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Abstract. Starting with a microscopic (individual-based) Brownian dynamics model of charged
particles (ions), its macroscopic description is derived as a system of partial differential equations
that govern the evolution of ion concentrations in space and time. The macroscopic equations are
obtained in the form of the Poisson-Nernst-Planck system. A multi-resolution method for simulating
charged particles is then developed, combining the detailed Brownian dynamics model in a part of
the computational domain with coarser macroscopic equations in the remainder. The strengths, lim-
itations, and applicability of microscopic, macroscopic, and multi-resolution simulation approaches
are demonstrated through an illustrative model comprising a system of Na+ and Cl− ions.
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1. Introduction. At the molecular level, different classes of simulation meth-
ods can be applied to reaction-diffusion-advection processes in biological systems,
including particle-based (individual-based) methods, which treat each particle sepa-
rately, and coarse-grained methods, which describe particle concentrations [1]. Com-
mon coarse-grained approaches are written in terms of mean-field partial differential
equations (PDEs), for example, the Poisson-Nernst-Planck (PNP) system, which is
critical for understanding the dynamics of charged particles. The PNP system is par-
ticularly significant when examining the interactions between bulk and surface fixed
charge [2, 3]. In biology, the PNP system has been used for analyzing ionic currents
through protein channels embedded in membranes [4, 5, 6, 7].

There are two state variables in the PNP system, the charge density of different
ionic species and the electrostatic potential. In Section 2, we will consider the system
of two ionic species consisting of positive and negative ions in domain Ω ⊂ R

3. De-
noting by c+ : Ω → [0,∞) and c− : Ω → [0,∞) the concentrations of the positive and
negative ions, respectively, we obtain the Nernst-Planck equation by combining diffu-
sive flux resulting from a concentration gradient with the flux arising from a potential
gradient in the form

(1.1)
∂c±

∂t
= ∇ ·D±

(
∇c± +

q±

kbT
c± ∇φ

)
,

where D+ (resp. D−) is the diffusion constant of the positive (resp. negative) ion,
φ is the electrostatic potential, q± is the charge, kb is the Boltzmann constant and T
is the absolute temperature. To get the PNP system, we couple equation (1.1) with
the Poisson equation for the electrostatic potential

(1.2) ∇2φ = − 1

ε0 ε

[
̺p + q+ c+ + q−c−

]
,
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where ε is the dielectric permittivity constant of the medium, ε0 is the dielectric
permittivity constant of the vacuum and ̺p is the permanent charge density.

The PNP system (1.1)–(1.2) provides a mean-field description of a system of inter-
acting charged particles. A more detailed description can be written using particle-
based methods, such as molecular dynamics and Brownian dynamics (BD) simula-
tions [1, 8]. Considering the system of N positive and N negative ions, and denoting
their positions at time t by

(1.3) X±
j (t) = [X±

j,1(t), X
±
j,2(t), X

±
j,3(t)] ∈ Ω , for j = 1, 2, . . . , N ,

where X+
j (resp. X−

j ) is the position of the j-th positive (resp. negative) ion, then
the simplest BD model is given by the overdamped Langevin dynamics

(1.4) dX±
j (t) =

√
2D± dWj , for j = 1, 2, . . . , N,

where Wj is the vector of three independent Wiener processes [1]. In computa-
tional studies, the BD equation (1.4) is commonly either discretized using fixed time
step ∆t [9, 10], or solved by using event-based algorithms, such as Green’s function
reaction dynamics [11], where the state of the system is updated by calculating the
time at which the next interaction of particles occurs. The BD equation (1.4) provides
a macroscopic description of more detailed molecular dynamics, Langevin dynamics
or stochastic coarse-grained models [12, 13].

Although BD modelling based on equation (1.4) has previously been used for sim-
ulating ions in applications to calcium signalling [14, 15], the BD equation (1.4) must
be generalized for use in other contexts. Considering applications to the dynamics of
ions and ion channels [16, 17, 18, 19], we generalize equation (1.4) by adding a drift
term which includes a gradient of the (electric) potential. The resulting BD model
is formulated in Section 2 as equation (2.3). This additional drift term depends not
only on the position of the ion, but also on positions of other ions and on an exter-
nal (electrical) field. In Section 3, we then show that our particle-based BD model
converges in a suitable limit to the PNP system (1.1)–(1.2).

In Section 4, we present the details of computational implementations of both
microscopic and macroscopic models. We discuss the strengths and limitations of
each approach, applying them to an illustrative model comprising a system of Na+

and Cl− ions. In Section 5, we combine both approaches into a multi-resolution
simulation framework, where BD simulations of individual ions and the mean-field
PNP system (1.1)–(1.2) are used in different parts of the computational domain.
Such multi-resolution simulation frameworks have been developed in various contexts
in the literature to simulate larger biological systems by using coarser (macroscopic)
simulation approaches in parts of the computational domain [20, 21, 22, 23, 24]. We
conclude with the discussion of the applicability of the multi-resolution simulation
techniques in Section 6.

2. Brownian dynamics. We model a system of N positive and N negative ions
using BD in domain Ω ⊂ R

3. In our computational studies in Sections 4 and 5, the
domain Ω is cuboid

(2.1) Ω = [0, L1]× [0, L2]× [0, L3] ,

where L1, L2 and L3 are positive parameters with units of length. The state of the
system at time t is described by the 6N -dimensional vector

(2.2) X(t) =
[
X+

1 (t),X
+
2 (t), . . . ,X

+
N (t),X−

1 (t),X
−
2 (t), . . . ,X

−
N (t)

]
∈ Ω2N ,
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where X±
j (t) is given by (1.3) and denotes the position of the j-th positive ion (X+

j )

or the j-th negative ion (X−
j ) at time t for j = 1, 2, . . . , N . The time evolution of

X±
j (t) is given by the following Itô stochastic differential equation

(2.3) dX±
j (t) = −α± ∇±

j U
(
X
)
dt+

√
2D± dWj , for j = 1, 2, . . . , N,

where α+, α−, D+ and D− are positive parameters, U : R6N → R is the interaction
potential and

∇+
j U =

[
∂U

∂x+
j,1

,
∂U

∂x+
j,2

,
∂U

∂x+
j,3

]
, ∇−

j U =

[
∂U

∂x−
j,1

,
∂U

∂x−
j,2

,
∂U

∂x−
j,3

]
.

Our BD model (2.3) is a generalization of equation (1.4), where the interaction po-
tential U is a function of 6N variables, because it depends not only on the position of
the j-th positive or negative ion, but also on the positions of other ions in the system.

Our BD model (2.3) can be derived in the overdamped limit from the Langevin
dynamics [1, 25]. In particular, the parameter α± is the reciprocal of the corre-
sponding friction coefficient, which has units of [mass][time]−1. Since the interaction
potential U has units of energy, we deduce that our BD equation (2.3) is dimensionally
correct. However, to simplify our derivations of mean-field PNP equations, we first
introduce the functional form of the interaction potential in Section 2.1 with a min-
imal number of parameters. In particular, our BD equation (2.3) can be considered
non-dimensionalized. Our parameters are related to physical quantities in Section 2.2.

2.1. Functional form of the interaction potential. We assume that ions
interact with fixed background potential and with each other. Moreover, we assume
that our computational domain (2.1) is a small representative part of a larger domain
that contain ions. Such a process can be modelled using suitable boundary condi-
tions at the boundary ∂Ω of the cuboid. If the interactions were short-ranged, then
ions leaving the domain Ω could be removed from the simulation, while additional
ions could be introduced at the domain boundary ∂Ω according to a specified dis-
tribution [12, 26]. However, interactions between ions include long-range (Coulomb)
forces and the simulated ions (which are inside Ω) will also interact with ions which
are outside of Ω and therefore not explicitly included in our simulation. To model
such ions, we will implement standard periodic boundary conditions and assume that
every ion interacts not only with the ions in Ω, but also with their periodic image
copies and with the periodic image copies of the background potential. To simplify
our presentation, we introduce the notation

(2.4) Lℓ = [ℓ1 L1, ℓ2 L2, ℓ3 L3], for any integer valued vector ℓ = [ℓ1, ℓ2, ℓ3]

and we also denote summations over such integer valued vectors as :

(2.5)
∑

ℓ

=

∞∑

ℓ1=−∞

∞∑

ℓ2=−∞

∞∑

ℓ3=−∞

Denoting a point in the 6N -dimensional state space by

(2.6) x =
[
x+
1 ,x

+
2 , . . . ,x

+
N ,x−

1 ,x
−
2 , . . . ,x

−
N

]
,
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the interaction potential U
(
x
)
is given as the following sum of five terms

U
(
x
)
=
∑

ℓ

N∑

i=1


U+

0

(
x+
i − Lℓ

)
+ U−

0

(
x−
i − Lℓ

)
+

i−1∑

j=1

U1

(
‖x+

i − x+
j − Lℓ ‖

)

+
N∑

j=1

U2

(
‖x−

i − x+
j − Lℓ ‖

)
+

i−1∑

j=1

U3

(
‖x−

i − x−
j − Lℓ ‖

)

 ,(2.7)

where U±
0 : R3 → R is a background potential which includes interactions with fixed

charges in the environment, ‖· · ·‖ denotes the standard Euclidean norm, potential
U1 : [0,∞) → R (resp. U3 : [0,∞) → R) describes distance-dependent interactions
between two positive ions (resp. two negative ions) and U2 : [0,∞) → R describes
interactions between a positive and a negative ion. The distance-dependent potentials
U1, U2 and U3 have the same functional form given as the sum of the Lennard-Jones
and Coulomb potentials. We write them as

(2.8) Uk(r) =
Ak

r12
− Bk

r6
+

Ck

r
,

where Ak, Bk and Ck, for k = 1, 2, 3, are parameters, which we relate to physical
quantities in Section 2.2. We note that the sum in the third term of the interaction
potential (2.7) does not include the case i = j, which is missing for ℓ = [0, 0, 0], because
the i-th ion does not interact with itself, and for ℓ 6= [0, 0, 0] because the corresponding
terms of the potential (2.7) would be constant and they would not change the drift
term of our BD model (2.3), if we explicitly included them in (2.7). In our illustrative
computational simulations in Section 4, we will implement the potential (2.7) using
the Ewald summation, which is described in Section 4.2.

Considering r to be the distance between interacting particles with separation
vector x, we have r = |x| and equation (2.8) implies that ∇2Uk = Hk where

Hk(r) =
132Ak

r14
− 30Bk

r8
− 2Ck δ(r)

r2
=

132Ak

r14
− 30Bk

r8
− 4π Ck δ3(x) ,(2.9)

where δ(·) is the Dirac delta function and δ3(x) = δ(x1) δ(x2) δ(x3) is the three-
dimensional Dirac delta function.

2.2. Parameterization. While our minimal set of parameters Ak, Bk and Ck,
for k = 1, 2, 3, in (2.8) can be considered dimensionless for the purposes of the theoret-
ical derivations presented in Section 3, they can also be related to physical quantities
and parameterized by the values in the literature. In Sections 4 and 5, we present
illustrative simulations for the case when the positive ion is Na+ and the negative ion
is Cl−. The parameters for these simulations are given in Table 1. The Lennard-Jones
parameters Aj and Bj are calculated using the values in the CHARMM force field [27].
The parameters α+ and α− are reciprocals of the corresponding friction coefficient,
which can be estimated by different methods [28]. We use the Einstein-Smoluchowski
relation

(2.10) α± =
D±

kb T

where D+ (resp. D−) is the diffusion constant of the positive (resp. negative) ion,
kb is the Boltzmann constant and T is the absolute temperature. In Table 1, we use
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parameter value reference

A1 1.194× 10−8 nm12 kcalmol−1 [27]

B1 4.732× 10−5 nm6 kcalmol−1 [27]

A2 5.186× 10−7 nm12 kcalmol−1 [27]

B2 4.171× 10−4 nm6 kcalmol−1 [27]

A3 1.150× 10−5 nm12 kcalmol−1 [27]

B3 2.627× 10−3 nm6 kcalmol−1 [27]

C1 = −C2 = C3 4.235× 10−1 nmkcalmol−1 [30] and equation (2.12)

α+ 3.241× 1011 kg−1 s [29] and equation (2.10)

α− 4.936× 1011 kg−1 s [29] and equation (2.10)

D+ 1.334× 109 nm2 s−1 [29]

D− 2.032× 109 nm2 s−1 [29]

Table 1

Parameters of the potentials U1, U2 and U3 given by (2.8), and parameters α± and D± in the case
of the positive ion being Na+ and the negative ion being Cl−.

the values of D+ and D− at temperature T = 25 ◦C for sodium and calcium ions [29],
repectively, and we calculate α± by (2.10). Since Ck corresponds to the Coulomb
term, we have

(2.11) C1 =
(q+)2

4πε0 ε
, C2 =

q+q−

4πε0 ε
and C3 =

(q−)2

4πε0 ε
,

where q+ (resp. q−) is the charge of the positive (resp. negative) ion, ε0 is the
dielectric permittivity constant of the vacuum and ε is the dielectric permittivity
constant of the medium. Since we consider monovalent ions Na+ and Cl−, we have
q+ = e and q− = −e in formulas (2.11), where e = 1.602× 10−19 C is the elementary
charge. Consequently, formulas (2.11) imply

(2.12) C1 = −C2 = C3 =
e2

4πε0 ε
,

which we use in our illustrative simulations together with ε being the permittivity of
water at temperature T = 25 ◦C given as ε = 78.41 in the literature [30].

3. Derivation of the PNP system from the BD model. In this section, we
start with the BD model (2.3) and we derive the PNP system (1.1)–(1.2) in a suitable
macroscopic limit. The derived system is used in Section 5 to design a multi-resolution
computational method. The PNP system has been previously derived in the literature
starting from a microscopic model written in terms of the Langevin dynamics [25].
Alternatively, the PNP system can also be derived from the alterations in the free
energy functional, which encompasses both the electrostatic free energy and the ideal
component of the chemical potential [31, 32].

3.1. Derivation of the Poisson equation. The interaction potential U in our
formulation (2.3) of the BD model is a function of 6N variables given by (2.7), while
the potential φ in the Poisson equation (1.2) is a function of three spatial coordinates.
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To derive the PNP system, we first rewrite the BD model (2.3) using potentials
Φ± : R3 → R that depend on three spatial variables and are parametrized by current
positions of ions X(t) given by (2.2). We define

Φ+
(
x
)
=
∑

ℓ

(
U+
0

(
x− Lℓ

)
+

N∑

i=1

(
U1

(
‖x−X+

i − Lℓ ‖
)
+ U2

(
‖x−X−

i − Lℓ ‖
))
)
,

Φ−
(
x
)
=
∑

ℓ

(
U−
0

(
x− Lℓ

)
+

N∑

i=1

(
U2

(
‖x−X+

i − Lℓ ‖
)
+ U3

(
‖x−X−

i − Lℓ ‖
))
)
.

We note that the potential Φ±(x) is singular for x = X±
j , j = 1, 2, . . . , N , so we also

define potentials Φ±
j : R3 → R that remove this singularity and all terms depending

on X±
j by

Φ+
j

(
x
)
= Φ+

(
x
)
−
∑

ℓ

U1

(
‖x−X+

j − Lℓ ‖
)
,(3.1)

Φ−
j

(
x
)
= Φ−

(
x
)
−
∑

ℓ

U3

(
‖x−X−

j − Lℓ ‖
)
.(3.2)

Then our BD model (2.3) can be rewritten as

(3.3) dX±
j (t) = −α± ∇

(
Φ±

j

(
X±

j

))
dt+

√
2D± dWj ,

for j = 1, 2, . . . , N. Using our notation (2.9), we observe that the potential Φ±(x)
satisfies the Poisson equation in the form

∇2Φ+
(
x
)
=
∑

ℓ

H+
0

(
x− Lℓ

)
+

N∑

i=1

(
H1

(
‖x−X+

i − Lℓ ‖
)
+H2

(
‖x−X−

i − Lℓ ‖
))

,

∇2Φ−
(
x
)
=
∑

ℓ

H−
0

(
x− Lℓ

)
+

N∑

i=1

(
H2

(
‖x−X+

i − Lℓ ‖
)
+H3

(
‖x−X−

i − Lℓ ‖
))

,

where we have defined H±
0 = ∇2U±

0 . In particular, we have formally obtained the
Poisson equation, which includes the current positions of all ions. To get equation (1.2)
for the electrostatic potential, we focus on the terms on the right-hand side, which
correspond to the electrostatic (Coulomb) forces. The Coulomb terms are included
in equation (2.9) as terms corresponding to constant Ck We also assume that there is
an underlying permanent charge density ̺p which helps us to express H±

0 as

(3.4) H±
0 (x) =

q±̺p(x)

ε0 ε
+H±

0,LJ(x) ,

where the extra term H±
0,LJ(x) corresponds to possible short-range interactions, which

include some Lennard-Jones terms in our illustrative simulations in Section 4. The
term H±

0,LJ(x) does not appear in the Poisson equation (3.5) below, but it is included
in the error term (3.14) in Section 3.2.

Using our notation (2.6) for points in the 6N -dimensional state space, we define

the electrostatic potential as three-dimensional vector field φ̂
(
· ;y
)
: R3 → R param-

eterized by the 6N -dimensional state vector y ∈ Ω2N . It is given as the solution of
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the Poisson equation
(3.5)

∇2φ̂
(
x;y

)
= − 1

ε0 ε

∑

ℓ

[
̺p(x−Lℓ) +

N∑

i=1

(
q+ δ3

(
x−y+

i −Lℓ

)
+ q− δ3

(
x−y−

i −Lℓ

))
]
,

which has the form of the Poisson equation (1.2) with concentrations replaced by the
sums of the Dirac delta functions. Substituting the state space position X(t) of ions

at time t for y, we obtain that φ̂
(
· ;X(t)

)
: R3 → R is a three-dimensional vector field

which captures all Coulomb terms in our BD potential (3.1)–(3.2).
Denoting a point in the 6N -dimensional state space by (2.6) and the 6N -dimensio-

nal volume differential by

(3.6) dx = dx+
1 dx+

2 . . . dx+
N dx−

1 dx−
2 . . . dx−

N ,

we can equivalently describe our BD model (3.3) by the time dependent probability
density function p : Ω2N × [0,∞) → [0,∞) which is defined so that

p
(
x, t
)
dx is the probability that X(t) ∈ [x,x+ dx).

Using our notation (2.6) for points in the 6N -dimensional state space, we further
simplify our presentation by denoting

x̃+
j = (x+

1 ,x
+
2 , . . . ,x

+
j−1,x

+
j+1, . . . ,x

+
N ,x−

1 ,x
−
2 , . . . ,x

−
N ) ,(3.7)

x̃−
j = (x+

1 ,x
+
2 , . . . ,x

+
N ,x−

1 ,x
−
2 , . . . ,x

−
j−1,x

−
j+1, . . . ,x

−
N ) ,(3.8)

that is, x̃+
j ∈ Ω2N−1

(
resp. x̃−

j ∈ Ω2N−1
)
is a projection of the 6N -dimensional

state space on the (6N − 3)-dimensional subspace which excludes the position of the
j-th positive (resp. negative) ion, for j = 1, 2, . . . , N . Using notation (3.7)–(3.8), the
concentration c±(x, t) is given as the sum of marginal densities of each ion being at the
position x at time t. Since ions are indistinguishable, we can write the concentration
c±(x, t) as N times the marginal density of the first ion in the list, i.e.

(3.9) c±
(
x, t
)
= N

∫

Ω2N−1

p
(
x, x̃±

1 , t
)
dx̃±

1 .

Multiplying equation (3.5) by p
(
y, t
)
and integrating over y ∈ Ω2N , we obtain

(3.10) ∇2φ
(
x
)
= − 1

ε0 ε

∑

ℓ

[
̺p(x− Lℓ) + q+ c+

(
x− Lℓ

)
+ q− c−

(
x− Lℓ

)]
,

where φ
(
x
)
is an averaged electrostatic potential give by

(3.11) φ
(
x
)
=

∫

Ω2N

φ̂
(
x;y

)
p
(
y, t
)
dy.

Since the summation (2.5) over integer valued vectors (2.4) periodically covers R3, we
can equivalently rewrite equation (3.10) as equation

(3.12) ∇2φ
(
x
)
= − 1

ε0 ε

[
̺p(x) + q+ c+

(
x
)
+ q− c−

(
x
)]
,

which is solved in cuboid domain (2.1) with periodic boundary conditions. In partic-
ular, we observe that the averaged electrostatic potential (3.11) satisfies the Poisson
equation (1.2) in domain Ω.
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3.2. Derivation of the Nernst-Planck equations. At time t, the electro-
static potential corresponding to both ions and permanent charge density is given
as φ̂

(
x;X(t)

)
, where X(t) is the state of the system at time t and φ̂

(
x;y

)
is the

solution to the Poisson equation (3.5). When using this potential in the evolution
equation (3.3) for the j-th positive or negative ion, we need to remove the potential
corresponding to this ion. Therefore, we also define potentials

(3.13) φ̂±
j

(
x; ỹ±

j

)
= φ̂

(
x;y

)
−
∑

ℓ

q±

4πε0 ε

1

‖x−y±
j −Lℓ ‖

,

where we use notation (3.7)–(3.8) to indicate that the left hand side is parameterized

by the (6N−3)–dimensional vector ỹ±
j . The potential φ̂

±
j

(
x; ỹ±

j

)
does not capture all

terms of the interaction potential U
(
x
)
given in (2.7). To rewrite the BD model (3.3)

using the averaged electrostatic potential φ(x), we define the error term as the differ-
ence

(3.14) E±
j

(
x; X̃±

j

)
= Φ±

j

(
x
)
− q± φ̂±

j

(
x; X̃±

j

)
,

where Φ±
j

(
x
)
≡ Φ±

j

(
x; X̃±

j

)
is given by (3.1)–(3.2). Substituting (3.14) into equa-

tion (3.3), we reformulate our BD model as

(3.15) dX±
j (t) = −α± ∇

(
q± φ̂±

j

(
X±

j ; X̃
±
j

)
+ E±

j

(
X±

j ; X̃
±
j

))
dt+

√
2D± dWj ,

for j = 1, 2, . . . , N. The time evolution of p
(
x, t
)
is given by the Fokker-Planck equa-

tion [33, 34]

∂p

∂t

(
x, t
)
=

N∑

j=1

∇+
j ·
(
D+∇+

j p + pα+∇+
j

(
q+ φ̂+

j

(
x+
j ; x̃

+
j

)
+ E+

j

(
x+
j ; x̃

+
j

))

+

N∑

j=1

∇−
j ·
(
D−∇−

j p + pα−∇−
j

(
q− φ̂−

j

(
x−
j ; x̃

−
j

)
+ E−

j

(
x−
j ; x̃

−
j

))
.(3.16)

Multiplying by N , integrating over x̃±
1 , and using (3.9), (3.11) and (2.10), we obtain

(3.17)
∂c±

∂t
= ∇ ·D±

(
∇c± +

q±

kbT
c± ∇φ + fer

)
,

where the error term is given by

fer
(
x, t
)
=

N

kbT

∫

Ω2N−1

p
(
x, x̃±

1 , t
)
∇±

1 E
±
1

(
x; x̃±

1

)
dx̃±

1

+
Nq±

kbT

∫

Ω2N−1

∫

Ω2N

p
(
x, x̃±

1 , t
)
p
(
y, t
) (

∇±
1 φ̂

±
1

(
x; x̃±

1

)
−∇φ̂

(
x;y

))
dy dx̃±

1 .(3.18)

Consequently, equation (3.17) reduces to the Nernst-Planck equations (1.1) provided
that fer ≡ 0.

4. Comparison of BD with the solution obtained by the PNP system.

In this section, we will implement both the microscopic and macroscopic descriptions
of an illustrative model comprising a system of Na+ and Cl− ions. The macroscopic
description is given by the PNP equations (1.1)–(1.2) derived in Section 3. This is
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Fig. 1. (a) Schematic of the computational domain Ω given by (2.1) with periodic lattices of
point charges on planes x1 = 0, x1 = L1/2 and x1 = L1. We use Np = 4.
(b) The steady state solutions c−(x1) and c+(x1) obtained by one-dimensional approximation (4.5)
for three different choices of N and Np, namely: (i) N = 100 and Np = 6 (solid lines);
(ii) N = 100 and Np = 4 (dashed lines); and (iii) N = 50 and Np = 4 (dot-dashed lines).

followed in Section 5 by developing a multi-resolution scheme that uses both BD and
PNP in the same dynamical simulation.

We consider a simulation of N sodium and N chloride ions in domain Ω defined
by (2.1). In particular, we use the parameters given for Na+ and Cl− in Table 1. The
permanent charge density ̺p, which appears in (1.2) or (3.4), is given in our example
as regular rectangular lattices of permanent positive (on plane x1 = 0) and negative
charges (on plane x1 = L1/2). Since we consider periodic boundary conditions, these
layers are repeated in all planes x1 = j L1 and x1 = (j + 1/2)L1, where j in an
integer. Our domain is schematically shown in Figure 1(a), where we highlight the
layer of permanent charges in planes x1 = 0, x1 = L1/2 and x1 = L1. More precisely,
given an integer value Np, we have N2

p elementary charges on the side x1 = 0 of the
cuboid (2.1) at points

(4.1) z+m,n =

[
0,

(m− 1/2)L2

Np
,
(n− 1/2)L3

Np

]
for m,n = 1, 2, . . . , Np ,

and we also have N2
p negative elementary charges on the side x1 = L1/2 of the

cuboid (2.1) at points

(4.2) z−m,n = [L1/2, 0, 0] + z+m,n for m,n = 1, 2, . . . , Np.

Therefore the permanent charge density is given as

(4.3) ̺p
(
x
)
=

Np∑

m=1

Np∑

n=1

e δ3
(
x− z+m,n

)
− e δ3

(
x− z−m,n

)
.

In our model, we identify the elementary charges on the side x1 = 0 with Na+ ions
at fixed positions (4.1) and the elementary charges on the side x1 = L/2 with Cl−

ions at fixed positions (4.2). In particular, ions are repelled from the fixed charges
at short distances by the corresponding Lennard-Jones type interactions, giving the
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Laplacian of the background potential (3.4) in the form

H+
0 (x) =

q+̺p(x)

ε0 ε
+

Np∑

m,n=1

132A1

‖x−z+m,n‖14
− 30B1

‖x−z+m,n‖8
+

132A2

‖x−z−m,n‖14
− 30B2

‖x−z−m,n‖8
,

H−
0 (x) =

q−̺p(x)

ε0 ε
+

Np∑

m,n=1

132A2

‖x−z+m,n‖14
− 30B2

‖x−z+m,n‖8
+

132A3

‖x−z−m,n‖14
− 30B3

‖x−z−m,n‖8
,

where parameters A1 and B1 (resp. A2 and B2, or A3 and B3) correspond to Na+-
Na+ (resp. Na+-Cl− or Cl−-Cl−) interactions and are given in Table 1. The cuboid
domain (2.1) is chosen with equal parameters L1 = L2 = L3 = 10nm, i.e. Ω is a cube
and we implement periodic boundary conditions as discussed in Section 2. Our model
will be investigated using BD simulations in Section 4.2 and by numerically solving the
PNP system (1.1)–(1.2) in Section 4.3. We begin by discussing the equilibrium prop-
erties of our model, when the PNP system reduces to solving the Poisson-Boltzmann
equation.

4.1. One-dimensional approximation. In Figure 1(a), permanent charges are
placed on a rectangular lattice with spacing L2/Np and L3/Np. To get some insight
into the model behaviour, we first approximate the layers of sodium and chloride ions
at positions (4.1) and (4.2) as uniformly charged planes at x1 = 0 and x1 = L1/2
with surface charge density σ+ and σ−, respectively, where

σ± = ±
N2

p e

L2 L3
.

Using this assumption, we can develop a one-dimensional approximation of our sys-
tem, because c± and φ are constant in x2 and x3 directions. Considering the equilib-
rium properties of our system, we can substitute

(4.4) c±(x) = c±(x1) and φ(x) = φ(x1)

into the Nernst-Planck equation (1.1) and pass t → ∞ to get

(4.5) c±(x1) = c0 exp

(
−q± φ(x1)

kbT

)
,

where c0 is a constant given by the normalization condition

(4.6) N =

∫ L1

0

∫ L2

0

∫ L3

0

c±(x) dx3 dx2 dx1 = L2 L3

∫ L1

0

c±(x1) dx1.

Substituting (4.4) and (4.5) into the Poisson equation (1.2), and using q+ = e and
q− = −e, we get
(4.7)

φ′′(x1) =
e

ε0 ε


2 c0 sinh

(
eφ(x1)

kbT

)
+

N2
p

L2 L3

∞∑

j=−∞

δ
(
x1 − (j + 1/2)L1

)
− δ
(
x1 − jL1

)

.

Since φ(x1) is L1-periodic function and symmetric around x1 = L1/2, we can find it
by solving equation (4.7) in interval [0, L1/2]. This is equivalent to solving

(4.8) φ′′(x1) =
2 e c0
ε0 ε

sinh

(
eφ(x1)

kbT

)
in x ∈ [0, L1/2],
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with boundary conditions

(4.9) φ′(0) = −
N2

p e

2 ε0 εL2 L3
, φ′(L1/2) = −

N2
p e

2 ε0 εL2 L3
,

and the normalization condition (4.6). The solutions are presented in Figure 1(b),
where we plot c− and c+ given by (4.5) as a function of x1 for three different choices
of N and Np, namely: (i) N = 100 and Np = 6; (ii) N = 100 and Np = 4; and
(iii) N = 50 and Np = 4. In our calculations based on solving equation (4.8), we
assume that N/2 of mobile ions are in interval [0, L1/2]. To visualize the results in
Figure 1(b), we extend the calculated solution of (4.8) from [0, L1/2] to the whole
interval [0, L1] by symmetry.

4.2. BD implementation. The equilibrium solution of macroscopic equations
equations given by the Poisson-Boltzmann system (4.5)–(4.7) in Figure 1(b) provides
the coarsest description of our model system with Na+ and Cl− ions. In this section,
we will present an implementation of the most detailed (microscopic, individual-based)
model which is given as a BD simulation of the system of N sodium and N chloride ions
in the cuboid domain (2.1) with permanent charges at locations (4.1)–(4.2) and with
periodic boundary conditions. In particular, the permanent charges are periodically
repeated in all planes x1 = jL1/2, where j is an integer. To simulate the evolution of
the BD model, we will choose a small time step ∆t and we discretize equation (3.3)
by using the Euler-Maruyama method. We get

(4.10) X±
j (t+∆t) = X±

j (t)− α± ∇
(
Φ±

j

(
X±

j

))
∆t+

√
2D±∆t ξj ,

for j = 1, 2, . . . , N, where the coordinates of vector ξj are sampled from a normal

distribution with zero mean and unit variance and Φ±
j

(
x
)
≡ Φ±

j

(
x; X̃±

j

)
is given

by (3.1)–(3.2). In our BD simulations based on equation (4.10), we need to cal-
culate the potential gradient at every time step. This includes sums (2.5) over all
integer valued vectors (2.4). To evaluate these sums efficiently, we first decompose
the potential into two terms (3.14) and rewrite the BD equation (3.3) as (3.15).

The first term E±
j

(
X±

j ; X̃
±
j

)
only contains short-range interactions and we can calcu-

late it by replacing the sum of infinitely many terms (2.5) with the most important
term in this sum, which corresponds to the copy of the point closest to X±

j , i.e.
we use the minimum–image convention to approximate all short-range interactions
in E±

j

(
X±

j ; X̃
±
j

)
. Moreover, we denote the Euclidean distance ‖ · ‖ modified by the

minimum-image convention by

(4.11) |z1 − z2|min = min
ℓ

‖z1 − zj − Lℓ ‖ for any z1, z2 ∈ R
3.

The second term in (3.14), q± φ̂±
j

(
X±

j ; X̃
±
j

)
, can be expressed using φ̂

(
x;y

)
that solves

the Poisson equation (3.5). We divide it into two terms corresponding to the mobile
and fixed, ions, respectively. We obtain

φ̂
(
x;y

)
= φ̂m

(
x;y

)
+ φ̂p

(
x
)
,

where φ̂m

(
x;y

)
and φ̂p

(
x
)
solve the Poisson equations in the following forms

(4.12) ∇2φ̂m

(
x;y

)
= − 1

ε0 ε

∑

ℓ

[
N∑

i=1

(
q+ δ3

(
x−y+

i −Lℓ

)
+ q− δ3

(
x−y−

i −Lℓ

))
]
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and

(4.13) ∇2φ̂p

(
x
)
= − 1

ε0 ε

∑

ℓ

̺p(x−Lℓ).

To solve (4.12), we will use the Ewald summation [35, 36]. We get

φ̂m

(
x;y

)
=

1

4πε0 ε

N∑

i=1

(
q+

erfc(β|x−y+
i |min)

|x−y+
i |min

+ q−
erfc(β|x−y−

i |min)

|x−y−
i |min

)

+
1

ε0 εL1L2L3

∑

ℓ 6=[0,0,0]

1

|kℓ|2
exp

(
−|kℓ|2

4β2

)
(4.14)

×
N∑

i=1

(
q+ exp

(
ikℓ · (x−y+

i )
)
+ q− exp

(
ikℓ · (x−y−

i )
))

where β > 0 is a parameter, | · |min denotes the distance modified by the minimum
image convention (4.11) and

(4.15) kℓ =

[
2πℓ1
L1

,
2πℓ2
L2

,
2πℓ3
L3

]
for any integer valued vector ℓ = [ℓ1, ℓ2, ℓ3].

Since the permanent charge density is given by (4.3), the equation (4.13) has the
same functional form as the equation (4.12) with permanent charges replacing the

mobile charges. In particular, the potential φ̂p

(
x
)
can be calculated by the Ewald

summation formula (4.14) with permanent charges replacing the mobile charges, with
some computations performed only once at the beginning of the simulation. We define

(4.16) θp(ℓ) =
exp
(
−|kℓ|2/(4β2)

)

|kℓ|2 ε0 εL1L2L3

Np∑

m=1

Np∑

n=1

q+ exp
(
ikℓ · z+m,n

)
+ q− exp

(
ikℓ · z−m,n

)
,

where z+m,n and z−m,n are positions of permanent positive and negative charges given
by (4.1) and (4.2), respectively. Our BD algorithm uses equation (4.10) at every time
step, which requires calculating the gradient of (4.14). Let r be the distance between
two ions with separation vector r, i.e. r = |r|. Differentiating (2.8) and the first term
(real part) of the potential (4.14), we define (the real part of) the force term between
the ions as

(4.17) Fk(r) =

(
12Ak

r14
− 6Bk

r8
+

2β√
π

Ck exp(−β2r2)

r2
+

Ck erfc(βr)

r3

)
r ,

where k = 1, k = 2, and k = 3, correspond to interactions between two Na+ ions, one
Na+ and one Cl− ion, and two Cl− ions, respectively.

One iteration of the BD algorithm (i.e. the update of the system from time t
to time t +∆t) is described in Table 2 as Algorithm [A1]–[A6]. We denote the drift
term −α± ∇

(
Φ±

j

(
X±

j

))
in equation (4.10) as a±j (t), i.e. we rewrite the discretized

equation (4.10) as

(4.18) X±
j (t+∆t) = X±

j (t) + a±j (t)∆t+
√
2D±∆t ξj ,
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Fig. 2. The equilibrium distributions calculated using Algorithm [A1]–[A6] for N = 100, Np = 6,
κ = 3 and β = 0.05 are visualized as gray histograms for (a) mobile Na+ ions; and (b) mobile
Cl− ions. The results are compared with density c± calculated for the same parameter values in
Figure 1(b) by using a one-dimensional approximation of the PNP system, given by (4.7) with
boundary conditions (4.9) (green lines). The red lines are calculated using Algorithm [B1]–[B4] for
numerically solving the three-dimensional PNP system (1.1)–(1.2).

for j = 1, 2, . . . , N, where drift term a±j (t) is calculated in steps [A1]–[A5]. In step [A1],
we initialize the drift term using the components of forces corresponding to the per-
manent charges, putting

a+j (t) := α+

Np∑

m=1

Np∑

n=1

F1

(
(X+

j − z+m,n)min

)
+ F2

(
(X+

j − z−m,n)min

)
(4.19)

a−j (t) := α−

Np∑

m=1

Np∑

n=1

F2

(
(X−

j − z+m,n)min

)
+ F3

(
(X−

j − z−m,n)min

)
(4.20)

where we substitute separation vectors modified by the minimum image conven-
tion (4.11) in the formula (4.17), using notation (·)min and | · |min to denote the
corresponding modified vectors and norms, respectively. In step [A2], we add force
terms corresponding to interactions between mobile Na+ ions. This is followed in
steps [A3] and [A4] by adding force terms corresponding to Na+–Cl− and Cl−–Cl−

interactions, respectively, between mobile ions. In step [A5], we calculate sum

(4.21) θ(ℓ) = θp(ℓ)+
exp
(
−|kℓ|2/(4β2)

)

|kℓ|2 ε0 εL1L2L3

N∑

i=1

q+ exp
(
ikℓ ·X+

i

)
+q− exp

(
ikℓ ·X−

i

)
,

which is needed to evaluate the Fourier part of the potential (4.14). It includes the
precomputed term θp(ℓ), given by (4.16), corresponding to the permanent charges.
The summation in step [A5] is over all ℓ ∈ L(κ), where κ ∈ N is a parameter to be
specified, and set L(κ) is defined by

(4.22) L(κ) =
{
ℓ = [ℓ1, ℓ2, ℓ3]

∣∣∣ |ℓ1| ≤ κ, |ℓ2| ≤ κ, |ℓ3| ≤ κ and ℓ 6= [0, 0, 0]
}
.

Finally, after we evaluate the drift term in steps [A1]–[A5], we use equation (4.18) to
calculate the positions of mobile ions at time t+∆t in step [A6].

In Figure 2, we present illustrative results calculated by Algorithm [A1]–[A6]. We
useN = 100 mobile Na+ ions andN = 100 mobile Cl+ ions in domain Ω given by (2.1)
with L1 = L2 = L3 = 10nm and the permanent charges at locations (4.1)–(4.2) with
Np = 6. To apply our BD Algorithm [A1]–[A6], we need to specify parameters β > 0
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[A1] Initialize a±j (t), for j = 1, 2, . . . , N, using formulas (4.19)–(4.20).

[A2] For each pair of Na+ ions, labelled i and j (for i 6= j), calculate force F1(r)
between them by (4.17), where r = (X+

i −X+
j )min. Put

a+i (t) := a+i (t) + α+F1

(
(X+

i −X+
j )min

)

a+j (t) := a+j (t)− α+F1

(
(X+

i −X+
j )min

)

[A3] For each Na+ ion, labelled i, and each Cl− ion, labelled j, calculate force
F2(r) between them by (4.17), where r = (X+

i −X−
j )min. Put

a+i (t) := a+i (t) + α+F2

(
(X+

i −X−
j )min

)

a−j (t) := a−j (t)− α−F2

(
(X+

i −X−
j )min

)

[A4] For each pair of Cl− ions, labelled i and j (for i 6= j), calculate force F3(r)
between them by (4.17), where r = (X−

i −X−
j )min. Put

a−i (t) := a−i (t) + α−F3

(
(X−

i −X−
j )min

)

a−j (t) := a−j (t)− α−F3

(
(X−

i −X−
j )min

)

[A5] Calculate sum (4.21) for all ℓ ∈ L(κ), given by (4.22), and put

a+j (t) := a+j (t) + α+q+
∑

ℓ∈L(κ)

Im
(
θ(ℓ) exp

(
ikℓ ·X+

j

))
kℓ

a−j (t) := a−j (t) + α−q−
∑

ℓ∈L(κ)

Im
(
θ(ℓ) exp

(
ikℓ ·X−

j

))
kℓ

where Im(·) denotes the imaginary part of a complex number.

[A6] Generate 6N coordinates of vectors ξj , for j = 1, 2, . . . , N , as normally dis-
tributed numbers with zero mean and unit variance. Calculate the positions
of mobile ions at time t+∆t by using equation (4.18).

Table 2

One iteration of the BD algorithm to calculate the positions of ions at time t+∆t given positions
of ions at time t.

and κ ∈ N, which are used to implement the periodic boundary conditions using
the Ewald summation. In our illustrative simulations, we choose κ = 3 in (4.22),
which means that we evaluate |L(κ)| = (2κ + 1)3 − 1 = 342 terms in the sum in
step [A5]. This truncation of the infinite sum introduces an error in the evaluation
of the Fourier part of the Ewald sum. The choice of the parameter β > 0 can then
be optimized in the way that the error of the real part of the Ewald sum (which
dominates for small values of β) is comparable to the error of the Fourier part (which
dominates for large values of β). Using κ = 3, we find the optimal value of β to
be β = 0.05, which is used to obtain the results presented in Figure 2, where we
visualize the spatial histogram (density of ions) obtained by running the long-time
simulation of Algorithm [A1]–[A6] over 107 time steps of length ∆t = 10−2 ps. To
enable direct comparison, with our one-dimensional results in Figure 1(b), we plot
the calculated equilibrium density over the first coordinate, x1, integrating over the
x2 and x3 coordinates. We present this one-dimensional (marginal) distribution of
mobile Na+ ions in Figure 2(a) as the green histogram. We compare it with the
results (blue line) calculated by the approximate one-dimensional theory developed in
Section 4.1. We observe similar qualitative behaviour, but the results quantitatively
differ. We confirm this observation in Figure 2(b) where we present the BD results for
mobile Cl− ions as the green histogram. There are a number of reasons behind the
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observed difference. One of them is that our solution to the PNP system in Section 4.1
is itself a one-dimensional approximation. We will next compare it with numerically
solving the PNP system (1.1)–(1.2) in the three-dimensional domain. This numerical
approach will also be useful for developing the multi-resolution method in Section 5.

4.3. Numerical method for solving macroscopic PNP equations. To
solve the macroscopic PNP equations (1.1)–(1.2) in the three-dimensional cuboid do-
main (2.1), we use a cuboid mesh with n1 × n2 × n3 meshpoints, where ni ∈ N for
i = 1, 2, 3 and define

(4.23) ∆x1 =
L1

n1
, ∆x2 =

L2

n2
and ∆x3 =

L3

n3
.

The meshpoints are at locations

(4.24) xi,j,k =
[
(i− 1/2)∆x1, (j − 1/2)∆x2, (k − 1/2)∆x3

]

for i = 1, 2, . . . , n1, j = 1, 2, . . . , n2, k = 1, 2, . . . , n3, and we denote

(4.25) c±i,j,k(t) = c±(xi,j,k, t), φi,j,k(t) = φ(xi,j,k, t).

Using finite differences to discretize the right-hand side of equation (1.1), we obtain

(4.26)
dc±i,j,k
dt

= Ai,j,k(c
±, φ)

where Ai,j,k(c
±, φ) is defined by

Ai,j,k(c
±, φ) = D±

(
c±i+1,j,k − 2c±i,j,k + c±i−1,j,k

∆x2
1

+
c±i,j+1,k − 2c±i,j,k + c±i,j−1,k

∆x2
2

+
c±i,j,k+1 − 2c±i,j,k + c±i,j,k−1

∆x2
3

)

+
D± q±

2kbT

((
c±i+1,j,k + c±i,j,k

)
(φi+1,j,k − φi,j,k) +

(
c±i−1,j,k + c±i,j,k

)
(φi−1,j,k − φi,j,k)

∆x2
1

+

(
c±i,j+1,k + c±i,j,k

)
(φ1,j+1,k − φi,j,k) +

(
c±i,j−1,k + c±i,j,k

)
(φi,j−1,k − φi,j,k)

∆x2
2

+

(
c±i,j,k+1 + c±i,j,k

)
(φi,j,k+1 − φi,j,k) +

(
c±i,j,k−1 + c±i,j,k

)
(φi,j,k−1 − φi,j,k)

∆x2
3

)
,

with the convention that indices i, j, k are periodic with periods n1, n2 and n3,
respectively. For example, c+n1+1,j,k is identified with c+1,j,k to implement the peri-
odic boundary conditions. One iteration of our algorithm for solving the PNP equa-
tions (1.1)–(1.2) is given in Table 3 as Algorithm [B1]–[B4]. It calculates concentra-
tions c±i,j,k(t + δt) and potential φi,j,k(t + δt) at time t + δt given the concentrations

c±i,j,k(t) and potential φi,j,k(t) at time t, where δt is the time step used for solving
the PNP equations (1.1)–(1.2). We note that we use different notation to denote the
time step, ∆t, in our BD model in Table 2, and the time step δt to solve the PNP
equations (1.1)–(1.2) in Table 3, because time steps δt and ∆t can be, in general,
different.
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In step [B1], we solve the system of ODEs (4.26) over the time interval [t, t+ δt).
Assuming that δt is chosen sufficiently small, we can update the system using the
forward Euler scheme

c+i,j,k(t+ δt) := c+i,j,k(t) + δtAi,j,k

(
c+(t), φ(t)

)
.(4.27)

c−i,j,k(t+ δt) := c−i,j,k(t) + δtAi,j,k

(
c−(t), φ(t)

)
.(4.28)

In steps [B2]–[B4], we calculate the potential φi,j,k(t + δt) by solving the Poisson
equation (1.2). We write it as

(4.29) φi,j,k(t+ δt) := φm
i,j,k + φ̂p

(
xi,j,k

)
,

where φ̂p

(
x
)
is the solution of (4.13) giving the potential corresponding to the per-

manent charges. This potential is the same as in our BD simulations in Section 4.2
and is precomputed at the beginning of the simulation. Subtracting equations (1.2)
and (4.13), we obtain φm

i,j,k in equation (4.29) as φm
i,j,k = φm(xi,j,k), where φm solves

the Poisson equation

(4.30) ∇2φm = − 1

ε0 ε

[
q+ c+ + q−c−

]
.

To solve equation (4.30), we use the central difference method to discretize the Lapla-
cian to obtain

φm
i+1,j,k − 2φm

i,j,k + φm
i−1,j,k

∆x2
1

+
φm
i,j+1,k − 2φm

i,j,k + φm
i,j−1,k

∆x2
2

+
φm
i,j,k+1 − 2φm

i,j,k + φm
i,j,k−1

∆x2
3

= − 1

ε0 ε

[
q+ c+i,j,k + q−c−i,j,k

]
(4.31)

and apply the discrete Fourier transform. In step [B2], we use the fast Fourier trans-
form algorithm to calculate the discrete Fourier transform of the right-hand side of
equation (4.31), which is used in step [B3] to calculate φm

i,j,k by using the inverse fast
Fourier transform algorithm. The corresponding factor λ(i′, j′, k′) is obtained by cal-
culating the discrete Fourier transform of the discretized Laplacian on the left hand
side of equation (4.31) as

λ(i′, j′, k′) =
1

2

[(
1− cos

2π(i′−1)

n1

)
n2
1

L2
1

+

(
1− cos

2π(j′−1)

n2

)
n2
2

L2
2

+

(
1− cos

2π(k′−1)

n3

)
n2
3

L2
3

]−1

.(4.32)

The potential φi,j,k(t + δt) is then calculated in step [B4] by adding the potential
corresponding to the permanent charges using equation (4.29).

In Figure 2, we present illustrative results calculated using Algorithm [B1]–[B4]
as the red lines. We use n1 = n2 = n3 = 96 = 3 × 25 mesh points in each direction.
The small prime factors enable a relatively simple implementation of the Cooley and
Tukey algorithm [37] for the discrete Fourier transform. In Figure 2, we present the
calculated equilibrium densities as functions of the first coordinate, x1, integrating
over the x2 and x3 coordinates. To highlight the discreteness of the calculated results,
we plot this one-dimensional (marginal) distribution of mobile Na+ ions in Figure 2(a)
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[B1] Calculate concentrations c+i,j,k(t+δt) and c−i,j,k(t+δt) by using (4.27)–(4.28).

[B2] Calculate the discrete Fourier transform fi′,j′,k′ of

− 1

ε0 ε

[
q+ c+i,j,k(t+ δt) + q−c−i,j,k(t+ δt)

]

using the fast Fourier transform algorithm.

[B3] Calculate φm
i,j,k as the inverse discrete Fourier transform of λ(i′, j′, k′)fi′,j′,k′ ,

where λ(i′, j′, k′) is given by (4.32), using the inverse fast Fourier transform
algorithm.

[B4] Calculate φi,j,k(t+ δt) using equation (4.29).

Table 3

One iteration of the algorithm to solve PNP equations (1.1)–(1.2), calculating concentrations
c±
i,j,k

(t+ δt) and potential φi,j,k(t+ δt) at time t+ δt given the concentrations c±
i,j,k

(t) and potential

φi,j,k(t) at time t.

as the red dots (obtained at n1 = 96 values) connected by the red line. The one-
dimensional (marginal) distribution of mobile Cl− ions is presented in Figure 2(b).
The calculated values at mesh points in the vicinity of the layers of permanent charges
(at x1 = 0 and x1 = L/2) are well above the BD results. This error cannot be
improved by increasing the mesh sizes n1, n2 and n3, because it is caused by the
error term (3.18), which is missing in the PNP system. This error term includes the
Lennard-Jones potential of permanent charges, which would prevent the density c±

accumulating in the mesh points close to the permanent charges, if it was included in
macroscopic description. While this could decrease the observed difference between
the PNP solution and BD simulations around x1 = 0 and x1 = L/2 in Figure 2, it
is not straightforward to add the Lennard-Jones potential to the PDE simulations,
because it introduces relatively steep potential gradients in a few mesh points next to
the permanent charges, leading to numerical instabilities. An alternative approach is
to solve the PDEs only in sub-regions not containing permanent charges. This leads to
the multi-resolution algorithm developed in Section 5, where detailed BD simulations
are used to capture the system dynamics in sub-regions close to the permanent charges.

5. Multi-resolution simulations. Considering reaction-diffusion processes of
electroneutral particles, PDE-assisted Brownian Dynamics [24] combines BD simu-
lations based on equation (1.4) with solving macroscopic reaction-diffusion PDEs in
parts of the computational domain. In our model system, we would like to apply BD
close to the layers of permanent charges and use PNP equations in the rest of the com-
putational domain. To achieve this, we need to extend the multi-resolutions approach
to the models of charged particles, where the macroscopic system is given by the PNP
equations (1.1)–(1.2). Following [24], we divide our computational domain (2.1) into
two overlapping subdomains

ΩB =

([
0, ωB

]⋃[
L1

2
− ωB ,

L1

2
+ ωB

]⋃[
L1 − ωB , L1

])
× [0, L2]× [0, L3] ,(5.1)

ΩP =

([
ωP ,

L1

2
− ωP

]⋃[
L1

2
+ ωP , L1 − ωP

])
× [0, L2]× [0, L3] ,(5.2)
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where ωB and ωP satisfy

(5.3) 0 < ωP ≤ ωB <
L1

4
.

The subdomain ΩB contains the layers of permanent charges, where we have observed
the large difference between the results obtained by the PNP system (1.1)–(1.2) and
BD simulations. In particular, we will use BD in domain ΩB to follow trajectories
of individual ions, while we use macroscopic concentration profiles c± in domain ΩP .
In ωP = ωB , then the intersection of ΩP and ΩB only contains the two-dimensional
boundaries of these regions, while we have an overlap region if ωP < ωB . We denote
it by

(5.4) O = ΩP ∩ ΩB = Ox × [0, L2]× [0, L3] ,

where

Ox =
[
ωP , ωB

]⋃[
L1

2
−ωB ,

L1

2
−ωP

]⋃[
L1

2
+ωP ,

L1

2
+ωB

]⋃[
L1 − ωB , L1 − ωP

]
.

We use grid sizes (4.23) to discretize the PNP equations at meshpoints (4.24) and
notation (4.25) to denote the values of concentrations c± at the meshpoints. The
state of the multi-resolution system at time t is given by

(s1) the values of concentrations c+i,j,k(t) and c−i,j,k(t) at meshpoints xi,j,k ∈ ΩP ,

(s2) positions X±
j (t) = [X±

j,1(t), X
±
j,2(t), X

±
j,3(t)] ∈ ΩB , for j = 1, 2, . . . , N±

B (t),

(s3) potential φi,j,k(t) for i = 1, 2, . . . , n1, j = 1, 2, . . . , n2, k = 1, 2, . . . , n3,

where N±
B (t) is the number of positive and negative ions described as individual

particles by the BD approach. The number of simulated ions N±
B (t) depends on

time t. Since we have, in general, N+
B (t) 6= N−

B (t), the BD subsystem does not satisfy
electroneutrality on its own, but the system will be electroneutral when both parts of
the system (s1) and (s2) are considered together. In particular, we will not use the
Ewald summation, but the potential φ at meshpoints (4.24) will be calculated as the
sum of two terms given by equation (4.29), where potential φm

i,j,k corresponds to the

mobile charges expressed either as concentrations c± of ions in ΩP or as individual
ions in ΩB .

One iteration of the multi-resolution algorithm is given in Table 4 as Algorithm
[M1]–[M8]. Given the state of the multi-resolution system (s1)–(s3) at time t, Al-
gorithm [M1]–[M8] calculates the state of the system (s1)–(s3) at time t + ∆t. In
step [M1], we evolve the concentrations c± from time t to time t+∆t by using (4.27)–
(4.28). Since the state of the multi-resolution system (s1)–(s3) only defines c± in
subdomain ΩP , we first extend it by zero to the rest of the simulation domain by
putting

(5.5) c±i,j,k(t) := 0 for meshpoints xi,j,k ∈ Ω \ ΩP .

Then we can apply equations (4.27)–(4.28) to calculate the time evolution of con-
centrations c± over one time step [t, t+∆t]. Since the calculated concentrations are
further modified in step [M6] to take into account the transfer of ions between ΩB

and ΩP , we will add an extra asterisk to c± and denote the output of calculations in
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[M1] Extend the values of concentrations c+i,j,k(t) and c−i,j,k(t) outside of the sub-

domain ΩP by (5.5) and calculate the concentrations c∗,+i,j,k(t + ∆t) and

c∗,−i,j,k(t+∆t) by equations (5.6)–(5.7).

[M2] Calculate drift terms a±j (t), for j = 1, 2, . . . , N±
B (t), using steps [A1]–[A4]

where N is replaced by N±
B (t) and β = ∞. Put

a±j (t) := a±j (t)− α±q± ∇φ
(
X±

j

)
, for j = 1, 2, . . . , N±

B (t),

where ∇φ
(
X±

j

)
is a discretized gradient given by equation (5.8).

[M3] Generate 6NB(t) coordinates of vectors ξj , for j = 1, 2, . . . , N±
B (t), as nor-

mally distributed numbers with zero mean and unit variance. Calculate the
positions of mobile ions at time t+∆t by using equation (4.18).

[M4] Calculate µ±(t + ∆t) using (5.10). Put γ± = γ±
(i) where γ±

(i) is given by

(5.12).

[M5] Generate two uniformly distributed random numbers r± in (0, 1).
If r± < µ±(t+∆t), then create new ion in ΩB \ ΩP according to the prob-
ability density p±B(x, t+∆t) defined in (5.11) and
set γ± = γ±

(ii) where γ±
(ii) is given by (5.12).

[M6] Terminate trajectories of BD ions which landed in ΩP \ ΩB .
Calculate concentrations c+i,j,k(t+∆t) and c−i,j,k(t+∆t) in ΩP by (5.14).

[M7] Calculate the discrete Fourier transform fi′,j′,k′ of

− 1

ε0 ε


q+ c+i,j,k + q−c−i,j,k + q+

N
+

B∑

j=1

δ(X±
j )i,j,k

∆x1 ∆x2 ∆x3
+ q−

N
−

B∑

j=1

δ(X−
j )i,j,k

∆x1 ∆x2 ∆x3




using the fast Fourier transform algorithm.

[M8] Calculate φm
i,j,k as the inverse discrete Fourier transform of λ(i′, j′, k′)fi′,j′,k′ ,

where λ(i′, j′, k′) is given by (4.32), using the inverse fast Fourier transform
algorithm. Calculate φi,j,k(t+∆t) using equation (4.29).

Table 4

One iteration of the multi-resolution algorithm.

step [M1] as c∗,+i,j,k(t+∆t) and c∗,−i,j,k(t+∆t), rewriting equations (4.27)–(4.28) as

c∗,+i,j,k(t+ δt) := c+i,j,k(t) + δtAi,j,k

(
c+(t), φ(t)

)
.(5.6)

c∗,−i,j,k(t+ δt) := c−i,j,k(t) + δtAi,j,k

(
c−(t), φ(t)

)
.(5.7)

Equations (5.6)–(5.7) are formulated with time step δt, which we use in Section 4.3 to
solve PNP equations. If δt = ∆t, this means that step [M1] is equivalent to step [B1]
from Algorithm [B1]–[B4] for solving the PNP equations. However, we can also choose
δt < ∆t such that ∆t/δt is an integer, and apply equations (5.6)–(5.7) multiple times
to calculate concentrations c∗,± at time t+∆t in step [M1].

In step [M2], we calculate drift terms a±j (t), for j = 1, 2, . . . , N±
B (t), which are

used to update the positions of BD ions over one time step using equation (4.18). The
calculation of drift terms follows steps [A1]–[A4], where N is substituted by N±

B (t) and
we formally use β = ∞, i.e. we only consider the Lennard-Jones forces between all
permanent and mobile ions in formulas used in [A1]–[A4] and add their contributions
to to drift terms a±j (t) in step [M2]. Then we also add all electric contributions in



20 J. ZHANG AND R. ERBAN

step [M2] by differentiating electric potential using the central difference scheme as

(5.8) ∇φ
(
x
)
=

[
φi+1,j,k − φi−1,j,k

2∆x1
,
φi,j+1,k − φi,j−1,k

2∆x2
,
φi,j,k+1 − φi,j,k−1

2∆x3

]
,

where

(5.9) i =

⌈
x1

∆x1

⌉
, j =

⌈
x2

∆x2

⌉
, k =

⌈
x3

∆x3

⌉
, for x = [x1, x2, x3],

and ⌈·⌉ denotes the ceiling function, rounding a real number up to the nearest integer.
Here, we again use the convention that indices i, j and k are periodic with periods
n1, n2 and n3, respectively. Step [M3] is the same as step [A6], where we perform
the BD part of the simulation by substituting the calculated drift terms a±j (t), for

j = 1, 2, . . . , N±
B (t), into equation (4.18).

While concentration c± was equal to zero in ΩB \ ΩP at time t by our defi-
nition (5.5), we will have a nonzero concentrations c∗,± at time t + ∆t. The mean
number of ions ‘spilling over’ to ΩB\ΩP during the time interval [t, t+∆t] is calculated
in step [M4] by

(5.10) µ±(t+∆t) =

∫

ΩB\ΩP

c∗,±(x, t+∆t) dx .

If ∆t is sufficiently small, then we have µ±(t + ∆t) ≪ 1. In particular, µ±(t + ∆t)
can be interpreted as the probability of introducing new ion into ΩB \ ΩP . Its new
position is sampled in step [M5] according to the probability distribution

(5.11) p±B(x, t+∆t) =
c∗,±(x, t+∆t)

µ±(t+∆t)
, for x ∈ ΩB \ ΩP .

To ensure the conservation of the total number of particles in the whole domain Ω, we
also calculate scaling factors γ± in steps [M4]–[M5], which are then used in step [M6]
to rescale the concentration profiles c∗,± in ΩP . The scaling factors are given by

(5.12) γ±
(i) =

N −N±
B (t)

N −N±
B (t)− µ±(t+∆t)

, γ±
(ii) =

N −N±
B (t)− 1

N −N±
B (t)− µ±(t+∆t)

,

where N+
B (t) (resp. N−

B (t) is the number of individually simulated positive (resp.
negative) ions in the BD domain ΩB at time t.

In step [M6], we identify the ions which left the subdomain ΩB . They are removed
from the simulation and added as Dirac delta function to obtain new concentration
profiles in ΩP at time t+∆t. More precisely, we define the discretized version of the
Dirac delta function centered at position x by

(5.13) δ(x)i,j,k =

{
1 for i, j and k given by (5.9);

0 otherwise.

Then the concentration update in step [M6] can be written as

(5.14) c±i,j,k(t+∆t) = γ± c∗,±i,j,k(t+∆t) +
∑

ℓ∈J±

δ(X±
ℓ (t+∆t))i,j,k

∆x1 ∆x2 ∆x3
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Fig. 3. The equilibrium distributions calculated using Algorithm [M1]–[M8] for N = 100,
Np = 6, n1 = n2 = n3 = 96, L1 = L2 = L3 = 10nm, ωP = 5L1/n1 and ωB = 10L1/n1 for
(a) mobile Na+ ions; and (b) mobile Cl− ions.

where the set J + (resp. J−) contains indices of all terminated positive (resp. nega-
tive) ions. In particular, we transform the position of each terminated positive (resp.
negative) ion into its nearest mesh point (i, j, k) by applying equation (5.9) and add
1/(∆x1 ∆x2 ∆x3) to the corresponding concentration c+ (resp. c−) at this mesh
point. The concentration update (5.14) preserves the number of particles, which we
can formulate using our state variables (s1)–(s3) as

(5.15) N = N±
B (t) +

∫

ΩP

c±(x, t) dx = N±
B (t) +

n1∑

i=1

n2∑

j=1

n3∑

k=1

c±i,j,k(t)∆x1 ∆x2 ∆x3 ,

where we have used the extension (5.5) on the right-hand side, i.e. the summation
on the right-hand side can be restricted to the mesh points, which are in ΩP .

Finally, steps [M7]–[M8] calculate the potential φi,j,k(t + ∆t) using a similar
approach as in steps [B2]–[B4]. In step [M7], the right-hand side of the discretized
Poisson equation (4.31) is modified to take into account all mobile ions at time t+∆t.
In particular, potential φm

i,j,k (calculated in step [M8] by the inverse fast Fourier
transform algorithm) will contain electric potential corresponding to all mobile ions,
which are either represented as individual ions or as concentration fields. In step [M8],

we add potential φ̂p

(
x
)
corresponding to the permanent charges using equation (4.29)

at time t + ∆t. As it has been the case of our BD simulations in Section 4.2 or our
PNP solutions, the permanent potential can be precomputed at the beginning of the
simulation by solving equation (4.13).

In Figure 3, we present results calculated using Algorithm [M1]–[M8] applied to
our illustrative model with N = 100 mobile Na+ ions and N = 100 mobile Cl+ ions
in domain Ω given by (2.1), where L1 = L2 = L3 = 10nm. The permanent charges
are at locations (4.1)–(4.2) with Np = 6. We use n1 = n2 = n3 = 96 = 3 × 25 mesh
points in each direction to discretize the Poisson equation, i.e. our spatial resolution
for the calculation of electric potential is the same as we used in Section 4.3. The
mesh sizes are given by (4.23), and we use ωP = 5∆x1 and ωB = 10∆x1. In Figure 3,
we present the calculated equilibrium densities as functions of the first coordinate, x1,
integrating over the x2 and x3 coordinates. To highlight the multi-resolution nature
of the simulation, the concentrations c± in the region ΩP \ ΩB are denoted using
light blue (cyan) bars, the histograms in the region ΩB \ΩB are visualized using gray
bars and the red bars show the average concentration in the overlap region (5.4),
where some mobile ions are treated as concentration profiles and some mobile ions
are described as individual particles (we add their contributions together to obtain
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the red bars). Since the multi-resolution simulation explicitly includes the Lennard-
Jones potentials around permanent charges, the density c± does not accumulate in
the mesh points close to the permanent charges, which happens for the PNP solution
in Figure 2.

6. Discussion. In this paper, we have derived the PNP system (1.1)–(1.2) from
the BD model (2.3) in Section 3 in the limit N → ∞, where N is the number of
simulated ions. While the PNP system (1.1)–(1.2) is justified in a bulk solution [25],
the error term (3.18) can have significant effects on the system dynamics close to the
biological structures of interest. For example, considering applications to modelling
ion channels, the PNP system (1.1)–(1.2) can be used in regions far away from an
ion channel, but its applicability to the passage of ions through the ion channel is
questionable, especially in its narrowest part as indicated by computational studies
in the literature [16, 18, 19]. In Section 4, we have presented an illustrative system
with layers of permanent charges showing that the Lennard-Jones potential creates
exclusion zones around permanent charges which are not captured by the PNP sys-
tem (1.1)–(1.2). Such observations motivate the development of a multi-resolution
approach in Section 5, which uses PDEs (1.1)–(1.2) in the bulk and more detailed BD
simulations in the regions close to the permanent charges. The modeling accuracy
in regions described by BD could be further enhanced by incorporating a molecular
dynamics description [19, 38].

To design the multi-resolution scheme in Section 5, we have extended the PDE-
assisted BD approach for reaction-diffusion systems, developed in [24], to models
of charged particles. The resulting multi-resolution Algorithm [M1]–[M8] uses the
discrete Fourier transform to solve the Poisson equation. In particular, we need to
transform positions of individual ions to the corresponding mesh points by (5.13) and
use the calculated mesh-based potential to extract the forces by (5.8). Equations (5.8)
and (5.13) possess the necessary symmetry to ensure that each individual ion does
not respond to the potential arising from its own charge. However, this remains a
different approach compared to the BD method that employs the Ewald summation.
In the case of reaction-diffusion systems [24], the multi-resolution algorithm used a BD
approach without modifications, because there were no long-range forces to consider.
If a modeller wants to use the Ewald summation for interactions between individually
simulated particles in ΩB , then they would need to ensure the electroneutrality in the
BD subdomain, required by the Ewald summation. To further improve the accuracy,
there is a potential to use some hybrid approaches like particle-particle-particle mesh
algorithms [39, 40], or to use multi-grid approaches [41].

In our implementation of Algorithm [M1]–[M8] in Section 5, the multi-resolution
method includes the overlap region (5.4), where both the PDE description and BD
exist in parallel. In some multi-resolution approaches, it is possible to couple models
with different resolutions using a simple interface, as it has been shown for cou-
pling BD simulations with a coarser description given by a compartment-based model
(reaction-diffusion master equation) in [20]. The advantage of a simple interface over
an overlap region is that this can simplify some aspects of the software implemen-
tation of the resulting multi-resolution method [10]. It remains an open question
for future investigation whether the BD modelling of charged particles can be coarse-
grained as a compartment-based stochastic model which could potentially avoid using
an overlap region in a multi-resolution scheme. However, if a BD model is coarse-
grained using mean-field PDEs (like the PNP system in this paper), then the use
of an overlap region improves the accuracy, as it was previously shown for reaction-
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diffusion systems in the literature [24, 42]. The benefits of overlap (bridging, blending,
transition) regions have been also demonstrated in other multi-resolution approaches,
including coupling molecular dynamics and BD simulations [12, 8, 43], compartment-
based models with macroscopic PDEs [44, 45, 46], to bridge particle-based BD models
with macroscopic PDEs [47, 48], to coarse-grain the chemical master equation in the
state space [54], and more broadly to connect atomistic and continuum modelling in
material science [49, 50, 51, 52, 53, 55].

Considering our illustrative example in Section 5, the domain decomposition into
the BD and PDE subdomains ΩB and ΩP remained fixed throughout the entire simu-
lation. In some application areas, it is necessary to consider extending multi-resolution
techniques to scenarios where the BD subdomain ΩB changes over time [23], or the
domain undergoes temporal growth [56, 57].
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