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Abstract

The effect of short-term and long-term memory on spontaneous aggregation of organisms is
studied using an agent-based stochastic model, where each individual modulates its random
movement based on the perceived local density of its neighbours. Memory is introduced via a
chain of K internal variables, allowing agents to retain past environmental information. The
number of internal variables, K, controls the memory length. The macroscopic Fokker-Planck
equation is formally derived in the large-particle limit. To explain the formation and shape
of particle clusters, the steady states of the Fokker-Planck equation are characterized, and
systematic stochastic simulations of the individual-based model performed. The short-term
memory promotes cluster coarsening, while long-term memory disrupts aggregation, increasing
the number of outliers and instances with no clustering. Statistical analysis shows that memory
inhibits the particles’ responsivity to environmental cues, specifically the perceived density of
their neighbours, explaining the reduced clustering tendency at higher values of the memory
length, K. This study therefore provides an insight into how memory influences emergent
spatial patterns in self-organizing systems of organisms.

Keywords. Spontaneous aggregation; Stochastic particle systems; Memory effects; Fokker-Planck
equation; Collective behaviour.

1 Introduction

Models with memory and delays are ubiquitous in explaining collective behaviour of organisms,
ranging in scale from bacterial and amoeboid chemotaxis [2, 14] to behaviour of social insects and
flocks of birds [24, 25]. In the case of bacteria, the memory is incorporated in purely biochemical
terms, in the form of the signal transduction network capable of excitation and adaptation dy-
namics [23, 1]. This enables a cell to ‘memorize’ past environmental signals and compare to their
current state to inform decision making [3]. In individual-based models, such memory effects can
be accounted for by ordinary differential equation (ODE) or stochastic differential equation (SDE)
models describing internal variables of each individual [12, 14]. A typical example of such internal
variables are concentrations of key intracellular biochemical species. At the collective (macroscopic)
level, populations of bacteria or other cells can be described by partial differential equations (PDEs)
describing the density of cells and key environmental signals [13, 10], where memory can also be
interpreted as delays in the processing of some signals. Incorporating such delays into mathematical
models of collective phenomena can provide more accurate explanations of behavioural properties
of groups of animals [26, 11] or robots [27]. Moreover, Non-Markovian characteristics resulting
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from ordering of interactions in temporal complex networks were identified as an important mech-
anism that alters causality and affects dynamical processes in social, technological and biological
systems [22, 28]. Considering biological agents (cells or animals), a trade off between having no
memory at all and remembering too much (including very distant and irrelevant past states) has
been achieved by evolution. For example, bacterial ‘biochemical memory’ of past environmental
signals evolved to last for the duration of a few seconds [3].

In this paper we focus on a model of spontaneous aggregation of animals or cells resulting from
random diffusive motion of individuals [6, 18]. The individuals respond to the local population
density observed in their neighbourhood by increasing or decreasing the amplitude of their random
motion. This kind of behaviour has been observed in insects, for instance, the pre-social German
cockroach (B. germanica), which are known to be attracted to dark, warm and humid places.
However, it has been shown that cockroach larvae also aggregate spontaneously [19], i.e., in the
absence of any environmental template or heterogeneity. Moreover, this type of dynamics can also
be used to describe formation of P Granules in C. elegans embryos resulting in spontaneous protein
aggregation [5].

To incorporate memory into the first-order model of spontaneous aggregation [6], we introduce
a set of K ≥ 1 internal variables of each agent. Each internal variable describes a ‘layer’ of memory,
which is subject to two effects: (i) production (or excitation) from the internal variable of the next
higher order, and (ii) spontaneous decay with a constant rate. The internal variable of the highest
(i.e., K-th) order is then subject to random excitation, with amplitude modulated by a nonlinear
function of the number density of agents observed in the physical neighbourhood. We note that
in the first-order model introduced in [6], the positions of the agents in the physical space were
directly subjected to random excitation (Brownian motion). In particular, our investigation extends
their model by introducing a chain of K internal variables that allow the agents to ‘remember’ the
densities they encountered in the past.

Our results show that the introduction of memory with a few layers, K, leads to the formation
of a smaller number of larger clusters of agents. This trend is observed until K = 3 or K = 4,
depending on the spatial dimension of the studied system, as shown in Sections 5 and 6. When the
number of memory layers K is increased further, i.e., as the memory becomes ‘longer’, its effect
starts to be disruptive. This is manifested by the increasing proportion of ‘outliers’, which are the
agents that are not part of any cluster. We therefore conclude that short-term or medium-term
memory has a coarsening effect on spontaneous aggregation, while long-term memory disrupts it.

The paper is organized as follows. In Section 2 we describe the (first-order) spontaneous ag-
gregation model and summarize its main properties studied in the literature [6]. In Section 3, we
introduce memory into this model and infer the main mathematical properties of the model with
memory. In Section 4, we then derive the formal macroscopic limit of the system as the number of
agents tends to infinity, obtaining the corresponding Fokker-Planck equation. We characterize its
steady states to gain an insight into the patterns (clusters) formed by the system. In Section 5,
we report the results of the stochastic simulations of the individual-based model in the spatially
one-dimensional setting, while the two-dimensional results are presented in Section 6. Here we
also provide a statistical evidence that the long-term memory inhibits the particles’ responsivity to
environmental stimuli. We conclude with the discussion in Section 7.

2 Spontaneous aggregation model without memory

The individual-based stochastic model introduced in reference [6] under the name ‘direct aggre-
gation model’ consists of a group of N ≥ 2 biological agents (cells or animals), characterized by
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their positions xi(t) ∈ Rd, with spatial dimension d ∈ {1, 2, 3} and i ∈ [N ], where we have denoted
the set of indices by [N ] := {1, 2, . . . , N}. Every individual senses the average density of its close
neighbours, given by

ϑi(t) =
1

N

∑
j∈[N ]

W (xi(t)− xj(t)) , for i ∈ [N ] , (2.1)

where W (x) = w(|x|) with the weight function w : R+ → R+ assumed to be bounded, nonnegative,
nonincreasing and integrable on Rd. Without loss of generality we impose the normalization∫

Rd

W (x) dx = 1 . (2.2)

A generic example of w is the (properly normalized) characteristic function of the interval [0, R],
corresponding to the sampling radius R > 0. The average density ϑi is then simply the fraction
of individuals located within the distance R from the i-th individual. The individual positions are
subject to a random walk with modulated amplitude, described by the system of coupled SDEs

dxi(t) = G(ϑi) dB
t
i , for i ∈ [N ] , (2.3)

where Bt
i are independent d-dimensional Brownian motions. The response function G : R+ → R+

is assumed to be globally bounded, nonnegative and decreasing. The monotonicity of G is implied
by the modeling assumption that the individuals respond to higher perceived population densities
in their vicinity by reducing the amplitude of their random walk.

In reference [6], the mean-field limit (as N → ∞) of the individual-based model (2.1)–(2.3) is
derived, describing the system in terms of the number particle density ϱ ≡ ϱ(t,x) with x ∈ Rd.
The time evolution of the density ϱ is subject to

∂ϱ

∂t
=

1

2
∆
(
G(W ∗ ϱ)2ϱ

)
, (2.4)

with the convolution given by W ∗ ϱ(x) :=
∫
Rd W (x − z)ϱ(z) dz. In fact, it is more instructive to

expand the derivative in equation (2.4) and formulate it as the convection-diffusion equation

∂ϱ

∂t
=

1

2
∇ ·
(
ϱ∇
[
G(W ∗ ϱ)2

]
+G(W ∗ ϱ)2∇ϱ

)
. (2.5)

Here we identify the convection term ∇·
(
ϱ∇
[
G(W ∗ ϱ)2

])
as the ‘driving force’ responsible for the

eventual formation of aggregates (recall the monotonicity assumption on G). Then the following
condition for aggregation, emanating from a perturbation of a given constant steady state ϱ ≡ ϱ0 >
0, can be derived [6]

Re Ŵ (ξ) > − G(ϱ0)

2G′(ϱ0) ϱ0
for some ξ ∈ Rd, (2.6)

where Ŵ = Ŵ (ξ) is the Fourier transform of W and G′(ϱ0) denotes the derivative of G at ϱ0. Note
that due the monotonicity assumption, we have G′(ϱ0) < 0. For a fixed kernel W = W (x) one
can interpret the inequality (2.6) as a condition on the response function G to be steep enough in
the neighbourhood of ϱ0. Then the effect of the convection term in equation (2.5) is stronger than
the smoothing effect of the diffusion, and the resulting instability leads to formation of aggregates.
These aggregates persist as a steady state solution in the large time limit.
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3 Spontaneous aggregation model with memory

We now introduce memory into the spontaneous aggregation model (2.1)–(2.3) using a set of K ∈ N
internal variables describingK memory ‘layers’. Each individual is then characterised by its position
xi = xi(t) ∈ Rd and internal variables yk

i = yk
i (t) ∈ Rd for i ∈ [N ] and k ∈ [K]. Equation (2.3) is

generalized for i ∈ [N ] to the following system of SDEs,

dxi(t)

dt
= y1

i (t) ,

εk
dyk

i (t)

dt
= −αk y

k
i (t) + yk+1

i (t) , for k ∈ [K − 1] ,

εK dyK
i (t) = −αK yK

i (t) dt + G(ϑi(t)) dB
t
i ,

(3.1)

where Bt
i are again independent d-dimensional Brownian motions. The positive constants αk > 0,

for k ∈ [K], are the relaxation coefficients, and parameters εk > 0, for k ∈ [K], define the time
scales. The perceived densities ϑi = ϑi(t) are given by (2.1).

Let us note that the model with memory (3.1) can be reduced to the original spontaneous
aggregation model (2.1)–(2.3) if we set αk := 1 for all k ∈ [K] and pass to the limit εk → 0 for all
k ∈ [K]. Then we formally recover (2.3).

Denoting the j-th component of yk
i ∈ Rd by yki,j , for i ∈ [N ], j ∈ [d] and k ∈ [K], we introduce

the following notation

yi,j =
[
y1i,j , y

2
i,j , . . . , y

K
i,j

]
∈ RK for i ∈ [N ] and j ∈ [d] . (3.2)

To further analyze the behaviour of model (3.1), we fix

εk := 1 for all k ∈ [K]. (3.3)

Then the SDE system for yi,j = yi,j(t) ∈ RK , with i ∈ [N ] and j ∈ [d], can be written in matrix
form as

dyi,j(t) = A
(K)

yi,j(t) dt + β
(K)
i (t) dBt

i,j (3.4)

where Bt
i,j is the j-th component of Bt

i (i.e., the standard one-dimensional Brownian motion), and

the constant matrix A
(K) ∈ RK×K and the vectors β

(K)
i = β

(K)
i (t) ∈ RK are given by

A
(K)

:=


−α1 1 0 0 . . . 0
0 −α2 1 0 . . . 0

... 1
0 . . . 0 −αK

 and β
(K)
i (t) :=


0
...
0

G(ϑi(t))

 . (3.5)

Prescribing the initial condition yi,j(0) at time t = 0, the solution of the SDE system (3.4) is given
by the variation-of-constants formula [21, Section 3.3]

yi,j(t) = exp
[
tA

(K)
]
yi,j(0) +

∫ t

0
exp
[
(t− s)A

(K)
]
β
(K)
i (s) dBs

i,j .

In particular, choosing yi,j(0) := 0, we have for y1i,j ≡ y1i,j(t)

y1i,j(t) =

∫ t

0
κ(t− s)G(ϑi(s)) dB

s
i,j , with κ(t) :=

{
exp
[
tA

(K)
]}

1,K
,
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where κ(t) is the (1,K)-th element of the matrix exp
[
tA

(K)
]
∈ RK×K . To get further insight into

the model behaviour we assume

αk := α for all k ∈ [K] , (3.6)

where α > 0 is a single parameter of the model. Then the kernel κ = κ(t) can be evaluated
explicitly, because the matrix A(K) in (3.5) takes the form

A
(K)

= −α I + U ,

with U the upper-diagonal matrix with ones on the first upper diagonal. Since U commutes with
the identity matrix, we have

exp
[
tA

(K)
]
= exp (−αt) exp[tU ] .

Moreover, U being upper diagonal, its K-th power UK is the zero matrix, so that

exp (tU) =

K−1∑
k=0

tkUk

k!
.

Consequently, the (1,K)-th element of exp [tU ] equals to tK−1/(K − 1)! and we have

κ(t) =
{
exp
[
tA

(K)
]}

1,K
=

e−αt tK−1

(K − 1)!
.

Using equation (3.1), we obtain

dxi(t)

dt
=

1

(K − 1)!

∫ t

0
e−(t−s)α (t− s)K−1G(ϑi(s)) dB

s
i , (3.7)

with ϑi = ϑi(s) ∈ R given by equation (2.1). Let us note that this formulation allows for general-
ization of the model to noninteger values of K > 0 by writing the factorial (K − 1)! in terms of the
Gamma-function as Γ(K).

To understand how the choice of the number of layers K impacts the ‘length’ of the memory,
we calculate the mean of the normalized version of the kernel κ = κ(t),(∫ +∞

0
κ(t) dt

)−1(∫ +∞

0
t κ(t) dt

)
=

K

α
.

We observe that the length of the memory increases linearly with K. In Sections 5 and 6, we
will numerically investigate the impact of the choice of K on the clustering properties of the
individual-based model with memory given by equations (2.1) and (3.7). Finally, let us note that
this individual-based model can be also viewed for K = 1 as a simplified version of what is called
‘the second-order model’ in reference [6]. Indeed, if K = 1, then the SDE system (3.1) reduces to

dxi(t)

dt
= y1

i (t) ,

dy1
i (t) = −αy1

i (t) dt + G(ϑi(t)) dB
t
i .

(3.8)

In particular, we can interpret the internal variable y1
i = y1

i (t) as the velocity of the i-th agent
in the physical space. The velocity is then subject to linear damping with intensity α > 0 and
stochastic forcing with amplitude modulated by the term G(ϑi(t)) with ϑi = ϑi(t) given by (2.1).
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4 The Fokker-Planck equation and its steady states

The formal large population limit as N → ∞ of the system (2.1), (3.1) is described by the particle
density function

f = f(t,x,y1,y2, . . . ,yK)

defined on the phase space (x,y1,y2, . . . ,yK) ∈ R(K+1)d. The Fokker-Planck equation governing
the evolution of f can be derived by a generalization of the procedure used in [6]. The main idea is
based on deriving the so-called BBGKY hierarchy [4], using the fundamental trick of ‘linearization’
of (3.1) by introducing the average densities ϑi = ϑi(t) for i ∈ [N ] as a set of N independent
variables. According to (2.1) and the first equation of (3.1), these new variables are subject to the
system of differential equations

dϑi

dt
=

1

N

∑
j∈[N ]

∇W (xi − xj) ·
(
y1
i − y1

j

)
, for i ∈ [N ] .

One then applies the Itô formula [21] to write down the Liouville equation for the N -particle
density [7]. Adopting the usual molecular chaos assumption on vanishing particle correlations as
N → ∞, the Fokker-Planck equation is derived in the form

∂tf + y1 · ∇xf +
K−1∑
k=1

ε−1
k ∇yk ·

(
(yk+1 − αky

k)f
)

= ε−1
K ∇yK ·

(
αky

Kf +
G(W ∗ ϱ)2

2
∇yKf

)
, (4.1)

where ϱ ≡ ϱ(t,x) is the particle number density

ϱ(t,x) =

∫
RdK

f(t,x,y1,y2, . . . ,yK) dy , (4.2)

obtained by integrating f over all internal variables y1, y2, . . . , yK , and using the notation∫
RdK

dy ≡
∫
Rd

∫
Rd

. . .

∫
Rd

dy1 dy2 . . . dyK . (4.3)

In Sections 5 and 6, we will present the results of stochastic simulations of the individual-based
model, where the positions of individuals, x ∈ Rd, evolve in the d-dimensional cube

Ω = (0, 1)d with periodic boundary conditions. (4.4)

This means that equation (4.1) is posed on a torus Ω in the x variable, while the yk variables, for
k ∈ [K], take their values in the full space Rd. Since for any fixed x ∈ Ω the function

yK 7→ exp

(
− αK |yK |2

G(W ∗ ϱ(x))2

)
is an equilibrium for the Fokker-Planck operator on the right-hand side of equation (4.1), we
have the following homogeneous (i.e., constant in x) steady state solution of the Fokker-Planck
equation (4.1)

f(t,x,y1,y2, . . . ,yK) = C exp

(
−αK |yK |2

G(ϱ)2

)K−1∏
k=1

δ
(
yk − α−1

k yk+1
)
, (4.5)
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where ϱ > 0 is the constant particle density in Ω, δ is the Dirac delta function on Rd and C > 0 is
the normalization constant. Using (4.2) and (4.5), we get

ϱ =

∫
RdK

f(t,x,y1,y2, . . . ,yK) dy = C

(
π

αK

)d/2
G(ϱ)d ,

where we again use notation (4.3). Consequently, the normalization constant C in equation (4.5)
is given by

C =

(
αK

π

)d/2 ϱ

G(ϱ)d
.

In particular, equation (4.5) represents a steady state that is constant in x, concentrated on the
diagonals yk = α−1

k yk+1, for k ∈ [K − 1], and Gaussian distributed in the yK variable. From the
point of view of the discrete individual-based model (3.1), this corresponds to the equilibrium where
no aggregation takes place (constant particle density) and the internal variables yk, for k ∈ [K], are
subject to the Brownian motion. To characterise the steady states which are non-constant in the
x variable, we first write the momentum system corresponding to the Fokker-Planck equation (4.1).
Integrating (4.1) with respect to all yk variables, we obtain

∂tϱ + ∇x ·
∫
RdK

y1 f dy = 0 , (4.6)

where we again use notation (4.3) to simplify the resulting integrals. We observe that constructing
f radially symmetric in y1 (i.e., depending on y1 only through the modulus |y1|) annihilates the
term

∫
RdK y1 f dy and equation (4.6) reduces to ∂tϱ = 0. Multiplying equation (4.1) by yK and

integrating with respect to all yk variables, we obtain

∂t
(
ϱmK

)
+ ∇x ·

∫
RdK

(
y1 ⊗ yK

)
f dy = −ε−1

K αK ϱmK , (4.7)

where we have denoted ϱmK :=
∫
RdK yK f dy. From here we infer that in equilibrium we either

have empty regions where ϱ = 0, or regions with positive density ϱ > 0, but zero moment mK = 0.
Moreover, let us observe that any equilibrium of (4.1) needs to be concentrated of the diagonals
yk = α−1

k yk+1, for k ∈ [K − 1]. Since we have imposed radial symmetry in y1, this implies that
the equilibrium is radially symmetric in all yk variables. Then an easy calculation reveals that(

K−1∏
k=1

αk

)
∇x ·

∫
RdK

(
y1 ⊗ yK

)
f dy = ∇x ·

∫
RdK

(
yK ⊗ yK

)
f dy =

2

d
∇x

(
ϱ eK

)
,

where we have denoted ϱ eK = 1
2

∫
RdK

∣∣yK
∣∣2f dy. We see that ϱ eK plays the role of pressure in

the momentum equation (4.7) and in equilibrium we must have ϱ eK ≡ constant on Ω. Finally,

multiplying equation (4.1) by
∣∣yK

∣∣2 and integrating by parts, we obtain

∂t
(
ϱ eK

)
+ ∇x ·

(
1

2

∫
RdK

∣∣yK
∣∣2y1f dy

)
= −ε−1

K αK ϱ eK +
d

2
ε−1
K G(W ∗ ϱ)2 ϱ.

We observe that in equilibrium we must have

d

2
G(W ∗ ϱ)2 ϱ = αK ϱ eK .
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Figure 1: One-dimensional equilibrium profiles satisfying the condition (4.8), obtained by solv-
ing equation (2.4) in domain (4.4) for d = 1, subject to the initial datum ϱ(t = 0, x) =
1 + 10−1 sin(3πx)2, until a steady state is reached. We use G(s) and W (x) given by (4.9) with
R = 0.1 (top), R = 0.05 (middle) and R = 0.025 (bottom). The left panels depict the steady state
density ϱ = ϱ(x), while the right panels visualize the function G(W ∗ ϱ)2.
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Due to the requirement that ϱ eK be constant in Ω, we finally arrive at the condition characterising
the equilibrium density profiles, namely,

G(W ∗ ϱ)2 ϱ ≡ C0 in Ω , (4.8)

where the constant C0 > 0 is determined by the initial mass. To numerically compute nonhomo-
geneous profiles ϱ = ϱ(x) satisfying condition (4.8), we can solve equation (2.4) in the unstable
regime, subject to an initial datum that is a perturbation of the constant steady state. We employ
this strategy in the spatially one-dimensional setting, i.e., for d = 1 in our domain (4.4). The
results are presented in Figure 1, where we use

G(s) := e−s and W (x) :=
χ[0,R](|x|)

2R
with some R > 0 , (4.9)

where χ[0,R] denotes the characteristic function of the interval [0, R], i.e., the kernel W = W (x)
corresponds to the sampling radius R > 0. Using the semi-implicit finite difference discretization
for the space variable and first-order forward Euler method for the time variable, the steady states
are plotted for R ∈ {0.1, 0.05, 0.025} in Figure 1. Let us note that the steady states are not unique
and the particular pattern produced by the simulation depends on the choice of the initial datum;
for all three simulations presented in Fig. 1 we used ϱ(t = 0, x) = 1 + 10−1 sin(3πx)2. The same
approach can be applied in higher-dimensional settings as well, see [6, Section 5.4] for the results
with d = 2.

Finally, let us mention that in the formal limit as R → 0+ in (4.9) we obtain W (x) = δ(x),
the Dirac delta in Rd. Then W ∗ ϱ = ϱ and equation (2.4) becomes a nonlinear but local reaction-
diffusion equation. However, is does not produce any nontrivial patterns, since the following alter-
native holds: either G = G(s) is such that all homogeneous steady states are asymptotically stable,
or the equation is ill-posed. We refer to [6, Section 4.4] for more details.

5 Spontaneous aggregation in one spatial dimension (d = 1)

As the dimensionality of the Fokker-Planck equation (4.1) becomes prohibitive for numerical sim-
ulations even with moderate values of K, we use stochastic simulations of the individual-based
model given by equations (2.1) and (3.1) to systematically investigate the impact of the number of
memory layers K ≥ 1 on the clustering properties of the spontaneous aggregation model. We use
εk and αk, for k ∈ [K], given by equations (3.3) and (3.6), respectively, where we choose α = 1 in
equation (3.6). The distance between agents is calculated over the torus, i.e., taking into account
the periodic boundary conditions on Ω. We simulate N = 400 agents moving in the domain (4.4)
for d = 1. The response function G(s) and the interaction kernel W (x) are given by (4.9) with the
sampling radius R = 1/40 = 0.025.

We initialize the simulation by randomly generated agent positions xi ∈ Ω, for i ∈ [N ], using
uniformly distributed initial positions in Ω. All internal variables are initialized as zeros, i.e.,
yki (0) = 0 for all i ∈ [N ] and k ∈ [K]. We discretize equations (3.1) using the Euler-Maruyama
scheme with timestep ∆t = 10−3. We calculate 100 stochastic realizations of the individual-based
model in the time interval [0, 103], i.e., we calculate the time evolution over 106 timesteps for each
realization. We record the particle positions at the final time t = 103 and use these for evaluating
clustering properties of the model.

For identification of the clusters we use the MATLAB implementation of the Density-based spatial
clustering (DBSCAN) method [15]. As we expect the clusters to be of size comparable to the
sampling radius R = 0.025, we set the paramater epsilon, specifying the radius of a neighbourhood
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Figure 2: Simulations of the individual-based model (2.1) and (3.1) for K ∈ {1, . . . , 5}, and the
model (2.1)–(2.3) without memory (K = 0). We used N = 400 agents moving in the domain Ω
given by (4.4) with d = 1. G(s) and W (x) are given by (4.9) with R = 0.025. For each value
of K ∈ {0, 1, . . . , 5}, the plots capture the particle positions at the final time t = 103 (horizontal
axis) and the perceived density of their neighbours ϑi given by (2.1) (vertical axis). The clusters,
differentiated by colour, are identified using the DBSCAN method with parameters epsilon = 0.025
and MinPoints = 20. The light green points are outliers, i.e., particles not belonging to any cluster.

with respect to some point of the DBSCAN method, to epsilon = 0.025. Moreover, based on
experimentation, we found that the choice of the second parameter of DBSCAN, minPts = 20,
leads to the best results in identification of clusters. Examples of the results, recorded at the final
timestep of the simulations with K ∈ {1, 2, 3, 4, 5}, are plotted in Figure 2. For comparison, we
also simulate the system (2.1)–(2.3), i.e., spontaneous aggregation without memory; we refer to the
corresponding results by K = 0.

In Figure 3, we provide statistics of the clustering behaviour over 100 realizations of the
individual-based stochastic model given by equations (2.1) and (3.1), performed for each value
K ∈ {1, 2, . . . , 6}, together with the results obtained by the system (2.1)–(2.3) (referred as the
K = 0 case). In Figure 3(a), we plot the number of clusters identified in the final timestep of the
simulation by the DBSCAN method. The solid line represents the average over the 100 realizations,
while the blue ‘error bars’ indicate the minimum and maximum values. Here, we clearly observe a
tendency toward the formation of fewer clusters as K increases. Figure 3(b) shows the minimum,
average and maximum cluster sizes observed over the course of 100 stochastic realizations. For
K ∈ {0, 1, 2} the size of the clusters increases with K, and decreases for K > 3. Figure 3(c) shows
the average (solid line) and minimum/maximum (error bars) number of outliers, i.e., particles that
do not belong to any cluster. The number of outliers increases from almost zero for K ∈ {0, 1}, up
to almost all particles being outliers for K ∈ {5, 6}; c.f. the corresponding panels in Figure 2. Fi-
nally, the percentages of the outcomes (out of the 100 stochastic simulations) that did not produce
any clusters are plotted in Figure 3(d). We observe that for K ∈ {0, 1, 2, 3, 4} the percentage is
zero (clusters have always been formed). For K = 5 the percentage increases steeply and is almost
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100% for K = 6.
In summary, increasing memory length disrupts spontaneous aggregation. In the next section,

we present an analogous set of simulations in a two-dimensional spatial setting. There, we also pro-
vide statistical evidence that memory weakens the particles’ responsivity to environmental stimuli.
We argue that this reduction in responsivity accounts for the decreased tendency to cluster observed
at higher values of K.

6 Spontaneous aggregation in two spatial dimensions (d = 2)

In this section, we present results of stochastic simulations of the individual-based model given by
equations (2.1) and (3.1) for d = 2 (spatially two-dimensional setting), where xi = xi(t) ∈ Ω with
Ω given by (4.4) for d = 2. The internal variables yk

i = yk
i (t) evolve in the full space R2. As in

Section 5, we set εk and αk, for k ∈ [K], given by equations (3.3) and (3.6), respectively, where we
choose α = 1 in equation (3.6). We simulate N = 400 particles with the response function G(s)
and the interaction kernel W (x) given by

G(s) := e−s and W (x) :=
χ[0,R](|x|)

π R2
, (6.1)

where we choose the sampling radius R = 1/20 = 0.05. We again discretize (3.1) using the Euler-
Maruyama scheme with timestep ∆t = 10−3. We initialize the simulation by generating initial
positions xi ∈ Ω, for i ∈ [N ], using a uniform distribution in Ω, while all internal variables are
initially equal to zero, i.e., yk

i (0) = 0 for all i ∈ [N ] and k ∈ [K]. We again calculate 100 stochastic
realizations, now for K ∈ {1, 2, . . . , 8}, each time performing 107 timesteps. We record the particle
locations at the last timestep (t = 104) and use these for evaluating clustering properties of the
model. For identification of the clusters we again use the MATLAB implementation of the DBSCAN
method [15] with its parameter chosen as epsilon = 0.05 (same as the sampling radius) and
minPts = 12.

Examples of the results, recorded at the final timestep of the simulations with K ∈ {1, 2, . . . , 8},
are plotted in Figure 4. The clusters are indexed by positive natural numbers, while agents indexed
by −1 are classified as outliers, i.e., not belonging to any cluster. We observe the tendency to
produce a smaller number of clusters with increasing K. The size of clusters appears to increase
until K = 4. For larger values of K the number of outliers increases. For K = 8 no clusters are
formed in the presented stochastic realization in Figure 4, i.e., all particles have been classified as
outliers.

In Figure 5, we provide statistics of the clustering behaviour over the sample of 100 realizations
of the individual-based model given by equations (2.1) and (3.1) for d = 2, performed for each
K ∈ {1, 2, . . . , 8}. Again, we also simulate the memoryless system (2.1)–(2.3) and refer to the
results by K = 0. The statistical quantities plotted in the four panels of Figure 5 are the same as in
the one-dimensional case in Figure 3. In particular, Figure 5(a) shows the average, minimum and
maximum number of clusters formed obtained over 100 stochastic realizations. We again observe
the tendency to formation of fewer clusters for higher values of K. For K ∈ {1, 2, 3, 4} the size of
the clusters increases with K, as we observe in Figure 5(b), and decreases for K > 4. Figure 5(c)
shows the average (orange solid line) and minimum/maximum (blue error bars) number of outliers,
i.e., particles that do not belong to any cluster. We can again observe relatively low number of
outliers for K ≤ 4 and high number for K ≥ 5. Finally, Figure 5(d) shows the percentage of the
outcomes out of the 100 simulations that have not produced any clusters. We observe that for
K ∈ {1, 2, 3, 4, 5} the percentage is zero (clusters have always been formed). For larger values of
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(a) (b)

(c) (d)

Figure 3: Statistics of the clustering behaviour over 100 realizations of the individual-based model
given by equations (2.1) and (3.1) for dimension d = 1, N = 400 agents, G(s) and W (x) given
by (4.9) with R = 0.025 and K ∈ {1, 2, . . . , 6}. The case K = 0 (no memory) refers to stochastic
simulation of the system (2.1)–(2.3). Other parameters are the same as in Figure 2.
(a) average (orange solid line), minimum and maximum (indicated by blue error bars) number of
clusters identified in the final timestep of the simulations at time t = 103,
(b) average (orange solid line), minimum and maximum (blue error bars) cluster sizes,
(c) average (orange solid line), minimum and maximum (blue error bars) number of outliers, i.e.,
particles that do not belong to any cluster,
(d) percentage of simulation outcomes (out of the 100 runs) that did not produce any clusters.
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Figure 4: Simulations of the individual-based model (2.1) and (3.1) for K ∈ {1, . . . , 8}, and the
model (2.1)–(2.3) without memory (K = 0). We used N = 400 agents moving in the domain
Ω given by (4.4) with d = 2. Functions G(s) and W (x) are given by (4.9) with R = 0.05. For
each value of K ∈ {0, 2, . . . , 8}, the plots capture the particle positions at the final time t = 104.
The clusters, differentiated by colour, are identified using the DBSCAN method with parameters
epsilon = 0.05 and minPts = 12. The points indexed with −1 are outliers, i.e., not belonging to
any cluster.

13



(a) (b)

(c) (d)

Figure 5: Statistics of the clustering behaviour over 100 realizations of the individual-based model
given by equations (2.1) and (3.1) for dimension d = 2, N = 400 particles, G(s) and W (x) given
by (6.1) with R = 0.05 and K ∈ {1, 2, . . . , 8}. The case K = 0 (no memory) refers to stochastic
simulation of the system (2.1)–(2.3). Other parameters are the same as in Figure 4.
(a) average (orange solid line), minimum and maximum (indicated by blue error bars) number of
clusters identified in the final timestep of the simulations at time t = 103,
(b) average (orange solid line), minimum and maximum (blue bars) cluster sizes,
(c) average (orange solid line), minimum and maximum (blue bars) number of outliers, i.e., particles
that do not belong to any cluster,
(d) percentage of simulation outcomes (out of the 100 runs) that did not produce any clusters.
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K the percentage increases steeply. For K = 8 no clusters have been formed in 75 out of the 100
simulations. Based on the statistics gathered in Figure 5, we may identify three regimes:

(a) Short memory regime (K = 1), where a high number of clusters (10 on average) is formed,
typically consisting of 40 agents. There are no or almost no outliers.

(b) Moderate memory regime (K = 4), where typically a few larger clusters form, containing a
significant proportion of agents except for the outliers.

(c) Long memory regime (K = 8) where most of the simulations do not produce any clusters,
and even if a cluster is formed, the majority of agents exists as outliers.

To gain further understanding of this behaviour, we have collected the statistics of the values of the
internal variables y1

i , for i ∈ [N ], recorded during the temporal evolution of the individual-based
model in the considered 100 stochastic realizations in Figure 6. More precisely, the forward Euler
discretization of the first equation of the SDE system (3.1) reads

xi(t+∆t) = xi(t) + y1
i (t)∆t for i ∈ [N ] ,

i.e., in each timestep of the discrete simulation the particle locations in the physical space are
updated by y1

i (t)∆t. In Figure 6, we plot the statistics of the magnitudes |y1
i (t)| in dependence

of the values of G(ϑi(t)) with the perceived densities ϑi(t) given by equation (2.1). In particular,
for each fixed K ∈ [8], in each timestep of each of the 100 stochastic realizatons, we record the
pair (G(ϑi(t)), |y1

i (t)|) for all i ∈ [N ]. We then plot the mean and standard deviation of the
values of |y1

i | against the values of G(ϑi), separately for each memory regime in panels (a), (b)
and (c) of Figure 6. Figure 6(a) corresponds to the short memory regime, Figure 6(b) presents the
moderate memory regime and Figure 6(c) corresponds to the long memory regime. We observe
that |y1

i | increases with G(ϑi), which corresponds to the fundamental modeling assumption that
the particles’ mobility decreases with perceived density (recall that the response function G is in
general a decreasing function; we use G(s) = e−s in equation (6.1)). However, this effect weakens
as K increases, and is nearly absent at K = 8, see Figure 6(c). We therefore conclude that the
presence of memory systematically inhibits the particles’ responsivity to environmental stimuli,
specifically the perceived density of their neighbours.

7 Discussion

In this paper, we have shown that short-term memory enhances and long-term memory inhibits
spontaneous particle aggregation. Our investigation has been based on the (first-order) spontaneous
aggregation model without memory which has been previously investigated in the literature [6]. Its
main properties are summarized in Section 2. The memory has been added into this model in
Section 3 by introducing a chain of K internal variables that allow the agents to ‘remember’ the
densities they encountered in the past. If K = 1, then our individual-based model is equivalent to
what is called ‘the second-order model’ in reference [6], where the internal variable represents the
agent’s velocity. Considering K > 1, the model introduces additional layers of memory described
by K internal variables. Additional internal variables can be used to better fit the properties of
relatively complex (high-dimensional) models of interacting particle systems, while keeping the
number of degrees of the system (internal variables) relatively small [8, 9]. For simplicity, our
transfer of information between layers of memory is linear, but nonlinear functions can also be
introduced to better fit the properties of some systems [9, 17].

In Sections 5 and 6, we have reported the results of systematic stochastic simulations of the
individual-based model in the spatially one-dimensional and two-dimensional settings, respectively.
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(a) (b)

(c) (d)

Figure 6: Statistics of the magnitude of the internal variable |y1
i | versus the response function value

G(ϑi), aggregated over all agents and timesteps in 100 simulations of the individual-based model
given by equations (2.1) and (3.1) in d = 2 dimensions with N = 400 particles, for:
(a) K = 1 (short memory regime),
(b) K = 4 (moderate memory regime),
(c) K = 8 (long memory regime).
The orange circles represent the average value of |y1

i | corresponding to each G(ϑi), while the error
bars indicate the standard deviations. The panel (d) presents the average values of |y1

i | corresponding
to each G(ϑi) for all values K ∈ {1, 2, . . . , 8}.
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We have shown that memory inhibits the particles’ responsivity to environmental stimuli. Our
results show that the introduction of memory leads, in general, to the formation of a smaller
number of larger clusters. This trend is observed until K = 3 in the one-dimensional setting and
until K = 4 in two spatial dimensions. When the number of layers K is increased further, i.e., as
the memory becomes ‘longer’, its effect starts to be disruptive. This is manifested by the increasing
proportion of ‘outliers’, which are the particles that are not part of any cluster. Also, the percentage
of stochastic simulations where no clusters are formed during the observation time increases with
increasing K. We therefore conclude that short-term or medium-term memory has a coarsening
effect on spontaneous aggregation, while long-term memory disrupts it.

The presence of memory impacts the clustering properties of the model - in particular, the
number and size of clusters being formed, or even the very ability of the model to produce clusters,
starting from initially randomly distributed particles in the physical space. In one spatial dimension,
we have observed a sharp transition between K ≤ 4, when clusters are always formed, and K ≥ 5,
when clusters are almost never formed during the simulation period. A similar, although less sharp
transition, takes place in two-dimensional models between K ≤ 6 and K ≥ 7.

We have performed systematic numerical simulations to evaluate the impact of the number of
internal variables (or ‘memory layers’) K on the dynamics of the many particle system, because (ex-
act) analytical mathematical results to study these properties are not available and the development
of the corresponding mathematical theories includes a number of open questions. Some progress in
this direction can be made as shown in Section 4, where we have derived the formal macroscopic
limit of the system as the number of agents tends to infinity, under the usual molecular chaos
assumption [6]. The limit is described by a Fokker-Planck equation, and we have characterized its
steady states to gain an insight into the patterns (clusters) formed by the system.

Many organisms benefit from learning to adapt their behaviour to the distribution of resources
and their learning depends on the memory capacity of each individual [16]. In our investigation,
the number of memory layers, K, has been fixed, but it could be made variable for each agent. If
the evolutionary objective is to develop large clusters in two-dimensional setting, then the choice
K = 4 can be consider ‘optimal’. Our memory model with K layers could also be further extended
by considering nonlinear activation functions to model a more complicated neural network [17] and
the applicability of the model could be further enhanced by introducing different modes of learning
during the individual-based simulations [20].
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slowly decaying memory allow efficient collective learning in groups of interacting foragers.
PLOS Computational Biology, 19(10):1–19, 2023.

[17] K. Gurney. An introduction to neural networks. CRC press, 2018.

[18] J. Haskovec and D. Oelz. A free boundary problem for aggregation by short range sensing and
differentiated diffusion. DCDS-B, 20:1461–1480, 2015.

[19] R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost, and G. Theraulaz.
Self-organised aggregation in cockroaches. Anim. Behav., 69:169–180, 2005.
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