 
product of g onto a coincides with the Cartan scalar product of a. 

6) If (99 !3Ld = 0 then g is solvable. If g is solvable then (g, [g, g])ad = 0. 
7) If the Cartan scalar product of a Lie algebra g is nondegenerate then g is 

semisimple. 
8) If ad g is an algebraic Lie algebra then the kernel of the Cartan scalar product 

of g is the largest nilpotent ideal of g. 
9) Let W c V be a subspace, neither 0 nor V. The group 

G = {A E SL(V): Au - u E W for all v E V} 

is algebraic, connected and coincides with its commutator group but is not 
semisimple. 

10) Any differentiable linear representation of a reductive complex algebraic 
group G is polynomial. Considered as a Lie group, G possesses a unique 
algebraic structure. 

11) A normal Lie subgroup and a quotient of a semisimple Lie group are 
semisimple. 

12) Let G = nlQi<s Gi be a decomposition of a connected semisimple Lie group 
G into a locally direct product of simple normal Lie subgroups. Then any 
normal Lie subgroup of G is the product of some of Gi’s by a central 
subgroup. 

13) Any normal Lie subgroup of a connected normal Lie subgroup of a con- 
nected semisimple Lie group or a connected reductive algebraic group G is 
normal in G. 

14) A connected complex algebraic group is reductive if and only if it locally 
splits into the direct product of connected simple normal algebraic sub- 
groups with all the commutative factors isomorphic to @*. 
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15) A polynomial linear representation R of a reductive algebraic group is locally 
faithful if and only if the system GR generates t(R)* (here t is the tangent 
algebra of the maximal torus with respect to which weights are considered). 

In exercises 16-25 G denotes a connected semisimple complex algebraic group 
and g its tangent algebra. 

16) Let T be a torus in G, i& the orthogonal complement to t in go, a E d(T) 
and x E ga, x # 0. For the existence of an element y E gWa such that [x, y] = h, 
it is necessary and sufficient that x 4 [Y&,x]. 

17) For any x E g the subspace [g, X] coincides with the orthogonal complement 
to the centralizer of x. 

18) For any nilpotent x E g there exists a semisimple y E g such that [y, x] = X. 
19) (Morozov’s theorem). Any nilpotent x E g can be included in a simple three- 

dimensional subalgebra. (Hint: choose a maximal torus T in the group 
N(x) = {g E G: (Adg)x E (x)}. C onsider the root decomposition of g with 
respect to T and apply Exercise 16.) 

A subalgebra of a Lie algebra g is regular if its normalizer contains the tangent 
algebra t of a maximal torus T c G. A subset C c d, is closed if for any a, b E C 
such that a + b E d, we have a + /? E C. 
20) Let C c d, be a closed subset, t, c t a subspace containing the vectors h, 

for all a E C such that ----a e C. Then 

cd& tl) = t1 0 @ gay 
ad 

is a regular subalgebra of g. 
21) Any regular subalgebra of g is conjugate to a subalgebra of the form g(C, tl)* 
22) The subalgebra ~$5, tl) is algebraic if and only if t, is an algebraic subalgebra K 

of t. 
23) The subalgebra g(C, tl) is reductive if and only if --a E C for any a E C. In 

this case the subalgebra is semisimple if and only if t, is spanned by the 
vectors ha, a E C. 

24) The subalgebras g(C,, tl) and g(&, t2) are conjugate if and only if there 
exists g E G such that gTg-’ = T, (Adg)t, = t, and (Adg)C, = C,. 

25) Any subalgebra of g containing t coincides with its normalizer and therefore 
is a regular algebraic subalgebra. 

In Exercises 26-28 a linear representation p: g -+ gl( V) is considered. 
26) If pA c Vi is a subspace invariant with respect to p(e,)p(e_,), then vk @ 

(@k>O P(ea)kF.i) Q (@l>O P(e-aYTl) is invariant with respect to plgta). 
27) Let ;C and 2 + cx, where a E d,, be weights of p and A: VA -+ VA+a the linear 

map induced by P(e,). Then 
a) if A(h,) < 0 then A is a monomorphism; 
b) if %(h,) > - 1 then A is an epimorphism. 

28) Let v E VA be an eigenvector of p(e,)p(e-,) with eigenvalue c. Define p (resp. 
q) as the maximal integer such that p(e-,)“v # 0 (resp. P(e,)% # 0). Then 
P---4 = i(h,) and c = p(q + 1). 
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Hints to Problems 

1. Make use of Example 1 from 1.2 and Theorem 1.2.5. 
4. Nondegeneracy follows from the positive definiteness on t(R) and the latter 

is obvious. 
5. The first statement follows from Problem 4; to prove the second one consider 

L-n, a- 
6. By Theorem 3.3.6 

vo = (v E v: nu = o> # 0. 

Clearly, V0 is g-invariant. The definition of V0 implies that 

(X, Y) = tr,,v,(XY) for X E g, Y E rt. 

This makes it possible to apply induction on dim V. 
7. For K = UZ apply Problem 5 to the kernel n of the scalar product (2). By 

Problem 2 this kernel is an ideal of g. For K = R consider g(@) which is 
semisimple by Problem 1.4. 

10. The semisimplicity of the elements of the center follows from Problem 6. 
11. Let n be a solvable ideal in g’ = [g, g]. Since g’ is algebraic, then by pass- 

ing to a solvable ideal na we may assume that n is an algebraic linear Lie 
algebra. Problem 6 implies that n is the tangent algebra of a torus. Problem 
4 implies that g’ = n @ rt’ and [n, n’] = 0. Therefore n c j(g), hence 
l-t = 0. 

12. Make use of Corollary 2 of Theorem 1.2.7. 
14. Notice that for any diagonalizable subalgebra t c g the algebraic subalgebra 

ta is also diagonalizable. The last statement of the problem follows from 
Problem 6. 

15. Apply Problem 5 to the ideal n = a n a’ of g. Then make use of the fact that 
[a,&J c anaL =o. 

17. The existence of the decomposition is proved by induction in dim g. Let g1 
be a minimal ideal of g. Problem 15 implies that g1 is simple and g = g1 @ gi. 
It is clear from Problem 16 that gi is a semisimple ideal which enables us to 
apply to it the inductive hypothesis. To prove the second statement notice 
that the projection Qi of any ideal I!) of g onto gi is an ideal of gi; therefore 
either bi = 0 or bi = gia But in the second case gi = [gi, t>] c 5. 

20. Let G satisfy the conditions of the theorem and IJ be a nonzero ideal of its 
tangent algebra g. Then g” is an ideal of g (Problem 3.3.9). Therefore f>” = g 
implying g’ = E>’ c b by Theorem 3.3.3. Since g’ is an algebraic ideal of g, then 
either g’ = g (and hence b = g) or g’ = 0. In the second case the description 
of connected commutative algebraic groups (see Corollary of Theorem 3.2.8) 
implies that dim g = 1; therefore t> = g. 

21. First, prove that ab = ba for any a E Gi, b E Gj, i #j. Then consider the 
homomorphism m: G, x l  -0 x G, -+ G defined by the formula m(g,, . . . , gJ = 

91 l  ** 
gs and apply Problem 1.3.11. 
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23. Note that r n Ker dR coincides with the intersection of the kernels Ker i for 
all A E aR. 

26. Follows from the invariance of the scalar product with respect to Ad T. 
27. Follows from Problems 26 and 7. 
28. The algebraic Lie algebra go is reductive thanks to Theorem 1 and Problem 

27. We have t c &go). If T is a maximal torus then t = j(gO) SO that go = 
t @ gb, where gb is the semisimple ideal of go. If gb # 0, then gb contains a 
nonzero semisimple element (see Corollary 2 of Theorem 3.3.6) contradicting 
the maximality of the diagonalizable subalgebra t. 

29. Make use of Problem 23. 
31. TO prove the orthogonality note that cl@,) = 0 if a and /3 belong to different 

. 
d,. (1 - - 1 2) 

32. If’aEAll BEAM then (a+/?,@>@ (a+j3,P)>O implying a+P$Ag. 
Therefore the subspaces gi = ti @ @aEd. ga, where ti is the linear span of all 
h, such that a E Ai, satisfy [gl, g2] = 6 and gi are subalgebras such that 
g=gl@g+ndA,.=Ai(i= 1,2). 

33. The statement is obvious if p is a faithful representation. It is easy to verify 
that the projection of g onto any direct summand maps the semisimple 
elements into semisimple ones and the nilpotent elements into nilpotent 
ones. By Problems 15, 16 g decomposes as g = g1 @ g2, where gi are semi- 
simple ideals, g2 = Ker p and pr = pIgI is a faithful representation. We have 
p = p1 0 7t, where 71: g -+ g1 is the projection. 

34. Notice that h E t(Z) for SL,(@) and that for any homomorphism of tori 
q: T -+ T we have d&t(Z)) c i(Z). 

35. If cc, ca E d,, where c E R, then Problem 34 implies that 2/c, 2c E Z. 

36. The first statement follows from the identity (-; ;)h(-; A)‘=-h. 

To prove the second statement note that if (x(x) = 0, then [g(@, x] = 0, hence 
(Adg).u = x for any g E GY 

40. Let r < s be integers such that d + &a E GR for all integers k, r < k < s, but 
1 + (r - 1)s~ $ Cp, and li + (s + 1)a 4 GR. Then u = Brik+ vA+ka is in- 
variant with respect to pig@). Applying Corollary of Theorem5 we see that 
the set of numbers (A(h,) + 2k: r < k < s} is symmetric with respect to zero. 
Therefore j.(k,) = -(r + s) and the segment (A + ka: r < k < s} of our a- 
string is symmetric. There are no other weights in the a-string since any of 
its segments is symmetric and therefore intersects with the one already 
considered. 

41. Let s 2 0 be the minimal of integers k such that p(e,) Vj,-ka # 0. Verify that 
LJ = @O<k <s PkY Vi-ka is invariant with respect to PJgta). Ifs < p + q then 
the weight system of the subrepresentation of G(‘) in U is not symmetric. 

42 . Apply Problem 41 to the adjoint representation. 
43. If p is faithful then it may be replaced by the identity representation of p(g: 

in which case Problem 34 is applicable. This and the above arguments imply 
that in general case J,(h,) E Z for all 1, E Qp and all cx E dgl. Besides, ;l(h,) = ( 
for all r E d, . .2 
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$2. Root Systems 

In 1.4’ we have introduced the root system of a reductive (in particular, 
semisimple) algebraic group. In this section this notion will be axiomized and 
studied in detail. The exposition of the properties of an abstract root systems is 
intermitted with interpretation of these properties in the language of algebraic 
groups and Lie algebras. The ground field is @. 

lo. Principal Definitions and Examples. Let E be a finite-dimensional Euclidean 
space with the scalar product (*,a). For an arbitrary nonzero vector a E E denote 
by L, the hyperplane of E orthogonal to a and by ra the reflection with respect 
to L,. To express ra explicitly set 

Note that the function (11~) is linear only in the first argument and does not 
vary if the scalar product in E is multiplied by a positive number. 

Problem 1. The reflection ya acts by the formula 

A subset d c E is a root system in E if it has the following properties: 
1) d is finite and consists of nonzero vectors; 
2) for any a E d the reflection ra transforms d into itself; 
3) (xl/l) e Z for any a, p E d. 
The rank rk d of a root system d is, as usual, the dimension of its linear span. 
By 2) we have ----cc = r,(a) E d for any a E d. A root system d is reduced if 
4) cx~dandca~dforsomec~Rimplyc= +l. 

Problem 2. Let d be a root system, cc E d and cz E d for some c E R. Then 
C= + l/2, +l, +2. - - - 

Let G be a reductive algebraic group, T its maximal torus. In 1.4” the root 
system d, of G with respect to T (or, which is the same, the root system d, of 
the Lie algebra g) was defined. This is a system of vectors of the Euclidean space 
E = t(R)*. By Problem 1.34 and Theorems 1.5, 1.6 d, is a reduced root system 
in the sense of the above definition. The group G is semisimple if and only if d, 
spans E; Go is a torus if and only if d, = 0 (see Problem 1.29). In the general 
case rk d, = rk g’. 

We will prove that any nonempty reduced root system is (naturally) isomorphic 
to a root system of a semisimple algebraic group. We will encounter nonreduced 
root systems in Ch.V. 

Let Q and 52’ be two sets of vectors of Euclidean spaces E and E’ respectively. 
An isomorphism of 52 onto 52’ is any linear isomorphism cp: (Q) + (Q’) of their 
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Fig. 1 

linear spans such that (D(Q) = 52’ and (~(a), q(p)) = (alp) (cx, p E Q). The map 
cp need not be orthogonal (e.g. any homothety a++rca, c # 0, of E defines an 
isomorphism of Q onto cQ). Clearly an isomorphism cp: (Q) -+ (Q’) is com- 
pletely determined by the map 4p (Q: Q --+ Q’. In particular, we may speak about 
an isomorphism of root systems and isomorphic root systems. The isomorphisms 
of a set IR onto itself are its automorphisms; they form the group Aut Q. 

Consider the root system d,(t) of a semisimple Lie algebra g with respect to a 
maximal diagonalizable subaigebra t. As we have seen in 1.4”, the vector space 
E = t(R)* is uniquely determined by (g, t). The scalar product in E depends, in 
general, on the realization of g as an algebra of linear transformations. The 
numbers (@) ((x, p E d,), however, are only defined by the structure of g, i.e. do 
not depend on the choice of this realization (see 1.4”). Furthermore, if we replace 
t by another maximal diagonalizable subalgebra t then by Problem 1.24 the 
corresponding root system d,(i) is obtained from d,(t) via ‘(Ad g)? t(R) + ?(R), 
where g is an element of G”.‘The invariance of the scalar product implies that 
‘(Adg)-’ is orthogonal, i.e. is an isomorphism of the root systems. 

Now let g be a reductive algebraic Lie algebra, t its maximal diagonalizable 
subalgebra. By Problem 1.23 the root system d, spans the subspace (jU E t(R)*: 
i.(x) = 0 for all . . E 3(g) n t(R)) of t(R)*. In Problem 1.29 we have identified d, 

. with ALIt. Clearly, this identification is an isomorphism of the root systems. 
Examples of root systems of rank 1 and 2 are depicted in Fig. 1. 

Problem 3. All the vector systems depicted in Fig. 1 are root systems and all 
of them, except for BC, and BC, are reduced and nonisomorphic. The root 
systems of types A 1, A,, A 1 + A,, B, are isomorphic to the root systems of Lie 
algebras $(@), all, so,(Q (or &@), SK+(@), sl&) @ &(Q), and ~pJa3) 
respectively (see Examples 5.8 of 1.5”). 

Problem 4. The systems A, and BC2 are the only up to an isomorphism root 
systems of rank 1. 
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We will see that any root system of rank 2 is isomorphic to one of the systems 
depicted in Fig. 1. 

Problem 5. Let di c Ei (i = 1,. . . , s) be root systems and E = @J<+ Ei the 
orthogonal direct sum of Euclidean spaces Ei. Then d = u l,<is.$is a root 
system in E. 

The system d constructed in Problem 5 is called the direct sum of root systems 

A( i i = l,... , s). For example, by Problem 1.3 1 the root system Aqle9, of the direct 
sum of semisimple Lie algebras is the direct sum of Agl and Ag;. 

A system of nonzero vectors 52 c E is indecomposable if it cannot be presented 
as the union Q = Q, u Sz, of two proper subsets, orthogonal to each other; 
otherwise 52 is called decomposable. Clearly, all the root systems expressed on 
Fig. 1 except A, + A, are indecomposable. 

Problem 6. For an arbitrary root system A c E there exists an orthogonal 
direct decomposition E = &<i.+ Ei such that d = u1 <i<s Ai, where Ai c Ei \\ 
(i = l,..., s) are indecomposable root systems. 

The subsystems Ai are maximal indecomposable subsystems in A and therefore 
are determined uniquely. 

The systems Ai mentioned in Problem 6 are called indecomposable components 
of A. Obviously, A is the direct sum of its indecomposable components. 

Problem 7. The root system A, of a semisimple Lie algebra 9 is indecomposable 
if and only if 9 is simple. If g = @I <i,<s gi is a decomposition of g into the direct 
sum of simple ideals then A, = u . l<i<s A,. is a decomposition of d, into the \A I 
direct sum of indecomposable components. 

Now let us study the simplest geometric properties of root systems. The axiom 
3) imposes rigorous constraints on the possible angles between roots and the 
ratios of their lengths. 

Problem 8. Let cx, /? be nonzero vectors of a Euclidean space E and 0 the angle 
between cx and j3. Then (cc@) (PIa) = 4cos2 0. If (xip> and (PIa) are nonposi- 
tive integers and IpI > Ial then for 8, (al/?), (/?[a), IP12/la12 only the following 
values are possible: 

8 

n/2 
2x13 
3ni4 
5 71,‘6 

n 
71 

wo 

0 
-1 
-1 
-1 

7 
I; 

0 
-1 

3 
-; 

7 
I, 

IB12/142 

Problem 9. Let a, p be two nonproportional roots from A. If (a$) > 0 then 
a-pEAandif(a,p)<Othena+~EA. 

Let z, j? be two nonproportional elements from a root system A. The set 
{;I E A: 7 = B + ka(k E Z)1 is called the a-string through /L 



156 Chapter 4. CompIex Semisimple Lie Groups 

Problem 10. The a-string through p is of the form (p + kcc: -p < k < 1 
where p, q 2 0 and p - q = (p, a). In particular, if j3 - a 4 A, then p + a E L 
and only if (p, a) < 0. 

In conclusion of this subsection let us construct the dual root system. Let E 
a fmite-dimensional Euclidean space and F = E* its dual. Let us identify F* w’ 
E with the help of the natural isomorphism E + (E*)* = F*, i.e. consider E 
the dual of F. Let A I+ uA be the isomorphism of vector spaces E + F defined 
the scalar product in E, i.e. given by the formula 

Let us translate the Euclidean space structure onto F with the help of t: 
isomorphism setting 

@w$lJ = (4 IL) = %(u,) = p(uJ (k P E E). 

Let d be a root system in E. For any a E d set 

In particular by Problem 1 

r,(n) = % - %(a” )a (% E E). 

It is easy to verify that 

(a”lP”> = @la> for any a, /3 E A. 

Problem 11. If A is a root system in E then d ” = {CC’ : CI E A} is a root syst 
in F, reduced if and only if so is A. We have 

rk A = rk A”, (A”)” = A. 

The root system A ” is called the dual of A. 
In particular, let E = t(R)*, where t is a maximal diagonalizable subalget 

of a reductive algebraic linear Lie algebra g (see 1.4”). Then F = t([W) and 1 
root system dual to A, is the system Al = (h,: a E Aq}. I . I 

2’. Weyl Chambers and Simple Roots. Let A c E be a root system. Es 
nonzero 2 E E defines in F = E* a hyperplane 

PA = {x E F: A(x) = O}. 
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The hyperplanes Pdl (a E d) separate F into finitely many polyhedral convex cones. 
The elements of Freg = F\U a Ed P, are called regular and those of used Pa singu- 
lar. The connected components of Freg are called (open) Weyl chambers, and their 
closures closed Weyl chambers. 

Since the set of singular elements is transformed into itself while multiplied by 
- 1, then for any Weyl chamber C the set - C = {x E F: -X E C} is also a Weyl 
chamber, called the chamber opposite to C. 

A subsystem Z7 of d is called a system of simple roots (or a base) of d if the 
elements of I7 are linearly independent and any b E d presents in the form 

P = 1 ka@, 
ad7 (3) 

where k, are simultaneously either nonnegative or nonpositive integers. 
Clearly, the number of simple roots always equals rk d and the presentation 

(3) is unique. 

Example 1. For the root systems depicted in Fig. 1 the systems {a> and {CQ, az} 
are bases. 

A root p E d is positive with respect to a given base Z7 if k, > 0 (a E Z7) in (3), 
and negative if k, 6 0 (a e Z7). If Z7is fixed then denote the set of positive (negative) 
roots by d+ (resp. d-). Clearly, d- = -d+.Wewritea>OifaEd+andcc<O 
if a E d-. This notation agrees with the following partial order on E: 

Now let us prove the existence of a base for any root system. We will also 
establish a one-to-one correspondence between the bases of d and the Weyl 
chambers. 

Let C be a Weyl chamber and a E d. Since C is connected, then either a(x) > 0 
for all x E C or a(x) < 0 for all x E C and we accordingly call a a C-positive 
(C-negative) root. Clearly, C-positive roots are (- C)-negative ones and vice 
versa. Denote by Z7(C) the set of all C-positive roots a not presentable in the 
form oc = j? + y, where p and y are C-positive roots. 

Theorem 1. For any Weyl chamber C the system n(c) is a system of simple roots 
of A. The roots positive with respect to I7(C) coincide with the C-positive ones and 
the negative roots coincide with the C-negative ones. The correspondence C t--, II(C) 
is a bijection of the set of all Weyl chambers onto the set of all bases of A. 

The proof is divided into several problems. 

Problem 12. Each C-positive root fl E d presents in the form /? = xaEntC) k,cc, 
where k, E Z+. 

Problem 13. If a, /? E n(C), a # p, then cc - p $ A and (~1, b) < 0. 

Problem 14. Let vt, . . . , v, be a system of nonzero vectors of a Euclidean space 
E with pairwise nonacute angles. If they are linearly dependent: 

alvil + l  l  l  + akvi 
k 

- b, vjl - l  l  0 - blvj, = 0, 
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where i,, . . . , ik,jl, . . ., j, are different and all aP, bq are positive, then 
a) alVi l  + l  . . + akvik = blvjl + l  em + blvj, = 0; 

b) ( ViP,Vjq)=OforP= l,..., k;q= l,..., 1. 
Ifv v, belong to an open halfspace of El then they are linearly independei 
ThikX&ies the first two statements of the theorem. The injectivity of the m: 

C ti n(C) follows from 

Problem 15. C = (x E F: a(x) > 0 for all a E n(C)] = {x E F: a(x) > 0 for ; 
C-positive roots c+. 

Let us prove that the map C t+ n(C) is surjective. 

Problem 16. Let V be a finite-dimensional vector space over R and yl, . . . , 
a linearly independent system of vectors of 1/*. Then there exists a vector x E 
such that yi(x) > 0 (i = 1,. . . , I). 

Problem 17. If Z7 is a base in d, then C = {x E F: a(x) > O(a E Z7)} is a Wf 
chamber and Z7 = n(C). 

A hyperplane P c F is called a wall of a Weyl chamber C if P n C = @ a 
P n C contains a nonempty subset open in P. 

Problem 18. If C is a Weyl chamber then C = {x E F: a(x) 2 O(a E n(C))}. ? 
hyperplanes Pa, where a E n(C), are the walls of C. 

Thus any Weyl chamber is a simplicial cone. 

Problem 19. Any hyperplane Pa, where (X E d, is a wall of a Weyl chamber. I 
any g E d there exists a Weyl chamber C such that a E n(C) (or perhaps $l 
n(C), if d is not reduced). 

In the following problems a fixed base Z7 c d is considered. 

Problem 20. If 3c E d’\n, then there exists p E n such that 2 - p E d 2 
Cx-p>0. 

Problem 21. Any positive root a E d presents in the form a = x, + l  l  l  + 
wherecx&7anda, +-+a,Edforanyk= I,...+ 

Problem 22. A root system d is indecomposable if and only if so is a b 
R c d. If d = d 1 u l  l  . u d, is the decomposition of d into irreducible compone 
then I7 = I71 u l  l  l  u Q., where Z7i c di is a base. 

The latter statement has important applications in the theory of semisim 
Lie algebras. A system of simple roots of a sermisimple Lie algebra q is any b . . 
of d,. Problems 22 and 7 imply 

Theorem 2. A semisimple Lie algebra q is simple if and only if its system 
simple roots I7 is indecomposable. If I7 =‘n, v l  -0 v 17r is the decomposition i 
indecomposable components then g = g1 @ l  -- @J gr, where gi is the simple id 
whose system of simple roots is Hi. 
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Let us indicate another useful construction of bases which historically preceded 
the one described above. A real vector space E over IX is called ordered if E is 
endowed with an order < such that for any 1, p E E we have 

1) j~>O,j,4>O~;I.+~>O; 
2) 2 > 0, c E R, c > 0 * CA > 0. 

Clearly, - 2 < 0 for any R > 0. An example of an order satisfying 1) and 2) is the 
lexicographic order with respect to a basis of E defined as follows: d > ,u if the 
first nonzero coordinate of R - p with respect to this basis is positive. 

Let d be a root system in an ordered Euclidean space E. Let Z7 be the set of 
roots a > 0, such that a # /? + y, where p, y E d, p > 0,~ > 0. 

Problem 23.Z7 is a base of d and the corresponding set d+ coincides with the 
set of all roots which are positive with respect to the given order. 

Example 2. Let us specify subsystems of positive and simple roots for the root 
systems d, of the classical Lie algebras g described in 1.5’. 

g = gI,(@), n > 2. Considering the lexicographic order in t(R)* with respect to 
the basis E,, . . . , E, we get 

A 9’= &i- 1 &j: i < j;i,j = 1,. . .,n}, 

n 9 = q,...,a,-I}, { where Zi = Ei - &i+l* 

The corresponding Weyl chamber C c F = t(R) is the set of the diagonal matrices 
diag (q,..., x,) such that x1 > x2 > +** > x,. 

!3 - - sl,(Q n >/ 2. Problem 1.29 implies that A$ and Z7g have the same form as 
for gl,(@). 

9 = so,,(Q, n > 2. Considering the lexicographic order in t,(R)* with respect . 
to the basis q, . . . , Q we get 

A (p (Ei + &j: i < j;i,j = l,..., I}, 

I7 g = 1 ~,,-v %I? where ai = Ei - Ei+l (1 < i < 1 - 1), a, = cl-1 + ~1. 

c3 s = s02,,,(@), 1 2 1. Similarly, 

A +- 
!3- {Ei + &j(i < j),&i: i,j = l,..., 11, 

I7 9 = cx,,...,a,}, 1 where ai = Ei - Ei+l (1 < i < 1 - l), CXI = &I. 

cl = ~pzl(Q, 1 > 1. Similarly, 

A; = {Ei + Ej(i < j),2Ei: i,j = I,..., I>, 

l7 9 = q,...,aJ, 1 where ai = Ei - Ei+l (1 < i < 1 - I), c;cI = 2~. 

As it is easy to verify all the described bases 179 are indecomposable except for 
c3 - - \ XI&) (in 5” we will give a beautiful geometric method to verify this inde- 
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composability). Therefore Theorem 2 implies that all semisimple classical Lie 
algebras are simple except so,(@). . 

Let us now return to the notation from the beginning of the section and 
consider the dual root system d ” c F. The natural isomorphism IZHZQ of 
Euclidean spaces E + F maps each hyperplane LA onto P’. Clearly 

L,={pEE:c%“(p)=o} (a E A). (4) 

Therefore this isomorphism maps the Weyl chambers of A” onto the Weyl . 
chambers of A. 

Problem 24. Let d be a reduced root system, 17 its base. The Z7” = {a” : a E n} 
is a base of A”. 

3’. Bore1 Subgroups and Maximal Tori. In this section we will consider the 
root system A, of a reductive algebraic group G with respect to a fixed maximal 
torus T. We will see that Weyl chambers in F = tR are in one-to-one corre- 
spondence with the Bore1 subgroups of G containing T and we will establish 
several important properties of Bore1 subgroups and maximal tori. 

Let C -+ F be a Weyl chamber. Let us construct from C a Bore1 subgroup of 
G. Let A = A+ u A- be the decomposition of d into the C-positive and C- 
negative roots. Problem 1.25 implies that the subspaces 

l-t+ = @ gay b + =t@t+ 
aEd+ 

are subalgebras of g. The subalgebras 

n- = 09 b 
- 

a, =t@t- 
acA- 

are constructed similarly and correspond to the opposite Weyl chamber - C. 

Problem 25. The Lie algebra b+ is solvable and n+ is its unipotent ideal. 

Problem 26. b+ is a Bore1 subalgebra of q and coincides with its normalizer. w 
By Problem 3.3.8 G contains a Bore1 subgroup B+ with the tangent algebra 

b+. Clearly, B+ 2 T. The group B+ will be called the Bore! subgroup corresponding 
to the Weyl chamhor C. By Problem 3.3, the ideal rt+ determines a unipotent 
normal algebraic subgroup N+ c B+. The connected algebraic subgroups N- c 
B- are similarly defined and B- coincides with the Bore1 subgroup corresponding 
to the opposite Weyl chamber -C. 

Note that for G = GL,(Q and the Weyl chamber C chosen as in the Example 
2 of 3” the subgroups B+ and B- coincide with the subgroups of all upper and 
lower nil-triangular matrices respectively and N+ and N- coincide with the 
subgroups of the uni-triangular matrices. 

Problem 27. N+ coincides with the unipotent radical of B+ and B+ = N+ x T. 
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Problem 28. Different Bore1 subgroups of G correspond to different Weyl 
chambers. 

Now we wish to show that any Bore1 subgroup containing T corresponds to 
a Weyl chamber. To do so consider the normalizer N(T) of T. By Problem 1.24, 
to any element YI E N(T) there correspond linear transformations w = Ad n and 
fwofF= t(R) and E = t(R)* respectively, satisfying fw(d) = d. Clearly, w(F,) = 
F, and w permutes the Weyl chambers. It is not difficult to see that if B is the 
Bore1 subgroup corresponding to a fixed Weyl chamber C then nB+n-’ corre- 
sponds to the Weyl chamber w(C). 

Problem 29. Let B be any Bore1 subgroup of G containing T. Then there exists 
a E N(T), such that aBa-’ = B+. 

Problems 28,29 and the above remarks imply 

Theorem 3. The map Ct-+ B+ constructed above is a bijection of the set of all 
Weyl chambers in F onto the set of all Bore1 subgroups of G containing T. 

Now suppose that G is connected. Let us consider, as in the proof of Theorem 
3.2.12, a closed orbit D of G in the flag variety. There exists p E D whose stabilizer 
Gp contains B+ as the identity component. Our next aim is to prove that D is 
simply connected and Gp = B+. 

For this consider the orbit N-(p) of the subgroup N- c G in D which by 
Theorem 2.1.7 is a nonsingular algebraic subvariety. The G-action on D gives 
rise to the surjective morphism a,: G + D given by the formula a,(g) = gp. 

Problem 30. The orbit N-(p) is open in D and cx,: N- -+ N-(p) is an isomor- 
phism of algebraic varieties. 

Since G is connected, D is irreducible. Problem 30 implies that D\N-(p) is an 
algebraic subvariety of a real codimension 3 2 in D. Theorem 3.3.7 implies that 
N-(p) is isomorphic to (lZ4 and, in particular, it is simply connected. Therefore, 
so is D. This implies that Gp = B+ (see Theorem 1.3.4). 

Since all Bore1 subgroups of G are conjugate (Theorem 3.2.12), all the results 
obtained for B hold for any Bore1 subgroup. Since any Bore1 subgroup of an 
algebraic group contains the radical of this group, the following statement holds: 

Theorem 4. Let G be a connected algebraic group and B its Bore1 subgroup. Then 
D = G/B is a simply connected projective algebraic variety. 

Problem 31. Prove the following theorem: 

Theorem 5. A Bore1 subgroup B of a connected algebraic group G coincides with 
its normalizer N(B). 

From this we derive the following property of a maximal torus. 

Theorem 6. A maximal torus of a connected reductive algebraic group G coincides 
with its centralizer; in particular, it contains the center of G. 

Corollary. The intersection of all maximal tori of a connected reductive algebraic 
group coincides with the center of the group. 
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Problem 32, Under the conditions of Theorem 6 let 7’ be a maximal torus 
contained in a Bore1 subgroup B. Then the normalizer N,(T) of T in B coincides 
with 7’. 

Problem 33. Prove Theorem 6. 

4’. Weyl Group. We will use the notation of 2”. Let A E E, R # 0. Recall that 
we denote by rl the orthogonal reflection in E with respect to the hyperplane L,. 
Clearly, the orthogonal reflection in the dual space F = E* with respect to the 
hyperplane given by (2) coincides with VA, but for simplicity we denote it by 
r, as well. Consider the groups M/ and M/” of orthogonal transformations of the 
spaces F and E, respectively, generated by reflections ra (a E A). The group VV is 
called the Weyl group of the root system d. It is clear from (4) that M/” is the 
Weyl group of the dual root system d “. Since rdf = e, the map w + ‘w-l is an 
isomorphism IV ---) VV”. 

The definition of a root system implies that M/” (A) = A. Therefore lV trans- 
forms the system of singular hyperplanes Pa, oc E A, into itself and permutes Weyl 
chambers. 

Problem 34. The Weyl group is finite. 

Theorem 7. The Weyl group W acts simply transitively on the set of all the Weyl 
chambers in F and so does WV on the set of all the bases of A. Fix a base lI c A. 
Then W and WV are generated by rej7ections r,, a E II, and for any a E A there 
exists w E WV such that w(a) E II (or ~W(CL) E n). 

The proof uses the following notion. Two Weyl chambers C and C’ are called 
adjacent if there exists a hyperplane P c F such that P n C = P n C’ = 0 and 
P n Cn C’ contains a nonempty subset, open in P. In this case the hyperplane 
P is a common wall of the chambers C and C’ and these chambers are located 
on different sides of P. Problem 18 implies that the reflection with respect to P 
maps C and C’ onto each other. 

Problem 35. Given two Weyl chambers C, C’, there exists a sequence C,, C,, 
l  7  

C, of Weyl chambers such that C = CO, C’ = C, and Ci, Ci+l are adjacent 
;; 0 . - - 

$0. l  $  
r- . 1) 

Now fix a system of simple roots n c A and denote by W’ the subgroup of W 
generated by the reflections ra (01 E n), i.e. the reflections with respect to the walls 
of the Weyl chamber C, corresponding to n (Problem 18). 

Problem 36. W’ is transitive on the set of all Weyl chambers. 

Problem 37. W’ coincides with W. 

Problem 38. Let w = rar, . . . ya, be an expression of an element w E W as a 
product of the smallest possible number of generators ra (cc E I7) (t = 0 if w = e). 
Then the only hyperplanes of the form Pp (p E A) that separate the Weyl chambers 
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Co and w(C,) are the following t hyperplanes: 

The number t = I(w) is called the length of w. 
Problems 36,37,38 and 19 imply Theorem 7. 

Theorem 8. Any closed Weyl chamber c is a fundamental set for the Weyl group 
W, i.e. it intersects the orbit W(y) of any point y E F at a single point. 

The existence of a point y, E W(y) n cfollows from Theorem 7 and its unique- 
ness follows from Problem 39: 

Problem 39. If y E Cn w(c), where w E W, then w(y) = y. 

Another application of Theorem 7 is the following important theorem which 
shows that a reduced root system is determined up to an isomorphism by its 
system of simple roots. 

Theorem 9. Let A c E, A’ c E’ be root systems of the same rank, 17 c A a base, 
q: (A) + (A’) an isomorphism of 17 onto a subsystem l7’ = cp(l7) c A’. If A is 
reduced then cp is an isomorphism of A onto the root system q(A) c A’. If A’ is also 
reduced and 17’ is a base of A’ then q(A) = A’. 

Problem 40. Prove this theorem. 

Now consider the case when A = d, is the root system of a reductive algebraic 
group G with respect to a maximal torus T. Consider the map v: n I+ (Ad n)[t(R) 
of N(T) in the group of orthogonal transformations of the space F = t(R). 
Clearly, this map is a homomorphism. Let W” be its image. It is clear from 
Problem 1.37 that W c W”. 

Problem 41. The kernel of the homomorphism v: N(T) -+ W” coincides with T. 

Problem 42. The group W” acts simply transitively on the set of Weyl chambers 
and coincides with W. 

Therefore, we have proved 

Theorem 10. The homomorphism v defines an isomorphism of the group N(T)/T 
onto the Weyl group of the root system A,. 

Problem 42 gives also another proof of simple transitivity of the Weyl group 
action on the set of Weyl chambers (cf. Theorem 7). 

The Weyl group of the root system A, is called the Weyl group of the reductive 
algebraic group G or of its Lie algebra 9. 

Example. Let G = GL,(@) and let T be the subgroup of all invertible diagonal 
matrices (see 1.5”). In t(R), consider the basis {Eii(i = 1,. . . , n)]. Clearly, the 
reflection rzij transposes Eli with Ejj and preserves all other vectors of the basis. 
Therefore, W z Sn. The group N(T) is the group of all monomial matrices, i.e. 
matrices with exactly one nonzero element in each row and column. 
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5’. Dynkin Diagrams. Let r = {yl,. . . , yS} be a system of nonzero vectors in 
a Euclidean space E. A graph may be assigned to r which clarifies how this 
system decomposes into indecomposable components in the sense of lo. Namely, 
to each vector yi assign a vertex of the graph and join the vertices corresponding 

- to the vectors yi and yj if and only if (ri, yj) # 0. Clearly, the indecomposable 
components off correspond exactly to the connected components of this graph. 
The edges of the graph may be endowed with additional labels which help us to 
recover the data on the angles between the vectors yi and the ratios of their 
lengths. We will only do this for one special class of vector systems. 

A system of nonzero vectors r = {yI,. . . , r,} of a Euclidean space E is admissi- 
ble if aij = (Y,lYj) is a nonpositive integer for any i #j. The integer matrix 
A(T) = (aij), where aij = (Yilyj), is called the matrix of K 

The condition aij < 0 means that the angle 0ij between yi and yj is not acute. 
Indeed, the numbers aij, mij = aijaji and eij for an admissible system can only take 
the values indicated in Problem 8. In particular, mij = 0, 1, 2, 3 or 4 and 
8 . . = n(l - ZJ l/nii), where nij = 2, 3,4, 6 or co, respectively. 

The Dynkin diagram of k admissible system is constructed as follows: 
1) a vertex of the diagram corresponds to each vector Yi; 
2) the i-th vertex is joined with thej-th (i #j) by an edge of multiplicity mij (in 

particular, for mi j  = 0 the vertices are separated); 
3) if (aijl < lajil then the corresponding edge is oriented by an arrow with the 

j-th vertex as the source and the i-th as the target. 
A principal submatrix of a matrix is one located at the intersection of rows 

and columns indexed by the same numbers. The principal submatrices of the 
matrix A(T) correspond to the subsystems of r and the subdiagrams of its 
Dynkin diagram. 

Clearly, A(T) is obtained from the Gram matrix of r by multiplying the 
columns of the latter by 2/(yi, yi) > 0. Therefore det A(T) 2 0 and det A(T) > 0 
if and only if r is linearly independent. 

Problem 43. The Dynkin diagram of an admissible system of vectors determines 
this system up to an isomorphism (in the sense of 1”). 

Problem 44. If f = {yl,. . . , y,> is an admissible system of vectors then so is 
r V- {Y 

V 
- 

1 9”‘9 ysv }, where yi” = 2u,l(gi, yi), uai is the vector of E* corresponding 
to yi under the natural isomorphism. The Dynkin diagram of TV is obtained 
from the Dynkin diagram of r by reversing the orientation of all oriented edges. 

An example of an admissible system of vectors is the base of any root system 
d (see Problem 13). By Theorem 7 the Dynkin diagram of 17 does not depend 
on the choice of the base of d; therefore this diagram might be called the Dynkin 
diagram of d. Theorem 9 implies that the Dynkin diagram of a reduced root 
system determines this system uniquely up to an isomorphism. We will denote 
this diagram in the same way as the reduced root system to which it corresponds. 
Problems 24 and 42 imply that the passage to the dual root system reverses the 
orientation of all (oriented) edges of the Dynkin diagram. 
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Ifd = d, = d, is a root system of a reductive algebraic group G or its tangent 
algebra g then the Dynkin diagram of d is also called the Dynkin diagram of G 
or g. In 6 3 we will prove that a semisimple Lie algebra is determined uniquely 
up to an isomorphism by its Dynkin diagram. Note also that a semisimple Lie 
algebra is simple if and only if its Dynkin diagram is connected and the connected 
components of a general Dynkin diagram are in one-to-one correspondence with 
the simple ideals of the corresponding semisimple Lie algebra (see Theorem 2). 

Example 1) The Dynkin diagrams of the root systems described in Fig. 1 are of 
the form 

A,, BC1 I Al + Al A2 I B,, BC, I G2 

0 

a 
0 0 

a1 a2 a1 a2 a1 a2 a1 a2 

Example 2) The Dynkin diagrams of the classical simple Lie algebras (see 
Example 2 of 2”) are of the following form (here I is the rank of the Lie algebra, 
equal to the number of vertices of the diagram; in the right column the standard 
notation of the Dynkin diagram is indicated): 

All of the above admissible systems of vectors are linearly independent. Now 
we will give examples of linearly dependent admissible systems. 

Problem 45. Let r = {yl . . . . ,y,> be an indecomposable linearly dependent 
system of nonzero vectors of a Euclidean space with pairwise nonacute angles. 
Then all proper subsystems of rare linearly independent. In particular, the rank 
of r is s - 1. Any linear relation among yl, . . . , yS is proportional to one fixed 
relation of the form C 1 ,<i<<s ciyi = 0, where ci > 0 for all i. 

Let d be a root system. In d, choose a base Z7 and consider the corresponding 
partial order (see 2”). Clearly, in n there are elements maximal with respect to 
this order, i.e. roots 6 E d such that y E d, y 2 S implies 7 = S. 

Problem 46. For any maximal root 6 E d we have (6, cx) 2 0 for all cx E 17 and 
(6, p) > 0 for some p E n. 
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Problem 47. An indecomposable root system d contains a unique maximal 
with respect to 17 root 6 and 6 = CaCfl (x , n a where n, are positive integers. 

Let d be an indecomposable root system. Problem 47 implies that the unique 
maximal root S E d is the largest element of this system. The root 6 is called the 
highest root and a, = -6 the lowest root of d. If l7= {~...,a,}, then iT= 

1 4-jdq,-*, ccl> is called the extended system of simple roots (extended base) of d. 
Problem 46 implies that ?i is an indecomposable linearly dependent admissible 
root system. The Dynkin diagram of ii is called the extended Dynkin diagram of 
A . 

When A is a root system of a simple noncommutative algebraic group G (or 
Lie algebra g) one speaks about the extended system of simple roots and the 
extended Dynkin diagram of G (or g). 

Example 3. Extended Dynkin diagrams of simple classical Lie algebras are of 
the following form (each diagram contains I + 1 vertices; in the right column the 
standard notation for each diagram is given): 

q&), 1 2 4 Q”>-+ . . . < D,“’ 

VZI(@), 1 2 2 a,0=0- l  l  l  d--a=0 cp  

The extended Dynkin diagram for G, is of the form 

- a0 G:” . 

Example 4. Reversing orientation of multiple edges in the diagrams B,“), C,“), 
Gi’) (i.e. passing t;> the dual root system, Problem 44) we get the following 
connected Dynkin diagrams (the first two have I + 1 vertices): 

A(2) 
21-1 
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It is easy to verify that these diagrams also correspond to admissible systems of 
vectors obtained from the bases Z7 of root systems d of types Cl, B,, G2 by 
adjoining the roots -(Ed + Q), -cl, -(2a, + a,) respectively (in notation of 
Examples 2 and 1 of 2”). The adjoined root is the smallest of the roots of the 
minimal length in d. The left-end vertex of the Dynkin diagram corresponds to 
it (for A(2:L1 any of the two left-end vertices). 

Example 5. Adjoining the vector -2~~ to the base of the root system of type 
Bl we also get a linearly dependent admissible system of vectors. Its Dynkin 
diagram is of the form 

and the adjoined vector corresponds to the left-end vertex of the diagram. 

6’. Cartan Matrices. Here we will find out which matrices might serve as 
matrices of admissible systems of vectors. Clearly, the matrix A(r) = (aJ of an 
admissible system of vectors r = (yl, . . . , yS> has the following properties: 

1) a . . = 2( i = l,...,s); 
2) if “i # j then aij < 0 and if aij = 0 then aji = 0; 
3) aij E 21 and mij = aijaji = 0, 1, 2, 3 or 4. 
Together with A(r) we will also consider the matrix G(T) = (gij), where 

Sij = cos 0, and 0ij is the angle between yi and 7/j. This is the Gram matrix of the 
normalized system of vectors y1 /iv1 1, . . . , y,ll y,l. 

Problem 48. The elements of G(T) are of the form 

gii= l(i= l,... ,S), gij= -&/G(i#j). (5) 

Therefore we have one more property of A(r): 
4) a symmetric matrix (gij) whose elements are defined by formulas (5) is 

positive semi-definite, i.e. determines a positive semi-definite quadratic form. 
A square matrix A = (aij) is admissible if it satisfies 1)-4). An admissible matrix 

is called a Cartan matrix if the corresponding matrix (gij) = G(A) is positive 
definite (which is equivalent to its invertibility) and an affine Cartan matrix if 
G(A) is singular. 

The above makes it clear that the matrix A(T) of a linearly independent 
admissible system of vectors r is a Cartan matrix and the matrix of a linearly 
dependent admissible system of vectors is an affine Cartan matrix. In particular, 
the Cartan matrix A(n), where 17 is a base of d, corresponds to any root system 
d, and if d is indecomposable the affine Cartan matrix A(F) corresponds to it. 

Notice that to any admissible matrix A = (aij) we may assign the Dynkin 
diagram which uniquely determines the matrix up to the same permutation of 
rows and columns. In this correspondence the vertices of the diagram correspond 
to the columns of A and the edges are constructed by the rules 2), 3) given 
in 5”. 
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Clearly, if A is an admissible matrix then so is AT and G(A) = G(AT) while the 
Dynkin diagram for AT is obtained from the Dynkin diagram for A by reversion 
of the orientation of the edges. If A = I, where ris an admissible root system, 
then AT = A(T ” ) (see Problem 44). A principal submatrix of an admissible 
matrix A is obviously admissible; a subdiagram of the Dynkin diagram of A 
corresponds to it. 

We say that the matrix A is decomposable into the direct sum of A, and A, if 
there exists a permutation of rows and the same permutation of columns that 

reduces A to the form ; and A is indecomposabEe otherwise. Clearly, 

any matrix uniquely presents as the direct sum of indecomposable matrices (we 
assume that the matrices are considered up to the same permutation of rows and 
columns). A splitting of the Dynkin diagram into the union of its connected 
components corresponds to this decomposition, if the matrix is admissible. 

Now we will prove that any admissible matrix is a matrix of an admissible 
system of vectors. 

Problem 49. Any positive semi-definite symmetric matrix G of order I is the 
Gram matrix of a system of I vectors of a Euclidean space. The rank of this 
system of vectors equals rk G. 

Problem 50. Let the Dynkin diagram of an admissible matrix A do not contain 
cycles and let ul, . . . . uI be a system of vectors of a Euclidean space E whose 
Gram matrix is G(A). Then there exist pi > 0 (i = 1,. . . , I) such that A is the matrix 
of the system y1 = plul,. . . , yI = pjul and (yi, rj) E Q for all i,J 

Before we consider the case when the Dynkin diagram contains a cycle, let us 
make the following remark. If B is a principal submatrix of A, then G(B) is a 
principal submatrix of G(A). Therefore if A is a Cartan matrix then so is B. 
Furthermore, if A is an indecomposable afflne Cartan matrix then applying 
Problem 45 to the system of vectors whose Gram matrix is G(A) we see that any 
proper principal submatrix of A is a Cartan matrix. 

Problem 51. If the Dynkin diagram of an indecomposable admissible matrix 
A contains a cycle then A = A(n), where fi is the extended system of simple roots 
of 5I1+1 (a=), I >/ 2, and the Dynkin diagram is of the type Ai’) (see Example 3 of 5”). 

Problem 50 and 51 immediately imply 

Theorem 11. Any admissible matrix A is the matrix of an admissible system of 
vectors r = (yl,. . . , yI} of a Euclidean space such that (yiy 1/;.) e Q for all i, j. 

Corollary. If A is an admissible matrix of order 1 then det A > 0 and A is a 
Cartan matrix if and only if det A > 0. 

Notice also the following fact. 

Problem 52. If the Dynkin diagram of an indecomposable admissible mat 
A contains an edge of multiplicity 4 then A is an affine 2 x 2 Cartan matrix. 

rix 
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7’. Classification. In this section we will classify (up to an isomorphism) all 
admissible systems of vectors. With Theorem 9 this implies the classification of 
root systems. 

As follows from Theorem 11 the classification of admissible systems of vectors 
is equivalent to the classification of admissible matrices or of Dynkin diagrams 
corresponding to these matrices. It suffices to list all the indecomposable admissi- 
ble systems, i.e. connected Dynkin diagrams. For brevity we will call the Dynkin 
diagram of a Cartan matrix a Dynkin diagram and the Dynkin diagram of an 
affrne Cartan matrix an affine Dynkin diagram. The rank of a diagram is the rank 
of the corresponding admissible system of vectors (or the admissible matrix). For 
a Dynkin diagram the rank equals the number of its vertices and for a connected 
affrne Dynkin diagram it equals the number of its vertices minus 1 (see Problem 
44) 

Each connected Dynkin diagram is denoted by a symbol of the form L,, where 
L is a Latin capital and 1 is the rank of the diagram. This notation will be 
introduced during the classification. We already know the following connected 
Dynkin diagrams: A, (1 2 l), I$ (I 2 l), Cl (I > l), D, (I > 3), Gz (see 5”, Examples 
1, 2). The Dynkin diagrams of the first four series are called classical; they 
correspond to the classical complex Lie groups SL,,,(Q, SO,,+&), Sp,,(a=), 
SO,,(Q respectively. 

G, is the first example of a nonclassical Dynkin diagram. Note that A, = B, = 
Cl7 4 = Cz, A, = D,. 

Each of the listed above Dynkin diagrams LI can be extended to a connected 
affrne Dynkin diagram L1 (I) of rank I by adjoining one vertex (see 5”, Example 
3). Other connected affine Dynkin diagrams are listed in Examples 4, 5 of 5”. 
Notice that the connected afIine Dynkin diagrams are denoted by the symbols 
I$) where k = 1, 2, 3 and I coincides with the rank of the system if k = 1 but 
does not coincide with the rank for k > 1. The meaning of this notation will be 
explained in 5 4. 

Notice the following properties of Dynkin diagrams which are consequences 
of Problems 51, 52 and Remarks in 6”: 

(Dl) Any subdiagram of a Dynkin diagram is a Dynkin diagram. 
(D2) A diagram obtained from a Dynkin diagram (or an affine Dynkin dia- 

gram) by reversing orientation of all its edges is a Dynkin diagram (affme Dynkin 
diagram). 

(D3) The multiplicity of an edge of a Dynkin diagram equals 1, 2 or 3. 
(D4) A Dynkin diagram does not contain cycles. 
(D5) An affine Dynkin diagram is not a Dynkin diagram and vice versa. 
(D6) Any proper subdiagram of a connected affine Dynkin diagram is a 

Dynkin diagram. 
(D7) The multiplicity of an edge of a connected affine Dynkin diagram of 

rank > 1 equals 1,2 or 3. 
(DS) The diagrams Ai’) (1 > 2) are the only affme Dynkin diagrams with cycles. 

Problem 53. The only Dynkin diagrams of rank 1 and 2 are A,, A,, B,, G,. 
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The only connected affine Dynkin diagrams of rank 1 are the following ones: 

The following proposition describes all the three-vertex diagrams we are 
interested in: 

Proposition 1. Any connected Dynkin diagram of rank 3 is one of the diagrams 
A,, B, or C,. Any connected affine Dynkin diagram of rank 2 is one of the diagrams 
A:” . 

9 Cl” 9 D$2’ 9 421, GI” D(3) 
7 4. 

Proof. By Problem 49 a linearly independent system of vectors ul, u2, u3 in 
the three-dimensional Euclidean space E3 whose Gram matrix is G(A) corre- 
sponds to a Dynkin diagram of rank 3 (or to a 3 x 3 Cartan matrix A). The 
angles between these vectors are ei~ = n - n/nij, where the values of n12, n131 n23 
can be only 2, 3, 4, 6. The planes orthogonal to ui cut out a trihedron whose 
bihedral angles are x/n1 2, z/n13, n/n,,. Notice that the bihedral angles of a 
trihedron are the angles of a spherical triangle and the latter exists only if the 
sum of its angles is greater than 7t. Therefore l/n,, + l/n,, + l/n,, > 1. Only 
the following two sets of niis satisfy this inequality (under the assumption of 
indecomposability): { 2,3,3) and {2,3,4). The corresponding sets of mij’s are 
(0, 1, l} and (0,1,2). The Cartan matrices with such numbers mij correspond to 
the root systems A,, B,, C,. 

Similarly, a connected afine Dynkin diagram of rank 2 determines a rank 2 
system of vectors u,, u2, u3 in E3. The sum of the angles 0ij = n: - n/nij between 
Ul, 4, u3 is 271 implying l/n,, + l/n,, + l/t123 = 1. Only the following sets of 
nij’s satisfy this equation: t , , , , , , , , . f3 3 3) { 2 4 4) { 2 3 6) The corresponding sets of 
mij’s are { 1, 1, l}, (0,2,2}, (0, 1,3}. All affrne Dynkin diagrams with such mij’s are 
listed in the statement of Proposition. 0 

Proposition 1 and (Dl), (D3), (D6) imply 

Corollary. A connected (affine) Dynkin diagram of rank > 3 contains only the 
edges of multiplicity 1 and 2. 

Problem 54. The sum of multiplicities of the edges that originate at a vertex 
of a connected Dynkin diagram of rank >, 3 does not exceed 3. The same applies 
for the connected afflne Dynkin diagrams of rank 3 if we exclude the diagrams 
B$” 9 /4:2’ D(1) 3 4 l  

A vertex of a diagram connected with more than two vertices is called a branch 
certex and a vertex connected with exactly three vertices by edges of multiplicity 
1 a simple branch vertex. It follows from Problem 54 that a branch vertex of a 
Dynkin diagram is always simple. The same applies to the connected affine 
Dynkin diagrams except Dill, Bil), Ak2). 

The branch vertices and multiple edges of a diagram will be called its sinyu- , 
larities. 
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Problem 55. A connected Dynkin diagram may possess no more than one 
singularity. The only connected affine Dynkin diagrams with at least two singu- 
larities are the diagrams & (l) (1 > 3) c,cl, (1 > 2), Dj” (1 2 5), D# (1 >, 2), A(2:) / , 
(1 > 2), A$;Ll (1 2 3). 

It easily follows from (D4) that the connected Dynkin diagrams without 
singularities are the diagrams A,, 1 2 1. Similarly, properties (IX) and (D5) imply 
that the connected affme Dynkin diagrams without singularities are the diagrams 
Aj’), 1 > 2. By Problem 55 it only remains to list the diagrams containing exactly 
one singularity. We may assume that the rank of the diagram is > 3 and the 
singularity is either a simple branch vertex or an edge of multiplicity 2 (see 
Corollary of Proposition 1). 

A connected Dynkin diagram of rank > 3 with a singulady different from B,, 
Cl, D, should contan a subdiagram of the form 

--I- Of c 
The same applies to any connected affine Dynkin diagram of rank > 3 with 
exactly one singularity which is either a simple branch vertex or a double edge. 
Consider the following diagrams with I vertices which for the indicated values of 
I are not classical Dynkin diagrams: 

Denote by 6(L) the determinant of the admissible matrix with Dynkin diagram L. 

Problem 56.6(E,) = g - 1,6(F,) = 6(F,“) = 5 - 1. The diagram E, is a Dynkin 
diagram for 1 = 6, 7, 8, Fr and F,” are Dynkin diagrams for 1 = 4 and F4 = F& 
The diagrams E, = E(8l), F, = Fil), F$’ = Ef), are connected afine Dynkin dia- 
grams. 

Problem 57. The diagrams E, and E, are subdiagrams of the following con- 
nected affrne Dynkin diagrams 

EY’: c 
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Problem 58. Any nonclassical connected Dynkin diagram of rank 2 3 is one 
of the diagrams E,, E,, E,, & Any connected affine Dynkin diagram with one 
singularity which is a simple branch vertex or a double edge is one of the diagrams 
E$j), E;l), E(8l), Fil’ 9 EL2). 

Let us summarize the obtained results. 

Theorem 12. The connected Dynkin diagrams are exhausted by the diagrams A, 

(1 > l), B* (1 2 l), Cl (1 2 l), D, (1 2 3), El (1 = 6,7,8), F4, G, (see Table 1). The 
connected affine Dynkin diagrams are exhausted by the diagrams Lj’) where L, is 
a connected Dynkin diagram of rank 1 and the diagrams A(2:Ll (12 3), A(2:) (1 2 l), 
D,(:; (1 >/ 2), E(62), D13) 4 (see Table 6). 

The Dynkin diagrams E,, E,, E,, F4 and G2 are called exceptional. We have 
not decided yet if the first 4 of them are the Dynkin diagrams of some reduced 
root systems. One can show that this is actually so e.g. by explicitly constructing 
the corresponding root systems (in 6 3 we give another proof making use of Lie 
algebras). 

Problem 59. The systems of vectors of the types E,, E,, E,, F4 given in Table 
1 are the reduced root systems with the Dynkin diagrams E6, E,, E,, F4, 
respectively. Their extended Dynkin diagrams coincide with the diagrams Et), 
E(71) E(81) F(l) 9 9 4. 

As a result of the classification of reduced root systems we get the following 
theorem. 

Theorem 13. The indecomposable reduced root systems are exhausted up to an 
isomorphism by the systems of the types A, (1 > l), Bl (1 > 2), CI (12 3), D, (1 >, 4), 
E,, E,, E,, F4, G, of Table 1. 

Now list the nonreduced indecomposable root systems. 

Problem 60. If d is an arbitrary root system then d, = {a E d: ice 4 d} is a 
reduced root system, indecomposable if and only if so is d. The root systems d 
and d, have the same Weyl chambers, the same bases and the same Weyl groups. 

Problem 61. If d is a nonreduced indecomposable root system then d, is of 
type B*- 

Problem 62. Prove the following theorem: 

Theorem 14. The only indecomposable nonreduced root system of rank 1 is the 
root system of type BC, (1 > l), the union of the systems Bl and Cr (see Table 1). 

8O. Root and Weight Lattices. Let V be a finite-dimensional vector space over 
II%. As we know (see Problem 1.2.30), any discrete subgroup of the vector group 
I/’ is a free abelian subgroup whose basis is a linearly independent system of 
vectors. Such subgroups of I/ will be called lattices. 

Let rbe a lattice in I/ such that V = (r). Then the subgroup of V* 

f * = {A E V*: l(x) E Z for all x E r} 
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is also a lattice and generates V*. Indeed, let e,, . . . , e, be a basis of I-‘; by the 
definition this basis is a basis of K In I/*, consider the dual basis ey, . . . , e,* given 
by the formulas eT(ej) = 6,. Then, clearly, eT, . . . , e,* is a basis of f *. The lattice 
r* is naturally identified wi t 
of r. If we naturally identify 

Let r c r be two lattices 
which can be described as fo 1 
. . . . 7’ of r. Then 

Y - 
i- 

h the group Horn (r, Z); it is called the dual lattice 
V with (V*)*, then ris identified with (r*)*. 
n K Then F/r is a finitely generated abelian group 
lows. Consider a basis yl, . . . , yl of r and a basis jjl, 

where C = (Cii> is a matrix with integer entries. It is known (see [3]) that 

where m, Im,I.. .Im, are the invariant factors of C different from 0 and 1. In 
particular, if I = m then p/I?s finite and 

Problem 63. If r c p are lattices in V = (r) = (r) then F* c f * and 
F/r !z P/P. 

Let A be a root system in a Euclidian space E. Denote by Q the additive 
subgroup of E generated by A. If Z7 is an arbitrary base of d then 17 is a basis of 
the abelian group Q. Therefore Q is the lattice with basis 17. It is called the root 
lattice. 

Further, let E = (A) and set 

P = (y E E: (yla) E z for all z E A). 

Let l7 = {a,,..., q}. Determine 713 E P by the formula 

(7Cilclj) = dij* 

Clearly, P is a lattice with basis q, . . . , q; this lattice is called the weight lattice 
and its elements are called weights. The weights q, . . . , q are called fundamental 
weights (with respect to n). Simple roots are expressed in terms of fundamental 
weights by formula 

ai = c aij71j9 

1 <j<Z 
(6) 

where A = (aij) is the Cartan matrix of d. 

Problem 64. The lattices Q and P are invariant with respect to the Weyl group 
WV. 
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The definition of a root system implies that Q c P. The group n(d) = P/Q is 
called the fundamental group of d. 

Problem 65. The fundamental group n(d) is isomorphic to @lGi&m., 
where mi are the invariant factors of the Cartan matrix A of d different from 1.1; 
particular, 

In(A)l = det A. 

In Table 3 are listed the fundamental groups n(d) of all indecomposable 
reduced root systems d calculated with the help of Problem 65. Notice that ~(4) 
is a cyclic group in all cases except when d is of the type Dzs, s 3 2. 

Consider also the dual root system d ” c F = E*. The root and weight lattices 
Q” c P” in the space F correspond to it. By Problem 64 they are invariant with 
respect to the Weyl group IV = (WV )“. 

Problem 66. Q” = P*, P” = Q*, n(A ” ) = n(A). 

By Problem 1.29 our constructions are applicable in the case when A = A, is 
a root system of a semisimple algebraic group G with respect to a maximal torus 
T. As we have seen in 1.4”, the group T(T) is identified with a lattice in the space 
E = t(R)*. Its dual lattice T(T)* c (R) coincides with t(Z). 

Problem 67. Q c%(T)cPandQ” ct(Z)cP”. 

Notice that the lattices P, Q, P”, Q” are determined by the root system 
A, = d, which, as we have seen above, does not depend on the choice of an 
algebraic group G with tangent algebra g. At the same time, Z(T) and t(Z) 
depend, in general, not only on g but also on the global structure of G. In 5 3 we 
will show that a connected semisimple algebraic group G is determined up to an 
isomorphism by the root system d, and any of the lattices 3(T), t(Z). 

If p is a linear representation of a semisimple Lie algebra q then @p c P (see . 
Problem 1.43), i.e. any weight of p is a weight in the above sense. 

Exercises 

Let E be a finite dimensional Euclidian space, O(E) the group of all its 
orthogonal transformations and Z(E) the group of its isometries. If 52 c E is a 
finite system of nonzero vectors then Aut 52 denotes the group of all automor- 
phisms of Sz in the sense of 1”. In Exercises 3-19 we assume that A is a root 
system in E and Z7 a fixed base of A. We denote the Weyl group of A by IV and 
the Weyl group of :he dual root system by M/” ; the root and weight lattices are 
denoted by Q and P, respectively. 

1) If 52 is indecomposable then Aut 52 c 0((n)). 
2) If 52 is admissible then Aut Q is isomorphic to the group of automorphisms 

of the Dynkin diagram of Q. 
3) The scalar product in E may be redefined so that in the new Euclidian space 

E, the system Ai would become a root system and Aut A c 0((A)). 
4) If cx E /7 then ra maps A+\{ct, 2cc) into itself. 
5) Let A be reduced and p = &d+ cx. Then rp(p) = p - p and (pi/?) = 1 for 
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all p E 17, hence p coincides with the sum q + l  l  l  + 7tI of all fundamental 
weights. 

6) Let A be reduced, w E IV” and t = l(w) (cf. Problem 38). Then t coincides 
with the number of the a E A+ such that w(a) < 0. 

7) A root system A is indecomposable if and only if w acts irreducibly on 
cd” >* 

8) An indecomposable reduced root system contains roots of only one or two 
different lengths and the Weyl group acts transitively on the set of all roots 
of the same length. 

9) Roots of the maximal and minimal length of an indecomposable reduced 
root system A form two root systems A,,, and Amin of the same rank as A. 
If A contains roots of two different lengths then Am,, and dmin are determined 
by the following table: 

A 

A min 

A max 

B,, j a 2 c,J 2 2 F4 G2 

4 A, + *-* + A, (I summands) D4 AZ 

4 + - - - + A, (I summands) Dl 4 A, 

(we denote D, = A, + A,). 
10) Under the conditions of Exercise 9 the highest root of d belongs to A,,,. In 

A min there exists a unique maximal element (the highest short root). 
11) The indecomposable components (A”)i of the root system dual to A are 

(A 1 . “, where the Ai are the indecomposable components of A. If A is an 
indecomposable root system different from B, and C,,, n 2 3, then A” = A. 
Moreover, Bi = Cn. 

12) Under the conditions of Exercise 9 (A,,,)” = (A “)min and (Amin)” = 
(d ” )max* If a0 is the highest root (with respect to l7) then al is the highest 
short root (with respect to Z7” ) and vice versa. 

13) The group VV does not contain reflections with respect to hyperplanes 
different from P,, a E A. 

14) If w E VV ” preserves y E E then w can be presented as a product of reflections 
r;l (a E A) each preserving y. 

15) AutA = FV” >Q AutZ7. 
16) If Aut Z7 is trivial then -e E W. (Hint: make use of the opposite Weyl 

chamber.) 
17) Calculate the Weyl groups M/ of g = SO,(@) (n > 3), SPY, (n 2 1) and 

compare the results with Table 4. Prove that -e E M/ if g = sl,(UJ, s+~+~(@) 
(n > l), YX,,(UJ (n > 1) and -e 4 IV if g = EiI,(@) (n > 3) and g = s~~~+J@) 
(n 2 1). 

18) Each automorphism a E Aut A transforms the lattices Q and P into them- 
selves and therefore induces an automorphism G of the group n(A). If a E WV 

then 6 = e. This implies that if -e E FV then the order of any element of z(A) 
is < 2. 



Let T be a maximal torus in a connected reductive algebraic group G, d, the 
corresponding root system and Z7 c d, a base. Let A4 c I7 be a set of simple 
roots. Denote by d+(M) the set consisting of all positive roots and the negative 
roots which are linearly expressed in terms of simple roots from A4. 
25) The subset d+(M) c d, is closed. 

Set p(M) = &f+uwJ) ( see Exercise 1.2 1). 
26) 

27) 

28) 

The connected algebraic subgroup PtM) of G corresponding to @MI c g is 
parabolic; any parabolic subgroup is conjugate to a unique subgroup of this 
form. 
Any parabolic subgroup of G can be obtained by the method described just 
before the Exercise 21, where for T one can take a maximal torus. 
Let g be a semisimple complex Lie algebra. Select basis elements e, E ga 
(a E As) as in 1.6”. Set h = xaed+ h,. Then h = CBEn r,h,, where rp are 
positive integers. If 
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19) Let d be an indecomposable reduced root sytem. Then - e 4 VV if d is of the 
type A,, (n 2 2), D2n+l (n >/ l), E, and -e E M/ otherwise. 

An algebraic subgroup P of a connected algebraic group G is parabolic if G/P 
is a projective algebraic variety. The corresponding subalgebra p of the tangent 
algebra g of G is also called parabolic. 

20) A subgroup P c G is parabolic if and only if P contains a Bore1 subgroup 
of G. A parabolic subalgebra of a semisimple Lie algebra is regular. 

Let G be a connected reductive complex algebraic group, 7’ a torus in G and 
x0 E t(R). Consider the root decomposition of g with respect to T and let H, N+, 
P+ be the connected algebraic subg,oups of G corresponding to the algebraic 
subalgebras E, = Oa(xo)=o ga, n+ = @afxo),o ga and p+ = b 0 n+. 
21) P+ is a parabolic subgroup of G. 
22) P+ coincides with its normalizer; the coset space G/P+ is simply connected. 
23) P+ is the semidirect product of the reductive subgroup H and the unipotent 

normal subgroup N+ . 
24) If oI(xO) # 0 for all a e d(T) then H = N(T) r‘\ P+ and H coincides with the 

centralizer of T. 

e+ = 1 Jr,+ 
BEI7 

e- = C J&f-,, 
on 

then (h, e,, e-) is a simple three-dimensional subalgebra of g (called the 
principal three-dimensional subalgebra). 

A subsystem r of a root system A is called symmetric if -a E r for any a E l-‘. 
As in $1 r is called closed if a, p E r, a + p E A imply oc + p E r. Exercises 1.21, 
1.22, 1.24, 1.25 determine a one-to-one correspondence between the classes of 
conjugate semisimple regular subalgebras of a semisimple Lie algebra g and the 
closed symmetric subsystems of A, considered up to the action of the Weyl group. 

In Exercises 29-38 A denotes a reduced root system. A subsystem r c A is 
called a z-system if a - p 4 A for any a, p E IY For any subsystem M c A denote 
by [M] the set of all roots A which are linear combinations of the roots of M 
with integer coefficients. Let I be the rank of A, M/ its Weyl group. 
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29) Any z-system is an admissible system of vectors. 
30) Any symmetric closed subsystem A4 c d is a root system. Any base r c M 

is a z-system and 1M = [r]. Conversely, if f c d is a linearly independent 
z-system then M = [r] is a symmetric closed subsystem and r is a base of 
A4 

31) Linearly independent n-systems rl, & c d can be transformed into each 
other by an element of IV” if and only if so can [J’J and [r,l. 

32) Let r c d be a linearly independent n-system. Then the system ?: obtained 
from r by adjoining the corresponding lowest roots to some of its indecom- 
posable components is also a n-system. 

33) Any indecomposable n-system is isomorphic either to a base or to an 
extended base of a root system. 

34) If r c d is indecomposable and admissible then r is a n-system. 
35) Any linearly independent n-system in d is contained in a linearly independent 

n-system consisting of 2 elements. 
Let r c d be a linearly independent n-system and f a n-system obtained by 

adjoining to an indecomposable component TI of r the corresponding lowest 
root cxO. Set r’ = F\{cx}, where a e rl. One says that the n-system f’ is obtained 
from I’ by an elementary transformation. 
36) We have [F] c f and these systems coincide if and only if oc occurs in the 

expression for - cc0 with coefficient 1. 
37) Any linearly independent n-system in A consisting of I elements can be 

obtained from a base Z7 c A by a sequence of elementary transformations. 
38) If d = d, Y... u d, is a decomposition of d into indecomposable com- 

ponents then a subsystem 1M c d is symmetric and closed if and only if 
M n di is a symmetric closed subsystem of di for any i = 1, . . . , r. 

In Exercises 39-43 we assume that d is indecomposable, Z7 = (a,, . . . , a,> its 
base, ag the lowest root, -CX~ = Cl<i<lniai, iT= {~(0,~1,...,~~}. 
39) We have Yli = 1 en\{,,> is a base of d e there exists w E IV” such that 

W(D) = iT and W(CC,) = Cci. 

40) Any maximal symmetric closed subsystem of d is of rank I or I - 1. 
41) Let f c d be a linearly independent z-system consisting of 2 elements. If [r] 

is a maximal closed symmetric subsystem of d then r is obtained from a 
base n c d by applying one elementary transformation. 

42) Let r = iT\(a,}, h w ere i > 0. A symmetric closed system [r] is maximal if 
and only if ni is prime. (Hint: see [5], § 8.3). 

43) Let r c d be a linearly independent n-system of I - 1 elements. A symmetric 
closed subsystem [r] is maximal if and only if f = n\{gi>, where 17 is a 
baseofdandni= 1. 

Hints to Problems 

2. Similar to Problem 1.35. 
7. Make use of Problems 1.3 1, 1.32. 
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9. Let (z,b) > 0. By Problem 8 we may assume that (@) = 1 which, thanks 
to Problem 1, implies a - p = ~(a) E A. 

10. Let p, q be the maximal nonnegative integers such that /? - pa, p + qa E A. 
Problem 9 implies that the a-string through /? has no gaps (i.e. p + ka E d 
for all k, -p < k < 4). Since the a-string is invariant with respect to rQ (and 
therefore r,(p + qcc) = p - pa), then p - q = (PIa>* 

11. Make use of formula (1). In particular, prove that 

13. Consider the cases oc - p E A+ and a - p E A- and apply Problem 9. 
14. Set V = a,vi + 0.0 + akvi = b,vjl + l  * . + b,vjl. Considering (v, v) we derive 

from (Vi , Vj ) < 0 that v t 0 and (vi , vj ) = 0 for all p, 4. Let u be a vector 
such that (i, vi) > 0 (i = 1, . . . , s). Then lu, v) = 0 implies ap = bq = 0 for all 
PY cl= 

15. Let C, = (X E F: a(x) > 0 for all a E n(C)). Clearly, C c C,. But C, c Freg 
and C, is convex and therefore connected, hence C = C,. 

17. By Problem 16 C is a nonempty connected subset of Freg. Therefore C c C1, 
where C, is a Weyl chamber. Clearly, the set A+ of positive (with respect 
to I7) roots coincides with the set of C,-positive roots implying Z7 c n(C). 
Therefore 17 = Z7(C,) and by Problem 15 C = C,. 

18. Let x E F be such that a(x) 2 0 for all a E n(C). If we fix x0 E C then Problem 
15 implies that x’ + (x,/n) E C for all y2 = 1,2, . . . . Therefore x E C. Applying 
Problem 16 to the restrictions of linear forms of Z7(C)\{a) onto the hyper- 
plane Pjz for some cx E n(C), we see that Pa n C contains a nonempty open 
set, i.e. Pz is a wall of C. Conversely, if P is a wall then P contains an open 
ball U such that U c C\C c UaEnco PO. We see that P c UzEntcJ Paa There- 
fore P coincides with one of the hyperplanes P,. 

19. Within the open set F\Up.d.gitc, p P choose a ball U such that U n Pa # 0. 
The component U, = (X E U: a(x) > 0) of U\Pa is contained in a Weyl 
chamber C for which P1 is a wall. By Problem 18 a = cp, where /? E n(C) and 
c > 0. Next apply Problem 2. 

20. If (x, p) < 0 for all p E Z7, we get a contradiction with Problem 14. Next apply 
Problem 9. Since all the coefficients of the expression of cc - p in terms of 
simple roots should be of the same sign, then cx - p > 0. 

22. Let Z7 c A be a base. If A = A, uA,,whereA, # @,A, # @,and(cr,p) =0 
forallzEA1,pEAzthenn= (17nA,)u(17nA2).Wehave17nA,#@ 
and Z7 n A, # 0 since 17 is a basis of (A). Conversely, let Z7 = Z7, u 17,, 
where 17, f 0, n2 # 0 and (a, p) = 0 for all cx E Z7,, p E n2. Denote by Ai 
the set of roots of A linearly expressable in terms of Hi (i = 1,2). Let us show 
that A = A, u d,. If this is not so, Problem 21 implies that there exist 
r~d~nA+and~~17~(ora~d,nA+andP~17,)suchthat;,=sr+P~A. 
Since x - p $ A, then ((x,b) > 0 by Problem 10. Contradiction. 

23. To prove the linear independence of n first show that the statement of 
Problem 13 holds for n and then apply Problem 1. 
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24. Make use of Problem 18. 
25. By Problem 1.26 (n+,rt+) = 0 hence rt+ is a solvable Lie algebra. Since 

b+/n + = t, then b+ is also solvable. Clearly, n+ = [b+, b+] implying the 
unipotence of rt+. 

26. Since b+ 2 t, then any subalgebra h c g containing b+ is of the form E, = 
b+ @ eaEd+ &-a, where &-a is a subspace of gwa. The existence of simple 
three-dimensional subalgebras constructed in 1.6’ implies that t> cannot be 
solvable except for h = b+. TO prove the second statement of the problem, 
it suffices to notice that if g-U # 0 then [&,,t] = gea $ h+. 

27. Problem 25 implies that TN+ = T o< N+ is an algebraic subgroup of B+. 
This subgroup coincides with B+ since b+ is its tangent algebra. 

28. If B,, B, are the Bore1 subgroups corresponding to the Weyl chambers C,, 
C, then B, = B2 implies that the unipotent radicals of these subgroups 
coincide. Making use of Problem 27 we deduce that the sets of &positive 
and C,-positive roots coincide. Now apply Problem 15. 

29. By Theorem 3.2.12 there exists g E G such that @g-l = B+. Then gTg-’ c 
B+ and by Problem 3.2.23 there exists b E B+ such that b(gTg-‘)b-’ = T. 
Set a = bg. 

30. The algebraic group N- n G, = H is unipotent and therefore irreducible 
(Corollary 2 of Theorem 3.2.1). On the other hand, its tangent algebra is 
rt- n b+ = 0. Therefore, H = {e>. By Problem 2.1.20 a,: N- + N-(p) is an 
isomorphism. Since g = b+ @ r-t-, then dim D = dim N- = dim N-(p) and 
the orbit N’(p) is open in D. 

3 1. Consider the manifold G//V(B) endowed with a quasiprojective algebraic 
variety structure such that the canonical G-action on it is algebraic. By 
Problem 25 N(B)’ = B. Therefore, it suffices to prove that G/N(B) is simply 
connected which one does as in the proof of Theorem 4. 

32. By Problem 3.2.21 the subgroup N,(T) is irreducible and it is contained in 
the centralizer of T. Now, apply Problem 1.28. 

33. First prove that the centralizer of T is contained in N(B+). 
34. The elements of IV” are expressed by matrices with integer entries in the 

basis consisting of simple roots. 
35. First prove that the set obtained by deleting from F the union of all the 

pairwise intersections of the hyperplanes Pa (a E d) is simply connected. 
36. Let C and C’ be two Weyl chambers and C = Co, Cl, . . . , C, = C’ the 

sequence of Weyl chambers constructed in Problem 35. We may assume that 
17 = n(C). By induction in r prove the existence of w E M/’ such that C’ = 
w(C). Let exist w. E IV’ such that we(C) = Crel. Let pZ, where a E d and 
ia & d, be the common wall of C-1 and C, = C’. Then wi’(p,) = pm,, where 
a0 E U. Furthermore, ra = worZOw;l E IV’ and (rXwo)C = C’. 

37. It suffices to prove that r, E IV’ for any a E d. For this make use of Problems 
19 and 36. 

40. We may assume that E = (d), E’ = (A’). Problem 1 implies that rV(,) = 
cpr,cp-’ for any a E 17. Applying Theorem 7 we see that the map w c--, ‘pw’p-l 
is an injective homomorphism of the Weyl groups IV” --+ IV’” corre- 
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spending to d and d’. By the same Theorem 7 any oc E d presents in the form 
a = w(y), where w E WV, y E Z7. Hence cp(a) = (cpwcp-‘)(cp(y)) E A’. Making 
use of Problem 1 again, it is easy to show that (&)Jcp(p)> = (@> for all 
a, P E d. When d’ is a reduced root system and Z7’ = cp(n) is its base, apply 
the above to cp? 
Make use of Theorem 6. 
Let y2 E N(T) and let the corresponding transformation w map the Weyl 
chamber C into itself. Then n&z-l = B, where B is the Bore1 subgroup 
corresponding to C. Applying Theorem 4 and Problem 1 we see that n E T 
and w = e. Thus IV” acts simply transitively on the Weyl chambers. Since 
any transitive subgroup of a simply transitive group coincides with the latter, 
we have VV = IV’. 
If Dynkin diagrams of the systems r = {yl,. . . , r,} and r’ = {y; , . . . , $1 are 
isomorphic then there exists a bijection q: r+ I-” such that q(yi) = $, aij = 
a& (i,j = I,. . . J), where aij = (yilyj), ab = ($I$). We may assume that ~1, 
l  l -9 yr is a maximal linearly independent subsystem of I7 Considering the 
principal minors of A(T) and A(T’) it is easy to see that y;, . . . ,yi is a maximal 
linearly independent subsystem of r’. 

Therefore there exists a linear isomorphism f: (r) -+ (r’) such that 
f(yi) = Cp(yi) for i = 1, . . . , r. We then prove that this holds for i = r + 1, . . . , 
s, too. For this it suffices to verify that for any k such that r + 1 < k < s the 
coefficients ci in the expression J+ = &sr ciyi are completely determined 
by the principal submatrix of A(T) corresponding to the subsystem ‘Jo, . . . , 
‘yr, 7/k. But these coefficients constitute the unique solution of the system 

c l<i,<r (Yi17/j)ci = (yklyj) (j = l, l  •*Y~)* 

Make use of (1). 
Make use of Problem 14. 
Make use of Problems 9, 10 and 20. 
The inequalities n, > 0 follow from Problem 45 applied to the system 
l7u ( -s>. If 6’ is another maximal root then it follows from Problem 46 
that (a’,@ > 0. If 6 # 6’ then with the help of Problem 9 we get a contradic- 
tion. 
Let b be a bilinear form in IR’ with matrix G in the standard basis e,, . . . , e,. 
Consider the images of the vectors e,, . . . , e, in the space E = lR?/N where 
N is the kernel of b. 
It suffices to consider the case when A is indecomposable. For any i = 2, . . . , 
1 there exists a unique sequence of numbers 1 = i,, i,, . . . , ik = i such that 

aipi,+ 1 #Oforp=O,l,..., k- l.Set 

pi=/= @X2), pl=l 

and note that p’/pf = aij/aji for any i, j. Since p’ E Q, then (yiy rj) E Q for all 
i, j. 
If the Dynkin diagram is a cycle then 
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..=-•*-a............. i 2 al-l,l 

41 0 . . . %,1-l 2 

and ml29 m23, -7 ml-l,19 ml1 are positive integers. Since the sum of all 
elements of a positive semi-definite matrix is nonnegative, we get from 
(5) 1 - (Jm,, + l  * ’  

+ d= + JG) > 0. It follows that ml2 = -0 = 
ml-,,l = ml, = 1. In general case make use of the fact that any principal 
submatrix of A is a Cartan matrix. 
Notice that otherwise there can be found a subdiagram of one of the types 
listed in the statement. Next, make use of Proposition 1 and properties (Dl), 
(W, VW 
Notice that any diagram with two or more singularities contains one of the 
subdiagrams listed in the problem. 
Make use of Corollary of Theorem 11 and the recurrent formula 6(L,) = 
2S(&,) - 6(L,_,), where L, = El, Fl or F”“. 
Prove that the corresponding matrices are not invertible. 
Make use of Problem 56, 57 and properties (Dl), (D5), (D6). 
The system d, is reduced thanks to Problem 2. 
In A,, select a base n. Theorem 7 implies the existence of SC E 17 such that 
2a E d. If p E 17, p # a and (~1, /?) # 0 then (PIa) = 2(/?12sl) = -2 so that 
IPI 

2 = 21~1~. Theorem 13 implies that the type of d, is B,. 
Make use of Problem 61 and prove that A\& is the set of all doubled short 
roots from A,. 
Notice that the invariant factors of a matrix with integer entries are preserved 
under transposition. 
Follows from (6). 
First prove that P = (Q” )*. The fact that fundamental groups are isomorphic 
follows from Problem 63. 
Make use of Problems 1.34 and 66. 

5 3. Existence and Uniqueness Theorems 

In this section we will prove that any Cartan matrix (see 2.6) corresponds to the 
root system of a unique (up to an isomorphism) semisimple complex Lie algebra. 
After that we will study connected complex semisimple Lie groups globally. In 
particular, we will prove that all these groups are algebraic and we will classify 
them up to an isomorphism. We will also describe irreducible finite-dimensional 
linear representations of connected complex semisimple Lie groups. Everywhere 
except lo the ground field is @. 
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lo. Free Lie Algebras, Generators and Defining Relations. Let a be a Lie 
algebra over k, X c a a subset. Denote by b the intersection of all subalgebras 
of a containing X. Clearly, b is the smallest subalgebra of a containing X; it is 
called the subalgebva of a generated by X. In particular, if b = a then one says 
that X is a system of generators of a; this means that there is no proper subalgebra 
of a contaning X. In what follows we will consider the case when X = {x1,. . . , x,> 
is finite. A Lie algebra admitting a finite system of generators is called finitely 
generated. For instance, any finite-dimensional Lie algebra is finitely generated. 

Problem 1. A set x1, . . . . x, is a system of generators . of a Lie algebra a if and 
only if each element of a is a linear combination of elements of the form 

[***, CCxi~~~i~l~xi~l~~~~l~xi 
m 
1 (1 < il,...,im < n). (1) 

Let us now construct an important example of a Lie algebra with a given system 
ofgeneratorsx = {x,,.. . , xn}. Define by induction non-associative words in the 
alphabet X in the following way: a word of length 1 is any element xi E X; a word 
of length m > 1 is a pair (y,z), where y and z are words of length p and 4 
respectively for p 2 1, q > 1, p + q = m. Thus the set X, of words of length 1 
coincides with X and the set X,,, of words of length m > 1 is defined by induction 
as follows: 

X - 
m- LI x, x x,. 

p+q=m 

In the set M, = Um,l X, there is a binary algebraic operation assigning to each 
y E X, and z E X, t/he word (y,z) E X,,,. Let us consider the corresponding 
algebra k[M,] over the field k. This is the vector space over k consisting of 
elements of the form ~zEMX~~z, where c z E k, c z = 0 for all z except a finite 
number, and endowed with a multiplication which extends by linearity the 
operation in M,. The algebra k[M,] is called the free algebra over k generated 
by the set X. The set M, is its basis over k. 

Problem 2. Let A be any algebra over k with fixed elements a,, . . . , a,. Then 
there exists a unique algebra homomorphism cp: k[Mx] -+ A, such that cp(xi) = 
a,foranyi= l,...,n. 

Denote by I the two-sided ideal of k[M,], generated by elements of the form 
XiXi and (xixj)xk +- (xjxk)xi + (x,xi)xj, where 1 < i,j, k < n. The algebra 

I(X) = 1(x,, l  . l  ,xJ = k[M,]/I 

is, clearly, a Lie algebra. It is called the free Lie algebra generated by X (over k). 

Problem 3. Let a be any Lie algebra over k, with fixed elements a,, . . . , a,. Then 
there exists a unique Lie algebras homomorphism cp: 1(x,, . . . ,x,) --) a, such that 
Cptxi) = a,fOranyi = l,..., n. Every finitely generated Lie algebra is isomorphic 
to a quotient of a (finitely generated) free Lie algebra. 
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Let a be again an arbitrary Lie algebra over k and X a subset of a. Consider 
the intersection i of all ideals of a containing X; this is the smallest ideal of a 
containing X. We say that i is generated by X. 

In particular, let ( fi)i E I be a family of elements of a free Lie algebra 1(x,, . . . , x,) 
and i the ideal of I(x,, . . . ,x,J generated by this family. The quotient algebra 
I( Xl , . . . , Q/i is called th e L ie algebra with generators yj = -yj + i (j = 1,. . . , n) 
and defining relations J;:(yl , . . . , y,) = 0 (i E I). 

2’. Uniqueness Theorems. Let 9 be a complex semisimple Lie algebra, t its 
maximal diagonalizable subalgebra, I7 = {a,, . . . , aI} a system of simple roots of 
g with respect to t. Under the notation of 1.4’ and 1.6” set 

hi=ha.,ei=e,,&=e-, I i i 
(i= l,..., 1). 

Let A = (aij) be the matrix of Z7; we will call it the Carlan matrix of g. 

Problem 4. The elements hi, ei, h (i = 1,. . . , I) form the system of generators of 
g and satisfy 

[hi, hj] = 0, 

[hi, ej] - ajiej = 0, Lhi,fjl + aji& = O9 (2) 

Cei,fi] - hi = O, [ei,f j] = 0 for i # j. 

The system {hi, ei,J;:: i = 1,. . . , r> is called the canonical system of generators 
of g associated with t and I7. 

Now denote by 6 = G(A) the Lie algebra with generators hi, gi, f;* (i = 1,. . . , I) 
and defining relations obained from (2) by replacing hi, ei, fi by Ai, Si, J, 
respectively. Problems 3 and 4 imply that there exists an epimorphism n: $ -+ g 
such that 

n(hi) = hi, 7T(2i) = ei, n(f*i) = &ii* (3) 

In particular, the elements hl, . . . , & are linearly independent. The subspace i 
generated by them is a commutative subalgebra of 3. 

Denote by V(K) the subalgebra of 6 generated by P,, . . . , &/ (resp. fi, . . . , fi). 

Problem 5. 4 = t + it+ + ii-. . 

For any 8 E i* set 

62 = -I x E lj: [h,x] = x(h) 

Problem 6. ;1 = @&, so = i. \ 

Problem 7. Any ideal of C;r is the sum of its . 

x for all h E t̂) (4) 

ntersections with the subspaces &. 
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Problem 8. Among the ideals of 6 that do not contain any I;i, there exists the 
largest ideal m and m = m+ @ m-, where rn+ = m n ii’ are ideals of 6. 

Problem 9. Ker 71 = m. 

Therefore g N g/m. Since m is determined uniquely we have proved the 
following 

Theorem 1 (The first uniqueness theorem). A semisimple Lie algebra is deter- 
mined uniquely up to an isomorphism by its Cartan matrix (or Dynkin diagram). 
More precisely, if g and 6 are semisimple Lie algebras with canonical generators 
{hi,ei,f;:(l < i < 1)} and (&i,Zi,x(l < i < l)} respectively and equal Cartan ma- 
trices then there exists a (unique) isomorphism 40: g + fi such that q(hi) = hi, 
VCei) = zi, Cp(fi) = Jo 

NOW let p: g + gl(V) be a finite-dimensional linear representation, GP its 
weights system. Each weight 3, E P and, in particular, each weight 2 E @,-, is 
completely determined by the integers i(hi) = (Alai) (i = 1,. . . ,I) which are its 
coordinates in the basis of fundamental weights zl, l  . . , nf (see 2.8”). 

The numbers A(hi) are called the numerical labels of A. 
Let v= @Adp V’ be the weight decomposition. A weight vector v E V’, is 

called a highest vector if 

p(ei)V = 0 for i = 1,. . ., 1. (5) 

The corresponding weight /i E OP is called a highest weight of p. 

Example. If p = ad for a simple Lie algebra g then the root vector e, corre- 
sponding to the highest root (see 2.5”) is a highest vector and the highest root 
8 is a highest weight of the representation. 

Problem 10. For any weight J E GP there exist simple roots ai,, . . . , aik such 
that % + cci, + l  l  l  + cci, is a highest weight. In particular, a highest weight exists 
for any finite-dimensional p. 

Fix a highest weight /i E QP and a highest vector vA E V,‘,. Denote by Ai the 
numerical labels /i(hi) of the highest weight. Consider the vectors 

vil . . . ik = P(L,) l  l  l  P(fikJvA (1 < i, ,..., i, < l), v0 = vA. (6) 

Clearly, vi1 . . . ik E VA -a. _ . . . -ai and 
‘1 k 

P(W * ‘il...ik = (‘i - aili - l  ** - aiki)vil...iky 

P(L)‘il . ..ik = ‘iil...ik’ 

ptei)‘il . ..ik = (‘ii1 pthi) + P(f;:l )ptei))‘i2.. .ik* 
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These relations imply that the subspace of V spanned by ui1 i , u0 is p(g)- . . . k 
invariant. 

An element 1 E t(R)* is called dominant if (A, cli) 2 0 (i = 1,. . . , I). This means 
that 2 belongs to the closure of the Weyl chamber Cv corresponding to the base 
al” , . . . , ccl” of A;. 

Problem 11. Any highest weight /i is dominant, i.e. /ii > 0. 

Now suppose that p is irreducible. Clearly, in this case uil . . . ik for all k and ~0 
generate I! 

Problem 12. If p is irreducible and /i is its highest weight then dim I$ = 1. Any 
other weight 1 E @p is of the form 1 = /i - ai1 - l  .0 - cci 

k 
, where cc,. E l7. The 

J 

representation p has a unique highest weight. 
Now we wish to prove that an irreducible linear representation p is determined 

uniquely up to an equivalence by its highest weight. For this we will make use 
of the following construction. 

Consider a vector space P over c with basis {fiO, Oil . . . . : 1 < i,, . . . , i, < I, k 2 1). 
Define a linear representation fi = B/i of the above Lie%gebra 6 in p by deter- 
mining it on generators by formulas (7) with hi, ei, fi, uil 
by hi, @iY f’i, Oil 

iky v0 and p replaced 
i 9 . . . k u0 and jj respectively. (The latter of these formulas should be 

considered as a recurrent definition of a(6i)). 

Problem 13. Prove the existence of & 

For an arbitrary R E i* set 

PA = {v E I? p(h)v = R(h)v for all h E i).. (8) 

Clearly, 

(9) 

Problem 14. Among the subspaces of P invariant with respect to @(@ and not 
coinciding with P there exists the largest subspace M”. 

Problem 15. There exists a unique linear map p: P-, V with the following 
properties: 

a) p(v^& = v0; 
b) The diagram 

commutes for any x E fi and p(P) = V. 
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Problem 16. Ker p = M’“‘. 

Problem 17. The ideal nt is contained in the kernel of the induced representation 
of 4 in V/W? 

Thus fi uniquely determines a linear representation of the Lie algebra 6/m z g 
in IQ4 (‘I This representation is completely determined by A, and the statement . 
b) of Problem 15 implies that it is equivalent to p if we identify h/m and g with 
respect to the above isomorphism. Therefore the following theorem holds. 

Theorem 2 (The second uniqueness theorem). An irreducible finite-dimensional 
linear representation of a semisimple Lie algebra is determined uniquely up to an 
isomorphism by its highest weight. 

In what follows we will often make use of the following method of describing 
irreducible linear representations of a semisimple Lie algebra g: on the Dynkin 
diagram of CJ mark the numerical labels of the representation above the corre- 
sponding vertices. By Theorem 2 the obtained diagram, called the diagram of 
this representation, determines it uniquely. 

3O. Existence Theorems. Let A = (aij) be an arbitrary 1 x 1 matrix over (lZ and 
A = (Al,..., AI) an arbitrary set of 1 complex numbers. Exactly as in 2” we can 
construct the Lie algebra 6 = ij(A), the vector space P and the linear representa- 
tionj? = PA: &-+ ql( 9) (it does not matter here whether A is a Cartan matrix and 
whether /li are nonnegative or integer). 

Clearly, the statements of Problems 5,7, 13, 14 and formulas (5) and (9) remain 
true. The algebras i, A+ and fi- are defined as in 2” but the linear independence 
of the elements hl, . . . , & has to be proved. 

Problem 18. The elements &, . . . , h, are linearly independent. 

This implies that if A is invertible then the statements of Problems 6 and 8 
remain true. 

In what follows let A be invertible. Construct the quotient algebra g = g(A) = 
G/m and the quotient space I/ = V(A) = p/M(“), where m and M(“) are defined 
as in 2”. Denote by n: 6 --+ CJ and p: 13 -+ V the natural maps. Set I 

h i = 7((hi)y ei = 7C(8i), Je = n(h), t = n(i), 

Finally, denote by p’ the linear representation of 5 in V induced by 6. By 
construction y’ is irreducible. 

Let us decompose V into weight subspaces with respect to p’(i). Namely, for 
any A E i* set 

vi = {v E v: p’(h)v = i(h)v for all h E il. 

Clearly, Vi = p( VA). It follows from (9) that 
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where Q = k {I E i*: VA # 0). 
On i, define the linear functions a,, . . l  , a, and /i setting 

aiCh ) j 
= Uij, A(h,) = Ai* (10) 

Clearly, v0 E VA. 

Problem 19. We have dim I$ = 1. Any element R E Q presents in the form 
i = /i - &, - l  l  * - &,. If V” contains a nonzero element annihilated by all p’(ai) 
then A= /i (cf. Problem 12). 

Problem 20. dim VA < co for all J E Q. 

Problem 21. p’(m) = 0. 
This shows that p’ determines an irreducible linear representation p = p(A): 

g + $w9 

Problem 22. Any nonzero element of g contains at least one of the elements hi. 

Problem 23. If x E n- and [ei, x] = 0 (i = 1, . . . ,I) then x = 0. Similarly, if 
y E n+ and [fi,y] = 0 (i = 1,. . . J) then y = 0. 

Suppose now that A is a Cartan matrix and the numbers (ii are nonnegative 
integers. Our aim is to prove the following statements: 

1) V and g are finite-dimensional; 
2) g is semisimple and its Cartan matrix coincides with A; 
3) The numerical labels of the highest weight of p(4) are /ii. 
These statements obviously imply the following theorems. 

Theorem 3 (The first existence theorem.) Any Cartan matrix is the Cartan 
matrix of a semisimple Lie algebra. 

Theorem 4 (The second existence theorem.) For any semisimple Lie algebra g 
and any dominant weight A E p there exists an irreducible finite-dimensional linear 
representation p(A) of q with highest weight A. . 

Theorems 3 and 1 imply in particular that each of the exceptional Dynkin 
diagrams E,, E,, E,, &, G, (see 2.7”) is a Dynkin diagram of a uniquely 
determined noncommutative simple Lie algebra. These Lie algebras are called 
exceptional and are denoted in the same way as their Dynkin diagrams. Their 
dimensions are listed in Table 1. The root systems of these Lie algebras are the 
root systems corresponding to the exceptional Dynkin diagrams whose existence 
has been established by an explicit construction in $2. 

First of all let us prove that V is finite-dimensional. Problem 20 implies that 
it suffices to prove the finiteness of Q. 

In i*, consider the subgroup 

L = {y E i*: y(hi) E Z(i = 1,. . . ,l)]. 
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Clearly, I!, is a lattice in its real linear span E. Furthermore, the elements cc,, . . . , 
cc1 and /i defined by formula (10) are contained in L. 

Problem 24. Q c L. 

Since A is invertible, a,, . . . , cc1 constitute a basis of E over II%. Theorem 2.9 
implies that there exists a positive definite scalar product ( 0, 0) on E such that 
Cailaj) = aij for all i, j. Let ri be the orthogonal reflection in E with respect to 
the hyperplane orthogonal to ai. Problem 2.1 implies that r,(L) = L. Therefore 
the group IV generated by ri (i = 1,. . . , I) is finite (cf. Problem 2.34). Now let us 
prove that Q is W-invariant. . 

Problem 25. [&,(adf;->-‘~~“l;*] = [f̂ k,(ad $j)-‘ji+‘t?i] = 0 for any i #j and 
any k. 

Problem 26. (adfj)-‘ij+‘h = (ad ej)-“ji+‘e, = 0 for any i # J 

Problem 26 implies that 

PmvJ -aij'lJ) = adp(fi)-"'jf'p(jI) = 0 (i #j)- (11) 

Problem 27. Let p and q be two elements of an associative algebra such that 
(adp)‘q = 0. Then any product of them containing m factors equal to p and yt 
factors equal to q presents as a linear combination of products of the form 
pf14p[24.. .pf”qpfo where li 2 0, CO<i<n li = m, li < I for i = 1, . . . , ~1. 

A linear operator p is locally nilpotent if for any vector u there exists m such 
that p”u = 0. (If p acts on a finite-dimensional space then p is nilpotent.) 

Problem 28. p(h)A%ra = 0. 

Problem 29. p(h) and p(e,> are locally nilpotent in V. 

Denote by gti) the su 
isomorphic to eI,(Q. 

bspace of g spanned by hi, ei,h. Clearly, this is a subalgebra 

Problem 30. The space V splits into the direct sum of finite-dimensional 
subspaces invariant with respect to p(g(‘)) (for a fixed i). 

Let pi be a hear representation of s[$) in V which sends the matrices h, e, f 
in p(hi), p(ei), p(A), respectively. By Problem 30 there exists a linear representation 
Ri: SLi(@) -+ GL( V) preserving the finite-dimensional subspaces appearing in 
this problem and such that dRi = pi in each of these subspaces. Set 

Let us extend ri onto i* by linearity and denote the dual reflection in i also by * A 
ri. Since 7~: t -+ t (by the definition of m) is an isomorphism, we will identify t and 
t with the help of 71. 

Problem 31. wip(h)wi’ = p(ri(h)) (h E t = i). 

Problem 32. We have T/r-(i) = wi V” for any jU E t*; in particular, r,(Q) = 52 . I 



4 3. Existence and Uniqueness Theorems 189 

Problem 33. For any y E E there exists w E IV such that (w(y), ai) 2 0 for all 
i= l,...,l. 

Problem 34. We have (A, A) < (A, A) for any A E Q. 

Therefore, Q is a bounded subset of L and hence it is finite. We have proved 
that V is finite-dimensional. Now let us go over to studying g. 

For a E t* set 

ga = {=g: WI = @2)x for all h E t}= 

Clearly, 

Problem 35. If Ai # 0 for all i then Ker p = 0. 

Problem 36. The Lie algebra g is finite-dimensional and semisimple. 

Problem 37. The subalgebra t is a maximal diagonalizable subalgebra of g. 

Problem 38. The linear functions a,, . . . , or, on t = i form a system of simple 
roots of g with respect to t and (hi, ei,f;:( 1 < i < !)} is a canonical system of 
generators. 

Problem 39. The Cartan matrix of { cxl, . . . , al> coincides with the Cartan matrix 

Problem 40. The weight A is the highest weight of the linear representation p. 

Example. Let q = &(@). By theorems 4 and 2 there exists a unique up to an 
equivalence irreducible representation pk of g with the diagram 

k 
0 (12) 

where k is an arbitrary nonnegative integer. Let V be the space of this representa- 
tion. The highest weight of & is of the form /1 = kcc/2 where 3c is the positive root 
of sI,(@). By Problem 12 all the weights of pk are of the form A - see = (k - 2s)s1/2 
where s is an integer. Since the system of weights $, is symmetric (Corollary of 
Theorem 1.5), we have 0 < s < k so that 

@ Pk = (p42: p = k,k - 2 ,..., 2 - k, -k). 

The weight basis consists of the vectors of the form Ui, .ik determined by (6). Here 
it is clear that dim V’ = 1 for all R E $, and that as the-weight vectors we can take 

VA -sa = Pk(f)“v~ (S = O,lT--*,k), 



190 Chapter 4. Complex Semisimple Lie Groups 

where llii is a highest vector. Therefore dim I/ = k + 1 and 

p&)v/i-sa = s(k  - s  + l)vA-ts-l)a 
(s = 1,. l  . , k) 

For k = 0 we get the trivial one-dimensional representation, for k = 1 the 
standard representation in @*, for k = 2 the adjoint representation. 

4’. The Linearity of a Connected Complex Semisimpie Lie Group. Let G be a 
connected semisimple algebraic group over @, T its maximal torus, Q c P c t(R)* 
the root and weight lattices of the root system A, (see 2.8”). 

Theorem 5. The group G is simply connected if and only if 

X(T) = P. (13) 

First we prove the sufficiency of the condition (13) and then we apply it to 
prove Theorem 6. The latter proof will also imply the necessity of this condition. 

Let {q,... , x1} be a system of simple roots of G with respect to T, Gtk) = G(Q) 
the three-dimensional subgroup of G corresponding to ctk (see 1.6”), Tfk) the 
maximal torus of G@) belonging to T. 

Problem 41. Under condition (13) all groups Gfk) are simply connected. 

Problem 42. Under the same condition T = T(l) x l  l  l  x T? 

Problem 43. For any connected reductive algebraic group G the homomor- 
phism t,: q(T) -+ q(G) generated by the embedding of the maximal torus 
i: T -+ G is surjective. 

Therefore it suffices to prove that (13) implies i, = 0. To do this consider the 
diagram 

T= T”’ x . . . x 7-f’) ’ ) G 

where i(k)* T(k) + G(k) . is an embedding and m(g,,. . . ,gl) = g, l  l  .gl (see Problem 
42). Clearly, the diagram commutes, hence i, = m&y) x l  ** x iz)), but it) = 0 
by Problem 42. Therefore i, = 0 and the sufficiency of (13) is proved. 

Theorem 6. Any connected semisimple Lie group admits a faithful ji’nite- 
dimensional linear representation. 

Corollary. Any connected semisimple Lie group admits a unique structure of’ an 
algebraic group. 
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Problem 44. Reduce the proof of the theorem to the case of a simply connected 
group. 

Problem 45. For any semisimple Lie algebra g there exists a linear representa- 
tion p whose weights generate the weight lattice P of the root system A,. Such a 
representation p is always faithful. 

Now we will prove Theorem 6 for a simply connected semisimple group G. 
Let g be the tangent algebra of G. By Theorem 1.2.6 there exists a linear 
representation R of G such that dR = p is the representation of g satisfying the 
condition of Problem 45. Let us prove that R is faithful. Clearly, R(G) is a 
connected algebraic group with tangent algebra p(g) N g. If we identify the 
maximal diagonalizable subalgebra t of g with p(t) with the help of p, the weights 
of p are identified with the weights of the identity representation of R(G) which 
are the differentials of characters of the maximal torus of R(G). Therefore R(G) 
satislies the condition (13) and is, as we have already proved, simply connected. 
Thus the covering R: G --) R(G) is bijective. Theorem 6 is proved. q 

If G is a simply connected semisimple algebraic group then Problem 45 implies 
the existence of a representation R of G whose weights generate P. Therefore, 
(13) holds thereby completing the proof of Theorem 5. 0 

5’. The Center and the Fundamental Group. Let T be an algebraic torus, t its 
tangent algebra. We will now establish a one-to-one correspondence between 
the finite subgroups of T and the lattices in t(lW) containing t(Z). To this end 
consider the homomorphism 8: t + T defined by the formula 

d?(x) = exp(27tix). (14) 

Problem 46. Ker 8 = t(Z). 

Problem 47. For any finite subgroup S c T its pre-image &‘-l(S) is a lattice in 
t(R). The map S I--+ &‘-l(S) establishes a bijective correspondence between finite 
subgroups of T and lattices in t([W) containing t(Z). We also have 

s = G-‘(Syqz). 

Now apply these considerations to calculate the center and the fundamental 
group of a semisimple Lie group in terms of the lattice of characters of its maximal 
torus. Recall (see Theorem 2.6) that the center Z(G) of a connected semisimple 
Lie group G is contained in any its maximal torus T. Consider, as in 2.8”, the 
root and the weight lattices Q c P c t(R)* and their dual lattices Q” c P” c 
WV . 

Theorem 7. Let G be a connected semisimple Lie group, T its maximal torus. 
Then &-‘(Z(G)) = P” and 

Z(G) 2 P”/t(Z) z S(T)/Q. 
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Problem 48. Prove this theorem. 

Corollary. If G is a simply connected semisimple Lie group then Z(G) = P/Q = 
e4d 

Problem 49. Let G, G be connected semisimple Lie groups and let a homomor- 
phism p: c -+ G be a covering. If T c c and T c G are maximal tori then p(T) 
and p-‘(T) are maximal tori of G and c respectively. If T = p(T), we have the 
commutative diagram 

where dp is an isomorphism and where 8 and 8 are defined by (14). 

Theorem 8. Let p: c + G be a simply connected covering of a semisimple Lie 
group G. Then 8-‘(Kerp) = t(Z) and 

n,(G) = t(Z)/Q” ‘v P@(T)). 

Problem 50. Prove this theorem. 

6’. Classification of Connected Semisimple Lie Groups. In this section we will 
prove the following two theorems. 

Theorem 9 (The global uniqueness theorem.) A connected semisimple Lie group 
G is determined uniquely up to an isomorphism by its Dynkin diagram and the 
character lattice Z(T) of a maximal torus T c G. hlore precisely, if G,, G, are 
two connected semisimple Lie groups, ?;I c Gi their maximal tori, ITi the correspond- 
ing systems of simple roots then for any isomorphism $: 17, -+ I72 which maps %( TI) 
onto Z(T,) there exists an isomorphism 0: G, + G, mapping TI onto T2 and 
inducing I,$. 

Theorem 10 (The global existence theorem). Let A c E be a reduced root system, 
Q c P c E its root and weight lattices. For any lattice L c E such that Q c L c P 
there exist a connected semisimple Lie group G, its maximal torus T and a root 
system isomorphism d, + A mapping X(T) into L: 

Proof of Theorem 9 is based on the following problem. 

Problem 51. Let G,, G, be two connected semisimple Lie groups, q c Gi their 
maximal tori. For any isomorphism cp: g1 -+ g2 such that cp(t&Z)) = t&Z) there 
exists an isomorphism Cp: G, -+ G, such that d@ = cp. 

Problem 52. Prove Theorem 9. 
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To prove Theorem 10 consider a semisimple Lie algebra 9 whose Cartan 
matrix coincides with the Cartan matrix of d (see Theorem 3).‘By Theorem 2.9 
we may identify d with the root system d, with respect to a maximal diagon- 
alizable subalgebra t. Let G be a simply connected Lie group with the tangent 
algebra 9, T = exp t a maximal torus and 8: t ---) T the homomorphism defined 
by formula (14). Set N = &L*), where L* c P” is the dual lattice of L. By 
Theorem 7 N c Z(G). The group G = e/N is the desired one. In fact, L* = 
8-‘(N) since Q ” = Ker 8 by Theorem 5 and L* I> Q”. Considering diagram 
(15), where T = T/N and p: G + G is the natural homomorphism, we see that 
t(Z) = L* and therefore 3(T) = L. 

Notice that a lattice L such that Q c L c P is completely determined by the 
subgroup L/Q of the finite group P/Q = n(d). Therefore the classification of 
connected semisimple Lie groups can be given in terms of subgroups of n(d). 
(Notice that by Theorem 7 the group L/Q is isomorphic to the center of the 
semisimple Lie group G corresponding to L.) Let us give the corresponding 
formulation in terms of Cartan matrices. 

Let A be an I x I Cartan matrix. Then its rows generate a lattice QA in [w’ such 
that QA c Z’. Set n(A) = z’/QA. By an isomorphism of Cartan matrices A, and 
A, we will mean a pair of identical permutations of rows and columns of A, 
that transforms A 1 to A,. Any such isomorphism determines an isomorphism 
44 k-+ Wd* 

Problem 53. There is a bijection between the connected semisimple Lie groups 
G (considered up to an isomorphism) and the pairs (A, Z), where A is a Cartan 
matrix and Z is a subgroup of n(A), considered up to an isomorphisms of Cartan 
matrices A that transform subgroups Z into each other. If a pair (A,Z) corre- 
sponds to G then A is the matrix of g and Z z Z(G). 

Example 1. Let g be a simple Lie algebra. Let us see what the classification of 
connected Lie groups G with the tangent algebra g looks like. If g # DZs, s >, 2, 
then n(dJ is a cyclic group. Therefore any of its subgroups is invariant under all 
the automorphisms of the group n(dJ. Therefore in this case G is determined up 
to an isomorphism by g and the center Z(G) which may be isomorphic to an 
arbitrary subgroup of n(dJ. . 

Example 2. Let g = D,, = W&Z), s 2 2. Then n(d,) = ZZ @ Z1. Clearly, for 
n > 3 the only nontrivial automorphism of the Dynkin diagram (or the Cartan 
matrix) permutes the summands of this direct sum. Therefore there exist exactly 
two nonisomorphic connected Lie groups G with the tangent algebra 4oJ@) 
(s > 3) and the center Z(G) z Z1. Furthermore, for g = Da the automorphism 
group of the Dynkin diagram, isomorphic to S3, acts as the automorphism group 
of the group B, @ ;22. Therefore, in this case there exists a unique connected Lie 
group with the given center. 

7O. Classification of Irreducible Representations. Let G be a connected semi- 
simple Lie group. To any finite-dimensional linear representation R: G -+ GL( V) 
one can associate a representation p = dR: q--) qI( V) of the tangent Lie algebra , , 
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9. The weight system aR of R with respect to a maximal torus T c G coincides 
kith the weight system $ with respect to the corresponding subalgebra t of 9. 
The lzighest vectors and the highest weights of R are the highest vectors and tde 
highest weights of p. If R is irreducible then so is p and Problem 12 implies that 
R possesses a unique highest weight /i E X(T). By Problem 11 /i is dominant. 
The diagram of an irreducible linear representation R is the diagram of p. 

Theorem 11. An irreducible finite-dimensional linear representation of a con- 
nected semisimple Lie group C is determined uniquely up to an equivalence by its 
highest weight. For any dominant character A E S(T) there exists an irreducible 
finite-dimensional linear representation of G with highest weight A. 

Problem 54. Prove this theorem. 

Example. Since SL,(@) is simply connected, it has a representation R, with 
diagram (12) such that dR, = pk (k is any nonnegative integer). Clearly, Rk( - E) = 
E if and only if k is even. Therefore the irreducible representations of SO&Q = 
SL, KY{ + E) are determined by diagrams (12) with arbitrary even k 2 0. 

Now, introduce lowest weights which are sometimes more convenient than 
highest weights. Let R be a finite-dimensional linear representation of a con- 
nected semisimple Lie group in a space V and p = dR the corresponding tangent 
representation. A lowest vector of R (or p) is a (nonzero) weight vector u E V such 
that p(L)v = 0 (i = 1,. . . $1). The corresponding weight is called a lowest weight. 
For instance, the lowest root of a simple Lie algebra (see 2.5”) is the lowest weight 
of its adjoint representation. Let us establish the connection between the highest 
and the lowest weights of a representation. 

Let C, be the Weyl chamber corresponding to a base 17. Denote by w. the 
(unique) element of IV sending Co to the opposite Weyl chamber -Co. Clearly, 

2 w. = e. 

Problem 55. The transformation tWg sends the highest weights of the represen- 
tation R (or p) into the lowest weights and vice versa. If no E N(T) is an element 
such that (Ad n,)lt(R) = w. then R(n,) transforms the highest vectors in the 
lowest ones and vice versa. 

Problem 55 implies that the properties of the lowest weights are completely 
similar to the known properties of the highest weights. Thus, any weight Jti of a 
representation R is expressed in the form ;1 = A4 + cci, + l  mm + cxi,, where A4 is a 
lowest weight and ai. E l7. If R is irreducible then there exists a unique lowest 
weight A4 E QR, dim i& = 1 and the representation is determined by A4 uniquely 
up to an equivalence. 

Exercises 

I) The Lie algebra ii+ of Problem 5 is freely generated by the elements &, . . . , 
& (i.e. there exists an isomorphism I(x,: . . . , x,) -+ it+ sending xi to &). Simi- 
larly, fi- is freely generated by fl, . . . , fi. 

2) The relations of Problem 26 together with relations (2) form the complete 
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set of defining relations of a semisimple Lie algebra g. (Hint: See [ 171, 
Appendix to Ch. VI). 

3) Under the notation of 2” v E vi. belongs to A#“) if and only if fiA(t?i)v E &P) 
for all i. (This gives a recursive method for constructing M’“‘.) 

4) Under the notation of 2” let /i be a highest weight of p and 1 a dominant 
weight of the form /1 - ai1 - l  ** - a,,, where a. E l7. Then A E $. (Hint: 
present /i - 2 as the sum of a minimal number ‘(;f positive roots: /i - rt = 
& + l  . . + P, and then by induction in k prove that /i - p1 - l  ** - pk E @J 

Since any weight of p can be transformed into a dominant weight by a 
transformation from the Weyl group, we have a method for recovering all the 
weights of a representation from its highest weights. 

In Exercises 5)- 14) R stands for a finite-dimensional linear representation of 
a connected semisimple Lie group G in a space V, p = dR: g + gl(V) the corre- 
sponding tangent representation, 17 a system of simple roots of G. 

5) We have QR* = --aR, where R* is the representation dual to R. If R is the 
irreducible representation with the highest weight /1 and the lowest weight 
M then R* is the irreducible representation with the highest weight -A4 = 
- ‘wJ and the lowest weight -A = -‘wok& where w. f W is the element 
defined in 7’. 

6) The transformation v = - ‘wO is an automorphism of Z7. If g is simple and 
different from sI,(@) (n 2 3), ~o~~+&lZ) and E, then v = e. For the remaining 
simple Lie algebras v is determined by the only nontrivial symmetry of 
the Dyikin diagram of 17. If g is not simple then v acts on flcomponentwise. 
(Hint: apply Exercise 2.19). 

A representation R is called sel’f-dual if R* - R. 
7) If g is a simple Lie algebra different from sl,(@), (n > 3), SO,,+,(C) or E, then 

any irreducible representation of g is self-dual. For the remaining three types 
an irreducible representation is self-dual if and only if its numerical labels 
are symmetrically located on its Dynkin diagram. 

8) Let H be the three-dimensional connected simple subgroup of G corre- 
sponding to the principal three-dimensional subalgebra h c g (see Exercise 
2.28). If R is an irreducible representation with the highest weight /1 and the 
lowest weight M then there exists in V a subspace invariant and irreducible 
with respect to R(H) and containing I$, I&. 111 this subspace, R induces an 
irreducible representation R, of H, where m = xzE nr, A,. 

9) A linear representation R is self-dual if and only if there exists a non- 
degenerate bilinear form on I/ invariant with respect to R(G). 

10) If for an irreducible representation R there exists a nonzero bilinear form on 
I/ invariant with respect to R(G) then this form is non-degenerate and either 
symmetric or skew-symmetric; any two invariant bilinear forms are propor- 
tional to each other. 

A linear representation R is called orthogonal if it preserves a non-degenerate 
symmetric invariant bilinear form and symplectic if it preserves a non-degenerate 
skew-symmetric invariant bilinear form. Any self-dual irreducible representation 
is, clearly, either orthogonal or symplectic. 
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The representation R, of SL,(C) is orthogonal if k is even and symplectic if 
k is odd. Any irreducible representation of SO&C) is orthogonal. 
Let R be an irreducible self-dual representation with highest weight /i and 
A = A(&) (6~ E Z7) the numerical labels of the highest weight. R is orthogonal 
if a&CnrJ, is even and symplectic if this number is odd. Here ra are the 
coordinates of the vector 2pv = xaEdl d’ in the basis Z7 ” = {h,: a E Z7}. 
Thanks to Exercise 2.5 p ” = 1. E n 71,” , where 7t,” E t(lW) are the fundamental 
weights of the root system 4:. 
Deduce from Exercise 12 the following rule for determining whether a 
self-dual irreducible representation of G is orthogonal or symplectic. Find 
the sum of numerical labels of the highest weight corresponding to the black 
vertices in the connected components of the Dynkin diagram of G of the 
types indicated below (other types give zero contribution). The representa- 
tion is orthogonal if and only if this sum is even and symplectic if it is odd. 

A 4q+l 0-O-*--@-*** -o-o (the black vertex is the middle one). 

B 4q+ly B 4q+2 

C 24 

C 2q+l 

D 4q+2 

--**- 

~-(d> . . . 
9 

E 7 

Express the criterion of Exercise 12 in the following form: let z. E Z(G) be 
the element defined by the formula 

20 = Qp” ) = exp(2zip” ); 

an irreducible self-dual representation R is orthogonal if R(z,) = E and 
symplectic if R(z,) = -E. 

A connected semisimple Lie group G is called a group of adjoint type if it 
satisfies either of the following equivalent conditions: 3?(T) = Q or Z(G) = {e} 
or n,(G) z nl(AG). 
For any semisimple Lie algebra g there exists a unique up to an isomorphism 
group of adjoint type with the tangent algebra g. Such a group is the adjoint 
group Ad G for any connected Lie group G with the tangent algebra g. 
Any self-dual irreducible linear representation of a group of adjoint type is 
orthogonal. 
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Let G be a connected semisimple Lie group, R 1,. . . , R, its linear represen- 
tations, R = R, . . . R,. 

17) The weights of R are of the form A1 + l  *= + R,, where Ri E QR . Then 
i 

(VI)*, 0  l  ** 0  K?l)1, = (VI 0  l  ** 0  Kl)ll+.*.+~; 

18) If v,+ is a highest vector of Ri then url = Us @ . . . @ unm is a highest vector 
of R.I 

1 

Suppose G = G, x 0.. x G,, where Gi’S are simple groups. 
For any irreducible representation Bi: Gi + GL( 4) we can define an irre- 

ducible representation Ri: G + GL( c) setting Ri(g1, . . . , gJ = Ri(gi). 
19) Let Ri: Gi + GL( I$) be an irreducible representation for each i = 1, . . . , m. 

Then R, . . . R, is an irreducible representation of G in the space VI @ l  l  l  @ 
T/m. Recover its highest weight from the highest weights of Bi’s. 

20) Conversely, any irreducible representation of G factors into the product of 
Ri’S obtained by the above method from some irreducible representations 
Bi of Gi. The representations Ri are determined uniquely. 

Let TPV be the p-th tensor power of a vector space I? Let PV and PV be its 
exterior and symmetric powers. Any representation R: G ---) GL(V) induces the 
p-th tensor power TPR = RP in the space TpV, the p-th exterior power APR in 
ApI/ and the p-th symmetric power SPR in SpV. 
21) T2R z A2R @ S2R. (For p > 2 the similar statement is false!) 
22) Find the representations of the tangent algebra g corresponding to APR and 

SPR. 
23) VA, A ..- A VA c  (APV);c +...+;1 ; VAl. . . VA c  (SPv)&+...+A l  

’ 1 

24) If uI1 is a higheit vector of R, then ~2 is a hkhest vector of S;R and its weight 
is p/l. 

25) Let R be an irreducible representation with the highest weight /i and 

{ V1,**-, vp}, where vi E V’Q a linearly independent system of its weight vectors 
with the minimal possible sum CIGi+ ht(A - Ri), where k(y) (the height of 
a weight y E P) is the sum of coordinates of y in the basis consisting of simple 
roots. Then v, A l  . l  A v, is a highest vector of APR. 

26) The diagrams of the identity representations Id of the classical simple Lie 
groups are the following: 

SL,(a=), yt > 2: 
1 
o----o-- a 

so 1 
2n+l (C), n > 2: - -u=x 

3 
SO,(@): E, 

so2n(@), n 2 3: 
1 

O-- < 
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27) For the indicated values of p the representations /-’ Id are irreducible and 
their diagrams are the following: 

SL,(@), n > 2: 

so 2n+l (C), n 2 2: 

SW@), f-2 2 3: 

pbn-1, 

1 
o-(-* . . . + . . . 

< 

p<n-2 

(the unit occupies the p-th place.) 
28) The representation Sp Id of SL,(@) is irreducible for ail p, its diagram is 

&-* l  .--o-o and Sp Id - R, for n = 2. 
29) Using Theorem 5 prove that SL,(C) and Sp2,(C) are simply connected and 

n,(SO,(@)) h/ Z2 for n >, 3. 

In Exercises 30-33 R is a locally faithful linear representation of a connected 
semisimple Lie group G, p = dR, T a maximal torus of G. 
30) If we identify t(R)* with its image with respect to ‘p-l then the character 

lattice T@(T)) is identified with the sublattice L, c T(T) generated by the 
weights of R. The lattice L, is generated by the lattice Q and all highest (or 
all lowest) weights of R, and the dual lattice is of the form 

L;=(xEp”:A(x)EZf or all the highest (lowest weights of R) 

31) Z(R(G)) 2 p”/L; z LJQ; Ker R z Lg/i(Z) 2 %(T)/L,. 

32) A representation R is faithful if and only if its weights generate X(T) or if 
L* - - W) . 

33) RYG) is a group of adjoint type if and only if L, = Q. If R is irreducible 
then this is equivalent to the fact that the weight system OR contains a zero 

Denote by Spin,(@) the simply connected covering group for SO,(C), 
n > 3. 
34) We have the following isomorphisms: 

Spin,(@) z SL,(C), 

SphdQ = SL,(C) x SL,(C), 

SPi%(Q 2 Sp,(@), 

Spin,(@) z SL,(C). 
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35) A connected semisimple Lie group admits a faithful irreducible representation 
if and only if its center is cyclic. 

36) The following representations of Spin,(@) are faithful: 

for odd n 

for n = 4k + 2, k E Z 

+ o-o- . ’  l  

Q 

for n = 4k, k E Z 

Hints to Problems 

1. By induction in the length m of a word verify that the words of the form (1) 
constitute a subalgebra of a. 

4. Make use of Problems 1.44 and 2.21. 
5. Making use of Problem 1 and relation (2) show that i + it+ + fi- is a 

subalgebra of 6. 
6. The identity Go = i follows from the invertibility of A and the linear indepen- 

dence of the elements I& 
8. First prove that the ideal m c 6 does not contain any & if and only if 

m n i = 0. Then show that any ideal m is of the form m = &m n ia. To 
prove that m* are ideals notice that 

[J,;r’l c i + ii+, [&fi-] c i + it-. 

9. Follows from the fact that any non-zero ideal of g contains at least one of 
the elements hi. 

10. Apply Problem 1.25 (more precisely, its generalization to any linear represen- 
tations of g). 

11. Letq = rai be the reflection corresponding to the root q. By Problem 1.40 
ri(A) = /1 2 /!,a, is a weight of the representation p in the subspace spanned 
by the vectors uil i , ~0. By Problem 1.25 vi1 
that/ii>O. S”k 

. . . ik E V,_,il-..._,. . This implies 
‘k 

13. Make use of Problem 3. 
17. Follows from the commutative diagram of Problem 15. 
18. Make use of the existence of the representation & for any /1 1, . . . , A,. 
2 1. Problem 8 implies that the subspace p’(m-)( V) is &invariant. If P’(m-) # 0 

then p’(m-)( V) = V, v0 E p’(m-)( V) which contradicts Problem 19. To prove 
that p’(m’) = 0 consider the subspace nxEmt Ker P’(X) invariant with respect 
to g and containing “0. 

23. Prove that the elements of the form (adhI). . . (adf;:p)(ad h,,). . . (ad hjq)(x) 
(p, q >, 0) form an ideal of g belonging to n-. 
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27. Expanding (ad p)‘q = 0 we see that the product p’q is presented in the desired 
form. 

28. The vector v = ~(~)‘WI~ is obviously a weight vector of weight A - 
(/ii + l)a,. By a straightforward verification p(e,)v = 0 for all k. Problem 19 
shows that v = 0. 

29. For p(ei) this is clear from Problem 19. To prove the local nilpotency of p(A) 
consider the subspace Ui = um Ker(p(fi))“. Problem 28 shows that Ui # 0. 
By a straightforward verification Ui is invariant with respect to p(h,) and 
p(e,) for all k. Finally, with the help of formula (11) and Problem 27 applied 
to P = p(h) and q = p(fk), it is not difficult to show that Ui is invariant with 
respect to p(fk) for any k. This implies that Ui = T/. 

30 It suffices to prove that any weight vector belongs to a finite-dimensional 
subspace invariant with respect to p(#J). Let A E 52. Consider the subspace 

It is easy to verify that U is invariant with respect to p(s”)) and Problems 20 
and 29 imply that U is finite-dimensional. 

3 1. It suffices to consider two cases: h = hi and a,(h) = 0. In the first case the 
statement of the problem reduces to the statement concerning SL,(c) which 
can be verified directly. In the second case it is necesary to prove that p(h) 
commutes with wi but this follows from the fact that p(h) commutes with 
PthiL PCei)9 P(h)* 

33. In the orbit of y under W, choose an element y1 with the minimal sum of the 
coefficients in its linear expression in terms of cx,, . . . , a, and consider the 
elements ri(yl). 

34. Thanks to Problems 32 and 33 we may assume that (A,cq) 2 0 for all i. 
Making use of Problem 19 we get (A - 2b, A) > 0. 

35. Under the conditions of the problem, hi 4 Kerp for any i. Then apply 
Problem 22. 

36. Let a be a commutative ideal of a and a # 0. By Problem 22 hi E a for some 
i but then ei = -$ [hi, ei] E a contradicting the commutativity of a. 

38. Make use of Problem 5 and linear independence of the forms ccl, . . . , q. 
41. The group Gtk) is the image of the simply connected group SL,(@) with 

respect to the homomorphism Qk = @+ (see 1.6”); it is simply connected if 
and only if Qk is injective, i.e. t, = @,J - E) # e. It is easy to see that t, = 
exp(nih,). The condition (13) implies the existence of a character x E Z’(T) 
such that (dX)(h,) = 1. Then x(t,J = exp(ni(dX)(h,)) = - 1 so that t, # e. 

42. Clearly, T = T(l). . . T(l). Let t, E T(“) be elements such that t, . . . tl = e. Con- 
dition (13) implies the existence of characters xi E X(T) (i = 1,. . . , i), such that 

? dn . = ni (fundamental weights). We have 
exb(2nickhk), where ck E UZ. Then ;c,&) 

xk(tl . . . tJ = x&) = 1. Let t, = 
= exp(2nic,) so that ck E Z and t, = e. 

43. Make use of Theorems 1.2.4, 2.4 and Problem 2.27. 
44. Make use of Theorem 3.1.10. 
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45. Such is e.g. the sum of the irreducible representations with highest weights 
q,-9 n1 existing thanks to Theorem 4. The representation is faithful thanks 
to Problem 1.39. 

48. Make use of the fact that Z(G) = {expx: x E t, e’@) = 1 for all a E dg>. 
49. Make use of the relation Ker p c Z(G). 
50. Make use of Diagram (15). 
5 1. Let pi: Gi --+ Gi be a simply connected covering of Gi (i = 1,2) and T c Gi, 

r c Ci the maximal tori corresponding to tie The isomorphism (p determines . 
an isomorphism 5: ZI, -+ G, such that the diagram 

Pl t 1 P2 

where &i, Zi are defined as in (14), commutes (see Problem 49). Theorem 8 
implies that $(Kerp,) = Ker p2 so that 8 determines the desired isomorphism 
@: G1 -+ G2. 

52. Make use of Theorem 1 and Problem 5 1. 
53. Let A be the Cartan matrix of g. It follows from (2.6) that the isomorphism 

Z’ -+ P sending the set (k,, . . . , k,) to 1 ,., l<r<l kini maps QA onto Q and there- 
fore induces an isomorphism z(A) + 7~(d&. With the subgroup %(T)/Q c 
n(d,) associated is an isomorphic subgroup Z c n(A). Theorems 9 
and’ 10 imply that the correspondence Gw(A,Z) determines the desired 
bijection. 

54. The uniqueness of the representation with given highest weight follows from 
Theorems 2 and 1.2.4. Let A E S(T) be a dominant character. By Theorem 
4 there exists an irreducible finite-dimensional linear representation p: g -+ 
91(V) of g with the highest weight A By Theorem 1.2.6 p = dR for an 
irreducible representation 8: G -+ GL( V), where G is a simply connected 
covering group of G. By Theorem 8 the kernel of the covering q: G --) G is 
of the form Ker cp = &t(Z)). On the other hand, it follows from Problem 10 
that 0~ E X(T) whence we derive that R(Ker cp) = e so that R determines the 
desired linear representation R: G + GL( V). 

55. Let B+ and B- be the Bore1 subgroups of G corresponding to the Weyl 
chambers C, and - C0 (see 2.3”). It follows from Problem 1.24 that 
n,Bfnol = B- and n,B-n,’ = B+. 



202 Chapter 4. Complex Semisimple Lie Groups 

5 4. Automorphisms 

In this section we study automorphisms of the complex semisimple Lie alge- 
bras. First we prove that the group of outer automorphisms (see 1.3.10”) of a 
semisimple Lie algebra is isomorphic to the group of automorphisms of its 
Dynkin diagram. We then study semisimple automorphisms of a semisimple Lie 
algebra g up to conjugacy in Aut g. The main result is an explicit description of 
classes of semisimple automorphisms whose eigenvalues are of absolute value 1. 
This description, involving the affine Dynkin diagrams, is due (in case of periodic 
automorphisms) to V.G. Kac, but its proof presented in this book essentially 
differs from the original one (for an exposition of the latter see [6]) and goes back 
to the well-known paper by F.R. Gantmacher [38]. Especially important for us 
is the description of classes of involutive automorphisms since it will be used in 
Ch. 5 in the classification of real simple Lie algebras. At the end of the section 
we consider semisimple automorphisms of simply connected semisimple Lie 
groups and we prove that the set of fixed points of such an automorphism is 
connected. All Lie groups and Lie algebras are defined over UZ; (0, 0) denotes the 
Cartan scalar product on a semisimple Lie algebra. 

lo. The Group of Outer Automorphisms. Let g be a semisimple Lie algebra. In 
this section we calculate the group Aut g/Int g of its outer automorphisms (see 
1.3.10’). As it is known, Aut g is a linear algebraic group whose tangent algebra 
is the algebra of derivations Qer g. The ideal ad g c her CJ is isomorphic to g and 
therefore is algebraic. Clearly, the corresponding connected algebraic normal 
subgroup of Aut g coincides with Int g. 

Let h be a maximal diagonalizable subalgebra in g. Let d, be the root system 
with respect to h and 17 c d, a base. Each automorphism ‘8 E Aut g is the dif- 
ferential d@ of an automorphism 0 of the connected algebraic group G with the 
tangent algebra g (e.g. of the automorphism O(u) = 8a0-’ of G = Int g). Applying 
Problem 1.24 we see that if 0(b) = t, then B(b([w)) = b([w) and ‘8(d,) = d,. Since 
8 preserves the Cartan scalar product, ‘8 E Aut d,. Now consider the subgroup . 

Aut(g,t), n) = (0 E Aut g: B(b) = b,‘e(n) = n>. 

Assigning to an automorphism 0 E Aut(g, h, Z7) the automorphism @In)-’ E 
Aut Z7 we get a homomorphism 

q: Aut(g, E>, Z7) + Aut 17. 

Let us prove that VJ is surjective. For this fix a canonical system of generators 
% ez,e-& E ff)) of g associated with b and I7 (see 3.2”). By Theorem 3.1 for 
any z E Aut U there exists a unique automorphism f E Aut(g,h, n) such that 

w-l,) = h,-I(,), f(e,) = es-q@, s^(e_,) = e-r-l(a) (cc E I7). (1) 
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Clearly, the map c: z t+ z  ̂is a homomorphism of Aut 17 into Aut(g, f>, Z7) such 
that q-c = id. We see that ye isomorphically maps the subgroup A% 17 = Im [ c 
Aut(g, lj, Z7) onto Aut l7. It is also clear that 

Aut(g, lj, n) = Kerq >Q &i 17. 

Denote by H = exp ad E> the maximal torus of Int g corresponding to ad lj = h. 
Clearly, H c Ker 7. t 

Problem 1. Ker q- = Aut(g, h, Z7) n Int g = H, therefore Aut(g, h, 27) = H XJ 
A;t I7. 

Now we extend 7 to a homomorphism of the whole group Aut g onto Aut 17 
(the extended homomorphism will be denoted by the same letter q). 

Problem 2. Aut g = Aut(g, h, Z7) l  Int g. 

Problems 1 and 2 imply 

Theorem 1. Aut g = Int g XI Gl7. In particular, Aut g/Int g N Aut l7. The 
corresponding homomorphism q: Aut g + Aut I7 coincides with q: 6 H (‘81 I7)-’ on 
AWg, b, m 

Problem 3 (Corollary). The group Int g coincides with the identity component 
of Aut g and the different connected components of Aut g are the sets q-‘(z) = 
(Int g)? for different z E Aut 17. The Lie algebra her g coincides with ad g. 

2’. Semisimple Automorphisms. Let 8 be an automorphism of a semisimple 
Lie algebra g which is a semisimple linear transformation, g(i,) c g the eigenspace 
of 8 corresponding to R E UZ*. Then 

9 = @ !3(4* 
Ad* 

Problem 4. [g(A), g(p)] c g(dp) for any A, p E (C*. In particular, g(1) = {x E g: 
et ) x = x} is a subalgebra of g. 

Denote g(1) by ge. 

Problem 5. (g(n), g(p)) = 0 for any R, p such that ip # 1. The scalar product is 
non-degenerate on g(n> + g(l/n) for any A E UZ*. 

Theorem 2. If g # 0 is a semisimple Lie algebra and 0 E Aut g is a semisimple 
automorphism then ge # 0. 

Proof of this theorem is an immediate corollary of the following Problems 6-9. 

Problem 6. Any nilpotent element x E g presents in the form x = [xJ], where 

Problem 7. If ge = 0 then g(n) does not contain non-zero nilpotent elements 
for any li E c*. 
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Problem 8. If 1 E C* is not a root of 1 then g(n) consists of nilpotent elements. 
If all eigenvalues of 8 are roots of 1 then, clearly, 8” = e for certain positive 

integer m so that all eigenvalues are of the form E’, where E = e2ni? 

Problem 9. If 0” = e and g($) = 0 for 0 < I < k < m then g(E“) consists of 
nilpotent elements. 

Problem 10. The subalgebra ge is a reductive algebraic subalgebra of g. 

Our aim is the classification ofsemisimple automorphisms up to conjugacy in 
Aut g. The first step in this direction is the proof of the fact that any semisimple 
automorphism 0 is conjugate to an element of Aut(g, h,Z7) where E> and I7 are 
defined in lo. For this we make use of ge. Let t be a maximal diagonalizable 
subalgebra of ge and j(t) its centralizer in g. 

Problem 11. The subalgebra j(t) is invariant with respect to 0 and is a maximal 
diagonalizable subalgebra of g. 

Problem 12. In t, there exists an element regular with respect to l& = j(t). There 
exists a system of simple roots I& of g with respect to h1 such that ‘e(Z7,) = Z&. 

Problem 13. There exists a E Int g such that a&? E Hẑ  c Aut(g, h, n), where 
z = r1(8) . 

Therefore it suffices to consider automorphisms taken from cosets Hẑ  = z^H, 
where z are different elements of Aut n. Denote by Tr the subtorus of H which 
is the identity component of the subgroup Z(f) = (h E H: zhz-’ = h). Clearly, 
T = exp(ad t,), where t, = h’̂  = E> n g{. Now we wish to show that any element 
of ẑ H is conjugate to an element of the subset z^T,. 

Problem 14. The subspace Im( ‘z - e) c t> coincides with tf. The torus H locally 
splits into the direct product of tori: H = T,H,, where H, = {z^-‘hfh-‘: h E H}. 

Problem 15. For any 0 E M there exists h E H such that h&z-’ E z^T,. In 
particular, z*H consists of semisimple automorphisms. 

Problems 13 and 15 imply 

Theorem 3. Any semisimple automorphism 0 E Aut g is conjugate to an auto- 
morphism from the set z*T,, where z = q(O), Tr = exp(ad E>‘). 

Problem 16. If automorphisms a,, a2 E Aut g are conjugate in Aut g then q(al), 
q(a,) are conjugate in Aut 17. Conversely, if z2 = crz, c-l, where zl, z2, G E Aut 17, 
then f2 Tr = 8(?, T,l)d? 

2 

Theorem 3 and Problem 16 imply that the problem of classification of semi- 
simple automorphisms of g up to conjugacy reduces to the following two 
problems: 

a) find the conjugacy classes of Aut Z7; 
b) for some representatives z of various conjugacy classes of Aut f7classify the 

elements of ?T, up to conjugacy in Aut g. 
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Problem a) belongs to the theory of finite groups. We will only consider this 
problem for simple Lie algebras g, when it is trivial. Most of this section is devoted 
to the solving of Problem b). 

Let again z E Aut Z7. Consider the automorphism z  ̂and the subspace t, = h’. 
Let r: h* + t,* be the restriction map. Clearly, r&(h) u (0)) = d(t,) u (0). 

Problem 17. dim t, equals the number of orbits of the cyclic group (z) in 17. 
For a, /? E Z7 we have r(a) = r(P) if and only if a and b belong to the same orbit. 
If a E d,(t)) and r(a) E r(I7) then a E Z7. The different elements of Q-, = r(Z7) form 
a basis of t,* and each element of r(d,), the set coinciding with d(t,), is expressed 
in terms of elements of Z7Y0 with integer coeffkients of the same sign. The central- 
izer a(t,) coincides with h. For any 0 E ẑ H the subalgebra t, is a maximal diago- 
nalizable subalgebra of ge. 

Problem 18. Let automorphisms 8,, 0, E ?T, be conjugate in Aut g, i.e. & = 
g6,g-’ for some g E Aut g. The automorphism g can be chosen so that g(t,) = t,, 
gfg-’ E q. 

In Aut g, consider the subgroup ST = (z^> q. Clearly, ST = (z^) x K. Therefore 
Sf is a quasitorus in Aut g and Sf = K (see 3.2.3”). Let N5 be the subgroup of the 
normalizer N(S) of Sf in Aut g consisting of g E IV(&) such that a(g) transforms 
z^T, into itself, i.e. induces the identity automorphism of S& Let Qr be the group 
of automorphisms w(g) of S5 induced by the automorphisms a(g) for g E N5’ 
Problem 18 implies 

Theorem 4. Two automorphisms 8,, t12 E ?T, are covzjugate in Aut g if and only 

if 4 = c0(e,) for some 0 E Q. 

To describe the orbits of the group Q on the set z^T it is convenient to go over 
to the simply connected covering space a of the manifold ?T,, which is an affine 
space with the associated vector space t,. Here, instead of Q, the group of trans- 
formations of a covering the transformations from Sz, is to be considered. This 
group turns out to be very close to the group of afine transformations generated 
by reflections with respect to some affine hyperplanes. These hyperplanes corre- 
spond to some aftine functions on a, which will be called affrne roots of the pair 
(g, 2). The following two subsections are concerned with the construction of affine 
roots and the corresponding root decomposition. 

3O. Characters and Automorphisms of Quasi-Tori. Consider an algebraic quasi- 
torus of the form 

S = (a> x T, 

where T = So is a torus and a an element of order k. Let t be the tangent algebra 
of the groups T and S. As we have seen in 3.3.2”, any character x of T is uniquely 
determined by its differential d,, E t*. We want to show that any character of 
the quasi-torus S is determined by a family of affrne functions on an affrne space 
with the associated vector space t. 
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Denote A = UT and let z: a --+ A be a covering with the simply connected 
covering space Q. Observe that t may be considered as the simply connected 
covering space of 7” the covering 8: t -+ T being defined as 8’(x) = exp(2zix). Let 
,u: T x A -+ A be the natural simply transitive action of the group T on A, i.e. 
,~(t, b) = bt. Fix a point aC E a, such that z(d) = a. By the property (F) of simply 
connected coverings (see 1.3.3”) there exists a unique differentiable map ji: 
t x a + a covering ,u and such that p(O, G) = G. 

Problem 19. The map ji is a simply transitive action of the group t on a and 
thus defines on a a structure of an affine space with the associated vector space 
t. The action ,Z does not depend on the choice of a point 5 such that ~(a”) = a. 

Denote by t,: a -+ a the translation by x E t, i.e. set 

t,(Y) = P(w) (x E t, y E a). 

A character R E T(S) is uniquely determined by its values on A. In fact, if 21 A 
is known, then so is h(a) E @* and for any t E T we know E,(t) = E,(aQJ(a)? 
Consider the covering 8: c + C* defined by the formula 8(z) = 27ci.z. By the 
property (F) of simply connected covering spaces there exists a differentiable 
function 1: a --+ c covering jU. This function is uniquely determined by its value 
i(G) which is chosen up to an arbitrary integer summand. 

Problem 20. Any function 1 covering A E Z”(S) is an affine function with the 
1 

linear part djb E t* and l(G) E kH. Conversely, an afine function 5: a + UZ such 

1 
that <(a”) E k Z whose linear part is the differential of a character of T covers some 

character of the quasi-torus S. 
Set 

a(R) = {y E a: i:(y) E R for any ;C E X(S)}. 

Problem 21. We have a(R) = {t#): x E t(R)}. Thus a(R) is a real affine space 
with the associated vector space t(R). Each function 1 covering jU E X(S) is 
completely determined by its restriction to a(R). 

Therefore, to each character )7, E Z(S) we have assigned a family of real affine 
functions on a(R), any two of them differing by an integer summand. Any of these 
functions x completely determines R. 

Similar considerations may be applied to the automorphisms of the quasi- 
torus S transforming A into itself, i.e. identical on S/T. An automorphism q of 
this sort is uniquely determined by its restriction to A. Moreover, the transforma- 
tion cp[A admits a covering 4: a -+ a, which is uniquely determined by its value 
q(G) = z. The element z E a may be an arbitrary element satisfying n(z) = q(a). 

Problem 22. Any covering transformation +: a + a is affine and has d,(o as its 
linear part. The transformation @ maps a(R) onto itself and is uniquely determined 
by its restriction to a(R). 
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4O. Affine Root Decomposition. Now we consider the quasi-torus ST = (3) x 
T, where z is a fixed automorphism of a system of simple roots n (see 2”). The 
tangent algebra of S5 is ad t,. It is convenient to identify it with t, with the help 
of the isomorphism ad. Thus in our case t = t,. We also have A = z^T,, a = z .̂ 

For any affine space B over a field k denote by B” the vector space of ail affine 
functions 8 + k. Clearly, dim B A = dimB + 1. If cp: B, + B, is an affine map of 
affine spaces then the formula 

determines a linear map ‘9: BP + B,̂ . 
Let Y c 9’(S) be the set of all weights of the identity representation of S in g. 

Then 

9 
- 

09 
A - 7 

AEY 

where g’ # 0 is the weight subspace corresponding to 2. The affrne functions 
1 E a(R) corresponding to the weights ;1 E Y will be called affine roots of the pair 
(g, t); the set of all affme roots will be denoted by df c a(R)“. Since the affine 
root 1 covering a weight A is completely determined by its linear part a = djti and 
the number s = ;(a”), we write 1 = (a, s). Clearly, here SC E d (t,) u (0) is a weight 

1 
of the identity representation of Int(g) with respect to Tr and s E -Z, where k is 

k 

the order of z. We will write g’ = gA. If (a, s) E A’ then (c, s + m) E #for any m E Z 
and gta.s) = g(a*s+m). We have g = xc E A~ 9% 

Problem 23. A’ generates a(R)? 

Problem 24. If 5 = (c(, s> E 65 then g< = ga n g(Y), where ga is the root subspace 
corresponding to a E aad and g(8) is the eigenspace off with E = e2’? Further- 
more, 

s - !J(E > c 9i - ; - 7 9 a- c 9 
<=(w) <=(a.s) 

Problem 25. For any t, YJ E A’ we have 

t-$7 #I 
c c++~ 

6 
if c + q c A’. 

- - otherwise. 

The roots with zero linear parts are called imaginary and the other roots are 
called real ones. Denote the sets of imaginary and real roots by & and A:, 
respectively. Problem 24 implies that 
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It turns out that the real roots have a number of properties similar to the usual 
properties of roots and weights. To prove this we will make use of some three- 
dimensional subalgebras of g as in 1.6’. For any c = (a, s), q = (p, t) E dr write 
(5, q) = (a, p), (51~) = (cclp). If < E d;, then the element h, E t,(W) determined by 
(1.5) will also be denoted by h,. 

Problem 26. For any 5 E A* we have - 5 E d*. If c E d:, then [g5, g-<] = (h,). 

r Let ey E g , e+ E g -r: be elements such that [e<,e-<] = h,. Then the map 
&: sI,(@) + g defined by the formulas 

is an isomorphism of sI,(@) onto the subalgebra (e5, e+, h,) c go 
Let 5 E df,, IJ E d’. The set (5 E A’: (I = q + lc (E E H)} is called the c-string of 

roots through ‘I. 

Problem 27. Let 5 E df,. Then the &string of roots through v E AT is of the 
form (11 + I((-p < I < q)}, where p, q 2 0 and p - q = (VI<). If’(q,<) < 0 then 
q+&d’,andif(~,~)>Othenq-5~4~. 

Problem 28. For any 5 E df, we have dim gt = 1. If 5: E d:,, c E R then ~5 E A’ 
if and only if c = - 1, 0, 1. 

Problem 29. Under the notation of Problem 28 we have (ade,$‘+qg9-PS # 0. If 
5 E df, and )I, y7 + c E At then [g5, g”] # 0 and if 5 + ye E Ai, then [g5, g”] = g5+? 

In g, consider the reductive algebraic subalgebra g’ = g(1). By Problem 17 
t, = g’OJu is a maximal diagonalizable subalgebra of g’. Problem 24 implies that 

(2) 

Problem 30. The subalgebra g’ has the zero centralizer in g and, in particular, 
is semisimple. The system I7o = r(I7) is its system of simple roots with respect to 
t,. The root system d,; coincides with the set of a E t(R)* such that (cc,O) E d:,. 

A root t = (~1,s) E dt is called positive if either s = 0 and oc belongs to the set 
d$ of positive (with respect to no) roots of gi or s > 0. If A’+ is the set of all 
positive roots then d’ = d’+ u (0) u (---A’+). A positive root is called simple if it 
does not split into the sum of two positive roots. Let 27? c df+ be the system of 
simple roots. Clearly, (a, 0) E I7’ if a E no. If 5, q E W and 5 # 7 then 5 - q E df. 

Problem 4 applied to 0 = z  ̂implies that for any s = m/k, where m E Z, the 
adjoint representation of g’ in g transforms the eigenspace g(8) of z  ̂into itself. 
The corresponding representation of g’ in g(ES) will be denoted by ad,. Clearly, 
(c(, 1) E d’=a E Qad . Now we will establish the 

owest weights Sof the representations ad,. 
relationship 

and 1 (See 3.7”.) 
between simple roots 

Problem 31. The lowest weights of all representations ad, are non-zero. 
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Problem 32. If (CI,S) e Z7’ and s > 0 then a is a lowest weight of the representa- 
tion ad,. In particular, Z7’ c d:,. If a is a lowest weight of ad,, then (cc - cc’,s) $ 
d’ for all a’ ~.dif. If, moreover, (p, t) 4 d’ for all /? # 0 and 0 < t < s then y = 
(a, s) e Z7’ and e, is the corresponding lowest vector. 

Problem 33. Any c E dr+ presents in the form < = Cyenr k,‘~, where k, are 
non-negative integers. 

5O. Affine Weyl Group. Let again a be the complex af’fine space covering the 
manifold A = z*T,, a(R) its real form defined in 3’: Notice that the associated 
vector space t,(R) is a Euclidean space with respect t’o the Cartan scalar product 
on g. So a(R) is an affine Euclidean space. Denote by Z(a(R)) its group of motions. 

Let ar be the set of all affine transformations 6 of a covering the transforma- 
tions ~1 A, where cr) E Q. By Problem 22 we may identify af with the corre- 
sponding set of transformations of a(R). 

Problem 34. The set or is a subgroup of Z(a(R)). The natural homomorphism 
Q + Qr is surjective and its kernel is {t,: x E t,(Z)). 

Problem 35. For any w E 6, we have w(d’) = d’. If w = UT), where g E N,, 
then y(si) = gcw-l’r, (5 E d’). 

The definition of Qr easily implies that Theorem 4 can be reformulated as 
follows: 

Theorem 4’. The automorphisms 13~ = z(yl), 0, = n(y2), where y,, y, E a, are 
conjugate in Aut g if and only if y, = w(yl) for some w E Q. 

Each real root 4: E die determines the hyperplane PC = {y E a(R): c(y) = 0) in 
a(R). The connected components of the set a(R)\u<ed:, Pr will be called chambers. 
Clearly, the chambers are open convex sets in a(R). Problem 35 implies that fir 
permutes the hyperplanes PC and chambers. Let us show that it acts transitively 
on the set of all chambers. To this end denote by r; the orthogonal reflection 
with respect to the hyperplane P<, where < E df,, and prove that ri: E or. 

Consider the homomorphism qy = (ad) l  &: eI,(@) + ad g (see Problem 26) 
and denote by $: SL,(@) -+ Int g the Lie group homomorphism such that dQ>, = 

Problem 36. We have n&t,) = t,. If [ = (a,~) then n$(R) coincides with the 
reflection r, with respect to the hyperplane Ker a. 

Problem 37. If 5 = (a, s) then 

n$n? 5 = M’( - sh;). (3) 

Therefore nr E /VT. The reflection rr covers the transformation cr>(nr) and there- 
fore belong; to a,. 

5 

Let wr be the subgroup of ar generated by the reflections r; for all 5 E d:,. The 
group VVr is called the affine Weyl group associated with z E Aut l7. 
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Now we will establish certain properties of the affine Weyl groups similar to 
those of the Weyl groups (see 2.4”). In precisely the same way as for the Weyl 
chambers we define the notion of a wall of a chamber. 

Problem 38. The walls of any chamber are of the form Pr, where c E d:,. 
Conversely, any hyperplane PC, c E A:,, is a wall of a chamber. 

Theorem 5. W7 acts simply transitively on the set of all chambers. If D, is a fixed 
chamber and P;, , . . . , Pr,, where rI, . . . , 5, E A:,, are its walls then the reflections 
rr,, l .*9 rrS generate the group WT. 

Theorem 6. The closure D of any chamber D is a fundamental set for the group 
Wt, i.e. intersects each orbit of this group at a single point. 

Problem 39. Let y,, y, E 0, where D is a chamber, and let w E fir be such that 
Y2 - w(y,). Then w can be chosen so that w(D) = D. - 

Now, show that the system of simple roots Z7’ defined in 4’ determines a 
chamber D, in the same way as any system of simple roots of a usual root system 
determines a certain Weyl chamber (see 2.2”). Set 

Do = (y E a(R): y(y) > 0 for all y E nr}. (4) 

Let us prove that D, # 0. From formula (2) we see that the correspondence 
cc~(a, 0) is a bijection of the root system d,l of g’ with respect to t, onto the 
subset of afflne roots of the form (cc, 0), a # 0. The bijection x I-+ t,(Z) of the space 
t,(R) onto a@) maps the hyperplane P, = Ker a onto Pta o) and the Weyl chamber 
{x E t,(R): a(x) > 0 for all cx E no} onto an open cone ‘co c a@) with vertex 5. 
Clearly, Do I U n Co # 0. 

Our arguments also imply that the Weyl group W(gi) of g’ is identified with 
the subgroup of Wz generated by the reflections of the form r(a,OI, (ct,O) E d:,. 

Problem 40. The set Do defmed by (4) is a chamber. We have 

Do = {y E a(R): y(y) > 0 for all y E nr>. 

The chamber Do defined by formula (4) will be called the fundamental chamber. 
Cleary, any element x E t, is uniquely expressed in the form x = u + iv, where 

u, v E t,(lW). We will write u = Re x, v = Im X. Any y E a is uniquely expressed in 
the form y = ti,(z), where v E t,(R), z E a@). We write z = Rey. 

An automorphism 0 E ?T, will be called canonical if 8 = n(y) where y E a and 
Rey E Do. Theorems 4’, 6 and Problem 39 imply. 

Theorem 7. Any automorphism from z^T, is conjugate to a canonical automor- 
phism. If canonical automorphisms 8, = n(yl) and 8, = 74y2), where yi E ?, Rey, E - . 
D (1 - - 1,2), are conjugate then there exists a motion w E Q7 mapping Do onto itself 
suOch that w(Rey,) 

. 
= Rey,. 

Let us consider the case z = id. In this case ?(lF!) coincides with the Euclidean 
vector space I#!) considered as an afflne Euclidean space. The system of real 
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roots is of the form 

A ;: = {(a,~): a E A,,s e Z}. 

We will denote the group H$ by l8? It contains the Weyl group IV of the root 
system A, as a subgroup. 

Problem 41. r(cl,sJra = t+ 
a 
for any a E A, and s E Z. 

Problem 42. The group m splits into the semidirect product m = Q” x w 
(here Q is identified with the corresponding group of parallel translations in the 
space bw)* 

Problem 43. Let z = id and let D be an arbitrary chamber. Then the set D n Q” 
consists of a single point. 

6’. Affine Roots of a Simple Lie Algebra. In this subsection we assume that g 
is simple and we find an explicit form of the system of simple roots 17’ and the 
fundamental chamber for all z E Aut l7. 

Problem 44. For any z E Aut Z7 the algebra g’̂  is simple. 

The groups Aut I7 of all simple Lie algebras are listed in Table 3. This list 
shows that a non-trivial automorphism z E Aut Z7 exists only when g is a Lie 
algebra of type A, (n 2 2), D,, or E,. For all these algebras except D4 there exists 
a unique automorphism z # id of order 2. If g = D, then in Aut 17 = S3 there 
exist, beside (id}, two classes of conjugate elements containing all elements of 
order 2 and 3 respectively. Thus k can only equal 1, 2, 3. 

Problem 45. The set ,&im is the cyclic subgroup of a(R)” generated by the root 
(0, l/k). 

Let 17’ c A* be the system of simple roots defined in 4”. Problem 27 implies 
that (t, q) < 0 for any r, q E nr, 5 # ye. Therefore the linear parts of the roots of 
Z7* (non-zero by Problem 32) are different and constitute non-acute angles. Let 
Y c A&) be the system of linear parts of affine simple roots. 

Problem 46. Let 17, = {a,, . . . ,a,}. The system of simple roots 17r is of the 
form Z7r = {yO, yl,. . . , y,>, where ?/j = (aj,O) (j = 1,. . . , n), ~0 = (ao, l/k), cc0 is the 
(unique) lowest weight of the representation ad,,. The system !Y = (c(,, cc,, . . . , 
a[} is indecomposable. The system nr is linearly independent and forms a basis 
of a(R)*. If z = id then a, is the lowest root and Y = fi is the extended system 
of simple roots of g. 

Problem 47. 
a() = - c njaj, (9 

l,<j,<f 

where nj are positive integers. If we set no = 1 then 
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Problem 48. The matrix A of Y with the elements aij = (CtiI olj> is an indecom- 
posable affine Cartan matrix. 

Recall that all indecomposable afine Cartan matrices were listed in 2.7’. NOW 
we will find the affrne Dynkin diagrams corresponding to the automorphisms 
z E Aut Z7. It suffices to choose a representative of each conjugacy class of 
elements of Aut Z7. 

Problem 49. To the above mentioned automorphisms z E Aut Z7 the affine 
Dynkin diagrams denoted in Table 6 by L$ where L, is the type of a 
simple Lie algebra g and k is the order of z correspond. Thereby, to the identity 
automorphism of the system of simple roots of L, the extended Dynkin diagrams 
LL’) corresponds. 

In Table 6 listed are also the numbers mj defined in Problem 47. By Problem 
2.43 these numbers are uniquely determined by Y as non-zero and non-negative 
relatively prime coefficients of a Z-linear relation between the elements of this 
system. 

Problem 49 implies that any connected afIine Dynkin diagram corresponds 
to an automorphism z associated with a simple Lie algebra. Therefore there 
is a bijection between the automorphisms of the systems of simple roots of 
simple Lie algebras considered up to conjugacy and the connected afflne 
Dynkin diagrams. 

Problem 50. The fundamental chamber D, is a simplex and under the notation 
of Problem 46 it is determined by the inequalities 

Yj(Y) > O (j= O,l,...) I). 

The walls of D, are the hyperplanes PYj ( j = 0, 1, . . . j 1). 

7O. Classification of Unitary Automorphisms of Simple Lie Algebras. An auto- 
morphism 0 E Aut g is called unitary if 6 is semisimple and all its eigenvalues ,u 
satisfy 1~1 = 1. For instance, any automorphism of finite order is unitary. In this 
section we will describe the classes of conjugate unitary automorphisms of simple 
Lie algebras g. By theorem 3 and Problem 16 it suffices to consider the unitary 
automorphisms taken from the sets ?T,, where z runs over the set of representa- 
tives of classes of conjugate elements of Aut 17,Z7 being a system of simple roots 
of 9, and by Theorem 7 we may confine ourselves to canonical automorphisms. 

Problem 51. An automorphism 6 = n(y), where y E a, is unitary if and only if 
y E a(R). In particular, the canonical unitary automorphisms are the automor- 
phisms of the form z(y), where y E &. 

Let 9 be simple. Then by Problem 46 the system of simple roots n’ = d’ is of 
the for’m nr = (yO, yl,. . 

l  7  y’r,, 
1 where 

Yo = (q, l/k)? yj = ((IIj, O) (j = l,...,l) 
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1 q,***, 4 = 17, is a system of simple roots of g’. An element u E a@) is com- 
pletely determined by the real numbers uj = y#) (j = 1,. . . , I). Set u0 = yO(y). By 
(6) we have 

Thanks to Problem 40 the condition y E 5, is expressed in the form 

Uj >, 0 (j = OJ,..., I). (8) 

Clearly, for any Uj E R (j = 0, 1, . . . , I) satisfying (7) and (8) there exists a unique 
u E ?([w) for which y,(u) = uj (j = 0, 1, . . . , I). 

A connected affine Dynkin diagram whose vertices are endowed with real 
numerical labels Uj satisfying (7) and (8), where k is the number corresponding 
to this diagram, will be called a Kac diagram. Clearly, the Kac diagrams based 
on the affine Dynkin diagram corresponding to an automorphism z E Aut 17 for 
a simple Lie algebra g depict different elements of Do c a(rW). Two Kac diagrams 
are called isomorphic if there is an isomorphism of the underlying affine Dynkin 
diagrams such that the corresponding vertices are endowed with the same labels. 

Problem 52. If g is simple and canonical automorphisms 0, = n(yl), 8, = I, 
where Re y,, Re y, E Do, are conjugate in Aut g, then Re yl, Re y2 are depicted 
by isomorphic Kac diagrams. 

Now we formulate the main result of this section. 

Theorem 8. Let g be simple. Then two unitary canonical automorphisms z(yl) 
and n(y,) are conjugate in Aut g if and only if y,, y, E Do are depicted by 
isomorphic Kac diagrams. Therefore there exists a bijective correspondence be- 
tween the classes of conjugate unitary automorphisms-of a simple Lie algebra of 
type L, and the classes of isomorphic Kac diagrams of types L!,? for all possible 
k. Under this correspondence with the classes of inner automorphisms associated 
are Kac diagrams of type Li’) and to the classes of outer automorphisms Kac 
diagrams of types Li2) and Lw) correspond. 

Proof is based on Problems 53-56. 

Problem 53. Let g be simple and let c E Aut Y be a linear transformation of 
t,(R)*. Then there exists an automorphism n E Nf of g commuting with z  ̂such 
that ‘yt = C in t,(R)*. 

For any a E d(t,) set k, = dim ga. Problems 24 and 28 imply that k, equals the 
number of residue classes s + kZ E E/kZ such that &s/k) E d’. On the other 
hand, k, coincides with the number of a E d, such that r(P) = cx. If a E nb, then 
Problem 17 implies that k, is the length of the orbit with respect to (z) of any 
p E n such that r(P) = a. In particular, k,l k. If g is simple then k, = 1 or k for 
anyaE170. 

1 
Problem 54. Let v E t,(R) be a vector such that cc(v) E kZ for all a E no. Then 

m 
there exists x E E> orthogonal to t, such that v - x E h(Z$ 
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Problem 55. Let v E t,(R) satisfy the conditions of Problem 54. Then t, = z) 
for some h E H n NT. 

Problem 56. Let a motion w E I(a(lW)) be such that ‘w(W) = F. Then w E fir. 

Proof of Theorem 8. By Problem 52 it remains to prove that if y1 and y, are 
depicted by isomorphic Kac diagrams then n(yl) and 7r(y2) are conjugate. The 
isomorphism of the Kac diagrams determines an afine transformation w of a&!) 
such that y, = w(yl) and ‘w(F) = nr, and that the corresponding linear trans- 
formation c belongs to Aut ‘i;/. By Problem 53 c is an orthogonal transformation, 
hence w is a motion. By Problem 56 w E or, and the theorem follows from 
Theorem 4’. 0 

A special class of unitary automorphisms is formed by the finite order auto- 
morphisms. 

Problem 57. Let g be a simple Lie algebra, m a positive integer. The order of 
a unitary canonical automorphism 0 E Aut g equals m if and only if the numerical 
labels on the corresponding Kac diagram are of the form uj = sj/m, where Sj 
(j = 0, 1,. . . , 1) are non-negative relatively prime integers, such that 

m = k C njsj. 
O<j<Z 

(9) 

Problem 57 implies that the Kac diagram corresponding to a periodic auto- 
morphism is completely determined by the underlying affine Dynkin diagram 
and a set of relatively prime non-negative integers so, s,, . . . , sI. If we want to 
classify automorphisms of order m they should satisfy condition (9). 

8’. Fixed Points of Semisimple Automorphisms of a Simply Connected Group. 
Let G be a simply connected semisimple complex Lie group. Recall (see 1.2.10”) 
that the group Aut G of automorphisms of G is naturally isomorphic to the group 
Aut g of automorphisms of its tangent algebra. By Corollary of Theorem 3.6, G 
is an algebraic group and by Theorem 3.3.4 any automorphism of G is poly- 
nomial. An automorphism 0 of G is called semisimple if so is the corresponding 
automorphism 8 = d@ E Aut g. 

The aim of this subsection is to prove that the algebraic subgroup G@ c G 
consisting of the fixed points of a semisimple automorphism 0 E Aut G is con- 
nected. By Problem 1.2.31 the tangent algebra of this subgroup coincides with 
9? Applying Theorem 2 and Problem 10 we see that G@ is reductive and of 
positive dimension if G # (e>. 

Theorem 9. If 0 is a semisimple automorphism of a simply connected semisimple 
Lie group G then G@is connected. 

Let y be a semisimple element of G. Then the inner automorphism a(y) is 
semisimple so that the subgroup Z(y) = Guts) is reductive. By Corollary 1 of 
Theorem 3.3.9 there exists a maximal torus H of G such that g E H c Z(g)‘. An 
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element g is called regular if H = Z(g)’ and singular otherwise. Clearly, the 
regularity (or singularity) of an element is preserved under the action of any 
automorphism of G. In particular, two conjugate semisimple elements of G are 
either simultaneously regular or simultaneously singular. Therefore in order to 
describe the set of singular elements it suffices to describe singular elements 
belonging to a fixed maximal torus. 

As above, consider the covering 8: h + H defined by the formula g(x) = 
exp(2nix). Problem 3.46 and Theorem 3.5 imply that Ker 8 coincides with the 
lattice Q” generated by the dual root system di (I)). For any cc E d, and s E Z 
denote by pta,s) the hyperplane in b (not in I)(!%) as in 5”), defined by the equation 
a(x) + s = 0. Clearly, x E pta s) = Rex E p&) and Im x E & . , o) = Pa. 

Problem 58. An element g(x), where x E b, is singular if and only if x E P& s) 9 
for some a E d, and s E Z. 

Proof of Theorem 9. By Theorem 3.2.1 every unipotent element of an algebraic 
group belongs to its identity component. Thanks to the Jordan decomposition 
(Theorem 3.2.6), it suffices to prove that every semisimple element g E G@ belongs 
to (GO)“. 

First let g be a regular element of G and H = Z(g)’ the unique maximal torus 
that contains it. Then o(H) = H. Consider x E b such that g = g(x). Problem 58 
implies that Re x belongs to one of the chambers D into which the space E>(R) is 
divided by the hyperplanes Pta + Since the boundary of every chamber contains 
an element of Q “, we may assume that 0 E D. The identities &(@x)) = 0(&‘(x)) = 
g(x) imply that y = 0(x) - x E Q”. Clearly, 0 transforms b([w) into itself, permutes 
the hyperplanes Pfa s) and the chambers. Since y = B(Rex) - Rex, the chamber 
0(D) = D + y contains on its boundary the points 0 and y of the lattice Q”. 
Problem 43 implies that y = 0. Therefore x E be and g E &(be) = (He)’ c (GO)‘. 

Now consider the general case. Set U = Z(g)‘. Then O(U) = U. A maximal 
torus of U@ will be denoted by S. 

Problem 59. The group H = (Z(g) n Z(S))’ is a maximal torus of G containing 
g and S. 

Let us prove that the coset gS c H contains a regular element. Let all elements 
of this coset be singular. Choose x E b such that g = g(x). Then by Problem 58 
the plane x + 5 is contained in one of the hyperplanes Pfa s). . 

Problem 60. If x + 5 c Pta s) then G@) c H. 

Since G@) is a simple three-dimensional subgroup, this contradicts Problem 
59. Therefore there exists so E S such that gs, is a regular element. Since gs, E G@ 
the above implies that gs, E (GO)‘. Therefore g E (GO)‘, too. Theorem 9 is 
proved. 0 

This proof is due essentially to A. Borel. For another proof of this theorem (in 
a somewhat more general setting) see [48]. 

Concluding, let us show how to calculate the subalgebra ge for a unitary 
canonical automorphism 0 of a simple Lie algebra g with the help of the Kac 
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diagram. Let uo, ul,. . . , u, be the numberical labels of the Kac diagram of 8 such 
that uiI = l  l  l  = ui, = 0 and the other ui # 0. 

Problem 61. dimZ@) = n - t and the derived algebra (ge) is a semisimple 
subalgebra of g whose system of simple roots is (ai,, . . . , tli,}. The Dynkin diagram 
of (Se)’ is the part of the Dynkin diagram of the system Y = {clO, ccl,. . l  , a,} 
formed by the vertices with the numbers i,, . . . , i, and the edges that connect 
these vertices. 

Exercises 

In exercises l-4 the notation of subsections 2”-5” is used. 
1) If y E a(R) is stable with respect to some w E Wr then w is the product of 

reflections with respect to the hyperplanes PC passing through y. 
2) The group IVr does not contain reflections with respect to the hyperplanes 

different from p< (5 E A:,). 
In Exercises 3-16 we assume that g is simple and we use the notation of 6” 

and 7’. In particular, Y = (a,, a,, . . . , a,} and A = (aii) is the matrix of y. AS it 
is known, the angle between ai and aj equals 0ij = ~(1 - l/nij), where nii = 1, 
nij = 2, 3, 4, 6, CO (i # j), if mij = aijuji = 0, 1, 2, 3, 4 respectively. Set ri = rr 

i 

(i = O,l,... , I). By Theorem 5 and Problem 46 the ri’S generate W$. 
3) The generators ri (i = 0, 1,. . . , I) of W, satisfy the relations 

( 1 rirj “ij = e (11) 

for any i,j = 0, 1, . . . . n such that nij < 00. 
Consider the group IQ with generators ?i (i = 0, 1,. . . , I) and defining relations 

(11) with ri replaced by ?i. Denote by q the homomorphism of VV onto W5 sending 
fi in ri. Consider an auxiliary topological space X = (VV x D,)/S, where IQ is 
assumed to be endowed with the discrete topology and S is the equivalence 
relation defined by the formula 

(W, X) Zd (Wi?,, X) if ri(X) = X 

extended via transitivity. Determine the I&action on X by setting 

w,(w,x) = (w,w,x) 

and the map 71: X + a(R) by setting 

+v)) = cp(w)x. 

Finally, let Y be the set of points of a(R) that belong to the intersections of 
no more than two hyperplanes P, and set X, = n-‘(Y). 

4) The space X, is pathwise connected and the map 71: X, -+ Y is a covering. 
5) The map z is a homeomorphism and cp is a group isomorphism. The relations 

(11) are defining relations for W,. 
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1 
6) 

7) 

8) 

9 

10) 
11) 

T 

The vertices of & are the points z  ̂ K~a (a E Z7& where {x,),~~~ is the ( > 
basis of the lattice t,(Z) dual to Z& and;, is the same as ni (see (5)). 
The group ar coincides with the subgroup of motions w E I(?@)) such that 
‘w(A’) = A’. 1 
Let /i c t,(R) be the lattice consisting of v E t,(R) such that a(v) E k Z for all 

a 

a E & (see Problem 54). Let us identify /i with the group of translations t, 
(v E A) of ?([w). Then A is a normal subgroup of aZ and aZ = /t x &,, where 
52, is the stabilizer of 0 in of, isomorphic to the group of orthogonal 
transformations of t,(R) induced by the automorphisms of g commuting 
with z .̂ 
We have W, = A, >Q W(g’), where /1, c /i is the sublattice with the basis 

r 1 
h c (aAN XEn, . 

1 
Thi elements e,. (i = 0, 1,. . . , I) generate the algebra g. 
Let 8 be a unitary canonical automorphism of g, and uo, u,, . . . , uz the corre- 
sponding numerical labels of the Kac diagram. Denote by ad, the adjoint 
representation of ge in the eigenspace g(e2Xis) of 8. Any aj E Y is a lowest 
weight of ad,.. If so is the minimal of s > 0 such that g(e2”‘“) # 0 then so 
coincides with one of the uj, the lowest weights of ads0 are the aj such that 
Uj = so and the lowest vectors are the e,j. 

In Exercises 12- 16 we assume that z = id. In this case t,(R) coincides with the 
Euclidean vector space l$(R) considered as an affme space. The normalizer of 
w = V& in Z(h(lR)) is denoted by N(W). The lattices in t)(R) are identified with 

corresponding groups of translations. 
F’V= IV X Q”, N(m) = AUtA, P( p” = Bid. 
N(w) = Aut iT o< m 
The group Aut if coincides with the group of motions of h(R) transforming 
Do into itself. 
Aut fi = Aut Z7 K L, where L is a commutative normal subgroup isomorphic 
to Q,) h, n1 (Int g). 
The group n(A,) acts simply transitively on the set (ai E n: ni = l}. In 
particular, the number of elements of this set equals ln(A,)l. 

Hints to Problems 

It suffices to prove that Ker q c H. If 0 E Ker r~, then 0lh = e, 8e, = c,e,, 
Be = c,le-, (a E Z7), w h ere c, E c*. With the help of Theorem 3.1 verify 
th& = exp(adx), where x E h is an element such that U(X) = loge, (cc E 27). 
Make use of the fact that Int g acts transitively on the set of pairs b c 6, 
where E, is a maximal diagonalizable subalgebra and b a Bore1 subalgebra 
of g. 
If (Aut g)O # Int g then the algebraic group (Aut g)’ is reducible since by 
Theorem 1 it is the union of a finite number of disjoint algebraic varieties: 
cosets modulo Int q. Concerning the last statement see 1.2.10”. 
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5. Make use of Problem 1.6. 
6. If x E g is nilpotent and z E 3(x) then (ad x)(ad z) is nilpotent implying (x, z) = 

0. The invariance and non-degeneracy of the scalar product imply that 
3(x) ’ = Im(adx) so that x E Im(adx). 

7. If x E g(1) is nilpotent then by Problem 6 x = [xJ], where y E g. Taking 
Problem 4 into account we may assume that y E g(1). If x # 0 then y # 0. 

9. For a given integer i, 0 < i < m, select a positive integer r such that k(r - 1) < 
m- i < kr. Then kr + i = m + t, where 0 < t < k, implying (ad x)‘Ig@) = 0. 

10. Make use of Theorem 1.1 and Problem 5. To prove the algebraicity note that 
ad(ge) is the tangent algebra of the algebraic subgroup {g E Int g: g0 = @>. 

11. Since 3(t) is reductive (see Problem 1.28), it suffices to prove that 3(t)’ = 0. 
Notice that 0(3(t)‘) = 3(t)’ and apply Theorem 2 and the equality 3(t)e = t. 

12. If t consists of singular elements then t c Ker a for some root a E d(t),) 
contradicting Problem 11. Take for l71 the system of simple roots corre- 
sponding to a Weyl chamber in I& intersecting with t. 

13. Take for a an automorphism sending 1) into t>l and transforming the Weyl 
chambers corresponding to I7 and Z& one onto another (see Theorem 2.7). 

14. Make use of the fact that q: h~+Phfh-l is an endomorphism of the torus 
H and d,q = ‘z - e. 

15. Let 8 = Qh, where h E H. Applying Problem 14 and expressing h in the form 
h = tz^-‘h12h;’ = 2-‘h,Qth;‘, where t E T5, h, E H, we see that h;Vh, E fT,. 

17. Under the isomorphisms b(R)* -+ b(R) and t,(R)* + t,(R) associated with the 
Cartan scalar product (see 1.4”) the automorphism z: t)(R)* --+ t>(R)* is iden- 

tified with z  ̂= ‘Z-f 
1 

and r with the averaging operator n: = - 
k 

c P’, where 
O<j<k-1 

k is the order of z. Clearly, the different elements n(q) (p E Z7) form a basis 
of t,(R). This implies the statements on dim t, and r(Z7). Since each y E d, is 
expressed in terms of 17 with the coefficients of the same sign, r(y) is expressed 
in terms of no with the coefficients of the same sign. In particular, r(y) # 0 
for all y E d,. Therefore 3(t,) = lj and 3(t,) n ge = t, for any 8 E ?H. 

18. Make use of the conjugacy of the maximal diagonalizable subalgebras of ge2. 
23. Follows from the fact that A&) generates t,(R)* (see 1.4”) and that (0,l) E A’. 
26. Similar to Problems 1.27 and 1.30. 
27. Similar to Problem 1.42. 
28. Similar to the proof of Theorem 1.6. 
29. Similar to Problems 1.43 and 1.44. 
30. The description of the root system d,; given in the problem follows from (2). 

To prove that 17, is a system of simple roots for q’̂ , it suffices (thanks to 
Problem 17) to verify that no c d,;. 
and x E q(r(D)*O) implying r(P) E A& 

But if /? E n theh x = cO<j<k+ e,jp # 0 
If z E $(g’) then by Proble; c7 z E Jj, and 

[z, x] = b implies p(z) = 0 for all’ p E 17, i.e. 2 = 0. 
31. Let x0 be a lowest vector of the representation ad, corresponding to the 

weight 0. Then [e,, x,] = 0 for all a E A$. Indeed, if this is not so then the 
system of weights of the representation df the three-dimensional subalgebra 
0 cx, e,, e-J in th e invariant subspace spanned by the vectors (ad eJmXo (see 
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3.2”) is not symmetric. Therefore x0 belongs to the centralizer of g’ con- 
tradicting Problem 30. 

34. Use the invariance of the Cartan scalar product with respect to all auto- 
morphisms. 

36. Similar to Problem 1.37. 
37. Verify that z^cpg(x)Y’ = cp&xc-‘) for all x E sI,(c), where c = diag(e”‘“, emnis). 

This implies that Z@,(g)Q-’ = @(cgc-‘) for all g E SL,(@). Setting g = 

we get (3). Since ra is the linear part of the affine transformation 

r<, (3) implies, by Problems 22 and 36, that n(r&y)) = n<n(y)n;’ for y E a@). 
38. Similar to Problems 2.18 and 2.19. 
39. Use Theorems 5 and 6. 
40. To prove that D, is a chamber make use of Problem 33. The formula (4) is 

proved similarly to the corresponding statement of Problem 2.18. 
43. Make use of the inclusion Q” c m and Theorem 6. 
44. Identifying r with the projection 71: h([w) + t,(R) (see Hint to Problem 17) it 

is easy to show that (r(ct), r(P)) = 0 for a, p E n if and only if the orbits of a 
and b are orthogonal to each other. By Theorem 2.2 this implies the statement 
of the problem. 

46. By Problem 45, g(E) # 0. If a, is a lowest weight of the representation ad,jk 
then y. = (a,, l/k) E 17’ (Problem 32). Since no is indecomposable and a, # 
0, we see that !Y = {clo,al ,..., al> is indecomposable. By Problem 2.45 the 
indecomposable component of Y containing Y’ coincides with Y’ implying 
Y = Y’. The linear independence of Z7r follows from Problem 33 and from 
the equality dima([W)^ = I + 1. 

47. Problem 17 implies validity of the expression (12), where ni E Z. Since Y is 
indecomposable, Problem 2.45 implies that nj > 0 for all j. 

48. The admissibility of !Y follows from Problem 27. 
50. Problem 2.18 implies that the PYj (j = 1,. . . ,1) are the walls of the chamber 

D,. Formula (5) implies that Co n p,,, # 0. Therefore pro is also a wall of 
this chamber. 

52. By Problem 5 there exists w E fir such that w(Re y,) = Re y, and w(D,) = Do. 
Applying Problems 46 and 28 we see that w determines an automorphism 
of the Dynkin diagram of Y which is an isomorphism of our Kac diagrams. 

53. Notice that [(n,) c dq;. In case z = id this is obvious since !Y = n(Problem 
46). If z # id then c = ‘id except for the cases when Y is of the type A(2:L1 or 
o/f\ (see Table 6). In the latter two cases the only nontrivial automorphism 
i is the transposition of cc0 with one of the roots Cxi E no. As is clear from 
Example 4 in 2.5”, we have cc0 E d,;. Theorem 2.9 implies that C: E Aut d,; 
and c(n,) is a base of d,;. Applying Theorem 3.1 we get an automorphism 
p E Aut(g’) transforming t, into itself and such that ‘p = i on t,*. In case z = id 
the desired automorphism is p. If z # id and c # id then gi is of the type B, 
or Cl (see Table 7). By Theorem 1 all automorphisms of g’̂  are inner ones so 
that p extends to an automorphism of g commuting with z .̂ 

54. We have l)(Z) = Q*, where Q is the root lattice in b(R)*. If (zp: p E n} is a 
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basis of b(Z) dual to I7 then the elements x, = &)=a zB (a E 1T,) form a basis 
of the lattice t,(Z) dual to 17,. It is directly verified that x,/k, - zB E t,’ if 
a= Y(P). For each a E I& choose /? E 17 such that r(b) = a. If u E t,(R) satisfies 
the conditions of the problem it presents in the form u = Cil.nO la(kJ1x,, 
where 1, E Z, implying u - xasn, 1,~ E t$. 

55. Problems 54 and 14 imply that v = %x - x + z, where x E b, z E b(Z). If 
~G&?(x) E H then hz^h-’ = ?&‘(u), so that h E Nr. It is easy to verify that 
co(h) = yt,. 

56. Let s E O@,(R)) be the linear part of w. Then t, E Aut !K By Problem 53 s 
extends to an automorphism (denoted by the same letter) belonging to NZ 
and commuting with z .̂ Express w in the form w = tvc, where a(Z) = 5 and 

rg 
t (a) = w(G). Clearly, G covers the transformation w(s) so that CT E Q. TO show 
&at t, E af it suffices to verify that u satisfies the conditions of Problem 55. 
We may assume that u # 0. Then ‘~(7~) = y0 for somej > 0. We deduce from 
this that ctj(u) = l/k, ai = 0 for i #j. If k = 1 then the needed conditions 
are clearly satisfied. If k > 1 then k = 2 (see Hint to Problem 53). Since 
S’clj = cc0 and since s commutes with ?, we have ga. n g( - 1) = s(gyo) # 0. 
Therefore (aj, l/2) E dT implying k,. = 2, and u satisfielthe desired conditions. 

57. Apply the following statement, Which is a consequence of Problem 2: if 
5: E dr and c = xo<j<l kj7/i, where kj E Z then Big5 = c  l  id, where c = 
etXi~*~~~l kjYj Formula (9) follows from (7). 

58. Show that the tangent algebra of the subgroup Z(&(x)) coincides with b @ 

0 a(x)d &Ye 
59. Deduce from Problem 1.28 and the fact that Adg is a semisimple auto- 

morphism of the Lie algebra g that H is reductive. Let H = VZ,, where V 
is a connected semisimple normal subgroup and ZH the identity component 
of the center of H. Then S c ZH. Clearly, O(V) = K If dim V > 0 then 
dim V@ > 0 (Theorem 2) contradicting the maximality of the torus S in U? 
Therefore H = ZH is a torus. Making use of Problem 3.3.26 we see that g E H 
and H is a maximal torus. 

60. See hint to Problem 58. 
61. By Problem 10 ge is a reductive algebraic subalgebra and by Problem 17 t, 

is its maximal diagonalizable subalgebra. If 8 = Z(U), where u E &, then 
g* = t, @ ~50EZg~ = t, @ xSEdl g5, where d, = {t E d’: C(U) = O}. It is 
clear from (9) that d 1 consists of the roots expressed in terms of Yil, . . . , Yi, 
only. By (8) t < I, hence {ail, . . . , ait} is a linearly independent system. This 
implies that the linear parts of roots from d, constitute the root system for 
Se and (ail,. . . , ai,} is its base. 



Chapter 5 
Real Semisimple Lie Groups 

Our study of real semisimple Lie groups and algebras is based on the theory 
of complex semisimple Lie groups developed in Ch. 4. This is possible because 
the complexification of a real semisimple Lie algebra is also semisimple (see 1.4.7). 
However, the correspondence between real and complex semisimple Lie algebras 
established with the help of the complexification is not one-to-one; any complex 
semisimple Lie group has at least two non-isomorphic real forms. As it turns out, 
to describe the real forms of a given complex semisimple Lie algebra g is the 
same as to classify the involutive automorphisms of g up to conjugacy in Aut g. 
This classification is easily obtained from the results of 4.4. The global classifica- 
tion of real semisimple Lie groups makes use of the so-called Cartan decom- 
position of these groups which also plays an important role in various applica- 
tions of the Lie group theory. 

5 1. Real Forms of Complex Semisimple Lie Groups 
and Algebras 

The main goal of this section is to classify real semisimple Lie algebras. After 
we discuss some general properties of real forms of complex semisimple Lie 
groups and algebras we reduce the classification to the listing (up to conjugacy) 
of the involutive automorphisms of complex simple Lie algebras. The latter 
problem is easily solved by methods of 4.4. 

lo. Real Structures and Real Forms. Recall (see 2.3.6) that the real forms of a 
complex Lie algebra g are in a one-to-one correspondence with the involutive 
antilinear automorphisms of this algebra. Namely, to each real form f> c g 
associated is the complex conjugation 0: g + g with respect to h and to each 
involutive antilinear automorphism 0: g ---) g associated is the real form g” = 
{x E g: a(x) = x} of g. Therefore, the involutive antilinear automorphisms of a 
complex Lie algebra g will be called real structures on g. 

Problem 1. If 0 is a real structure on a complex Lie algebra g and q E Aut g, 
then cpacp-’ is also a real structure and gcpacp-’ = (p(gg). Let 0’ be another real 
structure, then the real forms g” and 9”’ are isomorphic if and only if g”’ = q(gO) 
or, equivalently, 0’ = cpacp-’ for some cp E Aut g. 

Let G be a complex Lie group, H its real Lie subgroup (i.e. a Lie subgroup of 
G considered as a real Lie group). The subgroup H is a real form of G if 
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a) its tangent algebra h is a real form of g; 
b) H has a nonzero intersection with any connected component of G. 
Theorem 1.3.1 implies that b) is equivalent to the identity 

G = HG’. (1) 

Problem 2. If G is a complex algebraic group then its real form H in the sense 
of 3.1.2 is also its real form in the sense of the above definition. 

Problem 3. If H is a real form of a complex Lie group G then the center Z(H) 
of H coincides with H n Z(G). 

A real structure on a complex Lie group G is an involutive differentiable in a 
real sense homomorphism S: G + G, such that dS is a real structure on the 
tangent algebra g of G. For instance, the complex conjugation of a complex 
algebraic group G with respect to its real form (or, which is the same, an involutive 
antiholomorphic automorphism of G) is a real structure on G. If S is a real 
structure on a connected complex Lie group G then by Problem 1.2.31 the 
subgroup GS is a real form of G and its tangent algebra coincides with gdS. For 
algebraic groups the similar fact was proved in Ch. 3 (Problem 3.1.10). 

In what follows an involutive antiholomorphic automorphism of an algebraic 
group will be called an algebraic real structure and a real form in the sense of the 
theory of algrbraic groups will be called an algebraic real form. 

Example 1. Let T= (UZ*)n be the n-dimensional algebraic torus. The alge- 
braic real structure (z,, . . . , z,) H &,. . . , Y,J determines the real form (R*)n 
of T. Its tangent algebra is the real form t(R) = R” of t = UY considered in 
3.3.2. 

Example 2. The algebraic real structure (z,, . . . , z,) I+ (ZL1,. . . , Z,‘) determines 
therealform8”=((z,,...,~,):l~,I=~~==l~~~= l)ofTwiththetangentalge- 
bra ilFY c en. 

Exumple 3. The algebraic real structure A H Aon GL,(Q determines the real 
forms GLJR) c GL,(@) and gI,(R) c gl,(Q. The same example can be given in 
a coordinate-free form. Let V be a finite-dimensional vector space over R. Then 
on the group GL(V(@)) a real structure S is defined by the formula 

S(A)(v) = A(v) (u E v(a=)). (2) 

The corresponding real form is the subgroup of the group of linear transforma- 
tions defined over R, naturally identified with GL(V). The Lie algebra gI( V) is 
embedded into ql(V(@)) as the real form tangent to GL(V). . 

Example 4. If V is a finite-dimensional algebra over IF! then an anti- 
automorphism S defined by (2) transforms the group Aut(V(@)) into itself and 
determines an algebraic real structure there. The corresponding real form is 
Aut V Passing to tangent algebras we get the real form her V of ber(V(@)) (see 
Example 2 in 1.2.3). 
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Example 4 enables us to generalize one of important properties of complex 
semisimple Lie algebras to real ones. 

Problem 4. If g is a real semisimple Lie algebra then her g = ad g and Int g = 
(Aut 9)‘. 

As we have seen in 3.1.1, any real algebraic group G is embedded as a real 
form in a complex algebraic group G(c). The following example shows that for 
the Lie groups (even semisimple ones) the similar statement fails. 

Example 5. Considering the natural transitive action of SL,(lR) in R2\{O} and 
applying Iheorem 1.3.4 it is easy to show that q(SL,(lR)) z q(R2\(O}) 21 Z. 
Let G = SL,(R) be the simply connected covering for SL,(R). Then G cannot be 
embedded as a real form in any complex Lie group G. In fact, let f: G + G be 
such an embedding. We may assume that the tangent algebra of G is 5f,(a=) and 
df is the natural embedding (sl,(lR) ---) sI,(@). The group G is connected and its 
simply connected covering is SL,(Q. Therefore f is covered by the injective 
homomorphism f: G + SL,(@) such that df* = Q!‘!’ Clearly,{(G) = SL,(R) which 
leads to contradiction. 

The fact proved also implies that SI,,([w) does not admit any real algebraic 
group structure and cannot even be isomorphic to the identity component of an 
irreducible real algebraic group. SincE any semisimple linear Lie algebra is 
algebraic (Problem 4.1.8) the group SL,(R) does not admit a faithful linear 
representation. 

Now consider the realification of complex Lie algebras. Let g be a complex 
Lie algebra and gR the same algebra considered as an algebra over IR. 

In the Lie algebra g’ the multiplication by i is defined: 

It is a linear transformation over II2 such that 

I2 - -- E 9 (3) 

(4) 

In general, given a real Lie algebra g we call a complex structure on it a linear 
transformation of g satisfying (3) and (4). 

Problem 5. Given a real Lie algebra CJ with a complex structure I we make g 
into a Lie algebra 4 over c such that 6’ = g by setting . 

(a + bi)x = ax + blx (a, b E R, x E g). 

Notice that if I is a complex structure on g, then so is - 1. Therefore from each 
complex Lie algebra g over c we may construct another Lie algebra over UZ 
obtained from g by reversing the sign of the complex structure; this Lie algebra 
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will be denoted by g. Clearly, s[w = 9”. A homomorphism g + 3 is nothing but 
an antilinear endomorphism of g. Therefore g = g if and only if g admits an 
antilinear automorphism. In particular, if g possesses a real form then g = 9. 

Problem 6. Let g be a complex semisimple Lie algebra and {hi, ei,L (i = 
1 ?-**Y 1)> its canonical system of generators. Then the real subalgebra lj c g gener- 
ated by hi, ei, fi is a real form of g. The corresponding real structure on g 
transforms each of hi, ei, fi into itself. Therefore, any semisimple complex Lie 
algebra g is isomorphic to g. 

A real form E, of a semisimple complex Lie algebra g constructed in Problem 
6 is called a normal one. By Theorem 4.3.1 any two normal forms (constructed 
from different canonical systems of generators) are isomorphic. 

For any complex Lie algebra g the complex Lie algebra gdbl = g @ g will be 
called the double of g. 

Problem 7. The transformation CJ: gdbl + gdb* defined by the formula 0(x, y) = 
(y, x) is a real structure on gdb’ and the map (x, x) t+ x is an isomorphism of (gdb’)’ 
onto g! Therefore g”(a=) z gdb’. Under this isomorphism g and g are sent into 
the eigenspaces of the operator I (extended by linearity to g’(Q) corresponding 
to the eigenvalues i and - i respectively. 

Problem 8. If g is a semisimple complex Lie algebra then g’(c) N g 0 g. If f> 
is another semisimple complex Lie algebra and g’ r~ lj’ then g = l). 

Problem 9. Let ( l , 0) be the Cartan scalar product in a complex Lie algebra g. 
Then the Cartan scalar product in g’ is of the form (x, y)” = 2 Re(x, y). If E> is a 
real form of g then the restriction of (0, 0) onto lj coincides with the Cartan scalar 
product in lj. For any antilinear automorphism y of g we have 

(Y(X)9 Y(Y)) = (x, Y) (x9 Y E 9). 

As it was proved in 1.4.7, a real Lie algebra is semisimple if and only if so is 
its complexification. Now let us investigate the relation between simple non- 
commutative Lie algebras over Iw and a=. 

Problem 10. If g is a non-commutative simple Lie algebra over UZ then any real 
form of g is simple and the Lie algebra g’ is simple. 

Problem 11. If g is a simple real Lie algebra then either g(@) is simple or g 
admits a complex structure. 

Problems 10 and 11 imply 

Theorem 1. A non-commutative real Lie algebra is simple if and only if it is 
isomorphic to either algebra g*, where g is a simple complex Lie algebra, or to a 
real form of a simple complex Lie algebra. 

Theorem 1 and Problem 8 imply that the classification of simple real Lie 
algebras reduces to the classification of simple complex Lie algebras obtained in 
4.3 and to the classification of non-isomorphic real forms of each of them. 
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2’. Real Forms of Classical Lie Groups and Algebras. In this subsection we 
specify several real forms of classical complex Lie groups GL(@), SL,(@), O,(@), 
SO,(@), Sp,(@) and their tangent algebras. Actually, as we will see in 5 3, the real 
forms listed here exhaust up to an isomorphism all real forms of the classical 
complex Lie algebras. It is easy to observe that all real structures and real forms 
of classical groups listed below are algebraic. 

Recall (see Example 3 of 1”) that GL(lF!) is a real form of GL,(C) and gI,(R) is 
a real form of gI,(Q=). The corresponding real structure on GL,(@) is the complex 
conjugation: S(A) = A. 

Example 1. The complex conjugation A w x transforms each of the groups 
SL,(@), O,(C), SO,(@), Sp,(@) into itself and determines real structures in them. 
Therefore the following real forms of the classical groups are defined: 

%l(W = %I(@)~ on = Q(@), so, = SO,(@), Sp,(lw) C Sp,(@) 

The corresponding real forms of the Lie algebras are: 

The following series of examples has to do with quadratic forms. In 1.3.1” 
the pseudoorthogonal group Ok z * c GLk+#?) of signature (k, I) preserving the 
quadratic form 

and the special pseudoorthogonal group SO, , l had been defined. 

Let Ik l = , 

Then Lt I = Ik z. , , 

be the matrix of the form (5) and let Lk z = 9 . 

Example 2. The transformation S(A) = Ik ,iiik l is a real structure on the 
complex Lie groups G = O,,,(@), SOk+,(@), ;he corresponding real forms GS 
coincide with Lk IOk rLk l and Lk $0, ,L,i respectively. The cooresponding real 
form Lk lsok &ii of k&(c) consists of the matrices of the form 9 9 , 

where X, Y, 2 are real matrices, X and 2 of sizes k x k and I x I respectively, 
XT = -X,ZT= -z. 

The pseudounitary group of signature (k, 1) is the group uk l of all linear 
transformations of Ck+’ preserving the pseudohermitian quadratic form 
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In particular, U, = Un,O is the group of unitary matrices (or the unitary group). 
The groups SU, z = * U, l n SLk+#J and SU,, = , SU,, o are called special pseudo- 9 
unitary and special unitary groups. The corresponding tangent algebras will be 
denoted by u~,~, u,, %tk,I, w,. 

Example 3. The transformation S(A) = rk ,A -‘?k I defines a real structure on 
the complex groups G = GL,,,(@), SLk+.#$ the corresponding real forms GS 
coincide with uk,I and SUk,, respectively. To these real forms of Lie groups 
correspond the real forms uk,I c g[k+@) and !zuk,, c suk+l(c) consisting of the 
matrices of the form 

x Y 

( ) 
- 
YT z 

? 

where XT = -X, ZT = -2, X and 2 of sizes k x k and I x I respectively, and 
for 4uk 1 additionally satisfying tr X + tr Z = 0. 

Finally, the last group of examples results from the existence of a quaternionic 
structure in @2m . Consider the right quaternion vector space IHP over the quater- 
nion field W. Its linear transformations are identified with m x m matrices over 
W. Let GL,(W) be the group of invertible quaternion matrices. Its tangent algebra 
is the Lie algebra gI,(W) of all quaternion matrices. 

Consider (IZ as a subfield of W generated by 1, i. Each vector 4 E Wm uniquely 
presents in the form 4 = z + jw, where z, w E (II?. The correspondence 4 I--+ (z, w) 
is an isomorphism IHIm -+ @2m of vector spaces over UZ that maps qj into (- W, Z). 
Therefore g1,(W) is identified by this isomorphism with a subalgebra of gl,,,&) 
consisting of all transformations commuting with the antilinear transformation 
J: cZrn + @2m given by J(z, IV) = (-W,??). Notice that J = &T, where z is the 

standard complex conjugation in c2m and sm = 

Example 4. The transformation S(A) = JAJ-1 = --&As, determines a real 
structure on the complex Lie groups G = GL,,(Q, SL,,(Q, SO,,(Q. The 
corresponding real form of GL,,(@) is identified with GL,(W). The real forms 
GS of the groups G = SL,?Tm SO,r?l(a3) are denoted by SLJHI), U~(lHl) respec- 
tively. The latter notation is chosen since U,*(W) is identified with the subgroup 
of GL,(W) consisting of all linear transformations C of Wm preserving the 
skew-Hermitian quadratic form 

i.e. satisfying c’( jE)C = jE. The tangent algebras of SLJHI), U,*(W) are denoted 
by sI,(W), us. These Lie algebras are real forms of sl,,(Q, so,,(a3). The Lie 
algebras g1,( W), sI,( W), uz( W) are subalgebras of gl,,(@) consisting of matrices 
of the form 
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where X, Y E c&,(C), such that tr X + tr 2 = 0 for sI,(#-Q) and XT = -X, YT = r 
for us. ’ 

In GL,+JHl), consider the subgroup Sp, z , consisting of the transformations 
preserving the Hermitian quadratic for 

14112 + l  ** + 14k12 - I 

Under the isomorphism !-Ilk+’ + @2(k+z) 
into the Hermitian quadratic form 

n 

6?k+l I2 - ’ l  ’ - lqk+ll2. (6) 

described above the form (6) is mapped 

C Izi12 - C lzj12 + 1 lwi12 - 
1 bi,<k k+l <j,<k+l 1 <i,<k 

C Iwj12* 
k+l <j<k+l 

Therefore Spk z is identified with a subgroup of GL2~k+ll(@) consisting of the 
matrices A such that 

A= - sk+lxsk+l, A=K, ,A = Kk,,, . 

is the matrix of the form (7). These conditions im- 

ply that A(K, ,s,+[)Ak’= K, I$+[, l  i.e. Spk,l is contained in the complex sym- 
plectic group ‘preserving the form with the matrix K, I$+[. Setting i& z = 7 9 

(see Example 2) we see that the group MkV~Sp&!&~f is contained in 

the stand?bd symplectic group Sp21k+I)(c) an d coincides with the subgroup of all 
elements of the symplectic group preserving (7). 

Example 5. The transformation S(A) = Kk IAT-lKk I is a real structure on 
G = sp2(k+l)(@) and GS = Mk,,sPkJM,:. In Ghat follows we will identify the 
subgroup GS with Spk I. The corresponding real form !zpk f c sp2(k+I)(c) consists 
of the matrices of the form 

. 

k 1 k 1 

k i X 11 X 12 X 13 X 14 
- 

1 XT 12 X 22 XT 14 X 24 

k 4, x,, Xl, -x,, 
- - - 

1 XT 14 - X 24 - XT 12 X 22 

where xrl = - Xl 1, f,‘, = - Xz2, XT3 = X13, Xl4 = X2,. 
In particular, the group Sp,,, coincides with the group Sp, = GL,(W) n U,, 

of unitary quaternion matrices (see Exercise 1.1.3) and its tangent algebra lip, O . 
coincides with the Lie algebra sp,,, = c&,,(w) n u2,,, (here i&, = E). 

3O. The Compact Real Form. In this section we will show that each connected 
semisimple complex Lie group has a compact real form. This will enable us to 
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establish a one-to-one correspondence between the reductive complex algebraic 
groups and compact real Lie groups. 

A finite-dimensional Lie algebra 9 over R is called compact if there exists a 
positive definite invariant scalar product in g. Clearly, any subalgebra of a 
compact Lie algebra is compact. 

Problem 12. The tangent algebra of any compact Lie group is compact. 

Problem 13. The Cartan scalar product on a compact Lie algebra is always 
negative semi-definite. A real Lie algebra is semisimple compact if and only if its 
Cartan scalar product is negative definite. 

Problem 14. For a compact Lie algebra g the derived algebra g’ is semisimple 
and 9 = 9’ 0 3(g)* 

Problem 15. For any compact Lie algebra g there exists a connected compact 
Lie group G with the tangent algebra g. If g is semisimple then we may take 
G = Int g. 

Now let g be an arbitrary complex Lie algebra, o a real structure on g. Define 
the Hermitian form on g by setting 

47(x9 Y) = -(x9 4Yh (8) 

where ( l  , 0) is the Cartan scalar product. 

Problem 16. The form h, is invariant with respect to ad qa, i-e. , 

h,(P, xl9 Y) + h,(x, [z, y]) = 0 (x9 y E g,z E !!fh 

The restriction of the form -h, onto g” coincides with the Cartan scalar product 
in go. 

Problem 17. If y E Aut g is an automorphism commuting with o then 

Now assume that G is a connected complex semisimple Lie soup, q its tangent c 
algebra, S a real structure on G such that CJ = dS. 

Problem 18. The following conditions are equivalent: 
a) GS is compact; 
b) the Lie algebra g” is compact; 
c) the Hermitian form h, is positive definite. 

Fix a maximal torus T c G and a base { ~1~). . . , a,} of the rcW system d, with 
respect to T. Consider the canonical system of generators (h,,e& i = 1,. . . , I> 
of g defined in 4.3.2. As it is known, { - a,, . . . , -a,> is also a base. The system 
{-hi, -f;-, -ei: i = l,... , I> is the canonical system of generators associated with 
this base. By Theorem 4.3.1 there exists a unique automorphism ,u of g such that 
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Pthi) = -hi, /.&) = -fi, p(L) = -ei (i = l,.. .,l). 

We have ,u2 = id. 

Problem 19. There exists a unique antilinear automorphism 0 of g such that 

a(hJ . = -hi, o(ei) = -fi, O(A) = -ei (i = 1,. . . , I). 

This automorphism is involutive, i.e. 0 is a real structure on g. 

Problem 20. There exists a real structure S on G such that dS = 0. 

Problem 21. The subspaces ga, gs (a$ E &cc # p) are orthogonal with 
respect to h,. The subspace t is orthogonal to any ga, CC E d,. 

Problem 22. The Hermitian form h, is positive definite on t and on any gcli 
(i = l,...,I). 

Let G(‘) = G@) be the simple three-dimensional (complex) subgroup of G 
corresponding to a simple root ai. It is the image of SL,(@) under the homo- 
morphism Fi = Fbi (see 41.6”). 

Problem 23. We have Fi(g*-‘) = S(Fi(g)) (9 E SL,(Q). 

Problem 24. Each element of the Weyl group of G with respect to T is induced 
by an element of N(T) n GS. 

Problem 25. The Hermitian form h, is positive definite on g. 

Problems l&20 and 25 imply the following. 

Theorem 2. Any connected semisimple complex Lie group G has a compact real 
form. The tangent algebra of this form is a compact real form of the tangent algebra 

v?f G* 
Problem 26. A compact Lie algebra admitting a complex structure is 

commutative. 

Problem 27. A complex Lie algebra is simple if and only if it has a simple 
compact real form. 

As it will be shown in 4”, a compact real form of a semisimple complex Lie 
algebra is unique up to an inner automorphism of this algebra. 

Example. The following real forms of classical groups and their tangent 
algebras are compact: Un c GL,(@), SU,, c SL,(@), 0, c O,(c), SO, c SOJQ, 
SP, = SPzncQ %I = gI,(@), =$I = 4#Q $0, = q(a=), qJn = 5P&)* 

4O. Real Forms and Involutive Automorphisms. Let g be a complex Lie algebra. 
Consider the problem of classifying the real forms of g up to an isomorphism. 
By Problem 1 the classes of isomorphic real forms are in one-to-one correspon- 
dence with the involutive antilinear automorphisms considered up to conjugacy 
in Aut g. In this section we will show that for a semisimple Lie algebra g the 
antilinear automorphisms in this classification can be replaced by the linear ones. 
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Let g and z be two real structures on a Lie algebra ~3. The real forms g” and . 
9’ are said to be compatible if or = ~0. . 

Problem 28. The following conditions are equivalent: 
a) g” and g’ are compatible; 
w es=> = 9”; 
c) a(g7 = 9’; 
4 !3 * = g* n gr @ g” n (ig’); 0 
e) g’ = g’ n g” @ g’ n (ig”); (10) 
f) the automorphism 8 = 0~ of g is involutive. 

Notice that if c and z are compatible then 0 transforms g” and g’ into 
themselves, hence 0) ga = z 1 g0 and 01 g’ = oi$. Clearly, (9) and (10) coincide with 
the decompositions of g” and g’ into the eigenspaces of 0 corresponding to the 
eigenvalues 1 and - 1. 

Example. All real forms of the classical groups GL,(Q, SL,(Q, O,(C), SO,(@), 
Sp,,(Q listed in 2’ are compatible with their compact real forms Un, SU,, O,, 
SO,, Sp,, respectively. 

Problem 29. Two compact real forms of a semisimple complex Lie algebra are 
compatible if and only if they coincide. 

Our next goal is to prove the following. 

Theorem 3. Any two compact real forms of a semisimple Lie algebra g over C 
are conjugate. Any real form of g is compatible with a compact form. If a realform 
t> is compatible with two compact real forms U, and u2, then there exists an 
automorphism 9 E Int g, such that q(ul) = u2 and q(b) = t>. 

Let us fix a compact form u existing thanks to Theorem 2 and let z be the 
corresponding structure on g. Let CT be an arbitrary real structure on g. We wish 
to show that the real forms ga and u can be made compatible by applying an 
inner automorphism of g to one of these forms. 

Consider the automorphism 8 = CJZ and a positive definite Hermitian form hr 
on g defined by (8). 

Problem 30. The operator 8 is self-adjoint with respect to the form h,, i.e. 
hrCex9 Y) = hrCx, 6Y) tx9 Y E 9). 

This implies that p = e2 is a positive definite self-adjoint operator. 

Problem 31. Let E be a finite-dimensional Euclidean or Hermitian space, S(E) 
the space of all its self-adjoint linear operators and P(E) c S(E) the open set of 
positive definite operators. Then exp bijectively maps S(E) onto P(E). 

Let log = exp-‘: P(E) --+ S(E). For p E P(E) and t E R set pf = exp(t logp). 

Problem 32. If G c GL(E) is a real algebraic group and p E G n P(E), then 
pf E G for all t E R and logp belongs to the tangent algebra CJ of G. Therefore, . 
exp bijectively maps g n S(E) onto G n P(E). 

Applying Problem 32 to the element p = e2 of Aut g we get a one-parameter 
subgroup p’(t E R) in Aut g consisting of positive definite self-adjoint (with respect 
to hr) operators such that p1 = p. By Corollary of Theorem 4.4.1 pf E Int g. 
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Problem 33. We have op’o = zp’z = pet. 

Problem 34. The automorphism cp = p114 satisfies a(cpscp-‘) = (cpscp-‘)a. 
Therefore g” is compatible with the compact real form q(u). If a real structure cp 
on g commutes with 0 and z then $ commutes with (p as well. 

Problems 28 and 34 immediately imply Theorem 3. 
Theorems 2,3 and Problem 27 imply 

Corollary. The map gw g(C) determines the bijection between the classes of 
isomorphic compact semisimple Lie algebras and the classes of isomorphic complex 
semisimple Lie algebras assigning to a simple compact Lie algebra a simple complex 
Lie algebra and vice versa. 

Theorem 3 enables us to establish a correspondence between the real forms of 
a semisimple complex Lie algebra g and its involutive automorphisms. Namely, 
let 0 be a real structure on g. By Theorem 3 there exists a compact real structure 
7 commuting with 0. Then 0 = g7 is an involutive automorphism of g. If z1 is 
another compact real structure commuting with CT, then, as easily follows from 
Theorem 3, the automorphisms 8 and 0 = 07~ are conjugate in Aut g. Therefore 
there is a map assigning to each real structure (or a real form) in g a class of 
conjugate involutive automorphisms of g. 

Theorem 4. The constructed map defines a bijection of the set of isomorphism 
classes of real forms of g onto the set of classes of conjugate involutive automor- 
phisms ofg* 

To prove this theorem let 0 be an involutive automorphism of g. Making use 
of Theorem 2 choose a compact real structure 7 on g. Then q = (07)’ is an 
automorphism of g. 

Problem 35. The automorphism q is a positive definite self-adjoint operator 
with respect to the Hermitian form h,. 

Problem 36. There exists a compact real structure ‘tl commuting with 0. This 
structure is determined up to conjugacy by an automorphism of g commuting 
with 8. 

As it follows from Problem 36,O = ~7,) where G is a real structure commuting 
with zl. This makes transparent the surjectivity of the map constructed above. 

It is clear that two real structures which are conjugate by an automorphism 
define the same class of involutive automorphisms. Let us prove that the converse 
is also true. Let Oi (i = 1,2) be two real structures, ri a compact real structure 
commuting with Oi, ei = OiZi. Let 8, = &‘p-l, where cp E Aut g. Since 71 and 72 
are conjugate, we may assume that z1 = 72 = 7. Then the structures 7 and q-l741 

commute with 8,. By Problem 36 ~p-~zqo = titrl/-‘, where $ E Aut g and $0, = 
8, $. Clearly, o2 = OO,O-’ for o = cp& Theorem 4 is proved. 0 

It is useful to indicate an explicit construction of the real form h of g corre- 
sponding to an involutive automorphism 8 E Aut g. For this it is convenient to 
fix a compact real form u of g. Problem 36 implies that replacing 8 by a conjugate 
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automorphism we may assume that 6(u) = u. Let 

u = u(1) @ u(- 1) 

be the decomposition of u into the eigenspaces of 6 corresponding to the eigen- 
values 1 and - 1. 

Problem 37. The real form I) of g corresponding to the class of 6 by Theorem 
4 is of the form 

I-J = u(l)@ iu(-1). * (11) 

In particular, to the identity automorphism 6 = id the class of compact real forms 
of q corresponds. . 

5’. Involutive Automorphisms of Complex Simple Lie Algebras. Here we de- 
scribe the classes of conjugate involutive automorphisms of complex simple Lie 
algebras with the help of the method of 4.4”. Let g be a non-commutative complex 
simple Lie algebra of type L,. It suffices to consider non-identical involutive 
automorphisms 8 E Aut g, i.e. automorphisms 8 of order 2. By Theorem 4.4.8 and 
Problem 4.4.57 the classes of conjugate in Aut g automorphisms of order 2 are 
in one-to-one correspondence with the considered up to an isomorphism Kac 
diagrams of types L, (k) whose numerical labels Z.Q are of the form uj = Sj/2, where 
Sj(j = 0, l,..., I) are non-negative integers, relatively prime and satisfying 

k c njSj = 2. 
O<j,<l 

(12) 

Here no, nl, . . . . nl are relatively prime positive integers listed in Table 6. It 
follows from (12) that k = 1 or 2. 

Problem 38. Kac diagrams satisfying (12) belong to one of the following three 
types: 

I> k - - 1 u ; i = 0 for ail i except some i = p; u, = l/2; aP = 2; 
II) k = 1; ui = 0 for all i except some i = p, q, p # q; u, = u, = l/2; aP = 

ap= 9 1 . 

III) k = 2; ui = 0 for all i except some i = p; up = l/2; aP = 1, 
In case II we may assume that q = 0 if we consider Kac diagrams up to an 

isomorphism. 
Making use of Problem 38 and Table 6 it is not difficult to list all up to 

isomorphism Kac diagrams satisfying (12). The results are given in Table 7 (in 
case II we assume that q = 0). Problem 4.4.61 helps also to determine the type 
of the corresponding subalgebras ge (note that ge is semisimple in cases I and III 
and has a one-dimensional center in case II). 

Problem 39. Let dl, & be involutive automorphisms of a simple noncommu- 
tative Lie algebra g over C. Then gel z ge2 if and only if e1 and t$ are conjugate 
in Aut g. 
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As an application, let us explicitly describe the classes of conjugate involutive 
automorphisms of simple classical complex Lie algebras. We make use of nota- 
tion of 2’. 

Theorem 5. The following automorphisms 8 of simple classical complex Lie 
algebras g form the complete system of representatives of classes of conjugate 
involutive automorphisms (for 8 # id the type of the corresponding Kac diagram 
is indicated, see Problem 39): 

1) g = 51,(C), n > 2 
a) e(x) = -XT III 
b) 0(X) = -AdS,(XT), n = 2m III 
C) 8 = Ad I, n-p (p = 0, 1,. . . , [n/2]) 

2) g = 50,(C), n’= 3 or n > 5 
II for p > 0 

a) 8 = AdI, n-p (p = 0, 1,. . . , [n/2]) 
b) 8=AdSi,n=2m 

I and II for p # 0, 2; II for p = 2 
III 

3) g = sp,(C), n = 2m > 2 
a) 0 = Ad S,,, II 
b) 0=AdK,,_,(p=O,l,...,[m/2]) Iforp>O , 

Problem 40. Prove this theorem. 

6’. Classification of Real Simple Lie Algebras. The results of 4’ and 5” enable 
us to list up to an isomorphism all real forms of non-commutative complex simple 
Lie algebras. For the classical Lie algebras this list is given by the following 
theorem. 

Theorem 6. Any real form of a clasical simple complex Lie algebra g is isomor- 
phic to exactlv one of the followina real forms E> c g: 1 0 

11 cl = sI,(;c), n aJ2 J 

4 b = 4l(W 
b) b = cl,(W), n = 2m 

cl E,= ( P 5u,,n-, = 01 7 9 ’  l  l  9 rd21 
2) g = 50,(C), n = 3 or n 3 5 

a) b = ( P 50,,?l-, = 01 9 9 l  l  l  9 IN21 
b) b = ut(W), n = 2m 

3) g = sp,(@), n = 2m 2 2 

a) El = 5p,(R), n = 2m 

b) b = 5P,,??l-, p = 9 ( 01 )**‘$ Cm/21 )* 
Problem 41. Prove this theorem. 
Noncompact real forms of the exceptional simple complex Lie algebras are 

listed in Tables 7 and 9. 
Theorems 1, 6 and Problem 8 imply the following final result of classification 

of real simple Lie algebras. 

Theorem 7. Non-commutative real simple Lie algebras are exhausted up 
to an isomorphism by the real forms IJ listed in Theorem 6, by the real forms 
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of the exceptional simple complex Lie algebras and by the Lie algebras gw, 
where g are different non-commutative complex simple Lie algebras. 

Notice that Theorem 7 completely solves the classification problem for 
an arbitrary semisimple Lie algebra over R since by Theorem 4.1.3 any 
semisimple Lie algebra uniquely decomposes into the direct sum of non- 
commutative simple algebras. 

1) 

2) 

3) 

6) 
7) 

8) 

Exercises 

Let G = PSL&lZ) x SL,(@), where PSL#) = SL,(@)l(E, -E}, and H be 
the subgroup of G consisting of the pairs @(X),X), where 71: SL,(c) + 
PSL,(@) is the natural projection. Then H is a real form of G which is not of 
the form GS, where S is a real structure in G (and not even an open subgroup 
of a group of the form Gs). In particular, H is not an algebraic real form. 
Let S be a real structure on a complex algebraic torus T. Then there exists 
an isomorphism T z (C*)” such that in appropriate coordinates S is 
expressed in the following form 

S( -q,*-J,) = (~1,...,Zp,;p+q+l,Zp+l,..*,Zpf2q,Zp+qr~~~~~+l,...,Zn’). 

In particular, any real structure S on T is algebraic. 
Any real structure on a connected complex reductive algebraic group is 
algebraic. 
A real semisimple Lie group G with a finite number of connected components 
admits a faithful linear representation if and only if G admits an embedding 
as a real form in a complex Lie group. 
The groups SL,(R) and PSL,(R) = SL,(R)/{E, -E} are the only (up to an 
isomorphism) connected Lie groups with the tangent algebra Al, admit- 
ting a faithful linear representation. 
The center of S&R) (see Example 1.5) is infinite and isomorphic to Z. 
Let G = (lJ x SL,(R))/((t,z)), where t E U, be an element of infinite order 
and z a generator of Z(%#)). Then the commutator group G’ is not a Lie 
subgroup of G. 
Let G be a Lie group, lj a semisimple subalgebra of its tangent algebra q. If 
G is simply connected or if the simply connected Lie group with the tangent 
algebra lj has a finite center then there is a connected Lie subgroup H of G 
with the tangent algebra h. 

Let q be a real semisimple Lie algebra. As follows from Example 4, formula 
(2) determined an algebraic real structure on the irreducible algebraic group 
Int(q(@)). The corresponding algebraic real form . 

wgPm=N = Wg(a=)) n Aut g 

is called the group of quasi-inner automorphisms of 9; denote it Q Int ~3. Clearly, . 
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(Q Int do = Int q. The group Tnt g is an algebraic linear group (over IF!) if and 
only if Int g = 6 Int g. 

9) If g = e&JR), (n >/ 2) then Q Int g consists of two connected components for 
even yt and coincides with Int g for odd n. 

10) If g = 50,4$ where p > 0, q > 0, then the number of connected components 
of Q Int g’can be found from the following table: 

P+4 
odd 

2 

P, 4 even, 
Pel 

2 

P=4 
even 

4 

p, 4 odd 
Pf4 

1 

P=4 
odd 

2 

11) The connected simple Lie group PSL,(R) z 0: 2 = Int 50~ 2 has no real * , 
algebraic group structure. 

12) The linear group Int(zJ,(R)) is algebraic (see Exercise 9). The adjoint repre- 
sentation Ad: SL,(R) + Int(sI,(lF!)) is a polynomial isomorphism of Lie 
groups but it is not a real algebraic group isomorphism. 

13) The real algebraic groups SL,(R) and Int(oI,( IF!)) are not isomorphic. There- 
fore on the connected simple Lie group SL,(R) there are at least two 
non-isomorphic real algebraic group structures. 

14) Let g be a semisimple complex Lie algebra. A real form of g @ g correspond- 
ing by Theorem 4 to the automorphism 8: (x, y)~(y, X) (x,y E g) is iso- 
morphic to g’. 

15) There are the following isomorphisms between the classical real Lie algebras 
of different series (see 2”): 

503 = 5u2 21 5p1, 5*6 = 5u4, 

5%,2 = 5%,1 = 5l,(rw) = 5Pz(W 5015 = 5[2(W, 

504 = SW2 @ S&J, 502.4 = 5w2,2, 

5%,3 = dam, 5O3,3 = 5l,(rw), 

502,2 = 5[2@) 0 512(R), @it-!) z !+ @ d#!), 

505 = 5P2, u3u-u = 5u, 3, * 

501.4 = 5Pl*l, u$(!-t) = 502 6. 9 

502. 3 cz %A~), 

Let g be a real Lie algebra, p: g + ql( V) its finite-dimensional real linear 
representation. Then p extends to a complex representation p(C): g -+ 



236 Chapter 5. Real Semisimple Lie Groups 

16) If p is irreducible then p(@) is irreducible if and only if there is no complex 
structure on V (i.e. no operator I satisfying (3)) commuting with all p(x), x E g. 

17) If p is irreducible and complex, i.e. T/ admits a complex structure I commut- 
ing with p, then p(@) - p + p (as representations over C), where p is 
the representation p considered in the space v with the complex structure 
- I . 

Hints to Problems 

1. Notice that any isomorphism of real forms of a complex Lie algebra extends 
to an automorphism of this algebra. 

2. Make use of the identity fi = G (in Zariski topology) and the fact that the 
connected components of G coincide with its irreducible components (see 
Theorem 3.3.1). 

3. If z E Z(H), then Adz = E in h and therefore in g = h(C). Next, apply Theo- 
rem 1.2.4 and formula (1). 

4. Make use of Corollary of Theorem 4.4.1. 
6. Show that there exists a unique antilinear automorphism of g (see 4.3.2”), 

fixing hi, ii, f;l. Clearly, this automorphism maps m into itself and therefore 
induces an antilinear automorphism c of g fixing hi, ei, 5. Clearly, a2 = id 
and h c g”. Since the complex linear span of t, coincides with g, we have 
lj = g”. 

8. To prove the second statement make use of Theorem 4.1.3. 
10. If a is a non-zero ideal of g’, then the complex linear span of a in g coincides 

with g. Therefore the ideal b c gR complementary to a must belong to the 
center of g implying b = 0. 

11. Deduce from the simplicity of g that if a # 0 is a proper ideal of g(C), then 
!3(a=) = a @ a. Next, define the transformation I: g -+ g by the formula IX = 
iy - iy for x = y + j% g, y E a, and prove that I is a complex structure 
on g. 

12. Follows from Theorem 3.4.2. 
13. Make use of the fact that in an orthonormal basis of a compact Lie algebra 

g all operators ad x (X E g) are expressed by skew-symmetric matrices. 
14. Problem 4.1.7 implies that g = a(g) @ g’. With the help of Problem 4.1.2 it is 

easy to deduce that any commutative ideal of g is contained in j(g). This 
implies that g’ is semisimple (see Problem 1.4.13). 

15. Make use of ‘Problem 4. The compactness of Int g follows from its closedness 
in Aut g and the compactness of Aut g (thanks to Problem 13). 

18. The implication a) = b) follows from Problem 12, the equivalence b) - c) 
from Problem 13. To prove the implication c) 3 a) consider the finite-sheeted 
covering Ad: G -+ Ad G = G. On G, a real structure $(Ad g) = S(Ad g)S-’ = 
Ad S(g) is defined such that Ad(GS) = @. Therefore, the subgroup Ad(GS) 
is closed in GL(g). On the other hand, by Problem 17 Ad(GS) is contained 
in the compact group of all operators unitary with respect to h,. Hence 
Ad(GS) and GS are compact. 



19 . 

20 . 

24 . 

25 . 

26 . 

29 . 

31 . 

32 . 

36 . 

39 . 

40 . 

9 1. Real Forms of Complex Semisimple Lie Groups and Algebras 237 

Set 0 = a(-+ = poo, where o. is the real structure determining the normal real 
form (see Problem 6). 
By Theorem 1.2.6 the statement holds if G is simply connected. It follows 
from Problem 4.3.47 that S acts as the identity on Z(G). Therefore, a real 
structure with the differential c is defined on any group of the form G/N, 
where N is a subgroup of Z(G). 
It suffices to prove this for the generators rgi (i = I,. . . , I). But by Problem 

4.1.37 rai is induced by the element nai = Fi( (J A)) E N(T). Since 

E SU,, then Q E GS by Problem 23. 

By Theorem 1.2.6, Problems 1.1.24 and 24 any root s&space ga is tram- 
formed into the subspace goi corresponding to a simple root ct, by an appro- 

priate automorphism Ad g, where g E N( 7’) n GS. Therefore Problems 22 and 
17 imply that h, is positive definite on t and on each s&space ga. Then apply 
Problem 21. 
The complex structure I transforms g’ into itself and induces there a self- 
adjoint linear transformation. If g’ # 0 then this contradicts the fact that the 
characteristic roots of I are + i. 
Let 0, z be real structures on g defining its compatible compact real forms 
and 0 = oz. Problem 18 implies that (0x, x) < 0 for all x E g”. It follows from 
Problem 28 that 0x = x(x E g”), whence 8 = id and g* = g’. 
Let X E S(E) and E = @l<i<r E,. be the decomposition of E into the or- 
thogonal sum of eigenspaces with’respect to X. Then Eii is the eigenspace 
of expX corresponding to the eigenvalue eAi > 0. Therefore, exp X E P(E). 
Conversely, if A E P(E) and E = @I <i<j E,. is the corresponding eigenspace 
decomposition then define log A E S(E) setting (log A)IE,. = (lOgpi)E* It is 
easy to verify that the map log: P(E) + S(E) is inverse to ixp. 

Let us prove that p’ E G for all t E IF& Let us express the linear operators in 
E by matrices in an orthonormal basis. We may assume that logp is a 
diagonal matrix with the real diagonal elements a,, . . . , a,,. If F is a poly- 
nomial function on the space of all the matrices vanishing on G and F the 
restriction of F onto the subspace of diagonal matrices then F(ekul,. . . ,ekan) = 
0 for all k E Z since pk E G. If q(t) = F(ekal,. . . , ekan) does not vanish iden- 
tically then it is of the form q(t) = xi ciefbi, where ci # 0 and b, > b, > l  l  . 
are real numbers. Clearly, the absolute value of c, efbl for t = k grows as 
k -+ co faster than the absolute value of the sum of other terms. This leads 
to contradiction. 
Set q = q1J4Zq-1t4 (cf. Problem 34). The proof of the second assertion is 
similar to that of the corresponding assertion of Theorem 3. 
In one direction the statement is obvious, in the other direction it follows 
from the obtained classification (see Table 7). 
Make use of Problem 39. 

41 . - -_---_ _-_ - -- , * Make use of Theorem 4, Example 2 from 4’ and Theorem 5. 
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5 2. Compact Lie Groups and Reductive 
Algebraic Groups 

The main goal of this section is to establish a one-to-one correspondence 
between the compact Lie groups and the reductive complex algebraic groups and 
also between homomorphisms of compact and reductive groups. In the language 
of category theory this means that there is an equivalence between the categories 
of compact Lie groups and reductive complex algebraic groups. An important 
corollary is the theorem on complete reducibility of linear representations of 
semisimple Lie algebras. An essential role in the theory developed here is played 
by the theorem on polar decomposition which we prove in the real setting having 
in mind its different applications. One of them is the proof of the connectedness 
of the set of real points of a simply connected complex semisimple Lie group G, 
defined over IR. 

lo. Polar Decomposition. In linear algebra the theorem on polar decomposi- 
tion of a linear operator in a finite-dimensional Euclidean or Hermitian space 
E is well-known: any element A E GL(E) uniquely presents in the form A = XY, 
where X is an orthogonal (or unitary) operator and Y is a positive definite 
self-adjoint operator. In this subsection we distinguish a class of algebraic linear 
groups for which a similar theorem holds. In the complex case all algebraic 
groups possessing a compact real form belong to this class (we shall see later that 
these algebraic groups are exactly the reductive ones). 

At lirst we want to refine the above theorem on polar decomposition for 
the group GL(E). Set K = O(E) (respectively U(E)). Consider the map q: K x 
S(E) -+ GL(E) defined by 

dk Y) = k exp y. (1) 

The uniqueness of the polar decomposition and Problem 1.31 imply that cp is 
bijective. Actually, the following lemma holds. 

Lemma 1. The map cp: K x S(E) + GL(E) given by (1) is a diffeomorphism. 

Proof. Show that the map dfko,y,)q is injective for all k, E K, y, E S(E). Using 
the left translation by k, we reduce the proof to the case k, = e. The tangent 
algebra f or K consists of all skew-symmetric (skew-Hermitian) operators. It is 
easy to see that 

d,e,y”,cp(x~ Y) = =xpy, + kQXP)Y 6 E f,Y E S(E))* 
Set p. = expy,, z = (dYo exp)y. Suppose d,e,,o,cp(x,y) = xp, + z = 0. Then 

PO 
-~12xp~12 = -p~112zp;li2; the right-hand side of this identity is, clearly, a self- 

adjoint operator, but on the left we have an operator whose characteristic roots 
are purely imaginary. Hence, x = z = 0. Therefore, we have to prove that y = 0, 
i.e. the injectivity of dYo exp. 

Consider the curves g(t) = y. + ty and z(t) = exp y(t) and differentiate the 
identity y( t)z(t) = z(f)y(t) with respect to t. Since z = 0, we have vpo I = pay. Since 
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y, and p0 have the same eigenspaces, yy, = y,y. It follows from Problem 1.2.27 
that z(t) = p. exp ty. Hence, p,y = 0 and y = 0. 0 

For an arbitrary g E gl(E) denote by g* its adjoint operator. A linear group 
G c GL(E) is called self-adjoint if g* E G for any g E G. 

Theorem 1. Let E be a finite-dimensional Euclidean (Hermitian) vector space, 
G c GL(E) a self-adjoint algebraic (real or complex) group, K = G n O(E) (resp. 
G n U(E)) and P = G n P(E). Then 

G=KP, (2) 

each element g E G being uniquely presented in the form g = kp, where k E K, p E P. 
Adore precisely, denote p = g n S(E), then the map q: K x p + G defined by (1) 
is a diffeomorphism. For any g E G we have 

cm *-P - . (3) 

Proof. Formula (2) is proved by a trick well known in the linear algebra. If 
g E G then q = g*g E P. Problem 1.32 implies that p = q1/2 E P. Clearly, k = gp-’ 
is an orthogonal (unitary) operator, whence k E K and g = kp. It follows from 
Lemma 1 that cp is a diffeomorphism. Formula (3) is obvious. q 

The decomposition (2) is called the polar decomposition of a self-adjoint alge- 
braic linear group G. 

Corollary 1. A selfadjoint algebraic linear group G is diffeomorphic to K x R”, 
where K is the compact subgroup defined in Theorem 1 and m = dim p. In particu- 
lar, G is connected if and only if so is K, and in this case n1 (G) = n1 (K). 

Problem 1 (Corollary 2). Under the assumptions of Theorem 1 

Z(G) = (Z(G)n K) x (Z(G)n P), 

and Z(G) n P z IRS for some s > 0. If G is semisimple then Z(G) c K. 

Problem 2 (Corollary 3). Under the same assumptions L n P = {e} for any 
compact subgroup L c G. In particular, K is a maximal compact subgroup of 
G (i.e. is not contained in any larger compact subgroup of G). 

Now we may consider a special case which is convenient to formulate as a 
separate theorem because it is important in what follows. 

Theorem 2. Let G c GL( V) be a complex algebraic linear group with a compact 
real form K and p = if. Themapcp: K x p --+ G defined by (1) is a diffeomorphism 
of real manifolds. A real form K is an algebraic one. 

Proof. Make V into a Hermitean space E fixing a positive definite Hermitian 
form in it invariant with respect to K (see Theorem 3.4.2). Then I consists of 
skew-Hermitian operators and p = if consists of self-adjoint operators so that 
P = 9 n S(E)* 
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Problem 3. G is self-adjoint. 
Problem 3 implies that Theorem 1 is applicable to G, where the role of K is 

played by K, = G n U(E). 

Problem 4. K, coincides with K. 
Therefore it only remains to prove the last statement of Theorem 2. Consider 

the automorphism S: g w (g*)-l of G. Clearly, S is an algebraic real structure on 
G and by Problem 4 K = GS. 0 

Corollary 1. Under the assumptions of Theorem 2 G is diffeomorphic to K x R”, 
where m = dime G. . 

Problems 1 and 1.3 imply 

Corollary 2. Under the assumptions of Theorem 2 

Z(G) = Z(K) x (Z(G) n P). 

If G is semisimple then Z(G) = Z(K). 

Corollary 3. Under the assumptions of Theorem 2 

N(K) = K x (Z(G) n P). 

If G is semisimple then N(K) = K. 

Proof. Clearly, N(K) = K(N(K) n P). If g E N(K) n P then the uniqueness of 
the polar decomposition and (3) imply that g E Z(K). Since g = f(c), then 
Adg= E. One easily deduces that gpg-’ = p for all p E P, whence g E Z(G). I-J 

Let us apply the polar decomposition to the proof of the following statement. 

Theorem 3. Let S be a real structure on a simply connected complex semisimple 
Lie group G. Then the real form GS is algebraic and connected. 

Proof. Set 0 = dS. Let us show that there exists a compact real form K of G 
such that the corresponding real form f of g is compatible with g”. By Problem 
1.33 there exists on g a real structure z commuting with 0 such that g5 is compact. 
By Theorem 1.25 there exists an automorphism T of G (considered as a real Lie 
group) such that z = dT. 

Clearly, T is a real structure in G commuting with S. Thanks to Problem 1.18 
the real form K = CT is compact. 

By Theorem 3.3.4 the involutive automorphism 0 = TS of G is polynomial. 
Therefore the algebraicity of the real structure T (Theorem 2) implies that S is 
also an algebraic real structure. 

As in the proof of Theorem 2, we may assume that G c GL(E), where E is a 
Hermitian vector space, whose scalar product is K-invariant. Moreover, T(g) = 

* 
(9 ) -’ and G is a self-adjoint algebraic linear group. Since T commutes with S 
and 0, the groups GS and G” are also self-adjoint. Clearly, the compact parts 
GS n K and GQ n K of the polar decompositions coincide. By Theorem 4.4.9 G@ 



$2. Compact Lie Groups and Reductive Algebraic Groups 241 

is connected. Applying Corollary 1 of Theorem 1 we derive from here that the 
subgroup G@ n K = GS n K is connected and therefore so is GS. 0 

2O. Lie Groups with Compact Tangent Algebras. By Problem 1.15 each com- 
pact Lie algebra is isomorphic to the tangent algebra of a compact Lie group. 
However, a non-compact Lie group can have a compact tangent algebra: the 
simplest example is the additive group IF!. In this subsection we will study the 
structure of Lie groups with a finite number of connected components whose 
tangent algebra is compact. First consider connected groups. Recall (see Problem 
1.14) that a compact Lie algebra f presents in the form f = 3 @ f’, where 3 is the 
center of f and the derived algebra f’ is a semisimple compact Lie algebra. 

Problem 5. Any simply connected Lie group K with a compact semisimple 
tangent algebra is isomorphic to a compact real form of a simply connected 
complex semisimple Lie group. 

Problem 5 implies that a simply connected (hence an arbitrary connected) 
semisimple Lie group with a compact tangent algebra is compact and therefore 
has a finite center. 

Problem 6. Any connected compact Lie group K has a finite-sheeted covering 
Z x L -+ K, where Z is a compact torus and L is a simply connected semisimple 
compact Lie group. 

Problem 7. Any connected compact Lie group K is isomorphic to an algebraic 
real form of a connected complex reductive algebraic group. In particular, K 
admits a faithful linear representation. 

Problem 7 implies the following theorem describing the structure of connected 
compact Lie groups. 

Theorem 4. Let K be a connected compact Lie group. Then K’ is a connected 
semisimple compact Lie subgroup of K and K admits the locally direct decomposi- 
tion K = ZK’, where Z = Rad K is the compact torus coinciding with the identity 
component Z(K)’ of the center of K. 

Problem 8. Prove this theorem. 

Now pass to arbitrary connected Lie groups with compact tangent algebras. 
The simplest class of these groups are connected commutative groups. Recall 
(see Proposition 1, 2, 3) that any connected commutative group G presents in 
the form G = A x B, where A z IW is a vector group and B z Uq a compact 
torus. 

Problem 9. B is the largest compact subgroup of the connected commutative 
group G, i.e. contains all compact subgroups of this group, and therefore is 
uniquely defined. For A one can take any subgroup of the form exp a, where a 
is a subspace of the tangent algebra g of G such that g = a @ b, where b is the 
tangent algebra of B. 

A and B are called the non-compact and compact parts of the connected 
commutative group G respectively. 



242 Chapter 5. Real Semisimple Lie Groups 

Theorem 5. Let G he a connected Lie group with a compact tangent algebra 
and A and B the non-compact and compact parts of Z(G)‘. Then G = A x K, 
where K = BG’ is a compact Lie subgroup. K is the largest compact subgroup 
of G. 

To prove this theorem we will need the following 

Problem 10. Let 71: G + Go be a finite-sheeted covering and Go satisfy Theorem 
5. Then G also satisfies Theorem 5. 

Now let G be a connected Lie group with a compact tangent algebra. Let us 
construct a finite-sheeted covering G + Go satisfying the conditions of Problem 
10. Let 71: G --) G be a simply connected covering of G. Clearly, G = 2 x G’, 
where Z is a vector group, G’ a semisimple compact Lie group (see Problem 6). Set 

N = Ker 7t, No = NZ(G’), Go = G/N,. 

Problem 11. No = N, x Z(G’), where N, is a discrete subgroup of 2 and 
G 0 = z/N, x G’/Z(G’). There exists a finite-sheeted covering no: G -+ Go. 

Since G/Z@‘) is compact, Go satisfies Theorem 5. By Problem 10 so does G. 0 

Now we can prove the main result of this subsection. 

Theorem 6. Let G be a Lie group with a finite number of connected components 
and a compact tangent algebra and Z = Z(GO)O. We can choose a non-compact 
part A of Z which is a normal subgroup of G. For any such a choice of A we have 
G=A>dK,G’= A x K”, where K is a compact Lie subgroup. 

Let b c 3 be the tangent algebras of the compact part B of Z and Z itself, 
respectively. Clearly, the automorphisms a(g)(g E G) transform Z into itself. By 
Problem 9 B is also mapped into itself by all the a(g). Therefore 3 and b are 
invariant with respect to the adjoint representation of G. 

Problem 12. In 3, there exists a subspace a invariant with respect to Ad G such 
that 3 =a@b. 

Problems 9 and 12 imply the existence of a subgroup A c G described in 
Theorem 6. Applying Theorem 5 to Go we get Go = A x K,, where K, is a 
compact Lie subgroup. To finish the proof of Theorem 6 we need the following. 

Lemma 2. Let G be a Lie group with a normal vector Lie subgroup A of finite 
index. Then G = A XI L, where L is a finite subgroup. 

Proof. Let Lo = G/A, IT: G -+ Lo the natural homomorphism. It suffices to 
construct a homomorphism cp: Lo + G 
where L = q(L,). Choose a map @: Lo -+ 
form 

such that ZCQ = id; then G = A >Q L, 
G such that n$ = id and seek cp in the 

where h: Lo -+ A is a map. Observe that 

(x E Lo)9 (4) 
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wheref(x,y) E A. The condition &y) = &)cp(y) is equivalent to the following 
identity relating h with the map f: LO x LO + A: 

fk Y) = ~(x,h(y)-‘~(x)-‘h(x)-‘h(y) (x9 Y E Lo) (6) 

We will express the group operation in A additively. As follows from Problem 
1.2.26 any automorphism of the vector group A is a linear transformation. 
Therefore the formula 

R(g) = 4s)lA (9 E G) (7) 

determines a linear representation R: G --+ GL(A). Since A c Ker R, there arises 
a linear representation R,: L, + GL(V) such that R = R,z Formula (6) takes 
the form 

f(x9 Y) = h(xy) - h(x) - R,(x)~(y) (x,Y E Lo) (8) 

Thus, it suffices to choose a map h: L, --) A satisfying (8) with f defined by (5); 
then (4) defines the desired homomorphism (p. 

Problem 13. For any X, y, z E L, we have 

f (x9 Y4 + R,Wf (Y9 4 = f(XY, 4 + f (x, Y)* 

Problem 14. The map h: L, -+ A defined by the formula 

4 ) x= -j& c f(%Y), 
0 YE&) 

satisfies (8). 
Therefore Lemma 2 is proved. 0 

Problem 15. Prove Theorem 6. 

A subgroup K of a Lie group G is a maximal compact subgroup of G if K is 
compact and is not contained in any larger compact subgroup of G. We will not 
assume that K is a Lie subgroup. (This is automatically so since K is closed in G 
(see 1.2.9”; this fact will not be used though).) Any automorphism of G permutes 
its maximal compact subgroups. 

The following theorem shows that the subgroup K mentioned in Theorem 5 
is maximal compact in G and is unique up to conjugacy. 

Theorem 7. Let G = A >a K, where A is a vector group, K a compact Lie group. 
Then K is a maximal compact subgroup of G. For any compact subgroup K, c G 
there exists a E A such that aK 1 a-l c K and if K 1 is a maximal compact subgroup 
this inclusion is actually an equality. 
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Before proving this theorem make several general remarks on semidirect 
products of Lie groups. Let G = A XI K, where A is a vector group. Then the 
automorphisms a(g)lA (g E: G) are linear transformations of the space A (see the 
proof of Lemma 2). Therefore formula (7) defines linear representation R: G -+ 
GL(A). Now, consider the vector space A as an afine space. Then we may define 
a natural affine G-action on A: 

Problem 16. There exists a unique afline action a: G + GL(A) such that 
E(a) = t, (a E A) and R(k) = R(k) (k E K). This action contains all transla- 
tions and in particular it is transitive on A. The subgroup K is the stabilizer of . 
OE A. 

Since the stabilizers of any two points are conjugate for a transitive action of 
a group, Problem 16 implies that the subgroup K, c G = A >Q K is conjugate 
to a subgroup contained in K if and only if A contains a point fixed under &IQ. 
An element a E G such that aK, a-l c K may be assumed to belong to A. 

Proof of Theorem 7. Since A does not contain non-trivial compact subgroups, 
K is a maximal compact subgroup of G = A >Q K. The conjugacy follows from 
the above remarks and the existence of a fixed point for any affme action of a 
compact group (Theorem 3.4.1). q 

3’. Compact Real Forms of Reductive Algebraic Groups. In this subsection we 
will generalize Theorem 1.2 on the existence of a compact real form of a connected 
complex semisimple Lie group to arbitrary reductive algebraic groups. Besides, 
we will prove the conjugacy of compact real forms. The main results are formu- 
lated as follows: 

Theorem 8. Any reductive complex algebraic group possesses an algebraic 
compact real form. 

Theorem 9. Any two compact real forms of a reductive complex algebraic group 
G are transformed into each other by an automorphism of the form a(g), where 
g E Go. 

Proof of Theorem 8. Let G be a reductive complex algebraic group, H = (GO)‘, 
Z = Rad G = Z(GO)O. In a connected semisimple Lie group H choose a compact 
real form L (see Theorem 1.2) which is connected thanks to Corollary 1 of 
Theorem 2 and let U = N(L). Applying Corollary 3 of Theorem 2 to H and L 
and using the decomposition Go = ZH, we get U n Go = ZL. In particular, the 
group U n Go is connected implying U” = U n Go-= ZL and u = 3 @ 1. There- 
fore the tangent algebra of U is compact. 

Problem 17. G = HU, G/Go = U/U’. 
Thus, U has a finite number of connected components. In the tangent 

algebra 3 of the torus Z, consider the real form 3(R) defined in 3.3.2” and set 
A = exp3([W), B = exp(i#)). Then Z = A x B, A being the non-compact and B 
the compact parts of Z (see Example 2 in 1.1’). Since 3(K) is stable under all 
automorphisms of Z and Z is a normal subgroup of G, A is also a normal 
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Proof of Theorem 9. Let K be a compact real form of G constructed in the 
proof of Theorem 6 and K, another compact real form of G. Let 0 be a real 
structure on g such that f, = g”. Then CJ transforms the center 3 and the derived 
algebra h of g into themselves and induces on each of these subalgebras a real 
structure. We have f, = 3” @ lj”. Since K, n 2 is compact, it is contained in B so 
that 3” = f, n 3 c i&IF!) implying $’ = ij(lR) and K, n Z = B. Further, h” is a 
compact real form of lj. Applying Theorem 1.3 we may assume that ljc = 1. Then 
f 1 = f, hence KY = BL. Therefore, K, c N(BL) = N(L) = U. 

Problem 19. There exists a E A, such that uK,u-~ = K. 
Thus Theorem 9 is proved. 0 

subgroup of G. Applying to U Theorem 5 we see that U = A >o K, where K c U 
is a compact subgroup such that K” = BL. 

Problem 18. The subgroup K is a real form of G. 

The algebraicity of the real form K follows from Theorem 2. Therefore Theo- 
rem 8 is proved. 0 

4’. Linearity of Compact Lie Groups. Thanks to Problem 7 any connected 
compact Lie group admits a faithful linear representation. Now let us extend this 
statement to arbitrary compact Lie groups. Therefore we will prove 

Theorem 10. Any compact Lie group admits a faithful linear representation. 
Let G be a Lie group. A differentiable function f: G + @ is said to be represen- 

tative if the functions r,(g)f(g E G) determined by (3.1.3) generate a finite- 
dimensional subspace of the space C”(G) of all differentiable complex functions 
on G. For instance, if G is a complex algebraic group then all polynomial 
functions on G are representative (see Theorem 3.1.9). Denote by A, the set of 
all representative functions on G. 

Problem 20. A, is a subalgebra of C”(G) and coincides with the linear span 
of matrix elements of all finite-dimensional complex linear representations 
of G. 

Lemma 3. If G is a compact Lie group then for any g E G, g # e, there exists 
f E A, such that f(g) # f(e). 

Proof. If g 4 Go then we may take for f the function which vanishes on Go and 
equals 1 on all the other comiectcd components of G; clearly, its orbit with respect 
to right translations is contained in the finite-dimensional space of all functions 
which are constant on connected components. Let a E Go. Since Go admits a 
faithful representation thanks to Problem 7, there exists a matrix element of this 
representation f. E A GO such that .fo(g) $5 fo(e). Let us extend f. to a function f 
on G setting f(x) = 0, if x E G\G’. Clearly, the linear span Lf of the orbit off 
under right translations by elements g E Go is finite-dimensional. Furthermore, 
if g and g’ belong to the same component of G then r,(g) LJ = r.Jg’)LJ. Therefore 
the orbit off under right translations is contained in cg r,(g)Ls, where g runs 
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through the set of representatives of the connected components of G. Hence, 
f E A, and Lemma 3 is proved. 0 

Problem 21. Any strictly descending chain of Lie subgroups in a compact Lie 
group is finite. 

Proof of Theorem 10. Let R 1 be a linear representation of a compact Lie group 
G. If Ker R, # {e} then choose some g E Ker R,, g # e. By Lemma 3 and 
Problem 20 there exists a representation S of G such that a matrix element f of 
this representation satisfies f(g) # f(e). Then g $ Ker S. Setting R, = R, + S we 
have strict inclusion Ker R, => Ker &. If Ker R, # (ej then we similarly con- 
struct a representation R, with the strict inclusion Ker R, 2. Ker R,, etc. Due to 
Problem 21 this process terminates and we get a faithful representation. 0 

5’. Correspondence Between Compact Lie Groups and Reductive Algebraic 
Groups. In this subsection we will show that the complexification of real algebraic 
groups leads to a one-to-one correspondence between compact Lie groups 
(considered up to a differentiable isomorphism) and reductive complex algebraic 
groups (considered up to a polynomial isomorphism). 

Let k’ be a compact Lie group. By Theorem 10 K admits a faithful linear 
representation which may be considered as a real one. Therefore Theorem 3.4.5 
implies that K possesses a real algebraic group structure. This structure a priori 
depends on the choice of a faithful representation though actually it is unique as 
it will follow from our future arguments. 

Consider the complexification K(@) of a compact real algebraic group K. 

Problem 22. The algebraic group K(c) is reductive. 
Now we wish to prove that the algebraic group K(c) does not depend (up to 

an isomorphism) on the choice of the algebraic group structure on K. This is a 
consequence of the following 

Theorem 11. Let K,, K, be compact real algebraic groups. Then any differen- 
tiable homomorphism q: K, + K, uniquely extends to a polynomial homomor- 
phism q(C): K #C) + K,(C). If $c K, + K, is another differentiable homomor- 
phism of compact real algebraic groups then 

Corollary. Under the assumptions of Theorem 10 any differentiable isomorphism 
q: K 1 + K, extends to a polynomial isomorphism cp(@): K l(C) + K,(C) and is a 
polynomial isomorphism itself. 

Therefore the group K(C) and the algebraic structure on the compact Lie 
group K are uniquely defined. 

Let us precede the proof of Theorem 11 by the following 

Problem 23. If under the conditions of Theorem 11 the extending homomor- 
phism q(c) exists and the homomorphism dq is injective then Ker cp(@) = 
Kercp c K,. 
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Proof of Theorem 11. Let Gi = Ki(@)(i = 1,2).Then G, x G, = (K, x K&C). 
Let ni be the projection G, x G, -+ Gi onto the i-th component. Consider the 
graph f = ((k, q(k)): k E K,} of q which is a compact Lie subgroup of K, x K,. 
By Theorem 3.4.5 ris an algebraic subgroup. Clearly, n1 : r + K t is a polynomial 
and bijective homomorphism. Consider an algebraic subgroup J’(Q c G, x G,. 
The projection zl: r(c) + G, extends 7z1: r + K, and therefore is injective by 
Problem 23. Theorem 3.1.6 implies that this is a polynomial isomorphism of r(c) 
onto G,. The homomorphism cp(c) = n& : G, + G, is the desired extension. 

The uniqueness of the extension cp(Q follows from the fact that K, is dense in 
G, in Zariski topology and the relation (9) follows from the uniqueness. q 

Now let us state the final result. 

Theorem 12. On any compact Lie subgroup K there exists a unique real algebraic 
group structure and the complex algebraic group K(C) is reductive. Any reductive 
complex algebraic group possesses an algebraic compact real form. Two compact 
Lie groups are isomorphic (as Lie groups or as algebraic groups over IF!) if and only 
if the corresponding reductive algebraic groups over C are isomorphic. 

Proof of this theorem follows from Corollary of Theorem 11, Problem 22, 
Theorems 8 and 9. 

Problem 24 (Corollary). Any compact subgroup L of a compact Lie group K 
is an algebraic subgroup in K. In K(C), there exists a unique algebraic subgroup 
containing L as a real form and isomorphic to L(C); its intersection with K 
coincides with L. 

6’. Complete Reducibility of Linear Representations. In this subsection we will 
prove that a complex algebraic linear group is completely reducible if and only 
if it is reductive. The proof is based on the complete reducibility of compact linear 
groups proved in 3.4. Furthermore, the completely reducible real algebraic linear 
groups are real forms of complex reductive groups. In particular, it turns out 
that any linear representation of a real semisimple Lie algebra is completely 
reducible. This method of the proof of complete reducibility of semisimple linear 
groups due to H. Weyl[49] is often called the unitary trick. All considered linear 
groups and linear representations act in finite-dimensional vector spaces over c 
or R. 

First discuss some general questions having to do with the definition of 
complete reducibility (see 3.4.2”). A linear group G c GL( V), where I/ is a vector 
space over R or C is completely reducible if I/ splits into the direct sum of 
irreducible G-invariant subspaces or, equivalently (see Problem 3.4.2), if for any 
G-invariant subspace V1 c V there exists a G-invariant direct complement. In 
this setting it clearly suffices to verify the latter property for the irreducible 
subspaces VI. A completely reducible linear group G determines a completely 
reducible linear group in any G-invariant subspace of I/. 

Problem 25. Let G be a linear group in a vector space V over R. Consider it 
as a subgroup of GL(V(@)) making use of the natural embedding GL(V) -+ 



248 Chapter 5. Real Semisimple Lie Groups 

GL(V(@)). The group G is completely reducible in V if and only if SO it is in 

VW)* 

Problem 26. A linear group G in a vector space V over C is completely reducible 

if and only if G is completely reducible (over Iw) in V’! 

Problem 27. A linear group G in a vector space V over C or Iw is completely 

reducible if and only if so is its algebraic closure G” c GL( V). 

A real algebraic group G is reductive if its complexification G(C) is a reductive 
complex algebraic group. For instance the compact and semisimple real alge- 
braic groups are reductive. 

Theorem 13. A reductive (complex or real) linear algebraic group is completely 
reducible. 

Proof. A reductive complex algebraic group G is an algebraic closure of a 
compact subgroup (see Theorem 7) which is completely reducible thanks to 
Corollary of Theorem 3.4.2. By Problem 27 G is also completely reducible. If G 
is a real reductive linear algebraic group in a real vector space V then G(C) is a 
complex reductive group in V(C). Therefore due to Problems 25 and 27 G is 
completely reducible over Iw. Now if a real reductive group G acts in a complex 
space then its complete reducibility follows from Problem 26. 0 

Let us point out several corollaries for linear representations. Recall that a 
linear representation of a group (or of a Lie algebra) is called completely reducible 
if its image is a completely reducible linear group (linear Lie algebra). This is 
equivalent to the existence in the space of the representation of a complementary 
invariant subspace for any invariant subspace. 

Since the image of a reductive algebraic group under a linear representation 
is reductive (see Problem 4.1.22), Theorem 13 implies 

Corollary 1. A linear 
completely reducible. 

representation of a reductive complex algebraic group is 

Corollary 2 (Problem 28). If G is a semisimple real Lie group with a finite number 
of connected components then any linear representation of G over C or R is 
completely reducible. 

Problem 29. Let G be a connected Lie group, R its linear representation. The 
representation R is completely reducible if and only if so is the representation 
dR of the tangent algebra g. 

Problem 29 and Theorem 13 imply 

‘Corollary 3. A linear 
completely reducible. 

representation of a complex or real semisimple Lie algebra 
is 

Note some applications of this corollary. 

Problem 30. Let g be a complex or real Lie algebra. If rub g = J(g), then 
9 = 9’ 0 3(g), the derived algebra being semisimple. 
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Problem 31. If a connected complex algebraic group G contains a normal 
subgroup T which is a torus, then T c Z(G). A complex algebraic group is 
reductive if and only if its radical is a torus. 

Let g be a semisimple complex Lie algebra. Corollary 3 implies that any 
finite-dimensional linear representation p of g is equivalent to the sum p1 + l  l  l  + 
pS of irreducible representations pi which are determined uniquely up to an 
isomorphism. The representations pi are called the irreducible components 
of p. 

Corollary 4. A linear representation of a semisimple complex Lie algebra is 
determined up to an isomorphism by the system of its highest (or lowest) weights 
their multiplicities (the dimensions of the corresponding weight subspaces) counted. 

Now we prove a theorem converse to Theorem 13. 

Theorem 14. Any completely reducible complex or real algebraic linear group is 
reductive. 

Proof. Thanks to Problems 25 and 27 the real case is reduced to the complex 
one. Let G c GL( V) be a completely reducible complex algebraic group. As we 
see from Problem 31, it suffices to show that Rad G is a torus. 

By Lie’s theorem (see 1.4.5”) Rad G possesses weight vectors in V: Denote by 
iI, . . . . jUp the complete set of distinct weights of Rad G in V and by VA. the 
corresponding weight subspaces. Then the subspace V’ = Vi, @ l  . l  @ I& i’s in- 
variant with respect to G. Therefore V = I/’ @ Y”, where V” is another invariant 
subspace. If V” # 0, then by Lie’s theorem Rad G possesses a weight vector in 
V” which is impossible. Thus, V = V’. It follows that Rad G is a torus (see 
Problem 3.2.17). 0 

7’. Maximal Tori in Compact Lie Groups. In this subsection we consider 
connected compact Lie groups and their generalization-connected Lie groups 
with compact tangent algebras. We will study some properties of maximal 
connected commutative subgroups of these groups similar to the properties of 
maximal tori in complex algebraic groups. The term “torus” means a compact 
torus, i.e. a Lie group isomorphic to U”. Recall that any connected compact 
commutative Lie group is a torus (see Proposition 1.2.3). 

Let K be a compact Lie group. 

Problem 32. Any maximal connected commutative subgroup A of K is a torus. 
The tangent algebra a of A is a maximal commutative subalgebra of Lie algebra 
randA = exp a. Conversely, for any maximal commutative subalgebra a c f the 
subgroup A = exp a c K is a maximal connected commutative subgroup with 
the tangent algebra a. 

A maximal connected commutative subgroup of a compact Lie group K is 
called a maximal torus of K. 

Problem 33. A compact subgroup A of K is a (maximal) torus if and only if 
A(@) is a (maximal) algebraic torus of K(@). 
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Problem 34. A maximal torus A of a connected compact Lie group K coincides 
with its centralizer in K. The subgroup A contains Z(K) and is maximal among 
commutative (not necessarily connected) subgroups of K. 

Theorem 15. Any two maximal tori of a compact Lie group K are conjugate. 

Proof. Let A,, A, be maximal tori of K. By Problem 33 A,(C) and AZ(C) are 
maximal algebraic tori in K(c). Therefore (see Problem 3.2.24), there exists 
g E K(@) such that gA,(C)g-’ = A,(C). Since A, and A, are the largest compact 
subgroups of A,(@) and A,(@), then Y&J-~ = AZ. Since K.(Q can be considered 
as a linear group, we have the polar decomposition K(c) = KP, where P = 
exp(if) (see Theorem 2). Let g = kp, where k E K, p E P. Set I = pap? Then I E K 
for any a E A, implying a-‘pa = a-‘1~. It follows from (3) and the uniqueness of 
the polar decomposition that a-‘pa = p. Therefore pap-’ = a for any a E A,, 
hence A, = kA,k? 0 

Now consider a more general situation, when K is a connected Lie group 
whose tangent algebra f is compact. By Theorem 4 we have the direct product 
decomposition K = L x C, where L 2 K’ is the largest compact subgroup of K, 
C = Rp the non-compact part of the commutative group Z(K)‘. 

Theorem 16. If K is a connected Lie group with a compact tangent algebra f 
then any maximal connected commutative subgroup A in K is of the form A = 
(A n L) x C, where A n L is a maximal torus of L. The subgroup A coincides with 
its centralizer and, in particular, contains Z(K). All maximal connected commuta- 
tive subgroups of K are conjugate. The map exp: f + K defines a one-to- 
one correspondence between the maximal commutative subalgebras of f and the 
maximal connected commutative subgroups of K. 

Problem 35. Prove this theorem. 

Exercises 

1) Let E be a finite-dimensional Euclidean (or Hermitian) space, G a subgroup 
of CL(E), K = G n O(E) (or G n U(E)), P = G n P(E). If G = KP then G is 
a self-adjoint linear group. 

2) Let G c GL( V) be a reductive algebraic complex linear group, K its compact 
real form and S an algebraic real structure in G such that S(K) = K. In V, 
introduce a Hermitian K-invariant scalar product. Then the linear group 
H = GS is self-adjoint. 

3) Let G be a connected reductive algebraic group over @, H its algebraic real 
form. Then there exists a compact real form of G such that the ( 
real form of g is compatible with h. 

4) An irreducible reductive real algebraic group G is diffeomorp 
where L is a maximal compact subgroup of G. . 

&responding 

ric to L x IRS, 

of connected 5) A reductive real algebraic group consists of a finite number 
components (in the usual topology). 
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6) Real algebraic linear groups G c GL,(k), where k = 58, a3 or W listed in 
Examples 1.2.1- 1.2.5 are self-adjoint with respect to the standard scalar 
product in 1w” (the standard Hermitian products in C” and W”, respectively). 
Find the corresponding polar decompositions C = KP (i.e. determine K, the 
subalgebra f and the subspace p or g). 

7) The groups Ql, SQl, GL,@-Q, SL,(~), U,*(W), Sp,,,, are connected. 
8) The fundamental groups of the classical groups (except those studied in 1.3”) 

are of the following form: 

n,PU,,,) = z (k 1 > 0); 

q(O&) are contained in the table: , 

k, 1 k,l> 2 k= 1,1>2 k=2,1>2 k=l=2 k= 1,1=2 

~m!1, & 0 & G mz, Z@Z z 

9) Let E be a Euclidean (or Hermitian) space and let g E GL(E) and a E O(E) 
(resp. U(E)) b e such that yag-’ E O(E)(U(E)). Then in the polar decom- 
position .g = kp, where k E O(E) (U(E)), p E P(E), the factor p satisfies 
aP = pa. 

10) Each element of a connected compact Lie group is contained in a maximal 
torus. 

11) The center of a connected compact Lie group coincides with the intersection 
of all of its maximal tori. 

12) Let A be a connected closed commutative subgroup of a connected compact 
Lie group K. Then the centralizer Z(A) of A in K is connected. 

13) Let K be a simply connected compact Lie group and 0 E Aut K. Then K’ 
is connected. 

14) Let K be a compact Lie group. The algebra of polynomial functions R[K] 
on K considered as a real algegraic group coincides with the algebra of real 
representative functions. 

15) Let G be a reductive algebraic complex group. The algebra of polynomial 
functions C[G] coincides with the algebra of holomorphic representative 
functions A& If K is a compact real form of G then the restriction map 
determines an isomorphism A: + A,. 

16) A compact real algebraic group is irreducible if and only if it is connected 
(in the usual topology). 

17) Let p be a linear representation of a semisimple complex Lie algebra. Let us 
represent its decomposition into irreducible components in the form 
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p = p1 + l  ** 
+ Ps + p: + l  *' + P* + i&+1 + l  =* + ps+1, 

where pi + p? for i, j > s and i # j. The representation p is self-adjoint if 
and only if so are all pi (i > s). Moreover, p is orthogonal (symplectic) if 
and only if so are all pi (i > s). 

A complex or real Lie algebra g is called reductive, if rub g = a(g). 
18) 

19 

4 . 

5 . 

6 . 

7 . 

8 . 

10 . 

12 . 

A Lie algebra is reductive if and only if its adjoint representation is com- 
pletely reducible. 
If an arbitrary finite-dimensional representation of a Lie algebra g is com- 
pletely reducible then g is semisimple. 

Hints to Problems 

Apply Theorem 1 to Z(G). It follows from Problem 1.31 that Z(G) n P is a 
Lie subgroup of G isomorphic to IRS, s > 0. 
If p E: P and p # e then {p” = exp(s log p): s = 1,2,. . . > is an infinite discrete 
sequence. Therefore p cannot belong to any compact subgroup of G. 
First verify that x* E g for any x E CJ. Since S: g I+ g*-’ is an automorphism 
of GL(E) (as a real Lie group) and (dS)x = -x*, then S(G’) = Go. Since 
G = KG0 and K consists of unitary operators, this implies the statement of 
the problem. 
By Theorem 1 G = K,P with K c K, and K” = KY since K and K, have 
the same tangent algebra. Since K is a real form of G, we have G = KG0 = 
K(KyP) = KP which easily implies that K, = K. 
Let f be a compact semisimple Lie algebra and let G be a simply connected 
semisimple algebraic group over UZ with the tangent algebra f(c) existing 
thanks to Theorem 4.3.6. By Corollary 1 of Theorem 2 the compact real form 
K of G is a simply connected Lie group with the tangent algebra f. 
Let 2 = Z(K)’ and let L be a simply connected Lie group with the 
tangent algebra f’. The group L is compact thanks to Problem 5. There 
exists a covering n: 3 x L + K such that nlj = exp: 3 + Z. Clearly, r = 
Ker exp c Ker 71. Therefore there exists a covering 71’: Z x L -+ K such 
that n’(exp x id) = 7~. The kernel Ker 7~’ z Kern/r is finite since so is 
Z(L)* 
Consider the covering 71’: r? = Z x L -+ K from Problem 6. Problem 5 and 
Example 2 of 1.1” imply that K is isomorphic to a compact form of a 
connected complex reductive algebraic group G. Let N = Ker z’, then N c 
Z(G) by Problem 1.3 and K is isomorphic to a real form of the reductive 
group G/N. 
By Problem 7 we may assume that k’ is a linear group. Then K’ is a Lie 
subgroup since f’ is algebraic. The decomposition K = ZK’ follows from 
Problem 4.1.2 1. 
Let Go = A, x K, be a decomposition satisfying the conditions of Theorem 
4. Prove that A = n-‘(A,)‘, K = n-‘(Ko)o and G = A x K. 
Consider the representation of the compact group G/Z in 3 induced by the 
adjoint representation and make use of Corollary of Theorem 3.4.2. 
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15. Since Kz is a maximal compact subgroup of Go, then K, is normal in G. The 
group G = G/K, contains a normal Lie subgroup of finite index, A, iso- 
morphic to A. By Lemma 2 21 = Â  x L, where L is a finite subgroup. Then 
the preimage K of L with respect to the natural homomorphism G + G is 
the desired subgroup. 

17. Consider the G-action on the set of compact real forms of h determined by 
the adjoint representation. The subgroup H c G acts on this set transitively 
(Theorem 1.3) and U is the stabilizer of 1. This implies that G = HU. 

18. The identity G = KG0 follows from Problem 17. 
19. Make use of Theorem 7. 
20. In 3.16” we have actually proved that the matrix elements of any represen- 

tation belong to A,. Conversely, let f E A,, f # 0, and let V be the linear 
span of { y,,J glf: g E G}. In V, choose a basis fi = f, fi, . . . , fn and let aij be 
the matrix elements of the representation r,: gwr,(g) of G in the space V 
with respect to this basis. Then 

f (!?I = C aki(S-1 )fkCe)9 
1 <k,<n 

i.e. f iS linearly expressed in terms of the functions bik( g) = a,,( g-l), the matrix 
elements of the representation (r.J*. 

22. Let K c GL(V) be a compact real linear group. Theorem 3.4.2 implies that 
the scalar product (4.1.2) is negative definite on the tangent algebra f. There- 
fore a similar scalar product in sl(V(UZ)) is non-degenerate on f(c). The 
reductivity of K(@) follows from Theorem 4.1.2. 

23. Let pj = ifj, pj = exp pj (j = 1,2). Then &(@)(JQ c p2 and therefore 
q(C)(P,) c P2. Let N = Ker cp(@). The uniqueness of the polar decomposi- 
tion (32) implies that if g = kp E N, where li E K,, p E P,, then k, p E N. It is 
clear from Problem 1.31 that p = e and g = k E Ker cp. 

24. The algebraicity of L follows from Theorem 3.4.5. If q: L --) K is an embed- 
ding then (p(c) is injective by Problem 23. The subgroup cp(@)(L(Q) is the 
desired one. 

25. Let G be completely reducible in V and let W1 c V(@) be an irreducible 
G-invariant subspace. Then V1 = ( IV1 + F) n V is a G-invariant subspace 
of V such that V,(@) = IV” + F and either IWInK =0 or IV1 = R. If 
V2 is a G-invariant complement to V1 in V then the G-invariant complement 
to W1 in I/ is either K @ V,(@) or I$,(@), respectively. Conversely, let G be 
completely reducible in V(Q, let V’ be an irreducible G-invariant subspace 
in V and W2 the G-invariant complement to V,(@) in V(c). Then V = 
Vl @ Vz, where Vz = {x + X: x E Wz}. 

26. Let us embed G in GL( V”(Q) as in Problem 25 and let us extend the complex 
structure operator I from V onto I@(c) (cf. 1 .l”). Then VR(@) = v @ V-i, 
where I/+i are eigenspaces of I corresponding to eigenvalues + i. The sub- - 
spaces V,i are invariant with respect to G, the projections V = I/’ -+ K and 
V = V iI% + V-i commute with the G-action and are an isomorphism and 
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an antilinear isomorphism of complex vector spaces respectively. This im- 
plies that G is completely reducible in V if it is completely reducible in VR(c). 
Now apply Problem 25. 
First prove that G and Gn have the same invariant subspaces. 
The image G, of G under a linear representation is a semisimple linear group 
(see Problem 4.1.16) and (GT)O = Gf . Therefore, the statement follows from 
Theorem 13 and Problem 27. 
Make use of Problem 1.2.19. 
Consider the representation of the semisimple Lie algebra g/r&g in g in- 
duced by the adjoint representation. 
Let G be an algebraic subgroup of GL(V). Consider the weight decomposi- 
tion V = 0 l<i,<p . V’ of V with respect to T. Each g E G permutes the 
subspaces VAi, thereby a homomorphism G -+ Sp is defined. Its kernel is a 
closed subgroup of a finite index in G and, therefore, coincides with G. Thus, 
all the VA.‘s are G-invariant, whence T c Z(G). 
Note that for any connected commutative subgroup A c K the closure Ais 
a compact connected commutative subgroup, hence a torus. 
If A is a torus then the reductive group A(c) is connected (e.g. by Corollary 
1 of Theorem 2) and commutative, i.e. is an algebraic torus. Conversely, if 
A(@) is an algebraic torus then the compact commutative group A is con- 
nected thanks to the same Corollary. 
Pass to the maximal algebraic torus A(c) c K(c) and apply Theorem 4.2.5. 
If A is a maximal connected commutative subgroup of K, then AC is also a 
connected commutative subgroup, hence A = AC 2 C. Therefore A = 
(A n L) x C, where A n L is a maximal connected commutative subgroup 
of L. The other statements of the theorem follow from Problems 32, 34 and 
rlrl 4 ,- 1 neorem 13. 

5 3. Cartan Decomposition 

In this section we will study the so-called Cartan decomposition of a real 
semisimple Lie group. It is an analogue of the polar decomposition considered 
in 2.1” and for semisimple algebraic groups these decompositions coincide. The 
Cartan decomposition leads to an important theorem on conjugacy of maximal 
compact subgroups of any real semisimple Lie group with a finite number of 
connected components. It also enables us to give a global classification of 
connected semisimple Lie groups. 

lo. Cartan Decomposition of a Semisimple Lie Algebra. Let g be a real semi- 
simple Lie algebra, (0, a) the Cartan scalar product in g. A decomposition of g 
into the direct sum of vector spaces 
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is a Cartan decomposition if 
1) the map 0: x + y+-+x - y (X E $y E p) is an automorphism of g; 
2) the bilinear form 

be(z, Y) = -(x, %y) (2) 
is positive definite on g. 

Note that e2 = id, therefore be is a symmetric bilinear form. 

Problem 1. Condition 1) is equivalent to the following condition: 

I3 fl = f, K PI = $4 L-P, PI = f- (3) 

Problem 2. If 1) holds then (x, y) = 0 for x E f, y E p and 2) is equivalent to the 
following condition: 

(x,x) < 0 for x E f, x # 0; (y, y) > 0 for y E p, y # 0. (4) 

Therefore the decomposition (1) is a Cartan one if and only if (3) and (4) hold. 

Example. If u is a compact real form of a semisimple complex Lie algebra g 
then the decomposition 

ia a Cartan decomposition of gR. Here 8 = z is the real structure corresponding 
to the real form u and the scalar product b, coincides with h, (see Theorem 1.2). 

We will now describe Cartan decompositions of an arbitrary real semisimple 
Lie algebra g. For this consider the complex semisimple Lie algebra CJ(@). Let u 
be a compact real form of g(@) compatible with g. By Problem 1.28 c 

g = f @ p, where f = g n u, p = g n (iu). (6) 

Problem 3. The decomposition (6) is a Cartan one and 6 = ~7, where 0 and z 
are the real structures corresponding to the real forms g and u. Conversely, any 
Cartan decomposition (1) is of the form (6) for a compact real form u = f @ (ip) 
compatible with g. 

Therefore we have established a one-to-one correspondence between Cartan 
decompositions of g and compact real forms of g(@) compatible with g. Note 
that any automorphism of q transforms a Cartan decomposition into a Cartan . 
decomposition. 

Problem 3 and Theorem 1.3 imply 

Theorem 1. Any real semisimple Lie algebra g possesses a Cartan decomposition. 
Any two Cartan decompositions of g are transformed into each other by an inner 
automorphism. 

Now we will establish certain proporties of Cartan decompositions. Let g = 
f @ p be a Cartan decomposition of a semisimple Lie algebra g over IR. It is clear 
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from (3) that f is a subalgebra of g and p is an invariant subspace with respect 
to ad f, where ad is the adjoint representation of g. The subspace p is called the 
Cartan subspace of g. 

Let us consider g as a Euclidean space with the scalar product 6, given by 
formula (2). 

Problem 4. We have ad 0(x) = -(ad x)* for any x E g. In particular, the opera- 
tor ad x is symmetric if and only if x E p and skew symmetric if and only if x E f. 

Problem 5. Let g = 01 ,<i<s gi, where gi are simple ideals, and let, gi = fi 0 Pi 
(i = l,... , s) be their Cartan decompositions. Then f ‘= @ ,<i,<s fi and p = 

0 1 ,<i,<s Pi determine a Cartan decomposition of g and any Cartan decomposi- 
tion of this algebra can be obtained in this way. 

Problem 6. A Lie algebra g is compact if and only if f = g and p = 0. 

2’. Cartan Decomposition of a Semisimple Lie Group. Let G be a real semi- 
simple Lie group (not necessarily connected) and let a Cartan decomposition (1) 
of its tangent algebra be given. In this section we will prove the existence of the 
corresponding global decomposition G = KP, where K is a Lie subgroup of G 
with the tangent algebra f and P = exp p. This decomposition described in 
Theorem 2 will be called a Cartan decomposition of G. 

Denote by 0 the involutive automorphism of g corresponding to the decom- 
position (1) and consider g as a Euclidean space with the scalar product 6, defined 
by formula (2). 

Problem 7. For any a E Aut g we have OaO-’ = (a*)? In particular, Aut g is 
a self-adjoint linear group. 

Theorem 2. Let G be a real semisimple Lie group and let a Cartan decomposition 
(1) of its tangent algebra be given. Set K = {g E G: Ad g E O(g)}, P = exp p. Then 
G = KP cznd every element g E G uniquely presents in the form g = kp, where 
k E K, p E P. The map q: K x p -+ G given by the formula 

cp(kY) = kexPY (kEKYV1 

is a dzffeomorphism. The map 0: kp t--, kp-’ is an automorphism of G. 

Proof. It follows from Problem 9 and Theorem 2.1 that Aut g admits the polar 
decomposition Aut g = Rp, where R = (Aut g) n O(g), p = (Aut g) n P(g). By 
Problem 1.4 the tangent algebra of Aut q is ad g and it is clear from Problem 4 
that (ad g) n S(g) = ad p. Therefore 13 = exp ad q (see Theorem 2.1). I 

It follows from the commutative diagram 
exP 

P -P 

(7) 
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that p = Ad P and the maps exp: p + P and Ad: P -+ g are one-to-one. If g E G 
then Ad g = k# where k E R, 8 E p. Since @ = Adp, where p E P, then 
Ad(gp-‘) = k E’ 8(g) implying gp-’ = k E K and g = kp. If there is another 
decomposition g = k’p’, where k’ E K, p’ E P, then (Ad k)(Adp) = (Ad k’)(Adp’) 
which thanks to the uniqueness of the polar decomposition implies Ad p = Ad p’. 
Therefore p = p’ and hence k = k’. This also implies that 4p is bijective. 

Since the diagram 

Ad x ad 

I 

&qj -2 Aut g 

where @ determines the polar decomposition of Aut g, commutes, d,, ,,>q is 
injective for any k E K, y E p. In fact, 4 is a diffeomorphism by Theorem 2.1 and 
the differential of the left-hand column map is injective. Therefore, (p is a 
diffeomorphism. 

Presenting g E G in the form g = kp, where k E K, p E P, we get 

Ad O(g) = (Ad k)(Adp)-’ = ((Ad 9)*)-l. 

Therefore (Ad)@ is a homomorphism and Ad(O(glgz)o(g,)-‘O(g,)-‘) = id for 
any gl, g2 E G, hence 

~(iMl2) = O(g,g,)o(g,)-‘O(g,)-’ E IbAd- 

The subgroup Ker Ad is discrete since (Ker Ad) n Go = Z(G”) (see Problem 
1.2.17). Therefore F(gl, g2) depends only on the connected components of G to 
which the elements gl, g2 belong. Since P c Go, an element of K is contained in 
each connected component of the group G = KP. But +(g1,g2) = id for gl, 
g2 E K, hence \1/(g1,g2) = id for all gl, g2 E K. 0 

Corollary 1. G is diffeomorphic to K x R”, where m = dim p. 

Problem 8 (Corollary 2). K coincides with the subgroup G@ = {g E G: O(g) = 
g}; its tangent algebra is f. 

Problem 9 (Corollary 3). K coincides with N(KO). 

Problem 10 (Corollary 4). The Cartan decomposition of Go corresponding to 
decomposition (1) is of the form Go = K”P, where K” = K n Go and K/K0 = 

G/G 
0 

Thk definition of K and Corollary 4 imply 

Corollary 5.2(G) c Z(K), Z(G’) c Z(K’). 
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Problem 11 (Corollary 6). K is compact if and only if G has a finite number of 
connected components and Z(G”) is finite. 

Proof of Theorem 2 (see (7)) also implies 

Corollary 7. The map Ad: P + p = Aut g n P(g) is a diffeomorphism. 

Remarks. 1) Let G c GL( V) be a complex semisimple algebraic linear group, 
K its compact real form. Then the Cartan decomposition of G corresponding to 
the Cartan decomposition g = f 0 (if) of its tangent algebra (see Example of 1”) 
coincides with the polar decomposition described in Theorem 2.2. In fact, these 
decompositions are defined by the same set P = exp(iQ, and Corollary 3 
of Theorem 2 implies that K coincides with the subgroup from the Cartan 
decomposition. 

2) Let G c GL(V), where V is a vector space over R, be a real semisimple 
linear Lie group. Then Z(G”) is finite since it is contained in the center of the 
connected semisimple complex algebraic group (GO)’ c GL( V(Q). Therefore if 
G has a finite number of connected components then the subgroup K of Theorem 
2 is compact (Corollary 6). 

3) If the subalgebra f c g is semisimple and G has a finite number of connected 
components then K is compact by Problem 2.5 and Corollary 4 of Theorem 2. 
If f is not semisimple then by Corollary 1 of Theorem 2 applied to a simply 
connected group G the subgroup K is also simply connected, hence is not 
compact. The simplest example of such a group is G = E,(R) (see Example 5 
of 1.1’). Here f = &, K = R, therefore by Corollary 1 G is diffeomorphic to R3. 

4) Let G = PSL,(R) = SL,(R)/( ,+ E} and 7~: SL,(R) -+ PSL,(lF!) the natural 
homomorphism. If SL,(R) = SO, l  P is a Cartan decomposition, then PSL,(R) = 
n(SO&(P). This is a Cartan decomposition of PSLJR). Since z(SO,) = 
SO,/{ +E) z SO,, then z,(PSL,(R)) z z, implying Z(SL,(R)) = z. 

Suppose g is a simple Lie algebra over IF&’ admitting no complex structure, 
i.e. a real form of a complex simple Lie algebra. Then the automorphism 6 
extended by linearity onto g(c) is the involutive automorphism of g(@) that 
corresponds to the real form g by Theorem 1.4 (see Problem 1.37) and f(c) 
coincides with g(Q8. According to the classification of Problem 1.38 the case of 
a semisimple subalgebra f corresponds to types I, II, and that of a non-semisimple 
subalgebra to the type III; in the latter case f has a one-dimensional center. 

3’. Conjugacy of Maximal Compact Subgroups. In this subsection we will 
describe maximal compact subgroups of semisimple Lie groups with a finite 
number of connected components. In particular, we will prove that all maximal 
compact subgroups are conjugate. First, we consider the general case and for- 
mulate a conjugacy theorem for subgroups more general than compact ones. 

A subgroup A4 of a semisimple Lie group G is called pseudocompact if the linear 
group Ad M c GL(g) is compact. Any compact group is pseudocompact. 

Problem 12. The subgroup K considered in Theorem 2 is a maximal pseudo- 
compact subgroup of G. 
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Theorem 3. Let G = KP be a Cartan decomposition of a semisimple Lie group 
G. For any pseudocompact subgroup M c G there exists g E P such that 
gMg-’ c K. 

Before we prove this theorem let us deduce from it several corollaries. If G has 
a finite number of connected components then so has K by Corollary 4 of 
Theorem 2. Since f is compact, Theorems 2.5 and 2.6 imply that K = A M L, 
where A N IF!’ and L is a maximal compact subgroup of K. 

Problem 13 (Corollary 1). If G has a finite number of connected components 
then any maximal compact subgroup L of K is a maximal compact subgroup of 
G. Any maximal compact subgroup of G is conjugate to L by an automorphism 
of the form a(g), where g E Go. 

Corollary 2. A semisimple Lie group G with a finite number of connected 
components is diffeomorphic to L x RN, where L is any maximal compact subgroup 
of G. 

Problem 14 (Corollary 3). Let g be a real semisimple Lie algebra and let M be 
a compact subgroup of Aut g. Then g admits a Cartan decomposition invariant 
with respect to M. 

The classical proof of Theorem 3 due to E. Cartan (see [6]), as well as its 
simplified versions (see, e.g., [31]), are based on the study of geometry of the 
symmetric space G/K. The proof that follows, exploiting an idea presented in 
[31], does not use Riemanniangeometry at all. 

Observe that GL(E) acts on the manifold P(E) of positive definite self-adjoint 
operators in a Euclidean space E by the formula 

Sq(A)(X) = AXA* (X E P(E), A E GL(E)). 

As it is known from linear algebra, this action is transitive, and the stabilizer of 
the identity operator E E P(E) is the orthogonal group O(E). Consider the differ- 
entable function r of two variables on P(E) given by the formula 

r(X, Y) = tr(XY-‘). (8) 

Problem 15. r(Sq(A)(X), Sq(A)( Y)) = r(X, Y) for any A E GL(E). 

Let Q be a compact set in P(E). Let 

p(X) = max r(X, Y), 
YES2 

(9 

Problem 16. The function p is continuous on P(E). 

Set SP(E) = P(E) n SL(E). Clearly, SP(E) is closed in SL(E) and therefore is 
closed in the space gl(E). 

Lemma 1. For any compact set Q c P(E) the function p defined by formula (9) 
assumes its minimum on any closed subset F c SP(E). 
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Proof. First, prove that 

where b > 0 is a constant and IIXII is the norm of an operator X in E. Fix X E P(E) 
and choose an orthonormal basis of E in which X is expressed by a diagonal 
matrix diag(x,, . . . , x,). If (yij) is the matrix of Y E P(E) then yii > 0 and 

?fX9 Y) = C xi/Yii* 
1 ,<i<n 

(11) 

Since Q and the orthogonal group are compact, there exists b > 0 such that 
llY,i 2 b (i = 1 9.**9 n) for all Y E Q and all orthonormal bases of E. Then 

r(X, Y) 2 (trX)/b >/ lb = Ilxll/b for any Y E Q 

implying (10). 
It follows from (10) that for any N > 0 the set {X E SP(E): p(X) < N) is 

compact. In fact, p(X) < N implies IIJXII < N/b and the intersection of the com- 
pact ball {X E S(E): IIXII < N/b} with the closed set SP(E) is compact. 

Now it is easy to prove the existence of a minimum point. Let X, E F. Consider 
the set B = {x E F: p(X) < p(X,)) containing X, and compact by the above 
considerations. Problem 16 implies the existence of Xi E B such that p(X,) < 
p(X) for all X E B. The point X, is a minimum point of p on the whole F since 
P(x) > Ax,) 2 PW,) for x E F\B. q 

Now we want to show that under appropriate conditions the minimum point 
of p is unique. We want to prove that the functions r and p possess some convexity 
property. 

Problem 17. For any fixed X, Y E P(E), X # E the functions 

are strictly convex on the whole real axis. 

Return to the situation of Theorem 3. Consider the tangent algebra g of G as 
a Euclidean space with the scalar product (2) corresponding to our Cartan 
decomposition. Set P = exp ad p. 

Problem 18. P is a closed submanifold of SP(q), coinciding w’ith the orbit of 
the point E under the action (Sq)(Ad) of G on P(g). The subgroup K c G is the 
stabilizer of E with respect to this action. 

Lemma 2. For any compact set 52 in P(g) the function p defined by (9) has a 
unique minimum point in P. 

Proof. Let A, B E p be two different minimum points of p. Apply to A, B and 
52 the map Sq(B -112) which transforms p into itself, B into E and 52 into a new 
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compact set. Making use of Problem 15, we shall reduce our problem to the case 
B = E. Clearly, A’ E P  ̂for all t E Iw. By Problem 17 the function (PA(~) = ~(4’) is 
strictly convex on the segment [0, 11. Therefore, it can not assume its minimum 
on both ends of this segment. 0 

Proof of Theorem 3. Let A4 be a pseudocompact subgroup of G. Consider the 
action of the subgroup B c G on P(g) defined in Problem 18. Since Ad A4 is 
compact, the orbit Q = Sq(AdM)(E) is also compact. By Problem 15 the func- 
tion p on P(g) given by (9) is invariant with respect to 1M. Thus, its unique 
minimum point A, E p (see Lemma 2) is fixed under A4. Since G acts transitively 
on p, it follows that gMg-’ c K for some g E G. It is easy to see that we may set 
g = p-‘12, where p E P = expp is such that A, = Adp. 

4’. Canonically Embedded Subalgebras. Given a Cartan decomposition (1) of 
a real semisimple Lie algebra g we call a subalgebra lj c g canonically embedded 
in g with respect to the decomposition (1) if Qlj) = b, where 0 is the automorphism 
corresponding to the Cartan decomposition, or, equivalently, if 

As it is known, any semisimple Lie algebra g (over 1w or Q can be identified 
with the linear Lie algebra ad g c gI(g) over the same field. Therefore we may 
introduce the notion of an algebraic subalgebra of a semisimple Lie algebra. A 
subalgebra lj of a complex semisimple Lie algebra g is called a (reductive) algebraic 
subalgebra if ad lj is a (reductive) algebraic linear Lie algebra in the sense of 4.1.1 O. 
A subalgebra h of a real semisimple Lie algebra g is called reductive algebraic if 
l!)(c) is a reductive algebraic subalgebra of a complex Lie algebra g(c). For 
instance, any semisimple subalgebra of a semisimple Lie algebra (over c or [w) 
is reductive algebraic. 

Problem 19. Let g be a real semisimple Lie algebra. Any canonically embedded 
algebraic subalgebra h c g is reductive algebraic. If lj is semisimple then the 
decomposition (12) is its Cartan decomposition. 

Our aim is to prove the following statement inverse to the first statement of 
Problem 19. 

9 
Theorem 4. Any reductive algebraic subalgebra of a real semisimple Lie algebra 

is canonically embedded in g with respect to a Cartan decomposition. 

Proof is based on the following refinement of one of the statements of Theorem 
13 . . 

Lemma 3. Let E> be a reductive algebraic subalgebra of a complex semisimple 
Lie algebra g and let 0 be u real structure on g such that a&) = b. Then on g, there 
exists a real structure z such that gr is compact, oz = ZCT and z(E>) = Ij. . 

Proof. Represent t> in the form E> = 3 @ b’, where 3 is the center of lj. Clearly, 
a(l)‘) = lj’, a(j) = 3. By Theorem 1.3 there exists a real structure z1 on the 
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semisimple Lie algebra h’ such that (I$)” is compact and r1 u = gzl on I$ The 
corresponding compact real form L of the group Int h’ c Int g satisfies aLa = L. 
The algebraic torus Z = exp ad 3 c Int g determines a real form j(R) of 3. The 
subgroup B = expad(ij(R)) is the compact part of Z so that a& = B. Then 
M = BL is a compact Lie subgroup of Int g, its tangent algebra m = ij(lR) @ 
(lj’)51 is a real form of ij and ah/la = M. Now consider g as a real semisimple Lie 
algebra gR and denote by M, the subgroup of Aut gw generated by A4 and (0). 
Clearly, M1 = (a> M, so M, is compact. By Corollary 3 of Theorem 3 there is 
an Ml-invariant Cartan decomposition of g’! This means (see Example of 1”) 
that there exists a compact M,-invariant real form of g. The corresponding real 
structure z satisfies, as is easy to verify, the requirements of Lemma. q 

Problem 20. Prove Theorem 4. 

5’. Classification of Connected Semisimple Lie Groups. This section is devoted 
to the global classification of connected real semisimple Lie groups. It turns out 
that as in the complex case this classification can be given in terms of the tangent 
algebras and lattices in some commutative subalgebras of these algebras. By a 
“torus” we always mean a compact torus. 

Let G be a connected semisimple Lie group. A connected subgroup A c G 
will be called a pseudotorus if Ad A is a torus. Fix a Cartan decomposition 
G = KP. 

Problem 21. The maximal connected commutative subgroups of K are the 
maximal pseudotori of G belonging to K. All maximal pseudotori of G are 
conjugate. 

A commutative subalgebra a of a semisimple Lie algebra g will be called 
pseudotoral if exp ad a c Int g is compact, i.e. is a torus. 

Problem 22. Let CJ be the tangent algebra of a semisimple Lie group G. A 
subalgebra a c g is (maximal) pseudotoral if and only if it is the tangent algebra 
of a (maximal) pseudotorus in G. Any maximal commutative subalgebra of f is 
pseudotoral. All maximal pseudotoral subalgebras of a semisimple Lie algebra 
g are conjugate. 

Let A be a maximal pseudotorus of a connected semisimple Lie group G and 
let Q be the corresponding maximal pseudotoral subalgebra of g. The kernel of 
the homomorphism exp = exp,: Q -+ A is a lattice in a which, as we will see, 
determines together with the Lie algebra g, the group G uniquely up to an 
isomorphism. But it is more convenient to consider the lattice L(G) = Ker 8 c 
a(C), where F = 6&: ia -+ G is the homomorphism defined by G(X) = exp2niX. 
The lattice L(G) is called the characteristic lattice of G. 

Problem 23. Let G,, G, be two connected semisimple Lie groups with the same 
tangent algebra g, a c g a maximal pseudotoral subalgebra. The characteristic 
lattices of G, and G, satisfy L(G,) c L(G,) if and only if there exists a homo- 
morphism x G, -+ G, such that dn = id. In this case &&Kern) = L(G,), whence 
Kern 2 L(G,)/L(G,). 
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Theorem 5. Let Gj (j = 1,2) be two connected semisimple Lie groups, Qj c CJj 
maximal pseudotoral subalgebras of their tangent algebras, L(Gj) c iaj their-char: 
acteristic lattices. G, and G, are isomorphic if and only if there exists an isomor- 
phism cp: q1 -+ g2 such that q(q) = a2 and (p(@)(L(G, , ) 

Problem 24. Prove this theorem. 

To complete the classification we need to find out 
be characteristic ones. 

which lattices in ia might 

Let G be again a connected semisimple Lie group and a a maximal pseudotoral 
subalgebra of g. The lattice L, = L(G) c ia corresponds to the simply connected 
covering G of G. On the other hand, the lattice L, = L(Int g) c iad a c iad g 
corresponds to Int g. Identifying g and ad g with the help of the isomorphism ad 
we get L, c ia. Problem 24 implies that L, c L(G) c L,. 

Problem 25. K’(Z(G)) = L,, Z(G) = Q(L,) z L,/L(G), q(G) = L(G)/L,. 

Problem 26. Any lattice L such that L, c L c L, is the characteristic lattice 
of a connected Lie group with the tangent algebra g. 

Now describe the lattices L, and L,. Fix a Cartan decomposition g = f @ p. 
Denote by 8 the involutive automorphism of g associated to this decomposition 
and the extension of this automorphism onto the complex semisimple Lie alge- 
bra. Then f(UZ) = g(c)“. By Problem 21 we may assume that a is a maximal 
commutative subalgebra of f. We have f = P’ @ j(t). By Theorem 2.15 a = a, @ 
3(f), where a, is a maximal commutative subalgebra of V. 

Problem 27. The subalgebras t = a(@) and t, = a&) are maximal diagonaliz- 
able subalgebras of the reductive algebraic subalgebra f(a3) c g(@) and the semi- 
simple Lie algebra V(c) = f(c) respectively. 

Problem 28. The lattice L, coincides with Q”(f’(c)) c a,, where Q”(f’(a3)) is 
the dual root lattice of f’(c) = f(c) with respect to t,. 

By Problem 4.4.11 the centralizer t> oft in g(@) is the only maximal diagonaliz- 
able subalgebra of g(c) containing t and 0(b) = h. 

Problem 29. We have L, = P” n t, where P” is the weight lattice of the dual 
root system d;(C) of g(@) with respect to lj. . 

For a lattice L, we may find another expression with the help of 8. By Problem 
4.4.12 there is a base n of dclcc, invariant with respect to ‘0. Let z = ‘0-l E Aut 17 
and let ? be the automorphism of 9(c) defined by (4.4.1). By Problems 4.4.17 and 
4.4.29, t is a maximal diagonalizable subalgebra of the semisimple Lie algebra 
gw~* 

Problem 30. The lattice L, coincides with P”(q(@)‘), the weight lattice of the . 
dual root system A&-, ; of the Lie algebra q(C)’ with respect to t. . 

Problems 25, 26, 28--30 imply the following statements: 
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Theorem 6. Let a be a maximal commutative subalgebra of f. The lattice L c 
ia is characteristic for a connected Lie group with the tangent algebra g if and 
only if 

Q”(g(@)“) c L c P”(g(@)‘), 

where z = r/(e) and n: Aut g(C) + Aut IT is the homomorphism defined in 4.4.1”. 

Theorem 7. For any connected Lie group G with the tangent algebra g we have \ 
B-l (Z(G)) = P” (g(C)‘), implying 

We have also 

Z(G) z Pv(g(Qi)/L(G). ’ 

In particular, for a simply connected group G we have 

6’. Linearizer. Let G be a Lie group. Denote by A(G) the intersection of the 
kernels of all linear representations of G. As follows from Theorem 1 A.2 A(G) is 
a normal Lie subgroup of G. Call it the linearizer of G and set Gli, = G/A(G). 

Problem 31. Let R: G + GL( V) be a linear representation. Then there exists a 
unique linear representation R,: Glin + GL(V) such that R = Ron, where z: 
G --+ GIin is the natural homomorphism. 

Our aim is to prove the following theorem which justifies the term “linearizer” 
in case when G is connected and semisimple. 

Theorem 8. Let G be a connected semisimple Lie group. The linearizer A(G) is 
discrete, belongs to Z(G) and Glin admits a faithful linear representation. 

Proof It suffices to prove the existence of a locally faithful linear representation 
R, of G such that /i(G) = Ker R,. Let 7t: G + G be a simply connected covering, 
f = Ker 7t, and let H be a simply connected complex Lie group with tangent 
algebra g(c). Bv Theorem 1.2.6 there exists a homomorphism j: G + H such that 
dj is the identiiy embedding g + g(c). Then j(G) is a real form of H with the 
tangent algebra g. Problem 1.3 implies that j(r) c Z(H). Clearly, there exists a 
homomorphism Qz: G -+ H/j(T) such that the diagram 

i 
G-H 

(13) 
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where 5 is the natural homomorphism, commutes. By Theorem 4.3.6 H/j(T) 
admits a faithful linear representation. Therefore there exists a representa- 
tion R, of G such that Ker R, = Ker @. Let us prove that this representation 
is the desired one, i.e. the kernel of any linear representation of G contains 
Ker 45. 

Let R: G + GL(W) be an arbitrary linear representation of G. The tangent 
representation dR: g + gI(W) extends to a complex representation (dR)(@): 
g(@) + gl(W(@)). By Theorem 1.2.6 there exists a representation R: H + 
GL(W(@)) such that dR = (dR)(C). Since c is connected, Theorem 1.2.4 implies 
that Rn: = Rj. Hence, R( j(r)) = (e} so that R = KE, where g is a representation 
of H/j(T). Therefore Rn: = Ezj = &Dn and R = E@. It follows that Ker Cp c 
Ker R. 17 

Notice that the proof of Theorem 7 gives a method of finding linearizer A(G): 
it coincides with Ker 45 from (13). Therefore, Glin = Q(G). 

Example. Let G = SL,(Iw) (see Example 5 of 1.1’). Then H = SL,(c) 
and A(G) = Ker j. Clearly, j is the covering G + SL,(Iw) c SL#). Since 
Z(SL,(rW)) = & and Z(G) N z ( see Remark 4 of 2”), we have A(G) = 2Z(G) = Z. 
Furthermore, Glin N SL,(Iw). 

Now, we will express the linearizer A(G) in terms of the characteristic lattice 
of G. Suppose, as in 5”, that we are given a Cartan decomposition g = f @ p. Let 
a be a maximal commutative subalgebra of f, t = a(@) c f(c), b a maximal 
diagonalizable subalgebra of g(c) containing t. 

Theorem 9. For any connected Lie group G with tangent algebra g we have 

&‘-‘(A(G)) = L(G) + (Q” n t) 

where Q” is the dual root latice of the Lie algebra g(C) with respect to E>. Therefore 

A(G) = (Q” n WQ” n L(G)). 

In particular, for a simply connected group G = C we have 

&-‘(A(@) = Q” n t, A(c) z (G” n t)/Q” (f(c)‘). 

Problem 32. Prove this theorem. 

Exercises 

In exercises l-4 some Cartan decomposition g = f @ p of a real semisimple 
Lie algebra g is fixed. 

1) If g is simple then the adjoint linear representation of f in p is irreducible 
and f is a maximal subalgebra of g. 

2) If g contains no non-zero compact ideals, then [p, p] = f and the adjoint 
representation off in p is faithful. 
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3) In p, no one-dimensional ad f-invariant subspaces exist. In particular, 
dim p > 2 if g is non-compact. 

4) f coincides with its normalizer in g. 

In exercises 5-7 a Cartan decomposition G = KP of a semisimple Lie group 
G is fixed. 
5) The formula T,(X) = gxO(g)-l (9, x E G) defines a G-action on G. The orbit 

of e under this action is P and the stabilizer of e is K. Therefore P is a 
homogeneous space of G isomorphic to G/K. 

6) P is the connected component of unit in each of the sets (g E G: O(g) = g-‘}, 
(g E G: Adg E P(g)}. 

. 

7) If g E G, a E K are such that gag-’ E K then in the decomposition g = kp, 
where k E K, p E P, the factor p satisfies pa = ap. 

8) The polar decomposition G = KP of a real semisimple algebraic linear group 
(see Exercise 2.2) is a Cartan one. If H is an open subgroup of G then its 
Cartan decomposition is of the form H = (K r\ H)(P n H). 

9) The maximal compact subgroups of an irreducible reductive algebraic real 
linear group G are conjugate with respect to automorphisms of the form 
a(g), where g E Go. 

10) Let G be a semisimple Lie group, H its semisimple Lie subgroup with a finite 
number of connected components. Then there exists a Cartan decompsotion 
G = KP such that H = (H n K)(H n P). This decomposition of H is a 
Cartan one. 

11) Let G be a connected Lie group, H its connected normal subgroup and 
dim G/H = 1. Then there exists a Lie subgroup C c G such that G = H M C. 
(Hint: reduce the general case to the cases of a solvable and of a semisimple 
group H. In the solvable case see Exercise 1.4.15. In the semisimple case 
make use of the fact that Z(H) is contained in a pseudotorus (see Problem 
25) ) . 

Hints to Problems 

3. To prove the converse statement make use of Problem 1.3.17. 
8. Make use of Problem 4. 
9. If k E N(K”) then the automorphism Ad k preserves the decomposition (1) 

and therefore commutes with 0. Next, make use of Problem 7. 
10. The decomposition Go = (Go n K)P implies that Go n K is connected and 

therefore coincides with K”. 
11. Notice that the group Ad K” = Ad(G” n K) = (Int g) n O(g) is compact and 

make use of Corollaries 4 and 5 of Theorem 2. 
12. First prove that Ad K = (Ad G) n O(q) is a maximal compact subgroup of 

Ad G, making use of Corollary 3 of Theorem 2.1 and Problem 7. 
13. Theorems 3 and 2.7 imply that for any compact subgroup M c G there exists 

g E Go such that gMg-’ c L. If L c L,, where L, is a compact subgroup of 
G, then applying this statement to L, we get g&g-’ c L for some g E Go. 
Therefore g&-l c gL, g-l c L implying &g-l = L, since L is a compact 
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Lie group. Therefore L = L,. If A4 is a maximal compact subgroup then 
obviously gMg-’ = L. 

14. Fix a Cartan decomposition g = f 0 p of g and consider the corresponding 
Cartan decomposition Aut g = KP of the group Aut g. If a E Aut g is an 
element such that aMa-’ c K then the Cartan decomposition g = a-‘(f) @ 

,-l(p) is Winvariant. 
17. In E, choose an orthonormal basis, such that log X = diag(&, . . . , jU,,) for 

J&R.Thenby(ll) 

fx, y(t) = c etAi/yii where yii > 0. 
1 ,<i<<n 

Therefore fX, y is strictly convex. The strict convexity of q, follows from the 
equality cp,(t) = maxYd2fx,Y@)* 

18. By Problem 4.1.8 Ad G c SL(g), whence p c U(g). Lemma 2.1 implies that 
r’ is closed in P(g). By Problem 7 and Corollary 7 of Theorem 2 the action 
(Sp)(Ad) transforms p into itself. Since any Y = exp ad y, where y E p, pre- 
sents in the form Y = (Ad exp(y))2 = Sq(Ad exp(y))(E), then p coincides with 
the orbit of E. 

19. Verify that the Cartan scalar product in g(@) is non-degenerate on b(@) if 
E, is canonically embedded and make use of Theorem 4.1.2. 

20. Apply Lemma 3 to I)(@) and the real structure 0: z I+? on g(@). The sub- 
algebra E> is canonically embedded in g with respect to the Cartan decom- 
position g = (g n u) @ (g n iu), where u = g(@)‘. 

21. Theorem 2.16 implies that if A is a maximal connected commutative sub- 
group of K then Ad A is a maximal torus in the compact Lie group Ad K, 
whence A is a pseudotorus in G. This makes it obvious that a maximal 
pseudotorus belonging to K is a maximal connected commutative subgroup 
of K. The conjugacy follows from Theorems 3 and 2.16. 

23. Let Aj = exp, (a). If there exists a covering 71: G -+ G, such that d7t = id then i 
we have the commuting diagram 

ia 

1 = G 

(14) 

Corollary 5 of Theorem 2 and Theorem 2.16 imply that Ker n c A 1. There- 
fore L(G,) = &‘(Kern) 2 L(G,). To prove the existence of 71 provided 

1 

L(G,) c L(G,), consider a simply connected group G covering G, and Gz 
and prove that the kernel of the covering G + G, is contained in the kernel 
of the covering G -+ GZ. 

25. Make use of Problem 23. 
26. Let G be a simply connected Lie group with the tangent algebra g. Problem 

25 implies that N = &(L) is a subgroup of Z(G) and L = 8$(N). Verify that 
L = L(G) for G = G/N. 
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28. If G is simply connected then so is K (Corollary 1 of Theorem 2). Making 
use of Theorem 4.3.5 we deduce that L(G) = Q”(f(@)‘). 

29. Use Theorem 4.3.7. 
30. Apply Problems 29 and 4.4.30. 
32. Let A = expG a, x = expga. Consider the commutative diagram which 

follows from (13) and (14): 

ia 

It implies that 

exp,‘(Ker 0) = expE’(jW(rN) 

= exp$(rKer j) 

- exp$(r) + expz’(Ker j) - 

= Ker exp, + Ker exp, 

= L(G) + Ker exp,. 

Theorem 4.3.5 implies that Ker exp, = 2ni(Q” n t). 

$4. Real Root Decomposition 

In this section we consider the root decomposition of a real semisimple Lie 
algebra with respect to a maximal subalgebra expressed in the adjoint represen- 
tation by diagonal matrices. The study of the corresponding root system enables 
us to assign to a real semisimple Lie algebra the so-called Satake diagram which 
can be considered as a generalization of the Dynkin diagram. Satake diagrams 
can be used in the classification of real semisimple Lie algebras which we carried 
out in on 5 1 by another method (cf. [33]). Another application of a real root 
decomposition is Iwasawa’s theorem generalizing the classical Gram-Schmidt 
orthogonalization method. 

lo. Maximal R-Diagonalizable Subalgebras. Let g be a real Lie algebra. A 
subalgebra a c g is called R-diagonalizable if there is a basis in g with respect to 
which all operators ad x (X E a) are expressed by diagonal matrices. In this case 
we have a decomposition 
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!3 = go @ 0 gn, 
AEA 

269 

(1) 

where ,4 is a finite set of non-zero elements of a* and g# E d u (0)) denotes the 
non-zero subspace {x E g: [a,~] = Il(a)x(a E a)>. The set d is called the root 
system of g with respect to a and the decomposition (1) is called the root 
decomposition. As in the complex case, for any IE, ,U E d u (0) we have 

“A’ ‘PI c :A+p otherwise 
i 

ifA+pEdu{O), 
- - 

In particular, go is a subalgebra of g (the centralizer of a). 
Now suppose that g is semisimple. Clearly, any R-diagonalizable subalgebra 

a c g is commutative. If x E a and a(x) = 0 for all a E d then x E j(g) and 
therefore x = 0. This makes it obvious that d generates the space a*. 

Problem 1. Any IF!-diagonalizable subalgebra a of a real semisimple Lie algebra 
g is contained in some Cartan subspace p. Conversely, if p is a Cartan subspace 
of g then any subalgebra of g contained in p is iI&diagonalizable. 

Let a be a maximal diagonalizable subalgebra of a semisimple Lie algebra g. 
By Problem 1 there exists a Cartan decomposition 

g=fop, (2) 

such that a c p and a is maximal among the subalgebras of g contained in p. 

Problem 2. Any subalgebra a of g contained in p and maximal among such 
subalgebras is a maximal R-diagonalizable subalgebra of g. The centralizer go 
of such a subalgebra is of the form 

90 =m@a, 

where m = go n f. 
Let C c a* be the root system associated to a maximal diagonalizable sub- 

algebra a. Notice that C # 0 if and only if a # 0. Any a E C determines the 
hyperplane Pa = Ker a in a. The elements of the non-empty open set 

a reg =a\u E 
acC 

are called regular. 

(3) 

Problem 3. The centralizer of any regular element of a coincides with go. 

Theorem 1. Let K be the maximal compact subgroup of Tnt g corresponding to 
the subalgebra f of the decomposition (2). Any two maximal subalgebras of p are 
transformed into each other by an element of K. Any two maximal R-diagonalizable 
subalgebras of g are conjugate. 
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The second statement of Theorem 1 reduces to the first one with the help of 
Problem 1 and Theorem 3.1. It suffices to prove the first statement. 

Problem 4. Deduce the first statement of Theorem 1 from the following 
lemma. 

Lemma 1. Under the assumptions of Theorem 1, for any x, y E p there exists 
k E K such that [k(x), y] = 0. 

Proof. On K, consider the smooth function q(k) = (x, k(y)). Since K is compact, 
cp possesses a minimum point, k,. Then for any z E f the function 

assumes its minimum at t = 0. Therefore 

0 = w9 = (x, k,( [z, y])) = (k,‘(x), [z, y]) 

= -wG'(x)9Yl,~), 

implying [k,‘(x), y] = 0. 
The dimension of a maximal R-diagonalizable subalgebra a of a real semi- 

simple Lie algebra g (independent by Theorem 1 of the choice of a) is called the 
real rank of g and is denoted by rkR g. 

Problem 5. rkR g = 0 if and only if g is compact. 

Problem 6. If a real semisimple Lie algebra g splits into the direct sum of ideals 
g = g1 0 g2 then the maximal R-diagonalizable subalgebras a of g are of the 
form a = a, @ a2, where ai (i = 1,2) is an arbitrary maximal R-diagonalizable 
subalgebra of gi. In particular, 

rhlg = rkRgl + r&g,. 

Under the natural identification of a* with a: @ a; the root system C of g with 
respect to a is identified with C, u Cz, where Zi c a* is the root system of gi with 
respect to a,(i = 1,2). 

2’. Real Root Systems. Let g be a real semisimple Lie algebra with a fixed 
decomposition (2), a c q a maximal R-diagonalizable subalgebra of g, C the 
corresponding root system. Problem 5 implies that C # 0 if and only if g is 
non-compact. By Problem 3.3 a is a Euclidean space with respect to the Cartan 
scalar product in g. Let us naturally transport the scalar product from a to a*. 
Our next aim is to prove the following theorem. 

Theorem 2. The root system C c a* of a semisimple Lie algebra g with respect 
to a maximal IF!-diagonalizable subalyebra a is a root system in the sense of 4.2” . 
(not necessarily reduced). 
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Proof is close to the proof of the similar fact for complex Lie algebras (see 
4.1.6”). For any a E C denote by h, the element of a uniquely determined by the 
following property: 

for any y E a*. 

Problem 7. Let 0 be an automorphism of g transforming a into itself. Then 
‘e(C) = C, e(g,) = gte-lfa@ E C u {O}), &ha) = hrg-~~,~ (a E C). 

Apply Problem 7 to the involutive automorphism 0 of g defined by the 
formula 

e(x + y) = x - y 

Since 01a = -id, we see that 4’ = C and e(g,) = gma (a E CU (0)). 

Problem 8. For any x E ga, where a E C, we have 

CT @)I = (a, w (x9 wwi, 

and (x, B(x)) c 0 if x # 0. 

Fix a E C and a non-zero x E gcx. Problem 8 easily implies the existence of a 
c E R, c # 0, such that x, = cx E ga and y, = -&I(X) E gea satisfy [x,, y,] = h,. 

As follows from Problem 2, the maximal commutative subalgebras b of g 
containing a are of the form b = J$ @ a, where I!)+ is any maximal commutative 
subalgebra of III. Now pass to the complexification g(@) of g and consider its 
commutative subalgebra 

t = l)(C) = lj+(C) @ a&). 

Let us extend 0 to g(@) by linearity. Denote by 0 the complex conjugation in 
g(c) with respect to g. 

Problem 9. The subalgebra t is maximal diagonalizable in g(@) and invariant 
with respect to 0 and 8. The subalgebras t- = a(@) and t+ = b+(c) are algebraic 
and diagonalizable in g(c) and t+ is a maximal diagonalizable subalgebra of the 
reductive algebraic subalgebra IX(@). We have 

t(R) = (ilj’) (ij a. (4) 

Under the natural identification a* = t-(R)* the root system C is identified with 
the root system d(t-) of g(@) with respect to t-. 

Consider the homomorphism (pcL: $(@) --) g(@) defined by the formulas 

Problem 10. q, is an injective Lie algebra homomorphism over c such that 
%bww = 99 40ah) = f* 
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Denote by F, a Lie group homomorphism SL,(@) + Int(g(C)) such that 
dq, = (ad)qa. Problem 10 implies that F,(SL,((w)) c Tnt g (Int g is naturally 
embedded into Int g(C), see Example 4 of 1.1’). If K is the maximal compact 
subgroup of Int g corresponding to f then FJSO,) c K. In particular, h, = 

Problem 11. The automorphism n, transforms a into itself and induces in a the 
orthogonal reflection ror with respect to P,. 

Proof of Theorem 2. Let IX E C. Denote also by ror the drthogonal reflection in 
a* with respect to the hyperplane L, = {y E a*: (ct,y) = 0) (this reflection coin- 
cides with ?J. Problems 11 and 7 imply that r,(c) = C (cf. Theorem 4.1). Further, 
h, E t- (Z) implying (PI@ = P(h,) E z for all p E C (cf. Problem 4.1.34). 

Now consider the relation between d = d(t-) and the root system d(t) = d of 
the Lie algebra g(C) with respect to t. Clearly, the restriction map p: t(R)* -+ 
t-(R)* = a* transforms A into Cu (0). Set 

A 0= (2 E A: p(a) = 0}, A, = A\Ao. 

Problem 12. The map p: d,(c) u (0) -+ C u (0) is surjective. We have 

In particular, A, is the root system of the semisimple Lie algebra m(C)’ with 
respect to t n m(C)‘. 

Since 0(t) = t, Problem 4.1 .lO implies that ‘O(A) = A. 

Problem 13. Kerp = (;’ E t*: ‘6(y) = y}. In particular, A0 = {a E A: ‘0(a) = a}. 

Set 

‘o(7) (9 = Y (a(x)) (y E t*,x E t). 

Then ‘a(;l) E t*. Therefore an antilinear transformation ‘CC t* --+ t* is defined. 

Problem 14. The transformations 0 and ‘0 send t(R) and t(R)* into themselves 
and coincide on these subspaces with - 0 and -(‘6) 
e?(Q) = Y(@)%(a) = 9(@)(‘8(z)) for all a E A* 

3’. Satake Diagram. We retain the notation of 2”. In 
. . . ) v, such that v,, . . . , v, is a basis of a and consider the 1 

respectively. We have 

t(R), choose a basis vl, 
exicographic orderings 

with respect to these bases in t(R)* and a* (see 4.2.2”). Then p@) > 0 implies 
A > 0 for R e t(R)*. Denote by A+, C+ (resp. A-, C-) the sets of positive (negative) 
roots with respect to these orderings. Set A’ = Ai n A’ (i = 0,l). 

Problem 15. p(A,‘) = Z*, ‘B(Af) = A?, %(A;) = A& Let I7 c A+ and @ c 
Z+ bebases.Set.Hi=AinZ7(i=0,1). 
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Problem 16. I70 is a base of d, and p(&) I 0. 
Actually, as we will show, p(l7,) = 0. 
Let us prove the following important statement. 

Lemma 2. There exists an involutive transformation cc): 17, -+ 17, such that for 
any a E I& we have 

‘e(a) = -a(a) - 1 GyY? 
WI70 

where c,;, are non-negative integers. 

Problem 17. Let C be a square matrix with non-negative integer entries such 
that C2 = E. Then C is the matrix corresponding to an involutive permutation 
of elements of the basis. 

Problem 18. Prove Lemma 2. 

Problem 19. For a, /I E Q we have p(a) = p(p) if and only if r = /!I or a = o(p). 
The system p(I7,) is linearly independent and therefore coincides with 0. 

Lemma 2 enables us to assign to any real semisimple Lie algebra g the Satake 
diagram obtained from the Dynkin diagram of the complex Lie algebra g(c) as 
follows: the vertices corresponding to the roots from I70 are blackened and the 
pairs of different roots from 17, transformed into each other by an involution o 
are joined by arrows. 

Problem 20. rk g(@) = rkR g + lZ701 + s, where s is the number of arrows on 
the Satake diagram. 

Problem 21. Let gl, g2 be real semisimple Lie algebras. Then the Satake 
diagram of gr @ g2 is the disjoint union of the Satake diagrams of g1 and g2. 

Problem 22. A real semisimple Lie algebra is simple if and only if its Satake 
diagram is connected. 

Example 1. The Satake diagram of a semisimple compact Lie algebra g is 
obtained from the Dynkin diagram of g(@) by blackening all vertices. Any 
semisimple Lie algebra over IR, all verices of whose Satake diagram are black, is 
compact. 

Example 2. Let g be a semisimple complex Lie algebra. Then the Satake 
diagram of qR is obtained from the Dynkin diagram of g by doubling and joining 
the corresponding vertices of the two diagrams by arrows. For instance, the 
Satake diagram of “Il+#C)Iw contains 21 vertices and is of the form 
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In fact, consider a compact real form u c g. If lj’ is a maximal commutative 
subalgebra of u then lj = Ij+(@) is a maximal diagonalizable subalgebra of g and 
a = Zb+ is a maximal IF!-diagonalizable subalgebra of gR. Furthermore, g”(C) is 
identified with g @ g and the maximal diagonalizable subalgebra t = b(C) of this 
algebra with b @ lj. Moreover, a(~, Y) = (7, Z) (x, y E g), where z I+ Z (z E g) is the 
complex conjugation with respect to u (see Problem 1.8). The root system d of 
s[w(a=) with respect to t is of the form d = d, u fa(dg), where d, is the root system 
of g with respect to l$ Similarly, n = 179 u ‘a&), where & c d,, Z7 c d are 
bases, and cz) = %. 

As is clear from Problem 22, Examples 1 and 2, to list’the Satake diagrams of 
semisimple Lie algebras g over [w we may confine ourselves to the case when g 
is a non-compact real form of a simple Lie algebra g(C). The Satake diagrams 
of all such Lie algebras g are listed in Table 9, which also contains the Dynkin 
diagrams of the corresponding root systems C, the types of these systems and 
dimensions of root subspaces m, = dim gn (A E C). This Table quite easily 
implies 

Theorem 3. Ttio semisimple Lie algebras over R are isomorphic if and only if 
SO are (in the natural sense) their Satake diagrams. 

4’. Split Semisimple Lie Algebras. A real semisimple Lie algebra is called split 
if any of its maximal R-diagonalizable subalgebras is a maximal commutative 
subalgebra. 

Problem 23. The following conditions are equivalent: g is split; a(c) is a 
maximal diagonalizable subalgebra of g(C) for any maximal R-diagonalizable 
subalgebra a of g; rkR g = rk g(@); the Satake diagram of g has neither black 
vertices nor arrows. 

If g is split then under the notation of 2’ we have m = a, d = C, c&C), = g,(c) 
for all a E d. Therefore, dim gcI = 1 for all cx E d. 

Problem 24. Any ideal of a split semisimple Lie algebra is split. The direct sum 
of two split Lie algebras is split. 

Theorem 4. Any semisimple Lie algebra g over C has a unique up to an iso- 
morphism split real form 5 which is simple if and only if so is g. 

Problem 25. Let g be a semisimple complex Lie algebra. The normal real form 
of g associated with an arbitrary canonical system of generators (see Problem 
1.6) is split. Conversely, any split real form of g is normal with respect to a 
canonical system of generators. 

The first statement of Theorem 4 follows from Problem 25 and Theorem 4.3.1. 
If 5 is simple then by Theorem 1.1 so is 9 since a complex Lie algebra considered 
as a real one is not split (see Example 2 of 3”). 

Example. Simple split Lie algebras over R are 5I,(R) (n 2 2), 50~ k+l(k > I), 

=&,,(k 2 39 vst@)( n 2 2), EI, EV, EVIII, FI, G. This is clear: look at the values 
of the real rank listed in Table 9. 
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5’. Iwasawa Decomposition. Let again g = f @ p be a Cartan decomposition 
of a real semisimple Lie algebra, a c g a maximal IF&diagonalizable subalgebra, 
C the root system with respect to a. In d, choose a system of simple roots 0 and 
denote by C+ c C the corresponding subsystem of positive roots. Set 

Problem 26. The subspace n is a unipotent algebraic subalgebra of g. We have 
[a,~] c n so that b = a @ n is a solvable algebraic subalgebra of g. 

Theorem 5. The following decompositions into direct sums of subalgebras take 
place: g = f @ a @ n = f @ b. 

Problem 27. Prove this theorem. 
We want to construct decompositions of a connected semisimple Lie group 

into products of its Lie subgroups corresponding to the decompositions of 
Theorem 5. Let G be a connected semisimple Lie group with the tangent algebra 
g. As is shown in 5 3, there exists a connected Lie subgroup K c G with the 
tangent algebra f. If G has a finite center then K is a maximal compact subgroup 
of G. 

Problem 28. In G, there exist simply connected Lie subgroups A, N, D with 
the tangent algebras a, rt, b respectively and D = A >Q N. 

Problem 29. In g, there exists a basis by means of which all elements ad x (x E b) 
and Ad g(g E D) are expressed by upper triangular matrices (for Ad g, g E D, with 
positive diagonal entries) and D n K = {e}. 

Problem 30. Prove the following theorem: 

Theorem 6. Let G be a connected semisimple Lie group and K, A, N, D its 
connected Lie subgroups defined above. Then the maps 

KxAxN--+G, (k, a, n) I+ kan 

and 

KxD-,G, (k, d) t--, kd 

are diffeomorphisms. In particular, G = KAN = KD. 

The decompositions of g and G described in Theorems 5 and 6 are called the 
Iwasawa decompositions. 

Now we will characterize the subalgebra b c g and the subgroup D c G 
without incorporating the root decomposition. 

Let g be a real Lie algebra. A subalgebra c c g is called triangular if in a basis 
of g all operators ad x (X E c) are expressed by upper triangular matrices. Let G 
be a Lie group with the tangent algebra g. A subgroup C c G is called triangular 
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if there is a basis in g with respect to which all operators Ad g (g E C) are expressed 
by upper triangular matrices. 

Problem 31. A connected virtual Lie subgroup of G is triangular if and only if 
its tangent subalgebra of g is triangular. A maximal connected triangular sub- 
group is a Lie subgroup of G; its tangent algebra is a maximal triangular 
subalgebra of g. Any maximal triangular subalgebra of g is tangent to a maximal 
connected triangular subgroup of G. 

Problem 32. Let G be a connected semisimple Lie group, g its tangent algebra. 
The subgroup D c G and the subalgetxa b c g defined in problems 26 and 28 
are a maximal connected triangular subgroup and a maximal triangular sub- 
algebra, respectively. 

Example. Let G = SL,(Iw), g = eI,(R). Under an appropriate choice of a base 
in AZ- = &I,(C) the subalgebra b defined in Problem 26 is the subalgebra of all 
upper triangular traceless matrices, D is the subgroup of all upper triangular 
matrices with determinant 1 and positive diagonal entries. The group K coincides 
with SO,. Theorem 6 easily follows in this case from the classical theorem on 
the reducing of a positive definite quadratic form to the normal form with the 
help of a triangular change of basis. 

Concluding this section we prove the following theorem which is a real 
analogue of Theorem 3.2.12 on conjugacy of Bore1 subgroups. 

Theorem 7. The maximal connected triangular subgroups (maximal triangular 
subalgebras) of a connected semisimple real Lie group (semisimple Lie algebra over 
R) are conjugate. 

Proof is based on the following fixed point lemma. 

Lemma 3. Let V be a finite-dimensional vector space, X its linear transformation 
whose characteristic roots are all real. For any point p E P(V) there exists the limit 

pO = lim (exp tX)(p) E P(V). 
t--,x3 

The point pO is stable with respect to the group {exp tX: t E R}. 

Proof Express X by a triangular matrix in a basis of V The diagonal entries 
of this matrix are the eigenvalues II, . . . , & of X (multiplicities counted). The 
entries of the matrix exp tX are functions in t of the form 

1 Qi(t)eai’, 
1 ,<i,<r 

where Qi are polynomials. The coordinates of the vector (exp tX)v, where v E V 
is a non-zero vector such that (v) = p, are of the same form. Let /i be the maximal 
of the numbers ;Ci among the coordinates of this vector and M the highest of the 
degrees of the corresponding polynomials Qi. Then (exp tX)v = t”ent (v, + E(t)), 
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where I-+, # 0 and r(t) + 0 as t -+ co. Clearly, (q-J = lim,,,(exp tX)(p) and p. = 
(0,) is fixed under exp tX(t E Iw). 0 

Using Lemma 3 we will prove that the connected triangular linear group in 
V over [IB has a fixed point in any invariant closed subset of the flag variety F(V). 
For this we need the embedding j of F(V) into the projective space constructed 
in 2.2.7’. Recall that this embedding is of the form 

F(V) -+ Gr,(V) x l  -0 x Gr,(V)+P(V) x P(A2V) x l  - x P(A”V) 

where the last arrow is described in 2.2.6’ (here n = dim V). 

Problem 33. The embedding j: F(V) + P(W), where M/ = V @ A2 V @ l  - 
ci”V, constructed in 2.2.7” has the following property: j(d) = R(g) j(f) (g E 
GL( V), f E F(V)), where R: GL( V) + GL( W) is the natural representation. 

Problem 34. Let F be the flag variety of a finite-dimensional vector space V 
over IF8 and C c GL(V) a connected virtual Lie subgroup with a fixed point in 
F. Then any non-empty closed C-invariant subset Q c F contains a point fixed 
under C. 

Problem 35. Prove Theorem 7. 

Exercises 

Let G be an irreducible semisimple real algebraic group, g its tangent algebra. 
An algebraic torus T c G(@) is called split if in a basis of g(@) contained in g all 
elements of the torus Ad T are expressed by diagonal matrices. 

1) An algebraic torus T c G(@) is split if and only if t = a(Q where a is an 
Kdiagonalizable subalgebra of g. 

2) The maximal split tori in G(@) are conjugate with respect to the inner 
automorphisms generated by the elements of Go. 

3) g is split if and only if G(c) has a split maximal torus. 

Let Q be a subalgebra of the real Lie algebra g and p: g + gl(V) a real 
linear representation. The subalgebra a is called p-diagonalizable (or p-triangular) 
if all p(x) (x E g) are expressed by diagonal (triangular) matrices in a basis 

4) Let g be a semisimple real Lie algebra. Any II%-diagonalizable (i.e. ad-diagon- 
alizable) subalgebra of g is p-diagonalizable for any linear representation p. 
Conversely, if a c g is a p-diagonalizable subalgebra for some faithful repre- 
sentation p then a is II%-diagonalizable. 

5) Any triangular subalgebra of a semisimple real Lie algebra g is p-triangular 
for any linear representation of g. Conversely, if the subalgebra c c g is 
p-triangular for some faithful representation p of g then c is triangular. 

6) Under the notation of 2” denote by IV c GL(a) the Weyl group of the root 
system C (see 4.2.4”). Set 
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NK(a) = (k E K: k(a) = a}, 

Z,(a) = {k E K: k(x) = x for any x E a}. 

Then N,(a) and ZK(a) are Lie subgroups of K with the tangent algebras 
isomorphic to m. The correspondence k w kla is the surjective homomor- 
phism of N’(a) onto W with the kernel Z,(a), whence 

W = N,(a)lZ,(a). . 

7) Let, under the same notation, dim gn = 1 for all A E C and let g have no 
compact ideals. Then g is split. 

8) In a complex semisimple Lie algebra g with a maximal diagonalizable 
subalgebra b there exists a unique up to a conjugacy in Aut g involutive 
automorphism 0 such that O(X) = -x for all x E h. The corresponding 
automorphism ~(0) E Aut I7 coincides with the automorphism 0 of Exercise 
4.3.6. The correspondence established in Theorem 1.4 assignes to 0 the class 
of the normal real form of g. 

9) For the classical Lie algebras g the automorphism 0 of Exercise 8 is conjugate 
to the following automorphism (under notation of 1.2”): 

8:X-+---XT for g = d,(C), n > 2; 

O=AdI,,,,+l for , g = ~o~~+#C), n 3 1; 

O=AdI,.,, , for 4 = 502,(C), n > 2; 

B=AdS, for g = sp,(@), n > 2. 

A subalgebra p of a real semisimple Lie algebra g is called parabolic if p(C) is 
a parabolic subalgebra of g(C) ( see Exercises to 4.2”). Let, under the notation of 
3”, A4 be a subset of a base 0 c C+. Denote by CtM) the subset of C consisting 
of all positive roots and those negative roots which can be linearly expressed in 
terms of A4. 
10) 
11) 
12) 
13) 

14) 

For any A4 c 0 the system CtM) is closed. 
The subalgebra p(M) = go @ aErfM, gQ of g is parabolic. 
Any parabolic subalgebra of g is conjugate to exactly one of the p’M’. 
Prove Theorem 2.15 by the method used in the proof of Theorem 1 of this 
section. 
Let p: g -+ gI(V) be a finite-dimensional irreducible linear representation of 
a split real semisimple Lie algebra g over R. Then the complex representation 
PC0 go + gwcJ3 is irreducible and p HP(@) is a one-to-one corre- 
spondence between the classes of equivalent real irreducible representations 
of g and the classes of complex irreducible representations of g(C). Similar 
statement holds for arbitrary finite-dimensional representations. 
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Hints to Problems 

1. Clearly, the algebraic closure aa c g is also an IR-diagonalizable subalgebra. 
Therefore we may assume that a is an algebraic subalgebra. Obviously, a(Q 
is a diagonalizable subalgebra of g(@), whence a is a reductive algebraic 
subalgebra. The inclusion a c p follows now from Theorem 3.4. Conversely, 
any subalgebra a c g is commutative and adx is diagonalizable for any 
x E a (see Problems 3.1 and 3.4) implying that a is an R-diagonalizable 
subalgebra. 

2. First prove that go is of the form (3). 
4. Apply Lemma 1 to the regular elements of two maximal subalgebras of p 

and use Problems 3 and 2. 
9. The subalgebra t is a maximal commutative subalgebra of g(c) and consists 

of semisimple elements. Therefore t is a maximal diagonalizable subalgebra. 
Let T be the corresponding maximal torus of H = Int g(c), 0 the auto- 
morphism of H defined by the formula O(g) = @6-’ (y E H). Then O(T) = T. 
The subalgebras t- and tf are tangent to the algebraic subgroups T- = 
(9 E T: 0(9)-l = g} and T+ = (g E T: O(g) = g} respectively. Formula (4) 
follows from the fact that fi’ @ (ia) belongs to the compact real form f @ (ip) 
of g(@) and therefore the differential do of any character x E X(T) has only 
purely imaginary values of h’ @ (ia). 

11. Is similar to Problem 4.1.37. 
18. Problem 15 implies that for any a E 17, we have 

‘8(cc) = - & CapP - c cc& 
E 1 YH70 

where caB, c,, are non-negative integers. Verify that (c,& PEn, = E and apply 9 
Problem 17 to the matrix C = (c&. 

19. Make use of Lemma 2 and Problem 13. 
22. Let the Satake diagram of g be not connected and d = d’ u d” the corre- 

sponding decomposition of the root system of g(@) into the union of non- 
empty disjoint subsystems. Then d’ n l7, and d” n 17, are m-invariant. With 
the help of Problem 14 we deduce from here that ‘a(J) = d’, ‘a@“) = d”. 
Therefore, the ideals h’, h” of g(c) corresponding to d’ and d” (see Problem 
4.1.32) are c-invariant implying g = t)‘O @ t)“? 

25. Let 5 be a split real form of g, a a maximal IR-diagonalizable subalgebra of 
5. By Problem 25 t = a(@) is a maximal diagonalizable subalgebra of g and 
a = t(R) by Problem 9. Let 17 be a system of simple roots of the root system 
C = d,. Then the elements h,, x~, y& E n) of 5 constructed in 2’ form a 
canonical system of generators of g. Clearly, 5 coincides with the subalgebra 
generated by these elements over R. 

27. Make use of(l), (3) and the inclusion CJ+ c f + gi. 
28. First, let G = Int g = (Aut 9)‘. The unipotent subalgebra n c g determines a 

connected unipotent algedraic subgroup N c G and exp: n -+ N is a diffeo- 
morphism. The algebraic subalgebra a determines the commutative algebraic 
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subgroup 2~ Aut g and A = x0 = exp a c G. Since a is an I&diagonalizable 
subalgebra, A = R’, where I = rkRg. In an arbitrary connected semisimple 
Lie group G with tangent algebra g, consider the Lie subgroups Â  = 
(Ad%)O and 6/’ = (Ad-‘N)O. The simple connectedness of A and N implies 
that AI and N are simply connected and A n̂ Z(G) = N n Z(G) = {e}. If 
g E A* n N then Ad g E A n N implying g E Z(G) and g = e. Clearly, Â  nor- 
malizes R so that AJ? = AI K N is a Lie subgroup of G. 

29. Consider the ascending filtration of g by the subspaces g(1) = cpaA gee 
(A E C u {0}), where 2 is the partial ordering determined by 0. Comple- 
menting this filtration by the s&spaces of missing dimensions we get a flag 
in g invariant with respect to all ad x (X E b) and Adg (g E D). If g E D n K 
then Ad g is a diagonalizable operator with all eigenvalues equal to 1 SO that 
Ad g = E and g E Z(G). Since the group Ad G = (Ad A) o( (Ad N) is simply 
connected, Z(G) n D = {e> and g = e. 

30. Let ~1: K x D + G be the map defined by the formula ~(k, d) = k. Since 
K n D = (e}, then ,u is injective. Theorem 5 implies that the map d,, elp: 
f x b -+ g sending (x, y) into x + y is injective. Therefore so is d,, bJp for ‘any 
a E K, b E D. In fact, ,u(l(a)u, @-‘)a) = I(a)r(P)p(u, v) (u E K, v E d,, implying 
(d,, bJp)(d,Z(a) x d,r(b-I)) = (d,I(a))(d,r(b-‘))d~, eJp. Therefore ,u is a diffeo- 
moiphism of K x D on an open set KD c G. In particular, (Ad K)(Ad D) is 
open in Int g = Ad G. Since Ad K is compact, the set (Ad K)(Ad D) is closed 
in Int g, implying Int g = (Ad K)(Ad D) = Ad(KD). Taking into account that 
Z(D) c K (by Corollary 2 of Theorem 3.2) we deduce that G = KD. 

3 1. Let F be the flag variety of the vector space g. Consider the G-action on F 
defined by the adjoint representation Ad. A subgroup C t G (a subalgebra 
c c g) is triangular if and only if C c Gs (resp. c c gf) for some f E F. By 
Theorem 1.1.1 Gf is a Lie subgroup of G with the tangent algebra gJ. This 
implies the first statement. 

Any maximal connected triangular subgroup coincides with G/” for some 
f E F, hence is a Lie subgroup; similarly, any maximal triangular subalgebra 
coincides with gJ for some f E F. This easily implies the other statements of 
the problem. 

32. If c is a triangular subalgebra containing b then by Theorem 5 c = (c n f) + b. 
If x E c n f then ad x is a semisimple (in g(Q) operator with zero eigenvalues 
implying ad x = 0 and x = 0. Thus c = b. 

34. Let us carry out the induction in dim C. The existence of a C-invariant flag 
implies that C is solvable. Therefore C = C, Co, where C,, Co are connected 
virtual Lie subgroups of GL( V), Co is normal in C and dim C, = 1, dim Co = 
dimC- 1 (Problem 1.4.7). By the inductive hypothesis we may assume that 
the closed set Q, = {f E 52: d = f for all g E Co} is non-empty. The sub- 
group C, transforms Q0 into itself. It is clear from Problem 33 that under 
the embedding j: F(V) + P(W) the group Cl = {exp tX: t E R> where X E 
gl( V), is identified with the group of projective transformations (exp t Y: 
t E R}, where Y = (dR)X. By hypothesis all characteristic roots of X are real. 
Since R is equivalent to a subrepresentation of a power (Id)” of the identity 
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representation, so is Y. Lemma 3 implies that there exists a flag fO E Sz, 
invariant with respect to C, and therefore with respect to C. 

35. Consider the G-action on F(g) defined by the adjoint representation. Let D 
be the maximal triangular subgroup of G described in Problem 38 and let 
fO E F(g) be a D-invariant flag. It follows from Theorem 6 that the orbit 
Q = Gfo c F(g) is compact. Now let C be any maximal triangular subgroup 
of G. Applying Problem 34 to the linear group Ad C we get the flag fi E 52 
invariant with respect to C. Iffy = g&, where g E G, then C = gDg-‘. 



Chapter 6 
Levi Decomposition 

In this chapter, which owing to its brevity is not divided into sections, we prove 
Levi’s theorem on the decomposition of an arbitrary Lie algebra into a semidirect 
sum of a solvable ideal (radical) and a semisimple subalgebra and the theorem 
on the uniqueness of this decomposition due to A.I. Malcev. Levi’s theorem 
implies the result which concludes the classical Lie group theory-the existence 
of a Lie group with an arbitrary given tangent algebra. Next we will consider an 
analogue of Levi decomposition for algebraic groups. 

lo. Levi’s Theorem. Let g be a finite-dimensional Lie algebra over K = C or 
R. A subalgebra 1 c g is called a Levi subalgebra if g splits into the semidirect sum 

9 = rub g @ 1. (1) 

Decomposition (1) is called the Levi decomposition of g. 

Problem 1. The natural homomorphism 71: g --+ g/rab g isomorphically maps 
any Levi subalgebra 1 c g onto the semisimple Lie algebra 5 = g/rab g. Any Levi 
subalgebra is a maximal semisimple subalgebra of g. 

Problem 2. An automorphism of a Lie algebra transforms any of its Levi 
subalgebras into a Levi subalgebra. 

In this section we will prove the following. 

Theorem 1 (Levi). Any finite-dimensional Lie algebra g over K = @ or R 
contains a Levi subalgebra. 

is 
First, prove Theorem 
trivial. 

1 when g has a commutative radical and the center of g 

Problem 3. The kernel of any derivation of a Lie algebra is a subalgebra. 

It follows from Problem 3 that it suffices to construct a derivation 6 E Der g 
which is the projection of g onto rab g, i.e. such that 6(g) c rabg and 6(x) = x 
(x e rab g). 

Problem 4. Suppose there exists a projection h of g onto rab g belonging to the 
normalizer of the subalgebra ad g c gI(g). If 3(g) = 0 then g contains a Levi 
subalgebra. 

Now let us construct a projection h: g + rab g satisfying the conditions of 
Problem 4. Let P = (u E gI(g): u(g) = rab 9 and uI rab g is a scalar operator} and 
Q = {v E P: Ulrabg = 0). Set R = ad(rabg) = {adx: ; E rabg). 
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Problem 5. The sets P, Q, R are subspaces of gI(g) such that R c Q c P and 
dimP - dimQ = 1. 

Consider the linear representation p of g in the space gl(g) defined by the 
formula 

p(x) = ad(adx) 

Problem 6. The subspaces P, Q, R are p(g)-invariant and p(x)P c Q for all 
x E rab g. If rab g is commutative then p(x)P c R for all x E rub g. 

Now suppose rab g is commutative and 3(g) = 0. Problem 6 implies that p 
induces a representation 6 of 5 = g/rabg in P/R such that p(t)(P/R) c Q/R for 
all 5 E 5. By Problem 5 dim P/R - dim Q/R = 1. Since pi is semisimple, p is 
completely reducible (Corollary 3 of Theorem 5.2.13). Therefore there exists 
u. E P\Q, such that j@)(u, + R) = 0 for all c E 5. This means that [ad X, uo] E 
R c ad g for all x E g, i.e. u. normalizes ad g. Furthermore, v,lrab g = JE, where 
1” # 0, and the operator h = v,/1 satisfies the conditions of Problem 4. Therefore 
Theorem 1 is proved under the above assumptions. 

Notice that Problem 5.2.30 implies that Theorem 1 holds in another particular 
case: when rub g = a(g). 

To prove Levi’s theorem in the general case we will need two properties of the 
radical of a Lie algebra. 

Problem 7. An ideal lj c g contains rab g if and only if g/h is semisimple. 

Problem 8. Let r be a solvable ideal of g. Then rab(g/r) = (rab g)/r. The image 
of any Levi subalgebra of g under the natural homomorphism g ---) g/r is a Levi 
subalgebra of g/r. 

Now we prove Theorem 1 by induction in dim(rab g). Suppose it holds for Lie 
algebras with radicals of dimensions < dim(rab g). Consider, separately, the cases 
of non-commutative and commutative radical. 

Let (rub g)’ # 0. Then 0 c dimrab g/rub 9)‘) < dim(rab g) and (rub g)’ is an ideal 
of g. By Problem 8 rub g/(rab g)’ is the radical of g1 = g/(rab 9)‘. Therefore g1 
contains a Levi subalgebra I,. Let g2 = z-l&) c g, where z: g -+ g1 is the natural 
homomorphism. Then gJ(rab g)’ = I, so that (r&g)’ is the radical of g2 by 
Problem 7. Applying the inductive hypothesis to g2 we see that g2 contains a 
Levi subalgebra I. Clearly, I is a Levi subalgebra of g. 

Let rub g be commutative. By what we have already proved we may assume 
that dim 3(g) > 0. Then dim(rab g/s(g)) < dim(rab g). By Problem 8 rab g,+(g) is 
the radical of q/a(q). By the inductive hypothesis q/3(9) contains a Levi subalgebra 
I,. If g1 is the preimage of I, with respect to the natural homomorphism g + g/s(g) 
then 3M = rab gi. By Problem 5.2.30 g1 contains a Levi subalgebra which is 
clearly a Levi subalgebra of g. 

2’. Existence of a Lie Group with the Given Tangent Algebra. In this section 
we will make use of Theorem 1 to prove the following theorem which is one of 
the fundamental facts of the Lie group theory. 
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Theorem 2. Let g be a finite-dimensional Lie algebra (over C or Iw), I its Levi 
subalgebra. Then there exists a simply connected Lie group G (either complex or 
real respectively) whose tangent algebra is isomorphic to g. Moreover, 

G=A>aL, (2) 

where A = Rad G, L is a simply connected Lie subgroup with the tangent algebra I. 

Proof. As it was shown in 1.4.4 there exists a simply connected Lie group A 
whose tangent algebra is isomorphic to rub g. On the other hand, it is clear that 
there exists a simply connected Lie group L with the tangent algebra isomorphic 
to I (e.g. the simply connected covering group for Int 1, see Problem 51.4). 
Applying Problem 1.2.39 to the adjoint representation ad: I + ber(rab g) we 
get the simply connected Lie group G = A >Q L with the tangent algebra 
(rub 9) 43 1 = g* cl 

3’. Malcev’s Theorem. Our goal is the proof of the following statement. 

Theorem 3 (A.I. Malcev [43]). Let I be a Levi subalgebra of g. For any 
semisimple subalgebra 5 c g there exists q E Int g such that (p(s) c 1. The auto- 
morphism q can be chosen from the connected virtual Lie subgroup of Int g with 
the tangent algebra ad(rab g). 

To prove it we will need an embedding of the group of affine transformations 
of an affine space into the group of linear transformations of a vector space of 
dimension greater by 1. Let V be a vector space over K = c or [w. Consider the 
vector space IV = V +> K. The affine hyperplane A = (I/, 1) c IV is an afine space 
with the associated vector space K Consider the subgroup G( IV; W, V) c GL( W) 
consisting of transformations preserving V and inducing on W/V the identity 
transformation (see Example 3 of 3.1.1”). 

Problem 9. The subgroup G(W; IV, V) coincides with the subgroup of all 
invertible linear transformations of W preserving A. If X E G(W; W, V) then X 
induces an affine transformation of A. Conversely, any affine transformation of 
A is obtained in this way from a uniquely determined element of G(W; W, V). 

Therefore the group GA(A) is naturally identified with the subgroup G(W; 
W, V) c GL(W). 

Lemma 1. If all finite-dimensional linear representations of a Lie group H are 
completely reducible then any affine action of H has a fixed point. 

Proof. Let R: H + GA(A) be an affine H-action. By Problem 9 R may be 
considered as a linear representation of H in the space IV so that V is an invariant 
subspace. The complete reducibility implies that there exists a vector v. E A, such 
that R(h)v, = cvo, where c E k, for any h E H. Since R(h)v, E A, then c = 1, hence 
v. is a fixed point for R. c] 

Proof of Theorem 3. First suppose that rab g is commutative. Consider a simply 
connected Lie group G with the tangent algebra g constructed in 2”. Its radical 
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A = Rad CJ is a vector group. A connected semisimple virtual Lie subgroup S c G 
corresponds to the subalgebra 5 by Theorem 1.2.8. Consider the affme action R 
of G in A defined in Problem 5.2.16. Since all linear representations of S are 
completely reducible (Corollary 2 of Theorem 5.2.13), Lemma 1 implies that S 
has a fixed point in A. As in 5.2.2’ we derive from here that aSa-’ c L for some 
a E A. Therefore (Ada)s c I. It remains to notice that Ada = exp(ad), where 
z E ra’D g is an element such that exp z = a. 

Now consider the general case and apply the induction in dim(rab g). Suppose 
the theorem is proved for all Lie algebras whose radical is of dimension 
cdim(rab g). Set g1 = gJ(rabg) and let I,, 5, be the projections of 1, 5 into gl. 
By Problem 8 I, is a Levi subalgebra of g1 having the commutative radical 
rab g/(rab g)‘. Therefore there exists z1 E racD g such that exp ad@, + (rab g)‘)sl c 
I,implying exp(ad z,)E, c (rab g)’ + I. Since dim(rab 9)’ c dim(rab g), we may 
apply the inductive hypothesis to g2 = (rab g)’ + I c g. Therefore there exist z2, 
. . . ) z,. E (rab g)‘, such that (exp ad z,) l  l  l  (exp ad z,)(exp ad .z& c I. 0 

Corollary 1. Any two Levi subalgebras of g are transformed into each other by 
a product of automorphisms of the form exp(adz), where z E rab g. 

Corollary 2. Any maximal semisimple subalgebra of a Lie algebra is its Levi 
subalgebra. 

4’. Algebraic Levi Decomposition. In this section we consider algebraic groups 
over U. 

Let G be an algebraic group. By Problem 3.3.10 the radical Rad G of G is an 
irreducible solvable algebraic subgroup. Consider the unipotent radical of Rad G, 
i.e. the set of all unipotent elements of this group (see 3.2.7”). We will call it the 
unipotent radical of G and denote by Rad, G. 

Problem 10. Rad, G is the largest unipotent normal subgroup of G. 

Problem 11. An algebraic group is reductive if and only if its unipotent radical 
is trivial. 

Problem 12. Let N be an algebraic normal subgroup of an algebraic group G. 
The algebraic group G/N is reductive if and only if N 1 Rad, G. 

The reductive Levi subgroup of an algebraic group G is an algebraic subgroup 
H c G, such that 

G = Rad, G XI H. (3) 

Problem 
a maximal 
G/Rad, G. 

13. Any reductive Levi subgroup H of an algebraic group G is 
reductive algebraic subgroup of this group and is isomorphic to 

Problem 14. If a reductive algebraic subgroup H c G satisfies G = (Rad, G) H, 
then H is a reductive Levi subgroup of G. 
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Problem 15. Let U be a unipotent algebraic normal subgroup of G. Then 
Rad,(G/I/) = (Rad, G)/V. The image of a reductive Levi subgroup of G under the 
natural homomorphism G + G/H is a reductive Levi subgroup of G/U. 

The decomposition (3) is called the algebraic Levi decomposition of G. Our goal 
is to prove the existence and the uniqueness (up to inner automorphisms) of an 
algebraic Levi decomposition. 

Theorem 4. In any algebraic group G there exists a reductive Levi subgroup. 

Proof of this theorem will be divided into two parts. First, we consider the 
case when the radical of G consists of unipotent elements and then the general 
case. 

Suppose that Rad, G = Rad G. In this case the proof will be carried out along 
the same lines as for Theorem 1, i.e. first we consider the subcases a) Rad G is 
commutative and j(g) = 0; b) rad g = j(g) and then reduce the general case to 
these two ones. 

a) Let Rad G = Rad, G be commutative and a(g) = 0. Let h be a Levi sub- 
algebra of the tangent algebra g of G existing by Theorem 1. Set H = N(h) = 
{g E G: (Adg)t) = lj}. Clearly, H is an algebraic subgroup of G. Its tangent 
algebra is n(h) = (n(t)) n rad g) + h. Clearly, n(h) n rad g = j(g) = 0, so that 
n(E>) = h and H is semisimple. By Problem 14 it remains to prove that G = 
(Rad G) l  H. To do this consider the action of G on the set of all Levi subalgebras 
of g by inner automorphisms a(g) (g E G). The stabilizer of E> is H and (by Theorem 
3) the subgroup Rad G acts transitively on the set of all Levi subalgebras. This 
implies the required decomposition. 

b) Let ra’D g = j(g). Then g is a reductive Lie algebra, i.e. Go = (Rad G)(GO)’ 
(Problem 5.2.3). In this case we apply the same arguments as in the proof of 
Theorem 5.25. Consider the algebraic group G, = G/(G’)‘. Clearly, Gy is a 
unipotent commutative group. By Theorem 3.2.2 Gy E UZp. By Lemma 5.2.1 
G = Gy >Q H,, where H, is a finite subgroup. The preimage H of H, with respect 
to the natural homomorphism G + G, is a reductive Levi subgroup of G. 

Problem 16. Prove Theorem 4 when Rad, G = Rad G. 

Now prove Theorem 4 in the general case. For this fix a maximal torus T in 
Rad G. By Theorem 3.2.10 Rad G = Rad,, G x T. Set G, = N(T). 

Problem 17. We have G = (Rad, G)G,. 

Problem 18. Rad, G, coincides with (Rad, G) n G,. 

Now let us carry out the induction in dim(Rad, G). Suppose that Theorem 4 
is proved for all algebraic groups whose unipotent radical is of dimension 
c dim(Rad, G). By Problem 18 Rad,G, c Rad,G. If dim(Rad,G,) < 
dim(Rad, G) then by the inductive hypothesis G, = (Rad, C,) >Q H, where H is 
a reductive algebraic subgroup. Then problems 17, 18 and 14 imply that H is a 
reductive Levi subgroup of G. If dim Rad, G, = dim Rad, G, then by Problem 17 
G = G, so that T is a normal subgroup of G. Problem 8 implies that the radical 
of the algebraic group G, = G/T coincides with (Rad G)/T z Rad, G and there- 
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fore consists of unipotent elements. By what we have proved above, G, possesses 
a reductive Levi subgroup H, which is actually semisimple. Let p: G + G, be the 
natural homomorphism and H = p-‘(H,). Then T = Rad H (see Problem 7) 
whence H is a reductive algebraic subgroup by Problem 5.2.3 1. Clearly, H is a 
reductive Levi subgroup of G. Proof of Theorem 4 is completed. q 

Theorem 5. Let G = Rad, G >Q H be an algebraic Levi decomposition of G. Then 
for any reductive algebraic subgroup Q c G there exists u E Rad, G such that 
uQu-’ c H. 

Proof will be carried out along the same lines as that of Theorem 3. First prove 
Theorem 5 when the unipotent radical of G is commutative. By Theorem 3.2.2 
Rad, G is a vector group in this case. Therefore the argument used in 3’ in the 
proof of Theorem 3 for the case of a commutative radical is applicable (Lemma 
1 is applicable to Q thanks to Corollary 1 of Theorem 5.2.13). 

Problem 19. Prove Theorem 5 in the general case. q 

Corollary 1. If H, and H, are two reductive Levi subgroups of an algebraic group 
G then there exists u E Rad, G, such that uH, u-l = H,. 

Corollary 2. Any maximal reductive algebraic subgroup of an algebraic group 
is its reductive Levi subgroup. 

Exercises 

Let G be a Lie group. A Levi subgroup of G is a virtual Lie subgroup L c G, 
such that G = (Rad G)L, dim((Rad G) n L) = 0. 

1) If L is a Levi subgroup of G then its tangent algebra 1 is a Levi subalgebra 
of g. 

2) If G is connected then any of its virtual Lie subgroups whose tangent algebra 
is a Levi subgroup of g is a Levi subgroup. 

3) In a connected Lie group there always exists a connected Levi subgroup. 
4) If L is a Levi subgroup of a Lie group G then for any connected semisimple 

virtual Lie subgroup S c G there exists g E Rad G such that gSg-1 c L. 
5) In a connected Lie group all connected Levi subgroups are conjugate. 
6) A connected virtual Lie subgroup L of the connected Lie group G is a Levi 

subgroup if and only if L is a maximal connected semisimple virtual Lie 
subgroup of G. 

7) Let a (not necessarily connected) Lie group G is such that Rad G is commu- 
tative and Z(G”) is discrete. Then there exists a Levi subgroup L of G such 
that G = Rad G >Q L and RadG is a vector group. (Hint: for L take N(I), 
where 1 is a Levi subalgebra of the tangent algebra g and make use of 
Theorem 3.) 

) In a simply connected Lie group G the radical is simply connected, any 
connected Levi subgroup L is a simply connected Lie subgroup and G = 
Rad G >o L. 

) Let G be a simply connected Lie group, h an ideal of its Lie algebra g. Then 
G contains a connected normal Lie subgroup H with the tangent algebra h. 
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(Hint: consider a connected Lie group Q with the tangent algebra q/h and 
the homomorphism G ---) Q whose differential is the natural homomorphism 

i3 --+ cm 
10) Let G be a unipotent (i.e. consisting of unipotent elements) real algebraic 

linear group. Then exp: g --+ G is an isomorphism of real algebraic varieties. 
If G is commutative then G z W. 

11) A real algebraic linear group G is unipotent if and only if so is G(C). 
Therefore we may speak about unipotent real algebraic groups. 

12) Let G be a real algebraic group (which may be considered linear). The 
set Rad, G of all unipotent elements contained in Rad G is a normal algebraic 
subgroup of G and Rad, G(@) = (Rad, G)(c). 

Rad, G is called the unipotent radical of G. 
13) Rad, G is the largest unipotent normal subgroup of a real algebraic group G. 
14) Let N be a normal algebraic subgroup of a real algebraic group G. The 

algebraic group G/N is reductive if and only if N 3 Rad, G. 
15) A real algebraic group has a finite number of connected components (in the 

usual topology). (Hint: make use of Exercises 14 and 5.2.5.) 
A reductive Levi subgroup of a real algebraic group G is an algebraic subgroup 

H c G, such that G = Rad, G XI H. 
16) Any real algebraic group G has a reductive Levi subgroup. (Hint: reduce to 

the case when Rad, G is commutative. In the latter case consider the group 
G(@) and making use of Theorem 4 and Corollary of Theorem 3.4.1 prove 
the existence of a reductive Levi subgroup H of G(@) such that a(H) = H, 
where CT is the complex conjugation in G(a3) with respect to G.) 

17) Prove the analogue of Theorem 5 for real algebraic groups. 

Hints to Problems 

4. Since ad 12: 91(g) + gl(g) induces a derivation of the algebra ad g and since 
ad: g + ad g is an isomorphism, there exists 6 E her g such that 

Ch, ad xl = ad 6(x) c-x E cd* 

Clearly 6 is a projection of g onto rub q. 
10. Follows from the fact that any unipoteit normal subgroup is connected and 

solvable (Theorem 3.3.7) and therefore is contained in Rad G. 
11. Make use of Problem 5.2.3 1. 
14. Problem 11 implies that (Rad, G) n H = {e). 

16. Carry out the induction in dim( Rad G) as in the proof of Theorem 1. 
17. Consider the G-action on the set of maximal tori of Rad G via inner auto- 

morphhisms and take into account the fact that the subgroup Rad G c G 
acts transitively on this set (Problem 3.2.23). 

18. Problem 17 implies that the algebraic group G,/(Rad, G) n G, = G/Rad, G 
is reductive so that (Rad, G) n G, 1 Rad, G, by Problem 12. The converse 
inclusion follows from Problem 10. 

19. Carry out the induction in dim(Rad, G) as in the proof of Theorem 3. 



Reference Chapter 

§ 1. Useful Formulae 

lo. Weyl Groups and Exponents. Let G be a simply connected non- 
commutative simple complex Lie group, g its tangent algebra, IV the Weyl group, 
(cc,,a,,*..7 a,) the extended system of simple roots. Denote by n,, n,, . . . , n, the 
coefficients of the linear relation among a,, al, . . . , aI normed so that ~1~ = 1 (see 
Table 6). 

Let us arrange the positive roots of g in a table in such a way that the k-th 
row consist of the roots of height k (see Exercise 4.3.25) with aligned last elements 
of all rows. The lengths of the rows of this table form a non-increasing sequence 
with the lirst row of length E. Let mi be the number of elements in the i-th column. 
The numbers m,, . . . , m, are called the exponents of G (or g). (See Table 4). 

Define the Killing- Coxeter element c E IV: 

c = l-1 ..Jl, 

where rl, . . . , r, are the reflections associated with the simple roots. The ele- 
ment c does not depend on the numbering of simple roots up to conjugacy 
in W. 

In this notation we have the following formulas. 
(Fl) The number of roots of g equals 11 Yli = 2 C mi. 
(F2) The order z of Z(G) equals the number of l’s among ni’Se 

(F3) The order of IV equals 

Zl!jj ni = ntmi + l)* 

(F4) If g, is the number of elements of W, whose space of fixed elements is of 
dimension I - k, then 

C iJktk = n (1 + mit) 

(F5) The order h 

(F6) The eigenval 
h of 1. 

of c (the Coxeter number) equals 

c ni =maX!?li+ 1. 

ues of c: are P, . . . , P, where E is a primitive root of degree 
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(F7) The algebra of W-invariant polynomials on a maximal diagonalizable 
subalgebra is freely generated by homogeneous polynomials of degrees m, + 1, 
l **9 ml+ 1. 

(FS) The Poincare polynomial of G is n (1 + t2mi”). 

2O. Linear Representations of Complex Semisimple Lie Algebras. Let g be a 
semisimple complex Lie algebra. We will use the following notation: 

R(n) is the irreducible linear representation of g with the highest weight /i; 
I+l) is the space of this representation; . 
i/,(/l) is the weight subspace of V(/i) corresponding to 1E; 
m,(A) = dim I”‘#l) is the multiplicity of the weight R in R(A); 
A ’ = v(A) is the highest weight of R(A)*; 
A -= A(hi)(i= l,..., I) are the “numerical labels” of the weight /1; 
p is the half sum of positive roots (see Exercise 4.2.5 and Tables 1 and 2). 
The following formulas are valid: 
(F9) H. Weyls formula 

dim R(A) = a-o (A(i Pi a). 
,a 

(FlO) Freudenthal’s formula (see [37] and Exercise 5 to $9 of Chapter VIII 
in [3]): 

[(A + p, A + p) - (3, + p,l + p)]m,(A) = 2 1 (A + k@m,+dA). 
a>O,k>O 

(Fll) The multiplicity of R(N) in R(A) @ R(M) equals 

dim(v E I&-&‘M): dR(M)(ei)“i+‘u = 0 for I i = 1,. . . ,1> 

= dimfv E I$+,JN): dR(N)(ei)“‘+lU = 0 for i = 1,. . . $1) 

(see 1471 and Exercise 14 to $9 of Ch. VIII in [3]). 

3’. Linear Representations of Real Semisimple Lie Algebras. Let g be a real 
semisimple Lie algebra. We will use the following notation. 

If p: g -+ ql(T/) is a real linear representation, then p(c): g + gI( 1/(Q) is the 
complex extension of p. 

If p: g + gl( V) is a complex linear representation then p is the representation 
p considered in the space v obtained from I/ by the change of the sign of 
the complex structure and p’ is the representation p considered in the real 
space V! 

We will say that a complex representation p admits a real (quaternionic) 
structure if there is an antilinear operator J in v such that J2 = E (resp. -E) 
commuting with any p(x) (X E g). A real structure exists if and only if p = 
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p&C), where pO: g -+ gl(VJ) is a real representation, and a quaternionic struc- 
ture is the same as a quaternionic vector space structure on V compatible with 
P* 

The irreducible real representations of g are divided into two classes (see [40]): 
a) irreducible representations p, for which p(C) is irreducible (over C); b) repre- 
sentations p’, where p is a complex irreducible representation that admits no 
real structure. In the class a) pr - 

R 
- p: * either (PI - P2) or (PI 

p2 epl(@) - p2(@) and in the class b) 
Pl - p2) (see Exercises 5.1.16 and 5.1.17). There- 
fore the description of the irreducible real representations reduces to the follow- 
ing two questions on irreducible complex representations: When p1 - p2 (in 
particular, when p - p)? Which irreducible representations such that p - p 
admit a real structure? These questions are answered in terms of highest weights. 

The highest weight of a real irreducible representation p of g is the highest 
weight A of the extension of this representation to g(C); we will write p = p(A), 
since A defines p up to an isomorphism (theorem 4.3.2). Let 8 be the canonical 
involutive automorphism of g(C) corresponding to the real form g and z = ~(0) 
the corresponding automorphism of the system of simple roots. Then 

In particular, 

PW = Pbw>). F-w 

p(A) - p(A)=vz(A) = A. F-13) 

Nowletp: g + gl( V) be an irreducible complex representation such that p - ,K 
Then there exists an invertible antilinear operator J in V, commuting with 
p(x) (X E g), such that J2 = cE, where c E R*. The number E(P) = signc = + 1 
does not depend on the choice of J and is called the index of p (see [41]). 

Suppose z = id, i.e. 0 E Int g(C). Then p(A) - p(A) is expressed as VA = A and 
the index is calculated via the formula 

&(p(A)) = (- 1)2A(2u+Pv), F 14) 

where exp(2niu) = 0 and p” = 1/2x,,, h, = C 1 <i<l xX.” (see [42]). In par- 
ticular, for compact Lie algebras g we have E(p(>)‘j = (- l)2A(Pv) = 1 or - 1 
depending on whether the nondegenerate bilinear form invariant with respect to 
p is symmetric or skew-symmetric, respectively (Exercise 4.3.12). If z # id and 
g(C) is simple then p(A) - p(A) if and only if A2P-1 = AzP for g(C) = so,,(@) 
and it is always so if g(C) is of the type A, (I > l), D2P+l, E,. The corresponding 
indices were calculated in [41]. 

In the following table listed are the indices of irreducible complex representa- 
tions of non-compact real forms g of simple complex Lie algebras; for g not 
mentioned in the table E(P) = I:* 

* We are thankful to B.P. Komr;tkov for a correction of this table. 
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!J 5L1k. 2p-k LW-O 502k-1.2(1-k)+l 

E(P(/I)) (- #k+l)& , (_ l)n,+n,+.“+n,,,:,,_, (_ 1)h+A3+*-‘+n2+ ( -1)(k+1)+(1-1)(1-2)‘2)(n’ ‘+“) 

9 502k. 2(1-k)+l 502k, 2(2p-k) sPk,l-k EVI 

E.p(,q) ( _ 1 )(k+W-l)/2bf1 c-1) (k+mn,p- 1 +A~,) (- l)nl+n3+...+n2,,,+,,,2,-1 k-1) 
Al+A3+/1, 

Let g = #, where go is a simple Lie algebra over C. Making use of the normal 
real form of go we may identify g(C) z go @ go with go @ go. A dominant weight 
of g(c) is expressed in the form /i = (/i 1, /i I), where /i 1, II ’ are dominant weights 
of go. The condition p(A) - p(A) is expressed by the identity A1 = A1 with 
r(PV)J = 1. 

Finally, let us describe how to calculate the index of a representation of any 
semisimple Lie algebra g over IR. Let g = el Gi,<S gi, where gi are simple, and 
A = (Al,.. . ,/1,), where /li is a dominant weight of gJ@). Then p(A) - p(A) if 
and only if p(/i,) = p(/ii) for all i = 1, . . . , s and @(/I)) = fll Ci(,~(p(/li)). \A 

tj 2. Tables 

Table 1. Weights and Roots. The weights of the groups B,, CI, D, and & are 
expressed in the table in terms of an orthonormal basis (~1,. . . , Q) of t(Q). The 
weights of the groups A,, E,, E, and G, are expressed in terms of vectors cl, . . . , 
cl+1 E t(Q)*, such that CE~ = 0. For these vectors 

t&i9 Ej) = -l/(1 + 1) for i # j. 

It is convenient to remember, however, that if C ai = 0, then (1 ai&i,C bjEj) = 
1 aibi. The weights of E, are expressed in terms of vectors cl, . . . , g6 E t(@)* con- 
structed as for A, and of an auxiliary vector E E t(Q)*, which is orthogonal to 
all Ei and satisfies (E, 1) = l/2. 

The indices i, j, . . . in the expression of any weight are assumed to be different. 
In all cases the Weyl group contains all permutations of the vectors &I* For B,, 

C1 and F4 the Weyl group contains also all transformations of the form Ei H + &i - 
and for D, all such transformations with an even number of minus signs. The 
Weyl group of E, contains the transformation &i H &iv E I+ -6. The Weyl groups 
of E,, E, and G, contain - id. 

In the column “Dynkin diagrams” the numbering of simple roots accepted in 
all tables is given. 

In the column “Simple roots” given is also the highest root S and in the column 
“Fundamental weights” there is also indicated their sum (equal to the half sum 
of positive roots). 
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Table 1 

type of G Dynkin diagrams dim G Roots and simple roots 

4 
&i - &j 

1 2 c-1 Q 
(1 > 1) w l **M l2 + 21 ai = Ei - Ei+l, 

s = &l - e,,, = R, + n, 

k&i & t i j ,  f&i 

4 
1 2 E-1 a Cti = &i - Ei+l (i < l), 

(1 2 2) - l  ** e  212 + 1 
aI = El, 

s = E, + &2 = 7r7t2 

f Ei + Ej '  + 2&i 

G 
1 2 c-1 S! ai = Ei - Ei+l (i < 1)~ 

(1 3 2) - l  ** -oe===o 212 + 1 
a, = 2c1, 

6 = 2&l = 2x1 

+&i & Ej 

II-1 
4 1 

< 

G-2 
Cri = &i - &i+l (i < 1)~ 

(1 2 3) 
0 &.. 212 - 1 a, = qel + E,, 

Q 
6 = El + &2 = 

1 

n2 for 12 4, 

7t2 + n3 for I= 3 

i- - 9 

E, =-f-‘-’ 78 ai f;t+!;;&+ 

6 a6 = &4 + &5 + 86 + &, 

6 = 2& = 116 

Ei - &j’ 

E, A-i-s-pz-k 133 - ai =“r:;;;is:,. 

7 a7 = &, + &6 + ‘57 + $3, 

6 -E, +&8 =7t(j 

E, ‘-‘-‘-‘-jf-’ 248 ’ ‘i;;;;;;ij;;, 

8 
6 = El - &g = 711 
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Table 1 (cont.) 

type of G Dynkin diagrams dim G Roots and simple roots 

+&i + Ejy +&i 

(L-61 + 62 + 63 + &4)/Z 

a, = (El - 62 - E3 - d/Z 

F4 1 2 3 4 52 
a2 = 84, 

cc3 = &3 - Eq, 

a4 = c2 - c3, 

s = E, + E2 = 714 

&i - &j, -+&i 

G2 
1 2 14 01, = 752, 

u2 = &2 - E3 

6 = E, - E3 = 712 

Type Fundamental weights 
dim 

Weights of R(q) 
of G NM 

A, 7?i  = &I + l  ’  ’  + &iy 

f+1 &i 

(13 1) p = Z&l + (I - 1)&z + * * * + E, 

4 71i =&I +- ’ + Ei (i < I), 

(1 2 2) 711 = (El + *-- + EJ2 21 + 1 k&i, O 

p = [(21 - l)E1 + (21 - 3)E2 + --* + E/]/2 
I 

Cf 
71 i  = &1 + “’ + &i, 

21 +Ci 

(I >, 2) p = Z&, + (1 - 1)E2 + **. + E, 

7ti =&I +- . + Ei (i < l! - l), 

Df 711-q = (El + * ** + &,-, - EJ2 

(1 2 3) 
21 +&i 

n, = (El + *** + E,-, + EJ2 

p=(I- 1)&I + (1 - 2)E2 + **. + E,.q 

71i == &1 + .’ * + &i + min(i,6 - il.6 (i < 6), 
Ei + E, 

EC5 qj = 2&, 27 
-Ei - &j 

1 p=5c1 +4&~+.**+&5+11& 

71i 
“&* +- * + Ei + min{i,8 - i] ‘CB (i < 7), 

E7 717 = 2&g, 56 -+(Ei + C;j) 

p = 6~ + 5~~ + - - - + E, + 17~~ 
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Table 1 (cont.) 

295 

Type 

of G 

43 

F4 

G2 

dim 
Fundamental weights 

ml) 
Weights of R(q) 

ni = E, + a** + Ei - min{i, 15 - Zi} l t+ (i < 8), Ei - &j, 

7tfj = - 389, 248 +(&i + &j + &k)r 

P = 7e, + 6~ + - l  - + E, - 22~~ 0 (of multiplicity 8) 

711 = Cl, 

712 = (3&l + E2 + E3 + &4)/2 
k&i9 

713 = 261 + 62 + &3, 

(k&l Ik E2 
26 

Ik E3 IL &J/2 
714 = El + Q, 

p = (11&l + SE2 + 3E3 + &J/2 
0 (of multiplicity 2) 

711 = El, 

712 = E, - E3, 7 f&i, O 

p = 2&l - E3 

Table 2. Matrices Inverse to Cartan Matrices. The matrix (A’)-’ inverse to the 
transposed Cartan matrix A is the matrix of the passage from a system of simple 
roots to the system of fundamental weights, i.e. its i-th column contains the 
coefficients of the expression of zi via simple roots. In particular, the doubled 
sum of all of its columns (shown in the last column of the table) contains the 
coefficient of the expression of the sum 2p of positive roots via simple roots. The 
matrix diag(d,, . . . , d,} (AT)-‘, where di = (ai, ai)/ (these numbers are indi- 
cated in the column “d”) is the Gram matrix of the system of fundamental 
weights. 

Table 2 

type 

of G 
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Table 2 (cont.) 

type 
of G 

E, 

(A’)-’ d 2Y 

222... 2 

244... 4 

f222... 2 2 \ 

244... 4 4 

246... 6 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...* 

2 4 6 . . . 2(1 - 1) 2(1 - 1) 

\l 2 3 . . . I-l 1 

444... 4 2 2 

488... 8 4 4 

4 8 12 . . . 12 6 6 
1 
4 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . 

4 8 12 . . . 4(1 - 2) 2(1 - 2) 2(1 - 

2 4 6 . . . 2(f - 2) I l- 

2 4 6 . . . 2(1-2) 1-2 1 

L 
4 5 6 4 2 3 5 6 4 2 3 

5 10 12 8 4 6 10 12 8 4 6 

1 6 12 18 12 6 9 6 12 18 12 6 9 

3 4 8 12 10 5 6 8 12 10 5 6 

2 4 6 5 4 3 4 6 5 4 3 

3 6 9 6 3 6 6 9 6 3 6 

1 3 4 5 6 4 2 3 
\ 

14 8 10 12 8 4 6 

5 10 15 18 12 6 9 
1 
j 6 12 18 24 16 8 12 

4 8 12 16 12 6 8 

2 4 6 8 6 4 4 

3 6 9 12 8 4 7, 

4 5 6 4 2 3 

8 10 12 8 4 6 

10 15 18 12 6 9 

12 18 24 16 8 12 

8 12 16 12 6 8 

4 6 8 6 4 4 

6 9 12 8 4 7, 

1 

1 

1 

. . . 

*l 

112 

1 

1 

1 

. . . 

1 

2 

1 

1 

1 

. . . 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

21- 1 

2(21 - 2) 

3(21 - 3) 

. . . 

(I - 1)(1 + 1) 

i2 

21 

2(21 - 1) 

3(2f - 2) 

a . . 

(I - l)(f + 2) 

1(1 + 1)/2 

21 - 2 

2(2f - 3) 

3(21- 4) 

. . . 

(I - 2)(1 + 1) 

(I - 1)1/2 

!(I - 1)/2 

16 

30 

42 

30 

16 

31 Lh 

27 

52 

75 

96 

66 

34 

49 
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type 
of G 

43 

3 

6 

8 

10 

12 

8 

4 

6 

4 

8 

12 

15 

18 

12 

6 

9 

Table 2 (cont.) 

T (A 1 -1 d 2P 

5 6 4 2 3 1 58 

10 12 8 4 6 1 114 

15 18 12 6 9 1 168 

20 24 16 8 12 1 220 

24 30 20 10 15 1 270 

16 20 14 7 10 1 182 

8 10 7 4 5 1 92 

12 15 10 5 8 1 136 

F4 

r 2 2 3 1 4 6 2 3 4 6 8 3 4 2 2 3 i 112 112 1 1 42 22 30 16 

2 3 
G2 

l/3 10 

1 2 1 6 

Table 3. Centers, Outer Automorphisms and Bilinear Invariants. Here there are 
listed centers and groups of outer automorphisms of simply connected simple 
complex Lie groups. 

The fifth column contains the order of the automorphism v of the Dynkin 
diagram that transforms the numerical labels of the highest weight of an irreduc- 
ible representation into the numerical labels of the highest weight of the dual 
representation (see Exercise 4.3.6). 

In the space of the representation R(A), there exists a nondegenerate symmetric 
or skew-symmetric invariant bilinear form if and only if R(A) is self-adjoint, i.e. 
A v(i) = Ai for i = 1, . . . , I (see Exercises 4.3.9 and 4.3.7). This form is symmetric if 
and only if Ker R(A) contains the element of the center Z(G) z V/Q ” corre- 
sponding to the element b E P”, indicated in the last column, i.e. if A(b) E Z (see 
Exercises 4.3.12 and 4.3.13). 

For the groups E,, F’ and G, not mentioned in the table the centers and the 
groups of outer automorphisms are trivial and any their linear representation 
possesses a nondegenerate symmetric invariant bilinear form. 
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Table 4. Exponents. On exponents m,, . . . , m, see 1.1”. Besides the exponents, 
the table contains the order IIZ~ of the Killing-Coxeter element and the order 1 PVi 
of the Weyl group. 

TYPC of 9 

A 

49 Cl 

Dl 

E6 

E, 

43 

F4 

G2 

Table 4 

m,, 5, l -•,m, 

1,2, 3, . . . ) I 

1, 3, 5, . . . ,21 - 1 

1, 3, 5, . . . ) 21- 1, 1 - 1 

1,4, 5, 7, 8, 11 

1, 5, 7, 9, 11, 13, 17 

1, 7, 11, 13, 17, 19,23, 29 

1, 5, 7, 11 

1, 5 

lhl WI 

1+1 (1 + l)! 

21 2’* I! 

2(1 - 1) y-1 . /I . 

12 27-3”-5 

18 210*3**5.7 

30 2W35.52.7 

12 27 - 32 

6 22 * 3 
4 

Table 5. Decomposition of Tensor Products and Dimensions of Certain Repre- 
sentations. This table contains the decomposition into the irreducible com- 
ponents of tensor products and also of exterior and symmetric powers of certain 
irreducible linear representations of simple complex Lie groups. Besides, there 
are listed the dimensions of all the irreducible representations occuring in the 
formulas of the table. The following notation is used: 

R = R(q) the simplest representation, 
yt = dimR = I + 1, 21 + 1, 21, 21 for the groups A,, B,, Cl, D,, respectively, 
Ad = R(6) the adjoint representation. 
1 = R(0) the unit (trivial) representation, 
d(p, q), p > q >/ 0 the set of pairs (XJ) E Z: such that x + y < p + q, x - 

y > p - q, x - y = p - q (mod 2), see Fig. 2. 
If a representation on the right-hand side of a formula is denoted by a 

meaningless symbol (e.g., R( - q + q)) it is meant to be zero. 

P-9 P+9 

Fig. 2 



Table 5 

El 
Al 

1. SPR = R(pn,). 

2. R(P~,Ml~,) = C W(P + 4 - 2i)n,), p 3 4; 
O<i,<q 

S2R(pn,) = c R((2p - 4i)lt,). 
i>O 

dim R(pxl) = p + 1 

. 

In the right hand sides of formulas we assume that no = 71, = 0. 

1. A”R = R(xp). 

2. SPR = R(p7Q. 

3* R(71p)R(n,) = C R(71p+i + 7cq-i)9 p 3 q; 
iZ0 

S2R(np) = C R(np+2i + xp-2i)* 
i>O 

4. R(Pww,) = NP? + nq) + NP - lb, + $+J 

5. R(PJw(V,) = 1 R((P + 4 - 2i)q + in,), p 2 4; 
O<igq 

S2R(pn,) = c R((2p - 4i)n, + 2ix,). 
i20 

6. R(pQ Ad = R((p + 1)~~ + 7tI) + R(pn,) + R((p - l)n, + z2 + zl) + R((p - 2)x, + x2). 

7. R(n,)Ad = R(nl + np + 7t,) + R(IQ + npml) + R(z,+~ + 7~) + R(zp), 2<p<l-1. 

8. R(P~lvwl~,) = 1 NCP - 0% + (4 - w* 
i>O 

9. A2Ad= R(k, + n,-,) + R(z2 + 2n,) + Ad; 

R(2n1 + 27~~) + R(n2 + n,-,) + Ad + 1, 1 2 3, 
S2Ad = 

R(2z1 + 2x2) + Ad + 1, I = 2. 

A dim R(A) 

0 

n 
zP 

P 

P? 

7tP + 71, Pa 

P? + 71, 

n+p+q-ln+p-2 n+q-2 
P? + Wf n- l ( P )( q > 

PT + w2 

P*l +$+n, 
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Table 5 (cont.) 

Notation: 

it, = 

i 

nP for1 dpbl-1, 

2nl for p = I, I + 1, *o = ii” = 0. 

n n-p for I + 2 < p < 21, 
1. I\PR = R(itp). 

2. SPR = c R((p - 2i)n,). 
i>O 

3. R(72p)R(7i,) = 1 w, + fiy), q<pdl; 
(x. Y) E &P. 4) 

S2R(7ip) = c Wx + 2y), p < 1. 
(x9 Y) E 4P. P) 
x c y(mod 4) 

4. WP% VWJ = R(pnl + 72J + R((p - l)~, + J&) 

+ N(P - b, + tJ+J + WP - ml + $J, 2<q<n-2. 

5. wP~,w(m) = c RW - Y)xl + YZ2h 
(%Y)EdP*4) 

S2NPd = 1 R((x - Yh + Y7t2)* 
(X.Y) E d(P. P) 

xzy=O(mod 2) 

6. R(~?p)R(ni) = 1 R(7i,-i + ni) 
O<i<p 

7. wPow = NP% + 4 + N(P - b, + 4. 

8. R(n,)” = 1 R(721-i); 
O<idl 

S2R(nl) = c R(i2,-i). 
O,<i<l;irO, 3(mod4) 

A 

*P 

P? 

2, + 2, 

P? + fiq 

(P - 4h + v2 

Xl 

fi, + ?I1 

P% + 711 

dim R(A) 

(P - 4 + l)(n 

(P + Nn - P + 1) ’ 
qspa. 

(n + 2Ph 

(P + 4)(n + P - 4) 
(“‘:-‘>(“p’), l<q<n-1 

(p - q + l)(n + 2p - 2)(n + p + q - 3)(n + 2q - 4) 

(p + l)(n - W - 3)(n - 4) 

2’ * 
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Table 5 (cont.) 

A dim R(A) 

/c,, (n = 21) 

In the right-hand sides of formulas we assume that no = 0. 

1. RR = 1 R(np-zi)y p < 1. 
i>O 

2. SPR = R(p7tJ. 

3. N~pW(TJ = c NE, + ny), p 3 4; 
(X.Y)Ed(P.d 
x-ydn-p-q 

S’R@,) = c wx + ny)* 

‘;*Yj g(Pipd 

xzy&(mod 2) 

4. WP? )Nn,) = R(P% + nq) + WP - 11% + $+A 

+ N(P - WI + $4 + NP - WI + TJ 

5. WP~,~~kl~,) = c N(x - Yh + Y74 
(X.Y) E 4P.4) 

S2R(PJ4 = c RW - Yh + Y712). 
(X.Y) E 4P. P) 

x-y= 2p(mod 4) 

A dim R(A) 

n-2p+2 n+l 
nP n ( > -p+2 P 

n+p-1 
P% 

( > P 

(p - q + l)(n - 2p + 2)(n - p - q + 3)(n - 2q + 4) n + 1 
nP + % 

(P + U(n - p + 2)(n - p + 3)(n - q + 4) 
( p )(n;3)yP>cl 

(n - 2q + m 
P? + 71, 

(P + q)(n + P - 4 + 2) 

(n+,, l)(y 1) 

(P - qh + v, 
(p-q+l)(n+p+q-1) n+p-2 n+q-3 

(P + l)(n - 1) ( P )C q > 

pi7s-j (n = 21) 

Notation: 

i 

71P 
for 1 < p < I- 2, 

A n, = 7tIe1 + 7q for p = I- 1, 1 + 1, 72, = 72, = 0 

%I-, for I+ 2 < p < 21- 1, 

R(72,) = R(2-rr,-,) + R(27~/), 

R(& + A) = R(2n,-, + A) + R(27t1 + A), 

R(291) = R(47r,+) + R(47Q. 

Formulas L-5 are the same as for BI. 
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Table 5 (cont.) 

3a. R(271l)R(72p) = C R(2n, + J?p-zi) + C R(%c + $y), p<l-1. 
i>,O (xv yh3f. 9) 

3b. R(2q)R(2qJ = c R(iZ, + 12~). 
y<JKl 

xzyyi-l(mod 2) 

3c. R(27~,)~ = R(4n,) + C R(2711 + $l--zi) + 1 R(7i, + fi,); 
i2 1 y<x<l 

xsy=Qmod 2) 

S2R(2n,) = R(4nl) + C R(271, + i2,-4i) + C R(6, + 7iy). 
i>l y<x<l 

xzyrl(mod 2) 
x = y(mod 4) 

4a. R(Puw~) = R(pn, + 27t,) + R((p - l)n, + &-,) + R((p - 2)n, + 275). 

6. R(&p)R(n,) = 1 R(*p-2, + z,) + 1 R(fip-2i-1 + ?tl-l)y p < 1. 
i20 i>,O 

6a. R(2q) R(q) = R(37tl) + C R(fil-Zi + nl). 
i> 1 

7. NPOW = NP% + n,) + WP - WI + WI). 

8. R(~l)R(nl-l) = 1 R(fiI-2i-1). 
i20 

9. R(z,)~ = R(2nl) + 1 R(fi,-2i); 
iB 1 

S’R(n,) = R(27tl) + 1 R(721-4i)m 

A 

% 

P=l 

2, + 74 

P% + 729 

(P - 4h + v2 

2% 

275 + 72, 

4% 

P% + 2% 

dim R(A) 

(P + 4m + P - 4) 

(p + l)(n - 2)(n - 3)(n - 4) 

(1 + l)(n - p + 2) 



304 Reference Chapter 

Table 5 (cont.) 

dim R(A) 

21-l 

p-1 . 

cl 
E6 

1. /j2R = R(x,); 

S2R = R(2q) + R*. 

2. RR* = R(nl + n5) + Ad + 1. 

3. R-Ad = R(n, + n6) + R(7r2)* + R. 

4. /j’ Ad = R(z3) + Ad; 

S2 Ad = R&J + R(q + n,) + 1. 

(R = wb), Ad = R(n,).) 

A 711 716 n2 

dim R(A) 27 78 351 

2% Zl + 7% ? + n6 2n6 713 

351 650 1728 2430 2925 

1. /j2R = R(n,) + 1; 

S2R = R(271,) + Ad. 

2. R- Ad = R(q + n,) + R(q) + R. 

3. A’ Ad = R(n,) + Ad; 

s2Ad = R(&,) + R(n,) + 1. 

(R = R(q), Ad = R(z6).) 

A 711 n6 717 2% n2 *l +n6 2n6 % 

dim R(A) 56 133 912 1463 1539 6480 7371 8645 

1. A2R = W,) + R; 

S2R = R(2q) + R(n,) + 1. 

(R = Ad = R(q).) 
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Table 5 (cont.) 

A 111 717 2% n2 

dimR(A) 1 248 3875 27000 30 380 

cl F4 
1. RR = Nn,) + Ad; 

S2R = R(2q) + R + 1. 

2. R-Ad = R(n, + n4) + R(n,) + R. 

3. /j” Ad = R(n3) + Ad; 

S2 Ad = R(2n,) + R(2q) + 1. 

(R = R(q), Ad = R(n4).) 

A I 711 *4 7t2 2% n1+714 2n4 713 

dim R(A) ( 26 52 273 324 1053 1053 1274 

El G2 

1. A’R = Ad + R; 

S2R = R(2n,) + 1. 

2. R -Ad = R(n, + n,) + R(2q) + R. 

3. A2Ad= R(371,) + Ad; 

S2 Ad = R(2n,) + R(2n,) + 1. 

4. R(2n,). R = R(37c,) + R(q + n,) + R(2q) + Ad + R. 

(R = Rh), Ad = R(n,).) 

A I n1 712 2? 711 +n, 2n2 37r, 

dimW-0 1 7 14 27 64 77 77 

Table 6. Affine Dynkin Diagrams. The table lists connected afine Dynkin 
diagrams. On each diagram there are indicated the coeficients of the linear 
relation among vectors of the corresponding admissible system. They are positive 
integers normed so as to be relatively prime (see Problem 4.4.47). 
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Table 6 

Type 

Ai” 

(1 2 2) 

A\” 

B,“’ 

(I 2 3) 

cl l’ 

(1 2 2) 

A(ZZ’ 

A’21 
21-l 

(1 2 3) 

0’2’ 
1+1 

(1 2 2) 

EL2’ 

Affine diagram 

l-1 

~>-L... 2 2 

3 

< 

1 42 

1 

1-2 

p-i-... 
1 

&Q 

1 2 3 1 
0 

TYPe AfIine diagram 

Ep 

E:’ ’ 

E(8l’ 

1 2 3 4 5 6 4 2 
n n n n n n 
v v w v v v 

03 

Fi” 2 4 3 2 1 
n 
V 

G$’ ’ 
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Table 7. Involutive Automorphisms of Complex Simple Lie Algebras. In the 
table there are listed all the Kac diagram of all order 2 automorphisms 8 of 
complex simple Lie algebras g (up to conjugacy in the group Aut g). Since all the 
nonzero numerical labels of Kac diagrams of automorphisms of order 2 equal 
l/2, it suffices to distinguish the vertices of the corresponding affine Dynkin 
diagram endowed with nonzero numerical labels. Therefore the numerical labels 
are omitted and the vertices with nonzero labels are black, the other being white. 
The vertices of an affine Dynkin diagram L!.? are numbered so that if Y = 

1 ~,,a,,***, al} is the corresponding numbered admissible system of vectors then 
r = {(cr,, l/k), @lJb .**9 (cc,, O)} is the system of simple roots of the pair (g, z), 
where z = q(O) E AutZ7, and Z70 = (c+.. , a,} is the system of simple roots of ge 
numbered as in Table 1. There are also indicated: the type of ge and the real form 
of g corresponding to 0. The automorphisms 8 are divided into the following 
three types (see Problem 5.1.38): type I-the inner automorphisms with a semi- 
simple ge, type II-the inner automorphisms with a nonsernisimple ge, type 
III-the outer automorphisms. 

9 

Type of 
affine 

diagram 

Table 7 

Type 1 

Kac diagram of 0 Type of ge Real form 

53021+1 (@I 

(1 2 3) 

v2m 

(1 2 2) 

0 1 
0-w 

. . . P . 
* 

. . Q-1 II 
*-Q 

cp 

0 

G-p 5PP.l-p 
(1 GpG [ 11/z ] ) 

502m 

(1 2 4) 

0 P Q-1 

. 
..*... 

0 
1 

> 2 

(2GpG[ -4/2 ] ) 

< Q-2 
Dp D,-, 

Q 
5O2p. 2(1-p) 

1 2 3 4 5 

Et3 Ed’ ’ 

c 

6 4 @A, EII 

0 
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Table 7 (cont.) 

Type * 

Type of 

9 affine Kac diagram of 8 Type of ge Real form 
diagram 

E’l) ‘-‘-‘-~;‘-‘-’ . A, EV 

E7 7 

=-‘-f-+= A, @D, EVI 

0 1 2 3 4 5 6 7 h h * 6 w  u v ” $ ” n 

4 EVIII 

08 
43 EL1 ) 

0 I 2 3 4 5 6 7 m n n n n n v w  ” u v u 
A, 0 E, EIX 

08 

1 3 4 0 
3 Cd4 FI 

F4 F:” 
1 3 4 0 
e B4 FII 

G2 G:” 1 0 
A A, @A, G 

Type II 

51 1+1 (@) 

(1 2 2) 
4” &?& ;;y;c s”p.l+l -p 

1 2 P iz 

(l+< [ (Q+lV2 ] ) 

0 1 
512 0 A’,” c 5ul, 1 

5021+1 (@) 

:G= -O )” 

3 Q-l Q 
Bi” . . . B,-, 0 @ 

(1 2 3) 
502.21-l 

5P2IW) 
cl l) 

1 V-l 
o*=*---of=*Q A,-, 0 @ 

(1 2 2) 
5P2,ow 



Table 7 (cont.) 

9 

Type of 
affine 

diagram 

Type II 

Kac diagram of 8 Type of ge Real form 

402m 
Df” 

02 ; . *- as3 ‘-<:’ D,B1@C 502.21-2 

(1 2 4) 

2 3 4 5 
1 

Et5 EL1 ’ D5 0 @ EIII 

Type III 

51 (a=) 21+1 0 1 2 Q-1 Q 
- - l  4  51 21+1 (W 

(1 2 2) A(2:) 
- -c=m 

5l,(@) Ai2’ 0 1 
Al wv 

4 5l2,W 

5121w A’3 
(1 2 3) 

21-1 

wu 

5502,+2 (@) 

(1 2 2) 

D’2’ 
1+1 

0 1 P (1-l Iz 
M-* * . . . . . . 4-M 

(OGpG [ Q/2] ) 
Bp @ 4-p 502p+l,2(1-p)+l 

0 1 2 3 4 
n EI 

EL2’ , 
w  G 

E6 

Table 8. Matrix Realizations of Classical Real Lie Algebras. In the table are 
given matrix realizations of real forms g of classical complex Lie algebras, their 
Cartan decomposition g = f @ p and the maximal IF&diagonalizable subalgebras 
a c g. The matrices are real for g = sl,(R), SO,,,, sp,(R) and complex otherwise. 
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0” 0 
II II 

s6” SC” 

0 

II 
b 

d 0 
II II 

G G 

0 

II 
h 



1 

n 

w2nw 

::(” ) 
Yl XT = -x, XT = x, 

&I diag(x, ,..., x,, --x1 ,..., -x,) 
02 2 1) Y2 -XT Y2 = - Yl Y2 = Yl 

Y; = Yl, r2“ = Y2 

P 4 P 4 

P &I x,2 Xl, x,4 

4 

l 

XT, x22 XL x*4 
EiPP*, Xl, =x,,=o 

-x,, x,, x,, -x,, @ Iw(Ej p+j + Ep+j j) 

(Pdd p 
“Pp 0 SPq Xl, = Xl, = 0 . 1 

x,, = x,, = 0 
lGj<p 

4 XT, -x,, -x,T, x,, -E p+q+j. Zp+q+j -E 2p+q+j, p+9+j ) 
XT - 

11 - -x*1, xc2 = -x22, 
x:, = x,,, x2Tq = x2, 

m 

P 
n n 

( > 

w&2 - E21 - &+1,n+2 
4 

n x Y x = x, X=-X, % 
mw l’n -2 x F=Y 

+ 4+2.n+ 1) 0 iWE - Ed, E n j% -y 
-En+3,n+4 + En+4.n+3) 0 --- XT = -x, yT = y 

. 
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Table 9. Real Simple Lie Algebras. In the table are listed noncompact real Lie 
algebras g that do not admit a complex structure, i.e. the real forms of complex 
simple Lie algebras g(C). The column “Type of C” contains the type of the system 
C of real roots. The column “I-” describes the restriction map r: Q + 0, where 
0 is the base of C. The simple roots from 17 are denoted by CQ, those from 0 by 
$; the numbering in both these systems is the same as in Table 1. 

Table 9 

cm 9 

$+1 (f-v 

Slp+l v-9 

(I=2p+ 1, pa 1) 

t 

sol+1 

w,+1 

dimt * dim p rk, 9 

l(1 + 1)/2 l(1 + 3)/2 I 

tP+ Wp+3) P(2P+3) P 

S’up.l+l-p 

(1 s p < l/2) 
4up@4+1 -p p2+(I+ 1 -p)2 -1 2p(f+l-p) p 

suP.P 

(I=2p- 1, pd2) 
sup~llp 2p2-1 2P2 P 

5op.21+1 -p 

(1 spa) 

PGP+ 1) 

~~pO~ozI+I -p +(21+ 1 -p) Pw+ 1 -P) P 

.(41+3-2p) 

5P2,W “1 I2 1(1+ 1) 1 

=Qp.l-p 

(1 <p<i(f- 1)) 
SQp@SQ,-p 

PGP+ 1)+&p) 
4PV--PI P 

(21--2p+ 1) 

“QP.P 

u = 2P) 
SQ,@SQ, 2PQP + 1) 4P2 P 
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Table 9 (cont.) 

Satake diagram 

1 2 Q-1 Q 
o-----o--- - - - -0-o 

Type of 
c 

4 

r 

r( Ctj) = Aj 

(1 d j<l) 

dim glj 

1 

dim g2Ij 

0 

2 2P 
---*e 

1 2 P 
0-e . . . 

1 

II I 

. 

. 

. 

r(Z2j)=jLj 

(16 j<pp) 

T(Ctj) = TtaI+I -j ) 

= S 

4 

2 (j < p + 1) 

2(f + 1 -2p) (j=p) 1 

f Q-1 f+l -p 

1 2 P-l 
O,(-, . . . 

tt p 

r(aj) = rta2p-j) 
2 (j ,< p - 1) 

P CP = ~j 0 
1 (j=p) 

O-(-, . . . (1s j<pp) 

2p-1 2p-2 P+l 

r( CZj) = Aj 

(1 G j<pp) 

1 (j < F - 1) 
0 

W - p) + 1 (i = p) 

1 
o-f-, . 

Q-1 Q t( Zj) = Ai 

*- - G 1 0 
(1 d jG1) 

r(arj)= ~j 

(1s j<pp) 

r(Z2j)=/lj 

(1s j<p) 

4 (j 6 p - 1) 

4(1--2P) (j=p) 

4 (j ,< p - 1) 

3 (i=p) 
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Table 9 (cont.) 

SK) 9 f dim t dim p rk, 9 

5*p. 21-p P(P- u/2 +(21-P) 
PW-P) P 

(1 <pa-2) 
5op x ‘so2pp 

*(21--p- I)/2 

(I- l)(f-2)/2 
5of-l.f+l 501-l x 501+1 12- 1 l-l 

+l(f+ 1)/2 * 

02m 

’ 3 4) 
501,1 

utp0-v 

(1 = 2P) 

501 x 501 

u2P 

i(f - 1) 

4P2 

l2 1 

a@P- 1) P 

Gp+l v-u 

(I=2p+ 1) 
L’Zp+l (2p+ u2 2P(2P+ 1) P 

EI 5p4 36 42 6 

EII 5+@5&j 38 40 4 

45 

EIII =J,,cm 46 32 2 

EIV F4 52 26 2 
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Table 9 (cont.) 

Satake diagram 
Type of 

c 
r dim gaj dim 92Aj 

1 2 P r(aj) = Lj 1 (j G p - 1) 
o-* . . . 4-e l  l  l  

BP 
0 

(Nj<p) W - PI U = p) 

I 2 

< 

Q-2 Q-1 r( aj) = ij 

1 

1 (j<L2) 
o-(J-, . . . B -1 (1 <jd-- l), 0 

a 
2 (j = I- 1) 

r(aJ = 4-l 

1 2 

+x 

11-2 Q-1 
r( aj) = #lj 

o-o- . . . Dl 1 0 
Q (l<jd) 

2 2p-2 

-6 

r(a,j)= lj 4 (j < p - 1) a--J-* . . . 
CP 0 

2P (I< j<pp) 1 L!=P) 

d-h-%L<;;+l BC, r;f;c;p 4 
0 (j G p - 1) 

1 (j=P) 

‘-‘-~+ E, 
r( aj) = Aj 

1 0 
(I,< jG6) 

r(aI)=r(a5)=&, 

Yy F4 rcD’y=;;:;I;;;4 f :;I :::: O 

6 (j= 1) 
77 BC, r(LII)=T(LIs;=12’ 8 (j = 2) 1~ 

rW=4 

Ml)=&, 
8 0 

w4=& 
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J% EVI =@SO,2 69 - 64 4 

E* 

F4 

!3 

Table 9 (cont.) 

f dim f dim p rk,g 

EV =(8 63 70 7 

EVII E,@R 79 54 3 

EVIIZ sol6 120 128 8 

EIX su,@E, 136 112 4 

FII 16 1 

8 2 
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Table 9 (cont.) 

Satake diagram 

--Y 

-Y-= 

a 

-Y-= 
8 

3 

1 2 3 4 

1 

. 

Type of 
c 

E7 

F4 

G 

43 

F4 

F4 

BC, r(a1)= i, 8 

G2 

r 

r(aj) = 2 j  

(l<jG) 

rta2) = A,, r(aJ = AZ, 

r(a5)=A3, r(a6)=R4 

&)=&, da,)=&, 

r(a1)=i3 

r( aj) = j-j 

(KjG) 

r( Ctj) = t i j  

(1s jG4) 

r( Zj) = i-j 

(j= L2) 

4 (j= 1,2) 
0 

1 (j=3,4) 

8 (j = 1,2) 8 (j = 1,2) 
0 0 

1 (i = 3) 1 (i = 3) 

1 1 0 0 

8 (j = 1,2) 
0 

1 (j = 3,4) 

1 1 0 

1 
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Table 10. Centers and Linearizers of Simply Connected Real Simple Lie Croups. 
Denote by g a noncompact real simple Lie algebra that does not admit a complex 
structure, G the corresponding simply connected Lie group. Denote by (Z), 
the cyclic group of order m = 2, 3, . . . , co with generator 2. In the column 
“Generators” representatives of the generators of Z(G) in the lattice P”(L$,Q) n 
I(C) (see Theorem 5.3.7) are listed. In the fifth column the group Giin = G/A(G) 
is given (for classical g); here Spin, 4 denotes the connected real form of the group 
Spin,+,(C) (see exercises to 6 4.3) corresponding to the real form 50, 4 of q,+,(C). 
In the column “b,” indicated is a representative of an element b, E Z(G) with the 
property R(b,) = c(dR)id, where R is an irreducible complex representation of G 
such that dR - dR (see 1.3”). 
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1 

0 

> 

+” 
‘4 !=! 

ru” 0 0 0 

8 

ti 

8 

r*J” 
- 

0, 
- 

R A 
N” 
x 
x 
G 

a 
A 

G 



Table 10 (cont.) 

9 

502.21-2 

(12 3) 

Z(G) 

VI L x (z,), 

Generators of Z(G) 

2, =11&, 

22 =h, + w 

fw 

WI >,u= 2P) 

WI +z,> 

(I=2p+ 1) 

G lin 

Spin,, 21-2 

bo 

2, if 1=4q+2 

or 4q + 3,0 otherwise 

8”2p, 2(1-p) 

f=2q+l 

(2 d P G WI) 

(Z, x4 x <z, )2 

2, =7rj& 

Z,=h, 
G )2 Spin,,, 2(1-p) (P+4)22 

5o2p. 2(1-p) 

(2<p<1/2) 

I = 2q, p odd 

(Z, )4 x WJ, 

Z,=n;F,, 

Z4= hp+(h,ml + hJ2 
(2Z, >2 Spin,,. 2(1-p) (I+ 4v2 

502p. 2(1--p) 

(2<pdf/2) 

1, p even, I= 24 

502p+l, 2(1-p)-1 

(1 G Pb cc WI) 

(z, )2 x <zJ, 

x GG >2 

G2)2 x Gw2 

2, =q& 

Z,= hp+(hlml + h,)/2 

z,=7ry 

z2 = h, + w 

Z3=hp 

(Z,+z,+Z,), 

(Z, )2 

Spin,,, 2,l-p) 

Spin,,+, ,2(1-p)+l 

qz2 

0 

1==2p+ 1 GG>* z, = n;/_, -PUG-I + Ml2 
(h, +h3+.*.+hSpw1)/2 

w, >m 

(Pa 1) 

m-4 

1=4p+2 

(PW 

(Z-7 >2 x G>, 

Z, = q, -p(h,-1 + h,), 

Z, = n,” -p(h,el + h,) 
w, >a 

The two-sheeted 
+(h,,-h2,+,)/4 

3 covering of the v 

group W-u 

(h, +h3+-+ h,,,+,)/2 

w-o 

I= 4p (p 3 1) 
cw2 x (Z,o>, 

Z, = n,” -p(h,-1 + h,), 

- Ph-1 + hi) Z 10 = 71,\/-1 

WIOL (h, +h3+...+h+,w1)/2 
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Table 10 (cont.) 

EIV j -t 1 e 

EVIII G )2 

Generators of Z(G) 

2, = h, 

22 = (h, - h2 + h, - h,)/3 

22 = (h, - h2 + h, - h,)/3 

2, = (h, + h, + h,),‘2 

Z1 = (h, + h, + h,)/2 

z2 = h, 

2, = (h, + h, + h,)/2 

2, = h, 

Z,=h, 

Z = h, 

Z = h, 

W) 43 

GJ2 0 

<3Z2)2 0 

(32, >m 222 

Ce> I I 0 

w72 0 

(Z2)2 z, 

(2ZJm 0 
(W, 0 

<Z2)2 0 

(0 2 I I 0 

(1 I e O I 

(Z>2 I O I 
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