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Abstract. Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if
a chemical system contains reactions occurring on different time scales. In this paper we introduce a multiscale
methodology suitable to address this problem. It is based on the Conditional Stochastic Simulation Algorithm
(CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values
for the slow variables. In the Constrained Multiscale Algorithm (CMA) a single realization of the CSSA
is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a
similar manner to the constrained mean-force computations in other applications such as molecular dynamics.
We then show how using the ensuing Stochastic Differential Equation (SDE) approximation, we can in turn
approximate average switching times in stochastic chemical systems.

I. INTRODUCTION

Stochastic simulation algorithms (SSAs) for systems of
chemically reacting species have recently been used in
modelling of a number of biological systems, including
the phage λ lysis-lysogeny decision circuit3, circadian
rhythms39 and cell cycle26. The most widely used SSA
was developed by Gillespie20 in 1970s. It simulates every
single chemical reaction, and samples exactly from the
solution to the corresponding chemical master equation.
In order to characterise the behaviour of the system, one
has to simulate a large number of reactions and simula-
tions can become computationally intensive. For suitable
classes of chemically reacting systems, one can some-
times use exact algorithms which are equivalent to the
Gillespie SSA, and which are less computationally inten-
sive. Examples include the Gibson-Bruck SSA19 and the
Optimized Direct Method7. Another approach, which
does not introduce errors in simulations, is the use of
parallel computing, for example on Graphics Processing
Units29,30.
The SSAs mentioned so far are equivalent to the Gillespie
SSA, i.e., they stochastically simulate the occurrence of
every chemical reaction. This can be computationally
very expensive, especially for systems involving abundant
species. Also, often a modeller is not interested in every
single reaction which takes place in the system. There
can be multiple time scales, meaning that one has to
simulate a large number of reactions while a modeller is
interested in a more slowly evolving quantity14.
One approach to accelerate the Gillespie SSA is the τ -
leap method22. In this algorithm the number of reactions
over a specified time increment τ is sampled from a Pois-
son distribution for each reaction channel. The problem
with using Poisson random variables however, is that it
is possible for a species’ population to become negative.
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One possible way around this problem is the binomial τ -
leap algorithm36 which replaces the Poisson distribution
with a binomial. Another way to tackle this problem is
the so called R-leap method4, which fixes the number of
reaction firings, instead of the time interval τ , as in the
τ -leap method.

Alternatively we can take a coarse grained approach
where instead of treating the molecular populations as
discrete random variables we can describe them in terms
of their concentrations that change continuously. This
can be achieved by the Chemical Langevin equation21,
which is a stochastic differential equation (SDE) acting
like a bridge between the discrete stochastic simulation
algorithm and the deterministic reaction rate equations.
This approach, and its recent reformulations32, may be
less computationally intensive than the exact method.
However, for some chemical systems, the CLE might lead
to negative populations because its solutions have a small
but positive probability of becoming negative1,40.

The two different approaches described above do not take
explicitly into account the separation of time scales. To
explain the algorithms that do, we first formulate the
multiscale problem in mathematical terms.

Let us consider a well-mixed thermally-equilibrated
chemical system, comprising of N different chemical
species {X1, . . . , XN} interacting through M reaction
channels {R1, . . . , RM}. The state of the system is given
by X(t) = [X1(t), · · · , XN (t)] where Xi(t), i = 1, . . . , N ,
is the number of molecules of type Xi in the system at
time t, where for simplicity we denote both the chemicals
and the number of that chemical by the same symbol.

Following Cao et al5, we assume that the reactions can
be divided into two groups; fast reactions and slow reac-
tions. Fast reactions are those which occur many times
on a timescale for which it is very unlikely that the slow
reactions will occur at all. An example of such a system
with slow and fast reactions is given in Section II. Cao et
al5 define a fast species to be any species whose popula-
tion gets changed by some fast reaction. Otherwise they
are defined to be slow species. In this paper, we denote
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by F the fast species and by S the slow species. Together,
the components of the fast and slow species form a ba-
sis for the state space of the system, i.e. the dimension
of this basis is equal to the number of linearly indepen-
dent species (taking into account possible conservation
relations).

Algorithms for systems with fast and slow species have
been developed in the literature by a number of authors.
Haseltine and Rawlings24 choose to simulate the fast re-
actions using Langevin dynamics while simulating the
slow reactions using the Gillespie algorithm. This ap-
proach requires not only the time scale separation but
also the volume of the system to be sufficiently large.
However, this can be avoided by using the probabil-
ity densities of the fast species conditioned on the slow
species to estimate the effective propensity functions of
the slow species5,6,10. Other types of solvers have also
been put forward and analysed for differing timescales of
interest34,38.

The above approaches build algorithms which can sim-
ulate the evolution of slow variables while avoiding ex-
plicit simulation of all fast reactions. Another approach
to multiscale computation is to estimate the probabil-
ity distribution of slow variables14. The main idea is
to use short bursts of appropriately initialised stochastic
simulations to estimate coefficients of unavailable macro-
scopic coarse-grained equations28. This approach has
been successfully applied to number of applications, in-
cluding models in materials science,23, cell motility15 and
social insect behaviour41. In the case of chemical sys-
tems, short bursts of stochastic simulations are used to
estimate drift and diffusion coefficients for an approxi-
mating Fokker-Planck equation written in terms of the
slow variables14.

Constrained dynamics approaches have been used to ap-
proximate the drift term in other scenarios, particularly
with regards to stochastic differential equations relat-
ing to molecular dynamics. “Umbrella” sampling33,37

in molecular dynamics constrains the system by adding
deep potential wells to the constrained variables so that
the system never moves far away from its target value.
“Blue moon” sampling8 has also been developed to sam-
ple rare or long-time events. Naive constraining of dy-
namics in the MD scenario can lead to bias, and so differ-
ent numerical schemes for the simulation of constrained
SDEs have also been proposed31.

In this paper, we introduce the Conditional Stochastic
Simulation Algorithm (CSSA). This is an algorithm that
allows us to sample from the distribution of the fast vari-
ables conditioned on the slow ones. The effective dy-
namics of the slow process can then be approximated
using the conditional distribution either as a Markov
jump process5,6,10 or as a SDE14. Our approach is a
coarse-grained one, i.e., we choose to approach the effec-
tive dynamics as a SDE. We estimate the coefficients of
the effective SDE on the fly during the sampling of the
conditional distribution in the spirit of other multiscale
approaches38.

The paper is organised as follows. In Section II, we in-
troduce an illustrative example which is used through-
out the paper. The Conditional Stochastic Simulation
Algorithm (CSSA) is presented in Section III. In Section
IV, we introduce the Constrained Multiscale Algorithm
(CMA), based on the CSSA, allowing us to constrain the
Gillespie algorithm to one particular state of the slow
variables. At the same time, the algorithm estimates
the drift and diffusion terms of that slow variable, anal-
ogously to the constrained mean force calculations that
some have used in molecular dynamics simulations9. We
show that it sufficient to use a single realization of the
CSSA for each value of the slow variable S for which we
wish to estimate the drift and diffusion coefficients. Illus-
trative numerical results for the illustrative example from
Section II are presented in Section V. In Section VI, we
show how these methods can be used to explore how the
dynamics of the system change as we vary the parame-
ters, including probability density and average switching
time in a bistable system. Finally, in Section VII, we
briefly discuss issues regarding the length of our simula-
tions with respect to the accuracy in our estimates of the
effective dynamics of the slow variable.

II. AN ILLUSTRATIVE EXAMPLE

Our goal is to introduce a general multiscale algorithm
for stochastic simulation of N chemical species Xi, i =
1, 2, . . . , N, which are subject to M reaction channels Rj ,
j = 1, 2, . . . ,M . We will explain it using the following
illustrative example

∅ k1−→ X1

k2−→←−
k3

X2
k4−→ X3

k5−→ ∅. (1)

In what follows, we label the reactions R1, . . . , R5 corre-
sponding to the reaction rate subscripts. Each reaction
Rj has associated with it a propensity function20 αj(t).
It is defined so that the product αj(t)dt is the probability
that the j-th reaction occurs in the infinitesimally small
time interval [t, t + dt). In the case of model (1), the
propensity functions are defined by

α1(t) = k1V, α2(t) = k2X1(t), α3(t) = k3X2(t),

α4(t) = k4X2(t), α5(t) = k5X3(t),

where V is the volume of the reactor. Depending on
the choice of parameters, this system can have several
separated time scales. We consider this system with the
following set of non-dimensionalised parameters:

k1V = 100, k2 = k3 = 200, k4 = k5 = 1. (2)

Note that the time variable is dimensionless. In Fig-
ure 1, we plot the time evolution of the different species
of system (1), along with (X1 + X2)/2, starting from
X1(0) = X2(0) = X3(0) = 100. We see that X1 and X2

are changing quickly, while X3 is changing slowly. How-
ever, note that if we consider the variable X1 +X2, this
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FIG. 1. Sample trajectories of all three of the chemical species
from the system (1). Parameters are given by (2).

too is changing slowly. In this situation, reactions R2 and
R3 are occurring on a faster time scale than the reactions
R1, R4 and R5, as can be seen in Table I, which shows the
relative number of occurrences of each reaction. There-
fore R1, R4 and R5 are the slow reactions, and R2 and
R3 are the fast reactions5. In Table II, we show changes
of each of the listed variables during a standard Gillespie
simulation of the system up to time T = 104.
On average, during this run, X1 and X2 changed over
200 times more often than either X3 or X1 +X2. Given
such a separation of time scales, slow variables are linear
combinations of the chemical species, which are invariant
with respect to the fast reactions. In this simple first-
order chemical system, the two quantities X3 and X1 +
X2 are both invariant with respect to R2 and R3, and
so are slow quantities. X1 and X2 by themselves are
fast variables, as they change with every occurrence of
reaction R2 or R3.
There are several different choices of bases of slow and
fast variables for the system. In what follows we consider
the following three examples:

S = [X3], F = [X1, X2]; (3)

S = [X1 +X2, X3], F = [X1]; (4)

S = [X1 +X2, X3], F = [X2]. (5)

Notice that these systems have a different number of di-
mensions in the slow variable. In general, identifying
which variables are slow and which are fast can be a chal-
lenging endeavour in itself, which is discussed in Section
VIII.

Reaction R1 R2 R3 R4 R5

Frequency 0.25% 49.75% 49.50% 0.25% 0.25%

TABLE I. List of percentages of occurrences of each reaction
during a standard Gillespie simulation up to time T = 104 of
the chemical system (1).

A. Invariant measure of the illustrative example (1)

Since the chemical system (1) comprises only of mono-
molecular reactions, we can find explicitly the invariant
measure of this system25. This result will be useful in
Section V to demonstrate the accuracy of the CSSA and
CMA. The invariant probability distribution on all of the
variables is a multivariate Poisson distribution:

P(X1 = n1, X2 = n2, X3 = n3) (6)

=
λ̄n1

1

n1!

λ̄n2
2

n2!

λ̄n3
3

n3!
exp

[
−
(
λ̄1 + λ̄2 + λ̄3

)]
,

where, using (2),

λ̄1 =
k1V (k3 + k4)

k2k4
= 100.5,

λ̄2 =
k1V

k4
= 100, λ̄3 =

k1V

k5
= 100.

III. CONDITIONAL STOCHASTIC SIMULATION
ALGORITHM (CSSA)

In this section, we introduce the Conditional Stochastic
Simulation Algorithm (CSSA), an algorithm which sam-
ples from the conditional distribution P(F|S = s). This is
the distribution of the fast variables F given a value s of
the slow variables S. This distribution is important for
integrating correctly the effective dynamics of the slow
variables, which is the ultimate aim of this paper. Given
a state of the slow variables S = s, the CSSA is presented
in Table III.
Initially we set the slow variable S to the value s for
which we wish to sample P(F|S = s). We also initialise
the fast variable F = f . Ideally we would take f to be a
sample from P(F|S = s) itself. However, since this is the
distribution we are actually interested in characterising,
we can instead repeatedly run steps [1]-[6] until we are
satisfied that the Markov chain has entered equilibrium
and is drawing samples from P(F|S = s).
In step [1], as in the original Gillespie SSA, we calcu-
late the values of the propensity functions. As the al-
gorithm progresses, it is not necessary to recalculate all
of these, as not all of them will change after each re-
action has occurred. We can make use of the system’s
dependency graph19 in order to ascertain which propen-
sities are changed by each reaction. Steps [2] and [3] are
the same as the original Gillespie algorithm. The wait-
ing time to the next reaction is given by the following

Variable X1 X2 X3 X1 +X2

Changes 4.017× 108 4.017× 108 1.997× 106 1.997× 106

TABLE II. List of numbers of changes of each of the listed
variables during a standard Gillespie simulation up to time
T = 104 of the chemical system (1).
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[1] Calculate propensity functions αi(t), i = 1, 2, . . . ,M .

[2] Next reaction time is given by (7).

[3] Choose one j ∈ {1, 2, . . . ,M}, with probability αj/α0,
and perform reaction Rj .

[4] If S 6= s due to reaction j occurring, then reset S = s
while not changing the value of F.

[5] If Xi < 0 for any i, then revert to the state of the
system before the reaction j occurred.

[6] Continue with step [1] with time t = t+ τ .

TABLE III. Conditional Stochastic Simulation Algorithm
(CSSA).

formula:

τ = − log (u)

α0
, where α0 =

M∑
i=1

αi(t), (7)

and u ∼ U(0, 1) is a sample from the uniform distribution
on the unit interval (0, 1). The reaction Rj is chosen in
step [3] using another U(0, 1) random variable.
Step [4] is where this algorithm diverges from the origi-
nal Gillespie SSA. Here, if a reaction has occurred which
changes the value of the slow variable S, then we reset S,
thus constraining it to the desired value. Note that there
is a unique way in how the reset is made, since the com-
ponents of the variables S and F together form a basis
of the state space, and we reset S in such a way that F
is not altered.
Step [5] ensures that the states with negative copy num-
bers of one/more chemical species have zero probability
mass. Without this step, the CSSA can run into diffi-
culties if the reset of S causes one of the species to have
a negative copy number. This step helps to inform our
choice of fast variables, since some choices can naturally
preserve this non-negativity condition without step [5],
as we show in the next subsection.

A. Choice of fast and slow variables for the CSSA

In Section II we identified several candidates of fast and
slow variables for the system (1). Let us consider the
choice of variables (4). In this case, if reaction R1 was
to occur, the change in S is [1, 0]. Since we must not
alter the fast variable in step [4] of the CSSA, we must
therefore reduce X2 by one to reset S. However, it is
possible for reaction R1 to occur when X2 = 0, meaning
that in this case X2 could go below zero.
In many scenarios, however, these problems can be over-
come by a better choice of fast variables, meaning that
step [5] of the CSSA is no longer necessary. If we choose
setup (5), then we are in just such a scenario, and this is
certainly preferable. If, however, there was also a source
reaction for X2 (i.e. ∅ −→ X2), then no such choice of
fast variables is possible, and step [5] is necessary.

IV. CONSTRAINED MULTISCALE ALGORITHM (CMA)

The CSSA described in Section III is able to sample
from the probability distribution P(F|S = s). However,
a modeller is often more interested in the effective dy-
namics of the slow variable S. In this instance, we will
attempt to approximate these dynamics by a continuous
stochastic differential equation, which has corresponding
Fokker-Planck equation given by

∂p

∂t
(s, t) = ∇. (∇[D(s) p(s, t)]− V (s) p(s, t)) . (8)

The challenge now is to estimate the effective drift V and
diffusion D of S. In order to estimate this we can run
the CSSA for a range of values of the slow variable. For
each value s of S, we use a CSSA simulation of length
T (s) to compute the following quantities:

V (s) =
1

T (s)

Q(T (s))∑
m=1

δSm, (9)

D(s) =
1

2T (s)

Q(T (s))∑
m=1

δSmδS
T
m, (10)

where dSm is the change in S due to the m-th iteration
of the CSSA before the reset is made in step [4], T (s)
is the chosen length of CSSA simulation, and Q(T (s))
is the number of iterations of the CSSA that are made
up to time T (s). These quantities are estimators for the
effective drift V and diffusion D of the slow variable S.
The formulae (9) and (10) are derived in Appendix A.
Having estimated V (s) andD(s) by (9) and (10), we com-
pute the approximation πCMA of the invariant measure of
the slow variables by solving

∇. (∇[D(s)πCMA(s)]− V (s)πCMA(s)) = 0, (11)

which is the steady state equation corresponding to
(8). Equation (11) is solved by standard numerical
approaches12. It is worth noting that for a one dimen-
sional slow variable, the solution to (11) can also be given
analytically.
Since the calculation (9) and (10) of the drift and dif-
fusion terms boil down to two different statistics on the
size/number of resets of S, the additional cost to estimate
these quantities is negligible in comparison to the cost of
running the CSSA. Furthermore, every single reaction
that occurs which changes S (and therefore requires a
reset of this variable in step [4] of the CSSA) has an ef-
fect on the final output, so that we are garnering all the
possible information that is available from the stochastic
simulation.
The length of simulation T (s) is in general state depen-
dent. We will discuss this state-dependence in Section
VII. Another issue which will have an impact on the effi-
ciency of the method is the choice of initialisation of the
fast variable in step [1] of the CSSA. One might expect,
for well behaved systems, the distributions P(F|S = s)
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FIG. 2. Error curve of the approximation of P(F|S = s) by
the CSSA with both choices of variables (3) and (5). Black

dashed line denotes decay proportional to 1/
√
T .

and P(F|S = s+ε) would be very similar for small ε ∈ Zd

where d ∈ N is the dimension of the slow variable S.
Therefore, once we have characterised the distribution
P(F|S = s) (using, for example, an initial condition F
from a “burn-in”), we could use a sample from this dis-
tribution to initialise the fast variable for the CSSA for
the neighbouring values of s. This is in some sense simi-
lar to the numerical continuation method, which is used
to compute steady states in bifurcation analysis.

V. APPLICATION OF CMA TO MODEL (1)

In this section, we apply the CSSA and CMA to the illus-
trative example (1) presented in Section II. First we show
that the CSSA is sampling correctly from the conditional
distribution P(F|S = s). Since we have the explicit an-
alytical steady state solution (6) of the chemical master
equation, we can check the answers that we get using the
CSSA (to ascertain the distribution of the fast variables).
In particular, we have an explicit formula for P(F|S = s)
which can be used in the error computation defined by:

Error =
∑

f∈N3−d

∣∣P(F = f |S = s)− νCSSA(f)
∣∣, (12)

where νCSSA is the conditional probability distribution
estimated using the CSSA, and d ∈ N is the dimension
of the slow variable vector S.
In Figure 2, we present estimations of error of the CSSA
algorithm for two choices of fast and slow variables given
by (3) and (5). We run simulations for a fixed value of
T (s) and compute the error using (12). As can be seen in
comparison with the black dashed line (which has decay

proportional to 1/
√
T ), both of the choices of slow vari-

able leave us with error which is approximatelyO(1/
√
T ).

This is to be expected, since this is the rate of decay of
the standard Monte Carlo error. However, the error in-
curred by using (3) is consistently larger than that for
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FIG. 3. Approximation πCMA of the probability density of
S = X3 by the CMA. Drift and diffusion functions are esti-
mated from CMA runs with 105 changes in S for each s. The
blue histogram is an exact solution of the stationary chemical
master equation, given by (13).

(5), as there exists an alternative basis of [X1, X2], given
by [X1, X1 −X2], which has a slow and a fast variable.

Next, we apply the CMA to the illustrative model (1),
for both of the choices for the fast and slow variables,
given by (3) and (5).

A. One-dimensional slow variable: Choice of variables (3)

The slower rate of convergence of the CSSA shown in Fig-
ure 2 due to the poor choice of slow/fast variables will
naturally have a knock-on effect on the rate of conver-
gence of the CMA approximation of the effective diffusion
of the slow variable S = X3. However, we can still ac-
curately approximate the effective dynamics of the slow
variable.

In Figure 3, we present πCMA computed by (11). In this
case, the time T (s) is defined implicitly as the time it
takes for L changes to occur in S for a given value of s,
where we choose L = 105. Since we have the expression
(6) for the whole of the probability mass function, we
can integrate out the fast variable F = [X1, X2], leaving
us with the marginal probability distribution of the slow
variable S = X3, given by

P(S = s) =

∞∑
f1,f2=0

P(X1 = s,X2 = f1, X3 = f2)

=
100s

s!
exp (−100) . (13)

This formula is plotted in Figure 3 as the blue histogram,
and the comparison is excellent.

In Figure 3, we defined the time T (s) implicitly by count-
ing up to L changes in S. In Figure 4, we show how the
results vary with L. We plot the error of this method as
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FIG. 5. Approximation πCMA of P(S = [s1, s2] = [X1 +
X2, X3]) by the CMA where we used CSSA simulations of
length T (s) ≡ 103.

a function of L. We define the error to be:

Error =
∑
s∈N

∣∣P(S = s)− πCMA(s)
∣∣. (14)

Figure 4 shows that the CMA is approximately converg-
ing at a rate O(1/

√
L), as in the CSSA examples earlier

in this section. We will return to this issue in more detail
in Section VII, where we look at how many changes in S
are required for a given order of accuracy of CSSA as a
function of the variable S.

B. Two-dimensional slow variable: Choice of variables (5)

In this case, the slow variable is two dimensional, which
means that (11) must be approximated using numerical
methods, such as finite elements12. Figure 5 shows πCMA

computed by solving (11) in domain [0, 400]×[0, 200] with
no flux boundary conditions. Here we use a fixed length
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FIG. 6. Trajectories of the chemical system (16), showing
switching between two favourable states, where the system pa-
rameters are given by (17).

of simulation T (s) = 103 for each value s = [s1, s2] of S.
The resulting two dimensional probability density func-
tion is indistinguishable from the steady state solution of
the chemical master equation, given by:

P(X1 +X2 = s1, X3 = s2) (15)

=

s1∑
a=0

100s1+s2201a

a!(s1 − a)!s2!200a
exp (−300.5) .

The disadvantage of this setup (5) in comparison with
setup (3), is that if we wish to retain the same grid size
for our approximation of the functions D and V as we
did before, then the number of points for which we need
to run the CSSA is squared. This is alleviated by the
faster convergence for each value s of S as demonstrated
in Figure 2.

VI. STOCHASTIC “BIFURCATION DIAGRAMS”

In this section, we show how the CMA can aid us in
understanding how the behaviour of the slow variables
change as we alter some system parameters. We will
illustrate this using a simple bistable chemical system
written in terms of two chemical species X1 and X2:

X2

k1−→←−
k2

X1 +X2, ∅
k3−→←−
k4

X1, X1 +X1

k5−→←−
k6

X2.

(16)
As before, we denote the reactions R1, R2, . . ., R6 ac-
cording to the reaction rate subscripts. The propensity
functions of reactions (16) are given by:

α1(t) = k1X2(t), α2(t) = k2X1(t)X2(t)/V,

α3(t) = k3V, α4(t) = k4X1(t),

α5(t) = k5X1(t)(X1(t)− 1)/V, α6(t) = k6X2(t),

where V is the system volume. In Figure 6, we show an
illustrative trajectory of the system (16) computed with
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slow behaviour of the variable S = X1+2X2, where the system
parameters are given by (17).

the Gillespie algorithm, for dimensionless parameters:

k1 = 32, k2/V = 0.04, k3V = 1475,
(17)

k4 = 19.75, k5/V = 10, k6 = 4000.

It is clear from these trajectories that the system has
two favourable states around [X1, X2] = [142, 50] and
[X1, X2] = [393, 386]. In the parameter regime (17), reac-
tions R5 and R6 are occurring on a much faster timescale
than the other reactions. This leads us to the choice of
slow variable S = X1 + 2X2 which is invariant with re-
spect to these reactions, as confirmed in Figure 7. Choos-
ing F = X2 means that the CSSA naturally preserves the
non-negativity of all of the chemical species of the sys-
tem, i.e. step [5] of the CSSA in Table III is not needed.

A. CMA for the bistable example

In Figure 8, we plot πCMA computed for the parameter
values (17), with CSSA simulations of length T (s) = 103

for each value s of the slow variable S = X1 + 2X2.
To demonstrate the accuracy of the CMA, we can com-
pare πCMA with the solution to the stationary chemical
master equation. This can be approximated by making
the assumption that given a big enough domain Ω =
{[X1, X2] ∈ [0, U1]× [0, U2]}, the probability mass of the
invariant distribution outside of Ω is negligible. Let us
denote by pn,m(t) the probability that [X1, X2] = [n,m]
at time t. It evolves according to the chemical master
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FIG. 8. The estimated probability density of S = X1 + 2X2,
both by the CMA (red solid line, using CSSA simulations of
length T = 103 for each value s of S), and by approximation
of the steady state of the chemical master equation (18), on
Ω = [0, 700]× [0, 1225] (blue bars).

equation for system (16), which is given by:

dpn,m
dt

=
[
k1m+ k3V

]
pn−1,m + k6(m+ 1)pn−2,m+1

+
[
k2(n+ 1)m+ k4(n+ 1)

]
pn+1,m (18)

+ k5(n+ 2)(n+ 1)pn+2,m−1 −
[
k1m

+ k2nm+ k3V + k4n+ k5n(n− 1) + k6m
]
pn,m.

Letting pn,m = 0 for all [n,m] 6∈ Ω, and setting the left
hand side of (18) to zero, we are left with a linear sys-
tem. Finding the eigenvector of the corresponding ma-
trix, with eigenvalue zero, gives us an approximate solu-
tion of the stationary chemical master equation. Sum-
ming over the fast variable, we then obtain the probabil-
ity distribution on the slow variable S, which is plotted
in Figure 8 as the blue bars. The CMA approximation is
visually indistinguishable from the approximation of the
stationary CME.

B. Analysis of parameter dependence

One motivation for computing estimates of the effective
dynamics of the slow variable, is to try to understand how
the behaviour of the system is altered by a change in re-
action rate parameters. In this section, we show that our
SDE approximation of the effective dynamics of the slow
variable can be used to compute a stochastic version of a
bifurcation diagram for system (16). In the determinis-
tic case (using mass action kinetics), the chemical system
(16) is described by a system of two ordinary differential
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FIG. 9. Stochastic bifurcation of the chemical system (16)
with parameters given by (17) with k3V ∈ [1350, 1600], esti-
mated using the CMA with length of simulation T = 10. Blue
circles (red squares) denote the states which are estimated to
be located at local maxima (minima) of probability density.
The solid (dashed) lines denote stable (unstable) steady states
of the ODE mean field approximation (20).

equations (ODEs):

dx1

dt
= k1x2 − k2x1x2 + k3 − k4x1 − 2k5x

2
1 + 2k6x2,

dx2

dt
= k5x

2
1 − k6x2, (19)

where x1 and x2 are concentrations of chemical species
X1 and X2, respectively. To make a better comparison
with the stochastic model, we introduce variables X̄1 =
x1V and X̄2 = x2V , which are approximations of the
number of molecules of chemical species X1 and X2 as
predicted by the ODE system (19). Multiplying (19) by
V , we obtain the following system of ODEs for X̄1 and
X̄2:

dX̄1

dt
= k1X̄2 −

k2

V
X̄1X̄2 + k3V

− k4X̄1 − 2
k5

V
X̄2

1 + 2k6X̄2, (20)

dX̄2

dt
=
k5

V
X̄2

1 − k6X̄2.

Let us consider the system (16) with parameters given
by (17), but now with k3V ∈ [1350, 1600]. In this in-
terval, the mean field ODE approximation (20) of the
dynamics of the system undergoes two fold bifurcations
as it is shown in the corresponding bifurcation diagram
plotted in Figure 9, denoted by the black line. Here a
solid line indicates a stable steady state, and the dashed
line indicates an unstable steady state. To make a direct
comparison with the stochastic model we visualise the
bifurcation diagram using the variable S = X̄1 + 2X̄2.
In the stochastic model, we can identify the favourable
states by the local maxima of the probability density. To

S

k3V

FIG. 10. Log probability density of the steady state of the
chemical system (16) with parameters given by (17) with
k3V ∈ [1350, 1600], estimated using the CMA with length of
simulation T = 10.

estimate this, we use the CMA with simulation length
T = 10 for each parameter value k3V , for each value of
the slow variable S = X1 + 2X2. For each parameter
value k3V ∈ [1350, 1600], we estimate πCMA, as in Figure
8. The results for this are plotted in Figure 10, where
the log density is plotted for each parameter value k3V .
We then estimate the positions of the local maxima in
the density. The maxima are shown in Figure 9 as blue
circles. For a one dimensional slow variable, as in this
example, we can also identify local minima in a similar
way, and these are plotted in Figure 9 as red squares.
In this simple toy example the stochastic “bifurcation
diagram” bears a strong resemblance to the bifurcation
of the ODE approximation (20), however other systems
exist in which they are vastly different12.
Stochastic modelling also gives rise to additional phe-
nomena which are not captured by mean field ODEs,
such as the switching behaviour between the favourable
states in this example. Therefore, in the stochastic case,
we can also estimate the average length of time that it
takes to go from one favourable state to the other, and
then back to the first again. Having estimated drift and
diffusion coefficients, one can obtain estimates for the av-
erage switching time, by solving a suitable elliptic partial
differential equation12, similar to (8). In the case of a one
dimensional slow variable S, this equation can be solved
explicitly17. Let us suppose that s1 < s2. To obtain the
average time to reach state S = s2, given that we started
at state S = s1:

τs1→s2 = 4

∫ s2

s1

1

log(πCMA(y))

∫ y

0

log(πCMA(z))

D(z)
dzdy,

(21)
where πCMA is the approximation of the density P(S = s).
Similarly, the average time it takes for the process to
reach state S = s1, given that we started at state S = s2,
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the CMA with length of simulation T (s) = 10 for each value
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estimation of the average switching time for k3V = 1475.
Error bar denotes one standard deviation (approximated by
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103 where σ2 is the sample variance and the average was
taken over 103 switches).

is given by:

τs1←s2 = 4

∫ s2

s1

1

log(πCMA(y))

∫ ∞
y

log(πCMA(z))

D(z)
dzdy.

(22)
Let us denote the local minima of πCMA by su (red squares
in Figure 9), and local maxima of πCMA by s− < s+

(blue circles in Figure 9). Figure 11 shows the plots for
τs−→s+ and τs−←s+ , computed by (21) and (22) respec-
tively. Naturally we truncate the second integral in (22)
to compute it numerically. A modeller is sometimes in-
terested in an average “oscillation time”, which can be
computed as τSW = τs−→s+ + τs−←s+ , i.e. the average
time it takes to go from one state of locally maximal
probability density to the other, and back again. This is
plotted as the dashed line in Figure 11. Additionally, we
plot on this figure the results of a direct computation of
average switching time, with k3V = 1475. This value was
averaged over 1000 switches from one well to the other,
using the Gillespie algorithm. For this parameter set,
the agreement between the CMA approximation of the
switching time and the direct stochastic computations is
remarkable.

The formulae (21) and (22) can be used for general es-
timation of average travel times between two points for
one dimensional slow variables. For example in Figure
12 we show the average exit times from each well which
are defined by τs−→su and τsu←s+ respectively. If the
slow variable is of more than one dimension, then no
exact formula like (21) exists for the transition times,
and the corresponding elliptic PDE needs to be solved
numerically12.
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FIG. 12. Estimated average escape time for the two potential
wells in the system (16) with parameters given by (17) with
k3V ∈ [1350, 1600], using the CMA with length of simulation
T (s) = 10 for each value s of S.

VII. CHOOSING A SUITABLE LENGTH OF
SIMULATION

When implementing the CSSA or CMA, one has to
choose the state-dependent length of simulation T (s).
There are three ways to do this. The simplest approach
is to select a fixed T (s) ≡ T̂ ∈ R+. Alternatively, one
might also want to define T (s) indirectly by postulat-
ing that we allow L ∈ N changes of the slow variable
S before stopping the simulation for each value s. The
third possibility is to design a stopping condition within
the algorithms, to determine when the estimation of the
observable we are interested in has converged, up to de-
fined tolerances. This may vary depending on what the
aim of the simulation is, whether it be approximation of
switching times, or of the probability density, or some
other quantity. However a sensible stopping condition
with the desired properties may be hard to identify. In
this section we instead look at how choosing T (s) in one
of the first two ways, either setting it to be a constant,
or through allowing only L changes of the slow variable,
over all values s of S, can affect the accuracy of the ap-
proximation of a given quantity.
Naturally, there is a linear relationship between the total
cost of running the CMA, with a given fixed simulation
length T (s) = T̂ ∈ R+ (or fixed number of changes L ∈ N
of the slow variable) for each value s of S. This has been
proven to be the case in our numerical simulations. In
the following we measure computational cost Q in terms
of how many individual reactions have been simulated in
the algorithm. In the CMA, Q(T (s)) denotes the total
number of reactions simulated in the algorithm up to
time T (s). This implies that

Q ≡ Q(T (·)) =
∑
s

Q(T (s)),

where the sum is over the chosen region of estimation
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FIG. 13. Error curves for fixed simulation length T̂ and for
fixed number of changes L of S for each value s, for the system
(16), with parameters given by (17), as a function of total
computational cost.

of the slow variable in the algorithm. By running the
algorithm for different values of T̂ (or L in the case of
limiting changes of the slow variable) and counting the
total number of reaction evaluations, the linear relation-
ship between simulation length parameter T̂ (resp. L)
and the total computational cost Q can then be found.
We can then use these approximations to compare the
calculated πCMA for the system using a fixed T̂ and L
respectively, with roughly the same total computational
cost, and then compare these approximations with the
approximation to the solution of the stationary chemical
master equation (18).

Figure 13 shows the errors (as defined by (14)) in the
approximation πCMA as a function of total computational
cost, both for fixed simulation length T̂ , and for fixed
number of changes L of S, for the bistable chemical sys-
tem (16) with reaction parameters given by (17). In this
example, the simulations with fixed number L of changes
of the slow variable, instead of fixed T (s) = T̂ , led to
approximately half the error in the resulting estimation
πCMA of the invariant distribution, when given the same
amount of computational resource. This result is system-
dependent however, since the same error curves com-
puted for the illustrative system (1) gave results which
were barely distinguishable for the two simplest methods
of choosing the simulation length.

In theory, we could also estimate a suitable length of sim-
ulation by calculating the smallest non-zero eigenvalue of
the evolution equation describing the system dynamics.
This is equivalent to solving the chemical master equa-
tion, and thus is computationally expensive or in some
cases unfeasible. For simple systems, such as (1), such a
computation is possible. In particular, we find that the
smallest negative eigenvalue for the choice of fast and
slow variables (3) is smaller in magnitude than the one
corresponding to the choice (5), which is consistent with
error plots seen in Figure 2.

VIII. DISCUSSION

In this paper, we developed a multiscale methodology for
analysis of systems with multiple timescales. We demon-
strated that this approach can be used to approximate
important characteristics of systems, such as invariant
probability density and switching times. One of the lim-
itations of the method is the dimension of the slow vari-
able vector (i.e. number of slow variables). In this paper,
we presented examples with one or two slow variables. In
biological applications, biochemical systems can be writ-
ten in terms of tens of variables3,26,39, often reacting on
different timescales. In order to apply this approach to
such a system, we must first identify the slowly changing
quantities. The direct exploration of a system, similar to
that presented in Section II, might provide a guidance for
the selection of the slow variable(s). However, in some
systems, different variables are slow (in comparison with
the other variables) in different parts of the state space.
In this case, an automated analysis might be needed to
identify the slow manifold13,35. If the dimension of the
slow variables is only one or two, then the CMA can
be applied exactly as we have here, no matter what the
overall dimension of the system.

The situation becomes more challenging when the system
has three or more slow variables, because of the high di-
mensional PDEs (8) which are computationally intensive
to solve. To tackle this problem, we are currently inves-
tigating the most efficient approach for solution of these
PDEs. This problem differs from typical problems in nu-
merical analysis, in that we have to optimise the choice
of domain in which the drift and diffusion coefficients
are estimated. Further to this, since the estimations are
made using stochastic simulations, they are noisy, and
may need to be smoothed in order to obtain good re-
sults. We will report on our findings in the future.

In some biological examples, there are variables which
can get down to single digit values (or even zero). For ex-
ample, the relative abundance of some mRNA molecules
in cells can be less than one, on average2,26. Gene states
are sometimes represented as Boolean variables (a vari-
able which is zero for a specified gene being “off”, and
equal to one when the gene is transcribed)16. In some
cases, these variables are fast and do not cause any
problems27. However, if a slow variable can only have
a few discrete values, then the SDE-based approxima-
tions can lead to errors, and slow algorithms written in
terms of Markov chains are more applicable6,11. To im-
prove efficiency of this approach, one could also couple
this with the effective diffusivity approach for areas with
larger copy numbers, in a hybrid model. The CMA can
also be modified by substituting the Gillespie algorithm
by a statistically equivalent version, such as the Gibson-
Bruck algorithm, using a suitable dependency graph19.
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Appendix A: Derivation of drift and diffusion formulae

Considering the Fokker-Planck equation (8), the drift V
and diffusion D are given by the following expressions:

V (s) = lim
∆t→0

〈S(∆t)− s |S(0) = s〉
∆t

, (A1)

D(s) = lim
∆t→0

〈
[S(∆t)− s][S(∆t)− s]T |S(0) = s

〉
2∆t

,

where
〈
·
〉

denotes the average with respect to the prob-
ability distribution P(F|S = s), which we can sample
from using the CSSA in Section III. The CSSA which
we introduced in the previous section is just one possible
way to determine the conditional distribution on the fast
variable given the slow variable. The advantage of this
method over others18, is that we are able to estimate the
drift and diffusion terms of the slow variables on the fly,
while sampling the conditional distribution of the fast
variables.
Let us define δSj to be the change in S due to the j-
th iteration of the CSSA. For example, in the case of
the illustrative example system (1) for the choice of slow
variable S = X1 + X2, where the jth reaction to occur
was Ri, we have:

δSj =


0 i = 2, 3, 5,

1 i = 1,

−1 i = 4.

We define the variable S̃, to be the sum of these elemen-
tary changes δSj , i.e.

S̃(t) =

Q(t)∑
j=1

δSj . (A2)

where Q(t) iterations of the CSSA have been simulated
up to some time t > 0. Since S(0) = s, formula (A1)
implies that

V (s) = lim
∆t→0

〈S(∆t)− s|S(0) = s〉
∆t

= lim
∆t→0

〈
S̃(t+ ∆t)− S̃(t)

〉
∆t

,

for all t > 0, due to the resetting in step [4] of the CSSA,
in Table III. Therefore, if T = J∆t is the length of the
CSSA simulation, we get

V (s) = lim
∆t→0

lim
J→∞

1

J

J∑
j=1

S̃(j∆t)− S̃((j − 1)∆t)

∆t

= lim
∆t→0

lim
J→∞

1

J∆t
(S̃(J∆t)− S̃(0)).

Using S̃(0) = 0, T = J∆t and (A2), we have that

V (s) = lim
T→∞

1

T
S̃(T ) = lim

T→∞

1

T

Q(T (s))∑
m=1

δSm,

which is the formula given by (9). In a similar way, we
can derive (10), namely

D(s) =
1

2
lim

∆t→0

〈
[S(∆t)− s][S(∆t)− s]T |S(0) = s

〉
∆t

=
1

2
lim

J→∞
lim

∆t→0

1

J∆t

J∑
j=1

[S̃(j∆t)− S̃((j − 1)∆t)]

[S̃(j∆t)− S̃((j − 1)∆t)]T

= lim
T→∞

1

2T

Q(T (s))∑
m=1

δSmδS
T
m.
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