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The noisy dynamics of chemical systems is commonly studied using either the chemical master
equation (CME) or the chemical Fokker-Planck equation (CFPE). The latter is a continuum ap-
proximation of the discrete CME approach. We here show that the CFPE may fail to capture the
CME’s prediction of noise-induced multistability. In particular we find a simple chemical system
for which the CME’s marginal probability distribution changes from unimodal to multimodal as the
system-size decreases below a critical value, while the CFPE’s marginal probability distribution is
unimodal for all physically meaningful system sizes.

The dynamics of chemical and biochemical circuits is
noisy whenever the number of molecules of at least one
chemical species is small [1]. The analysis of such cir-
cuits typically proceeds either via the chemical master
equation (CME) or the chemical Fokker-Planck equation
(CFPE) [1]. The latter is obtained from a truncation of
the Kramers-Moyal expansion of the CME up to second-
order derivatives and is hence regarded as a continuous
approximation or an asymptotic representation of the
CME [2]. For systems composed of only unimolecular
reactions, the CFPE’s prediction for the mean and vari-
ance of the molecule numbers is well known to be the
same as those of the CME [3]; for systems in which at
least one reaction is bimolecular, the CFPE’s predictions
for the first two moments are not exact but it has recently
been shown that the accuracy is high over a wide range
of molecule numbers [4, 5].

In the limit of large system sizes, the CFPE can cap-
ture noise-induced phenomena which are predicted by the
CME (see for example recent studies of noise-induced
oscillations [6, 7]). A broader question is whether the
CFPE can capture noise-induced phenomena which ap-
pear at intermediate system-sizes. Of particular inter-
est to us here is the phenomenon of noise-induced multi-
modality (also known as noise-induced multistability or
stochastic multistability) where the marginal probability
distribution of the CME switches from a unimodal to a
multimodal distribution as the system-size (the volume
for chemical systems) is decreased below a critical value.
The existence of such a phenomenon has been long known
[8] yet its practical relevance to biology and ecology has
only started to be appreciated in the past decade [9–12].
Recent evidence suggests that the CFPE does capture
the onset of noise-induced bistability (noise-induced bi-
modality in our terminology) [12]. Here we demonstrate,
by means of a biochemically relevant example, that this
is not generally the case; in particular we show that while
the CME predicts a change from a unimodal to a multi-
modal distribution as the system-size decreases below a
certain value, the CFPE shows a unimodal distribution
independent of the system-size.

The chemical system. We start by considering the fol-
lowing simple model of transcription regulation without
feedback [9]:

G
kon⇌
koff

G∗, G
k1Ð→ G+P, G∗ k2Ð→ G∗+P, P

cÐ→ ∅. (1)

A gene can be in one of two states G and G∗; the
switching between these two states is random and each
state is associated with a different rate of protein (P )
formation. The protein once formed can also decay. This
model is a simplification of more realistic gene models
where the mRNA is explicitly modelled [13]. We consider
the case where there are N genes such that the total
number ofG andG∗ equalsN at all times; although genes
typically exist in one or two copies per cell, plasmids
are nowadays commonly used to genetically engineer cells
with a large number of copies of a given gene [14] and
hence our model is of biochemical relevance.

Stochastic mesoscopic descriptions of the chemical sys-
tem. Denoting by t the time and by τ = ct the dimen-
sionless time, the CME for for the reaction system (1) is
given by:

∂τΠ(n, p, τ) = qoff(E−1
n − 1)(N − n)Π(n, p, τ)

+ qon(E+1
n − 1)nΠ(n, p, τ)

+ q1n(E−1
p − 1)Π(n, p, τ)

+ q2(N − n)(E−1
p − 1)Π(n, p, τ)

+ (E+1
p − 1)pΠ(n, p, τ),

(2)

where Π(n, p, τ) is the probability that at time τ there
are n genes in state G and p protein molecules, and Emn
and Emp are step operators such that when they act on
a function f ≡ f(n, p), their action is Emn f(n, p) = f(n +
m,p) and Emp f(n, p) = f(n, p+m). The non-dimensional
reaction rates are given by:

qoff =
koff

c
, qon =

kon
c
, q1 =

k1
c
, q2 =

k2
c
.
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The CFPE for the reaction system (1) (with dimen-
sionless time units, τ = ct) is given by:

∂τΠ(n, p, τ) = − ∂n ((qoff(N − n) − qonn)Π(n, p, τ))
− ∂p ((q1n + q2(N − n) − p)Π(n, p, τ))

+ 1

2
∂2n ((qoff(N − n) + qonn)Π(n, p, τ))

+ 1

2
∂2p ((q1n + q2(N − n) + p)Π(n, p, τ)) .

(3)
The quasi-stationary approximation (QSA) of the

CME . Next we solve the CME under the condition that
the timescales governing the decay of small fluctuations
about the steady-state mean number of molecules of G
and P are well separated. Since the system (1) con-
sists of purely first-order reactions, the equations for
the means ⟨n⟩ and ⟨p⟩ as obtained from the CME Eq.
(2) are precisely given by the conventional rate equa-
tions: ∂τ ⟨n⟩ = −qon⟨n⟩ + qoff(N − ⟨n⟩) and ∂τ ⟨p⟩ =
q1⟨n⟩ + q2(N − ⟨n⟩) − ⟨p⟩. The two characteristic non-
dimensional timescales are given by the absolute value of
the inverse of the eigenvalues of the Jacobian of the above
system of rate equations and are: τG = (qon+qoff)−1 and
τP = 1, where the former governs the decay of small fluc-
tuations in G and the latter the same but for P . Clearly
gene switching between the two states G and G∗ is much
slower than the rest of the processes in the system when-
ever τG ≫ 1, i.e., the protein reaches steady-state in a
time much shorter than the time it takes for a gene to
switch from one state to another.

Now we approximately solve the CME Eq. (2) in the
quasi-stationary limit given by ε = τ−1G ≪ 1. Rescaling
time by τ → ετ we obtain the following master equation:

∂τΠ(n, p, τ) = 1

ε
L0Π(n, p, τ) +L1Π(n, p, τ), (4)

where the two operators L0 and L1 are given by:

L0 = (q1n + q2(N − n))(E−1
p − 1) + (E+1

p − 1)p, (5)

L1 = α(E+1
n − 1)n + β(E−1

n − 1)(N − n), (6)

and α = qon/(qon +qoff) and β = 1−α. Note that L0 acts
only on the protein numbers p while L1 acts only on the
gene numbers n.

In order to solve Eq. (4) in the limit of small ε, we
consider the perturbation ansatz:

Π(n, p) = Π0(n, p) + εΠ1(n, p) + . . . + εiΠi(n, p) + . . .

Substituting the latter in Eq. (4) and comparing coeffi-
cients of powers of ε we obtain the following equations:

O(1

ε
) ∶ L0Π0 = 0, (7)

O(1) ∶ L0Π1 +L1Π0 = ∂τΠ0 = 0. (8)

Note that ∂τΠ0 = 0 by the assumption of steady-state.
By Bayes’ theorem we can write Π0(n, p) = Π0(p ∣n)µ(n),
where Π0(p∣n) is the stationary density for P given the
number of Gmolecules is n, and µ(n) is the marginal sta-
tionary distribution for G. Summing the O(1) equation
over p, we obtain:

∑
p∈N

[L0Π1(n, p)] +L1

⎡⎢⎢⎢⎢⎣
∑
p∈N

Π0(p ∣n)µ(n)
⎤⎥⎥⎥⎥⎦
= 0. (9)

The first term on the left hand side is zero by the defini-
tion of L0 in Eq. (5). The second term simplifies by the
normalisation condition ∑p∈N Π0(p ∣n) = 1. Thus Eq. (9)
reduces to:

L1µ(n) = 0,

which possesses a unique normalised solution given by:

µ(n) =
(N
n
)

(1 + λ)N λ
n, n ∈ {0, ...,N} (10)

where λ = β/α. From the O( 1
ε
) equation we obtain:

µ(n)L0Π0(p ∣n) = 0.

This equation can be easily solved yielding the Poisso-
nian:

Π0(p ∣n) =
1

p!
(q1 n + q2 (N − n))p e−(q1n+q2(N−n)). (11)

Finally multiplying Eq. (10) and Eq. (11) we obtain
by Bayes’ theorem the leading order approximation to
Π0(n, p) in the limit of small ε; after marginalising over
n, we obtain the stationary distribution of the protein
numbers in the same limit:

Π(p) ≈
N

∑
n=0

(N
n
)λ

n

p!

(q1 n + q2 (N − n))p

(1 + λ)N e−(q1n+q2(N−n)).

(12)
In principle a similar quasi-stationary limit can be ap-
plied to the CFPE Eq. (3). In practice, however, the
equation thus obtained cannot be reduced beyond an in-
tegral which has no closed form solution; thus in what
follows we obtain the stationary distribution of the pro-
tein numbers of the CFPE via numerical integration (see
later for details).

Number of modes of the approximate stationary distri-
bution of the CME and CFPE approaches. Let Ω be the
volume of the compartment in which the chemical reac-
tion network (1) is confined. Furthermore let φP = p/Ω
be the protein concentration and φN = N/Ω be the (con-
stant) total gene concentration. We now study the num-
ber of modes of the quasi-stationary distribution of φP as
a function of Ω; in this thought experiment, the volume Ω
is varied at constant φN such that an increase in volume,
necessarily translates into a proportionate increase in the
total number of genes (this also implies that the number
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of proteins increases with the volume). Now the CME
distribution of φP , is given by π(φP ) = ΩΠ(φPΩ). This
probability distribution solution consists of a superposi-
tion of N +1 Poisson distributions; this is since there are
N + 1 combinations of N molecules which can be in two
states. This implies that π(φP ) is generally multimodal,
with at most N + 1 modes. Since N increases with Ω,
we would expect the modality of π(φP ) to increase with
the volume, if the Poissonians are well separated. On the
other hand, given that the deterministic rate equations
of the chemical system are monostable, we also know, by
the system-size expansion [1], that in the thermodynamic
limit of large volumes, the probability distribution π(φP )
tends to a Gaussian and thus unimodal. Hence the over-
all picture is that the number of modes of π(φP ) should
increase with Ω for Ω less than some critical volume Ω∗
and decrease with increasing volume for Ω > Ω∗. The
smallest volume possible is that for which there is one
gene N = 1; hence the number of modes in the limit of
small volumes is 2.

In Fig. 1, we plot the QSA solution π(φP ) for four dif-
ferent volumes with parameters φN = 1, qon = qoff = 10−3,
q1 = 50, q2 = 250; we compare this with the solution from
the CFPE and exact stochastic simulations of the CME
using Gillespie’s stochastic simulation algorithm (SSA).
Note that for the chosen parameters, ε = 2 × 10−3 ≪ 1,
which implies timescale separation; this is reflected in
the excellent agreement between the analytical approx-
imation (QSA) and the SSA. As predicted above, the
modality of the probability distribution of the CME goes
through a maximum as the volume is progressively in-
creased, with the number of modes for very low and large
volumes being 2 and 1, respectively. Thus the CME pre-
dicts noise-induced multimodality as the volume is de-
creased beyond some critical value; we call this “noise-
induced” since the particle numbers becomes smaller with
the volume and the size of intrinsic noise correspondingly
increases. The CFPE solution is obtained by discretis-
ing the PDE (3) using the continuous Galerkin finite el-
ement method [15] over a triangulation of the domain
[0,N] × [0,N∗] where N∗ > 0 is some artificial maxi-
mum protein number which is chosen sufficiently large
such that its value makes no significant difference to the
solution; no-flux boundary conditions are imposed along
the domain boundaries. Note that the CFPE, unlike the
CME, does not predict noise-induced multimodality as
the volume is decreased from 100 to 1 – rather it is uni-
modal for all four volumes in Fig. 1. Note also that for
some volumes below Ω = 1, the CFPE does predict two
modes of the probability distribution (e.g. a mode at
zero and one at a non-zero concentration for Ω = 1/2),
however for such volumes the total number of genes is
less than 1 (since φN = 1); hence we can more precisely
state that over the whole range of physically meaningful
volumes, the CFPE is unimodal. Note that the no-flux
(reflective) boundary conditions on the CFPE are arti-
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Figure 1: Comparison of the stationary distribution of protein
concentration obtained from SSA simulations with the QSA
solution π(φP ), and the numerical solution of the CFPE for
different values of volume, Ω. Parameters (see text) are such
that timescale separation is enforced. The QSA and SSA
predict multimodality below a certain volume whereas the
CFPE predicts a unimodal distribution for all volumes.

ficial in the sense that unlike the CME, the CFPE does
not naturally lead to a restriction of gene numbers be-
tween 0 andN – the imposition of such artificial reflective
conditions can lead to undesirable artefacts in the CFPE
predictions (see for example [5]); we repeated our sim-
ulations using the recently developed complex chemical



4

Langevin equation [5] which avoids the artificial bound-
ary problems and found that for the system studied here,
the results obtained are practically the same as shown in
Fig. 1.
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Figure 2: Plot of the number of modes of π(φP ) as a function
of the volume Ω, for different values of δ = √q2 −

√
q1. The

larger is the difference between the production rates q1, q2,
the larger is the volume range over which the stationary dis-
tribution of the CME is multimodal; in contrast, the solution
of the CFPE can be shown to be unimodal for all volumes.

The behaviour elucidated in Fig. 1 is not particular
to the parameter set used; in Fig. 2 we show the num-
ber of modes of the QSA distribution of protein π(φP )
as a function of the volume Ω for 8 different parameter
sets (with fixed φN = 1, λ = 1). In all cases, the number
of modes is 1 for large volumes, increases as the volume
decreases and reaches a maximum at some critical vol-
ume; as the volume is decreased further, the number of
modes steadily decreases until it reaches a value of 2 at
the lowest volume of Ω = 1 (below this volume the total
number of genes is less than one and hence unrealistic).
The CFPE probability distribution solution is unimodal
for all volumes. A comparison of Fig. 2 (a) and (b)
shows that the dimensionless parameter δ = √

q2 −
√
q1

(and not the individual values of q1 and q2) appears to
be the principle factor determining the maximum num-
ber of modes of the probability distribution, as well as
the critical volume at which this occurs. In particular the
larger is δ, the larger is the volume (and the associated

number of genes) above which the probability distribu-
tion of the CME becomes unimodal and agrees with the
CFPE. A heuristic explanation of this is as follows. For
the case of one gene (N = 1), the QSA solution Eq. (12)
predicts two modes, a Poissonian with mean and vari-
ance equal to p = q1 and a second Poissonian with mean
and variance equal to p = q2. Now say that q1 < q2; then
the condition of well separated Poissonians can be for-
mulated as q1 +

√
q1 ≪ q2 −

√
q2 which is equivalent to

δ = √
q2 −

√
q1 ≫ 1. The larger is δ, the more pronounced

is the bimodal character of the distribution at N = 1 and
hence one would expect the larger is the total number of
genes (and the volume) needed for the multimodality to
be washed away – this is consistent with the role played
by δ in Fig. 2 and which was discussed in the previous
paragraph.

Conclusion. We have in this paper shown that while
the CFPE leads to mean and variance of fluctuations for
the molecule numbers which are the same as the CME
for all volumes (since system (1) is composed of only uni-
molecular reactions), the CFPE misses the CME predic-
tion of the onset of noise-induced multimodality as the
volume is decreased. This is in contrast to that reported
in [12] and implies that generally the CFPE does not
capture noise-induced multimodality. We note that the
probability distribution of the CME Eq. (12) is a super-
position of Poissonians and each one is directly associated
with an element of the set {(0,N), (1,N − 1), ..., (N,0)}
which describes the possible combinations of genes in
states G and G∗ – it is this direct association between
the distribution and the inherent discreteness of the sys-
tem that leads to the CFPE’s inability to capture the
multimodality of the CME. Hence in some sense the phe-
nomenon described in this paper maybe more aptly de-
scribed as discreteness-induced multimodality.

Our results also show that the critical volume (and as-
sociated gene numbers) above which the probability dis-
tribution of the CME is unimodal, as that of the CFPE,
increases monotonically with the difference between the
two protein production rates; hence although the CFPE
is correct in the limit of infinitely large molecule numbers,
its breakdown can occur at considerably large molecule
numbers if the two protein production rates are well sep-
arated. Similar results to the ones reported here are ob-
tained for a chemical system with negative feedback in
which the reaction G ⇌ G∗ in scheme (1) is replaced

by G + P ⇌ G∗. We generally expect the CFPE to fail
to reproduce noise-induced multimodality whenever one
considers gene regulatory networks under timescale sep-
aration conditions (and in a parameter regime where the
rate equations are monostable) since in all such cases the
probability distribution in the limit of small gene num-
bers is multimodal and each mode is associated with one
of the possible discrete number of gene states [11].
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