NEURAL NETWORKS FOR LEARNING MACROSCOPIC
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Abstract. The macroscopic (population-level) dynamics of chemotactic cell movement — arising
from underlying microscopic (individual-based) models — are often described by parabolic partial
differential equations (PDEs) governing the spatio-temporal evolution of cell concentrations. In
certain cases, these macroscopic PDEs can be analytically derived from microscopic models, thereby
elucidating the dependence of PDE coefficients on the parameters of the underlying individual-
based dynamics. However, such analytical derivations are not always feasible, particularly for more
complex or nonlinear microscopic models. In these instances, neural networks offer a promising
alternative for estimating the coefficients of macroscopic PDEs directly from data generated by
microscopic simulations. In this work, three microscopic models of chemotaxis are investigated.
The macroscopic chemotaxis sensitivity is estimated using neural networks, thereby bridging the
gap between individual-level behaviours and population-level descriptions. The results are compared
with macroscopic PDEs, which can be derived for each model in certain parameter regimes.
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1. Introduction. The (classical, Keller-Segel) chemotaxis equation is a partial
differential equation (PDE) describing the time evolution of the spatio-temporal con-
centration of cells ¢(x,t) in response to a spatio-temporal chemical signal S(x,t).
Assuming that the signal S(x,t) is a chemoattractant, the chemotaxis equation can
be written as a drift-diffusion equation in domain  C R?, for dimension d € {1, 2,3},
in the following form [30, 12]

(1.1) % =V (DVec— cx(S)VS),

where ¢ : Q% [0,00) — [0, 00) is the concentraction of cells, D is the diffusion constant
and x : [0,00) = [0, 00) is the chemotactic sensitivity.

In some applications, cells not only detect the chemical S(x,t) but also have the
capacity to produce it as a signalling molecule or to consume it as a source of nutri-
tion [1, 15]. Then the classical chemotaxis equation is coupled with a PDE describing
the dynamics of the chemoattractant [27, 6, 35]. An example includes the original
Keller-Segel system [32], which describes the chemoattractant by a parabolic PDE
and uses singular chemotactic sensitivity x(S) = O(1/5) as S — 04. Such singu-
larities are necessary to obtain travelling wave solutions in the PDE systems of the
Keller-Segel type [31], which are also sometimes called the Patlak-Keller-Segel PDEs
in the literature acknowledging the earlier work of Patlak [41]. Both parabolic and
elliptic equations have been used for describing the chemoattractant S(x,t), resulting
in parabolic-parabolic and parabolic-elliptic Keller-Segel PDE systems [45, 20, 3, 46].
While the chemotactic sensitivity x(S) in some theoretical studies is assumed to be
constant (independent of §), this can result in finite-time blow-up of solutions [45].
This can be prevented and the resulting PDE systems can better model biological
phenomena by assuming a more realistic functional dependence of the chemotactic
sensitivity x(S) on the signal S [2, 21, 19]. For example, common assumptions in-
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clude that cells are not sensitive to large signal concentrations, and it is required that
x(S) = 0 as S — oo to get globally well-posed systems of PDEs in some models [2].

Chemotaxis can also be modelled using microscopic (individual-based) models.
In this paper, we will investigate three such models, denoted as Microscopic Mod-
els I, IT and III, each describing a collection of N individuals (unicellular organisms)
and their responses to extracellular chemical signal S. Microscopic Model I is a
signal-dependent position-jump process (Brownian dynamics), where the position of
each individual is described by a stochastic differential equation (SDE). Microscopic
Model IT is a signal-dependent velocity-jump process, while the most complex Mi-
croscopic Model IIT also includes internal (intracellular) dynamics describing signal
processing by each individual. We investigate the problem of inferring macroscopic
PDEs, including the functional form of the chemotactic sensitivity x(5), for each
microscopic model. Such PDEs can be analytically derived under some assumptions
for simplified individual-based models [38, 11, 47, 17, 37]. We will show that the
macroscopic chemotaxis sensitivity can also be estimated using feedforward neural
networks [23].

The paper is organised as follows. In Section 2, we introduce the chemotaxis
equation, its numerical discretisation and our feedforward neural network architecture.
Microscopic Models I, IT and III are presented, and their macroscopic description
inferred in Sections 3, 4 and 5, respectively. For each model, we will discuss parameter
regimes where their macroscopic behaviour is well approximated by the parabolic
chemotaxis equation (1.1). Considering velocity-jump processes, their macroscopic
description can also be obtained in the form of the hyperbolic chemotaxis equation [25,
14, 9]. We will show in Sections 4 and 5 that the loss function based on the hyperbolic
chemotaxis equation is more suitable for estimating the chemotactic sensitivity from
relatively short simulations of individual-based models. We conclude with a discussion
of our results in Section 6.

2. Chemotaxis equation and neural networks. In this paper, we will re-
strict our consideration to spatially one-dimensional chemotaxis models, with the
macroscopic concentration of cells denoted by c¢(z,t), where z € [0, L] for L > 0. In
particular, domain ) is the one-dimensional interval, Q = [0, L], and the macroscopic
chemotaxis equation (1.1) can be rewritten in the form

dc &?c 0 oS

We will assume that the signal profile varies in space but remains independent of time,
i.e. S = S(z). Our objective is to infer the appropriate form of chemotactic sensitivity
x(S), or, more generally, the entire macroscopic chemotaxis equation, based on the
estimation of cell concentration c(x,t) by microscopic models in Sections 3, 4 and 5.
We discretise interval [0, L] using n € N meshpoints at locations

(2.2) x; = (i —1/2) Az, 1=1,2,....n, where Amz%,

and denote

(2.3) ci(t) = c(xq, 1), S; = S(x;).

Then concentrations ¢;(t), ¢ = 1,2,...,n, can be estimated in our simulations of

individual-based models in Sections 3, 4 and 5 by calculating the number of individuals
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in interval [(i — 1)Ax, iAz] at time ¢. The notation (2.3) can also be used to describe
a numerical method for solving the macroscopic chemotaxis equation (2.1). Using
finite differences to discretise the right-hand side of equation (2.1), we obtain

d

ﬁ - AZ(C7S)

(2.4) =

where A;(c, S) is defined by

D S; S\ (civ1+¢i)(Si—Si
Ai(c,S) = A2 (Cit1—2¢i+cima) + X( +12+ ) Lo 022(362 =

Si 1+ 8i\ (cie1+¢)(Si — Siz1)
(25) +x( : ) gt ,

for internal mesh points i« = 2,3,...,n — 1. To extend the definition of A4;(c,S)
to boundary mesh points at ¢ = 1 and i« = n, we need to specify the boundary
conditions. In our simulations of individual-based models in Sections 3, 4 and 5,
we will use reflective (zero-flux) boundary conditions, which preserve the number of
simulated individuals and correspond, at the macroscopic level, to boundary terms

D S+ 51\ (c2+c1)(S1— 52
(2.6) Ai(c,S) = m(cQ—cl) + x( 2 . 1) ( 22(362 )7

D Sn_1+Sn (Cn,1 + Cn) (Sn - Snfl)
(2.7) An(e,S) = Nl (cn-1—cn) + X( 5 ) 5 AL? )

Denoting the integral of x by v, we have ¢’ = x and equation (2.1) can be rewritten

as
o 2
ge _ 0% 9 (909
ot 0x? Oz Ox

The steady state solution of the macroscopic chemotaxis equation (2.1) can then be

written as

L B ¥(S)
(2.8) cs(x) = tligloc(x,t) = Aexp [D
where A > 0 is a constant. In particular, if the macroscopic equation is described by
the chemotaxis equation (2.1), then the knowledge of the equilibrium (steady state)
concentration profile ¢;(z) and the signal profile S(x) could be used to infer the
chemotactic sensitity x(S) by plotting the signal S against

 Dc(x)
X(5) = 5@

where primes denote derivatives. However, such an approach would require running
long-time simulations of macroscopic models until the equilibrium can be sampled.
We will instead adopt an approach where we will evolve microscopic models over
a specific time interval. We will consider transient time-dependent data obtained
by microscopic models in Sections 3, 4 and 5, where we calculate the concentration
profile c(x,t + 7) at time ¢ + 7 by evolving the microscopic model over the time
interval [t,t + 7], where 7 > 0. This will be used to estimate the time derivative in
equation (2.4) as

dCi - Ci(t + ’7') — Cl(t)
dt T '
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Fi1G. 1. (a) Schematic of the feedforward neural network architecture with two hidden layers.
(b) The chemotactic signal S(z) (top panel) and its derivative S’(x) (bottom panel) given by equa-
tions (2.11) and (2.12).

Chemotaxis sensitivity x(S) will be approximated by feedforward neural network
architecture [23], which is schematically shown in Figure 1(a). The architecture is
structured to accept a single input, the value of S, which is managed by the first
fully connected layer. This layer is designed to transform the input size of one into
an output size of nq, effectively mapping the single-dimensional input into a higher-
dimensional space. This is achieved by applying an affine transformation w1.S + b,
where wy; € R™ and b; € R™ are the weight vector and the bias vector, respectively.
Following this transformation, the non-linearity is introduced through the application
of a ReLU activation function defined by

z for z2>0;
(2.9) ReLU(z) = max{0,z} = {O for 2<0.
This non-linear activation enables the neural network to capture more complex rela-
tionships within the data.

Our neural network architecture in Figure 1(a) continues with a second hidden
layer, which mirrors the structure of the first hidden layer. It takes the output from
the previous layer, z; € R™, and again applies an affine transformation, which can
be written as W5 z; + by, where Wy € R™2*"™ ig the weight matrix, by € R"2 is the
bias vector, and ny is the size of the second hidden layer. As with the first layer, the
ReLU activation function (2.9) is applied to the output of the second layer, ensuring
that the model retains the ability to learn intricate, non-linear relationships. Finally,
the architecture in Figure 1(a) culminates in the output layer, which is responsible
for condensing the information down to a single output value. This layer takes the
ns-dimensional input from the second hidden layer, zo € R™2, and applies an affine
transformation that results in a single output size of one, namely we use ws - zo + b3,
where w3 € R™ and b3 € R are the weight vector and the bias, respectively. To train
the network, we use equation (2.4) to define the loss function

(2.10) L(S) = lz (C(t”)_c(t) — Ai(e, S)) :

< T
i=1
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and we use the Adam optimizer to minimize prediction errors based on the training
dataset for each microscopic model. We implement our feedforward neural network
architecture using PyTorch.

In our illustrative computational examples in Sections 3, 4 and 5, we will assume
that all parameters have already been non-dimensionalized. We use the domain size
L =1 and the chemotactic signal profile S : Q — [0, 1] given by

(2.11) S(x) = 2" 2% (x —1)%.

This signal profile is plotted in the top panel of Figure 1(b). Differentiating (2.11),
we obtain

(2.12) S'(z) = 2522z —1)(x —1) and  S”(z) = 25(62% — 6z +1).

In particular, considering the domain 2 = [0, 1], the signal S(z) has minima at z = 0
and z = 1 equal to S(0) = S(1) = 0 and its maximum at z = 1/2 equal to S(1/2) = 1.
The derivative S’(z) is plotted in the bottom panel of Figure 1(b). It satisfies

1
15'(2)] < % = 30792...  for zeQ=[0,1].

3. Microscopic Model I (Brownian dynamics). We model a system of N
individuals (unicellular organisms) in domain Q = [0, L], where L > 0. The state of
the system at time ¢ is described by the N-dimensional vector of positions

(3.1) X(t) = [X1(t), Xa(t),..., Xn(t)] € QF,

where X;(t) denotes the position of the i-th cell at time ¢ for ¢ = 1,2,..., N. The
time evolution of X;(¢) is given by the following It6 SDE

(3.2) dXi(t)zx(S)g—jdt + V2D dw;, for i=1,2,...,N.

Then the chemotaxis equation (2.1) is exactly equal to the Fokker-Planck equation
describing the time evolution of the spatio-temporal probability density of each in-
dividual [8]. In particular, if we simulate the microscopic model and calculate the
number of individuals in interval [(i — 1)Axz,iAx] at time ¢ to estimate the density
¢i(t) = e(x;,t) given by (2.3), then we are effectively calculating (noisy) solutions of
the chemotaxis equation (2.1). The error (noise) reduces to zero in the large particle
limit N — oo provided that the equation (3.2) is solved exactly. In practice, we
simulate a finite number of individuals, N, and we discretise the SDE (3.2) using a
finite time step At to obtain

(3.3) X;(t+ At) = X;(t) + x(5) g—s At + V2D AtE;, for i=1,2,...,N,
x
where §; is normally distributed random number with the zero mean and unit variance.

In our simulations, we consider N = 10? individuals, D = 1072, At = 10~ and the
signal profile given by (2.11) together with the chemotactic sensitivity

sin(mS) '

(3.4) xX(8) = —5
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Fic. 2. (a) The change in the concentration c;(t + 7) — c;(t) over the time interval of length
T, starting from the uniform concentration profile c;(t) =1, fori=1,2,...,n, calculated by Micro-
scopic model 1 (red circles). We use chemotactic sensitivity (3.4), signal profile (2.11), N = 10°
cells in the microscopic model, time interval 7 = 103 = 10At, D = 10=2 and n = 100. The
solution of the parabolic chemotazis equation (2.1) is plotted as the black line.
(b) The chemotactic sensitivity estimated by the feedforward neural network for different values of
time window 7. The exact chemotactic sensitivity (3.4) is plotted as the black dashed line.

Since our signal profile (2.11) satisfies 0 < S(x) < 1 in interval Q = [0,1], we have
0 < x(S) < 1/10 with the highest chemotactic sensitivity achieved for intermediate
signal values at S = 1/2. The steady state solution (2.8) is given by

—cos(mwS(z))
10mD

—cos(2t m2?(z — 1)?)
10mD ’

35 alo) = Aeo| | = )

where A > 0is a constant. The steady state solution (3.5) has its maximum at x = 1/2
and concentration c(x,t) will approach c,(z), provided that we observe the system
for sufficiently long time. Considering transient dynamics, concentration c(z,t) will,
in general, not have its maximum at z = 1/2. This is illustrated in Figure 2(a),
where we consider that cells are uniformly distributed at time ¢, i.e. ¢;(t) = 1, and
we calculate their time evolution by (3.3) over the time interval [t,t 4+ 7], where
7 = 1073 = 10At. In Figure 2(a), we plot the estimated change in concentration
ci(t+ 1) — ¢i(t) = ¢i(t + 7) — 1 and compare it with the solution of the parabolic
chemotaxis equation (2.1). We observe that there are initially no significant changes
in concentration at points z = 0, = 1/2 and « = 1, which correspond to minima (at
2 =0 and z = 1) and maximum (at = 1/2) of the signal S(x).

Next, we use data on positions of cells calculated by relatively short simulations
of Microscopic Model I to estimate the chemotactic sensitivity x(S). We use the
feedforward neural network architecture schematically shown in Figure 1(a) with ny =
ny = 50. Our training data are calculated as in Figure 2(a), where we consider that
cells are uniformly distributed at time ¢, i.e. ¢;(t) = 1, and we calculate their time
evolution by applying equation (3.3) over the time interval [¢, t47] to estimate ¢;(t+7),
where 7 > 0. We use

T € {At, 10At, 10°At, 10°At}

and train 100 neural networks (using 10% epochs) for each pair ¢;(t) and c¢;(t + 7).
The results are presented in Figure 2(b), where we average the calculated chemotactic
sensitivity x(S) over 100 realizations of the training process for each value of 7.
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Comparing the neural network estimates of x(S) in Figure 2(b) with the exact
result (3.4), we observe that the best results are obtained when using intermediate
values 7 = 10At and 7 = 102At. On one hand, if 7 is small (i.e. for 7 = At in
Figure 2(b)), then the results are more noisy (even after averaging over 100 realiza-
tions). This is caused by more noisy training data for small values of 7. On the other
hand, if 7 is larger (i.e. for 7 = 103At in Figure 2(b)), then we observe a systematic
bias in Figure 2(b), caused by inaccurate estimation of the time derivative in the loss
function (2.10).

4. Microscopic Model II (velocity-jump process). To introduce more mi-
croscopic detail into the modelling of chemotaxis, we will describe individual cells not
only by their positions (3.1), but also by their velocities. Then we can view chemo-
taxis at the individual-based level as a velocity-jump process [38, 26]. Velocity-jump
processes have been used for modelling the chemotaxis of flagellated bacteria, such
as F. coli, which alternates between two modes of behaviour: a more or less straight
motion with constant speed called “run” and a highly erratic motion called “tumble”,
which produces little translation but reorients the cell [11]. Since the tumble time is
shorter than the average run time, a tumble can be viewed as an instantaneous change
in velocity. In this section, we again restrict to one spatial dimension and we model a
system of N unicellular organisms in domain Q = [0, L], where the state of the system
at time ¢ is described by two N-dimensional vectors: the vector of positions (3.1) and
the vector of velocities denoted by

(4.1) V(t) = [Vi(t),Va(t),..., VN(t)] € RY,

where V;(t) is the velocity of the i-th cell at time ¢ for ¢ = 1,2,..., N. We assume
that each cell moves along the z-axis at a constant speed S > 0, i.e. its velocity V;(t)
only takes one of two possible values, V;(t) = +5. Each cell reverses its direction at
random instants of time according to the Poisson process with turning frequency

Ao x(S) 98

(4.2) ReLU ()\0 + 5 832) ,

where Ao > 0, the function ReLU is defined by (2.9) and the sign + depends on the
direction of the cell movement: a plus sign is for the individuals moving to the left
and a minus sign is for the individuals moving to the right. This choice of turning
frequency ensures that the underlying velocity-jump process is biased in a way that
the cell is less likely to change direction when moving in a favourable direction, i.e.
in the direction in which the signal function S is increasing. Taking into account that
the velocity of each individual, V;(t), takes only two possible values V;(t) = £, the
turning frequency (4.2) can also be equivalently rewritten as

(4.3) ReLU<)\0 (1 - W ?;(Xz'(t))» )

where + sign has been adsorbed into the sign of the velocity V;(¢) and we have also
explicitly indicated that the signal and its derivative are evaluated at the current
position of the individual, X;(¢). The formula (4.2) includes the function ReLU to
ensure that the turning frequency is nonnegative. However, if the signal S(x) satisfies

x(8) 08| _ |
B8 Oz

— )

(4.4)
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then we can drop the function ReLU from the turning frequency (4.2), because its
argument is always nonnegative. Moreover, let ¢™(z,t) be the concentration of cells
that are at (z,t) and are moving to the right, and let ¢~ (z, ) be the concentration of
cells that are at (x,t) and are moving to the left. Then ¢*(z,t) satisfy the equations

+ +
(4.5) oc + 58L =— (Ao _ 2ox(S) &g) ct + ()\0 + Ao X(5) 85) c,

ot ox B Oz B ox
o= dc [ Xox(S)dSN 4 Aox(S5) 95 _
(4.6) 5 s e ()\0 5 o c Ao + 5 o c.

The concentration of cells at (z,t) is given by the sum c(z,t) = c¢*(z,t) + ¢~ (,t).
Adding and subtracting the equations (4.5)—(4.6), we get

dc dq
(4.7) a5 + 5% =0,

dq dc 20 x(5) 98
(4.8) It +l88.’[7 = 2)\0q+7/8 axc,

where ¢(z,t) = ¢t (z,t) — ¢ (z,t). Differentiating equation (4.7) with respect to ¢ and
equation (4.8) with respect to x, we can eliminate ¢ to deduce that c(z,t) satisfies the
second order PDE

1 9% dc 0%c 0 oS
(49) ozt~ Po (CX(S) ax> :
where we have denoted
ﬁQ
1 _
(4.10) D g

The macroscopic equation (4.9) is a hyperbolic version of the classical chemotaxis
equation (2.1) containing an additional term with the second time derivative. In
particular, if we simulate Microscopic Model II and calculate the number of indi-
viduals in interval [(i — 1)Ax,iAx] at time ¢ to estimate the density ¢;(t) = c(x;,t)
given by (2.3), then we are effectively calculating (noisy) solutions of the hyperbolic
chemotaxis equation (4.9). The error (noise) reduces to zero in the large particle
limit N — oo provided that the Poisson process with the turning frequency (4.2) is
implemented exactly and the signal S satisfies (4.4). Otherwise, we will only obtain
an approximation of a solution to the equation (4.9). Since the hyperbolic PDE (4.9)
reduces for sufficiently large times to the parabolic chemotaxis equation, we can also
use Microscopic Model II to estimate the solutions of the classical chemotaxis equa-
tion (2.1), or its steady state behaviour [28].

To solve equation (4.9) numerically, we discretise interval [0,L] using n € N
meshpoints at locations (2.2) and use notation (2.3) as we have done when solving the
parabolic chemotaxis equation (2.1) in Section 2. Using finite differences to discretise
the right-hand side of equation (4.9), we obtain

1 d2 C; dCi

4.11 —
( ) 2o dt? * dt

= Ai(cvs)a

where A;(c, ), for i =1,2,...,n, is defined by (2.5)-(2.7). The system of n second-
order ordinary differential equations (ODEs) (4.11) can be rewritten as a system of
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F1G. 3. (a) The change in the concentration c;(t + 7) — c;(t) over the time interval of length T,
starting from the uniform concentration profile c;(t) = 1 for i = 1,2,...,n, calculated by Micro-
scopic Model 11 (red circles). We use chemotactic sensitivity (3.4), signal profile (2.11), N = 10°
cells in the microscopic model, time interval T = 10~2 = 102At, 8 = 0.4, A\g = 8 and n = 100.

The solutions of the parabolic chemotazis equation (2.1) and the hyperbolic chemotazis equation (4.9)
are plotted as the black and blue line, respectively.

(b) The chemotactic sensitivity estimated by the feedforward neural network for different values of
the time interval 7. The exzact chemotactic sensitivity (3.4) is plotted as the black dashed line.

2n first-order ODEs

dCZ’ o
(4.12) 5 =4
dz;
(4.13) d’i = 2X (Ai(c, §) — 2)

where the auxiliary variable z; is the time derivative of ¢;. Alternatively, we could also
use other sets of two variables to rewrite the second-order PDE (4.9) as a system of
two first-order PDEs, as it is shown with variables ¢™ and ¢~ in equations (4.5)—(4.6)
and variables ¢ and ¢ in equations (4.7)—-(4.8).

To simulate Microscopic Model II, we update the system over time steps of
length At. Multiplying the turning frequency (4.3) by At and assuming that At
is sufficiently small, the probability that the i-th cell changes its direction during one
time step is given by

(4.14) pi(t) = ReLU ()\0 (1 _ W g‘j(xi(t))» At.

In our simulations, we generate N random numbers r;, i = 1,2,..., N, uniformly
distributed in interval [0, 1], and the i-th cell changes its direction of movement at
time ¢ if r; < p;(¢). Then we update the position X;(t) of each cell by

(4.15) X,(t + At) = Xi(t) + Vi(t) At

where V;(t) is assumed to be constant during the time interval [t, ¢ + At], i.e. we have
Vi(t) = £8 with the sign depending on the direction of movement.

In Figure 3(a), we present illustrative results calculated by Microscopic Model II.
We consider N = 10? cells, 8 = 0.4, A\g = 8, At = 10~*, L = 1 and the signal profile
given by (2.11) together with the chemotactic sensitivity x(S) given by (3.4). In
particular, equation (4.10) implies that D = 10~2, which means that we use the same
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diffusion constant D and chemotactic signal S(z) as we used in our previous simulation
of Microscopic Model I in Figure 2(a). We consider the same initial condition for
positions, uniform distribution ¢;(¢) = 1, and we initialize a half of the cells with the
positive velocity, +3, and a half of them with the negative velocity, —3, so that we have
z;(t) = 0 as the initial condition of equations (4.12)—(4.13) at time ¢t. We calculate the
evolution over the time interval [t,¢ + 7], where 7 = 1072 = 102At. We note that this
value of 7 is 10-times longer than the value of 7 used in Figure 2(a). In particular, the
solution of the parabolic chemotaxis equation (2.1) varies more in Figure 3(a) than
in Figure 2(a). However, it is not the parabolic chemotaxis equation (2.1) but the
hyperbolic chemotaxis equation (4.9), which approximates well Microscopic Model II.
This is illustrated in Figure 3(a), where some parts of the solution of the parabolic
chemotaxis equation (2.1) are outside of the plotted range of values.

The solutions of macroscopic PDEs (2.1) and (4.9) converge as t — oo to the same
steady state solution (2.8). In particular, if 7 was sufficently large (approximately
of the order 7 = 10 = 105At for our parameter values), then the black and blue
solid lines in Figure 3(a) would be close to each other and close to the steady state
solution (3.5). However, our neural network estimation uses relatively small values
of 7 and Figure 3(a) highlights a large difference between the transient solutions
of macroscopic PDEs (2.1) and (4.9) for 7 = 1072 = 102At. Therefore, we will
modify the loss function (2.10) to include the central difference approximation of the
additional term describing the second time derivative in equation (4.9). We use
(4.16)

L2(S) = %

— Aie, s>)2 :

- ci(t+27) —2¢;(t +7) + ¢ (2 ci(t+271) — ¢c;(t
Z(( ) (t+7) ()+( ) —ci(t)

2072 27

i=1

where the spatial derivative term A;(c,S) is evaluated using the calculated data
ci(t+ 7) at time t + 7. To estimate the chemotactic sensitivity x(.S) from relatively
short simulations of Microscopic Model II, we use the feedforward neural network
architecture schematically shown in Figure 1(a) with n; = ny = 50. Our data are
calculated as in Figure 3(a), where we consider that cells are uniformly distributed
at time ¢, i.e. ¢;(t) = 1. We calculate their time evolution by Microscopic Model 1T
over the time interval [t, t + 27] to estimate ¢;(t + 7) and ¢;(t + 27), where 7 > 0. We
use 7 € {10A¢, 10°At, 103At} and train 100 neural networks (using 10® epochs) for
each triplet ¢;(t), ¢;(t + 7)and ¢;(t + 27). The results are presented in Figure 3(b),
where we average the calculated chemotactic sensitivity x(5) over 100 realizations of
the training process for each value of 7.

5. Microscopic Model IIT (with internal dynamics). When bacteria E.
coli move in a favourable direction (that is, in the direction of increasing chemoatrac-
tant S) the run times are increased and the turning frequency of the velocity jump
process decreases. This has been modelled in Section 4 by the turning frequency in
the form (4.2), which assumes that a cell can directly estimate the gradient of the
chemoattractant concentration at its current position.

In more detailed individual-based models of chemotaxis, E. coli does not directly
estimate the gradient, but only the absolute value of the chemoattractant at its cur-
rent position, S(X;(t)). E. coli detects the attractant concentration by receptors on
its membrane and the information about the receptor occupancy is then processed
by intracellular signalling molecules forming the signal transduction network [5, 43].
Therefore, each bacterium is described not only by its position and velocity, but
also by additional, internal, variables. Simplified models of this process were studied
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in [11, 12] which showed that models with one or two internal variables can be used to
describe the excitation-adaptation properties of the intracellular signal transduction
network. We will study such a one-dimensional model in this paper as Microscopic
Model III.

We model a system of N unicellular organisms in domain Q = [0, L], where the
state of the system at time ¢ is described by three N-dimensional vectors: the vector
of positions (3.1), the vector of velocities (4.1) and the vector of internal variables
denoted by

(5.1) Y(t) = [Yi(t), Ya(t),..., Yn(t)] € RY,

where Y;(t) € R is the internal variable of the i-th cell at time ¢ for ¢ = 1,2,..., N,
which evolves according to the ODE
dy; _ ¢(S(Xi(1) - Vi

2 -
(5:2) " P :

where ¢’ = x is the integral of the chemotactic sensitivity and ¢, > 0 is the adaptation
time of the signal transduction network [11]. We again assume that each cell moves
along the z-axis at a constant speed 8 > 0, i.e. its velocity V;(t) only takes one of
two possible values, V;(t) = 8. Each cell reverses its direction at random instants
of time according to the Poisson process with turning frequency

Ao (1+2t,) (Vi — ww))

ta B°

where Ao > 0, the function ReLU is defined by (2.9) and signal S is evaluated at
the current position of the cell, X;(t). Since the equation (5.2) is solved along the
trajectory, the biological meaning of internal variables is that they form a primitive
chemical “memory” enabling a comparison of the cell’s current environment with the
environment it visited a while ago. The turning frequency (5.3) is chosen as the
constant A\g plus the second term which depends on the internal variable Y;. This
is similar to the turning frequency (4.2). If the concentration of chemoattractant S
is increasing along the cellular trajectory, then the bacterium is moving in a good
direction and it is less likely to change it. On the other hand, if the concentration
of S is decreasing along its trajectory, then the bacterium is more likely to turn.

To simulate Microscopic Model III, we update the system over time steps of
length At. Multiplying the turning frequency (5.3) by At and assuming that At is
sufficiently small, the probability of turning during one time step is given by

(5.3) ReLU (Ao +

Ao (14 2t,) (Y; — ¥ (S(X;(t
64w :RQLUQO j A0 2) (1 oS >>>>> A
In our simulations, we generate N random numbers r;, ¢ = 1,2,..., N, uniformly

distributed in interval [0, 1], and the i-th cell changes its direction of movement at
time ¢ if r; < p;(t). Then we update the position X;(t) of each cell by (4.15). To
calculate Y;(t + At), we need to solve the ODE (5.2) over the time interval [t,t + At].
Since V;(t) is assumed to be constant during the time interval [¢, ¢+ At], equation (5.2)
reduces to solving

aY;  $(S(Xi(t) +oVi(t) — Vi
do t ;

(5.5) for o € [0, At],
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(@) 400 7 =102 = 102A¢ (b)
:;\ G I ' & \ ' ' 7, > ' 1
= I’ A l/ \ 0.1
| 4 » \‘ ) 1
m ! \ 1 1
5, ) . ; | 0.08
+ ] \ ) [
= N7 .
30 & 0.06
- ) R 7 =
Z ol 1 ] . \ I
& \ T, Microscopic Model IIT: % 1 0.04 +
| \ ' G(t+7) —ci(t) \ I _
T4 V4 |=PDEq(t+r)—alt) | 3y F 1 — 7 =107 = 10At
+ A S Microscopic Model ITL:;| ¢ 4 0.02 | — 7 = 1072 = 10%At
= 6l “ ‘ it +27) — ¢i(t) v ” ] r=10"' = 103A¢
& 4 — PDE: ¢;(t + 27) — ¢i(t) L = exact x(S)
L T T L 0 L T T L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
T S

F1G. 4. (a) The changes in the concentration c;(t+7) —c;(t) and ¢;(t+27) —¢;(t) over the time
intervals of length T and 27, respectively, starting from the uniform concentration profile c¢;(t) = 1 for
i=1,2,...,n, calculated by Microscopic Model III (circles). We use chemotactic sensitivity (3.4),
signal profile (2.11), N = 10° cells in the microscopic model, time interval T = 1072 = 102At,
B=04, \o =8, to = 10~% and n = 100. The solutions of the hyperbolic chemotazis equation (4.9)
are plotted as the solid blue and dashed black lines, respectively.

(b) The chemotactic sensitivity estimated by the feedforward neural network for different values of
the time interval 7. The exzact chemotactic sensitivity (3.4) is plotted as the black dashed line.

given the initial condition Y;(¢) for o = 0.

Equation (5.5) can be solved by a numerical method for solving ODEs, which is
often the case when using complex ODE models of signal transduction networks [5, 43].
In our case, we only have one single ODE (5.5), so we can also proceed with an analytic
approach, which will highlight the hidden dependence of Microscopic Model III on the
signal derivative. To see this, we observe that o € [0, At] is small and we use the Taylor
expansion to approximate

oS

D(S(Xilt) + Vi) & (S(Xi(1)) + x(S(Xi(1))) Z—(Xi(1) o Vi(D),
where ' = y and we neglected terms of the order O(c?). Substituting into (5.5) and

solving the resulting linear ODE, we obtain

Yi(t + At) = Yi(t) exp (—it) + 9 (S(Xi(t))) (1 — exp (_?t»

a
(5.6) + x(S(X;(1))) %(Xi(t)) Vi(t) <At —tq +tgexp <—?t>) :
a

which we use in our implementation of Microscopic Model III to calculate the update
of the internal variable over one time step [¢, ¢+ At]. The formula (5.6) not only gives
us a possible way how we can calculate Y;(¢t + At) at time ¢ + At given the values
Xi(t), Vi(t) and Y;(t) at time ¢, but it also illustrates that cells effectively extract
some information on the chemotactic sensitivity y = ¢’ and the signal derivative even
if the formulation of Microscopic Model IIT assumes that cells can only measure the
absolute values of the signal S in their environment.

Using [11, equation (6.34)], we can also derive the hyperbolic chemotaxis equation
in the form (4.9), which provides good approximation of the macroscopic behaviour of
Microscopic Model IIT for some parameter regimes. This is illustrated in Figure 4(a),
where we present illustrative results calculated by Microscopic Model III. We consider
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N =10 cells, B = 0.4, \g = 8, At = 107%, t, = 107%, L = 1 and the signal profile
given by (2.11) together with the chemotactic sensitivity x(S) given by (3.4). In
particular, equation (4.10) implies that D = 10~2, which means that we use the same
diffusion constant D, turning frequency A9 and chemotactic signal S(z) as we used in
our previous simulation of Microscopic Model IT in Figure 3(a). We also consider the
same initial condition for positions and velocity, namely uniform distribution ¢;(t) = 1,
and we initialize a half of the cells with the positive velocity, 4+/3, and a half of them
with the negative velocity, —f, so that we have z;(¢t) = 0 as the initial condition of
equations (4.12)—(4.13) at time ¢. To initialize internal dynamics variables, we put
Y;(0) = ¢(S(X;(0))). We calculate the evolution over the time interval [t,t + 27],
where 7 = 1072 = 102At and we plot both ¢;(t + 7) — ¢;(t) and ¢;(t + 27) — ¢;(t) in
Figure 4(a), which are the training data needed for our neural network estimation of
the chemotactic sensitivity when using the loss function £5(S) given by (4.16).

In Figure 4(b), we present results of the estimation of the chemotactic sensitivity
x(S) from relatively short simulations of Microscopic Model 111, using the feedforward
neural network architecture schematically shown in Figure 1(a) with ny = ny = 50.
Our data are calculated as in Figure 4(a), where we consider that cells are uniformly
distributed at time ¢, i.e. ¢;(t) = 1. We calculate their time evolution by Microscopic
Model III over the time interval [t, ¢ + 27] to estimate ¢;(t + 7) and ¢;(t + 27), where
7 > 0, which we use in the loss function (4.16). Using 7 € {10At, 102At, 103At},
we train 100 neural networks (using 10® epochs) for each triplet ¢;(t), c;(t + 7) and
¢i(t+27). The results shown in Figure 4(b) present the average calculated chemotactic
sensitivity x(S) over 100 realizations of the training process for each value of 7.

6. Discussion. Movement of individual biological agents often depends on exter-
nal signal fields (for example, cells are attracted to nutrients and repelled by toxins),
and population-level mathematical models of their behaviour have traditionally been
formulated in terms of PDEs, such as the parabolic chemotaxis equation (1.1). At
the individual level, stochastic models have been used, including Brownian dynamics
and velocity-jump processes, and an important mathematical question has been to
connect these two levels of description [40]. In this paper, we have investigated three
individual-based models, denoted Microscopic Models I, II and III. In each case, the
cellular population (in the limit of many individuals, N — 00) can be described by
a classical chemotaxis equation of the form (1.1). However, it is only for the sim-
plest Microscopic Model I that the limit N — oo can be established analytically for
all parameter regimes, and the individual-based description, formulated as Brownian
dynamics with finite N and a finite time step At, converges to the PDE description
in the limit N — oo and At — 0.

Microscopic Models IT and IIT are formulated as velocity-jump processes in which
the turning frequency depends on the extracellular signal S, either directly, as in (4.2),
or indirectly through internal dynamics, as in (5.3). Then the classical chemotaxis
equation can only be analytically derived under certain additional assumptions, for ex-
ample, when the signal gradients, are sufficiently small [11, 47]. Microscopic Model ITT
has included a simplified description of internal dynamics, using only one internal vari-
able Y;(t) describing the adaptation dynamics. To model the excitation-adaptation
dynamics of the intracellular signal transduction networks [39, 12], we can use a model
with two variables Y;(t) and Z;(t)

dz;  g(C{t)) - Z; - Y; dy;  g(C(t)) - Y;
(6.1) i , _9(C®) -Y:
dt t dt to
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where C(t) = S(X;(t),t) is the signal detected by a cell at its current position X;(t),
function g : [0, 00) — [0, c0) incorporates sensitivity of the signal transduction network
to different levels of the detected signal and constants t. and ¢, are the excitation
time and the adaptation time, respectively. If C(t) is a constant, then the steady
state value of Z; is independent of this constant, i.e. the values of Z; perfectly adapt
to any constant stimulus, and the velocity-jump description of chemotaxis can be
formulated by assuming that the turning frequency depends on Z;. For example, if the
turning frequency is given by ReLU(\g — boZ;) for constants Ay > 0 and by > 0, then
model (6.1) leads to the hyperbolic chemotaxis equation of the form (4.9), provided
that the signal gradients are sufficiently small, with the chemotactic sensitivity given
by [11, 12]

_ bO 52 tq g’(S)
o /\0(1 + 2>\Ota)(1 + 2)\0t6) '

x(S)

Since the adaptation time ¢, is much larger than the excitation time t., one can also
work with the simplifed model, where t. = 0, which has been our case of Microscopic
Model III. We have studied one-dimensional models, but Microscopic Models I, II
and IIT can be formulated in two and three spatial dimensions, and it is possible to
establish analytically links with the chemotaxis equation (1.1), but the derivation is
more technical [24, 12] and the simplifying assumptions of shallow signal gradients
must again be imposed for Microscopic Models II and ITI. This analysis can be further
extended to velocity-jump processes which assume that the change in the direction
of motion is not instantaneous, including models of the tumbling phase of E. coli
motion [11], and other delays caused by turning of individuals [44].

More complex chemotaxis models may include dozens of internal variables rep-
resenting the concentrations of intracellular signalling molecules involved in signal
transduction networks [5, 43], or written as PDEs describing spatio-temporal concen-
trations of signalling molecules [13, 22]. Some models also incorporate interactions
between individuals, which can be direct — via volume exclusion, whereby only a
finite number of cells can occupy a given volume — or indirect, by modifying the ex-
tracellular environment through the release or consumption of signalling molecules.
In this case, the time evolution of extracellular signals must also be modelled. A
number of individual-based models of interacting cells have been developed in the
literature [7, 16, 18, 48]. The key aspect of these hybrid models is the simulation of
cells as individual particles while describing the extracellular environment by PDEs.
The same situation also arises when using Brownian dynamics of charged particles,
where models of individual particles need to be coupled with the description of electro-
static potential solving the Poisson equation [29, 49]. Some models of cell migration
also include domain growth, which introduces additional terms into population-level
PDEs [4, 36, 33]. Considering complex chemotaxis models, computational frame-
works for extracting macroscopic behaviour from individual-based descriptions are
often necessary in some parameter regimes, where macroscopic equations cannot be
analytically derived [10, 34, 42].

In this paper, we have used feedforward neural networks to estimate macroscopic
chemotactic sensitivity x(S) using data calculated by relatively short simulations
of Microscopic Models I, IT and III. While the parabolic chemotaxis equation (2.1)
provides a good description of macroscopic dynamics corresponding to Microscopic
Model I on such short time scales, this is not the case when more complex Microscopic
Models IT and III are used. The convergence of Microscopic Model I to the parabolic
chemotaxis equation (2.1) is illustrated in Figure 2(a), while we can see large quantita-
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tive differences in transient dynamics between the parabolic chemotaxis equation (2.1)
and Microscopic Model IT on short time scales in Figure 3(a). Consequently, the neu-
ral network estimation with loss function £(.S) given by (2.10) works well in the case
of Microscopic Model I, but we need to take into account different transient dynamics
of velocity-jump processes and use loss function £5(.5) given by(4.16) when working
with short-time simulations of Microscopic Models IT and III.

Figures 3(b) and 4(b) illustrate that the loss function (4.16) works well for short
simulation time windows, with the best performance obtained for 7 = 1072 = 102At.
If we consider shorter time windows, then the results are influenced by noise stemming
from the estimation of densities in simulations of a finite number of individuals, N,
as we can see for 7 = 1072 = 10A¢t in Figures 3(b) and 4(b). On the other hand, if
T is chosen larger than optimal, then the time derivatives in the loss function (4.16)
will be approximated with a bias leading to the error seen for 7 = 10~ = 103At in
Figures 3(b) and 4(b). The same conclusion can be made for Microscopic Model I
in Figure 2(b) with the best performing value of the time window being 7 = 1072 =
10A¢t. This is shorter than for velocity-jump processes because the transient dynamics
of the parabolic chemotaxis equation (2.1) is faster than the hyperbolic chemotaxis
equation (4.9) for our parameters and initial conditions. The solutions of macroscopic
PDEs (2.1) and (4.9) converge as t — oo to the same steady state solution (2.8). In
particular, if a model is sufficiently simple that long-time equilibrium simulations of
an individual-based model are computationally feasible, then they could also be used
for estimating the chemotactic sensitivity x(S5).

Funding: This work was supported by the Engineering and Physical Sciences Re-
search Council, grant number EP/V047469/1.
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