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1 Variational formulations and Galerkin
approximation

1.1 Prelude

Many physical phenomena are accurately and concisely described
by partial differential equations (PDEs). While we can often write
down the laws of physics in this form, most of the time we cannot
exactly solve them in cases of practical interest. We therefore turn to
numerical methods for the approximation of their solutions.

The finite element method is one of the most popular, general,
powerful and elegant approaches for approximating the solutions of
PDEs. Unlike finite difference methods, it naturally handles compli-
cated domains (useful for engines and aeroplanes) and minimally
regular data (such as discontinuous forcing terms). It permits an in-
sightful error analysis, allowing practitioners to understand the cost
of the approximations they make and in some cases to automatically
control them.

An excellent general reference for the material covered in these
lectures is Brenner and Scott1. A lovely review of the history of the 1 S. C. Brenner and L. R. Scott. The

Mathematical Theory of Finite Element
Methods, volume 15 of Texts in Applied
Mathematics. Springer-Verlag New York,
third edition edition, 2008

finite element method is offered by Gander and Wanner2.

2 M. J. Gander and G. Wanner. From
Euler, Ritz, and Galerkin to modern
computing. SIAM Review, 54(4):627–666,
2012

There are four basic ingredients in the finite element method:

1. Variational formulation in an infinite-dimensional space V;

2. Variational formulation in a finite-dimensional space Vh ⊂ V;

3. The construction of a basis for Vh;

4. The assembly and solution of the resulting linear system of equa-
tions.

We discuss these in turn.

1.2 Variational formulation
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1.2.1 Motivation

Let Ω be an open, bounded, connected subset of Euclidean space Rn,
n = 1 . . . 3, with Lipschitz boundary3 Γ = ∂Ω. Consider the model 3 We will define this later.

problem: given f ∈ C(Ω) and g ∈ C(Γ), find u ∈ C2(Ω) ∩ C(Ω) such
that

−∇2u = f in Ω,

u = g on Γ. (P)

Definition 1.2.1 (classical solution). A solution u ∈ C2(Ω) ∩ C(Ω)

satisfying (P) is said to be a classical solution of this equation.

This is Poisson’s equation with Dirichlet boundary conditions. If
g = 0, it describes the deformation of a stretched elastic membrane
clamped to the wireframe boundary of shape Γ subject to a load f (x).
It also relates the gravitational potential and mass density in Newto-
nian mechanics, and the electric potential and charge distribution in
electrostatics. It describes incompressible inviscid irrotational flow,
and many other things besides.

Let us be explicit about what equality means in (P). In (P), we
mean pointwise equality: in the first equation there are two functions
−∇2u and f , and we insist that

(−∇2u)(x) = f (x) for all x ∈ Ω. (1.2.1)

Thus, we have to be able to evaluate f and −∇2u at points, and this
is why we demand that u ∈ C2(Ω), f ∈ C(Ω) and g ∈ C(Γ).

Figure 1.1: A supersonic aircraft in-
duces a shock wave; physical reality
is best described by a discontinuous
function. The blurring of the inter-
face is an artefact of an averaging
process in the photography; the true
interface is sharper. Credit: https:
//www.nasa.gov/centers/armstrong/

features/shock_and_awesome.html

Unfortunately, the map −∇2 : C2(R2) → C0(R2) is not invertible4. 4 D. Gilbarg and N. S. Trudinger. Elliptic
Partial Differential Equations of Second
Order. Springer, third edition, 2001

These continuity requirements are too strict, and do not capture
certain reasonably physical scenarios: after all, discontinuities happen
in real life. In Part A Differential Equations, you saw examples of
first-order hyperbolic equations where a kink5 in the data propagates 5 A discontinuity in the derivative.

https://www.nasa.gov/centers/armstrong/features/shock_and_awesome.html
https://www.nasa.gov/centers/armstrong/features/shock_and_awesome.html
https://www.nasa.gov/centers/armstrong/features/shock_and_awesome.html
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along characteristics and induces a kink in the solution. But if the
solution is not differentiable there, in what sense is it the solution
of a PDE? This is not an abstract matter of no physical importance.
For example, a supersonic aircraft induces a shock wave, which is
a discontinuity in the pressure, temperature and density, figure 1.1.
How can we interpret this as the solution of a PDE (in this case, the
compressible Navier–Stokes)?

We will turn to an alternative interpretation of what it means for
two functions to be equal. Rather than basing our formulation on
pointwise evaluation, we will instead base it on integration against test
functions. Integration is more forgiving than pointwise evaluation; we
can ignore bad behaviour on a set of measure zero6. A classical solu- 6 Loosely speaking, measure means

length in one dimension, area in two
dimensions, and volume in three
dimensions. For a formal development,
see A4, Integration.

tion will satisfy our new variational formulation, but the variational
formulation will be more general: it will permit solutions like that
shown in figure 1.1, and more besides.

It will turn out (by the end of the course you will agree) that the
variational formulation to be described is the natural one; it is the
sense in which PDEs should be understood. The success of the finite
element method largely arises from its foundations on this bedrock.

1.2.2 Prelude: linear algebra

Imagine you have two vectors a, b ∈ Rn, n < ∞, but you are not
allowed to examine their entries. You can, however, compute their
inner products a · v, b · v against any test vector v ∈ Rn that you like.
It is trivial to prove7 that 7 This exercise appears on the first

problem sheet of the Geometry course,
in the first term of first year.a = b ⇐⇒ a · v = b · v for all v ∈ Rn.

The first statement is like pointwise equality; the coefficients of a
and b must match in any basis. The second statement is a variational
statement: we demand that when tested with any v varying in some set,
the projections of a and b onto v must match.

We will now do exactly the same thing with functions.

1.2.3 Casting into variational form

Let v be any sufficiently regular function such that v|Γ = 08. For 8 The precise definition of sufficiently
regular will be specified later.now, assume that g = 09 and that Ω is polytopic (i.e. a polygon or
9 The case of inhomogeneous boundary
data is a straightforward extension and
will be discussed in later lectures.

polyhedron)10. Let us multiply both sides of the equation by v and

10 This is so that we do not have to
wrestle now with the issue of approx-
imating the domain as well as the
solution; it greatly complicates the error
estimates.

integrate:

−
∫

Ω
v∇2u dx =

∫
Ω

f v dx. (1.2.2)

We wish to reduce the regularity requirements on u by shifting
one of the derivatives from u onto v. This is achieved by integration by
parts.
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First, recall the divergence theorem: if w is a sufficiently regular
vector field defined on a Lipschitz domain Ω, then∫

Ω
∇ · w dx =

∫
Γ

w · n ds, (1.2.3)

where n is the unit outward facing normal to Ω on Γ. Now applying
the product rule to the following quantity

∇ · (v∇u) = v∇2u +∇u · ∇v, (1.2.4)

integrating, and applying the divergence theorem, we find∫
Γ

v∇u · n ds =
∫

Ω
v∇2u dx +

∫
Ω
∇u · ∇v dx, (1.2.5)

or rearranged,

Theorem 1.2.2 (Integration by parts). For a Lipschitsz domain Ω and
functions u, v:

−
∫

Ω
v∇2u dx =

∫
Ω
∇u · ∇v dx−

∫
Γ

v∇u · n ds. (IBP)

Applying this to our original problem, we can rephrase (1.2.2) as∫
Ω
∇u · ∇v dx−

∫
Γ

v∇u · n ds =
∫

Ω
f v dx. (1.2.6)

As we cleverly chose v to vanish on Γ, this reduces to∫
Ω
∇u · ∇v dx =

∫
Ω

f v dx, (1.2.7)

or in abstract notation
a(u, v) = F(v) (1.2.8)

where in this case

a(u, v) =
∫

Ω
∇u · ∇v dx (1.2.9)

and
F(v) =

∫
Ω

f v dx. (1.2.10)

At this point, we inspect our variational problem and decide on
the function space V such that the problem makes sense for u, v ∈ V.
For now, we will define

V = {v : Ω→ R| a(v, v) < ∞ and F(v) < ∞ and v|Γ = 0} (1.2.11)

and postpone the discussion of exactly what this function space is to
the next lectures.
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Definition 1.2.3 (abstract variational formulation). A linear variational
equality is the problem:

find u ∈ V such that a(u, v) = F(v) for all v ∈ V. (Q)

In particular, the variational formulation of (P) is of the form (Q)
when g = 0.

Certainly (P) implies (Q), but not necessarily the other way around.
We have weakened the regularity requirements on the solution u; in-
stead of requiring the existence and continuity of two derivatives,
we merely require the square-integrability of one derivative. For this
reason, the variational formulation is also referred to as the weak for-
mulation. However, it will transpire in later lectures that if u and f
happen to be sufficiently regular (i.e. in C2(Ω) ∩ C(Ω) and C(Ω)

respectively) then (Q) does indeed imply (P).
There are many fundamental questions to address before we begin

to discretise. Does (Q) have a solution? A unique solution? Is that
solution stable with respect to the data ( f and g)? We will address
these points in subsequent lectures; but for now, let us accept that (Q)
is well posed, and discuss how the finite element method proceeds
from here.

1.3 Galerkin approximation

Let Vh ⊂ V be a closed finite dimensional subspace of V. Instead
of seeking a solution in the infinite-dimensional space V, we will
instead look for an approximation inside a more manageable finite-
dimensional subspace; as we make Vh larger and larger, we expect
that our approximation will get better and better.

Definition 1.3.1 (Galerkin approximation). Given Vh ⊂ V, the Galerkin
approximation11 of (Q) is 11 Also referred to as the Ritz–Galerkin

approximation.

find uh ∈ Vh such that a(uh, vh) = F(vh) for all vh ∈ Vh. (G)

This discrete, finite-dimensional problem possesses the same struc-
ture as the infinite-dimensional one: the operators in the PDE are the
same, merely restricted to subspaces. As we will see later, this means that
useful properties of the PDE like symmetry and positive-definiteness
are automatically inherited by the discretisation.

There are many questions to be investigated at this point. Does
this discrete problem have a unique, stable solution? What can be
learned about the approximation error? We will see in subsequent



12 finite element methods for pdes

lectures (Céa’s Lemma and subsequent variants) that for many prob-
lems this approximation is quasi-optimal: uh is the best it could be, up
to some problem-dependent constants. But for now, we will continue
on our tour of the big picture.

1.4 Construction of function spaces

This idea of Galerkin approximation is extremely general: Vh could
be constructed in any number of ways (a spectral expansion, wavelets,
a problem-specific choice, . . . ). The finite element method is a particular
choice of Galerkin approximation, where the discrete function space
Vh is constructed by equipping a mesh of the domain Ω with piecewise
polynomial basis functions.

Figure 1.2: A mesh of a human pelvis,
produced using the gmsh software.

Definition 1.4.1 (mesh, informal). A mesh is a geometric decomposition
of a domain Ω into a finite collection of cells {Ki} such that

1. int(Ki) ∩ int(Kj) = ∅ if i 6= j, and

2. ∪iKi = sΩ.

With enough cells, one can approximate very complicated do-
mains: the volume of the ocean, or the combustion chamber of an
engine, or a steam turbine. For an example, see figure 1.2.

The cells are chosen to be simple geometric shapes over which we
know how to integrate, e.g. triangles, tetrahedra, prisms, quadrilater-
als, hexagons. For an illustration of some cells, see figure 1.3, taken
from Logg et al.12 12 A. Logg, K. A. Mardal, G. N. Wells,

et al. Automated Solution of Differential
Equations by the Finite Element Method.
Springer, 2011

Once we have this geometric decomposition, we can define a dis-
crete function space by equipping it with piecewise polynomial basis
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Figure 1.3: Some simplicial cells in one,
two and three dimensions. These are
purely geometric objects.

functions. For our current example, we will use a triangular mesh
and the space

Vh = {all continuous functions that are piecewise linear when restricted to a cell}.

Such a function is uniquely determined by its values at the vertices
of the mesh. That is, the function has one degree of freedom that we
will solve for at each the vertex of the mesh, figure 1.4. With other
choices of Vh, the degrees of freedom will be associated with different
geometric entities; for example, if we chose Vh to be the space of
discontinuous functions that are piecewise constant over each cell,
each cell would have exactly one degree of freedom (conventionally
taken at its barycentre).

Figure 1.4: The linear Lagrange element
in one, two and three dimensions.
The black circles denote pointwise
evaluation. These pictures describe
what values need to be stored to define
a function on the cell.

As a basis for the space, we will use the nodal basis, which is de-
fined by the following property.

Definition 1.4.2 (nodal basis). Given the locations of N degrees of free-
dom xi, i = 0, . . . , N − 1, the associated nodal basis φi, i = 0, . . . , N − 1
satisfies

φi(xj) = δij, (1.4.1)

where δij is the Kronecker delta.

This choice of discrete function space has many advantages. Most
basis functions decouple, i.e. their supports do not intersect, which
will yield sparsity of the resulting linear system (most entries in our
matrix will be zero). By allowing for arbitrary geometric decompo-
sitions, complicated geometries can be well approximated. Lastly,
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the function space can be made larger in one of two ways: either the
mesh can be refined (suitable for problems with nonsmooth solu-
tions), or the order of the interpolating polynomials can be increased
(suitable for problems with smooth solutions). The flexibility offered
by these two strategies is very powerful for difficult problems.

1.5 Linear algebraic formulation

We now have decided on our Vh and chosen a basis for the space:

Vh = span{φ1, . . . , φN}. (1.5.1)

Let us expand uh and vh in terms of this basis, i.e.

uh =
N

∑
j=1

Ujφj (1.5.2)

and

vh =
N

∑
i=1

Viφi. (1.5.3)

Our aim is to calculate Ui, the coefficients of our approximate so-
lution. We will now show that the Galerkin approximation (G) is
equivalent to a linear system of equations.

First expand vh in our Galerkin approximation:

a(uh, vh) = F(vh) (1.5.4)

=⇒ a(uh, ∑
i

Viφi) = F(∑
i

Viφi) (1.5.5)

=⇒ ∑
i

Via(uh, φi) = ∑
i

ViF(φi). (1.5.6)

As this has to hold for all possible values of Vi, this is equivalent to

a(uh, φi) = F(φi) for i = 1, . . . , N. (1.5.7)

Each test function φi will yield one row of the resulting matrix.
Now expand uh:

a(∑
j

Ujφj, φi) = F(φi) (1.5.8)

=⇒ ∑
j

a(φj, φi)Uj = F(φi) (1.5.9)

(1.5.10)

or in matrix notation
AU = b, (1.5.11)

where
Aij = a(φj, φi) (1.5.12)
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and
bi = F(φi). (1.5.13)

This linear system can then be solved with techniques from nu-
merical linear algebra (e.g. Gaussian elimination or a Krylov method).

1.6 Outlook

We have now sketched the finite element method, but many ques-
tions remain. When is the abstract variational formulation (Q) well-
posed? When is the Galerkin approximation (G) well-posed? What
can be said about the approximation error u − uh, as measured in
different norms? How can we solve nonlinear problems, or coupled
PDEs?





2 Elements of functional analysis: Lebesgue
spaces

We now embark on a campaign to prove that (Q) is indeed well-
posed. Our goal for the next few lectures is to prove the Lax-Milgram
Theorem, a fundamental result in PDEs and variational analysis.
Lax-Milgram will give us well-posedness of both (Q) and its Galerkin
approximation (G). In order to state and prove the theorem, we must
first introduce some basic concepts of functional analysis1. 1 This material is treated more thor-

oughly in C4.3, Functional Analytic
Methods for PDEs. However, C4.3 is
not a prerequisite for this course, and
we will introduce all of the functional
analysis we need as we need it.

2.1 Banach spaces

Definition 2.1.1 (normed vector space). A normed vector space X is a
vector space equipped with a norm ‖ · ‖ : X → R that satisfies the following
properties:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇐⇒ x = 0;

2. ‖αx‖ = |α|‖x‖ for any scalar α ∈ R;

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Recall that completeness of a normed vector space X means that all
Cauchy sequences2 in X converge in X. 2 Recall that a Cauchy sequence is one

where its elements get arbitrarily close
to each other.Definition 2.1.2 (Banach space). A Banach space is a complete normed

vector space.

Example 2.1.3. Euclidean space Rn equipped with the 1-norm ‖ · ‖1, the
2-norm ‖ · ‖2, or the supremum norm ‖ · ‖∞ are all Banach spaces.

Example 2.1.4. The space of continuous functions from a domain Ω to R

equipped with the supremum norm

‖ f ‖∞ = sup{| f (x)| : x ∈ Ω} (2.1.1)

is a Banach space.
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2.2 Hilbert spaces

Definition 2.2.1 (inner product space). An inner product space X is
a vector space equipped with an inner product (·, ·) : X × X → R that
satisfies the following properties:

1. (u, v) = (v, u);

2. (αu + βv, w) = α(u, w) + β(v, w) for α, β ∈ R;

3. (u, u) ≥ 0 with (u, u) = 0 ⇐⇒ u = 0.

An inner product induces a norm, ‖u‖ =
√
(u, u), and hence a

metric.

Definition 2.2.2 (Hilbert space). A Hilbert space X is a complete inner
product space.

Thus a Hilbert space is also a Banach space. In this course we will
restrict ourselves to real Hilbert spaces.

Example 2.2.3. The canonical example of a Hilbert space is Rn with inner
product

(u, v)Rn = uTv. (2.2.1)

This induces the ‖ · ‖2 norm.

Example 2.2.4. The space of square-integrable functions on a domain,
L2(Ω), is a Hilbert space with inner product

(u, v)L2(Ω) =
∫

Ω
uv dx. (2.2.2)

Example 2.2.5. The space H1
0(Ω) of square-integrable functions that are

zero on the boundary and that have square-integrable derivatives is a Hilbert
space with inner product

(u, v)H1
0 (Ω) =

∫
Ω
∇u · ∇v dx. (2.2.3)

This satisfies the last condition of the definition of an inner product because
if ∇u = 0 then u must be constant; but the only constant function in
H1

0(Ω) is the zero function, because of the boundary conditions.

Example 2.2.6. For Ω ⊂ Rn, the space H(div, Ω) of square-integrable
vector-valued functions with square-integrable divergence

H(div, Ω) = {v ∈ L2(Ω; Rn) : ∇ · v ∈ L2(Ω)} (2.2.4)

is a Hilbert space with inner product

(u, v)H(div,Ω) =
∫

Ω
u · v +∇ · u∇ · v dx. (2.2.5)
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Example 2.2.7. For Ω ⊂ R3, the space H(curl, Ω) of square-integrable
vector-valued functions with square-integrable curl

H(curl, Ω) = {v ∈ L2(Ω; R3) : ∇× v ∈ L2(Ω; R3)} (2.2.6)

is a Hilbert space with inner product

(u, v)H(curl,Ω) =
∫

Ω
u · v +∇× u · ∇ × v dx. (2.2.7)

An important fact about Hilbert spaces is the Cauchy–Schwarz
inequality.

Theorem 2.2.8 (Cauchy–Schwarz inequality). For a Hilbert space X and
any u, v ∈ X,

|(u, v)X | ≤ ‖u‖X‖v‖X . (2.2.8)

Proof. Let λ ∈ R. Then

0 ≤ ‖u + λv‖2
X = (u + λv, u + λv)X

= (u, u) + (u, λv) + (λv, u) + (λv, λv)

= ‖u‖2
X + 2λ(u, v) + λ2‖v‖2

X . (2.2.9)

The right-hand side is a quadratic polynomial in λ with real coeffi-
cients, and it is non-negative for all λ ∈ R. Therefore its discriminant
is non-positive; it can only be zero or negative. Thus,

|2(u, v)X |2 − 4‖u‖2
X‖v‖2

X ≤ 0, (2.2.10)

yielding the desired inequality.

The only property of a norm that is not immediately obvious from
the properties of an inner product is the triangle inequality. In fact,
the triangle inequality follows from Cauchy–Schwarz:

Corollary 2.2.9 (Triangle inequality). Let u, v ∈ X. Then

‖u + v‖ ≤ ‖u‖+ ‖v‖. (2.2.11)

Proof.

‖u + v‖2 = (u + v, u + v) = ‖u‖2 + 2(u, v) + ‖v‖2 (2.2.12)

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 (2.2.13)

= (‖u‖+ ‖v‖)2. (2.2.14)

The Cauchy–Schwarz inequality also ensures that the definition of
angle makes sense in Hilbert spaces. We define the angle θ between
two vectors u and v by

cos θ =
(u, v)X
‖u‖X‖v‖X

, (2.2.15)

which is always in [−1, 1] by Cauchy–Schwarz.
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2.3 Dual of a Hilbert space

Definition 2.3.1 (Linear functional on a Hilbert space). Given a Hilbert
space X, a linear functional j on X is a function j : X → R that satisfies

j(αu + βv) = αj(u) + βj(v). (2.3.1)

Example 2.3.2. Integration over a fixed domain, evaluation at a fixed point
x, and evaluation of the derivative at a point x in the direction v are all
examples of linear functionals (when they are defined!).

Definition 2.3.3 (Bounded linear functional). A bounded linear func-
tional j : X → R is one for which there exists L ∈ [0, ∞) such that

|j(u)| ≤ L‖u‖X ∀ u ∈ X. (2.3.2)

Lemma 2.3.4 (Boundedness and continuity). Boundedness is equivalent
to continuity.

Proof. First, suppose a linear functional j is bounded and let u, v ∈ X.
Then

0 ≤ |j(u + v)− j(u)| = |j(v)| ≤ L‖v‖X (2.3.3)

which goes to zero as v→ 0. Thus j is continuous at u.
Now suppose j is continuous. In particular, it is continuous at 0.

Thus, there exists a δ > 0 such that if ‖h− 0‖ ≤ δ, then |j(h)− j(0)| =
|j(h)| ≤ 1. Then, for any u ∈ X,

|j(u)| =
∣∣∣∣‖u‖δ j

(
δ

u
‖u‖

)∣∣∣∣ = ‖u‖δ
∣∣∣∣j(δ

u
‖u‖

)∣∣∣∣ ≤ 1
δ
‖u‖, (2.3.4)

which shows that j is bounded.

Thus, the words boundedness and continuity are used inter-
changeably.

Definition 2.3.5 (Dual of a Hilbert space). The dual X∗ of a Hilbert
space X is the space of all bounded linear functionals on X. This has a
natural norm induced by the norm on the underlying space:

‖j‖X∗ = sup
‖u‖X=1

|j(u)| . (2.3.5)

In fact, this is itself a Hilbert space3. 3 The inner product on X∗ can be
constructed using the parallelogram
law and the polarisation identity; we
won’t need these.

Given a j ∈ X∗, denote the action of j on u (or equivalently u on j)
by

〈j, u〉 = j(u). (2.3.6)

This is called the duality pairing.
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Example 2.3.6. The functional j : L2(Ω)→ R

j(v) =
∫

Ω
v dx (2.3.7)

is an element of the dual space of L2(Ω).

Example 2.3.7. The functional F(v) defined in (1.2.10) is an element of the
dual space of V = H1

0(Ω).

One final comment about dual spaces:

Lemma 2.3.8. Taking the dual reverses inclusions: if V ⊂ W, then W∗ ⊂
V∗.

2.4 The Riesz Representation theorem

There is a fundamental connection between a Hilbert space and its
dual. This connection is captured in the Riesz Representation Theo-
rem.

Theorem 2.4.1 (Riesz Representation Theorem). Any bounded linear
functional j ∈ X∗ can be uniquely represented by a g ∈ X, via

〈j, u〉 = (g, u). (2.4.1)

Moreover, the norms agree: ‖j‖X∗ = ‖g‖X .

This defines a canonical linear map, the Riesz map R : X∗ → X,
that maps j 7→ g. This Riesz map is an isometric isomorphism4. 4 In the complex case, you have to take

some conjugates of scalars, and so it is
called an anti-isomorphism.Example 2.4.2. Let X = L2(Ω) and let

j(v) = 〈j, v〉 =
∫

Ω
v dx. (2.4.2)

Then its L2(Ω) Riesz representation is the constant function g(x) = 1.

2.5 Lebesgue spaces

The Lebesgue spaces, denoted Lp(Ω), are fundamental function
spaces that appear throughout analysis. Their purpose (for us) is to
finely capture the allowed rate of blow-up of a function at singulari-
ties: the larger the p, the slower the blow-up allowed.

Definition 2.5.1 (Lebesgue p-norm, finite p). Let p ∈ [1, ∞). The
Lp(Ω) norm is defined by

‖u‖Lp(Ω) =

(∫
Ω
|u|p dx

)1/p
. (2.5.1)
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Definition 2.5.2 (Lebesgue p-norm, infinite p). The L∞(Ω) norm is
defined by

‖u‖L∞(Ω) = ess sup{|u(x)| : x ∈ Ω}, (2.5.2)

where the essential supremum is the smallest real number c such that {x ∈
Ω : |u(x)| > c} has measure zero, i.e. has zero volume (in 3D) or area (in
2D)5. 5 If you haven’t done a course in mea-

sure theory, just think of it as the
supremum and forget about it.Definition 2.5.3 (Lebesgue space). For p ∈ [1, ∞], the Lp(Ω) space is

defined by
Lp(Ω) = {u : Ω→ R : ‖u‖Lp(Ω) < ∞}. (2.5.3)

Remark 2.5.4 (for measure theorists). The above definition is not quite
true. Since we are concerned with integrability, and the Lebesgue integral
ignores anything happening on a set of measure zero, we actually have to
be a little more subtle. Define two measurable functions to be equivalent
if they differ only on a set of measure zero. This is easily checked to be an
equivalence relation. The actual definition of Lp(Ω) consists of the defini-
tion above, quotiented out by this equivalence relation. Thus, an element
[ f ] ∈ Lp(Ω) is not a single function; it is an entire equivalence class of
functions, all of which differ up to sets of measure zero.

The important consequence of this is that functions in Lp(Ω) cannot
be evaluated pointwise in the traditional sense, as a point has measure
zero and for any equivalence class [ f ] you can get any answer you
like for f (x). In order to evaluate a function pointwise (for that is
quite a useful thing to do sometimes), we have to prove that any
equivalence class in the function space has a continuous representa-
tive, which we can then evaluate6. 6 We’ll now go back to saying a func-

tion lives in Lp(Ω), rather than the
equivalence class of the function.Theorem 2.5.5. All Lebesgue spaces for p ∈ [1, ∞] are Banach spaces. The

choice p = 2 is also a Hilbert space, as observed above.

Let’s build some intuition about these spaces. Let us restrict our-
selves to bounded Ω, i.e. domains of finite measure; we will always
pose our PDEs on bounded domains, and so this is the case of inter-
est to us7. 7 The relationships between Lp(Ω)

spaces are different in the case of
unbounded Ω: you have to worry that
the function decays to zero sufficiently
fast at infinity, as well as its blow-up
properties.

Example 2.5.6. First, note that the function f (x) = 1 is in Lp(Ω) for all
p:

‖1‖Lp(Ω) =

(∫
Ω

1p dx
)1/p

(2.5.4)

= V1/p < ∞, (2.5.5)

where V is the measure (e.g. volume or area) of the domain.

Let’s consider some examples of functions that distinguish be-
tween different Lp(Ω) spaces.
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Example 2.5.7. Let Ω = (0, 1) and let

fq(x) = x−q. (2.5.6)

Then fq ∈ Lp(Ω) ⇐⇒ q < 1/p. That is,

• 1
x 6∈ L1(Ω), but 1

x0.999 ∈ L1(Ω);

• 1√
x 6∈ L2(Ω), but 1

x0.4999 ∈ L2(Ω), etc.

In other words, the larger the p, the slower the allowed rate of
blow-up at singularities. This process continues until L∞(Ω), for
which no blow-up whatsoever is allowed.

Next, we state a fundamental result in the analysis of Lp(Ω)

spaces.

Theorem 2.5.8 (Hölder’s inequality). Let p, q ∈ [1, ∞] such that

1
p
+

1
q
= 1. (2.5.7)

The elements of such a pair are called Hölder conjugates8. If f ∈ Lp(Ω) and 8 By convention here, 1/∞ = 0, so 1 and
∞ are conjugate.g ∈ Lq(Ω), then f g ∈ L1(Ω) and

‖ f g‖L1(Ω) ≤ ‖ f ‖Lp(Ω)‖g‖Lq(Ω). (2.5.8)

Corollary 2.5.9. For 1 < p < ∞, the dual of Lp(Ω) is isomorphic to
Lq(Ω), where q is conjugate to p. This means that these Lp(Ω) spaces are
reflexive, i.e.

(Lp(Ω))∗∗ = Lp(Ω) for 1 < p < ∞. (2.5.9)

The dual of L1(Ω) is L∞(Ω), but the dual of L∞(Ω) is not L1(Ω) (it is a
much larger space); these spaces are not reflexive.

With this, we can prove the fundamental inclusion for Lp(Ω)

spaces on bounded domains.

L∞(Ω) L2(Ω) L1(Ω)
Figure 2.1: The nesting of Lp(Ω) spaces
for bounded domains.

Theorem 2.5.10 (Inclusion of Lebesgue spaces). Let Ω be bounded. Let
1 ≤ p < q ≤ ∞. If f ∈ Lq(Ω), then f ∈ Lp(Ω).

Proof.

‖ f ‖p
Lp(Ω)

=
∫

Ω
| f |p dx (2.5.10)

=
∫

Ω
| f |p1 dx (2.5.11)

≤ ‖ f p‖Lα(Ω)‖1‖Lβ(Ω) (2.5.12)
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for any choice α and β that are Hölder conjugates, so long as the
quantities are defined. Choose α = q/p, β = q/(q− p). Then

‖ f p‖Lα(Ω) =

(∫
Ω
(| f |p)q/p dx

)p/q
(2.5.13)

=

(∫
Ω
| f |q dx

)p/q
(2.5.14)

= ‖ f ‖p
Lq(Ω)

< ∞, (2.5.15)

and since the volume of the domain is finite, we have

‖ f ‖Lp(Ω) < ∞. (2.5.16)

Example 2.5.11 (A function that is in Lp(Ω) for all finite p but not
in L∞(Ω)). A natural question to ask is the following: if f ∈ Lp(Ω) for
all p ∈ [1, ∞), does it follow that f ∈ L∞(Ω)? The answer is no. Let
Ω = (0, 1), and consider

f (x) = log(x). (2.5.17)

To see that f ∈ Lp(Ω) for all finite p, observe that

lim
x→0+

log(x)
x−1/2p = 0 (2.5.18)

by l’Hôpital’s rule. Thus, |log(x)|p < x−1/2 for sufficiently small x, and
the Lp(Ω) norm is finite. However, f is unbounded below on (0, 1), so
f 6∈ L∞(Ω).



3 Elements of functional analysis: Sobolev
spaces

We saw earlier that the classical notion of differentiability, e.g. u ∈
C2(Rn), was too restrictive: the Poisson equation didn’t always have
a solution for f ∈ C0(Rn) data. We need to introduce a new concept
of differentiation with respect to space to ensure that this equation is
indeed well-posed.

3.1 Weak derivatives

To motivate the definition, first suppose f ∈ C1(a, b), i.e. f ′ exists in
C0(a, b). Let φ be a differentiable function that is zero on the bound-
ary {a, b}. Then integration by parts tells us∫ b

a
f ′φ dx = −

∫ b

a
f φ′ dx, (3.1.1)

i.e. we can swap the differentiation operator onto the test function φ.
This is how we will define the weak derivative f ′ in Lebesgue spaces.

Definition 3.1.1 (Compact support in Ω). A function φ ∈ C(Ω) has
compact support iff

supp(φ) = closure{x ∈ Ω : φ(x) 6= 0} (3.1.2)

is compact (i.e. is bounded, as it is closed by construction) and is a subset of
the interior of Ω. In particular, this means that φ vanishes on Γ.

Definition 3.1.2 (Bump functions). The set of bump functions, denoted
C∞

0 (Ω), is the set of C∞(Ω) functions that have compact support in Ω.

Example 3.1.3. Let Ω = (−2, 2). The function

Ψ(x) =

exp
(
− 1

1−x2

)
if |x| < 1

0 otherwise
(3.1.3)

is in C∞
0 (Ω)1. 1 See Brenner & Scott page 27 for the

proof.
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We are going to use these (very nice, infinitely differentiable, zero
at the boundaries) functions to define the weak derivatives of func-
tions that aren’t so smooth. Before we do this, though, we will define
the set of functions for which we will define weak derivatives.

Definition 3.1.4 (Locally integrable functions). Given a domain Ω, the
set of locally integrable functions is defined by

L1
loc(Ω) = { f : f ∈ L1(K) for all compact K ⊂ interior Ω}. (3.1.4)

This set includes L1(Ω) and C0(Ω) as subsets.
Let’s first define the first derivative, then generalise that definition

to higher derivatives.

Definition 3.1.5 (Weak first derivative). Let Ω ⊂ Rn. We say that a
given function f ∈ L1

loc(Ω) has a weak ith partial derivative ∂ f /∂xi if there
exists a function g ∈ L1

loc(Ω) such that∫
Ω

gφ dx = −
∫

Ω
f

∂φ

∂xi
dx for all φ ∈ C∞

0 (Ω). (3.1.5)

Compare this definition to (3.1.1).

Theorem 3.1.6 (Uniqueness of weak derivatives). Weak derivatives are
unique, up to a set of measure zero.

Example 3.1.7. Any strongly differentiable function has a weak derivative.

Example 3.1.8. Let Ω = (−1, 1) and take f (x) = |x|. Then it has a weak
derivative f ′ given by

f ′ =

−1 x < 0

1 x > 0.
(3.1.6)

To verify this, break the interval into the two parts in which f is
smooth, and integrate by parts. Let φ ∈ C∞

0 (Ω). Then∫ 1

−1
f (x)φ′(x) dx =

∫ 0

−1
f (x)φ′(x) dx +

∫ 1

0
f (x)φ′(x) dx (3.1.7)

= −
∫ 0

−1
(−1)φ(x) dx + [ f φ]0−1 −

∫ 1

0
(+1)φ(x) dx + [ f φ]10

(3.1.8)

= −
∫ 1

−1
f ′(x)φ(x) dx +

(
( f φ)(0−)− ( f φ)(0+)

)
(3.1.9)

= −
∫ 1

−1
f ′(x)φ(x) dx. (3.1.10)

Example 3.1.9. Extending the previous example, any continuous piecewise-
differentiable function is weakly differentiable. This is important to us be-
cause we will approximate the solutions of our PDEs with continuous,
piecewise-differentiable functions (differentiable on each element)2. 2 It is sometimes useful to approximate

functions with discontinuous polyno-
mials, in the so-called discontinuous
Galerkin discretisation. This is beyond
the scope of this course.
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Example 3.1.10. A counterexample: take Ω = (−1, 1) and take f (x) =

sign(x), i.e.

f (x) =


−1 x < 0

0 x = 0

1 x > 0.

(3.1.11)

This function has no weak derivative.

An informal proof: the only candidate f ′ would be f ′ ≡ 0, but
the discontinuity at x = 0 means that the extra terms arising from
integration by parts do not vanish.

3.2 Higher weak derivatives

To compactly define higher derivatives, we first need to introduce
multi-index notation.

Definition 3.2.1 (multi-index). Let Ω ⊂ Rn. A multi-index α is a tuple
of n non-negative integers

α = (α1, . . . , αn). (3.2.1)

Given a multi-index α and φ ∈ C∞(Ω), define

∂α
xφ = φ(α) = Dαφ =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

φ. (3.2.2)

The length of α is the order of the derivative,

|α| =
n

∑
i=1

αi. (3.2.3)

Example 3.2.2. The multi-index (1, 0) corresponds to ∂/∂x1. The multi-
index (0, 1) corresponds to ∂/∂x2. A sum over |α| = 1 means to sum over
all first order derivatives.

With this, we can now neatly define weak derivatives of any order.

Definition 3.2.3 (Weak derivative). Let Ω ⊂ Rn. We say that a given
function f ∈ L1

loc(Ω) has a weak derivative Dα f provided there exists a
function g ∈ L1

loc(Ω) such that∫
Ω

gφ dx = (−1)|α|
∫

Ω
f φ(α) dx for all φ ∈ C∞

0 (Ω). (3.2.4)

3.3 Sobolev spaces

We saw before that Lebesgue spaces control the allowed rate of
blowup of their functions, described by a parameter p. We will ex-
tend this idea to Sobolev spaces. Sobolev spaces are indexed by two
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parameters: k will describe the number of (weak) derivatives de-
manded, while p will describe the allowed rate of blowup of the
function and all its derivatives. Sobolev spaces are important because
they turn out to be the natural space in which to look for solutions of
PDEs, and provide the natural norms in which to measure approxi-
mation errors.

Definition 3.3.1 (Sobolev norm). Let k be a non-negative integer. Let
f ∈ L1

loc(Ω). Suppose that the weak derivatives Dα f exist for all |α| ≤ k.
For p ∈ [1, ∞), define the Sobolev norm

‖ f ‖Wk
p(Ω) =

 ∑
|α|≤k
‖Dα f ‖p

Lp(Ω)

1/p

(3.3.1)

and in the case p = ∞

‖ f ‖Wk
p(Ω) = max

|α|≤k
‖Dα f ‖L∞(Ω). (3.3.2)

Definition 3.3.2 (Sobolev space). Define the Sobolev space Wk
p(Ω) as

Wk
p(Ω) = { f ∈ L1

loc(Ω) : ‖ f ‖Wk
p(Ω) < ∞}. (3.3.3)

Theorem 3.3.3. The Sobolev space Wk
p(Ω) is a Banach space.

Proof. See theorem 1.3.2 of Brenner & Scott.

Theorem 3.3.4. The Sobolev spaces with p = 2 are Hilbert spaces. These
are denoted by

H k(Ω) = Wk
2 (Ω). (3.3.4)

Let’s now start to become acquainted with these fundamental
objects. We’ll begin by stating some relationships between different
Sobolev spaces that follow easily from the definition.

Example 3.3.5. The space W0
p(Ω) = Lp(Ω). That is, if we ask for no weak

derivatives, we just get the Lp(Ω) space back.

Example 3.3.6. The space W1
∞(Ω) is equivalent to the space of Lipschitz

continuous functions under certain restrictions on the domain Ω3. This 3 Specifically, we require either a C1

boundary (see Evans, section 5.8.2) or
a property called quasiconvexity: there
exists a constant M < ∞ such that
two points a and b in the domain can
be joined by a curve of length at most
M‖a− b‖. All of the domains we’ll see
are quasiconvex. For a guided proof in
the case where Ω is convex, see Brenner
& Scott exercises 1.x.14 and 1.x.15.

implies that W1
∞(Ω) ⊂ C(Ω), and that any f ∈ W1

∞(Ω) can be evaluated
pointwise.

Example 3.3.7. Suppose l ≥ k. Then W l
p(Ω) ⊂ Wk

p(Ω); we’re just asking
for fewer derivatives.

Example 3.3.8. Suppose 1 ≤ p ≤ q ≤ ∞ and that Ω is bounded. Then
Wk

q (Ω) ⊂ Wk
p(Ω). This follows from the Lebesgue inclusion theorem

2.5.10.

Example 3.3.9. If f ∈ Wk
p(Ω), and α is a multi-index with |α| = n ≤ k,

then Dα f ∈Wk−n
p (Ω).
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3.4 Sobolev embeddings

There are other inclusions between Sobolev spaces that are less obvi-
ous. These will be encoded in Sobolev’s inequality. However, in order
for the result to be true, we will need an additional regularity re-
quirement on the domain Ω.

Definition 3.4.1 (Lipschitz domain, informal). We say Ω is a Lipschitz
domain, or has Lipschitz boundary, if ∂Ω is everywhere locally the graph of
a Lipschitz continuous function4. 4 For a formal definition, see Brenner &

Scott, definition 1.4.4.

Figure 3.1: Some non-Lipschitz do-
mains, with the geometric feature at
fault highlighted.

For some examples of non-Lipschitz domains, see figure 3.1, repro-
duced from Hiptmair’s notes5. 5 R. Hiptmair and C. Schwab. Nu-

merical methods for elliptic and
parabolic boundary value problems,
2008. http://www.sam.math.ethz.ch/

~hiptmair/tmp/NAPDE_08.pdf

This regularity condition is important: without it, the Sobolev
inequality is not true. Henceforth, we assume that Ω is a Lipschitz
domain.

There are three numbers describing a Sobolev space: n, the di-
mension of the domain, k, the number of weak derivatives possessed,
and p, the integrability of those derivatives. Sobolev’s inequality tells
us that if you possess enough weak derivatives that are integrable
enough, then your function is continuous and bounded.

Theorem 3.4.2 (Sobolev’s inequality). Let Ω ⊂ Rn be a Lipschitz
domain. Let k be a positive integer and let p ∈ [1, ∞). Suppose

k ≥ n when p = 1 (3.4.1)

k > n/p when p > 1. (3.4.2)

Then there is a constant C such that for all u ∈Wk
p(Ω),

‖u‖L∞(Ω) ≤ C‖u‖Wk
p(Ω), (3.4.3)

and moreover there is a continuous function in the equivalence class of u.

Of course, we only get an upper bound on ‖u‖L∞(Ω): if we had a
lower bound also, the two norms would be equivalent, and the two
spaces would be the same.

http://www.sam.math.ethz.ch/~hiptmair/tmp/NAPDE_08.pdf
http://www.sam.math.ethz.ch/~hiptmair/tmp/NAPDE_08.pdf
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Note that we don’t need the case p = ∞, because if k ≥ 1 and p =

∞ you are already Lipschitz continuous on a quasiconvex domain
and hence continuous.

Let’s look at some consequences of this.

Example 3.4.3. In one dimension (n = 1), we have that the existence
of a single weak derivative of any integrability is enough to ensure con-
tinuity. This is why the discontinuous sign function of example 3.1.10
could not have a weak derivative. In fact, a piecewise smooth function on a
bounded domain Ω is in H1(Ω) if and only if it is continuous. For a proof,
see Braess6, theorem 5.2. 6 D. Braess. Finite Elements: theory, fast

solvers, and applications in solid mechanics.
Cambridge University Press, third
edition, 2007

Example 3.4.4. In two dimensions (n = 2), we have W1
1 (Ω) 6⊂ C(Ω), but

W2
1 (Ω) ⊂ C(Ω).

Example 3.4.5. In three dimensions (n = 3), we have W2
1 (Ω) 6⊂ C(Ω),

but W3
1 (Ω) ⊂ C(Ω).

Example 3.4.6. Let’s look at the continuity properties of the Hilbert spaces
H k(Ω), i.e. p = 2. With p = 2, Sobolev’s inequality tells us that we need

k > n/2. (3.4.4)

In one dimension,
H 1(Ω) ⊂ C(Ω). (3.4.5)

For n = 2, Sobolev’s inequality tells us we need k > 1, i.e. k ≥ 2, so in two
dimensions

H 1(Ω) 6⊂ C(Ω), H 2(Ω) ⊂ C(Ω). (3.4.6)

For n = 3, Sobolev’s inequality tells us we need k > 1.5, so k ≥ 2 is again
sufficient.

By applying theorem 3.4.2 to the derivatives of functions in Sobolev
spaces, one derives the following corollary:

Corollary 3.4.7. Let Ω ⊂ Rn be a Lipschitz domain. Let k and m be
positive integers satisfying m < k and let p ∈ [1, ∞). Suppose

k−m ≥ n when p = 1 (3.4.7)

k−m > n/p when p > 1. (3.4.8)

Then there is a constant C such that for all u ∈Wk
p(Ω),

‖u‖Wm
∞ (Ω) ≤ C‖u‖Wk

p(Ω), (3.4.9)

and moreover there is a Cm(Ω) function in the equivalence class of u.

There are entire books written about Sobolev spaces and embed-
ding theorems, e.g. Maz’ya7; we have only scratched the surface here. 7 V. Maz’ya. Sobolev Spaces, volume 342

of A Series of Comprehensive Studies in
Mathematics. Springer, 2011

However, there is another (nonexaminable!) embedding theorem
that is quite interesting that I wish to quote for our education. The
following summarises various results from Evans, chapter 5

8. 8 L. C. Evans. Partial Differential Equa-
tions, volume 19 of Graduate Studies in
Mathematics. American Mathematical
Society, 2010
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Theorem 3.4.8. Let

p∗ =


np

n−kp if kp < n

∞ if kp ≥ n.
(3.4.10)

Let Ω be a bounded domain with Lipschitz boundary. Then

Wk
p(Ω) ⊂ Lq(Ω), (3.4.11)

where q ∈ [1, p∗] if kp 6= n and q ∈ [1, ∞) if kp = n.

Example 3.4.9. Consider H 1(Ω) = W1
2 (Ω). In one dimension, kp = 2 >

1 = n so p∗ = ∞ and H 1(Ω) ⊂ L∞(Ω). In two dimensions, kp = n so
p∗ = ∞ and H 1(Ω) ⊂ Lq(Ω) for any q ∈ [1, ∞). In three dimensions,
kp < 3 = n so p∗ = 6 and H 1(Ω) ⊂ Lq(Ω) for any q ∈ [1, 6]9. 9 The embedding into Lq(Ω) is compact

for q ∈ [1, 6), but is not compact for
q = 6.Example 3.4.10. Consider H 2(Ω) = W2

2 (Ω). Here kp = 4 > n for
n = 1, 2, 3, so p∗ = ∞ and H 2(Ω) ⊂ L∞(Ω).

3.5 Review of our variational formulation

We are now in a position to see why the space

H1
0(Ω) = {u ∈ H 1(Ω) : u|Γ = 0} (3.5.1)

is the “right” one for the problem (Q).

1. We want v ∈ L2(Ω) and f ∈ L2(Ω) to ensure that F(v) is a
bounded linear functional.

2. We want u|Γ = 0 to satisfy the strongly-imposed boundary condi-
tions.

3. We need the first weak derivatives to exist to talk about ∇u and
∇v.

4. We want u and v to have square-integrable weak derivatives, as
this guarantees a(u, v) < ∞ (by Cauchy-Schwarz).





4 The Lax–Milgram Theorem

The Lax–Milgram Theorem gives sufficient conditions for a varia-
tional problem like (Q) to be well-posed. Now that we understand
some aspects of Hilbert, Lebesgue and Sobolev spaces, we are in a
position to state and prove the theorem. First, we will define some
conditions on the forms arising in problem (Q).

Definition 4.0.1 (Bounded bilinear form). A bilinear form a : H × H →
R is said be to continuous if there exists C ∈ [0, ∞) such that

|a(v, w)| ≤ C‖v‖H‖w‖H for all v, w ∈ H. (4.0.1)

This property is also called continuity, for the same reason that a
linear form is bounded if and only if it is continuous. Most forms one
meets in practice are continuous, and it is usually fairly straightfor-
ward to prove continuity.

Definition 4.0.2 (Coercive bilinear form). A bilinear form a : H × H →
R is said be to coercive on V ⊂ H if there exists α > 0 such that

a(v, v) ≥ α‖v‖2
H for all v ∈ V. (4.0.2)

Coercivity is a much stronger property. For example, the weak
formulation of the Stokes equations in fluid mechanics do not enjoy
this property, but are still well-posed (when the right function spaces
are chosen). Nevertheless, it holds for many important equations
of mathematical physics, including the Poisson equation, the sign-
positive Helmholtz equation and linear elasticity.

Proving coercivity is nontrivial. In particular, the bilinear form
(1.2.9) is indeed coercive, but this is far from obvious. We will discuss
this later, after we have reviewed the abstract variational theory.

First, let’s examine a simple case, before discussing the situation in
general.

4.1 Symmetric coercive continuous problems

Coercivity and boundedness are almost enough to yield that a is an
inner product. We just need one more ingredient — symmetry.
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Theorem 4.1.1. Let H be a Hilbert space, and suppose a : H × H → R is
a symmetric bilinear form that is continuous on H and coercive on a closed
subspace V ⊂ H. Then (V, a(·, ·)) is a Hilbert space.

Proof. An immediate consequence of coercivity is that if v ∈ V and
a(v, v) = 0, then v = 0. Symmetry and linearity are assumed, so a(·, ·)
is an inner product on V.

Denote
‖v‖a =

√
a(v, v). (4.1.1)

It remains to show that (V, ‖ · ‖a) is complete. Suppose that {vn} is a
Cauchy sequence in (V, ‖ · ‖a). By coercivity, {vn} is also Cauchy in
(H, ‖ · ‖H). Since H is complete, there exists v ∈ H such that vn → v
in the ‖ · ‖H norm. Since V is closed in H, v ∈ V. Now observe that
as a is bounded

‖v− vn‖a =
√

a(v− vn, v− vn) ≤
√

C‖v− vn‖2
H =
√

C‖v− vn‖H

(4.1.2)
where C is the boundedness constant for a. Hence vn → v in the ‖ · ‖a

norm too, so V is complete with respect to this norm.

This is a very powerful result. The well-posedness of (Q) follows
immediately.

Theorem 4.1.2 (Well-posedness of symmetric continuous coercive
variational problems). Let V be a closed subspace of a Hilbert space H.
Let a : H × H → R be a symmetric continuous V-coercive bilinear form,
and let F ∈ V∗. Consider the variational problem:

find u ∈ V such that a(u, v) = F(v) for all v ∈ V. (4.1.3)

This problem has a unique stable solution.

Proof. Theorem 4.1.1 implies that a(·, ·) is an inner product on V,
and that (V, a) is a Hilbert space. Apply the Riesz Representation
Theorem, theorem 2.4.1.

Stability means that we can find a constant C such that

‖u‖V ≤ C‖F‖V∗ . (4.1.4)

By the Riesz representation theorem, the Riesz map is an isomor-
phism, so this follows for the norms generated by the inner product
with C = 1.

Example 4.1.3. The variational problem

find u ∈ H1
0(Ω) such that

∫
Ω
∇u · ∇v dx =

∫
Ω

f v dx for all v ∈ H1
0(Ω)

(4.1.5)
is well-posed, as H1

0(Ω) is a closed subspace of H1(Ω), and the bilinear
form is coercive, symmetric and bounded1. 1 We will discuss the proofs of these

properties later.
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4.2 Nonsymmetric coercive continuous problems

Now let us drop the assumption that a(u, v) = a(v, u).

Theorem 4.2.1 (Lax–Milgram). Let V be a closed subspace of a Hilbert
space H. Let a : H × H → R be a (not necessarily symmetric) continuous
V-coercive bilinear form, and let F ∈ V∗. Consider the variational problem:

find u ∈ V such that a(u, v) = F(v) for all v ∈ V. (4.2.1)

This problem has a unique stable solution.

Let us discuss some preliminary manipulations before proving
this theorem. We now show that it is possible to regard a variational
problem (Q) with a(·, ·) continuous as an equality in the dual space.

Lemma 4.2.2 (Converting a variational problem to an equation in the
dual space). Let a : V × V → R be linear in its second argument and
bounded. For any u ∈ V, define a functional via A : u 7→ Au

Au(v) ≡ a(u, v) for all v ∈ V. (4.2.2)

Then Au ∈ V∗, i.e. A : V → V∗. Furthermore, A is itself linear if a is
linear in its first argument.

Proof. Au is a linear operator on V, since

Au(βv1 + γv2) = a(u, βv1 + γv2) (4.2.3)

= βa(u, v1) + γa(u, v2) (4.2.4)

= βAu(v1) + γAu(v2). (4.2.5)

Au is also continuous, since

|Au(v)| = |a(u, v)| ≤ C‖u‖H‖v‖H (4.2.6)

so

‖Au‖V∗ = sup
v 6=0

|Au(v)|
‖v‖H

≤ C‖u‖H < ∞. (4.2.7)

Thus Au ∈ V∗.
If a is linear in its first argument, linearity of A follows with a

similar argument.

Thus, the variational problem

find u ∈ V such that a(u, v) = F(v) for all v ∈ V (4.2.8)

is equivalent to

find u ∈ V such that 〈Au, v〉 = 〈F, v〉 for all v ∈ V. (4.2.9)
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And since equality of two dual objects means exactly that they have
the same output on all possible inputs, this is equivalent to

find u ∈ V such that Au = F, (4.2.10)

where the equality is between dual objects, Au ∈ V∗ and F ∈ V∗.

Example 4.2.3. In the specific case of the homogeneous Dirichlet Laplacian
(P), we have A : H1

0(Ω) →
(

H1
0(Ω)

)∗. We could symbolically write
A = −∇2 and interpret

−∇2u = f (4.2.11)

as an equation in the dual of H1
0(Ω)2. We define 2 For a characterisation of this space, see

Evans, section 5.9.1.

H−1(Ω) :=
(

H1
0(Ω)

)∗
(4.2.12)

and can regard the Laplacian as a map H1
0(Ω)→ H−1(Ω).

Now note that it immediately follows that we can write variational
problems as equations in the primal space. We know from the Riesz
Representation Theorem (theorem 2.4.1) that there is an isometric
isomorphism R : V∗ → V from the dual of a Hilbert space V∗ back to
V. By composing these operators, we have the problem

find u ∈ V such that RAu = RF, (4.2.13)

where the equality is between primal objects, RAu ∈ V and RF ∈ V.
Our proof will proceed as follows: we will define a map T : V →

V whose fixed point is the solution of our variational problem, and
then show it is a contraction, and invoke the Banach contraction
mapping theorem. We first recall the contraction mapping theorem3. 3 Note that the theorem does not require

T to be linear.
Theorem 4.2.4 (Contraction mapping theorem). Given a nonempty
Banach space V and a mapping T : V → V satisfying

‖Tv1 − Tv2‖ ≤ M‖v1 − v2‖ (4.2.14)

for all v1, v2 ∈ V and fixed M, 0 ≤ M < 1, there exists a unique u ∈ V
such that

u = Tu. (4.2.15)

That is, the contraction T has a unique fixed point u.

We now prove the Lax–Milgram Theorem.

Proof. Cast the variational problem

find u ∈ V such that a(u, v) = F(v) for all v ∈ V (4.2.16)

as the primal equality

find u ∈ V such that RAu = RF (4.2.17)
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as discussed. For a fixed ρ ∈ (0, ∞), define the affine map T : V → V

Tv = v− ρ (RAv− RF) . (4.2.18)

If T is a contraction for some ρ, then there exists a unique fixed point
u ∈ V such that

Tu = u− ρ(RAu− RF) = u, (4.2.19)

i.e. that RAu = RF. We now show that such a ρ exists. For any
v1, v2 ∈ V, let v = v1 − v2. Then

‖Tv1 − Tv2‖2
H = ‖v1 − v2 − ρ(RAv1 − RAv2)‖2

H

= ‖v− ρ(RAv)‖2
H (by linearity of R, A)

= ‖v‖2
H − 2ρ(RAv, v) + ρ2‖RAv‖2

H (by linearity of inner product)

= ‖v‖2
H − 2ρAv(v) + ρ2 Av(RAv) (by definition of R)

= ‖v‖2
H − 2ρa(v, v) + ρ2a(v, RAv) (by definition of A)

≤ ‖v‖2
H − 2ρα‖v‖2

H + ρ2C‖v‖H‖RAv‖H(coercivity and continuity)

≤ (1− 2ρα + ρ2C2)‖v‖2
H (A bounded, R isometric)

= (1− 2ρα + ρ2C2)‖v1 − v2‖2
H .

Thus, if we can find a ρ such that

1− 2ρα + ρ2C2 < 1, (4.2.20)

i.e. that
ρ(ρC2 − 2α) < 0. (4.2.21)

If we choose ρ ∈ (0, 2α/C2) then T is a contraction and the proof is
complete.

We have proven existence and uniqueness, but one further result
is required to prove well-posedness: stability. This is captured in the
following theorem.

Theorem 4.2.5. Under the previous assumptions, the solution of the varia-
tional problem satisfies

‖u‖H ≤
1
α
‖F‖V∗ , (4.2.22)

i.e. the problem is stable.

Proof.

‖u‖2
H ≤

1
α

a(u, u) =
1
α

F(u) ≤ 1
α
‖F‖V∗‖u‖H , (4.2.23)

and the result follows.

We close with an important remark about the practical importance
of the Riesz map.
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Remark 4.2.6 (The Riesz map and the solution of linear systems).
This trick of casting the variational problem as an equality in the primal
space might seem like an artifice of the proof, but in fact it is essential for the
computational solution of the linear system arising from discretisation. Let

Kx = b (4.2.24)

be the linear system arising from the discretisation. K is a map K : Rn →
Rn, but they are two different copies of Rn; just as A maps from primal
space to dual space, so does K. Confusing the two is a recipe for disaster.

For small problem sizes (i.e. where the number of degrees of freedom num-
bers less than a few million), factorisation-based solvers such as Cholesky
(K = LLT) and Gaussian elimination (K = LU) are feasible; but for larger
and larger problem sizes, the only feasible algorithms are those that use only
the action of the linear system x 7→ Kx. The Riesz map is essential as any
iterative algorithm will be something like

xk+1 = xk + νk(Kxk) (4.2.25)

The Riesz map is essential for constructing a primal update ∆xk = νk(Kxk)

from the dual vector Kxk. This is the heart of the subject of precondition-
ing, a subdiscipline of numerical linear algebra. For more details, see the
review article of Kirby4. 4 R. C. Kirby. From functional analysis

to iterative methods. SIAM Review,
52(2):269–293, 2010



5 More on variational formulations

5.1 The Laplacian with a Dirichlet boundary condition

5.1.1 The one-dimensional homogeneous case

Let Ω = (0, 1). Consider the two-point boundary value problem

−u′′ = f , u(0) = 0, u′(1) = g. (5.1.1)

The solution can be determined from f via two integrations. First of
all, by integrating both sides from t to 1, we can write

u′(t) =
∫ 1

t
f (s) ds + g, (5.1.2)

and integrating again from 0 to x yields

u(x) =
∫ x

0

∫ 1

t
f (s) ds dt + gx. (5.1.3)

This shows that the equation is well-posed.
We will prove that this equation is well-posed using Lax–Milgram.

First, let us cast it in variational form. Define the space

V = {v ∈ H1(0, 1) : v(0) = 0}. (5.1.4)

This definition makes sense, because we know H1(Ω) functions in
one dimension are continuous and we can thus evaluate v at the left
endpoint. We encode the Dirichlet conditions in the definition of the
spaces; such conditions are called essential boundary conditions, or
strongly imposed boundary conditions. We will encode the Neu-
mann condition in the variational form itself; these are called weakly
imposed boundary conditions.

Multiplying the equation by v ∈ V and integrating, we find∫ 1

0
−u′′v dx =

∫ 1

0
f v dx. (5.1.5)

We next integrate by parts:∫ 1

0
u′v′ dx− u′(1)v(1) + u′(0)v(0) =

∫ 1

0
f v dx. (5.1.6)
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The surface integral term on the left disappears as v(0) = 0. On the
right, we know that u′(1) = g, and so we have∫ 1

0
u′v′ dx =

∫ 1

0
f v dx + gv(1). (5.1.7)

Thus, we have the variational problem (Q) with

a(u, v) =
∫ 1

0
u′v′ dx, (5.1.8)

and

F(v) =
∫ 1

0
f v dx + gv(1). (5.1.9)

Theorem 5.1.1 (Coercivity of this bilinear form). The bilinear form
defined in (5.1.8) is coercive on V.

Proof. Recall that the norm on H1(0, 1) is

‖v‖2
H1(0,1) = ‖v‖

2
L2(0,1) + ‖v

′‖2
L2(0,1). (5.1.10)

We wish to show that there exists a constant α > 0 such that

a(v, v) ≥ α‖v‖2
H1(0,1) for all v ∈ V. (5.1.11)

Expanding definitions, we want to find an α such that

a(v, v) = ‖v′‖2
L2(0,1) ≥ α

(
‖v‖2

L2(0,1) + ‖v
′‖2

L2(0,1)

)
. (5.1.12)

If we can prove that there exists an α′ such that

‖v′‖2
L2(0,1) ≥ α′‖v‖2

L2(0,1) (5.1.13)

then we are done with α = α′
α′+1 .

Let us write

v(t) =
∫ t

0
v′(x) dx =

∫ 1

0
v′(x)w′t(x) dx = a(v, wt), (5.1.14)

where the function wt ∈ V is defined by

wt(x) =

x 0 ≤ x ≤ t,

t x > t.
(5.1.15)

This function is not strongly differentiable, but has weak derivative

w′t(x) =

1 0 ≤ x ≤ t,

0 x > t,
(5.1.16)

ensuring the correctness of (5.1.14). The function wt(x) is the a-Riesz
representation of the functional j : v 7→ v(t).
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We can invoke Cauchy–Schwarz on L2(0, 1) to get

|v(t)| = |a(v, wt)| ≤ ‖v′‖L2(0,1)‖w′t‖L2(0,1) =
√

t‖v′‖L2(0,1). (5.1.17)

Thus,

‖v‖2
L2(0,1) =

∫ 1

0
v2(x) dx ≤

∫ 1

0
x‖v′‖2

L2(0,1) dx =
1
2
‖v′‖2

L2(0,1) (5.1.18)

so in this case we can take α′ = 2 and thus α = 2
3 .

Note that if we consider a over the whole of H1(0, 1), it is not
coercive: v(x) ≡ 1 is in H1(0, 1) with a(v, v) = 0 but ‖v‖ > 0. The
boundary condition v(0) = 0 is essential to the well-posedness of the
equation.

Note also that the coercivity constant will depend on the length of
the domain: for an interval of length L, α′ = 2

L2 and α = 2
L2+2 .

Theorem 5.1.2 (Continuity of this bilinear form). The bilinear form
defined in (5.1.8) is continuous on H1(0, 1).

Proof.

|a(u, v)| = |(u′, v′)L2(0,1)| ≤ ‖u′‖L2(0,1)‖v′‖L2(0,1)

≤
(
‖u‖2

L2(0,1) + ‖u
′‖2

L2(0,1)

) 1
2
(
‖v‖2

L2(0,1) + ‖v
′‖2

L2(0,1)

) 1
2

= ‖u‖H1(0,1)‖v‖H1(0,1).

That is, the bilinear form is continuous with C = 1.

It now remains to prove continuity of the right-hand side F.

Theorem 5.1.3 (Continuity of the linear form). The linear form defined
in (5.1.9) is bounded.

Proof. The boundedness of the first term with respect to the L2(Ω)

norm follows from Hölder’s inequality, as f ∈ L2(0, 1) and v ∈
L2(0, 1)1. The boundedness of the second term follows from the 1 Fleshing out the proof for the bound-

edness of the first term will require the
concept of the equivalence of norms
and the Poincaré–Friedrichs inequality,
both of which will be discussed later.

continuity of H1-functions in one dimension.

Thus, by theorem 4.1.2 or 4.2.1, the variational problem is well-
posed.

5.1.2 The higher-dimensional homogeneous case

Now let us break up Γ into two disjoint components ΓD and ΓN ,
where both ΓD and ΓN have nonzero measure, and consider the
higher-dimensional problem

−∇2u = f in Ω,

u = 0 on ΓD, (5.1.19)

∇u · n = g on ΓN . (5.1.20)
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Define the space

V = {v ∈ H1(Ω) : v|ΓD
= 0}. (5.1.21)

Multiplying by v ∈ V, integrating and integrating by parts, we get∫
Ω
∇u · ∇v dx =

∫
Ω

f v dx +
∫

ΓN

gv ds. (5.1.22)

Let us consider the conditions of Lax–Milgram.
Linearity and boundedness of the right-hand side is not straight-

forward, but true2. The earlier proof of theorem 5.1.2 that the bilinear 2 It follows from the boundedness of
the Dirichlet trace operator, an object
that evaluates functions on the bound-
ary. We have not done the functional
analysis required in this course to
understand this.

form

a(u, v) =
∫

Ω
∇u · ∇v dx (5.1.23)

is continuous is true in general for any dimension. However, our
coercivity proof was specific to one-dimensional problems. The result
that gives coercivity in higher dimensions is known as the Poincaré–
Friedrichs inequality; see Brenner and Scott, proposition 5.3.4.

Theorem 5.1.4 (Poincaré–Friedrichs inequality). Let Ω be a bounded
Lipschitz domain, and suppose ΓD ⊂ ∂Ω is closed and has nonzero measure.
Let

V = {v ∈ H1(Ω) : v|ΓD
= 0}. (5.1.24)

Then there is a constant K < ∞ depending only on Ω and ΓD such that∫
Ω

u2 dx ≤ K
∫

Ω
|∇u|2 dx (5.1.25)

for all u ∈ V. The constant K(Ω, ΓD) is called the Poincaré constant for the
domain and boundary.

With this coercivity result, we can invoke Lax–Milgram and assert
the well-posedness of the variational problem.

5.1.3 The inhomogeneous case

Now consider

−∇2u = f in Ω

u = h on ΓD

∇u · n = g on ΓN . (5.1.26)

i.e. we do not assume that the Dirichlet condition is homogeneous.
For simplicity, suppose h is defined on all of Ω such that h ∈ H 1(Ω)3. 3 Actually, we require that h lives in

a function space called H1/2(ΓD);
when you evaluate a H1 function on
the boundary you “lose half an order
of regularity”. Such a function can
always be extended to a function in
H1(Ω) by solving an elliptic PDE, so
this supposition is justified.

Define

û = u− h. (5.1.27)
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Then û satisfies

−∇2û = f +∇2h in Ω

û = 0 on ΓD

∇û · n = g−∇h · n on ΓN , (5.1.28)

where ∇2h is to be understood weakly, as described in example 4.2.3.
That is, we can solve for û as in the previous section, and then set
u = û + h as a post-processing step. Alternatively, stated in varia-
tional form, if u satisfies a(u, v) = F(v) for all v ∈ V, then û satisfies

a(û, v) = a(u− h, v) = a(u, v)− a(h, v) = F(v)− a(h, v) (5.1.29)

for all v ∈ V.

5.2 Pure Neumann boundary conditions

Consider the pure Neumann problem

−∇2u = f in Ω

∇u · n = g on Γ. (5.2.1)

Clearly, this problem does not have a unique solution, for if u satis-
fies the equations then so does u + c for any constant c.

In order for this to have any solution, we have to impose addi-
tional restrictions on the data. Observe that∫

Ω
f dx =

∫
Ω
−∇2u dx =

∫
Ω
∇u · ∇1 dx−

∫
Γ
∇u · n ds = −

∫
Γ

g ds

and thus f and g have to satisfy a compatibility condition. This is typ-
ical of linear problems: you either have a unique solution, no solu-
tions (when the compatibility condition is not satisfied, i.e. when the
right-hand side of our problem is not in the range of the operator), or
an infinite number of solutions (when it is).

If we pose this in variational form with v ∈ V = H 1(Ω), we get∫
Ω
∇u · ∇v dx =

∫
Ω

f v dx−
∫

Γ
gv ds, (5.2.2)

and we cannot apply our theorems because the bilinear form is not
coercive on H 1(Ω). However, if we restrict ourselves to the function
space

V = {v ∈ H 1(Ω) :
∫

Ω
v dx = 0} (5.2.3)

then the problem is well-posed under the compatibility condition
(5.2). (The proof relies on a similar Poincaré inequality, the Poincaré–
Neumann inequality.)
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5.3 A nonsymmetric problem

Of course, all of the problems we have considered heretofore are
symmetric, and so strictly speaking we haven’t needed Lax–Milgram.
Assume f ∈ L2(0, 1), and consider a problem which is coercive and
continuous, but not symmetric:

−u′′ + u′ + u = f , u′(0) = 0 = u′(1). (5.3.1)

As we have no Dirichlet boundary conditions, we will use the space
V = H1(0, 1). Testing against v ∈ V and integrating by parts, we find∫ 1

0
u′v′ dx +

∫ 1

0
u′v dx +

∫ 1

0
uv dx =

∫ 1

0
f v dx. (5.3.2)

Thus, our standard variational problem has

a(u, v) =
∫ 1

0
u′v′ + u′v + uv dx (5.3.3)

and

F(v) =
∫ 1

0
f v dx. (5.3.4)

Boundedness of F follows from Hölder’s inequality as f ∈ L2(0, 1).
To invoke Lax–Milgram, we need to prove continuity and coercivity
of a. To prove continuity, observe that

|a(u, v)| ≤ |(u, v)H1(0,1)|+
∣∣∣∣∫ 1

0
u′v dx

∣∣∣∣ (5.3.5)

≤ ‖u‖H1(0,1)‖v‖H1(0,1) + ‖u′‖L2(0,1)‖v‖L2(0,1) (5.3.6)

≤ 2‖u‖H1(0,1)‖v‖H1(0,1) (5.3.7)

so we can take our continuity constant C = 2. To prove coercivity,
observe that

a(v, v) =
∫ 1

0
v′2 + v′v + v2 dx (5.3.8)

=
1
2

∫ 1

0
(v′2 + v2) dx +

1
2

∫ 1

0
(v′ + v)2 dx (5.3.9)

≥ 1
2
‖v‖2

H1(0,1). (5.3.10)

We can thus invoke the Lax–Milgram Theorem.



6 Differentiation in Banach spaces and en-
ergy

There is a fundamental connection between symmetric coercive prob-
lems and optimisation of convex energy functionals in function
spaces. In this setting, the method of Galerkin projection possesses
a beautiful optimality property, which accounts for a large part of the
popularity of finite element methods.

For more details on differentiation in Banach spaces, see Hinze et
al.1 1 M. Hinze, R. Pinnau, M. Ulbrich,

and S. Ulbrich. Optimization with PDE
constraints, volume 23 of Mathematical
Modelling: Theory and Applications.
Springer, 2009

6.1 Differentiation between Banach spaces

In this section we discuss how to take directional derivatives of (pos-
sibly nonlinear) functionals defined on Banach spaces.

Let J be a nonlinear functional J : V → R. As a concrete example,
consider the nonlinear functional J : H1

0(Ω)→ R defined by

J(u) =
1
2

∫
Ω
|∇u|2 dx. (6.1.1)

How will this functional value change if we make a small perturba-
tion v to the input argument?

Definition 6.1.1 (Directional derivative). Let J : V → W, where V and
W are Banach spaces. The directional derivative of J evaluated at u ∈ V in
the direction v ∈ V is

J′(u; v) = lim
ε→0+

J(u + εv)− J(u)
ε

, (6.1.2)

if the limit exists.

Definition 6.1.2 (Directionally differentiable). If the directional deriva-
tive of J at u in the direction v exists for all v, then J is directionally differ-
entiable at u.

Definition 6.1.3 (Gâteaux differentiable). If J is directionally differen-
tiable at u, and for fixed u the map J′(u) : V → W is linear and bounded,
then J is Gâteaux differentiable at u with derivative J′(u).
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Note that we define derivatives of maps between arbitrary Banach
spaces, but in practice we apply it to functionals on a Hilbert space,
i.e. functions mapping to R.

The strongest notion of differentiability we will require is Fréchet
differentiability. This asserts that the derivative is a good approximation
to J near a point u.

Definition 6.1.4 (Fréchet differentiable). Suppose J : V → W is Gâteaux
differentiable at a point u ∈ V and that the derivative J′ satisfies

lim
v→0

‖J(u + v)− J(u)− J′(u)v‖W
‖v‖V

= 0 for all v ∈ V. (6.1.3)

Then J is Fréchet differentiable at u.

If it exists, the Fréchet derivative is unique.
Do not concern yourself too much with the subtle distinctions be-

tween senses of differentiability; we don’t need these fine shades of
grey. If anything arises on this course that is not Fréchet differen-
tiable, it will be surrounded by flashing lights and hazard signs.

Let us work this derivative out for the example (6.1.1):

J′(u; v) = lim
ε→0+

1
2ε

∫
Ω
|∇u + ε∇v|2 − |∇u|2 dx (6.1.4)

= lim
ε→0+

1
2ε

∫
Ω

2ε∇u · ∇v + ε2|∇v|2 dx (6.1.5)

=
∫

Ω
∇u · ∇v dx, (6.1.6)

exactly the bilinear form (1.2.9). It is no accident that the bilinear
form in our example PDE is the derivative of something else. In fact,
we shall see later that our running Laplacian example (Q) encodes
the optimality conditions for the minimisation of an associated en-
ergy functional.

Before moving on, let us look at one reason why the derivative is
useful.

Theorem 6.1.5 (Analogue of the fundamental theorem of calculus).
Let u, v ∈ V. Suppose J : V → W is Fréchet differentiable on the line
segment {u + tv : t ∈ [0, 1]}. Then the following holds:

J(u + v)− J(u) =
∫ 1

0
J′(u + tv; v) dt. (6.1.7)

There is also an analogue of the chain rule. For details, see Hinze
et al.
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6.2 Symmetric coercive problems and energy

Let us take our favourite homogeneous Dirichlet Laplacian case once
more:

find u ∈ H1
0(Ω) such that a(u, v) = F(v) for all v ∈ H1

0(Ω), (6.2.1)

where
a(u, v) =

∫
Ω
∇u · ∇v dx (6.2.2)

and
F(v) =

∫
Ω

f v dx. (6.2.3)

It turns out that this problem can be recast as an energy minimisa-
tion problem. Consider the problem

u = argmin
v∈H1

0 (Ω)

J(v) =
1
2

∫
Ω
∇v · ∇v dx−

∫
Ω

f v dx. (6.2.4)

Note that J(v) = 1
2 a(v, v)− F(v).

Theorem 6.2.1 (Energy minimisation). Let u be the (unique) solution to
(6.2.1) in H1

0(Ω). Then u is the unique minimiser of J over H1
0(Ω).

Proof. Let u be the unique solution to (6.2.1). Let v ∈ H1
0(Ω). Then

J(v)− J(u) =
1
2

a(v, v)− F(v)− 1
2

a(u, u) + F(u) (6.2.5)

=
1
2

a(v, v)− 1
2

a(u, u)− F(v− u) (6.2.6)

=
1
2

a(v, v)− 1
2

a(u, u)− a(u, v− u) (6.2.7)

=
1
2
(a(v, v)− 2a(u, v) + a(u, u)) (6.2.8)

=
1
2

a(v− u, v− u). (6.2.9)

Because a is coercive,

J(v)− J(u) ≥ α

2
‖v− u‖2

H1(Ω) ≥ 0 for all v ∈ H1
0(Ω). (6.2.10)

Thus,
J(v) ≥ J(u) for all v ∈ H1

0(Ω), (6.2.11)

i.e. u minimises J over H1
0(Ω).

The minimiser u is unique, because if ũ also minimises J, then

J(ũ)− J(u) = 0 ≥ α

2
‖ũ− u‖2

H1(Ω) ≥ 0 (6.2.12)

and hence ũ = u.
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Now suppose u is the unique minimiser of J. Then J(u) ≤ J(u +

εv) for all v ∈ H1
0(Ω) and ε > 0. This implies

J(u + εv)− J(u)
ε

= a(u, v) +
1
2

εa(v, v)− F(v) ≥ 0, (6.2.13)

and passing to the limit ε → 0+ yields that a(u, v) ≥ F(v) for all
v ∈ H1

0(Ω). Now replace v by −v, which is also in H1
0(Ω), to find

J(u− εv)− J(u)
ε

= −a(u, v) +
1
2

εa(v, v) + F(v) ≥ 0, (6.2.14)

to conclude that a(u, v) ≤ F(v) for all v ∈ H1
0(Ω).

This proves the following result.

Theorem 6.2.2. Let u ∈ H1
0(Ω) be the unique minimiser of J(·) over

H1
0(Ω). Then u is the unique solution of (6.2.1). The variational problem

(6.2.1) is called the Euler–Lagrange equation for this minimisation prob-
lem.

This theorem is the converse of the previous result, and the two
results together express the equivalence of the weak formulation and
the minimisation problem.

Another way to see this is the following. If u minimises J, then J
has a stationary point at u2. That is, J′(u) = 0, or 2 The converse is not true! A nonconvex

functional J : V → R might have a
stationary point that is a saddle point.J′(u; v) = 0 for all v ∈ H1

0(Ω). (6.2.15)

Calculating J′(u; v), we find

J′(u; v) = lim
ε→0

J(u + εv)− J(u)
ε

(6.2.16)

= lim
ε→0

1
2 a(u + εv, u + εv)− F(u + εv)− 1

2 a(u, u) + F(u)
ε

(6.2.17)

= lim
ε→0

a(u, v)− F(v) +
ε

2
a(v, v) (6.2.18)

= a(u, v)− F(v) (6.2.19)

and hence
a(u, v)− F(v) = 0 for all v ∈ H1

0(Ω). (6.2.20)

6.3 Galerkin approximation and energy minimisation

Consider the Galerkin approximation to (6.2.1) over a subspace
Vh ⊂ H1

0(Ω). For exactly the same reason (replace H1
0(Ω) with Vh

throughout the proof), the Galerkin approximation satisfies the fol-
lowing crucial property.
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Theorem 6.3.1. Let uh be the Galerkin approximation of a symmetric linear
continuous coercive variational problem in Vh. Then

uh = argmin
vh∈Vh

J(vh). (6.3.1)

That is, we have

J(u) ≤ J(uh) ≤ J(vh) for all vh ∈ Vh. (6.3.2)

In other words, the Galerkin projection gives you the minimal energy
solution in your trial space. This optimality property is one of the rea-
sons why Galerkin approximation is fundamentally a good idea. It
also explains why the finite element method is especially popular in
engineering; the equations of linear elasticity that describe small de-
formations to structures are symmetric and coercive, and so the finite
element method yields an optimal approximation on any mesh.

6.4 The Helmholtz equation

As a final example, let V = {v ∈ H1(Ω) : v|ΓD
= 0}, and consider the

energy J : V → R

J(u) =
1
2

∫
Ω
∇u · ∇u dx +

1
2

∫
Ω

u2 dx−
∫

Ω
f u dx−

∫
ΓN

gu ds, (6.4.1)

where f ∈ L2(Ω), ΓN is a part (possibly all) of the boundary with

nonzero measure, ΓD = ∂Ω \ΓN , and g ∈ H−1/2(ΓN) =
(

H1/2(ΓN)
)∗

.
We seek stationary points of this energy, so set its derivative to zero:

J′(u; v) =
∫

Ω
∇u · ∇v dx +

∫
Ω

uv dx−
∫

Ω
f v dx−

∫
ΓN

gv ds (6.4.2)

= 0 for all v ∈ V. (6.4.3)

We recognise this as the weak form for the equation

−∇2u + u = f in Ω,

u = 0 on ΓD,

∇u · n = g on ΓN . (6.4.4)

This is the Helmholtz equation, or more specifically the “good”
Helmholtz equation. Let us consider the conditions of Lax–Milgram.

First, consider boundedness of

F(v) =
∫

Ω
f v dx +

∫
ΓN

gvds. (6.4.5)

As f ∈ L2(Ω), the first term is bounded. Similarly, if v ∈ H1(Ω), then
v|ΓN

∈ H1/2(ΓN), and so g ∈ H−1/2(ΓN) ensures that the second
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term is bounded3. As F is obviously linear, the right-hand side is in 3 This relies on the boundedness of the
Dirichlet trace operator, something we
won’t discuss.

the dual space of H1(Ω).
Observe that

a(u, v) =
∫

Ω
∇u · ∇v dx +

∫
Ω

uv dx (6.4.6)

is the H1(Ω) inner product, and thus continuity follows immediately
from Cauchy–Schwarz with C = 1. Similarly, as

a(v, v) = (v, v)H1(Ω) = ‖v‖2
H 1(Ω), (6.4.7)

the problem is coercive with α = 1. (These properties are generally
true for bilinear forms that happen to be inner products.)

For our final word, let us consider the slightly modified problem

−∇2u− k2u = f in Ω,

u = 0 on ΓD = Γ \ ΓN ,

∇u · n = g on ΓN . (6.4.8)

This is known as the “bad” Helmholtz equation (in contrast to the
“good” Helmholtz above), as the problem is no longer coercive for
sufficiently large k. In fact, the development of good discretisations
and fast solvers for this equation is an outstanding open problem in
numerical analysis of major importance in wave propagation, such as
in seismology, acoustics, and electromagnetism.

6.5 A remark on optimisation in Hilbert spaces

Suppose we wish to minimise a functional J : Rn → R. One of the
most fundamental algorithms for this task is steepest descent, which
consists of setting

uk+1 = uk − αk∇J(uk), (6.5.1)

where uk is the previous iterate, ∇J(uk) is the gradient of the func-
tional, and αk is typically chosen by line search. In this finite di-
mensional setting, uk ∈ Rn, and ∇J(uk) ∈ Rn, and the iteration is
well-defined4. 4 There are much faster algorithms, of

course, such as Newton’s method or a
quasi-Newton method.

Now consider the case where J : V → R, with V an infinite-
dimensional Hilbert space. What is the analogue of ∇J that will give
us a descent direction for the functional?

The answer involves the Fréchet derivative J′, but it is not quite the
complete story. Consider the following iteration:

uk+1 = uk − αk J′(uk). (6.5.2)

This iteration is not well-defined: on the right-hand side, we are in-
structed to add a quantity in V to a quantity in V∗. These are differ-
ent spaces, and must be carefully distinguished.
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The key ingredient is the Riesz map R : V∗ → V. The correct
definition of steepest descent in infinite dimensions is the iteration

uk+1 = uk − αkRJ′(uk). (6.5.3)

This is why the definition of the gradient in Rn involves the trans-
pose: transposition is the Riesz map on Rn.

We cannot just discretise the problem to Rn and apply our stan-
dard Euclidean algorithms; we would be “exploring the space with
the wrong metric”, and the computational performance would be
disastrous. In particular, the number of iterations required for con-
vergence of the algorithm would blow up as the mesh size h → 05. 5 T. Schwedes, D. A. Ham, S. W. Funke,

and M. D. Piggott. Mesh Dependence in
PDE-Constrained Optimisation. Springer
International Publishing, 2017

To achieve mesh independent convergence, we must formulate the
optimisation algorithm in function spaces, and defer discretisation to
the very last possible moment.





7 Galerkin approximation

Given a linear variational problem

find u ∈ V such that a(u, v) = F(v) for all v ∈ V, (7.0.1)

we form its Galerkin approximation over a subspace Vh ⊂ V

find uh ∈ Vh such that a(uh, vh) = F(vh) for all vh ∈ Vh. (7.0.2)

We first consider its approximation properties over arbitrary sub-
spaces Vh, i.e. not specific to finite elements. We will then specialise
these generic error estimates to function spaces constructed via finite
elements.

7.1 Elementary properties of the approximation

Corollary 7.1.1. Let a and F satisfy the hypothesis of the Lax–Milgram
Theorem. Then the Galerkin approximation is well-posed for any closed
subspace Vh ⊂ V.

Proof. This follows directly from Lax–Milgram. As Vh ⊂ V, a :
Vh × Vh → R is bounded and coercive on Vh, and F : Vh → R is
linear and bounded. Thus, by Lax–Milgram, the variational problem
defining the Galerkin approximation is well-posed.

Recall that when a basis {φi} is chosen, the Galerkin approxima-
tion can be written as

Ax = b, (7.1.1)

where xi are the basis function coefficients for the solution uh,

bi = F(φi) (7.1.2)

and
Aji = a(φi, φj). (7.1.3)

One useful fact about the finite element method is that the linear
system inherits the structural properties of the variational problem. For
example:
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Lemma 7.1.2. If a is a symmetric bilinear form, A is a symmetric matrix.

Proof.

Aji = a(φi, φj) = a(φj, φi) = Aij. (7.1.4)

Another important property is positive-definiteness:

Lemma 7.1.3. If a is coercive, then A is positive-definite.

Proof. For positive-definiteness, we require

cT Ac > 0 for c 6= 0. (7.1.5)

Let v ∈ Vh be the function with basis function coefficients c, i.e.

v(x) = ∑
i

ciφi(x). (7.1.6)

Then

cT Ac = a(v, v) ≥ α‖v‖2
V > 0 if c 6= 0. (7.1.7)

7.2 Galerkin orthogonality

We know that the solution u satisfies

a(u, v) = F(v) for all v ∈ V, (7.2.1)

and thus in particular

a(u, vh) = F(vh) for all vh ∈ Vh ⊂ V. (7.2.2)

The Galerkin approximation uh ∈ Vh satisfies

a(uh, vh) = F(vh) for all vh ∈ Vh ⊂ V. (7.2.3)

Subtracting (7.2.3) from (7.2.2), we find

a(u− uh, vh) = 0 for all vh ∈ Vh. (7.2.4)

In words, the error eh = u − uh is a-orthogonal to the test space Vh.
More informally, the error is “zero when viewed on our mesh”. This
crisp characterisation of the error is a distinctive feature of Galerkin
methods, and is crucial for the error estimates we will derive.
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7.3 Asymmetric case: quasi-optimality in V-norm

Let us first consider the general case, where we do not assume a is
symmetric. It turns out that the error in our Galerkin approximation
is quasi-optimal: it is optimal, up to some problem-specific constants.

Suppose a is V-coercive and continuous, but not necessarily sym-
metric. For any vh ∈ Vh,

α‖u− uh‖2
V ≤ a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh)

= a(u− uh, u− vh)

≤ C‖u− uh‖V‖u− vh‖V .

Dividing by α and minimising over vh ∈ V, we obtain the following
result.

Lemma 7.3.1 (Céa’s Lemma). The Galerkin approximation uh ∈ Vh to
u ∈ V is quasi-optimal, in that it satisfies

‖u− uh‖V ≤
C
α

min
vh∈Vh

‖u− vh‖V .

The minimum is achieved because Vh is closed by assumption
(otherwise we would have an infimum).

This result is very useful because it allows us to intuitively charac-
terise the quality of the approximation. Before seeing how we can use
this to bound the approximation error in terms of the mesh size h, let
us consider this quasi-optimality result in the context of symmetric
problems.

7.4 Symmetric case: optimality in energy norm

For this section, assume a is symmetric.
If a is symmetric, then a defines an inner product on V, and

(V, a(·, ·)) is a Hilbert space, by theorem 4.1.1. When measured with
respect to the ‖ · ‖a-norm, the problem is continuous with C = 1 (by
Cauchy–Schwarz) and is coercive with α = 1 (by definition of the
norm).

Thus, if we restate Céa’s Lemma with respect to the (V, a(·, ·))
Hilbert space, we have

‖u− uh‖a ≤
C
α

min
vh∈Vh

‖u− vh‖a (7.4.1)

= min
vh∈Vh

‖u− vh‖a. (7.4.2)
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Figure 7.1: For symmetric problems,
the Galerkin approximation is the
orthogonal projection of the solution
onto the trial space when measured
in the energy norm. Credit: Oleg
Alexandrov, Wikipedia.

Since uh ∈ Vh, we have to have equality, and thus the error is optimal in
the norm induced by the problem:

‖u− uh‖a = min
vh∈Vh

‖u− vh‖a. (7.4.3)

This is closely related to the energy minimisation property dis-
cussed in the previous lecture.

7.5 Quasioptimality, interpolation, and regularity

Céa’s Lemma allows us to bound the error in terms of an interpolation
operator mapping to the space Vh. That is, if we can find any specific
vh ∈ Vh so that ‖u − vh‖ is bounded, then this in turn bounds the
approximation error. Ideally, this bound would be given in terms of
quantities under our control, such as the mesh size and approxima-
tion order.

Such bounds are given by interpolation estimates. We construct
an interpolation operator Ih mapping from some function space to
Vh. A major objective of this course will be to derive the following
theorem, which quantifies the error introduced by interpolation, over
the next few weeks.

Theorem 7.5.1. Let Ω be a polygonal (in two dimensions) or polyhedral
(in three dimensions) domain. Suppose we have a sequence of meshes {Mh}
indexed by mesh size h with h → 0. Let Vh be the discrete function space
constructed by equipping meshMh with Lagrange finite elements of degree
p. Let u ∈ Hp+1(Ω). Let Ihu denote the interpolant of u onto Vh. Then,
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under certain regularity conditions on the mesh, there exists a constant c
such that

‖u− Ihu‖H1(Ω) ≤ chp ∑
|α|=p+1

‖Dαu‖L2(Ω). (IE)

Note that the interpolation operator bound requires u ∈ H2(Ω)

at least; this is because Lagrange elements require the evaluation
of the solution, and so we must have u ∈ C(Ω). Furthermore, the
smoother the solution, the faster the convergence: if u ∈ Hs(Ω), then
our bound is O(hs−1).

Consider our standard model problem (Q). To derive a bound on
the finite element approximation error, we must employ three ingre-
dients. The first is a quasi-optimality result, such as Céa’s Lemma,
which bounds the finite element error in terms of the best approxi-
mation in Vh:

‖u− uh‖H 1(Ω) ≤
C
α

min
vh∈Vh

‖u− vh‖H 1(Ω). (7.5.1)

The second is an interpolation error result, which places an upper
bound on the error of the best approximation:

min
vh∈Vh

‖u− vh‖H 1(Ω) ≤ ‖u− Ihu‖H 1(Ω) ≤ O(hs−1), (7.5.2)

so long as u ∈ H2(Ω) or better. The third is an elliptic regularity
result, which guarantees that u ∈ Hs(Ω) for some s ≥ 21. Combining 1 For example, this is true if Ω is Lips-

chitz and convex, or if ∂Ω is smooth.these three results, we have

‖u− uh‖H 1(Ω) ≤
C
α
·O(hs−1). (7.5.3)

This bound is called an a priori bound, in that it can be derived
before one actually computes uh

2 2 This contrasts with a posteriori error
bounds which make explicit use of the
computed approximation uh to provide
computable bounds on the global error.7.6 A success: linear elasticity

One of the most important early applications of the finite element
method was to the equations of linear elasticity, which describe how
a solid object deforms and becomes internally stressed due to loading
conditions. No bridge is built or rocket launched without a finite
element approximation of linear elasticity somewhere along the way.
In fact, the finite element method was largely invented by engineers
seeking to solve linear elasticity; its mathematical foundations came
much later. This discussion is drawn from Ciarlet3. 3 P. G. Ciarlet. The Finite Element Method

for Elliptic Problems. North-Holland,
1978. Reprinted by SIAM in 2002

Let Ω ⊂ R3 be an open bounded Lipschitz domain; its closure sΩ is
referred to as the reference configuration. We seek to characterise its
shape upon loading via a mapping φ : sΩ→ R3 via

Ω̃ = φ(sΩ). (7.6.1)
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It is useful to write the deformation φ as the sum of the identity map,
plus a displacement:

φ(x) = x + u(x), (7.6.2)

where u(x) : sΩ→ R3.
The equations that describe the static configuration of Ω under a

body force f : Ω → R3 are the following. First, we have the equation
of motion, a form of Newton’s second law,

∇ · σ + f = ρü = 0, (7.6.3)

where σ : Ω → R3×3
sym is the stress tensor, f is the body force, ρ is

the density and ü refers to the second derivative of the displacement
in time. Since we only seek the static configuration, we set the time
derivatives to zero. For an isotropic material4 the material is de- 4 In general the material can be

anisotropic, and is defined by a sym-
metric fourth-order stiffness tensor,
described by 21 components. In turn,
each of those components might be a
function of space.

scribed by two parameters µ > 0 (the shear modulus) and λ > 0 (the
first Lamé parameter), and the stress is given by

σ = 2µε(u) + λtrε(u)I, (7.6.4)

where ε : Ω → R3×3
sym denotes the strain. This is a more complicated

form of Hooke’s law, relating the strain and the stress in a linear way.
In turn, the strain is described in terms of the deformation by

ε(u) =
1
2

(
∇uT +∇u +∇uT∇u

)
, (7.6.5)

≈ 1
2

(
∇uT +∇u

)
, (7.6.6)

where the last quadratic term has been dropped because we assume
the displacements to be small5. 5 If we do not make this assumption, or

the stress-strain relationship is nonlin-
ear, then this gives rise to a nonlinear
equation instead. This is necessary for
studying large deformations or more
complicated materials, such as rubber
or the human heart.

We close the system with boundary conditions. Decomposing the
boundary Γ = ΓD ∪ ΓN into two disjoint parts of nonzero measure,
we set

u = 0 on ΓD, (7.6.7)

σ · n = g on ΓN , (7.6.8)

where n is the outward-facing unit normal, and g are prescribed
boundary tractions.

When cast in variational form6, the problem is the familiar 6 We won’t go through the details of
the integration by parts. For details, see
Ciarlet, pg. 25.find u ∈ V such that a(u, v) = F(v) for all v ∈ V, (7.6.9)

for certain a, F and V we will now describe. Let(
H1(Ω)

)3
= H1(Ω; R3) = H 1(Ω)× H 1(Ω)× H 1(Ω) (7.6.10)
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be the set of vector-valued functions where each component is in
H 1(Ω). As before, we must encode our Dirichlet conditions in the
space, so we choose

V = {v ∈ H1(Ω; R3) : v|ΓD
= 0}. (7.6.11)

The bilinear form a : H1(Ω; R3)× H1(Ω; R3)→ R is given by

a(u, v) =
∫

Ω
σ(u) : ε(v) dx (7.6.12)

=
∫

Ω

3

∑
i,j=1

σij(u)εij(v) dx (7.6.13)

=
∫

Ω
λ div u div v + 2µε(u) : ε(v) dx. (7.6.14)

This is a symmetric bilinear form that is coercive on V7. The linear 7 Its coercivity is nontrivial, and is
guaranteed by a result known as Korn’s
inequality. As in the Laplacian case, this
result relies on the measure of ΓD being
nonzero. See Ciarlet, pg. 24.

form F : H1(Ω; R3)→ R is given by

F(v) =
∫

Ω
f · v dx +

∫
ΓN

g · v ds. (7.6.15)

From the theory we have already studied, we know the following
facts. First, the equations of linear elasticity are well-posed if ΓD has
nonzero measure, f ∈ L2(Ω; R3), and g ∈ H−1/2(Ω; R3), by the
Riesz Representation Theorem. Second, the Galerkin approximation
over any Vh ⊂ V will be optimal when measured in the energy
norm induced by the problem. Third, the Galerkin approximation
minimises the potential energy, given by the sum of the strain energy
and the potential energy of the exterior forces,

J(v) =
1
2

∫
Ω

λ(div v)2 + 2µε(v) : ε(v) dx−
∫

Ω
f · v dx−

∫
ΓN

g · v ds.

(7.6.16)
These approximation properties strongly motivate the use of a
Galerkin approximation. The finite element method is the favoured
means of constructing Vh because of its geometric flexibility, to be
described in the next lectures.

7.7 A warning: advection-dominated problems

Consider again the error bound (7.5.3)

‖u− uh‖H 1(Ω) ≤
C
α
·O(hs−1). (7.7.1)

This result is theoretically reassuring, but note that in practice it is
very difficult to bound the constants involved, and for certain elliptic
problems the coercivity and boundedness coefficients might be such
that C/α is very large. The approximation does indeed converge as
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h → 0, but one might have to take h unaffordably small before any
reasonable error is achieved. We now present such an example, from
Prof. Süli’s notes8. 8 E. Süli. Lecture notes on Finite

Element Methods for Partial Differential
Equations, 2012. http://people.maths.
ox.ac.uk/suli/fem.pdf

Consider the following advection-diffusion equation:

−ε∇2u + b · ∇u = f in Ω, (7.7.2)

u = 0 on Γ, (7.7.3)

where ε > 0, b = (b1, . . . , bn)T with bi ∈ W1
∞(Ω) for i = 1, . . . , n.

For simplicity assume that div(b) ≤ 0 almost everywhere. When
advection dominates diffusion, the Péclet number

Pe =

√
∑i ‖bi‖2

L∞(Ω)

ε
(7.7.4)

is very large, e.g. 106–108.
The continuity constant for this problem is

C =
√

ε2 + ∑
i
‖bi‖2

L∞(Ω)
(7.7.5)

and the coercivity constant is

α =
ε√

1 + K2(Ω, Γ)
(7.7.6)

where K(Ω, Γ) is the associated Poincaré constant. Thus, the constant
in front of the error bound is

C
α
=
√

1 + K2
√
(1 + Pe2). (7.7.7)

Thus, when ε � 1, the constant on the right-hand side of the error
bound is extremely large through the presence of the Péclet number9. 9 In fact, things are even worse, as B(u)

will also depend on ε via u.Thus, on coarse meshes, conventional finite element methods can be
very badly behaved; the solution typically exhibits large nonphysical
oscillations which can only be eliminated by drastically reducing the
mesh size h.

There are finite element techniques to ameliorate this problem, but
they are beyond the scope of the course. For more details on this, see
Elman, Silvester & Wathen, chapter 6

10. 10 H. C. Elman, D. J. Silvester, and A. J.
Wathen. Finite Elements and Fast Iterative
Solvers: with applications in incompressible
fluid dynamics. Oxford University Press,
2014

http://people.maths.ox.ac.uk/suli/fem.pdf
http://people.maths.ox.ac.uk/suli/fem.pdf


8 Function spaces constructed via finite
elements

We now specialise our previous error analysis to the particular choice
of discrete function spaces we will choose. These discrete function
spaces are constructed via finite elements (as the name suggests!).

The beautiful images of finite elements depicted in this chapter are
taken from Logg et al.1 1 A. Logg, K. A. Mardal, G. N. Wells,

et al. Automated Solution of Differential
Equations by the Finite Element Method.
Springer, 2011

8.1 Finite elements

Definition 8.1.1 (Finite element). A finite element is a triple (K,V ,L)
where

• The cell K is a bounded, closed subset of Rn with nonempty connected
interior and piecewise smooth boundary;

• The space V = V(K) is a finite dimensional function space on K of
dimension d;

• The set of degrees of freedom L = {`1, . . . , `d} is a basis for V∗, the dual
space of V .

Figure 8.1: The linear Lagrange fi-
nite element in one, two and three
dimensions. The black circles denote
pointwise evaluation.

Example 8.1.2. Consider the standard linear Lagrange finite element on the
triangle, figure 8.1. The cell K is given by the triangle and V is the space of
first degree polynomials on K (a space of dimension d = 3). As a basis for
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V∗, we may take point evaluation at the three vertices of K, that is

`i : V → R

`i(v) = v(xi), (8.1.1)

where xi denotes the coordinates of the ith vertex.

Before we move on, a small piece of notation.

Definition 8.1.3 (Polynomial spaces). Denote the space of q-degree
polynomials on a geometric object K ⊂ Rn via Pq(K):

Pq(K) = span{ xα1
1 xα2

2 · · · x
αn
n
∣∣
K :

n

∑
i=1

αi ≤ q, αi ≥ 0 for all i = 1, . . . , n}.

(8.1.2)
For example, P3(K) on a triangle K is

P3(K) = span{1, x, x2, x3, y, y2, y3, xy, x2y, xy2} (8.1.3)

where each of the functions is restricted to K.

The significance of these objects is the following. We will break
up the domain Ω into the non-overlapping union of cells that can
be easily mapped to K (e.g. triangles in various configurations and
orientations). On each cell, we will approximate the solution with a
function in V . The degrees of freedom encode what we need to store to
uniquely specify a function in V : for example, on the linear Lagrange
element, knowing the values `i(v) is sufficient to uniquely determine
a specific vK ∈ V . In other words, we will solve for the values of `i(v)
on each element to determine our overall (global) approximation
vh ∈ Vh.

This can be concretely seen by the following argument. Suppose V
consists of continuous functions (it always does in practice) and for
fixed x consider the functional

`x(v) = v(x). (8.1.4)

Since `x is a continuous linear functional, and `i form a basis for V∗,
we can therefore express

`x = α1`1 + · · ·+ αd`d (8.1.5)

for some coefficients α. Thus, if we know the values of `i(v), we
know the value of the function v at every point x ∈ K, and the func-
tion is uniquely specified.

The main work in verifying that something is a finite element is
in checking that L is indeed a basis for V∗. This is simplified by the
following lemma.
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Lemma 8.1.4 (Verifying finite elements). Let V be a d-dimensional vector
space and let L = {`1, . . . , `d} be a subset of the dual space V∗. Then the
following two statements are equivalent:

(a) L is a basis for V∗;

(b) Given v ∈ V with `i(v) = 0 for i = 1, . . . , d, then v ≡ 0.

This means that we just need to verify condition (b), which is
much easier; we set the degrees of freedom to be zero and show that
the only element of V is the zero element.

Proof. Let {φ1, . . . , φd} be some basis for V . L is a basis for V∗ iff
given any ` ∈ V∗, there exists a set of coefficients {α1, . . . , αd} such
that

` = α1`1 + · · ·+ αd`d (8.1.6)

because dim(V∗) = dim(V) = d. Given an ` ∈ V∗, denote

yi = `(φi)
?
= α1`1(φi) + · · ·+ αd`d(φi). (8.1.7)

If we define the matrix Bij = `j(φi), then (a) is equivalent to saying
that the system

Bα = y (8.1.8)

is always solvable, which is the same thing as B being invertible.
Given any v ∈ V , we can write

v = β1φ1 + · · ·+ βdφd. (8.1.9)

The condition `i(v) = 0 means that

β1`i(φ1) + · · ·+ βd`i(φd) = 0 (8.1.10)

and so (b) is equivalent to

β1`i(φ1) + · · ·+ βd`i(φd) = 0 ∀i = 1, . . . , d =⇒ β1 = · · · = βd = 0.
(8.1.11)

Define the matrix C via Cij = `i(φj). Then (b) is equivalent to Cβ = 0
only has trivial solutions, which means C is invertible. But C = BT ,
so (a) is equivalent to (b).

Definition 8.1.5. We say that L determines V if given v ∈ V , `i(v) =

0 ∀i =⇒ v = 0. We also say that L is unisolvent.

Example 8.1.6. For the linear Lagrange triangle, if v is zero at each vertex,
then v must be zero everywhere as a plane is uniquely determined by its
values at three non-collinear points. Thus, the linear Lagrange element on a
triangle is indeed a finite element.

Having fixed L, the usual choice for a basis of V is the nodal basis.
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Definition 8.1.7 (nodal basis). The basis (φ1, . . . , φd) of V dual to L,
i.e. with the property that

`i(φj) = δij (8.1.12)

is called the nodal basis for V .

Example 8.1.8 (nodal basis for the linear Lagrange element in one
dimension). Let K = [0, 1], V be the set of linear functions on K, and L be
pointwise evaluation at the endpoints. Then the nodal basis is given by

φ1(x) = 1− x, φ2(x) = x. (8.1.13)

Example 8.1.9 (nodal basis for the linear Lagrange element in two
dimensions). Let K be the triangle with vertices at (0, 0), (0, 1), (1, 0). Let
V be the set of linear functions on K, and L be pointwise evaluation at the
vertices. Then the nodal basis is given by

φ1(x) = 1− x1 − x2, φ2(x) = x1, φ3(x) = x2. (8.1.14)

Figure 8.2: The Lagrange CGq elements
for q = 1, . . . , 6.

Of course, there are other finite elements. Let us generalise the
Lagrange finite element, before looking at others.

Definition 8.1.10 (Lagrange element). The Lagrange element of spatial
dimension n and degree q ≥ 1 (sometimes called CGq) is defined by

• K is an n-dimensional simplex (interval, triangle, tetrahedron),

• V = Pq(K),

• `i : v 7→ v(xi), i = 1, . . . , f (q),

where xi, i = 1, . . . , f (q) is an enumeration of points in the element. (See
Logg et al.2 for details of f (q) and the enumeration of points.) 2 A. Logg, K. A. Mardal, G. N. Wells,

et al. Automated Solution of Differential
Equations by the Finite Element Method.
Springer, 2011
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For an illustration of the elements for q = 1, . . . 6 in three dimen-
sions, see figure 8.2. As we enrich the approximation space on each
element, we expect that the interpolation error of the true solution to
our variational problem will decrease, and thus the error bound of
(7.5.3) will improve. We will see later that this will depend on both
the interpolation order q and the smoothness of the exact solution.

Before we introduce any other elements, let us discuss how ele-
ments are used for interpolation.

8.2 Local interpolation operator

One of the main things we will do with finite elements is interpolate
functions onto them.

Definition 8.2.1 (Interpolant on an element). Let (K,V ,L) be a finite
element. For a suitable3 function space H, define the interpolant IK : H → 3 Suitable means that that `i : H → R is

well defined on H for all `i ∈ L.V via

IK : u 7→ IKu

`i(IKu) = `i(u) for all `i ∈ L. (8.2.1)

That is, the interpolant matches the function being interpolated at the de-
grees of freedom.

In the nodal basis, the interpolation operator is particularly simple.
It is a straightforward exercise to verify that

IKu =
d

∑
i=1

`i(u)φi (8.2.2)

satisfies the condition (8.2.1).

8.3 Meshes and the local-to-global mapping

To define a global function space

Vh = span{φ1, . . . , φN}, (8.3.1)

we need to decompose Ω into cells, define a finite element on each,
and then specify how the local function spaces are to be stitched
together.

Assume for now that Ω is polytopic (polygonal or polyhedral) so
that it can be decomposed into simplicial elements exactly. We now
define a mesh.

Definition 8.3.1 (mesh). A meshM is a geometric decomposition of a
domain Ω into a finite set of cellsM = {Ki} such that
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1. ∪iKi = Ω.

2. If Ki ∩ Kj for i 6= j is exactly one point, it is a common vertex of Ki and
Kj.

3. If Ki ∩ Kj for i 6= j is not exactly one point, it is a common facet of Ki

and Kj (edge in two dimensions, face in three dimensions).

Meshing is a huge subject in its own right, and often where com-
mercial FEM solvers spend most of their time and effort. For an
excellent introduction to the field, see Frey & George4. 4 P.J. Frey and P.L. George. Mesh

Generation. Application to finite elements.
Wiley, 2nd edition, 2008

We equip each cell K ∈ M with a finite element, so we have a set
of finite elements {(K,VK,LK) : K ∈ M}. Typically we equip every
element with the same type of element, but not always5. 5 For example, in the hp-adaptive finite

element method, the order of some
elements is increased to improve the
approximation locally (so-called p-
refinement). This is typically done
where the solution is smooth, as there
higher-order elements yield the most
benefit. Where the solution is less
smooth (e.g. near a singularity), the
method refines the mesh instead (so-
called h-refinement).

We specify how the elements fit together with the local-to-global
mapping. For each cell K ∈ M, the analyst must specify a local-to-
global map

ιK : {1, . . . , d(K)} → {1, . . . , N} (8.3.2)

which specifies how the local degrees of freedom `K
i (v) relate to the

global degrees of freedom. Each local degree of freedom corresponds
to a global degree of freedom, under the action of the local-to-global
map:

`ιK(i)(v) = `K
i (v|K), i = 1, . . . , d(K). (8.3.3)

The properties of the local-to-global mapping determine the con-
tinuity of the global approximation space. Consider the mesh con-
sisting of two triangular cells depicted in figure 8.3. Both cells are
equipped with second order Lagrange elements, so the degrees of
freedom consist of pointwise evaluation at the vertices and the mid-
points of the edges. The two cells share a common edge: each trian-
gle has three degrees of freedom on that common edge, that match
up in a natural way. If the local-to-global mapping maps the matching
local degrees of freedom to the same global degree of freedom, the global
approximation will be continuous; conversely, if the local-to-global map-
ping maps the matching local degrees of freedom to different global
degrees of freedom, the global approximation will permit discontin-
uous functions. In the mapping depicted in figure 8.3, the continuity
of the global approximation across the interface is enforced, and so
Vh ⊂ H 1(Ω). If continuity is not enforced, the approximation has no
weak derivative and so merely Vh ⊂ L2(Ω), as shown in figure 8.4.

Definition 8.3.2 (conforming approximation). Suppose the continuous
variational problem is posed over a Hilbert space V. If Vh ⊂ V, the approx-
imation is conforming; if Vh 6⊂ V, then the approximation is said to be
nonconforming.
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Figure 8.3: The local-to-global mapping
for a simple mesh consisting of two
triangles, both equipped with secord
order Lagrange elements. By mapping
matching local degrees of freedom at
the common edge to the same global
degree of freedom, the local-to-global
map ensures the C0 continuity of the
approximation.

Figure 8.4: By not mapping matching
local degrees of freedom at the common
edge to the same global degree of free-
dom, a discontinuous approximation
results.
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In this course we will only consider conforming discretisations, al-
though nonconforming ones are sometimes advantageous for various
reasons6. 6 It also happens sometimes that

we wish to approximate a function
u ∈ L2(Ω), and thus discontinuous
Lagrange discretisations are a natu-
ral, conforming choice. This arises in
certain formulations of Stokes flow
(where the pressure p ∈ L2(Ω)) and in
PDE-constrained optimisation (where
we might want to compute the source
term f ∈ L2(Ω) such that the solution
of the Laplace equation is close to some
target).

The global function space Vh can be described by a meshM, a set
of finite elements {(K,VK,LK) : K ∈ M}, and a set of local-to-global
mappings {ιK : K ∈ M}. Once a local interpolation operator on each
cell is defined, it is straightforward to define a global interpolation
operator mapping to Vh: one merely demands that (8.2.1) is satisfied
on each cell.

Definition 8.3.3 (global interpolation operator). Let Vh be a finite
element function space constructed by equipping a meshM with finite
elements. Then the interpolation operator Ih : H → Vh is defined by

Ihu|K = IKu, (8.3.4)

and that Ihu satisfies any necessary continuity requirements.



9 Local and global assembly

In this lecture, we will discuss the central algorithm executed by a
finite element code, the assembly algorithm for computing the matrix
and vector1: 1 Sometimes called the stiffness matrix

and load vector, terminology that arose
in the original context of structural
mechanics.

Aji = a(φi, φj), bj = F(φj). (9.0.1)

9.1 The assembly algorithm

Given a mesh, and a basis for the trial space

Vh = span{φi, i = 1, . . . , N}, (9.1.1)

we seek to compute Aji = a(φi, φj) and bj = F(φj). For simplicity of
discussion, we will discuss the assembly of the stiffness matrix; the
assembly of the load vector will be analogous. We also focus on the
case where all cells in the domain are equipped with the same finite
element basis functions.

The naïve algorithm for doing so is the following. This has two
Algorithm 9.1.1: The naïve algorithm
for assembly.

1: for i = 1, . . . , N do
2: for j = 1, . . . , N do
3: Compute Aji = a(φi, φj).

major flaws. First, our finite element basis functions have local sup-
port, so most pairs of basis functions (φi, φj) do not overlap. In this
case, the corresponding matrix entry is zero; we only need to com-
pute Aji for neighbouring basis functions, and algorithm 9.1.1 is very
wasteful. Second, each evaluation of a(φi, φj) involves an integra-
tion over the domain Ω, which in turn is broken up into integrations
over each cell K ∈ M. Each cell will be visited multiple times in the
course of executing 9.1.1. This is wasteful, because it means that the
relevant transformations will be recomputed several times.

A much better idea is to express the assembly operation as an
iteration over the cells of the mesh, visiting each cell exactly once,
and assembling only those contributions that we know in advance to
be nonzero. For each cell K ∈ M, let {φK

i }d
i=1 denote the restrictions
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of the relevant basis functions to that cell, where d is the dimension
of the local function space VK; all other global basis functions are
zero there. Furthermore, recall that ιK is the local to global map that
sends the local numbering {1, . . . , d} to the global numbering, a
subset of {1, . . . , N}. Over each cell, we will compute a local d × d
matrix AK that will contain all contributions for all basis functions
relevant to this cell. We will then insert that into the global data
structure, using the local-to-global map ιK to discover the relevant
indices. By AιK ,ιK , we mean the d × d submatrix of A formed by

Algorithm 9.1.2: The efficient algorithm
for assembly.

1: for K ∈ M do
2: Fetch the local-to-global map ιK.

3: Compute the local tensor AK:
4: for i = 1, . . . , d do
5: for j = 1, . . . , d do
6: Compute (AK)ji = a(φK

i , φK
j ) (only on the cell K).

7: Add the local tensor to the global tensor:
8: AιK ,ιK

+
= AK

taking the entries of the rows and columns corresponding to the
global indices of the degrees of freedom associated with K. By +

=, we
mean the mathematical operation of adding on the right-hand side
to the existing value of the left-hand side. This is much clearer when
explained with a figure; see figure 9.1, reproduced from Logg et al2. 2 A. Logg, K. A. Mardal, G. N. Wells,

et al. Automated Solution of Differential
Equations by the Finite Element Method.
Springer, 2011

The process for the load vector b is analogous, except that instead
of adding a local matrix to a submatrix of the global matrix, we will
add a local vector (of length d) to a subvector (of length d) of the
global vector (of length N).

ιK(1)

1

2

3

1 2 3

AK,32

ιK(2) ιK(3)

ιK(1)

ιK(2)

ιK(3)

Figure 9.1: Finite element assembly.
We loop over each cell K of the mesh
and assemble the local stiffness matrix
AK (top right). We add this matrix to
the submatrix of the global stiffness
matrix A formed by taking the rows
and columns associated with the local-
to-global map ιK .
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We have seen that if we can compute a local tensor on each cell, we
can combine them in a clever way to efficiently assemble the global
tensor. How do we calculate the local tensor for each cell, though?

9.2 Mapping to the reference element

x̂

x̂1 = (0, 0) x̂2 = (1, 0)

x̂3 = (0, 1) x = FK(x̂)

K̂

K

x1

x2
FK

Figure 9.2: The finite element for a
specific cell of the mesh K can be
constructed via a map FK applied to an
abstract reference element K̂.

One of the main implementational advantages of the finite ele-
ment method is that this description can be significantly simplified
by introducing a reference finite element (K̂, V̂ , L̂), and a set of dif-
feomorphisms {FK : K ∈ M} such that

K = FK(K̂) for all K ∈ M. (9.2.1)

This is illustrated in figure 9.2.
For each K ∈ M, the map FK generates a function space on K via

V(K) = {v = v̂ ◦ F−1
K : v̂ ∈ V̂}, (9.2.2)

and a set of degrees of freedom on K via

L(K) = {`(v) = ˆ̀(v ◦ FK) : ˆ̀ ∈ L̂}. (9.2.3)

By construction, we also obtain the nodal basis {φK
i }d

i=1 on K from
the nodal basis functions on K̂. Suppose {φ̂i}d

i=1 is the set of nodal
basis functions on K̂ satisfying

ˆ̀ i(φ̂j) = δij. (9.2.4)

Define φK
i = φ̂i ◦ F−1

K . Computing, we find

`K
j (φ

K
i ) =

ˆ̀ j(φ
K
i ◦ FK) = ˆ̀ j(φ̂i ◦ F−1

K ◦ FK) = ˆ̀ j(φ̂i) = δij. (9.2.5)
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Here we are hoping that the nodal basis functions constructed via
the transformation agree with the nodal basis functions computed
directly from the finite element on the physical cell. This is the case
for most finite elements; such elements are called affine-equivalent.
This discussion pertains only to affine-equivalent elements. For a
more general theory that applies to other elements, see the recent
work of Kirby3. 3 R. C. Kirby. A general approach to

transforming finite elements. SMAI
Journal of Computational Mathematics,
4:197–224, 2018

Given an expression involving the basis functions to be integrated
on a physical cell, we will use the coordinate transformation to con-
vert this to an expression on the reference cell. Let us see this by
examples. Consider first the calculation of∫

K
φi(x)φj(x) dx, (9.2.6)

which is the local contribution to the matrix representing the L2(Ω)

inner product4. From Part A vector calculus, we know that we can 4 This matrix is called the mass matrix,
another term arising from structural
engineering. It is the matrix that must
be solved to calculate the L2(Ω) Riesz
map. Mathematicians sometimes refer
to this matrix as the Gramian of the
basis {φ1, . . . , φN}.

transform coordinates in an integral, at the cost of the determinant of
the Jacobian of the coordinate transformation, i.e.∫

K
φi(x)φj(x) dx =

∫
K̂

φ̂i(x̂)φ̂j(x̂)|JK(x̂)| dx̂. (9.2.7)

This latter integral can then be approximated by quadrature.

Definition 9.2.1 (quadrature rule of degree m). A quadrature rule over
a cell K̂ is a choice of q quadrature points x̂i ∈ K̂ and weights wi such that

∫
K̂

f (x̂) dx̂ ≈
q

∑
i=1

wi f (x̂i). (9.2.8)

It has degree of precision (or degree) m if the approximation is exact for
polynomials of degree m or less.

For example, in one dimension, Gaussian quadrature tells us the
optimal choice of weights and quadrature points to maximise the
degree of the rule. The fundamental result of Gaussian quadrature
is that the optimal choice of q points in an interval gives degree
(2q − 1); for an introduction to the subject, see Süli & Mayers5. In 5 E. Süli and D. F. Mayers. An Introduc-

tion to Numerical Analysis. Cambridge
University Press, 2003

higher dimensions, quadrature is not as straightforward. Fortunately,
specialist researchers have dedicated their academic careers to ad-
vancing and collating the best known quadrature rules for various
domains in an encyclopaedia6. We assume that a quadrature scheme 6 R. Cools. An encyclopaedia of cuba-

ture formulas. Journal of Complexity,
19(3):445–453, 2003

is chosen so that the integral is computed exactly7.
7 This is not always possible. For exam-
ple, if the right-hand side f ∈ L2(Ω)
is not polynomial, then no quadrature
scheme will integrate it exactly, and
the resulting perturbation to the dis-
crete system must be analysed for a
comprehensive error analysis.

Notice that we do not ever need to explicitly calculate the basis
functions on each element to calculate the matrix corresponding to
a(φi, φj) = (φi, φj)L2(Ω); all we need is the tabulation of the reference
basis functions at the quadrature points on the reference element,
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and the Jacobian of the transformation. The quadrature formulae and
basis functions can be tabulated in advance; the transformation must
be calculated element-by-element.

Now consider the calculation of∫
K
∇xφi(x) · ∇xφj(x) dx, (9.2.9)

which is the local contribution to the stiffness matrix8 for the Lapla- 8 Incidentally, this is the matrix that
must be solved to calculate the H1

0 (Ω)
Riesz map.

cian. We have used the symbol ∇x to emphasise that the derivatives
are taken with respect to the physical coordinates. As before, we can
transform the integrand, at the cost of a factor involving the determi-
nant of the Jacobian:∫

K
∇xφi(x) · ∇xφj(x) dx =

∫
K̂
∇xφ̂i(x̂) · ∇xφ̂j(x̂)|JK(x̂)| dx̂, (9.2.10)

but this expression is still not computable as it requires the deriva-
tives with respect to the physical coordinate. To eliminate these, we
apply the chain rule:

∂φ

∂xk
= ∑

l

∂x̂l
∂xk

∂φ

∂x̂l
, (9.2.11)

i.e. the derivatives transform according to the matrix ∂x̂l/∂xk. After
some calculation, it can be shown that this is the transpose inverse of
the matrix ∂xk/∂x̂l , i.e.

∇xφ̂(x̂) = J−T
K (x̂)∇x̂φ̂(x̂). (9.2.12)

Thus, the integral can be written as∫
K
∇xφi(x) ·∇xφj(x) dx =

∫
K̂

(
J−T
K ∇x̂φ̂i(x̂)

)
·
(

J−T
K ∇x̂φ̂j(x̂)

)
|JK(x̂)| dx̂.

(9.2.13)
This formula is now in a form suitable for the application of a quadra-
ture rule. Here, we need a tabulation of the various derivatives of the
basis functions with respect to each direction at each quadrature
point, which again can be computed offline.

To summarise, we don’t need to compute basis functions, their
derivatives, or quadrature rules on arbitrary cells: we can tabulate all
of the necessary data offline on a reference cell, and then compute the
integrals using only the coordinate transformation.

We now wish to study the maps FK. Before we do so, we need a
prelude.

9.3 Prelude: vector elements

Consider our standard Laplacian example (P). This is a scalar prob-
lem, as we are solving for a scalar field, a smooth function u : Ω → R
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that associates a scalar value to each point in the domain. We can
approximate uh as an expansion in the span of Φ = {φ1, φ2, . . . , φN},
our global finite element basis functions construced from a Lagrange
finite element of degree q.

Next consider the linear elasticity example discussed in section 7.6,
for concreteness posed in two dimensions. This is a vector problem,
as we are solving for a vector field, a smooth function u : Ω → R2 that
associates a vector value to each point in the domain. How should we
approximate its solution?

Since we are approximating a vector field, we will want to use
vector-valued basis functions; we always want our degrees of free-
dom to be scalars. We can approximate uh as an expansion in the
span of

Ψ = {(φi, 0) : φi ∈ Φ} ∪ {(0, φi) : φi ∈ Φ}, (9.3.1)

a finite dimensional space of dimension 2N. This can be interpreted
as arising from a vector Lagrange element as follows.

Definition 9.3.1 (vector Lagrange element of degree q). The vector
Lagrange element of degree q and dimension k is a finite element (K,V ,L)
where

• K is a simplex (interval, triangle, tetrahedron),

• V = Pq(K)×Pq(K) · · · × Pq(K)︸ ︷︷ ︸
k times

,

• `ij : v 7→ (v(xi))j, i = 1, . . . , n(q), j = 1, . . . , k.

We denote this element by CGk
q = CGq × · · · ×CGq.

In two dimensions, the space V is the space of pairs of q-degree
polynomials, and L is the set of pointwise evaluations of both com-
ponents at the usual Lagrange points9. Given such an expansion, we 9 Notice that the geometric dimension

of the cell K and the number of compo-
nents of the vector field do not always
have to match, although they usually
do. For example, if we are solving a
problem in atmospheric physics for
the flow of air around the Earth, we
might model this is as solving for a
three-dimensional vector field on a
two-dimensional manifold. Our mesh
would consist of triangles embedded in
R3; each cell K would be triangular, but
we would have k = 3.

can write a vector field as

uh =
2N

∑
j=1

cjψj (9.3.2)

for ψj ∈ Ψ.

9.4 More details on the element map

In order to understand the element map, we have to understand that
the coordinate field is just another smooth vector field over the domain. Just
as the solution of linear elasticity smoothly associates a vector with
every point in the domain Ω, so does the coordinate field. We can
therefore represent the coordinate field with finite element basis functions.
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Figure 9.3: It is possible to represent
the coordinate field with Lagrange
elements of higher order, allowing us to
bend the mesh. This is useful if Ω is not
a polygon or polyhedron.

If the domain Ω is polyhedral or polygonal, then a linear Lagrange
representation of the coordinate is sufficient; the facets of our mesh
will be planar, which is enough to represent the domain exactly. If
the domain is curved, then it can be advantageous to represent the
coordinate field with higher-order basis functions, such as that shown
in figure 9.3, adapted from Johnen et al.10. 10 A. Johnen, J.-F. Remacle, and

C. Geuzaine. Geometrical validity
of curvilinear finite elements. Journal of
Computational Physics, 233:359–372, 2013

This means that for each element we can write

x = ∑
i

xiψ̂i(x̂) (9.4.1)

for (scalar-valued) coefficients xi and (vector-valued) basis functions
ψ̂i. This is an explicit construction for the map x = FK(x̂). Since we
have the map explicitly, we can also compute its Jacobian explicitly.

An important special case is when the elements are simplicial11 11 An interval, triangle or tetrahedron.

and the basis functions used for the coordinate are linear. Since the
derivative of a linear function is constant, the Jacobian JK(x̂) is con-
stant over the reference element. This means that the element map is
affine, i.e. a linear transformation composed with a translation. This
means it can be written as

FK(x̂) = JK x̂ + bK (9.4.2)

where JK ∈ Rn×n and bK ∈ Rn. This greatly simplifies the expres-
sions given in (9.2) above12. 12 This is not true on the first-order

quadrilateral element; the local function
space V = span{1, x̂1, x̂2, x̂1 x̂2}, and the
nonlinear cross term ensures that the
Jacobian varies over the element.

9.5 Solving the assembled system

Once we have assembled a linear system

Ax = b (9.5.1)

we must solve it for the coefficients of the expansion of u in terms of
our basis. The typical attitude among practitioners is to completely
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separate the assembly and solution algorithms: the matrix and vector
are passed to a black-box solver that knows nothing about the infinite
dimensional problem underpinning their construction. This approach
works well for small problems13 but is disastrous for larger problems 13 By a small problem, I mean a prob-

lem where sparse LU factorisation
works in a reasonable time. Typical
numbers on modern machines are a
few million degrees of freedom in two
dimensions, and perhaps a million
degrees of freedom in three dimensions.
The three-dimensional case is harder
because the bandwidth of the matrix is
larger.

where matrix factorisations are unaffordable. A knowledge of functional
analysis is essential for the efficient solution of the discrete problem; it is not
just a theoretical exercise.

To see why, let us consider the algorithms employed to solve large
sparse14 linear systems. All such algorithms fundamentally rely on

14 A sparse N × N matrix is one where
most of the entries are zero. This
means that its matrix-vector product
A : x → Ax can be computed in O(N)
time, not the usual O(N2) time.

the matrix action, using the matrix to multiply vectors in a clever way
to converge to the solution. The simplest such algorithm is Richard-
son iteration, a fixed point iteration of the form

xm+1 = xm − α(Axm − b), (9.5.2)

where α is a real parameter that must be chosen properly for the
iteration to converge. This algorithm converges quite slowly (if at all).
A better class of algorithms for this problem are Krylov methods,
which rely on the construction of the Krylov subspace of order m,
given by

Km(A, b) = span{b, Ab, . . . , Am−1b}. (9.5.3)

The most celebrated Krylov method is the conjugate gradient method,
which is designed for the case where A is symmetric and positive
definite. In this case the unique solution x to the equation Ax = b can
be characterised as the minimum of the energy

x = argmin
y∈RN

1
2

yT Ay− bTy (9.5.4)

and the conjugate gradient method at iteration m approximates x by

xm = argmin
y∈Km(A,b)

1
2

yT Ay− bTy. (9.5.5)

In this regard, it is another Ritz-Galerkin method, just like the finite
element method that assembled the A and b in the first place15. 15 Ritz refers to Walther Ritz, who

suggested approximating the solution
of minimisation problems in smaller
subspaces.

Suppose A arises from the discretisation of our running Laplacian
example, and so is symmetric and positive-definite, and hence the
method of conjugate gradients (CG) is applicable. Each iteration of
CG requires one matrix-vector product, which has a cost of O(N),
proportional to the number of degrees of freedom, as A is sparse.
Thus, if we can solve the problem in a number of Krylov iterations indepen-
dent of the mesh, we will have an O(N) solver16, and we will be able to 16 This is optimal: we have to compute

the values of N degrees of freedom,
so the best we can possibly hope for is
O(N) runtime.

solve very fine problems. However, if the number of Krylov iterations
increases as we refine the mesh, then our method will be O(N2), and
we will be limited in the size of the problems we can consider.



local and global assembly 77

Unfortunately, if CG is applied naïvely to the linear system

Ax = b (9.5.6)

the number of iterations required will increase as the mesh is refined.
The reasons for this have only recently been fully understood. The
fundamental explanation of this phenomenon is that A is a map from
(coefficients of) the primal space Vh to (coefficients of) the dual space V∗h .
That is, Ax ∈ V∗h 6= Vh, and so the mathematical expression A2x is
not valid. It simply does not make any sense. Similarly, it does not
make sense to look for our solution (a primal vector) in the span of
{b, Ab, . . . }, as these are dual vectors.

In order for our Krylov method to be defined, we need to compose
our matrix A with an operator P : V∗h → Vh, so that the compo-
sition PA : Vh → Vh and we can look for our solution in the span
of {Pb, PAb, (PA)2b, . . . }. The natural choice for P is the Riesz map.
In fact, with this choice of P, one can prove mesh-independent con-
vergence of conjugate gradients to a certain tolerance for symmetric
positive-definite problems; the number of Krylov iterations required
depends in a simple way on the coercivity constant α and the conti-
nuity constant C17. 17 K.-A. Mardal and R. Winther. Pre-

conditioning discretizations of systems
of partial differential equations. Nu-
merical Linear Algebra with Applications,
18(1):1–40, 2011

Just as in the case of optimisation problems in infinite dimensions
as discussed in section 6.5, a working knowledge of functional anal-
ysis is essential for the efficient solution of our discrete problem, not
just the analysis of well-posedness or convergence.





10 Finite elements beyond Lagrange

Not all problems can or should be solved with Lagrange elements.
Indeed, one of the beautiful properties of the finite element method is
its adaptibility to the particular details of different PDEs.

Before we introduce any other finite elements, we will first discuss
a useful coordinate system on triangles and tetrahedra.

10.1 Prelude: barycentric coordinates on a triangle

(1,0,0) (0,1,0)

(0,0,1)

(1/2,1/2,0)

(1/2,0,1/2) (0,1/2,1/2)(1/4,1/4,1/2)

(1/4,1/2,1/4)(1/2,1/4,1/4)

(1/3,1/3,1/3)

Figure 10.1: Barycentric coordinates on
a triangle. Taken from the wikipedia,
by Rubybrian, CC BY-SA 3.0, https:
//commons.wikimedia.org/w/index.

php?curid=4842309.

In the next section we will introduce some elements other than the
Lagrange family. To prove their unisolvence, it will be convenient to
describe positions by barycentric coordinates. These coordinates were
first considered by Möbius in 1827.

Let K be a triangle. Any point p ∈ K can be written uniquely as a
convex combination of the vertices. That is, there are three numbers
λ1, λ2, λ3 ∈ [0, 1] such that λ1 + λ2 + λ3 = 1 and

p = λ1r1 + λ2r2 + λ3r3. (10.1.1)

In barycentric coordinates, we represent p = (λ1, λ2, λ3); while there
are three numbers, there are only two degrees of freedom, due to the
summation constraint. For a chart of barycentric coordinates on equi-
lateral and right-angled triangles, see figure 10.1. One advantage of
this coordinate system is that it allows us to compactly define poly-
nomials with certain geometric features. For example, the polynomial

https://commons.wikimedia.org/w/index.php?curid=4842309
https://commons.wikimedia.org/w/index.php?curid=4842309
https://commons.wikimedia.org/w/index.php?curid=4842309
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p(x) = λ1 is the linear polynomial which is one at r1 and zero on the
edge opposite r1.

Analogously, points in tetrahedra can be described by four num-
bers (λ1, λ2, λ3, λ4) which sum to one.

10.2 The biharmonic equation: H2(Ω)-conforming elements

Not all PDE problems can be posed over H 1(Ω), and thus not all
problems can be solved in a conforming manner with continuous
Lagrange finite elements. We now give an example of this arising in a
physically important application.

The biharmonic equation is a fourth-order PDE arising in elasticity
theory; it describes the equilibrium solutions of clamped plates under
transverse loading, the stresses in an elastic body, the stream function
in creeping flow of a viscous incompressible fluid, and other things
besides. The equation is given by

∇4u = f in Ω,

u = 0 on Γ,

∇u · n = 0 on Γ. (10.2.1)

The operator ∇4 can also be written as the square of the Laplacian
∆2. In two dimensions, it means that

∂4u
∂x4 +

∂4u
∂y4 + 2

∂4u
∂x2∂y2 = f . (10.2.2)

Let us take this into variational form formally, i.e. without stating
upfront what space we will take our test function v from. We will
subsequently inspect the problem and enforce the conditions on v
that make the variational formulation sensible. Multiplying by v ∈ V
for some V, we find ∫

Ω
∇4uv dx =

∫
Ω

f v dx. (10.2.3)

As we wish to invoke Lax–Milgram, we want the regularity require-
ments on u to be the same as v, and so we wish to equidistribute the
derivatives somehow; we need to develop an integration by parts
result analogous to (IBP).

Recall again the divergence theorem: if w is a sufficiently regular
vector field defined on a sufficiently regular domain Ω, then∫

Ω
∇ · w dx =

∫
Γ

w · n ds, (10.2.4)

where n is the unit outward facing normal to Ω on Γ. Defining

w = v∇(∇2u), (10.2.5)
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we have
∇ · w = ∇v · ∇(∇2u) + v∇4u (10.2.6)

and thus∫
Ω
∇v · ∇(∇2u) dx +

∫
Ω

v∇4u dx =
∫

Γ
v∇(∇2u) · n ds. (10.2.7)

We can simplify the first term further, by applying our second-order
integration by parts formula (IBP) to the first term:∫

Ω
∇v · ∇(∇2u) dx = −

∫
Ω
∇2v∇2u +

∫
Γ
∇2u∇v · n ds. (10.2.8)

Thus, (10.2.7) simplifies to∫
Ω

v∇4u dx =
∫

Ω
∇2v∇2u dx +

∫
Γ

v∇(∇2u) · n ds−
∫

Γ
∇2u∇v · n ds.

(BIBP)
Applying our integration by parts result to (10.2.3), we find∫

Ω
∇2v∇2u +

∫
Γ

v∇(∇2u) · n ds−
∫

Γ
∇2u∇v · n ds =

∫
Ω

f v dx.

(10.2.9)
Recall that u = 0 = ∇u · n on Γ. There is nowhere natural to enforce
weakly this in the variational formulation, and so we will have to
enforce this strongly in the choice of V. Furthermore, inspecting the
variational form, it is clear we need square integrability of the second
derivatives of u and v. Thus, the proper choice for the space V is

V = H2
0(Ω) = {v ∈ H 2(Ω) : v = 0 = ∇v · n on Γ}. (10.2.10)

With this choice of function space, the surface integral terms disap-
pear, and thus the variational form is

find u ∈ H2
0(Ω) such that

∫
Ω
∇2u∇2v dx =

∫
Ω

f v dx for all v ∈ H2
0(Ω).

(10.2.11)
This bilinear form is in fact an inner product on H2

0(Ω), and so
continuity and coercivity follow naturally with C = α = 1. Thus the
variational problem is well-posed.

If we discretise (10.2.11) with continuous Lagrange elements, then
Vh ⊂ H 1(Ω) but Vh 6⊂ H 2(Ω), and the discretisation is not conform-
ing. As we know, a piecewise smooth function belongs to H 1(Ω) if
and only if it is continuous. Since a function belongs to H 2(Ω) only
if it and all its first derivatives belong to H 1(Ω), a piecewise smooth
function belongs to H 2(Ω) if and only if it is C1(Ω). This means
that a finite element Galerkin method for the biharmonic problem
requires C1 finite elements, something that a continuous Lagrange
element cannot satisfy.

In one dimension, it is easy to achieve this with the Hermite ele-
ment: K = [0, 1], V = P3(K) the space of third degree polynomials,
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Figure 10.2: The Hermite element in
one dimension is C1(Ω)-conforming,
and thus H2(Ω)-conforming. The
degrees of freedom are pointwise eval-
uation at the endpoints, and pointwise
evaluation of the derivative at the
endpoints.

and L pointwise evaluation at the endpoints and derivative evalua-
tion at the endpoints, figure 10.2.

Let us therefore consider the analogous element in two dimen-
sions, depicted in figure 10.3. Here, the dimension of the space of
cubic polynomials is 10. Pointwise evaluation at the vertices supplies
three degrees of freedom; evaluation of the two components of the
derivative at the endpoints supplies six more, leaving one left over,
which we thus take to be pointwise evaluation at the barycentre.

Figure 10.3: The Hermite element
in two dimensions is not C1(Ω)-
conforming, and thus is not H2(Ω)-
conforming. The degrees of freedom
are pointwise evaluation at the ver-
tices, pointwise evaluation of both
components of the derivative at the
vertices, and pointwise evaluation at the
barycentre.

Lemma 10.2.1 (Unisolvence of the triangular Hermite element). The
Hermite element in two dimensions is unisolvent.

Proof. Suppose u is a cubic polynomial on K and that all of the de-
grees of freedom evaluate to zero. Along an edge of the triangle,
u belongs to the space of cubic polynomials along an interval, and
both its pointwise values and its derivatives at the endpoints vanish,
and thus u = 0 along each edge. This holds for each edge. Thus,
u must be a multiple of the cubic bubble function b(x) = λ1λ2λ3,
u(x) = cb(x) for some c. However, since the value at the barycentre is
also zero, and b(x) 6= 0 at the barycentre, we must have c = 0.

Thus the degrees of freedom L determine the space V . Unfortu-
nately, however, this element is not C1(Ω)-conforming in two dimen-
sions! In our argument we saw that the degrees of freedom on an
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edge of K determine u|K, and so the element is C0(Ω)-conforming;
for the global approximation to be C1(Ω) we must also have that the
degrees of freedom on an edge determine ∇u · n. The degrees of free-
dom only determine the value of ∇u · n at the two endpoints of the
edge; but ∇u · n is a polynomial of degree two, which requires three
degrees of freedom to be uniquely determined. Thus, the approxima-
tion is not C1(Ω)-conforming in two (or higher) dimensions.

Figure 10.4: The Hermite element does
not guarantee a C1(Ω) discretisation in
two dimensions. The function (10.2.12)
is in the Hermite space but its normal
derivative is not continuous at the
shared edge.

For a specific counterexample, consider two adjacent elements K1

and K2, where

p(x) =

λ1λ2λ3 x ∈ K1,

0 x ∈ K2,
(10.2.12)

rendered in figure 10.4. This is an element of the function space
induced by the Hermite element. All degrees of freedom evaluate to
zero at the shared interface (i.e. ∇p · n = 0 at the common vertices),
but ∇p · n 6= 0 over the whole edge.

Thus, if we wish to have a conforming discretisation, we must
develop another finite element. The C1(Ω)-conforming element of
minimal degree is called the Argyris element. In one dimension, it
consists of K = [0, 1], V = P5(K), and L consists of the evaluation
of the function, its first and its second derivatives at the endpoints1. 1 Thus, in one dimension, the Argyris

element is C2(Ω)-conforming.In two dimensions, the degrees of freedom consist of all zeroth, first
and second derivatives at the vertices, and the value of the normal
derivative in the centre of the edges, figure 10.5.

Lemma 10.2.2 (Unisolvence of the triangular Argyris element). The
Argyris element in two dimensions is unisolvent.

Proof. Suppose u is such that all degrees of freedom vanish. By the
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Figure 10.5: The Argyris element in
two dimensions is C1(Ω)-conforming,
and thus is H2(Ω)-conforming. The
degrees of freedom are evaluation of
the zeroth, first and second derivatives
at the vertices, plus evaluation of the
normal derivative at the midpoint of the
edges.

unisolvence of the Hermite quintic in one dimension, u vanishes
on each edge. On each edge, ∇u · n is a quartic polynomial which
vanishes at the endpoints and midpoint, and whose derivatives at the
endpoints are zero, so ∇u · n = 0 on the edge too. Since a polynomial
and its normal derivative vanish on the line λi = 0 if and only if it is
divisible by λ2

i , u must be a multiple of b2(x) = λ2
1λ2

2λ2
3, which is a

polynomial of degree six. Since u can only be a polynomial of degree
at most five, it must vanish.

The Argyris element is very useful for certain applications. The
Lagrange elements are the most commonly used, but they are not
universal.



11 Interpolation error estimates

In lecture 7, we saw that for coercive problems the Galerkin approxi-
mation enjoys a quasi-optimality property:

‖u− uh‖V ≤
C
α

min
vh∈Vh

‖u− vh‖V ,

where C is the continuity constant and α is the coercivity constant.
In words, the Galerkin approximation in the space Vh is almost as
good as it could be, up to problem-specific constants. While this is
reassuring, it is not very concrete: ideally, we would like to know
more about how the error behaves as we refine the parameters of
our discretisation that are actually under our control, the mesh size
h and the approximation order of our finite element p. This will
be achieved by interpolation error estimates. We will bound the error
between a function u and its interpolant Ihu, and use the fact that

‖u− uh‖V ≤
C
α

min
vh∈Vh

‖u− vh‖V ≤
C
α
‖u− Ihu‖V . (11.0.1)

In this lecture, we will see how this latter quantity can be bounded
for different finite elements and choices of norm V.

11.1 Prelude: Sobolev seminorms

In lecture 3, we saw the Sobolev space Wk
p(Ω) for p < ∞ is equipped

with the norm

‖u‖Wk
p(Ω) =

 ∑
|α|≤k
‖Dαu‖p

Lp(Ω)

1/p

. (11.1.1)

It will be convenient in what follows to use the Sobolev seminorm1: 1 A seminorm | · | : V → R+ satisfies
the nonnegativity, scaling and the
triangle inequality properties of a
norm, but differs from a norm in that
|u| = 0 6=⇒ u = 0.

|u|Wk
p(Ω) =

 ∑
|α|=k
‖Dαu‖p

Lp(Ω)

1/p

. (11.1.2)

This just means to take the Lp(Ω) norms of the kth derivatives of
u, instead of all derivatives up to and including order k. This is a
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seminorm because there can exist functions u ∈ Wk
p(Ω) for which

u 6= 0 but |u| = 0.
As a concrete example, observe that

‖u‖2
H 1(Ω) = ‖u‖

2
L2(Ω) + |u|

2
H 1(Ω) (11.1.3)

and that |u|H 1(Ω) is a norm on H1
0(Ω), the norm induced by the

bilinear form for the negative Laplacian.

11.2 Prelude: measuring the mesh size

The interpolation error estimates will depend on the polynomial
order of approximation p and some notion of the mesh size h. For the
case of a one-dimensional mesh where every cell has the same length
h, it is obvious that we should describe the mesh resolution with that
quantity h; for non-uniform meshes in higher dimensions, it is less
clear how we should characterise our meshes.

The quantity we will use on each cell is its diameter.

Definition 11.2.1 (diameter of a cell).

hK = diam(K) = sup{‖x− y‖ : x, y ∈ K}. (11.2.1)

For a triangle or tetrahedron, this resolves to the length of its longest edge.

To describe the resolution of the mesh as a whole, we will take
a pessimistic viewpoint and consider the resolution of the worst
element in that mesh.

Definition 11.2.2 (mesh size). Given a meshM, its mesh size h is given
by

h = max
K∈M

diam(K). (11.2.2)

We will consider a sequence of meshes (Mh)h indexed by the
mesh size h. For the following results to hold, we will need a techni-
cal condition on the sequence of meshes.

Definition 11.2.3 (incircle diameter of a cell). The incircle diameter ρK

of a cell K is the diameter of the largest hyperdisc (i.e. disc in two dimen-
sions, ball in three dimensions) that is completely contained within K.

Definition 11.2.4 (shape regularity of mesh sequence (Mh)h). A
sequence of meshes (Mh)h is shape regular if there exists a constant σ

such that
sup

h
max

K∈Mh

hK
ρK
≤ σ. (11.2.3)

Informally, this means that the meshes don’t get arbitrarily stretched
as the meshes are refined: the quantity hK/ρK measures how anisotropic
(needle-like) each element is, and we ensure that this remains bounded
as we refine the mesh size h.
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I

B
Figure 11.1: A triangle K and its incir-
cle.

11.3 Interpolation error for Lagrange elements

First, consider problems posed in V = H 1(Ω) approximated with
Lagrange elements. For this finite element, we have the following
interpolation error bound2. 2 Verfürth, R. A note on polynomial

approximation in Sobolev spaces.
Mathematical Modelling and Numerical
Analysis, 33(4):715–719, 1999; and D. N.
Arnold, G. Awanou, and R. Winther.
Nonconforming tetrahedral mixed finite
elements for elasticity. Mathematical
Models and Methods in Applied Sciences,
24(04):783–796, 2014

Theorem 11.3.1 (Interpolation error in the H1(Ω)-norm for continu-
ous Lagrange elements of order p). Let (Vh)h be the function spaces con-
structed with continuous Lagrange elements of order p on a shape-regular
sequence of meshes (Mh)h indexed by mesh size h. Let u ∈ H p+1(Ω), and
let Ih : H p+1(Ω) → Vh be the interpolation operator associated with each
Vh. Then there exists a constant D < ∞ independent of u such that

‖u− Ihu‖H 1(Ω) ≤ Dhp|u|H p+1(Ω). (11.3.1)

Let’s think about what this means. In words, it says that the inter-
polation error with degree p depends on the size of the next highest deriva-
tives of order p + 1, i.e. those not captured in the interpolation. So if
we were interpolating a function in one dimension with linear el-
ements, the error will be high wherever the second derivative (the
curvature) of the function is large. This aligns exactly with our ex-
pectations from Part A Numerical Analysis. On the other hand, if the
second derivatives were in fact zero, we would approximate a linear
function with a linear function and get zero interpolation error. In
higher dimensions, the result is the same, but we need to look at all
the different (p + 1)th derivatives.

Importantly, this bound gives us an idea of how the error in the
H 1(Ω) norm will scale like O(hp) as a function of our mesh spacing
h and our polynomial degree p. If our solutions are smooth enough,
i.e. they live in H q+1(Ω) for q > p, then increasing p is our best path
to fast convergence: we would much rather change the exponent in
hp than the base! This is called p-refinement, or p-adaptivity if it is
driven by an error estimate of the solution. But if our solution isn’t
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so regular (e.g. u ∈ H 2(Ω) but u 6∈ H 3(Ω)), there’s not much
advantage to increasing p, and we should refine the mesh size h in-
stead. This is called h-refinement, or h-adaptivity if it is driven by
an error estimate of the solution. When combined, these two refine-
ment strategies give rise to sophisticated hp-adaptive finite element
methods3. 3 C. Schwab. p− and hp− Finite Element

Methods: Theory and Applications to Solid
and Fluid Mechanics. Numerical Math-
ematics and Scientific Computation.
Clarendon Press, 1999

Assuming that u ∈ H p+1(Ω), and that Lagrange elements of
degree p are used to approximate a variational problem posed in
H 1(Ω), it follows from (11.0.1) and (11.3.1) that

‖u− uh‖H 1(Ω) ≤
DC
α

hp |u|H p+1(Ω). (11.3.2)

This is a very useful a priori4 H 1(Ω)-error estimate for the Poisson 4 An a priori error estimate is one that
can be performed without actually
computing uh. There is an alternative
(and extremely useful) a posteriori error
analysis whose evaluation depends on
actually computing uh. These a priori
estimates are useful for estimating the
rate of convergence of the discretisation,
whereas a posteriori error estimates are
useful for driving adaptive refinement
(in h or p) to control the error in the
discretisation.

problem (P), for the advection-diffusion equation (5.3.1), for the
Helmholtz problem (6.4.4), for the linear elasticity problem (7.6.3),
and for problems like them.

11.4 Elliptic regularity results

Notice that these estimates require u ∈ H 2(Ω) or greater. In general,
this requires an elliptic regularity result, an auxiliary argument to
prove that the unique solution to the variational problem at hand
(that is posed in H 1(Ω)) actually happens to live in H 2(Ω) or a
stronger subspace. In fact, these elliptic regularity results typically
bound some higher Sobolev seminorm of the solution in terms of
the norms of the data. For example, a typical elliptic regularity result
might look like the following.

Theorem 11.4.1 (Example elliptic regularity result). Let Ω be C∞-
smooth, i.e. possesses a local parametrisation by C∞ functions. Then the
solution u ∈ H1

0(Ω) to the Poisson equation (Q) is an element of H 2(Ω)

and satisfies
|u|H 2(Ω) ≤ c‖ f ‖L2(Ω) (11.4.1)

for some constant c.

The requirement that Ω has some kind of smoothness is indispens-
able. For example, if Ω has a re-entrant corner (an L-shape, or a cube
with an octant cut out) then the result does not hold and the solution
to the Poisson equation genuinely lives in H 1(Ω) \ H 2(Ω).

11.5 Changing norms: the Aubin–Nitsche duality argument

The interpolation error bound also depends on the norm used to
measure the error. The L2(Ω) norm (also called the H 0(Ω) norm)
is weaker than the H 1(Ω) norm used in (11.3.1): it only measures
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how good your approximation of the function values is, while the
H 1(Ω) norm also takes in to account how good your approximation
of its derivative is. When you measure the interpolation error in this
weaker norm, the convergence rate improves by one5: 5 S. C. Brenner and L. R. Scott. The

Mathematical Theory of Finite Element
Methods, volume 15 of Texts in Applied
Mathematics. Springer-Verlag New York,
third edition edition, 2008

Theorem 11.5.1 (Interpolation error in the L2(Ω)-norm for continu-
ous Lagrange elements of order p). Let (Vh)h be the function spaces con-
structed with continuous Lagrange elements of order p on a shape-regular
sequence of meshes (Mh)h indexed by mesh size h. Let u ∈ H p+1(Ω), and
let Ih : H p+1(Ω) → Vh be the interpolation operator associated with each
Vh. Then there exists a constant6 D < ∞ independent of u such that 6 This constant is different to the one

mentioned in theorem 11.3.1.

‖u− Ihu‖L2(Ω) ≤ Dhp+1|u|H p+1(Ω). (11.5.1)

However, this result just refers to interpolation errors between u
and Ihu, whereas we are primarily interested in the error between
the true solution u and its Galerkin approximation uh.

This gap may be addressed using the Aubin–Nitsche duality argu-
ment7. We demonstrate its use for the Poisson equation with linear 7 J.-P. Aubin. Analyse fonctionnelle

appliqué. Presses Universitaires de
France, 1987

Lagrange elements.
Consider the variational problem

find u ∈ H1
0(Ω) such that a(u, v) = F(v) for all v ∈ H1

0(Ω), (11.5.2)

where Ω is C∞-smooth and

a(u, v) =
∫

Ω
∇u · ∇v dx. (11.5.3)

We know that this has a unique solution u ∈ H1
0(Ω) by the Riesz

representation theorem. By the elliptic regularity result 11.4.1, we
know that u ∈ H 2(Ω); its Galerkin approximation using linear
Lagrange finite elements therefore satisfies

‖u− uh‖H 1(Ω) ≤ CDα−1h|u|H 2(Ω). (11.5.4)

Consider the error e = u − uh ∈ H1
0(Ω). Given any element of a

Hilbert space, we can construct its associated dual element as

e∗(v) = (u− uh, v)L2(Ω). (11.5.5)

This e∗ ∈ H−1(Ω) = H1
0(Ω)∗ and thus makes sense as the data for an

auxiliary (“adjoint” or “dual”) problem:

find w ∈ H1
0(Ω) such that a(w, v) = e∗(v) for all v ∈ H1

0(Ω). (11.5.6)

Essentially, this seeks the H1
0(Ω)−Riesz representative of the error

functional e∗(v). We can apply the Riesz representation theorem
again to show that this has a unique solution w and can apply the
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elliptic regularity theorem 11.4.1 to show that there exists a constant c
such that

|w|H 2(Ω) ≤ c‖e‖L2(Ω). (11.5.7)

Now consider ‖u− uh‖2
L2(Ω)

, the quantity we wish to bound. We
have

‖u− uh‖2
L2(Ω) = (u− uh, u− uh)L2(Ω) = e∗(u− uh)

= a(w, u− uh)

= a(u− uh, w− Ihw) (symmetry and Galerkin orthogonality)

≤ C‖u− uh‖H 1(Ω)‖w− Ihw‖H 1(Ω) (by continuity of a)

≤ CDh‖u− uh‖H 1(Ω)|w|H 2(Ω) (by interpolation result (11.3.1))

≤ C2D2α−1h2|u|H 2(Ω)|w|H 2(Ω) (by a priori error estimate (11.5.4))

≤ C2D2α−1ch2|u|H 2(Ω)‖u− uh‖L2(Ω) (by elliptic regularity result (11.5.7))

and hence there exists a constant C′ such that

‖u− uh‖L2(Ω) ≤ C′h2|u|H 2(Ω) (11.5.8)

as required. That is, just as we expected from the improved interpo-
lation error estimates in the L2(Ω) norm, the Galerkin approximation
error is one order better in the L2(Ω)-norm than in the H 1(Ω)-norm.

This holds more generally: if u ∈ H p+1(Ω), then a Galerkin
approximation using degree p Lagrange finite elements converges at
O(hp) in the H 1(Ω)-norm and at O(hp+1) in the L2(Ω)-norm.

11.6 Interpolation error for the Argyris element

Of course, the interpolation error estimates depend on the specific
kind of finite element employed. For problems posed in H 2(Ω) such
as the biharmonic equation, other finite elements and hence other in-
terpolation error estimates must be employed. In the case of Argyris
elements, the following interpolation error estimates hold8. 8 D. Braess. Finite Elements: theory, fast

solvers, and applications in solid mechanics.
Cambridge University Press, third
edition, 2007

Theorem 11.6.1 (Interpolation error for the lowest-order Argyris
element). Let (Vh)h be the function spaces constructed with the fifth-order
Argyris element on a shape-regular sequence of meshes (Mh)h indexed
by mesh size h. Let u ∈ H 6(Ω), and let Ih : H 6(Ω) → Vh be the
interpolation operator associated with each Vh. Then there exists constants
labelled D (all different) such that

‖u− Ihu‖H 2(Ω) ≤ Dh4|u|H 6(Ω), (11.6.1)

‖u− Ihu‖H 1(Ω) ≤ Dh5|u|H 6(Ω), (11.6.2)

‖u− Ihu‖H 0(Ω) ≤ Dh6|u|H 6(Ω). (11.6.3)

(11.6.4)
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Notice again the general pattern: the weaker the norm, the better
the convergence.





12 Nonlinear problems

We have now analysed in some detail linear coercive equations.
However, not all physical problems are linear! In this lecture we
consider how nonlinear problems may be treated in a variational
framework, and how they may be discretised and solved using finite
elements.

As a model problem, consider the following Bratu–Gelfand equa-
tion:

u′′(x) + λeu = 0, u(0) = 0 = u(1). (12.0.1)

This problem “appears in a large variety of application areas such as
the fuel ignition model of thermal combustion, radiative heat transfer,
thermal reaction, the Chandrasekhar model of the expansion of the
universe, chemical reactor theory and nanotechnology”1. Here u is 1 A. Mohsen. A simple solution of

the Bratu problem. Computers &
Mathematics with Applications, 67(1):26–
33, 2014

the temperature, and λ ∈ R is known as the Frank–Kamenetskii
parameter. The equation balances cooling via diffusion (due to the
zero boundary conditions) and heating (due to the nonlinear reaction
term). Intuitively, one might expect that for large λ, the reaction term
will dominate and the temperature will explode, and this is indeed
the case: the equation only has solutions for λ ≤ λ∗, with

λ∗ = 8
(

min
x>0

x
cosh x

)2
≈ 3.5138307 (12.0.2)

in one dimension. The proof of well-posedness for λ ≤ λ∗ is far be-
yond the scope of the course and relies on Schauder’s fixed point the-
orem, discussed in C4.6, Fixed Point Methods for Nonlinear PDEs2. 2 M. Rupflin. Lecture notes on Fixed

Point Methods for Nonlinear PDEs,
2017. https://courses.maths.ox.ac.

uk/node/view_material/2037

In fact, for λ = λ∗, the equation has one solution, and for 0 < λ < λ∗

it has two solutions.
How should we formulate this problem variationally, how should

it be discretised, and how should it be solved?

12.1 Variational formulation of nonlinear problems

As usual, we multiply our equation by a test function v from some
(not yet specified) test space V, and integrate by parts. Our weak

https://courses.maths.ox.ac.uk/node/view_material/2037
https://courses.maths.ox.ac.uk/node/view_material/2037
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form is

−
∫ 1

0
u′(x)v′(x) dx +

∫ 1

0
λeuv dx = 0, (12.1.1)

and by inspection we take V = H1
0(0, 1), since we only need the

existence of one weak derivative for u and v3. 3 We are skipping over a major technical
complication here, whether the second
term is bounded if u ∈ L2(0, 1). An
operator that is the composition of a
scalar function f : R → R with u(x)
is called a Nemytskii or superposition
operator, and their analysis is rather
delicate. We ignore this issue here.

For linear problems, our abstraction was: find u ∈ V such that
a(u, v) = F(v) for all v ∈ V. For nonlinear problems, we will use a
more general abstraction: find u ∈ V such that

G(u; v) = 0 (12.1.2)

for all v ∈ V. Here G : V × V → R is nonlinear in u but is linear in
v; we remind ourselves of this property by putting the arguments in
which G is linear to the right of the semicolon.

Just as in the linear case, it is very useful to reformulate this varia-
tional statement as a standard equality. We do this by introducing the
operator H : V → V∗, defined by

(H(u)) (v) = 〈H(u), v〉 = G(u; v). (12.1.3)

Solutions of (12.1.2) are exactly roots of H, i.e. solutions u ∈ V such
that H(u) = 0, with the equality between elements of the dual space
V∗.

For the model problem at hand, H has no roots for λ > λ∗, exactly
one root at λ = λ∗, and two roots for 0 < λ < λ∗.

To compute a solution, there are two steps required. We must
discretise the equation, so that the problem becomes finite and thus
amenable to finite computers, and we must devise a scheme to solve
the resulting nonlinear problem. We can take these steps in either
order. We will first discuss the choice where we discretise first.

12.2 Discretisation first

As before, we discretise by introducing a finite-dimensional closed
subspace Vh ⊂ V, and posing the problem over this subspace:

find uh ∈ Vh such that G(uh; vh) = 0 for all vh ∈ Vh. (12.2.1)

Given a basis Vh = span{φ1, . . . , φN}, this reduces to finding the roots
of a nonlinear residual

Hh : RN → RN

Hh(x) = 0, (12.2.2)

where
(Hh)j (x) = G(x1φ1 · · · xNφN ; φj). (12.2.3)
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The discretised residual Hh is analogous to H defined in (12.1.3), and
maps from (coefficients of) an element of Vh to (coefficients of) an
element of V∗h .

We are now faced with the very difficult task of ensuring that the
solutions uh of our Galerkin approximation approximate in a suitable
norm. For if we want to control the norm ‖u− uh‖, the question im-
mediately arises: which u, and which uh? After all, the continuous
and discretised nonlinear problems will in general support multiple
solutions, and it is not clear how to pair solutions of the two prob-
lems together in the right way. Even if one could guarantee that each
solution u was unique within a neighbourhood, and that asymp-
totically there was exactly one uh inside each neighbourhood that
converged uh → u, that would still be insufficient; for it might be
the case that the discretised problem supported spurious solutions,
i.e. solutions that did not correspond to solutions of the continu-
ous problem. In our worst nightmares, a sequence of such spurious
solutions might appear to converge — to something that is not a con-
tinuous solution. Unfortunately, this can actually happen, as shown
in Deuflhard4. 4 P. Deuflhard. Newton Methods for Non-

linear Problems, volume 35 of Springer
Series in Computational Mathematics.
Springer-Verlag, 2011

We are treading deep waters; in many cases of interest the resolu-
tion of these questions is simply not known. Thus, in this course, we
will sidestep these fundamental and intricate questions of existence
and convergence5. We will do this elegantly by considering the al- 5 If you want to face them head on, a

good place to start is the review article
of Caloz and Rappaz:

G. Caloz and J. Rappaz. Numerical
analysis for nonlinear and bifurcation
problems. In P. G. Ciarlet and J. L.
Lions, editors, Handbook of Numerical
Analysis, volume 5, pages 487–637.
Elsevier, 1997

ternative approach where we devise a scheme to solve the nonlinear
problem first, and postpone discretisation until the very last possible
moment.

The scheme we will use to (abstractly) solve our infinite-dimensional
nonlinear PDE is Newton’s method, or the Newton–Kantorovich al-
gorithm as it is known in Banach spaces. Before we discuss the gen-
eral theory, let us remind ourselves of Newton’s method in the more
familiar Euclidean setting.

12.3 Prelude: Newton’s method in R

Numerical algorithms treat problems by breaking them down into
easier subproblems. This pattern is ubiquitous. A timestepping algo-
rithm for an initial value problem solves for the solution of an ODE
by solving a sequence of nonlinear problems. An optimisation algo-
rithm breaks down a minimisation problem into the computation of
descent directions. In this section, we will see that Newton’s method
solves a nonlinear problem by successively computing the roots of linearised
approximations.

Let f ∈ C1(R; R), and consider figure 12.1. Our initial guess for
a root of f is x0, but | f (x0)| � 0, and we would like to improve it.
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Figure 12.1: Each iteration of Newton’s
method consists of linearising the
nonlinear problem and solving for the
root of the linearised problem. Credit:
Ralf Pfeifer, Wikipedia.

While we may not know how to find the roots of a nonlinear equa-
tion, we can certainly find the roots of a linear equation, and so we
form the best linear approximation to f around x0 by linearising
the function at x0, to yield the red function. We then solve for the
(unique) root of the linearised function, which yields our next iterate
x1. We then linearise around x1 and carry on.

It is a straightforward exercise of geometry to derive the following
equation for the update δx = xn+1 − xn:

f ′(xn)δx = − f (xn). (12.3.1)

Remark 12.3.1. Note that if we had a solution, i.e. x such that f (x) = 0,
then the right-hand side of our Newton update (12.3.1) would be zero, and
thus δx = 0. That is, roots of f are fixed points of the iteration.

Remark 12.3.2. We require that f ′(x) is invertible (in one dimension,
f ′(x) 6= 0) for every iterate. If f ′(x) is not invertible, then the Newton step
is not defined.

Remark 12.3.3 (poor global convergence). Newton’s method only con-
verges locally, i.e. with sufficiently accurate initial guess. With poor initial
guesses, Newton’s method may diverge to infinity, or may get stuck in a
cycle. For example, consider the application of Newton’s method to

f (x) = x3 − 2x + 2 (12.3.2)

from x0 = 0. Computing (12.3.1), we find x1 = 1. However, the Newton
step from x1 = 1 takes us back to x2 = 0, and the 2-cycle repeats indefi-
nitely.

Remark 12.3.4 (excellent local convergence). Newton’s method can
exhibit extremely fast local convergence under the right conditions. If the
function f is C2 and the root is isolated (i.e. is unique within a ball and of
multiplicity one), then there exists a ball within which Newton converges
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quadratically. Let x∗ be the root to which we converge. Quadratic conver-
gence states that there exists a µ > 0 such that

lim
n→∞

|x∗ − xn+1|
|x∗ − xn|2

= µ. (12.3.3)

This is extremely fast; roughly speaking, the number of correct digits will
double at every iteration. Once Newton gets the scent of the solution it
zeroes in to machine accuracy in a handful of iterations.

Remark 12.3.5 (degenerate local convergence). If the root is degenerate
(i.e. f ′(x∗) = 0), then Newton’s method will only converge linearly. This
can happen if the solution is not isolated, or if it has multiplicity higher than
one.

Remark 12.3.6 (undecidability). It is a deep fact (proven by Fields medal-
list S. Smale and coauthors6) that Newton’s method is undecidable, i.e. it 6 L. Blum, F. Cucker, M. Shub, and

S. Smale. Complexity and Real Computa-
tion. Springer-Verlag, 1998

is impossible in general to know in advance whether Newton’s method will
converge from an arbitrary initial guess without computing it. Since we
always have to put an upper bound on the number of Newton iterations we
are willing to do in practice, this has the unfortunate consequence that we
never know if we would have converged had we been a little more patient.

12.4 Prelude: Newton’s method in RN

The geometric reasoning of the previous section is hard to generalise
to higher dimensions. Let us consider an alternative derivation of the
iteration (12.3.1). Consider the Taylor expansion of f around xn:

f (xn + δx) ≈ f (xn) + f ′(xn)δx + · · · . (12.4.1)

We linearise the model by ignoring the higher-order terms,

f (xn + δx) ≈ f (xn) + f ′(xn)δx, (12.4.2)

and we solve for the δx that brings our linearised model to zero:

0 = f (xn) + f ′(xn)δx (12.4.3)

=⇒ f ′(xn)δx = − f (xn), (12.4.4)

exactly iteration (12.3.1).
If we apply this same argument to a function F ∈ C2(RN ; RN), we

find that the linearised Taylor expansion is

F(xn + δx) ≈ F(xn) + J(xn)δx, (12.4.5)

and so the Newton update satisfies the linearised system

J(xn)δx = −F(xn), (12.4.6)
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where J(xn) is the Jacobian matrix evaluated at the guess xn.
Thus, to apply Newton’s method to a vector equation (such as our

discretised nonlinear problem, (12.2.2)), we must solve linear systems
involving the Jacobian matrix. This will require a matrix factorisation
or a Krylov method, as discussed in section 9.5.

All of the remarks of the previous section still apply, with one
important addition.

Remark 12.4.1 (Affine covariance). Newton’s method is affine-covariant:
given any nonsingular linear operator A ∈ RN×N , Newton’s method
applied to AF : RN → RN yields exactly the same sequence of iterates
(xn).

This property has deep consequences for the analysis and un-
derstanding of Newton’s method, explored in detail in the book of
Deuflhard7. A key corollary of this fact is that measuring the resid- 7 P. Deuflhard. Newton Methods for Non-

linear Problems, volume 35 of Springer
Series in Computational Mathematics.
Springer-Verlag, 2011

ual norm ‖F(xn)‖ is not a good way of measuring convergence, since by
choosing a clever A we can get whatever residual we like, and yet the
error in our approximation is unchanged.

The convergence of Newton’s method is excellent when the it-
eration is within striking distance of an isolated root, but its global
convergence is erratic. This can be visualised in the idea of a Newton
fractal.

Figure 12.2: The Newton fractal for
the function f (z) = z3 − 1. Each pixel
is coloured according to its basin of
attraction, and is shaded according to
how many iterations it took to converge
there. White points did not converge
within 256 iterations. Credit: Wikipedia.

Consider the nonlinear residual

f : C→ C

f (z) = z3 − 1. (12.4.7)

Solutions of f (z) = 0 are exactly the cube roots of unity. Fix a colour
for each root (e.g. 1 7→ red, − 1

2 +
√

3
2 i 7→ green, − 1

2 −
√

3
2 i 7→ blue).

This problem can be considered equivalently as a residual mapping
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f : R2 → R2. Consider a rectangular section R = [a, b]× [a, b] of the
plane, and for each x ∈ R apply Newton’s method to f . Colour the
point according to the root found; colour the point white if Newton’s
method failed to converge after a fixed number of iterations.

The resulting image, displayed in figure 12.2, hints at the breath-
taking complexity of the structures underpinning the convergence of
Newton’s method. Large regions of the plane are coloured red, green
or blue, but between these boring regions there are beautiful fractal
shapes, where the smallest perturbation causes you to converge to an
entirely different solution, and where the set exhibits self-similarity:
zooming in on figure 12.2 yields another figure very much like it8. 8 For much more details on Newton

fractals, see http://www.chiark.

greenend.org.uk/~sgtatham/newton/.

12.5 The Newton–Kantorovich algorithm in Banach spaces

The proceeding sections dealt with Newton’s method in finite-
dimensional spaces. We now consider the infinite-dimensional prob-
lem, i.e. before discretisation9. The extension of Newton’s method to 9 We have seen in sections 6.5 and 9.5

that disaster can ensue if we discretise
and then blindly solve the resulting
discrete system. Always postpone dis-
cretisation to the last possible moment!

this context is referred to as the Newton–Kantorovich algorithm, af-
ter Kantorovich, who proved (a variant of) the theorem below in the
1940s10,11.

10 L. Kantorovich. On Newton’s method
for functional equations. Doklady
Akademii Nauk SSSR, 59:1237–1249, 1948

11 Kantorovich was a very interesting
man. He independently invented linear
programming, a fundamental branch of
mathematical optimisation, some time
before Dantzig. He did this in response
to a problem brought to him by his
comrades at the Leningrad Plywood
Trust. Unfortunately, his theory of
dual variables as shadow prices was
insufficiently Marxist and Kantorovich
narrowly avoided a trip to the Gulag.

During world war two, Kantorovich
was a professor at the military col-
lege in Leningrad. During the war,
Leningrad was besieged by Axis forces
for nearly three years, with over one
million deaths. Many more millions
would have died had it not been for
Kantorovich, whose precise calculations
underpinned the only route for supply-
ing the city with food via a road across
a frozen lake.

After the war, he solved an optimisa-
tion problem to increase the efficiency
of the Egorov railroad car-plant, min-
imising the amount of scrap metal
wastage. The unfortunate consequence
of this was that it disrupted the supply
of scrap iron to the steel mills, and Kan-
torovich only escaped punishment by
the regional Party because of his work
on atomic reactors.

He also made fundamental contribu-
tions to many other areas of mathemat-
ics, computation and economics.

Kantorovich’s theorem is a triumph: it is both the fundament of
the numerical solution of nonlinear equations, but it is also a fun-
damental theorem of nonlinear functional analysis. This is because
it does not assume the existence of a solution; it proves the existence of a
solution, given certain conditions on H and its Fréchet derivative12

12 Defined in section 6.1.

verified around the initial guess x0. Indeed, it even goes further: it
proves local uniqueness, i.e. uniqueness within a neighbourhood of the
root of H. Thus, with finite computations (and excellent insight in
choosing the right x0), it is possible in principle to prove the existence
of solutions to very general equations.

For a self-contained, elegant and clear exposition of the proof of
the Newton–Kantorovich theorem, see Ciarlet and Mardare13.

13 P. G. Ciarlet and C. Mardare. On the
Newton–Kantorovich theorem. Analysis
and Applications, 10(3):249–269, 2012

Theorem 12.5.1 (Newton–Kantorovich). Let X and Y be two Banach
spaces. Let Ω be an open subset of X, the set where the residual is defined.
Let H ∈ C1(Ω, Y) be the residual of our nonlinear problem, and let x0 ∈ Ω
be an initial guess such that the Fréchet derivative H′(x0) is invertible
(hence H′(x0) ∈ L(X; Y) and H′(x0)

−1 ∈ L(Y; X)). Let B(x0, r) denote
the open ball of radius r centred at x0. Assume that there exists a constant
r > 0 such that

(1) ĞB(x0, r) ⊂ Ω,

(2) ‖H′(x0)
−1H(x0)‖X ≤ r

2 ,

http://www.chiark.greenend.org.uk/~sgtatham/newton/
http://www.chiark.greenend.org.uk/~sgtatham/newton/
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(3) For all x̃, x ∈ B(x0, r),

‖H′(x0)
−1 (H′(x̃)− H′(x)

)
‖L(X;X) ≤

1
r
‖x̃− x‖X . (12.5.1)

Then

(1) H′(x) ∈ L(X; Y) is invertible at each x ∈ B(x0, r).

(2) The Newton sequence (xn)∞
n=0 defined by

xn+1 = xn − H′(xn)
−1H(xn) (12.5.2)

is such that xn ∈ B(x0, r) for all n ≥ 0 and converges to a root x∗ ∈
ĞB(x0, r) of H.

(3) For each n ≥ 0,
‖x∗ − xn‖X ≤

r
2n . (12.5.3)

(4) The root x∗ is the locally unique, i.e. x∗ is the only root of H in the ball
ĞB(x0, r).

Remark 12.5.2. The proof is reasonably straightforward, but beautiful; it is
outside the scope of this course, but I recommend you read it if you are keen.

Remark 12.5.3. This is a slightly simplified variant, corresponding to theo-
rem 5 of Ciarlet. There are more complicated versions that expand the single
constant r into distinct constants and so achieve a finer analysis. In partic-
ular, this expansion is required to prove locally superlinear convergence; the
theorem above only claims linear convergence in conclusion (3).

Remark 12.5.4. Notice that the conditions are all affine-covariant, i.e. if
we replace H 7→ AH for a nonsingular A ∈ L(Y, Y) the bounds are
unchanged.

12.6 Example: the Bratu–Gelfand equation

Let us see how this works in practice. Consider again our model
problem

u′′(x) + λeu = 0, u(0) = 0 = u(1). (12.6.1)

and its variational formulation: find u ∈ H1
0(0, 1) such that

G(u; v) = −
∫ 1

0
u′(x)v′(x) dx +

∫ 1

0
λeuv dx = 0 (12.6.2)

for all v ∈ H1
0(0, 1). Taking the Fréchet derivative of G with respect

to u, we find that the linearisation at a fixed u in the direction w ∈
H1

0(0, 1) is

Gu(u; v, w) = −
∫ 1

0
w′(x)v′(x) dx +

∫ 1

0
λeuwv dx. (12.6.3)
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Thus, the Newton update solves: find δu ∈ H1
0(0, 1) such that

−
∫ 1

0
δu′(x)v′(x) dx+

∫ 1

0
λeuδuv dx =

∫ 1

0
u′(x)v′(x) dx−

∫ 1

0
λeuv dx

(12.6.4)
for all v ∈ H1

0(0, 1). Once δu is computed, we update u ← u + δu
and repeat. Assuming δu ∈ H2(0, 1) ∩ H1

0(0, 1), the equation for the
Newton update can be written in strong form as

δu′′ + λeuδu = −u′′ − λeu, δu(0) = 0 = δu(1). (12.6.5)

We have thus resolved the problem of solving the infinite-dimensional
nonlinear problem into a sequence of infinite-dimensional linear
problems. These linear problems may then be discretised using our
standard finite element techniques.

The following code uses FEniCS14 to approximately solve the 14 A. Logg, K. A. Mardal, G. N. Wells,
et al. Automated Solution of Differential
Equations by the Finite Element Method.
Springer, 2011

Bratu problem on a mesh of 500 elements for λ = 2, starting from
two initial guesses: u0(x) = 0, and u0(x) = 315.

15 A sharp reader will notice that
this initial guess does not satisfy the
boundary conditions. A robust code
deals with this by ensuring that the
first Newton update has boundary
conditions to correct the values of the
solution on the boundary.

from dolfin import *

mesh = UnitIntervalMesh(500)

element = FiniteElement("Lagrange", interval, 1)

V = FunctionSpace(mesh, element)

u = Function(V)

v = TestFunction(V)

lmbda = Constant(2.0)

F = -inner(grad(u), grad(v))*dx + lmbda*exp(u)*v*dx

bc = DirichletBC(V, 0, DomainBoundary())

for u_init in [0, 3]:

u.interpolate(Constant(u_init))

solve(F == 0, u, bc) # apply Newton-Kantorovich

plot(u, interactive=True)

The two Newton iterations converge to the two distinct solutions
of the problem, shown in figure 12.3.

12.7 Further questions

Many important questions remain.
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Figure 12.3: Two solutions of the Bratu–
Gelfand equation for λ = 2.

First, are the linearised problems well-posed? While we may ac-
cept that the underlying nonlinear problem supports distinct solu-
tions, we must demand that the linearised problem have a unique so-
lution at every step if the algorithm is to make sense. In this case, it is
not at all clear that the variational equation (12.6.4) satisfies the con-
ditions of the Lax–Milgram Theorem, since the bilinear form a(δu, v)
consists of the addition of a coercive form (as eu(x) > 0) to an an-
ticoercive one (i.e. one whose negation is coercive). In fact, the Lax–
Milgram conditions are merely sufficient to prove well-posedness,
and not necessary; in a subsequent lecture we will develop a more
general theory of necessary and sufficient conditions for the well-
posedness of linear variational problems, which will concisely resolve
this question.

Second, we will never be able to compute the exact solution of the
Newton step (12.6.4); at best we will compute an approximation δuh

with some control over the error δu − δuh in a suitable norm. This
naturally leads to the concept of inexact Newton methods, where the
Newton update is not solved for exactly, but only up to some resid-
ual. By cleverly adapting the residual tolerance of the inner solver,
one can guarantee the retention of locally superlinear or quadratic
convergence of the Newton method16. In fact, this development is 16 S. Eisenstat and H. Walker. Choosing

the forcing terms in an inexact Newton
method. SIAM Journal on Scientific
Computing, 17(1):16–32, 1996

also necessary even when the nonlinear PDE is discretised first, as
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the discrete Newton step (12.4.6) will only be solved to within the
accuracy of the machine and the tolerance of any Krylov solver used.

Third, once we have a scheme for deciding how accurate the solu-
tion of each Newton step must be, we must adapt the discretisation
of (12.6.4) to achieve it. This naturally leads to the subject of a pos-
teriori error estimation: given a computed approximation δuh, how
can we compute an upper bound for the specific error ‖δu − δuh‖,
and how can we refine our mesh to achieve it? There is a very large
body of literature on this topic; for an introduction to the field, see
Ainsworth & Oden17. 17 M. T. Ainsworth and J. T. Oden.

A Posteriori Error Estimation in Finite
Element Analysis. Wiley, New York, 2000

Fourth, Newton’s major downfall is its lack of global robustness,
i.e. far from a solution it may fail to converge. Here we offer two
suggestions. First, just as in nonlinear optimisation, the algorithm
may be globalised by the addition of a line search: after the Newton
update δu has been computed, instead of executing

un+1 = un + δu, (12.7.1)

the iteration proceeds by

un+1 = un + µδu, (12.7.2)

where µ is to be specified. Different globalisation schemes choose µ

differently, but the overall theme is to take small steps (µ � 1) far
from a solution to improve robustness, while to take full steps (µ = 1)
close to a solution to exploit the natural quadratic convergence of
the method. The concept of affine covariance introduced in remark
12.4.1 is crucial for the design of sensible globalisation schemes, and
is discussed in detail in Deuflhard18. 18 P. Deuflhard. Newton Methods for Non-

linear Problems, volume 35 of Springer
Series in Computational Mathematics.
Springer-Verlag, 2011

A second, and often more robust, approach to globalising New-
ton’s method is to solve a sequence of nonlinear problems, starting
from a very easy one to which we know the answers and culminating
in the problem whose solutions we seek. This can be interpreted as
the computation of the bifurcation diagram of

F : V ×R, (12.7.3)

i.e. understanding the solutions u(λ) of F(u, λ) = 0 as a scalar real
parameter λ is varied. This is the subject of bifurcation analysis and
is an exciting field of functional and numerical analysis in its own
right.





13 Noncoercive variational problems

In lecture 4, we proved the Lax–Milgram theorem about the well-
posedness (existence, uniqueness and stability) of coercive problems.
Recall that in the finite-dimensional case, coercivity is equivalent
to positive-definiteness of the matrix. Since positive-definiteness
is merely a sufficient condition for invertibility of a matrix (not a
necessary one), we might analogously expect coercivity to be merely
sufficient for the well-posedness of a linear variational equality. This
is indeed the case: such a problem need not be coercive for it to be
well-posed. It turns out that a weaker set of conditions, the Babuška–
Brezzi conditions, are both sufficient and necessary.

This subject is not well explained in most books on finite ele-
ments (and functional analysis). In most expositions, the conditions
parachute in from the sky, and are used to prove well-posedness of
the problem without much in the way of motivation for their origins.
In this lecture we will take a slower pace, building intuition from
the finite-dimensional case, and explaining how the Babuška–Brezzi
conditions arise naturally from considerations of the stability of the
solution of a finite-dimensional system to changes in the right-hand
side. The exposition is adapted from that of Brezzi and Bathe1. 1 F. Brezzi and K.-J. Bathe. A discourse

on the stability conditions for mixed
finite element formulations. Com-
puter Methods in Applied Mechanics and
Engineering, 82(1):27–57, 1990

A note on the history and naming of these conditions is in order.
Babuška stated the conditions in generality in 1971

2, but they had

2 I. Babuška. Error-bounds for finite el-
ement method. Numerische Mathematik,
16(4):322–333, 1971

been developed before in the context of a specific application by La-
dyzhenskaya in 1969

3, and for this reason are sometimes referred to

3 O. A. Ladyzhenskaya. The Mathemati-
cal Theory of Viscous Flows. Gordon and
Breach, 1969

as the Ladyzhenskaya–Babuška or Ladyzhenskaya–Babuška–Brezzi
conditions. In fact, they had already been given in general form
by Nečas in 1962

4, but the result did not draw widespread atten-
4 J. Nečas. Sur une méthode pour
résoudre les équations aux dérivées
partielles du type elliptique, voisine
de la variationnelle. Annali della Scuola
Normale Superiore di Pisa - Classe di
Scienze, 16(4):305–326, 1962

tion. Some authors such as Ern and Guermond5 refer to them as the

5 A. Ern and J.-L. Guermond. Theory and
Practice of Finite Elements, volume 159 of
Applied Mathematical Sciences. Springer,
2004

Banach–Nečas–Babuška conditions, adding Banach because the theo-
rem follows from combining two theorems of Banach’s; other authors
refer to them as the generalised Lax–Milgram conditions. For reasons
that will become obvious by the end of the lecture, the conditions are
also commonly referred to as the inf-sup conditions.

Brezzi’s contributions to the subject were twofold6. First, he spe-

6 F. Brezzi. On the existence, uniqueness
and approximation of saddle-point
problems arising from Lagrangian
multipliers. ESAIM: Mathematical
Modelling and Numerical Analysis -
Modélisation Mathématique et Analyse
Numérique, 8(R2):129–151, 1974

cialised the conditions to the important case of saddle-point systems,
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where we are minimising an energy functional subject to a constraint.
For example, in the Stokes equations of fluid mechanics, we solve for
the velocity that minimises the Dirichlet energy subject to the incom-
pressibility constraint that ∇ · u = 0 (as described more thoroughly
in lecture 14). Second, he was the first to prove the necessity of the
conditions.

The weaker nature of the Babuška–Brezzi conditions have an
important consequence for finite element discretisations. For co-
ercive problems, any Galerkin method automatically inherits the
well-posedness of the infinite-dimensional problem. For noncoercive
problems, this is no longer true. The well-posedness of a given choice
of discretisation depends on its satisfaction of the analogous inf-sup
condition for the particular choices of function spaces used, and must
be proven on a case-by-case basis.

13.1 Prelude: the dual norm

We recall the definition of the dual space and its norm (given in
definition 2.3.5.) The dual V∗ of a Hilbert space V is the space of all
bounded linear functionals on V. This has a natural norm induced by
the norm on the underlying space:

‖j‖V∗ = sup
‖u‖V=1

|j(u)| = sup
u∈V
u 6=0

|j(u)|
‖u‖V

. (13.1.1)

13.2 The stability of finite-dimensional linear systems

Consider the N-dimensional linear system

find x ∈ RN such that Mx = b, (13.2.1)

arising from a Galerkin discretisation of

find u ∈ V such that a(u, v) = F(v) for all v ∈ V. (13.2.2)

We know from linear algebra that the linear system Mx = b has a
unique solution for all b ∈ RN if and only if the associated homoge-
neous problem Mx = 0 has only one solution, x = 0. Let us suppose
for now that this is the case.

Now suppose that we wish to understand how much a perturba-
tion to the right-hand side δb can affect the solution. Denote by δx
the corresponding change in the solution. For the system to be stable,
we have the notion that a small change in b will induce only a small
change in x. Therefore, we must introduce norms for the right-hand
side and solution spaces. From the perspective of finite-dimensional
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linear algebra, it would be unusual to consider different norms for
b and x, but we know better; the solution will live in some Hilbert
space V and the right-hand side will live in its dual V∗. We therefore
equip x and b with the norms ‖ · ‖V and ‖ · ‖V∗ respectively.

Definition 13.2.1 (Stability constant). The stability constant of M with
respect to the norms ‖ · ‖V , ‖ · ‖V∗ is the smallest possible constant S such
that

‖δx‖V
‖x‖V

≤ S
‖δb‖V∗

‖b‖V∗
(13.2.3)

for all vectors x and δx in RN such that Mx = b and Mδx = δb.

Such a stability constant always exists if the matrix is invertible.
However, if we consider a sequence of linear systems with increasing
dimension N (corresponding to a finer and finer discretisation) it
might be the case that the associated constants (S) depend on N and
become infinitely large as N → ∞. We thus say that a sequence of
linear systems is stable with respect to the norms ‖ · ‖V , ‖ · ‖V∗ if the
sequence of stability constants is uniformly bounded.

We can use matrix norms to clarify the nature of the stability con-
stant. Define

‖M‖ = sup
y∈V
y 6=0

‖My‖V∗

‖y‖V
, (13.2.4)

where we denote the input space by V. Choosing y = x, My = b, we
have

‖M‖ ≥ ‖b‖V∗

‖x‖V
. (13.2.5)

This implies that

‖M‖‖x‖V
‖b‖V∗

≥ 1. (13.2.6)

Now let us consider the inverse norm (assuming, again, that the
inverse exists). We have

‖M−1‖ = sup
z∈V∗
z 6=0

‖M−1z‖V
‖z‖V∗

, (13.2.7)

where we denote the output space by V∗. By choosing z = δb,
M−1z = δx, we have

‖M−1‖ ≥ ‖δx‖V
‖δb‖V∗

. (13.2.8)

Multiplying the upper bound by a quantity greater than one will not
change the inequality, so

‖δx‖V
‖δb‖V∗

≤ ‖M−1‖‖M‖ ‖x‖V
‖b‖V∗

(13.2.9)
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which implies
‖δx‖V
‖x‖V

≤ ‖M‖‖M−1‖‖δb‖V∗

‖b‖V∗
. (13.2.10)

Since x and δx are arbitrary, ‖M‖‖M−1‖ is the smallest number for
which this holds, and so

S = ‖M‖‖M−1‖. (13.2.11)

Remark 13.2.2 (Condition number). This is exactly the condition number
of the matrix. Typically this is specialised to the Euclidean case ‖ · ‖V =

‖ · ‖V∗ = ‖ · ‖`2 , where the condition number resolves to the ratio of the
largest and smallest singular values.

Thus, for the stability of our problem to be uniformly bounded,
we will require both ‖M‖ and ‖M−1‖ to be uniformly bounded from
above. We will now consider them in turn.

13.3 The forward operator norm

Let us assume that the bilinear form a is bounded: that is, there exists
a constant C such that

|a(u, v)| ≤ C‖u‖‖v‖, (13.3.1)

and since our matrix encodes the action of the bilinear form, we have

|yT Mx| ≤ C‖y‖V‖x‖V . (13.3.2)

The forward operator norm ‖M‖ is exactly the boundness constant C
in disguise. To see this, expand the definitions:

‖M‖ = sup
x∈V
x 6=0

‖Mx‖V∗

‖x‖V
(13.3.3)

= sup
x∈V
x 6=0


1
‖x‖V

sup
y∈V
y 6=0

|yT Mx|
‖y‖V

 (13.3.4)

= sup
x,y∈V
x,y 6=0

|yT Mx|
‖x‖V‖y‖V

= C. (13.3.5)

Thus, if M arises from a conforming discretisation of a continuous
bilinear form, then ‖M‖ is uniformly bounded above by the conti-
nuity constant of the form. Thus, the sequence of problems will be
stable if and only if the inverse operator norm ‖M−1‖ is uniformly
bounded above.
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13.4 The inverse operator norm

Lemma 13.4.1 (Characterising the inverse operator norm). Let M ∈
RN×N be nonsingular, and let ‖ · ‖V be the norm for its input space, and let
the associated dual norm be used for its output space. Then

‖M−1‖−1 = inf
x∈V
x 6=0

sup
y∈V
y 6=0

|yT Mx|
‖y‖V‖x‖V

. (13.4.1)

Proof.

‖M−1‖−1 =

 sup
z∈V∗
z 6=0

‖M−1z‖V
‖z‖V∗


−1

(13.4.2)

= inf
z∈V∗
z 6=0

‖z‖V∗

‖M−1z‖V
(13.4.3)

= inf
x∈V
x 6=0

‖Mx‖V∗

‖x‖V
(set z = Mx) (13.4.4)

= inf
x∈V
x 6=0


1
‖x‖V

sup
y∈V
y 6=0

|yT Mx|
‖y‖V

(defn of dual norm) (13.4.5)

= inf
x∈V
x 6=0

sup
y∈V
y 6=0

|yT Mx|
‖y‖V‖x‖V

. (13.4.6)

Remark 13.4.2. Since

sup
y∈V
y 6=0

|yT Mx|
‖y‖V

= sup
y∈V
y 6=0

yT Mx
‖y‖V

, (13.4.7)

we can if we wish ignore the absolute value sign on the numerator. (If the
supremum were achieved at a negative argument to the absolute value func-
tion, we could just consider y 7→ −y as V is a vector space, and swap the
sign of the numerator without changing the denominator.) It is a matter of
taste whether we drop the minus sign, but many expositions do, so we do
that here.

Thus, for the sequence of problems to be stable, we need that
‖M−1‖−1 to be uniformly bounded below, and so we require a con-
stant γ ∈ R such that

inf
x∈V
x 6=0

sup
y∈V
y 6=0

yT Mx
‖y‖V‖x‖V

≥ γ > 0. (13.4.8)
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Since the matrix M encodes the bilinear form, the analogous condi-
tion for the infinite-dimensional problem is: there exists γ ∈ R such
that

inf
u∈V
u 6=0

sup
v∈V
v 6=0

a(u, v)
‖u‖V‖v‖V

≥ γ > 0. (13.4.9)

This is the famous “inf-sup” condition of Babuška and Brezzi.

13.5 The inf-sup condition and the kernel

We started our analysis by assuming that M was nonsingular. Of
course, we now need to ensure that the inf-sup condition (derived
based on stability arguments) does indeed imply that the kernel
of the operator is trivial in the first place7. The argument, in finite 7 For square finite dimensional systems,

this is the same thing as invertibility.dimensions, is really just unwinding that of lemma 13.4.1.
The inf-sup condition (13.4.8) can be restated as: there exists γ > 0

such that for all 0 6= x ∈ V

sup
y∈V
y 6=0

yT Mx
‖y‖V

≥ γ‖x‖V . (13.5.1)

We recognise the quantity on the left-hand side as the dual norm of
Mx, so this in turn is equivalent to: there exists γ > 0 such that for
all 0 6= x ∈ V

‖Mx‖V∗ ≥ γ‖x‖V . (13.5.2)

Suppose the kernel of M was nontrivial, i.e. there exists x 6= 0 such
that Mx = 0. Since x 6= 0, our inf-sup inequality holds, and

Mx = 0 =⇒ ‖Mx‖V∗ = 0 =⇒ ‖x‖V = 0 =⇒ x = 0, (13.5.3)

a contradiction. Thus the inf-sup condition exactly implies the condi-
tion on the kernel of M that we sought.

If we apply the discrete inf-sup condition (13.4.8) with Euclidean
norms chosen for V and V∗, the inf-sup condition has a very intuitive
interpretation. A straightforward calculation shows that the inf-sup
constant is given by

γ = λmin(MT M)1/2, (13.5.4)

i.e. the inf-sup constant is nothing other than the smallest singular
value of the matrix M. No wonder it must be bounded away from
zero!

13.6 The inf-sup condition and coercivity

The inf-sup condition (13.4.9) is a generalisation of the notion of
coercivity. Recall that a bilinear form a : V × V → R is coercive if
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there exists a constant α > 0 such that

α‖u‖2
V ≤ a(u, u) (13.6.1)

for all u ∈ V. Dividing both sides by ‖u‖V 6= 0, we find

α‖u‖V ≤
a(u, u)
‖u‖V

≤ sup
v∈V
v 6=0

a(u, v)
‖v‖V

for all u ∈ V, u 6= 0, (13.6.2)

and infimising over u we conclude that coercivity of a implies the
existence of α such that

0 < α ≤ inf
u∈V
u 6=0

sup
v∈V
v 6=0

a(u, v)
‖u‖V‖v‖V

, (13.6.3)

that is, the coercivity constant provides an inf-sup constant. Coerciv-
ity implies the inf-sup condition, but not the other way around.

13.7 The inf-sup condition and necessity

The inf-sup condition is the key ingredient of the most general set
of conditions that guarantee well-posedness. This is because it is
necessary, i.e. it is implied by the well-posedness of the problem. If

find u ∈ V such that a(u, v) = F(v) for all v ∈ V (13.7.1)

has a unique solution for all F ∈ V∗, that implies the unique solvabil-
ity of the associated operator equation

Au = F (13.7.2)

where A : V → V∗ is defined by (Au)(v) = a(u, v). If the opera-
tor equation is uniquely solvable, then A−1 : V∗ → V exists, and
the stability of the problem implies its norm is bounded above, so
the reciprocal of its norm is bounded below away from zero. Untan-
gling the definitions of the operator norm (reversing the argument of
lemma 13.4.1), we find

0 < γ = ‖A−1‖−1 = inf
u∈V
u 6=0

sup
v∈V
v 6=0

a(u, v)
‖u‖V‖v‖V

, (13.7.3)

exactly the inf-sup condition8. 8 Coercivity is necessary in a special
case. If the bilinear form a is symmetric
and monotone (i.e. a(v, v) ≥ 0 for all
v ∈ V), then coercivity is necessary and
sufficient for well-posedness.

13.8 Rectangular linear systems: the transpose condition

For square linear systems, invertibility of the matrix M is equivalent
to its kernel being trivial, and to the invertibility of its transpose
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MT . It will be useful in what follows to consider nonsquare linear
systems: this will motivate the third and final condition that will
guarantee well-posedness.

Consider a rectangular matrix M ∈ RP×N . We denote by V1 the
input space (in this case RN) with associated norm ‖ · ‖V1 . Similarly,
we denote by V2 the output space (in this case RP) with associated
norm ‖ · ‖V2 . In this case, the inf-sup condition (13.4.8) reads: there
exists γ ∈ R such that

0 < γ ≤ inf
x∈V1
x 6=0

sup
y∈V2
y 6=0

yT Mx
‖y‖V2‖x‖V1

. (13.8.1)

First, consider the case where M is an underdetermined matrix
(more columns than rows, more variables than equations, N > P).
Then the rank-nullity theorem guarantees us that the matrix has
a nontrivial nullspace, so there are nonzero vectors x ∈ V1 such
that Mx = 0. Thus the discrete inf-sup condition (13.4.8) fails, as it
should; we are happy that our conditions fail when this problem is
not well-posed.

Next consider the case where M is an overdetermined matrix
(more rows than columns, more equations than variables, P > N).
Such a problem cannot be well-posed, for in this case the range of
the matrix cannot be the whole of RP, and so the equation Mx = b
does not have a solution for arbitrary data b (only for those vectors
b in the range). However, such a matrix might still have a trivial
nullspace, and so can satisfy the inf-sup condition. As a concrete
example, consider

M =

1 0
0 1
1 1

 . (13.8.2)

Then if x = [x1, x2]
T , Mx = [x1, x2, x1 + x2]

T , and Mx = 0 =⇒
x = 0. M satisfies the inf-sup condition (which encodes the fact that
the nullspace is trivial), but this is not enough to guarantee well-
posedness.

We thus need a third condition: that the nullspace of the transpose is
trivial. That is, we also require that yT M = 0 =⇒ y = 0. Recall that
the fundamental theorem of linear algebra tells us that

range(M) = kernel(MT)⊥, (13.8.3)

that is, the range of M is the orthogonal complement of the nullspace
of MT . Thus, in order for the operator to be surjective (and have a
complete range), we must therefore require the nullspace of MT to be
trivial. This is the condition that fails in this case; for example, choose
yT = [1, 1,−1].
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Expressed variationally, the statement that the nullspace of MT is
trivial is equivalent to the following9: there exists a γ′ ∈ R such that 9 Go through the argument of section

13.5 with M 7→ MT .

0 < γ′ ≤ inf
y∈V2
y 6=0

sup
x∈V1
x 6=0

xT MTy
‖x‖V1‖y‖V2

(13.8.4)

= inf
y∈V2
y 6=0

sup
x∈V1
x 6=0

yT Mx
‖x‖V1‖y‖V2

. (13.8.5)

That is, the variables over which the inf and sup are taken are re-
versed.

No nonsquare matrix can satisfy both this condition (13.8.4) and
(13.4.8). That is, no nonsquare matrix is invertible, exactly as we
expect.

13.9 Babuška’s Theorem

We are now in a position to state Babuška’s theorem for the well-
posedness of an abstract variational equation.

Theorem 13.9.1 (Babuška’s theorem: necessary and sufficient condi-
tions). Let V1 and V2 be two Hilbert spaces with inner products (·, ·)V1 and
(·, ·)V2 respectively. Let a : V1 ×V2 → R be a bilinear form for which there
exist constants C < ∞, γ > 0, γ′ > 0 such that

(1) |a(u, v)| ≤ C‖u‖V1‖v‖V2 for all u ∈ V1, v ∈ V2;

(2) γ ≤ inf
u∈V1
u 6=0

sup
v∈V2
v 6=0

a(u,v)
‖u‖V1‖v‖V2

;

(3) γ′ ≤ inf
v∈V2
v 6=0

sup
u∈V1
u 6=0

a(u,v)
‖u‖V1‖v‖V2

.

Then for all F ∈ V∗2 there exists exactly one element u ∈ V1 such that

a(u, v) = F(v) for all v ∈ V2. (13.9.1)

Furthermore the problem is stable in that

‖u‖V1 ≤
‖F‖V∗2

γ
. (13.9.2)

Proof. See theorem 2.1 of Babuška10. 10 I. Babuška. Error-bounds for finite el-
ement method. Numerische Mathematik,
16(4):322–333, 1971Remark 13.9.2. The first assumption states that the bilinear form is con-

tinuous. The second assumption implies that the nullspace of the operator
A : V1 → V∗2 arising in the associated operator equation

Au = F, (Au)(v) := a(u, v) (13.9.3)
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is trivial, which encodes the injectivity of A. The third assumption states
that the nullspace of the adjoint operator A′ : V2 → V∗1 is trivial, which is
equivalent to the surjectivity of A by the Banach closed range theorem.

Remark 13.9.3. The third condition is often replaced by the following:

∀u ∈ V1, a(u, v) = 0 =⇒ v = 0, (13.9.4)

or
∀ 0 6= v ∈ V2 ∃ u ∈ V1 such that a(u, v) 6= 0, (13.9.5)

or
sup
u∈V1

|a(u, v)| > 0 for all 0 6= v ∈ V2. (13.9.6)

I state the version above as I like the symmetry between conditions (2) and
(3).

Remark 13.9.4. The first condition is often replaced by the following:

sup
u∈V
u 6=0

sup
v∈V
v 6=0

a(u, v)
‖u‖V‖v‖V

≤ C, (13.9.7)

in other words a “sup–sup” condition. In this form we can drop the absolute
value function from the numerator for the same reason as in Remark 13.4.2.
I prefer this form for symmetry with the other two conditions, but kept the
original statement of continuity for familiarity.

Remark 13.9.5. In fact, the Babuška conditions are even more general than
this. They apply if the trial space V1 is a Banach space, and the test space V2

is a reflexive Banach space. (A reflexive Banach space is one where V∗∗ is
isomorphic to V under a specific map.)

Remark 13.9.6. The generalisation to different spaces V1 and V2 is crucial.
Consider a PDE with an odd number of derivatives, such as a first-order
equation: no matter which way you integrate by parts, the test and trial
spaces will be different. It will also be necessary in Brezzi’s formulation of
the conditions for the well-posedness of a mixed variational problem. It is
also occasionally necessary in second-order scalar problems: for example,
one of the ways to adapt Galerkin discretisations to advection-dominated
problems is to modify the test functions used according to the direction of the
advecting velocity. Such a discretisation is referred to as a Petrov–Galerkin
discretisation, where the test and trial spaces are distinct11. The proof of 11 As opposed to a Bubnov–Galerkin

discretisation, where the test and trial
spaces are the same.

well-posedness of the formulation thus requires a more general theory.

13.10 Quasioptimality for noncoercive problems

For coercive problems, Céa’s Lemma tells us that a Galerkin dis-
cretisation is quasi-optimal: optimal in the approximation space up
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to problem-specific constants. We will now see that stable Galerkin
discretisations of well-posed problems are quasi-optimal, i.e. the quasi-
optimality property carries over to noncoercive well-posed problems.
The key difference with the coercive case is that the Galerkin discreti-
sation is not automatically stable: in general we will have to prove a
nontrivial result to ensure that the discretisation satisfies a discrete
version of the inf-sup conditions.

Consider a general variational problem12: 12 For simplicity, we pose the problem
using the same test and trial spaces, but
the same argument extends to the more
general case of distinct Banach spaces
(with the test space reflexive).

find u ∈ V such that a(u, v) = F(v) for all v ∈ V, (13.10.1)

where a is bilinear and F ∈ V∗. Assume that this problem is well-
posed, i.e. it satisfies the Babuška conditions. Given a closed sub-
space Vh ⊂ V, the Galerkin approximation is:

find uh ∈ Vh such that a(uh, vh) = F(vh) for all vh ∈ Vh. (13.10.2)

Note that the Galerkin orthogonality property discussed in section 7.2
still holds for noncoercive problems: for all vh ∈ Vh,

a(u− uh, vh) = 0. (13.10.3)

Let us consider whether the Galerkin approximation (13.10.2) is
well-posed. The continuity requirement (1) of the Babuška conditions
clearly follows from the corresponding condition for the infinite-
dimensional problem. It therefore remains to check requirement (2),
the inf-sup condition13. That is, we need to ensure that there exists γ̃ 13 In this case, we do not need to check

requirement (3), the transpose inf-sup
condition, because for square matrices
in finite dimensions triviality of the
nullspace is necessary and sufficient for
well-posedness: we only need to check
triviality of the transpose nullspace
for rectangular matrices or infinite-
dimensional problems.

inf
uh∈Vh
uh 6=0

sup
vh∈Vh
vh 6=0

a(uh, vh)

‖uh‖V‖vh‖V
≥ γ̃ > 0, (13.10.4)

with γ̃ independent of the mesh size h. Unfortunately this does not
follow from the inf-sup condition for the infinite-dimensional prob-
lem; even if it is true, we might have γ̃ 6= γ. We therefore have to
assume this for the argument below.

Theorem 13.10.1 (Quasi-optimality of stable Galerkin discretisations).
Consider the variational problem (13.10.1) and its Galerkin discretisation
(13.10.2). Assume that they satisfy the necessary and sufficient conditions
for well-posedness given in theorem 13.9.1 and (13.10.4). Then

‖u− uh‖V ≤
(

1 +
C
γ̃

)
inf

vh∈Vh
‖u− vh‖V . (13.10.5)



116 finite element methods for pdes

Proof. For every vh ∈ Vh, we have

γ̃‖vh − uh‖V ≤ sup
wh∈Vh
wh 6=0

a(vh − uh, wh)

‖wh‖V
(discrete inf-sup)

= sup
wh∈Vh
wh 6=0

a(vh − u, wh) + a(u− uh, wh)

‖wh‖V
(bilinearity of a)

= sup
wh∈Vh
wh 6=0

a(vh − u, wh)

‖wh‖V
(Galerkin orthogonality)

≤ sup
wh∈Vh
wh 6=0

C‖vh − u‖V‖wh‖V
‖wh‖V

(boundedness of a)

= C‖vh − u‖V . (13.10.6)

Now apply the triangle inequality to ‖u− uh‖V :

‖u− uh‖V ≤ ‖u− vh‖V + ‖vh − uh‖V (13.10.7)

≤ ‖u− vh‖V +
C
γ̃
‖u− vh‖V (13.10.8)

=

(
1 +

C
γ̃

)
‖u− vh‖V . (13.10.9)

As before, we can combine this with an approximation result
and a regularity result to derive error estimates for finite element
discretisations.

Remark 13.10.2. For problems posed in Hilbert spaces, the quasi-optimality
result (13.10.5) can be sharpened further to

‖u− uh‖V ≤
C
γ̃

inf
uh∈Vh

‖u− vh‖V , (13.10.10)

exactly the same form as Céa’s Lemma. See Xu and Zikatanov14 for details. 14 J. Xu and L. Zikatanov. Some obser-
vations on Babuška and Brezzi theories.
Numerische Mathematik, 94(1):195–202,
2003



14 Mixed finite element methods

All of the problems we have considered up to now have considered
the approximation of a single physical quantity. However, it is of-
ten useful to consider mathematical models which involve several
physically distinct quantities, which must be approximated simulta-
neously. In this lecture we will consider the variational formulation
and discretisation of such equations.

This lecture draws on many sources, including the notes of Süli1, 1 E. Süli. A brief excursion into the
mathematical theory of mixed finite
element methods, 2017. http://people.
maths.ox.ac.uk/suli/mixed_FEM_

lectures.pdf

the finite-dimensional exposition of Brezzi and Bathe2, and chapter

2 F. Brezzi and K.-J. Bathe. A discourse
on the stability conditions for mixed
finite element formulations. Com-
puter Methods in Applied Mechanics and
Engineering, 82(1):27–57, 1990

12 of Brenner and Scott3.

3 S. C. Brenner and L. R. Scott. The
Mathematical Theory of Finite Element
Methods, volume 15 of Texts in Applied
Mathematics. Springer-Verlag New York,
third edition edition, 2008

14.1 Example: the Stokes equations

The Stokes equations are an elementary model in fluid mechanics.
They describe the motion of a steady, incompressible, viscous, New-
tonian, isothermal, slow-moving fluid. In strong form the equations
are

−∇2u +∇p = f in Ω, (14.1.1)

∇ · u = 0 in Ω, (14.1.2)

subject to some boundary conditions to be specified. The first equa-
tion, the momentum equation, relates the vector-valued velocity
u : Ω → Rn and the scalar-valued pressure p : Ω → R. The vector-
valued variable f : Ω → Rn represents the body forces acting on the
fluid (such as gravity). The second equation, the continuity equation,
enforces the incompressibility of the velocity: in words, the amount of
fluid flowing into an infinitesimal volume is the same as the amount
of fluid flowing out of the infinitesimal volume.

For simplicity, suppose the boundary conditions are that u =

0 on the entire boundary Γ = ∂Ω4. Let us multiply (14.1.1) by a 4 If the velocity is nonzero on the
boundary, we can convert the problem
into a homogeneous one by the linearity
of the PDE.

vector-valued test function v ∈ V, and (14.1.2) by a scalar-valued test
function q ∈ Q, with V and Q to be determined, and integrate the

http://people.maths.ox.ac.uk/suli/mixed_FEM_lectures.pdf
http://people.maths.ox.ac.uk/suli/mixed_FEM_lectures.pdf
http://people.maths.ox.ac.uk/suli/mixed_FEM_lectures.pdf
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viscosity term by parts:∫
Ω
∇u : ∇v dx +

∫
Ω
∇p · v dx =

∫
Ω

f · v dx, (14.1.3)∫
Ω

q∇ · u dx = 0. (14.1.4)

We could leave it in this form, but as it is we require that both u and
p are weakly differentiable. If we integrate the pressure gradient
term in the momentum equation by parts once, we can relax the
differentiability requirement on the pressure space:∫

Ω
∇u : ∇v dx−

∫
Ω

p∇ · v dx +
∫

Γ
pv · n ds =

∫
Ω

f · v dx, (14.1.5)

and the surface integral term disappears if we choose v = 0 on Γ.
Note also that we can negate both sides of the continuity equation to
arrive at the symmetric formulation∫

Ω
∇u : ∇v dx−

∫
Ω

p∇ · v dx =
∫

Ω
f · v dx, (14.1.6)

−
∫

Ω
q∇ · u dx = 0. (14.1.7)

By inspection, we clearly need one weak derivative on u and v, and
to enforce the Dirichlet bondition, so V = H1

0(Ω; Rn) is the appro-
priate choice. An obvious choice for the pressure space is L2(Ω), but
this is not quite sufficient; it is clear from the strong formulation of
the problem that if (u, p) is a solution, then so is (u, p + c) where
c ∈ R5. That is, the pressure is only defined up to a constant, and so 5 Fundamentally, this is because∫

Ω
∇ · v dx =

∫
Γ

v · n ds = 0

with this choice of boundary condi-
tions.

to fix a unique pressure we choose

Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q dx = 0}. (14.1.8)

Thus, the abstract formulation of this symmetric problem is: find
(u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F(v), (14.1.9)

b(u, q) = 0, (14.1.10)

for all (v, q) ∈ V ×Q, where in this case

a(u, v) =
∫

Ω
∇u : ∇v dx, (14.1.11)

and
b(u, q) = −

∫
Ω

q∇ · u dx. (14.1.12)

14.2 Stokes as an energy minimisation problem

The Stokes equations arise from the minimisation of an energy func-
tional, just as symmetric coercive problems do. The difference in
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the Stokes equations is that there is an additional constraint: that the
velocity u be divergence-free.

Consider the following minimisation problem:

u = argmin
v∈H1

0 (Ω;Rn)

1
2

∫
Ω
∇v : ∇v dx−

∫
Ω

f · v dx. (14.2.1)

If we take the Gâteaux derivative and set it equal to zero, we find

find u ∈ H1
0(Ω; Rn) such that

∫
Ω
∇u : ∇v dx =

∫
Ω

f · v dx for all v ∈ H1
0(Ω).

(14.2.2)
This is the weak form of

−∇2u = f in Ω, (14.2.3)

u = 0 on ∂Ω, (14.2.4)

the vector Laplacian.
Now consider the following modification to this problem:

u = argmin
v∈H1

0 (Ω;Rn)

1
2

∫
Ω
∇v : ∇v dx−

∫
Ω

f · v dx, (14.2.5)

subject to ∇ · v = 0. (14.2.6)

As in finite-dimensional optimisation, we can write the optimality
conditions for this problem by introducing a Lagrange multiplier
p ∈ L2

0(Ω) and writing the Lagrangian L : H1
0(Ω; Rn)× L2

0(Ω)→ R

L(u, p) =
1
2

∫
Ω
∇u : ∇u dx−

∫
Ω

f · u dx−
∫

Ω
p∇ · u dx. (14.2.7)

The optimality conditions for this problem are: find (u, p) such that

Lu(u, p; v) = 0, (14.2.8)

Lp(u, p; q) = 0, (14.2.9)

for all (v, q) ∈ H1
0(Ω; Rn) × L2

0(Ω). On computing the Gâteaux
derivatives, we find exactly the Stokes system (14.1.6). That is, the
Stokes equations are the saddle point system arising from the minimisation
of the Dirichlet energy subject to the incompressibility constraint; further-
more, the pressure arises as the Lagrange multiplier that enforces this
constraint.

Remark 14.2.1 (Saddle point systems). It will turn out that this problem
has a unique solution. This system is referred to as a saddle point system
because its unique solution (u, p) satisfies

L(u, q) ≤ L(u, p) ≤ L(v, p) for all v ∈ H1
0(Ω; Rn), q ∈ L2

0(Ω).
(14.2.10)

That is, (u, p) is a saddle point of the associated Lagrangian6. 6 This is only true if the bilinear form a
is symmetric and coercive.
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As with any discretisation, the first step in the analysis is to in-
vestigate the well-posedness of the underlying problem. One route
to take is to analyse the Babuška conditions on the Hilbert space
V × Q, but it will turn out to be more convenient to verify Brezzi’s
reformulation of the conditions for mixed variational problems. To
understand Brezzi’s conditions, we turn to the finite dimensional
case. Before we do so, we need to learn one more fact about Hilbert
spaces.

14.3 Prelude: orthogonal decompositions in Hilbert spaces

A fundamental fact about Hilbert spaces is that they can be cleanly
decomposed into any subspace and its orthogonal complement, just
like Euclidean spaces.

Theorem 14.3.1 (Orthogonal decomposition of a Hilbert space). Let H
be a Hilbert space, and suppose K ⊂ H is a closed subspace of H. Then its
orthogonal complement

K⊥ := {v ∈ H : v ⊥ k for all k ∈ K} (14.3.1)

is also a closed subspace, and

H = K⊕ K⊥, (14.3.2)

which means that every v ∈ H can be uniquely written as

v = vK + v⊥, (14.3.3)

with vK ∈ K and v⊥ ∈ K⊥.

Proof. See Proposition 2.3.5 of Brenner and Scott, or any textbook on
functional analysis.

14.4 Saddle point systems in finite dimensions: the homogeneous case

Consider the following N × N linear system:(
A BT

B 0

)(
u
p

)
=

(
f
0

)
, (14.4.1)

where the submatrix A is a square NA× NA matrix, and B is a rect-
angular NB × NA matrix with NA + NB = N and NA > NB.
The unknowns are u ∈ V = RNA and p ∈ Q = RNB. In the case
of the Stokes equations, A represents the discretised vector Lapla-
cian, BT represents the gradient (mapping from scalar-valued Q to
vector-valued V), and B represents the divergence (mapping from
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vector-valued V to scalar-valued Q). We refer to this as the homo-
geneous case because the right hand side of the equation Bu = 0 is
homogeneous.

The second equation tells us that Bu = 07, and thus we know that 7 We will consider the case where the
second component of the right-hand
side is nonzero in the next section.

u must be an element of the space

K := kernel(B) = {v ∈ V : Bv = 0}. (14.4.2)

This set is certainly nonempty, since 0 ∈ K. If K is trivial, i.e. K = {0},
then u = 0 and the equations reduce to the solvability of BT p = f ,
which we will consider below. We therefore assume for the moment
that the kernel is nontrivial.

By multiplying the first equation on the left with vT for v ∈ K, we
have

vT Au + vT BT p = vT f , (14.4.3)

and since vT BT p = pT(Bv) = 0, we derive the problem

find u ∈ K such that vT Au = vT f for all v ∈ K. (14.4.4)

This is now a variational problem posed on a closed subspace of a
Hilbert space, and we understand how to ensure its well-posedness.
In the easier case, we can suppose that A is coercive on the kernel K,
i.e.

vT Av > 0 for all v ∈ K \ {0}, (14.4.5)

in which case we can invoke the Lax–Milgram theorem 4.2.1. In
general, we can suppose that A satisfies the Babuška conditions of
theorem 13.9.1 on the kernel K.

Let us now suppose that we have solved the problem on the ker-
nel for u, and let us understand what we have achieved. Write the
orthogonal decomposition of K in V:

V = K⊕ K⊥, (14.4.6)

where K⊥ is the space of vectors orthogonal to every element of
K. Every vector f ∈ V can be uniquely written as the sum of one
element of K and one element of K⊥,

f = f K + f⊥, (14.4.7)

where f K ∈ K and f⊥ ⊥ K. The expression vT f in the variational
problem (14.4.4) simplifies to

vT f = vT f K + vT f⊥ = vT f K, (14.4.8)

and so Au = f K, and f − Au = f⊥.
Having solved for the variable u, we must complete the solution of

the problem by computing the unique p ∈ Q such that

BT p = f − Au = f⊥. (14.4.9)
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By the fundamental theorem of linear algebra,

range(BT) = kernel(B)⊥ = K⊥, (14.4.10)

and since f⊥ ∈ range(BT), there exists at least one p ∈ Q such that
BT p = f − Au. However, we must ensure that there is only one such
p; that is, we must ensure that BT is injective.

To ensure injectivity, we wish to ensure that BT p = 0 =⇒ p = 0.
We saw in the previous lecture that one way to formulate this is via
the inf-sup condition: there exists γ ∈ R such that

0 < γ ≤ inf
q∈Q
q 6=0

sup
v∈V
v 6=0

vT BTq
‖q‖‖v‖ . (14.4.11)

If this holds, then the operator BT : Q → K⊥ is a bijection, and we
can solve for p ∈ Q uniquely.

Remark 14.4.1. Carefully distinguish between applying the inf-sup con-
dition to BT (a rectangular sub-matrix of M) and the entire square matrix
M.

14.5 Saddle point systems in finite dimensions: the inhomogeneous
case

Now consider the modified problem(
A BT

B 0

)(
u
p

)
=

(
f
g

)
, (14.5.1)

the inhomogeneous case. Again, define K to be the kernel of B

K = kernel(B) (14.5.2)

and write
u = uK + u⊥ (14.5.3)

using the orthogonal decomposition of V8. Suppose that we change 8 The main difference in the homoge-
neous case is that u⊥ = 0.our basis so that we may write

u =

(
uK

u⊥

)
. (14.5.4)

Such a change of basis is always possible. We can therefore write

f =

(
f K

f⊥

)
(14.5.5)

and

A =

(
AKK AK⊥

A⊥K A⊥⊥

)
. (14.5.6)
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We can therefore rewrite our system of equations as

AKKuK + AK⊥u⊥ = f K, (14.5.7)

A⊥KuK + A⊥⊥u⊥ + BT p = f⊥, (14.5.8)

Bu⊥ = g. (14.5.9)

There is no BT p term in the first equation because its range is K⊥ and
so it can only contribute to the second equation after our change of
basis.

If we assume the inf-sup condition (14.4.11) on BT , this ensures
that BT : Q → K⊥ is a bijection. This also ensures that B : K⊥ → Q is
a bijection. Thus, this condition will be enough to ensure that (14.5.9)
can be solved uniquely for u⊥. The unique solvability of (14.5.7) for
uK is exactly the same as the homogeneous case: either we have a
coercivity condition of A on the nullspace of B, or more generally a
set of Babuška conditions. Finally, the inf-sup condition (14.4.11) on
BT is necessary and sufficient for the unique solvability of (14.5.8) for
p.

Thus, the inhomogeneous case requires no additional assumptions
on A beyond that of the homogeneous case.

14.6 Saddle point theory in infinite dimensions: Brezzi’s theorem

We now state the Brezzi conditions for the well-posedness of the
abstract saddle point problem.

Theorem 14.6.1 (Well-posedness of saddle point problems). Let V and
Q be Hilbert spaces. Given F ∈ V∗ and G ∈ Q∗, we consider the problem:
find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F(v), (14.6.1)

b(u, q) = G(q), (14.6.2)

for all (v, q) ∈ V ×Q. Let

K = {v ∈ V : b(v, q) = 0 for all q ∈ Q}. (14.6.3)

Suppose that

(1) a : V ×V and b : V ×Q are bounded bilinear forms;

(2) The variational problem

find u ∈ K such that a(u, v) = F(v) for all v ∈ K (14.6.4)

is well-posed;
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(3) b satisfies the following inf-sup condition: there exists γ ∈ R such that

0 < γ ≤ inf
q∈Q
q 6=0

sup
v∈V
v 6=0

b(v, q)
‖v‖V‖q‖Q

. (14.6.5)

Then there exists a unique pair (u, p) ∈ V × Q that solves the variational
problem (14.6.1), and the solution is stable with respect to the data F and G.

Proof. See Brezzi9. 9 F. Brezzi. On the existence, uniqueness
and approximation of saddle-point
problems arising from Lagrangian
multipliers. ESAIM: Mathematical
Modelling and Numerical Analysis -
Modélisation Mathématique et Analyse
Numérique, 8(R2):129–151, 1974

Remark 14.6.2 (The Stokes equations). In the Stokes equations, the bilin-
ear forms a : H1

0(Ω; Rn)× H1
0(Ω; Rn) and b : H1

0(Ω; Rn)× L2
0(Ω) are

bounded by Cauchy–Schwarz. The Poincaré–Friedrichs inequality guaran-
tees that the H1(Ω; Rn) seminorm is a norm on H1

0(Ω; Rn), so a is coercive
on the entirety of H1

0(Ω; Rn) with coercivity constant 1. Finally, the inf-sup
condition: there exists γ > 0 such that

γ‖q‖L2(Ω) ≤ sup
v∈H1

0 (Ω;Rn)
v 6=0

(q,∇ · v)L2(Ω)

|v|H1(Ω;Rn)
(14.6.6)

was established by Ladyzhenskaya in 196910. We therefore conclude that the 10 O. A. Ladyzhenskaya. The Mathemati-
cal Theory of Viscous Flows. Gordon and
Breach, 1969

Stokes equations are well-posed.

Remark 14.6.3 (Equivalence of the Babuška and Brezzi conditions).
One could also formulate the saddle-point system as a single bilinear varia-
tional form on

Λ : (V ×Q)× (V ×Q)→ R (14.6.7)

and consider the Babuška conditions for this problem. The Brezzi condi-
tions follow from the Babuška conditions, and vice versa; this equivalence is
proven in a technical report of Demkowicz11. 11 L. Demkowicz. Babuška ⇐⇒ Brezzi

?? Technical Report 06-08, University of
Texas at Austin, 2006

14.7 Finite element discretisations of mixed problems

Let Vh ⊂ V be a closed subspace of V, and let Qh be a closed sub-
space of Q. Consider the Galerkin approximation of the Stokes prob-
lem (14.1.9): find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + b(vh, ph) = F(vh), (14.7.1)

b(uh, qh) = 0, (14.7.2)

for all (vh, qh) ∈ Vh ×Qh.
In order for this to be well-posed, we will require that the varia-

tional problem involving a is well-posed on the discrete kernel

Kh = {vh ∈ Vh : b(vh, qh) = 0 for all qh ∈ Qh}. (14.7.3)
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Recall that the full kernel is

K = {v ∈ V : b(v, q) = 0 for all q ∈ Q}. (14.7.4)

Now, if vh ∈ K ∩ Vh, then vh ∈ Kh also: but the fact that b(vh, qh) = 0
for all qh ∈ Qh might not imply that b(vh, q) = 0 for all q ∈ Q. (It
will for some choices of finite element pairs, and won’t for others.) So
(K ∩Vh) ⊆ Kh; there may be entries in the discrete kernel that are not
in the full kernel. Thus, well-posedness of a on the discrete kernel does not
necessarily follow automatically from well-posedness of a on the full kernel.
In the particular situation of the Stokes equations, it does, because a
is coercive on the entirety of V; but in more difficult problems this
will not be the case.

Similarly, given that b satisfies the inf-sup condition over V and
Q, it does not follow that b satisfies the inf-sup condition: there exists
γ̃ ∈ R such that

0 < γ̃ ≤ inf
qh∈Qh
qh 6=0

sup
vh∈Vh
vh 6=0

b(vh, qh)

‖vh‖‖qh‖
. (14.7.5)

We will see a surprising example of the failure of this condition with
a familiar discretisation momentarily.

Before turning to this counterexample, we state the theorem of
Brezzi that guarantees quasi-optimality of Galerkin discretisations
under these additional assumptions.

Theorem 14.7.1 (Well-posedness and quasi-optimality of Galerkin
discretisations of saddle-point problems). Consider the Galerkin approx-
imation of (14.6.1) over Vh ×Qh, a closed subspace of V ×Q:

a(uh, vh) + b(vh, ph) = F(vh), (14.7.6)

b(uh, qh) = G(qh). (14.7.7)

Let
Kh = {vh ∈ Vh : b(vh, qh) = 0 for all qh ∈ Qh}. (14.7.8)

In addition to the assumptions of 14.6.1 that guarantee well-posedness of the
continuous problem, suppose that

(1) The variational problem

find uh ∈ Kh such that a(uh, vh) = F(vh) for all vh ∈ Kh (14.7.9)

is well-posed.

(2) b satisfies the following inf-sup condition over Vh × Qh: there exists
γ̃ ∈ R such that

0 < γ̃ ≤ inf
qh∈Qh
qh 6=0

sup
vh∈Vh
vh 6=0

b(vh, qh)

‖vh‖V‖qh‖Q
. (14.7.10)
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Then the Galerkin approximation (14.7.6) is well-posed. Furthermore, the
approximate solutions are quasi-optimal: there exists c < ∞ such that

‖u− uh‖V + ‖p− ph‖Q ≤ c
(

inf
vh∈Vh

‖u− vh‖V + inf
qh∈Qh

‖p− qh‖Q

)
.

(14.7.11)

Proof. See Theorem 2.1 of Brezzi12. 12 F. Brezzi. On the existence, unique-
ness and approximation of saddle-point
problems arising from Lagrangian mul-
tipliers. ESAIM: Mathematical Modelling
and Numerical Analysis - Modélisation
Mathématique et Analyse Numérique,
8(R2):129–151, 1974

Finer analyses are possible, identifying c in terms of continuity
and inf-sup constants of the bilinear forms involved. It is also possi-
ble (through duality arguments) to analyse the approximation error
of uh and ph separately.

14.8 Not all finite elements are stable

Consider the Stokes equations once more. Since we have had such
success with the Lagrange elements for coercive problems, let us
naïvely consider the simplest Lagrange finite element

[CG1]
n × [CG1],

or in plain English let us use piecewise linear basis functions for each
component of velocity and for the pressure. Let Vh × Qh be the finite
element function space that arises from equipping each cell K of a
meshM with this element. The resulting finite element discretisation is
unstable.

We will show its instability by explicitly demonstrating that the
discrete inf-sup condition (14.7.10) does not hold. We will do this by
explicitly constructing a pressure 0 6= ph ∈ Qh such that b(vh, ph) = 0
for all vh ∈ Vh. We refer to such a ph as a spurious pressure mode.

Let Ω = (0, 1)2, and divide the edges into N intervals, with N
divisible by three. Break up each square of the mesh into two trian-
gles with a line of positive slope. Such a mesh with N = 9 is shown
in figure 14.1. Each degree of freedom in the pressure space may be
described by its logical coordinates (i, j), with i, j = 0 . . . N.

Since the pressure field is determined completely by its degrees of
freedom at the vertices, we specify its values there: let

ph(i, j) =


0 if i + j ≡ 0 (mod 3),

+1 if i + j ≡ 1 (mod 3),

−1 if i + j ≡ 2 (mod 3).

(14.8.1)

The resulting function is shown in figure 14.2.
This function is not equal to zero but has integral zero on each

cell13. Now, since vh is piecewise linear on each triangle K, (∇ · vh)|K 13 To see this, use the simplest quadra-
ture rule on a triangle, evaluation at
the midpoint. This quadrature rule is
exact for piecewise linear functions and
evaluates to zero.
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Figure 14.1: The mesh on which we will
construct a spurious pressure mode.

Figure 14.2: A spurious pressure mode
(14.8.1).
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is a constant. Therefore, for arbitrary vh ∈ Vh,

b(vh, ph) = −
∫

Ω
ph∇ · vh dx (14.8.2)

= ∑
K∈M

(∇ · vh)|K
∫

K
ph dx (14.8.3)

= 0. (14.8.4)

We thus have a 0 6= ph ∈ Qh such that

sup
vh∈Vh
vh 6=0

b(vh, ph)

‖vh‖V
= 0, (14.8.5)

and so the inf-sup condition cannot hold.
The Brezzi inf-sup condition (14.7.10) encodes a compatibility con-

dition between the spaces Vh and Qh: they cannot be chosen indepen-
dently.

A final word: while this element is unstable (and generally any
equal-order element is unstable), there are many choices of finite
element discretisation which are stable. The simplest to implement is
the Taylor–Hood finite element

[CG2]
n × [CG1],

which does indeed satisfy the Brezzi inf-sup condition and yields a
stable, convergent discretisation14. 14 C. Taylor and P. Hood. A numerical

solution of the Navier-Stokes equations
using the finite element technique.
Computers & Fluids, 1(1):73–100, 1973



A Topics for further study

In this chapter we mention some of the topics that could be covered
in a more advanced course on the finite element method.

A.1 Time-dependent PDEs

Consider the time-dependent PDE

∂u
∂t
−∇2u = f (x, t) in Ω× (0, T),

u(x, t) = 0 on ∂Ω× (0, T),

u(x, 0) = u0(x) in Ω.

The analysis of such equations begins with Bochner spaces, a generali-
sation of Lebesgue spaces to functions whose values themselves lie in
a Banach space. The solution at any instant is a function of space; we
think of the solution of this problem as a function defined on (0, T)
whose value is itself a function of space:

u(x, t) = (u(t)) (x). (A.1.1)

That is, u : (0, T) → H1
0(Ω). Given a Banach space X, the Bochner

space Lp((0, T); X) for p ∈ [1, ∞) is the set of all functions whose
Bochner norm is finite:

‖u‖Lp([0,T];X) =
∫ T

0
‖u(t)‖p

X dt < ∞. (A.1.2)

For more details of these spaces, see Evans, section 5.9.21. 1 L. C. Evans. Partial Differential Equa-
tions, volume 19 of Graduate Studies in
Mathematics. American Mathematical
Society, 2010

When discretising this equation, we can choose to either discretise
in space first or in time first. These choices have different advantages
and disadvantages, but in simple cases the operations commute.
Let us suppose we discretise in space first; this is referred to as the
method of lines. Multiplying by a space-dependent test function v(x) ∈
H1

0(Ω) and integrating by parts, we find∫
Ω

vu̇ dx +
∫

Ω
∇u∇v dx =

∫
Ω

f v dx. (A.1.3)
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Now choose a closed subspace Vh ⊂ H1
0(Ω) and expand u(x, t) in

terms of the finite element basis:

u(x, t) =
N

∑
i=1

ci(t)φi(x), (A.1.4)

where Vh = span(φ1, . . . , φN). The finite element basis functions
depend only on space and the coefficients depend only on time. The
Galerkin approximation in space reduces the PDE system to a large
vector system of ODEs:

Mċ + Ac(t) = g(t), (A.1.5)

c(0) = c0, (A.1.6)

where the mass matrix M is given by

Mji = (φi, φj)L2(Ω) =
∫

Ω
φiφj dx. (A.1.7)

and the stiffness matrix A is given by

Aji =
∫

Ω
∇φi · ∇φj dx. (A.1.8)

This system, referred to as the semidiscretised system, may then be
fully discretised using any standard algorithm for ODE initial value
problems, such as the forward or backward Euler algorithms.

For a brief introduction to the Galerkin solution of parabolic equa-
tions, see Ern & Guermond2, section 6.1; for a full exposition, see 2 A. Ern and J.-L. Guermond. Theory and

Practice of Finite Elements, volume 159 of
Applied Mathematical Sciences. Springer,
2004

Thomée3.

3 V. Thomée. Galerkin Finite Element
Methods for Parabolic Problems, vol-
ume 25 of Springer Series in Computa-
tional Mathematics. Springer, 2006

A.2 Eigenvalue problems

When one wishes to understand the stability of a system in time, the
question often reduces to the solution of an eigenvalue problem. As
a concrete example, let Ω ⊂ R2 be a Lipschitz domain and consider:
find eigenfunctions u and eigenvalues λ such that

−∇2u = λu in Ω,

u = 0 on ∂Ω,∫
Ω

u2 dx = 1. (A.2.1)

This may be cast as a mixed variational problem in the following
manner, with V = H1

0(Ω): find (u, λ) ∈ V ×R such that∫
Ω
∇u · ∇v dx =

∫
Ω

uv dx, (A.2.2)∫
Ω

µu2 dx =
∫

Ω
µ dx, (A.2.3)
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for all (v, µ) ∈ V ×R. The eigenvalues are real because the bilinear
form is symmetric.

Given a closed subspace Vh ⊂ V, we construct the Galerkin ap-
proximation of this problem via: find (uh, λ) ∈ V ×R such that∫

Ω
∇uh · ∇vh dx =

∫
Ω

uhvh dx, (A.2.4)∫
Ω

µu2
h dx =

∫
Ω

µ dx, (A.2.5)

for all (vh, µ) ∈ V ×R.
Given a basis Vh = span(φ1, . . . , φN), this is equivalent to the

eigenvalue problem
Ax = λMx, (A.2.6)

where x is the vector of coefficients of uh, the stiffness matrix A is
given by

Aji = a(φi, φj) =
∫

Ω
∇φi · ∇φj dx, (A.2.7)

and the mass matrix

Mji = (φi, φj)L2(Ω) =
∫

Ω
φiφj dx. (A.2.8)

Note that PDE eigenvalue problems become generalised eigenvalue
problems from the perspective of linear algebra. The mass matrix
on the right-hand side serves to enforce the correct inner product in
the discrete space: the correct inner product to use in RN is not the
standard Euclidean inner product

(x, y) = xT Iy, (A.2.9)

but the L2(Ω) inner product

(x, y) = xT My. (A.2.10)

As a concrete example, consider the L-shaped domain

Ω =
(
(−1,−1)× (1, 1)

)
\
(
(0, 1)× (−1, 0)

)
. (A.2.11)

We solve for the first five eigenfunctions of the Laplace Dirichlet
eigenproblem: find u ∈ H1

0(Ω) and λ ∈ R such that

−∇2u = λu. (A.2.12)

The eigenfunction with smallest eigenvalue λ1 ≈ 9.644 is shown in
figure A.1.

For an excellent review of the finite element discretisation of eigen-
value problems, see Boffi4. 4 D. Boffi. Finite element approximation

of eigenvalue problems. Acta Numerica,
19:1–120, 2010
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Figure A.1: The first eigenfunction of
the Dirichlet Laplacian on the L-shaped
domain. Any resemblance to the logo
of a commercial software package is
purely coincidental.

A.3 Variational inequalities

Let V be a Hilbert space, let a : V × V → R be a symmetric coercive
bilinear form, and let F ∈ V∗. Recall the relationship between the
optimisation problem

u = argmin
v∈V

J(v) =
1
2

a(v, v)− F(v) (A.3.1)

and the variational equation

find u ∈ V such that a(u, v) = F(v) for all v ∈ V. (A.3.2)

In section 6.2, we proved that their solutions were equivalent. We
now consider optimisation problems with inequality constraints, with
the consequence that the solution set is not a vector space.

Consider the following obstacle problem, which models the defor-
mation of an elastic membrane stretched taut over an obstacle. The
obstacle is represented by a function ψ(x, y); we demand that the
vertical deformation of the membrane u(x, y) is such that5 5 Recall that “almost everywhere”

(summarised as a.e.) means “except
possibly on sets of measure zero”, i.e. of
area zero in two space dimensions.

u(x, y) ≥ ψ(x, y) almost everywhere in Ω. (A.3.3)

The membrane deformation still seeks to minimise the Dirichlet
energy, but we now have an additional pointwise-a.e. constraint. The
mathematical formulation is

u = argmin
v∈K

J(v) =
1
2

a(v, v)− F(v), (A.3.4)

where the feasible set K is given by

K := {v ∈ H1
0(Ω) : v ≥ ψ a.e.}, (A.3.5)
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and the bilinear form represents the Dirichlet energy

a(u, v) =
∫

Ω
∇u · ∇v dx. (A.3.6)

We demand that ψ ≤ 0 on the boundary ∂Ω, so that K is nonempty.
With this constraint, this problem has a unique solution (Ciarlet,
section 5.1)6. 6 P. G. Ciarlet. The Finite Element Method

for Elliptic Problems. North-Holland,
1978. Reprinted by SIAM in 2002

Figure A.2: A solution of the obstacle
problem (A.3.4) with obstacle given
by (A.3.7). The membrane is shown
in colour (coloured by its vertical
deformation) and the obstacle is shown
in grey. Only half of the membrane
is visualised; the computed solution
extends over the whole domain.

Before deriving the optimality conditions, we present a concrete
example to build intuition. Let Ω = (−2, 2)× (−2, 2), and let ψ be a
hemisphere of radius 1 centred at the origin, given by

ψ(x, y) =


√

1− x2 − y2 if x2 + y2 ≤ 1

0 otherwise.
(A.3.7)

If we apply no external forces (F = 0), the solution of the problem is
shown in figure A.2 (in colour), along with the obstacle (in grey). In
one part of the domain Ω, the membrane is in contact with the obsta-
cle (u = ψ); in the rest of the domain, the membrane is not in contact
(u > ψ), and the membrane acts to minimise the Dirichlet energy. The
free boundary, where the solution meets the obstacle, is not known in
advance and must be determined as part of the solution.

Another example is given by a “staircase” obstacle, where Ω =

(−1, 1)× (−1, 1) and

ψ(x, y) =


−0.2 −1 ≤ x < −0.5,

−0.4 0.5 ≤ x < 0,

−0.6 0 ≤ x < 0.5,

−0.8 0.5 ≤ x ≤ 1.

(A.3.8)

In this example the membrane is forced by gravity,

F(v) =
∫

Ω
gv dx, (A.3.9)
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Figure A.3: A solution of the obstacle
problem under gravity (A.3.4) with
obstacle given by the staircase (A.3.8).

with g = −10. The solution is depicted in figure A.37. 7 This example is taken from demo step-
41 of the deal.ii finite element software
package.

The optimality conditions for this minimisation problem will cap-
ture the notion that a solution u is a minimiser if and only if the
energy does not decrease along any feasible direction. Thus, we must
understand what the feasible directions are. The feasible set K is con-
vex; given u, v ∈ K, the convex combination of them is also feasible:

u + ε(v− u) ∈ K, ε ∈ [0, 1]. (A.3.10)

Thus, we may characterise every feasible perturbation of a candidate
solution u by taking the set

Dε(u) := {u + ε(v− u) : v ∈ V} (A.3.11)

for ε ∈ (0, 1]. We now intuitively conjecture that the optimality
condition will be that u is a solution to the constrained optimisation
problem if

J′(u; v− u) ≥ 0 for all v ∈ K, (A.3.12)

or in words that the energy can only increase along any feasible
perturbation from u. This is a variational inequality: an inequality that
must hold for all v varying over the set K.

Theorem A.3.1 (Optimality conditions for constrained optimisation
problems). Let V be a Hilbert space, let a : V × V → R be a symmetric
coercive bilinear form, and let F ∈ V∗. Given a nonempty closed convex
subset K ⊂ V, any solution u of

u = argmin
v∈K

J(v) =
1
2

a(v, v)− F(v) (A.3.13)

must satisfy
J′(u; v− u) ≥ 0 for all v ∈ K. (A.3.14)
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Proof. Let u be a solution of the minimisation problem, and let v ∈ K
be arbitrary. Since K is convex, u + ε(v− u) ∈ K for ε ∈ [0, 1]. As u is
a minimiser, we must have that

J(u + ε(v− u)− J(u) ≥ 0. (A.3.15)

Therefore
J(u + ε(v− u)− J(u)

ε
≥ 0, (A.3.16)

and taking the limit as ε→ 0+, we find

J′(u; v− u) ≥ 0. (A.3.17)

Expanding the definition of J′ for the obstacle problem, it reads:
find u ∈ K such that∫

Ω
∇u · ∇(v− u) dx ≥

∫
Ω

f (v− u) dx for all v ∈ K. (A.3.18)

This is the weak form of

−∇2u ≥ f in Ω,

u = 0 on ∂Ω,

u ≥ ψ a.e. in Ω,

(−∇2u− f )(u− ψ) = 0 in Ω. (A.3.19)

The first equation states that the total force acting on the mem-
brane is the applied force f plus something positive: the upward
force that the obstacle exerts on the membrane where the membrane
and obstacle are in contact. This additional force (a Lagrange multi-
plier) is unknown and must be solved for as part of the problem, but
it must be so that the membrane does not penetrate the obstacle.

The final equation encodes a complementarity condition: where
the membrane and the obstacle are not in contact (u 6= ψ), then
the Laplace equation must hold, i.e. −∇u = f . In other words, the
additional force preventing interpenetration can only act where there
is contact. On the other hand, where u = g, then it might be the case
that −∇u− f 6= 0 (although it could be the case: this corresponds to
the membrane just touching the obstacle, not pressing against it).

We conclude with a few words on the numerical solution of such
variational inequalities. Galerkin approximations are well-posed:
they also have a unique solution, are stable, and possess a quasi-
optimality property, just as in the case of linear variational equa-
tions8. We introduce an additional variable λ to represent the un- 8 P. G. Ciarlet. The Finite Element Method

for Elliptic Problems. North-Holland,
1978. Reprinted by SIAM in 2002
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known contact force; λ is the Lagrange multiplier that ensures non-
penetration of the membrane and obstacle. The displacement and
Lagrange multiplier satisfy

(i) u− ψ ≥ 0 (ii) λ ≥ 0 (iii) λ(u− ψ) = 0, (A.3.20)

where all relations are understood pointwise-a.e. These inequalities
are in turn transformed into a rootfinding problem: (A.3.20) is equiva-
lent to

φ(u− ψ, λ) = 0, (A.3.21)

with
φ(a, b) =

√
a2 + b2 − a− b. (A.3.22)

The catch is that the residual (A.3.21) is not Fréchet-differentiable, but
it turns out that it has just enough smoothness to define a Newton-
type method, called a semismooth Newton method. These algorithms
are an extremely exciting recent development, with locally superlin-
ear convergence and excellent performance in practical applications.
For more information on the solution of variational inequalities with
semismooth Newton methods, see the book of Ulbrich9. 9 M. Ulbrich. Semismooth Newton

Methods for Variational Inequalities and
Constrained Optimization Problems in
Function Spaces, volume 11 of MOS-
SIAM Series on Optimization. SIAM,
2011
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