

Mathematical Institute, University of Oxford

8 June, Lecture Hall 3, Mathematical Institute

Time	Speaker
9:30-10:00	Registration
10:00-11:00	Avi Mayorcas
11:00-11:30	Coffee, Common Room
11:30-12:30	Alexandra Neamtu
12:30-2:30	Lunch
2:30-3:30	Claudia Raithel
3:30-4:00	Coffee, Common Room
4:00-5:00	Ilya Chevyrev
7:00	Dinner, Pierre Victoire

9 June, Lecture Hall 4, Mathematical Institute

Time	Speaker
9:00-10:00	Daniel Heydecker
10:00-11:00	Ana Djurdjevac
11:00-11:30	Coffee, Common Room
11:30-12:30	Federico Cornalba
12:30-2:30	Lunch
2:30-3:30	Giuseppe Cannizzaro
3:30-4:00	Coffee, Common Room
4:00-5:00	Bálint Tóth

10 June, Lecture Hall 4, Mathematical Institute

Time	Speaker
9:00-10:00	Peter Morfe
10:00-11:00	Simon Gabriel
11:00-11:30	Coffee, Common Room
11:30-12:30	Ajay Chandra

10:00-11:00	An Additive Noise Approximation to the Keller–Segel–Dean–Kawasaki
	Equation
Avi	The Dean-Kawasaki (DK) equation is a proposed singular SPDE model for the random
Mayorcas	fluctuations of stochastic interacting particle systems around their mean field limits.
	However, it is by now well understood that the fully singular DK equation is ill-posed
	outside of a specific parameter set and that in this case the only solutions are empirical
	measures. This makes the continuum DK equation a challenge to study. In this talk
	I will present joint work with A. Martini (Oxford) in which we study an additive
	noise approximation to the DK equation for a stochastic particle model of chemotaxis.
	Applying the theory of paracontrolled distributions we obtain well-posedness of the
	approximate equation along with a generalised LLN, CLT and LDP.
11:30-12:30	A semigroup approach to quasilinear rough PDEs
Alexandra	We investigate quasilinear parabolic evolution equations driven by a γ -Hölder rough
Neamtu	path, where $\gamma \in (1/3, 1/2]$. We explore the mild formulation that combines functional
	analysis techniques and the controlled rough path approach which entail the local well-
	posedness of such equations. We apply our results to the stochastic Landau–Lifshitz–
	Gilbert and Shigesada–Kawasaki–Teramoto equation. In this framework we obtain a
	random dynamical system associated to the Landau–Lifshitz–Gilbert equation. This
	talk is based on a joint work with Antoine Hocquet.
2:30-3:30	Density fluctuations in weakly interacting particle systems via the Dean-
	Kawasaki equation
Claudia	It has been proposed that the density fluctuations of a system of weakly interacting
Raithel	particles in the regime of large but finite particle number are captured by the Dean-
	Kawasaki equation. A rigorous justification of the Dean-Kawasaki equation has been
	hindered by it being a highly singular SPDE. Motivated by the recent treatment of the
	non-interacting case by Cornalba and Fischer, in this talk we give a justification for the
	Dean-Kawasaki equation in the setting of weakly interacting particles. In particular, we show that, using a suitable weak distance, the law of the fluctuations as predicted
	by a spatially discretized Dean-Kawasaki equation coincides with the law of the fluctu-
	ations of the particle system up to arbitrary order in the inverse particle number and a
	discretization error. This talk is based on a joint work with Federico Cornalba, Julian
	Fischer, and Jonas Ingmanns.
4:00-5:00	Invariant measure and universality of the 2D Yang-Mills Langevin dynamic
Ilya	Yang-Mills (YM) theories form the basis for mathematical models of forces in quantum
Chevyrev	field theory. Despite the attention that they have received, making rigorous sense
	of quantum YM theories has proved to be challenging even in low dimensions. A
	great success story is the complete classification of 2D YM theories, which are exactly
	solvable. In work with Chandra-Hairer-Shen, we gave meaning to the 2D and 3D YM
	Langevin dynamic (stochastic quantisation equation), but proving a link between the 2D YM measure and its Langevin dynamic remained an open problem. In this talk,
	we will present a solution to this problem that establishes the YM measure on the 2D
	torus as the unique invariant measure of its Langevin dynamic. We will discuss some
	elements of the proof as well as some corollaries, including a universality result for the
	YM measure. Based on arXiv:2302.12160, which is joint work with Hao Shen.

8 June, Lecture Hall 3, Mathematical Institute

9 June, Leo	cture Hall 4,	Mathematical	Institute
-------------	---------------	--------------	-----------

9:00-10:00	The Porous Medium Equation: Rescaled Zero-Range Process, Large Devi-
	ations and Gradient Flow
Daniel	We study a rescaling of the zero-range process with homogenous jump rates $g(k) = k^{\alpha}$
Heydecker	with arbitrary $\alpha \geq 1$. With a simultaneous rescaling of space, time and particle size,
	we identify the dynamical large deviations from the porous medium equation, using
	pathwise discretised regularity estimates to prove a version of the superexponential
	estimate in the spirit of the Aubin–Lions–Simons lemma. Finally, we use the large
	deviation principle to give an expression of the porous medium equation as the gradient
	flow of the Boltzmann entropy with respect to a tailor-made Wasserstein-type distance.
10:00-11:00	Nonlinear SPDE approximation of the Dean–Kawasaki equation
Ana	Interacting particle systems provide flexible and powerful models that are useful in
Djurdjevac	many application areas such as sociology (agents), molecular dynamics (proteins) etc.
	However, particle systems with large numbers of particles are very complex and diffi-
	cult to handle, both analytically and computationally. Therefore, a common strategy
	is to derive effective equations that describe the time evolution of the empirical particle
	density. Our aim is to derive and study continuum models for the mesoscopic behaviour
	of particle systems. In particular, we are interested in finite size effects. We will intro-
	duce nonlinear and non-Gaussian models that provide a more faithful representation of
	the evolution of the empirical density of a given independent particle system, than the
	usual linear Gaussian perturbations around the hydrodynamic limit models. We want
	to study the well-posedness of these nonlinear SPDE models and to control the weak
	error of the SPDE approximation. A prototypical example that we will consider is the
	formal identification of a finite system of diffusions with the singular Dean-Kawasaki
	SPDE. This is the joint work with H. Kremp and N. Perkowski. Furthermore, we
	will discuss the application of these types of equations in the feedback-loop opinion
	dynamics. This is a joint work with N. Dj. Conrad and Jonas Köppl.
11:30-12:30	Reducing variance in discretised overdamped Dean–Kawasaki models
Federico	The theory of Fluctuating Hydrodynamics uses suitable stochastic PDEs (SPDEs) to
Cornalba	provide a mesoscopic description of underlying finite-size particle systems subject to
	random fluctuations. The SPDE models in this ever-growing theory are nowadays
	being looked at under several different angles (modeling, analysis, simulation, quanti-
	tative fluctuation analysis, etc)
	After giving some brief context for Fluctuating Hydrodynamics, I will focus on variance
	reduction methods (in the form of Multilevel Monte Carlo schemes, MLMC for short)
	for suitable discretisations of the overdamped Dean–Kawasaki model, which describes
	the motion of N independent Brownian particles. As main result, I will show that the
	proposed MLMC scheme gains efficiency over the standard MC scheme in the same
	scaling regime in which the Dean–Kawasaki model gains efficiency over direct particle
	simulation. This talk is based on joint work in progress with J. Fischer (ISTA) and Q.
	Winters (TU Munich).

9 June, Lecture Hall 4, Mathematical Institute

2:30-3:30	Weak coupling scaling of critical SPDEs
Giuseppe	The study of stochastic PDEs has known tremendous advances in recent years and,
Cannizzaro	thanks to Hairer's theory of regularity structures and Gubinelli and Perkowski's para- controlled approach, (local) existence and uniqueness of solutions of <i>subcritical</i> SPDEs is by now well-understood. The goal of this talk is to move beyond the aforementioned theories and present novel tools to derive the scaling limit (in the so-called weak cou- pling scaling) for some stationary SPDEs at the <i>critical</i> dimension. Our techniques are inspired by the resolvent method developed by Landim, Olla, Yau, Varadhan, and many others, in the context of particle systems in the <i>supercritical</i> dimension and might be well-suited to study a much wider class of statistical mechanics models at criticality.
4:00-5:00	Random walks in divergence-free random environments
Bálint	We will discuss some recent progress on the homogenization of potentially degenerate
Tóth	random environments with divergence-free drift.

10 June, Lecture Hall 4, Mathematical Institute

9:00-10:00	Anomalous Diffusion in the Curl of the Gaussian Free Field
Peter	I will describe recent work on anomalous diffusion asymptotics for diffusions advected
Morfe	by turbulent velocity fields. Precisely, the model of interest involves a passive tracer
	subjected to Brownian diffusion and advection by the curl of the Gaussian free field
	(or divergence-free white noise). Recent work of Cannizzaro, Haunschmidt-Sibitz, and
	Toninelli (2022) established that the mean-square displacement grows like $t\sqrt{\ln(t)}$,
	confirming earlier predictions of the physics literature and a conjecture of Toth and
	Valko (2011). In joint work with Chatzigeorgiou, Otto, and Wang, we give an alterna-
	tive proof built around ideas from stochastic homogenization, with a slightly stronger
	conclusion.
10.00 11.00	The Aller Color constitution with non-down within 1 initial detune
10:00-11:00	The Allen-Cahn equation with random critical initial datum
Simon Gabriel	We consider the Allen-Cahn equation with white noise initial datum in a weak coupling regime. The usual approach of performing a Picard iteration of the solution yields an
Gabrier	infinite series of stochastic iterated integrals. In contrast to considering initial datum
	under sub-critical rescaling, each term in the infinite expansion/series has a positive
	contribution to the solution.
	In this talk, we present an approach that keeps track of each summand's contribution,
	using the notion of rooted trees, and determine their non-trivial Gaussian fluctuations
	exactly. Furthermore, by exploiting the structure of the equation, we approximate the
	infinite series while controlling the imposed error, and determine its limiting law. The
	talk is based on joint work with Tommaso Rosati and Nikos Zygouras.
11:30-12:30	Stochastic quantization for a non-local field theory
Ajay	I will introduce quartic melonic tensor field theories, a class of field theories built
Chandra	using a non-local quartic interaction term. These resemble the more well-known Φ_d^4
	models but behave differently with regards to power-counting and the structure of
	their divergences. In particular, these models are conjectured to be non-trivial in their
	critical dimension, in contrast with Φ_4^4 .
	I will then non-out on recent joint work with I for and Fordinand where are used to the stick
	I will then report on recent joint work with Léonard Ferdinand where we use stochastic analysis methods to construct the Φ_2^4 and Φ_3^4 analogs of these models.
	analysis methods to construct the Ψ_2 and Ψ_3 analogs of these models.
	1