Diffusions in random environment and stochastic homogenization

Benjamin Fehrman

University of Oxford

20-24 September 2021

I. Diffusion processes and PDEs

In these talks, we will consider the longtime behavior of a diffusion process

$$
\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} B_{t}+b\left(X_{t}\right) \mathrm{d} t \text { for } t \in(0, \infty)
$$

- σ quantifies the diffusion
- thermal fluctuations / microscopic collisions driving a Brownian particle
- b quantifies the drift
- mean macroscopic motion / wind or current in a fluid flow

I. Diffusion processes and PDEs

If X_{t} solves

$$
\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} B_{t}+b\left(X_{t}\right) \mathrm{d} t \text { for } t \in(0, \infty)
$$

the central limit scaling $X^{\varepsilon}=\varepsilon X_{t / \varepsilon^{2}}$ solves

$$
\mathrm{d} X_{t}^{\varepsilon}=\sigma\left(X_{t}^{\varepsilon} / \varepsilon\right) \mathrm{d} W_{t}^{\varepsilon}+\varepsilon^{-1} b\left(X_{t}^{\varepsilon} / \varepsilon\right) \mathrm{d} t
$$

What happens (in law) as $\varepsilon \rightarrow 0$?

- (diffusive) If $\sigma=I$ and $b=0$ then, in law for every $\varepsilon \in(0,1)$,

$$
X_{t}^{\varepsilon}=B_{t}
$$

- (ballistic) If $\sigma=I$ and $b=\bar{b} \in \mathbb{R}^{d} \backslash\{0\}$ then, in law for every $\varepsilon \in(0,1)$,

$$
X_{t}^{\varepsilon}=B_{t}+\varepsilon^{-1} t \bar{b} \text { and almost surely }\left|X_{t}^{\varepsilon}\right| \rightarrow \infty \text { as } \varepsilon \rightarrow 0
$$

- (degenerate / trapped) For the Ornstein-Uhlenbeck process

$$
\mathrm{d} X_{t}=\mathrm{d} B_{t}-X_{t} \mathrm{~d} t \text { and } \mathrm{d} X_{t}^{\varepsilon}=\mathrm{d} W_{t}^{\varepsilon}-\varepsilon^{-2} X_{t}^{\varepsilon} \mathrm{d} t
$$

and

$$
\left|X_{t}^{\varepsilon}\right| \rightarrow 0 \text { almost surely as } \varepsilon \rightarrow 0
$$

I. Diffusion processes and PDEs

We are interested in the behavior of X_{t} in law.
If X_{t} solves

$$
\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} B_{t}+b\left(X_{t}\right) \mathrm{d} t \text { for } t \in(0, \infty)
$$

how can we characterize

$$
\mathbb{P}\left[X_{t} \in A\right] \text { for every measurable } A \subseteq \mathbb{R}^{d} ?
$$

The Feynman-Kac Formula: if ρ solves the equation

$$
\partial_{t} \rho=\operatorname{tr}\left(a \nabla^{2} \rho\right)+b \cdot \nabla \rho \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho(\cdot, 0)=\rho_{0},
$$

for the covariance matrix $a=\frac{1}{2} \sigma \sigma^{2}$, then we have the formula

$$
\rho(x, t)=\mathbb{E}_{x}\left[\rho_{0}\left(X_{t}\right)\right] .
$$

- the heat equation and Brownian motion
- the solution is the average of the initial data with respect to the diffusion
- regularizing / smoothing properties of parabolic equations
- proof using Itô's formula (tutorial)

I. Diffusion processes and PDEs

In the central limit scaling $X_{t}^{\varepsilon}=\varepsilon X_{t / \varepsilon^{2}}$,

$$
\mathrm{d} X_{t}^{\varepsilon}=\sigma\left(X_{t}^{\varepsilon} / \varepsilon\right) \mathrm{d} W_{t}^{\varepsilon}+\varepsilon^{-1} b\left(X_{t}^{\varepsilon} / \varepsilon\right) \mathrm{d} t
$$

and the solution ρ^{ε} of the equation

$$
\partial_{t} \rho^{\varepsilon}=\operatorname{tr}\left(a(x / \varepsilon) \nabla^{2} \rho^{\varepsilon}\right)+\varepsilon^{-1} b(x / \varepsilon) \cdot \nabla \rho^{\varepsilon} \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho(\cdot, 0)=\rho_{0}
$$

for $a=\frac{1}{2} \sigma \sigma^{2}$ satisfies

$$
\rho(x, t)=\mathbb{E}_{x}\left[\rho_{0}\left(X_{t}^{\varepsilon}\right)\right]=\mathbb{E}_{\frac{x}{\varepsilon}}\left[\rho_{0}\left(\varepsilon X_{t / \varepsilon^{2}}\right)\right] .
$$

- (diffusive) If $\sigma=I$ and $b=0$ then, for every $\varepsilon \in(0,1)$,

$$
\rho^{\varepsilon}=\bar{\rho} \text { for } \partial_{t} \bar{\rho}=\frac{1}{2} \Delta \bar{\rho} .
$$

- (ballistic) If $\sigma=I$ and $b=\bar{b} \in \mathbb{R}^{d} \backslash\{0\}$ then

$$
\left(\lim _{\varepsilon \rightarrow 0} \rho^{\varepsilon}(x, t)\right)=\left(\lim _{s \rightarrow \infty} \rho_{0}(x+s \bar{b})\right) .
$$

- (degenerate / trapped) In the case of the Ornstein-Uhlenbeck process,

$$
\partial_{t} \rho^{\varepsilon}=\frac{1}{2} \Delta \rho^{\varepsilon}-\varepsilon^{-2} x \cdot \nabla \rho^{\varepsilon}
$$

and $\left(\lim _{\varepsilon \rightarrow 0} \rho^{\varepsilon}(x, t)\right)=\rho_{0}(0)$.

I. Diffusion processes and PDEs

Characterizing the limiting behavior, as $\varepsilon \rightarrow 0$, of the solution

$$
\mathrm{d} X_{t}^{\varepsilon}=\sigma\left(X_{t}^{\varepsilon} / \varepsilon\right) \mathrm{d} W_{t}^{\varepsilon}+\varepsilon^{-1} b\left(X_{t}^{\varepsilon} / \varepsilon\right) \mathrm{d} t
$$

in law is equivalent to characterizing the limiting behavior, as $\varepsilon \rightarrow 0$, of the solutions

$$
\partial_{t} \rho^{\varepsilon}=\operatorname{tr}\left(a(x / \varepsilon) \nabla^{2} \rho^{\varepsilon}\right)+\varepsilon^{-1} b(x / \varepsilon) \cdot \nabla \rho^{\varepsilon},
$$

for arbitrary smooth initial data.

- The Feynan-Kac formula:

$$
\rho^{\varepsilon}(x, t)=\mathbb{E}_{x}\left[\rho_{0}\left(X_{t}^{\varepsilon}\right)\right] .
$$

- As $\varepsilon \rightarrow 0$, we have $X^{\varepsilon} \rightarrow \bar{X}$ in law, for \bar{X} solving

$$
\mathrm{d} \bar{X}_{t}=\bar{\sigma} \mathrm{d} B_{t} \text { for some } \bar{\sigma} \in \mathbb{R}^{d \times d}
$$

if and only if we have $\rho^{\varepsilon} \rightarrow \bar{\rho}$, for $\bar{\rho}$ solving

$$
\partial_{t} \bar{\rho}=\operatorname{tr}\left(\bar{a} \nabla^{2} \bar{\rho}\right) \text { for } \bar{a}=\frac{1}{2} \overline{\sigma \sigma}{ }^{t} .
$$

- The divergence-form case / a reversible diffusion:

$$
-\nabla \cdot\left(a(x / \varepsilon) \nabla \rho^{\varepsilon}\right)=-\operatorname{tr}\left(a(x / \varepsilon) \nabla^{2} \rho^{\varepsilon}\right)-\varepsilon^{-1}\left(\nabla \cdot a^{t}(x / \varepsilon)\right) \cdot \nabla \rho^{\varepsilon} .
$$

II. Ergodic properties of diffusions on the torus

We will restrict (for now) to periodic coefficient fields.

- For 1-periodic coefficients σ and b, we have the diffusion X on \mathbb{R}^{d} :

$$
\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} B_{t}+b\left(X_{t}\right) \mathrm{d} t \text { in } \mathbb{R}^{d} .
$$

Lift this to a diffusion \bar{X} on the torus \mathbb{T}^{d} :

$$
\mathrm{d} \bar{X}_{t}=\sigma\left(\bar{X}_{t}\right) \mathrm{d} B_{t}+b\left(\bar{X}_{t}\right) \mathrm{d} t \text { in } \mathbb{T}^{d}
$$

- For $\rho_{0} \in \mathrm{C}^{\infty}\left(\mathbb{T}^{d}\right)$, the function

$$
\rho(x, t)=\left(\bar{P}_{t} \rho_{0}\right)(x)=\mathbb{E}_{x}\left[\rho_{0}\left(\bar{X}_{t}\right)\right] \text { solves } \partial_{t} \rho=\operatorname{tr}\left(a \nabla^{2} \rho\right)+b \cdot \nabla \rho \text { in } \mathbb{T}^{d} .
$$

- What are the averaging / ergodic properties of the semigroup \bar{P}_{t} ?

II. Ergodic properties of diffusions on the torus

The invariant measure [Section 3.2, Asym. Anal. for Per. Struct.]

Assume that σ and b are sufficiently regular, and assume that $a=\frac{1}{2} \sigma \sigma^{t}$ is uniformly elliptic: there exist $\lambda \leq \Lambda \in(0, \infty)$ such that

$$
\lambda|\xi|^{2} \leq\langle a(x) \xi, \xi\rangle \leq \Lambda|\xi|^{2} \text { for every } x \in \mathbb{T}^{d} \text { and } \xi \in \mathbb{R}^{d}
$$

Then there exists a unique probability measure π on \mathbb{T}^{d} and constants $c, \rho \in(0, \infty)$ such that, for every $f \in L^{\infty}\left(\mathbb{T}^{d}\right)$,

$$
\sup _{x \in \mathbb{T}^{d}}\left|\mathbb{E}_{x}\left[f\left(\bar{X}_{t}\right)\right]-\int_{\mathbb{T}^{d}} f(y) \pi(\mathrm{d} y)\right| \leq c\|f\|_{L^{\infty}\left(\mathbb{T}^{d}\right)} \exp (-\rho t)
$$

- uniform ellipticity yields exponential convergence to the invariant distribution
- The semigroup \bar{P}_{t} on functions defines an adjoint semigroup on \bar{P}_{t}^{*} on measures:

$$
\int_{\mathbb{T}^{d}} f(y)\left(\bar{P}_{t}^{*} \mu\right)(\mathrm{d} y):=\int_{\mathbb{T}^{d}} \bar{P}_{t} f(y) \mu(\mathrm{d} y)=\int_{\mathbb{T}^{d}} \mathbb{E}_{y}\left[f\left(\bar{X}_{t}\right)\right] \mu(\mathrm{d} y)
$$

- Invariance: we have that $\left(\bar{P}_{t}^{*} \pi\right)=\pi$ for every $t \in[0, \infty)$, since

$$
\int_{\mathbb{T}^{d}} \bar{P}_{t} f(y) \pi(\mathrm{d} y)=\int_{\mathbb{T}^{d}} f(y) \pi(\mathrm{d} y) \text { for every } t \in[0, \infty)
$$

- Uniqueness / absolute continuity with respect to Lebesgue measure (tutorial)

II. Ergodic properties of diffusions on the torus

For 1-periodic coefficients,

$$
\mathrm{d} \bar{X}_{t}=\sigma\left(\bar{X}_{t}\right) \mathrm{d} B_{t}+b\left(\bar{X}_{t}\right) \mathrm{d} t \text { in } \mathbb{T}^{d}
$$

- We have the unique, mutually, absolutely continuous invariant measure $\left(\bar{P}_{t}^{*} \pi\right)=\pi$:

$$
\int_{\mathbb{T}^{d}} E_{y}\left[F\left(\bar{X}_{t}\right)\right] \pi(\mathrm{d} y)=\int_{\mathbb{T}^{d}} \bar{P}_{t} f(y) \pi(\mathrm{d} y)=\int_{\mathbb{T}^{d}} f(y) \pi(y) \mathrm{d} y .
$$

- By absolute continuity, the invariant measure π has a positive density m in $L^{1}\left(\mathbb{T}^{d}\right)$:

$$
\mathrm{d} \pi=m(y) \mathrm{d} y .
$$

- By Feynman-Kac if $\partial_{t} \rho=\operatorname{tr}\left(a \nabla^{2} \rho\right)+b \cdot \nabla \rho$ in \mathbb{T}^{d} then

$$
\int_{\mathbb{T}^{d}} \rho_{0}(y) m(y) \mathrm{d} y=\int_{\mathbb{T}^{d}} \rho(y, t) m(y) \mathrm{d} y \text { for every } t \in[0, \infty)
$$

- For the differential operator

$$
\mathcal{L} g=\operatorname{tr}\left(a \nabla^{2} g\right)+b \cdot \nabla g \text { and its adjoint } \mathcal{L}^{*} g=\left(a_{i j} g\right)_{x_{i} x_{j}}-\nabla \cdot(g b),
$$

we have that

$$
0=\partial_{t}\left(\int_{\mathbb{T}^{d}} \rho(y, t) m(y) \mathrm{d} y\right)=\int_{\mathbb{T}^{d}}(\mathcal{L} \rho(y, t)) m(y) \mathrm{d} y=\int_{\mathbb{T}^{d}} \rho(x, t) \mathcal{L}^{*} m(y) \mathrm{d} y .
$$

- The density solves the adjoint equation $\mathcal{L}^{*} m=0$.

II. Ergodic properties of diffusions on the torus

The Fredholm alternative [Section 3.3, Asym. Anal. for Per. Struct.]

Let σ and b be sufficiently regular, and let a be uniformly elliptic. Consider the equations

$$
\begin{equation*}
\operatorname{tr}\left(a \nabla^{2} \rho\right)+b \cdot \nabla \rho=\mathcal{L} \rho=0 \text { in } \mathbb{T}^{d} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(a_{i j} z\right)_{x_{i} x_{j}}-\nabla \cdot(z b)=\mathcal{L}^{*} z=0 \text { in } \mathbb{T}^{d} \tag{2}
\end{equation*}
$$

Then up to a multiplicative constant there exists a unique solution of (1) and (2) (namely, $\rho=1$ and $z=m$, the density invariant measure). Furthermore, for $\phi, \psi \in L^{\infty}\left(\mathbb{T}^{d}\right)$ satisfying

$$
\int_{\mathbb{T}^{d}} \phi(y) m(y) \mathrm{d} y=0 \text { and } \int_{\mathbb{T}^{d}} \psi(y) \mathrm{d} y=0
$$

there exist unique solutions to the equations

$$
\mathcal{L} z=\phi \text { in } \mathbb{T}^{d} \text { with } \int_{\mathbb{T}^{d}} z \mathrm{~d} y=0 \text { and } \mathcal{L}^{*} w=\psi \text { in } \mathbb{T}^{d} \text { with } \int_{\mathbb{T}^{d}} w(y) \mathrm{d} y=1
$$

- We can solve $\mathcal{L} z=\phi$ provided ϕ is orthogonal to the kernel of \mathcal{L}^{*}.
- Orthogonality is necessary: if $\mathcal{L} z=\phi$ and $\mathcal{L}^{*} m=0$ then

$$
\langle\phi, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=\langle\mathcal{L} z, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=\left\langle z, \mathcal{L}^{*} m\right\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=0 .
$$

- Sufficiency relies strongly on compactness.

II. Ergodic properties of diffusions on the torus

Examples of invariant measures m :

- Divergence-form equations / reversible diffusions:

$$
\mathcal{L}^{*} m=-\nabla \cdot a^{t} \nabla m=0 \text { implies that } m=1 .
$$

- Pure diffusions in one-dimension: the case $b=0$ and $d=1$,

$$
\mathcal{L}^{*} m=(a m)_{x x}=0 \text { implies that } m=\left\langle a^{-1}\right\rangle^{-1} \frac{1}{a}
$$

for $\left\langle a^{-1}\right\rangle=\int_{\mathbb{T}^{1}} a^{-1}$.

- In general, for higher dimensions and nonzero drift, they are complicated.

Using the Green's function representation and Fubini's theorem,

$$
\begin{aligned}
\int_{\mathbb{T}^{d}} \mathbb{E}_{y}\left[f\left(X_{t}\right)\right] m(y) \mathrm{d} y & =\int_{\mathbb{T}^{d}} \int_{\mathbb{T}^{d}} \bar{p}_{t}(y, x) f(x) m(y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathbb{T}^{d}} f(x)\left(\int_{\mathbb{T}^{d}} \bar{p}_{t}(y, x) m(y) \mathrm{d} y\right) \mathrm{d} x=\int_{\mathbb{T}^{d}} f(x) m(x) \mathrm{d} x .
\end{aligned}
$$

We have that, for every $t \in[0, \infty)$ and $x \in \mathbb{T}^{d}$,

$$
m(x)=\int_{\mathbb{T}^{d}} \bar{p}_{t}(y, x) m(y) \mathrm{d} y
$$

III. Homogenization of pure diffusions

Consider the pure diffusion $\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} B_{t}$ and the central limit scaling

$$
\mathrm{d} X_{t}^{\varepsilon}=\sigma\left(X_{t} / \varepsilon\right) \mathrm{d} W_{t}^{\varepsilon},
$$

and the corresponding equation

$$
\partial_{t} \rho^{\varepsilon}=\operatorname{tr}\left(a(x / \varepsilon) \nabla^{2} \rho^{\varepsilon}\right),
$$

for $a=\frac{1}{2} \sigma \sigma^{2}$.

$$
a=\lambda_{1} I d
$$

What happens, for example, if $\lambda_{1} \rightarrow 0$ and $\lambda_{2} \rightarrow \infty$?

III. Homogenization of pure diffusions

Consider the pure diffusion $\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} B_{t}$ and the central limit scaling

$$
\mathrm{d} X_{t}^{\varepsilon}=\sigma\left(X_{t} / \varepsilon\right) \mathrm{d} W_{t}^{\varepsilon}
$$

and the corresponding equation

$$
\partial_{t} \rho^{\varepsilon}=\operatorname{tr}\left(a(x / \varepsilon) \nabla^{2} \rho^{\varepsilon}\right)
$$

for $a=\frac{1}{2} \sigma \sigma^{2}$.

- Homogenization: identify $\bar{a} \in \mathbb{R}^{d \times d}$ such that

$$
\rho^{\varepsilon} \rightarrow \bar{\rho}
$$

for $\bar{\rho}$ the solution of

$$
\partial_{t} \bar{\rho}=\operatorname{tr}\left(\bar{a} \nabla^{2} \bar{\rho}\right)
$$

- Equivalently, in law, $X_{t}^{\varepsilon} \rightarrow \bar{X}$ for $\mathrm{d} \bar{X}_{t}=\bar{\sigma} \mathrm{d} B_{t}$.
- a complicated, nonlinear averaging
- what is \bar{a} ?
- it is very much not the case that $\bar{a}=\langle a\rangle$

- We have $\langle a\rangle \rightarrow \frac{1}{2} \lambda_{2} I$ as $\lambda_{1} \rightarrow 0$, while $\bar{a} \rightarrow 0$.

III. Homogenization of pure diffusions

The asymptotic expansion:

$$
\tilde{\rho}^{\varepsilon}(x, t)=\bar{\rho}(x, t)+\varepsilon \rho_{1}(x, x / \varepsilon, t)+\varepsilon^{2} \rho_{2}(x, x / \varepsilon, t)+\ldots
$$

- Evaluating the equation, keeping terms of order $\varepsilon^{-1}, \varepsilon^{0}$, and ε,

$$
\begin{aligned}
\partial_{t} \tilde{\rho}^{\varepsilon}-\operatorname{tr}\left(a(x / \varepsilon) \nabla^{2} \tilde{\rho}^{\varepsilon}\right)= & \varepsilon^{-1} \operatorname{tr}\left(a(x / \varepsilon) \nabla_{y}^{2} \rho_{1}\right) \\
& \partial_{t} \bar{\rho}-\operatorname{tr}\left(a(x / \varepsilon)\left(\nabla_{x}^{2} \bar{\rho}+\nabla_{x y}^{2} \rho_{1}+\nabla_{y}^{2} \rho_{2}\right)\right) \\
& +\varepsilon \partial_{t} \rho_{1}-\varepsilon \operatorname{tr}\left(a(x / \varepsilon)\left(\nabla_{x}^{2} \rho_{1}+\nabla_{x y}^{2} \rho_{2}\right)\right) .
\end{aligned}
$$

- We conclude that $\rho_{1}=0$, which is very much related to the fact that

$$
X_{t}=\sigma\left(X_{t}\right) \mathrm{d} B_{t} \text { is a martingale, }
$$

and therefore have that

$$
\partial_{t} \bar{\rho}=\operatorname{tr}\left(a(x / \varepsilon)\left(\nabla_{x}^{2} \bar{\rho}+\nabla_{y}^{2} \rho_{2}\right)\right)+O(\varepsilon) .
$$

- Separation of scales: we make the ansatz that $\rho_{2}(x, y, t)=\sum_{i, j=1}^{d} w_{i j}(y) \partial_{i j}^{2} \bar{\rho}$ so that

$$
\partial_{t} \bar{\rho}=\operatorname{tr}\left(a(x / \varepsilon)\left(e_{i j}+\nabla^{2} w_{i j}(x / \varepsilon)\right)\right) \partial_{i j}^{2} \bar{\rho}+O(\varepsilon)
$$

- Solvablity / Fredholm alternative requires that

$$
\operatorname{tr}\left(a(y)\left(e_{i j}+\nabla^{2} w_{i j}(y)\right)\right)=\left\langle a_{i j}, m\right\rangle_{L^{2}\left(\mathbb{T}^{d}\right)} \text { in } \mathbb{T}^{d},
$$

and

$$
\partial_{t} \bar{\rho}=\operatorname{tr}\left(\bar{a} \nabla^{2} \bar{\rho}\right) \text { for } \bar{a}=\int_{\mathbb{T}^{d}} a(y) m(y) \mathrm{d} y
$$

III. Homogenization of pure diffusions

The asymptotic expansion:

$$
\tilde{\rho}^{\varepsilon}(x, t)=\bar{\rho}(x, t)+\varepsilon^{2} w_{i j}(x / \varepsilon) \nabla^{2} \bar{\rho}(x, t)+\ldots
$$

- We define the second-order correctors:

$$
\operatorname{tr}\left(a(y)\left(e_{i j}+\nabla^{2} w_{i j}(y)\right)\right)=\left\langle a_{i j}, m\right\rangle_{L^{2}\left(\mathbb{T}^{d}\right)} \text { in } \mathbb{T}^{d}
$$

- We define the homogenized solution

$$
\partial_{t} \bar{\rho}=\operatorname{tr}\left(\bar{a} \nabla^{2} \bar{\rho}\right) \text { for } \bar{a}=\int_{\mathbb{T}^{d}} a(y) m(y) \mathrm{d} y .
$$

- The asymptotic expansion $\tilde{\rho}^{\varepsilon}$ satisfies

$$
\partial_{t} \tilde{\rho}^{\varepsilon}=\operatorname{tr}\left(a(x / \varepsilon) \nabla^{2} \tilde{\rho}^{\varepsilon}\right)+O(\varepsilon) \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \tilde{\rho}^{\varepsilon}=\rho_{0}+O\left(\varepsilon^{2}\right) .
$$

- The difference $z^{\varepsilon}=\rho^{\varepsilon}-\tilde{\rho}^{\varepsilon}$ solves

$$
\partial_{t} z^{\varepsilon}=\operatorname{tr}\left(a(x / \varepsilon) \nabla^{2} z^{\varepsilon}\right)+O(\varepsilon) \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } z^{\varepsilon}=O\left(\varepsilon^{2}\right)
$$

- Since $\tilde{\rho}^{\varepsilon}=\bar{\rho}(x, t)+O\left(\varepsilon^{2}\right)$, the comparison principle proves that, as $\varepsilon \rightarrow 0$,

$$
\rho^{\varepsilon} \rightarrow \bar{\rho} \text { for } \partial_{t} \bar{\rho}=\operatorname{tr}\left(\bar{a} \nabla^{2} \bar{\rho}\right) .
$$

Or, equivalently, that in law the processes X_{t}^{ε} converges in law to $\bar{\sigma} B_{t}$ for $\bar{a}=\frac{1}{2} \bar{\sigma}^{2}$.

III. Homogenization of pure diffusions

Homogenization of pure diffusions

Let b and σ be sufficiently regular, and let a be uniformly elliptic. Then, for every $\rho_{0} \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, the solutions

$$
\partial_{t} \rho^{\varepsilon}=\operatorname{tr}\left(a(x / \varepsilon) \nabla^{2} \rho^{\varepsilon}\right) \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho^{\varepsilon}(\cdot, 0)=\rho_{0} \text {, }
$$

converge, as $\varepsilon \rightarrow 0$, to the solution

$$
\partial_{t} \bar{\rho}=\operatorname{tr}\left(\bar{a} \nabla^{2} \bar{\rho}\right) \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \bar{\rho}(\cdot, 0)=\rho_{0},
$$

for $\bar{a}=\int_{\mathbb{T}^{d}} a(y) m(y) \mathrm{d} y$.

- The homogenized / effective matrix is the average of the original matrix with respect to the invariant measure.
- uniformly elliptic with ellipticity constants determined by m
- emphasizes regions of small diffusion / traps / degeneracies
- In one-dimension, we have that $m(y)=\left\langle a^{-1}\right\rangle^{-1} a^{-1}$ and $\bar{a}=\left\langle a^{-1}\right\rangle^{-1}$.

$$
\begin{aligned}
& a=\lambda_{1} I d \\
& a=\lambda_{2} I d
\end{aligned}
$$

If $0<\lambda_{1} \ll \lambda_{2}$, $m \gg 1$ $0<m \ll 1$.

IV. Periodic homogenization of divergence form equations

A random uniformly elliptic, 1-periodic coefficient field $a: \mathbb{T}^{d} \rightarrow \mathbb{R}^{d \times d}$.

- uniform ellipticity: there exists $\lambda \leq \Lambda \in(0, \infty)$ such that

$$
\lambda|\xi|^{2} \leq\langle a(x) \xi, \xi\rangle \leq \Lambda|\xi|^{2} \text { for every } x \in \mathbb{T}^{d} \text { and } \xi \in \mathbb{R}^{d}
$$

- The solution ρ^{ε} of

$$
-\nabla \cdot a(x / \varepsilon) \nabla \rho^{\varepsilon}=f \text { in } U \text { with } \rho^{\varepsilon}=g \text { on } \partial U
$$

describes the evolution of a system satisfying

$$
\oint_{B_{r}(x)} a(y / \varepsilon, \omega) \nabla \rho^{\varepsilon}(y) \cdot \nu=\int_{B_{r}(x)} f(y) .
$$

- For symmetric a we have the variational formulation and Feynman-Kac formula

$$
\begin{aligned}
\inf _{v \in g+H_{0}^{1}(U)}\left(\int_{U}\langle a(x / \varepsilon) \nabla u, \nabla u\rangle-f u \mathrm{~d} x\right) \\
\text { and } \rho^{\varepsilon}(x)=\mathbb{E}_{x}\left[g\left(X_{\tau_{U}}^{\varepsilon}\right)+\int_{0}^{\tau_{U}} f\left(X_{s}^{\varepsilon}\right) \mathrm{d} s\right] .
\end{aligned}
$$

IV. Periodic homogenization of divergence form equations

A weak solution of the equation

$$
-\nabla \cdot a(x / \varepsilon) \nabla \rho^{\varepsilon}=f \text { in } U \text { with } \rho^{\varepsilon}=g \text { on } \partial U .
$$

is a function $\rho^{\varepsilon} \in H^{1}(U)$ that satisfies, for every $\psi \in \mathrm{C}_{c}^{\infty}(U)$,

$$
\int_{U} a(x / \varepsilon) \nabla \rho^{\varepsilon} \cdot \nabla \psi \mathrm{d} x=\int_{U} \psi f \text { with } \rho^{\varepsilon}=g \text { on } \partial U .
$$

Consider the asymptotic expansion

$$
\tilde{\rho}^{\varepsilon}(x)=\bar{\rho}(x)+\varepsilon \rho_{1}(x, x / \varepsilon)+\varepsilon^{2} \rho_{2}(x, x / \varepsilon)+\ldots
$$

Ignoring terms of order ε and smaller, and evaluating the equation on $\tilde{\rho}^{\varepsilon}$,

$$
\int_{U} a(x / \varepsilon)\left(\nabla_{x} \bar{\rho}+\nabla_{y} \rho_{1}\right) \cdot \nabla \psi \mathrm{d} x=\int_{U} \psi f .
$$

- Identify the equation satisfied by $\bar{\rho}$.
- Separation of scales:

$$
\rho_{1}(x, x / \varepsilon)=\phi_{i}(x / \varepsilon) \partial_{i} \bar{\rho}(x) .
$$

IV. Periodic homogenization of divergence form equations

Defined by first-order correctors ϕ_{i}, the asymptotic expansion

$$
\tilde{\rho}^{\varepsilon}=\bar{\rho}+\varepsilon \phi_{i}(x / \varepsilon) \partial_{i} \bar{\rho}(x)+\ldots
$$

satisfies, up to terms of order ε,

$$
\begin{aligned}
\int_{U} a(x / \varepsilon)\left(\nabla_{x} \bar{\rho}+\nabla_{y} \rho_{1}\right) \cdot \nabla \psi \mathrm{d} x & =\int_{U} a(x / \varepsilon)\left(\left(e_{i}+\nabla \phi_{i}(x / \varepsilon)\right) \partial_{i} \bar{\rho}\right) \cdot \nabla \psi \mathrm{d} x \\
& =-\int_{U} \psi a(x / \varepsilon)\left(e_{i}+\nabla \phi_{i}(x / \varepsilon)\right) \cdot \nabla \partial_{i} \bar{\rho}=\int_{U} \psi f .
\end{aligned}
$$

As $\varepsilon \rightarrow 0$,

$$
a(x / \varepsilon)\left(e_{i}+\nabla \phi_{i}(x / \varepsilon)\right) \rightharpoonup\left\langle a\left(e_{i}+\nabla \phi_{i}\right)\right\rangle=: \bar{a} e_{i} \text { weakly in } L^{2}\left(\mathbb{T}^{d}\right),
$$

and formally we have that

$$
-\nabla \cdot a(y)\left(e_{i}+\nabla \phi_{i}(y)\right)=0 \text { in } \mathbb{T}^{d},
$$

and that $\bar{\rho}$ solves

$$
-\nabla \cdot \bar{a} \nabla \bar{\rho}=f \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U .
$$

- The functions $x_{i}+\phi_{i}(x)$ are a-harmonic
- A first order Liouville theorem: any subquadratic solution of

$$
-\nabla \cdot a \nabla \rho=0 \text { on } \mathbb{R}^{d} \text { satisfies } \rho(x)=c+\xi \cdot x+\phi_{\xi}(x) .
$$

IV. Periodic homogenization of divergence form equations

The perturbed test function method [See Section 3, notes]

Let $a: \mathbb{T}^{d} \rightarrow \mathbb{R}^{d \times d}$ be bounded, measurable, and uniformly elliptic and let $\rho_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$. For every $\varepsilon \in(0,1)$ let ρ^{ε} be the unique weak solution of

$$
-\nabla \cdot a(x / \varepsilon) \nabla \rho^{\varepsilon}=f \text { in } U \text { with } \rho^{\varepsilon}=g \text { on } \partial U .
$$

Then, as $\varepsilon \rightarrow 0$,

$$
\rho^{\varepsilon} \rightharpoonup \bar{\rho} \text { weakly in } H^{1}\left(\mathbb{R}^{d}\right),
$$

for $\bar{\rho}$ satisfying

$$
-\nabla \cdot \bar{a} \nabla \bar{\rho}=f \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U,
$$

for the effective coefficient field $\bar{a} \in \mathbb{R}^{d \times d}$ defined by

$$
\bar{a} e_{i}=\left\langle a\left(e_{i}+\nabla \phi_{i}\right)\right\rangle \text { for }-\nabla \cdot a\left(e_{i}+\nabla \phi_{i}\right)=0 \text { in } \mathbb{T}^{d} .
$$

- compensated compactness methods
- the div-curl lemma
- existence / uniqueness of ϕ_{i} follows by Fredholm or the Lax-Milgram lemma

IV. Periodic homogenization of divergence form equations

The solution ρ^{ε} of

$$
-\nabla \cdot a(x / \varepsilon) \nabla \rho^{\varepsilon}=f \text { in } U \text { with } \rho^{\varepsilon}=g \text { on } \partial U .
$$

We have formally that

$$
\rho^{\varepsilon} \simeq \tilde{\rho}^{\varepsilon}=\bar{\rho}+\varepsilon \phi_{i}(x / \varepsilon) \partial_{i} \bar{\rho}(x)+\ldots
$$

and therefore that

$$
\nabla \rho^{\varepsilon} \simeq \nabla \bar{\rho}+\nabla \phi_{i}(x / \varepsilon) \partial_{i} \bar{\rho} .
$$

As $\varepsilon \rightarrow 0$,

$$
\nabla \rho^{\varepsilon} \rightharpoonup \nabla \bar{\rho} \text { weakly in } L^{2}\left(\mathbb{R}^{d} \times[0, T] ; \mathbb{R}^{d}\right),
$$

but not strongly.

- weak convergence in H^{1} but not strong convergence

IV. Periodic homogenization of divergence form equations

The homogenization error: the error in the two-scale expansion,

$$
w^{\varepsilon}=\rho^{\varepsilon}-\bar{\rho}-\varepsilon \phi_{i}(x / \varepsilon) \partial_{i} \bar{\rho},
$$

for the correctors ϕ_{i} and the homogenized solution $\bar{\rho}$ satisfying

$$
-\nabla \cdot \bar{a} \nabla \bar{\rho}=f \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U \text { and }-\nabla \cdot a\left(e_{i}+\nabla \phi_{i}\right)=0 \text { in } \mathbb{T}^{d} .
$$

The homogenization error w^{ε} satisfies

$$
\begin{aligned}
-\nabla \cdot a(x / \varepsilon) \nabla w^{\varepsilon}= & f-\nabla \cdot\left(a(x / \varepsilon) e_{i} \partial_{i} \bar{\rho}\right)-\nabla \cdot\left(a(x / \varepsilon) \nabla \phi_{i}(x / \varepsilon) \partial_{i} \bar{\rho}\right) \\
& -\varepsilon \nabla \cdot\left(a(x / \varepsilon) \phi_{i}(x / \varepsilon) \nabla\left(\partial_{i} \bar{\rho}\right)\right) .
\end{aligned}
$$

After adding and subtracting

$$
-\nabla \cdot \bar{a} \nabla \bar{\rho}=f
$$

we have that

$$
\begin{aligned}
-\nabla \cdot a(x / \varepsilon) \nabla w^{\varepsilon}= & \nabla \cdot\left(\left(a(x / \varepsilon)\left(e_{i}+\nabla \phi_{i}(x / \varepsilon)\right)-\bar{a} e_{i}\right) \partial_{i} \bar{\rho}\right) \\
& +\varepsilon \nabla \cdot\left(a(x / \varepsilon) \phi_{i}(x / \varepsilon)\left(\nabla \partial_{i} \bar{\rho}\right)\right) .
\end{aligned}
$$

The energy estimate, for $c=c(d, f, g, \lambda, \Lambda) \in(0, \infty)$,

$$
\int_{U}\left|\nabla w^{\varepsilon}\right|^{2} \leq c\left(\left\|\left(a(x / \varepsilon)\left(e_{i}+\nabla \phi_{i}(x / \varepsilon)\right)-\bar{a} e_{i}\right)\right\|_{L^{2}\left(\mathbb{T}^{d}\right)}^{2}+\varepsilon\left\|\phi_{i}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)}^{2}\right)
$$

IV. Periodic homogenization of divergence form equations

The homogenization error $w^{\varepsilon}=\rho^{\varepsilon}-\bar{\rho}-\varepsilon \phi_{i}(x / \varepsilon) \partial_{i} \bar{\rho}$ satisfies

$$
\begin{aligned}
-\nabla \cdot a(x / \varepsilon) \nabla w^{\varepsilon}= & \nabla \cdot\left(\left(a(x / \varepsilon)\left(e_{i}+\nabla \phi_{i}(x / \varepsilon)\right)-\bar{a} e_{i}\right) \partial_{i} \bar{\rho}\right) \\
& +\varepsilon \nabla \cdot\left(a(x / \varepsilon) \phi_{i}(x / \varepsilon)\left(\nabla \partial_{i} \bar{\rho}\right)\right) .
\end{aligned}
$$

The essential observation is that the vectors

$$
q_{i}=a\left(e_{i}+\nabla \phi_{i}\right)-\bar{a} e_{i},
$$

are mean zero:

$$
\left\langle q_{i}\right\rangle=\left\langle a\left(e_{i}+\nabla \phi_{i}\right)\right\rangle-\bar{a} e_{i}=0
$$

and divergence free:

$$
\nabla \cdot q_{i}=\nabla \cdot a(y)\left(e_{i}+\nabla \phi_{i}(y)\right)=0 .
$$

- De Rham cohomology - every mean zero, divergence free field has a potential field
- there exists σ_{i} such that $\nabla \cdot \sigma_{i}=q_{i}$.
- σ is a $d \times d$ skew-symmetric matrix
- vector field is a $(d-1)$-form, skew symmetric matrix is a ($d-2$)-form
— the "stream matrix" from fluids

IV. Periodic homogenization of divergence form equations

Let $q=\left(q_{i}\right): \mathbb{T}^{d} \rightarrow \mathbb{R}^{d}$ be mean zero and divergence free.
There exists a skew-symmetric matrix $\sigma: \mathbb{T}^{d} \rightarrow \mathbb{R}^{d \times d}$ such that

$$
\begin{equation*}
\nabla \cdot \sigma=q \text { where }(\nabla \cdot \sigma)_{i}=\partial_{k} \sigma_{i k} \tag{3}
\end{equation*}
$$

The solution to (3) is not unique - shift by any matrix with rows that are divergence free.
A variational problem: for $\sigma=\left(\sigma_{j k}\right)$ minimize the energy

$$
\int_{\mathbb{T}^{d}}\left|\nabla \sigma_{j k}\right|^{2} \text { subject to the constraint } \nabla \cdot \sigma=q
$$

This leads to the well-posed equation

$$
-\Delta \sigma_{j k}=\partial_{j} q_{k}-\partial_{k} q_{j} \text { on } \mathbb{T}^{d} \text { with }\left\langle\sigma_{j k}\right\rangle=0
$$

We define $\sigma=\left(\sigma_{j k}\right)$ and observe that

$$
\Delta(\nabla \cdot \sigma)_{i}=\Delta\left(\partial_{k} \sigma_{i k}\right)=\partial_{k}\left(\Delta \sigma_{i k}\right)=\Delta q_{i}-\partial_{i}(\nabla \cdot q)=\Delta q_{i}
$$

We have that

$$
\Delta\left((\nabla \cdot \sigma)_{i}-q_{i}\right)=0 \text { and so }(\nabla \cdot \sigma)_{i}-q_{i}=\left\langle(\nabla \cdot \sigma)_{i}-q_{i}\right\rangle=0
$$

and, therefore,

$$
\nabla \cdot \sigma=q .
$$

IV. Periodic homogenization of divergence form equations

The homogenization error: the error in the two-scale expansion,

$$
w^{\varepsilon}=\rho^{\varepsilon}-\bar{\rho}-\varepsilon \phi_{i}(x / \varepsilon) \partial_{i} \bar{\rho}
$$

for the correctors ϕ_{i} and the homogenized solution $\bar{\rho}$ satisfying

$$
-\nabla \cdot \bar{a} \nabla \bar{\rho}=f \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U \text { and }-\nabla \cdot a\left(e_{i}+\nabla \phi_{i}\right)=0 \text { in } \mathbb{T}^{d} .
$$

The homogenization error w^{ε} satisfies

$$
\begin{aligned}
-\nabla \cdot a(x / \varepsilon) \nabla w^{\varepsilon}= & \nabla \cdot\left(\left(a(x / \varepsilon)\left(e_{i}+\nabla \phi_{i}(x / \varepsilon)\right)-\bar{a} e_{i}\right) \partial_{i} \bar{\rho}\right) \\
& +\varepsilon \nabla \cdot\left(a(x / \varepsilon) \phi_{i}(x / \varepsilon)\left(\nabla \partial_{i} \bar{\rho}\right)\right) .
\end{aligned}
$$

The fluxes q_{i} : divergence free fields

$$
q_{i}=a\left(e_{i}+\nabla \phi_{i}\right)-\bar{a} e_{i} .
$$

The flux correctors: skew-symmetric matrices σ_{i} satisfying

$$
\nabla \cdot \sigma_{i}=q_{i} \text { fixed by }-\Delta \sigma_{i j k}=\partial_{j} q_{i k}-\partial_{k} q_{i j}
$$

It follows from the skew-symmetry that distributionally

$$
\nabla \cdot\left(q_{i}(x / \varepsilon) \partial_{i} \bar{\rho}\right)=-\varepsilon \nabla \cdot\left(\sigma_{i}(x / \varepsilon) \nabla \partial_{i} \bar{\rho}\right),
$$

and, therefore,

$$
-\nabla \cdot a(x / \varepsilon) \nabla w^{\varepsilon}=\varepsilon \nabla \cdot\left(\left(a \phi_{i}(x / \varepsilon)-\sigma_{i}(x / \varepsilon)\right) \nabla \partial_{i} \bar{\rho}\right)
$$

IV. Periodic homogenization of divergence form equations

Periodic homogenization of divergence form equations

Let $a: \mathbb{T}^{d} \rightarrow \mathbb{R}^{d \times d}$ be bounded, measurable, and uniformly elliptic. Let $\rho_{0} \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and for every $\varepsilon \in(0,1)$ let

$$
-\nabla \cdot a(x / \varepsilon) \nabla \rho^{\varepsilon}=f \text { in } U \text { with } \rho^{\varepsilon}=g \text { on } \partial U,
$$

and let $\bar{\rho}$ solve

$$
-\nabla \cdot \bar{a} \nabla \bar{\rho}=f \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U,
$$

for $\bar{a} e_{i}=\left\langle a\left(e_{i}+\nabla \phi_{i}\right)\right\rangle$ defined by the correctors $-\nabla \cdot a\left(e_{i}+\nabla \phi_{i}\right)=0$. Then there exists $c=c\left(\rho_{0}, d, f, \lambda, \Lambda\right) \in(0, \infty)$ such that the homogenization error

$$
w^{\varepsilon}=\rho^{\varepsilon}-\bar{\rho}-\varepsilon \phi_{i}(x / \varepsilon) \partial_{i} \bar{\rho}
$$

satisfies

$$
\left\|w^{\varepsilon}\right\|_{\left.H^{1}(U)\right)} \leq c \varepsilon\left(\left\|\phi_{i}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)}+\left\|\sigma_{i}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)}\right) .
$$

- strong H^{1}-convergence of the two-scale expansion
- the two-scale expansion corrects the function and the gradient
- the a-harmonic coordinates $x_{i}+\phi_{i}(x)$-sub-quadratic a-harmonic functions
- Liouville theorems - these are the linear functions in the geometry of a

V. Periodic homogenization of non-divergence form equations

The diffusion equation

$$
\operatorname{tr}\left(a(x / \varepsilon) \nabla^{2} \rho^{\varepsilon}\right)+\varepsilon^{-1} b(x / \varepsilon) \cdot \nabla \rho^{\varepsilon}=f \text { in } U \text { with } \rho^{\varepsilon}=g \text { on } \partial U .
$$

- Postulate an asymptotic expansion of the form

$$
\tilde{\rho}^{\varepsilon}=\bar{\rho}+\varepsilon \phi_{i}(x / \varepsilon) \partial_{i} \bar{\rho}+\varepsilon^{2} \psi(x / \varepsilon)+\ldots
$$

- The corrector equation at order ε^{-1} :

$$
\operatorname{tr}\left(a(y) \nabla^{2} \phi_{i}\right)+b(y) \cdot \nabla \phi_{i}=-b_{i} \text { in } \mathbb{T}^{d} .
$$

Solvability requires $\langle b, m\rangle=0$ for the invariant measure $\mathcal{L}^{*} m=0$.

- At order ε^{0} the solvability condition for ψ requires that $\bar{\rho}$ solves

$$
\partial_{t} \bar{\rho}=\operatorname{tr}\left(\bar{a} \nabla^{2} \bar{\rho}\right) \text { for } \bar{a}=\int_{\mathbb{T}^{d}}(a(y)(1+\nabla \phi(y))+\phi(y) \otimes b(y)) m(y) \mathrm{d} y .
$$

- For the process $\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} B_{t}+b\left(X_{t}\right) \mathrm{d} t$ the process

$$
M_{t}=X_{t}+\phi\left(X_{t}\right) \text { for } \phi=\left(\phi_{1}, \ldots, \phi_{d}\right) \text { is a martingale. }
$$

- Form the decomposition

$$
\varepsilon X_{t / \varepsilon^{2}}=\varepsilon M_{t / \varepsilon^{2}}-\varepsilon \phi\left(X_{t / \varepsilon^{2}}\right) .
$$

V. Periodic homogenization of non-divergence form equations

An alternate approach using the invariant measure: for $\mathcal{L}^{*} m=0$,

$$
\begin{aligned}
& \left.\operatorname{tr}\left(m(x / \varepsilon) a(x / \varepsilon) \nabla^{2} \rho^{\varepsilon}\right)\right)+\varepsilon^{-1} m(x / \varepsilon) b(x / \varepsilon) \cdot \nabla \rho^{\varepsilon} \\
& =\nabla \cdot\left(m(x / \varepsilon) a(x / \varepsilon) \nabla \rho^{\varepsilon}\right)-\varepsilon^{-1}(\nabla \cdot(m(x / \varepsilon) a(x / \varepsilon))-m(x / \varepsilon) b(x / \varepsilon)) \cdot \nabla \rho^{\varepsilon} .
\end{aligned}
$$

- Divergence-free drift: the vector

$$
\tilde{b}(y)=\nabla \cdot(m(y) a(y))-m(y) b(y) \text { is divergenc-free, }
$$

since $\nabla \cdot \tilde{b}=\mathcal{L}^{*} m$.

- Mean zero drift: We have that

$$
\langle\tilde{b}\rangle=\langle\nabla \cdot(m a)-m b\rangle=-\langle m b\rangle=0,
$$

if and only if b is perpendicular to m in the L^{2}-sense that $\langle b, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=0$.

- If the solvability condition $\langle b, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=0$ is satisfied, there exists a potential $\tilde{\sigma}$ with

$$
\nabla \cdot \tilde{\sigma}=\tilde{b}
$$

such that

$$
\left.\left.\operatorname{tr}\left(m(x / \varepsilon) a(x / \varepsilon) \nabla^{2} \rho^{\varepsilon}\right)\right)+\varepsilon^{-1} m(x / \varepsilon) b(x / \varepsilon) \cdot \nabla \rho^{\varepsilon}=\nabla \cdot\left((m(x / \varepsilon) a(x / \varepsilon)+\tilde{\sigma}(x / \varepsilon)) \nabla \rho^{\varepsilon}\right)\right)
$$

- For the new "diffusion matrix"

$$
\tilde{a}=a m+\tilde{\sigma} \text { we have } \nabla \cdot \tilde{a}(x / \varepsilon) \nabla \rho^{\varepsilon}=f(x) m(x / \varepsilon) \text {. }
$$

V. Periodic homogenization of non-divergence form equations

After multiplying the equation by $m(x / \varepsilon)$,

$$
\begin{aligned}
& \left.\operatorname{tr}\left(m(x / \varepsilon) a(x / \varepsilon) \nabla^{2} \rho^{\varepsilon}\right)\right)+\varepsilon^{-1} m(x / \varepsilon) b(x / \varepsilon) \cdot \nabla \rho^{\varepsilon} \\
& =\nabla \cdot\left(m(x / \varepsilon) a(x / \varepsilon) \nabla \rho^{\varepsilon}\right)-\varepsilon^{-1}(\nabla \cdot(m(x / \varepsilon) a(x / \varepsilon))-m(x / \varepsilon) b(x / \varepsilon)) \cdot \nabla \rho^{\varepsilon} \\
& =\nabla \cdot\left((m(x / \varepsilon) a(x / \varepsilon)+\tilde{\sigma}(x / \varepsilon)) \nabla \rho^{\varepsilon}\right)=f m(x / \varepsilon),
\end{aligned}
$$

for $\langle b, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=0$ and for the skew-symmetric matrix $\tilde{\sigma}$ satisfying

$$
\nabla \cdot \tilde{\sigma}=\nabla \cdot(m(x / \varepsilon) a(x / \varepsilon))-m(x / \varepsilon) b(x / \varepsilon) .
$$

The correctors

$$
-\nabla \cdot(a m+\tilde{\sigma})\left(e_{i}+\nabla \phi_{i}\right)=0 \text { in } \mathbb{T}^{d} .
$$

Observe that by Hölder's inequality and Young's inequality that, fo $c=c(d) \in(0, \infty)$,

$$
\int_{\mathbb{T}^{d}}\langle(a m+\tilde{\sigma}) \nabla \phi, \nabla \phi\rangle=\int_{\mathbb{T}^{d}}\langle a \nabla \phi, \nabla \phi\rangle m \leq c\left(\|a m\|_{L^{2}\left(\mathbb{T}^{d}\right)}^{2}+\|\tilde{\sigma}\|_{L^{2}\left(\mathbb{T}^{d}\right)}^{2}\right) .
$$

The homogenized matrix \bar{a} is

$$
\bar{a} e_{i}:=\left\langle(a m+\tilde{\sigma})\left(e_{i}+\nabla \phi_{i}\right)\right\rangle,
$$

and $\bar{\rho}$ solves

$$
\nabla \cdot \bar{a} \nabla \bar{\rho}=\operatorname{fm}(x / \varepsilon) \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U .
$$

V. Periodic homogenization of non-divergence form equations

Periodic homogenization of non-divergence form equations

Assume that $a \in \mathrm{C}^{1, \alpha}\left(\mathbb{T}^{d} ; \mathbb{R}^{d \times d}\right)$ is uniformly elliptic, assume that $b \in \mathrm{C}^{\alpha}\left(\mathbb{T}^{d} ; \mathbb{R}^{d}\right)$, and assume that $\rho_{0} \in \mathrm{C}_{c}^{\infty}\left(\mathbb{T}^{d}\right)$. Let m be the invariant measure $\mathcal{L}^{*} m=0$ and assume that $\langle b, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=0$. Let $\tilde{\sigma}$ be the vector potential satisfying

$$
\nabla \cdot \tilde{\sigma}=\nabla \cdot(a m)-b m,
$$

and let $\tilde{a} \in C^{\alpha}\left(\mathbb{R}^{d}\right)$ be defined by $\tilde{a}=a m+\tilde{\sigma}$. Define the homogenization correctors

$$
-\nabla \cdot \tilde{a}\left(e_{i}+\nabla \phi_{i}\right)=0 \text { in } \mathbb{T}^{d}
$$

Then, for the effective matrix $\bar{a} e_{i}=\left\langle\tilde{a}\left(e_{i}+\nabla \phi_{i}\right)\right\rangle$, for $\bar{\rho}$ satisfying

$$
\nabla \cdot \bar{a} \nabla \bar{\rho}=f m(x / \varepsilon) \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U
$$

the homogenization error

$$
w^{\varepsilon}=\rho^{\varepsilon}-\bar{\rho}-\varepsilon \phi_{i} \partial_{i} \bar{\rho},
$$

satisfies, for some $c=c(f, g, d, \lambda, \Lambda) \in(0, \infty)$,

$$
\left\|w^{\varepsilon}\right\|_{L^{2}[0, T] ; H^{1}\left(\mathbb{T}^{d}\right)} \leq c \varepsilon\left(\left\|\phi_{i}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)}+\left\|\sigma_{i}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)}\right),
$$

for the flux correctors $\nabla \cdot \sigma_{i}=\tilde{a}\left(e_{i}+\nabla \phi_{i}\right)-\bar{a} e_{i}$.

- Energy estimates for the correctors: there exists $c=c(a, m, \tilde{\sigma}) \in(0, \infty)$ such that

$$
\int_{\mathbb{T}^{d}}\left|\nabla \phi_{i}(y)\right|^{2} m(y) \mathrm{d} y \leq c
$$

V. Periodic homogenization of non-divergence form equations

Important examples with $\bar{b}=0$:

- Divergence-form:

$$
-\nabla \cdot a(x / \varepsilon) \nabla \rho^{\varepsilon}=\operatorname{tr}\left(a\left(\frac{x}{\varepsilon}\right) \nabla^{2} \rho^{\varepsilon}\right)+\varepsilon^{-1}\left(\nabla \cdot a^{t}(x / \varepsilon)\right) \cdot \nabla \rho^{\varepsilon} \text {. }
$$

In this case $m=1$ and, as the integral of a periodic gradient,

$$
\langle b, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=\int_{\mathbb{T}^{d}}\left(\nabla \cdot a^{t}(y)\right) \mathrm{d} y=0 .
$$

- Mean-zero divergence free drift: for a potential s with $\nabla \cdot s=b$,

$$
-\nabla \cdot a(x / \varepsilon) \nabla \rho^{\varepsilon}+\varepsilon^{-1} b(x / \varepsilon) \cdot \nabla \rho^{\varepsilon}=\nabla \cdot(a+s)(x / \varepsilon) \nabla \rho^{\varepsilon} .
$$

In this case $m=1$ and

$$
\langle b, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=\int_{\mathbb{T}^{d}} b \mathrm{~d} y=\int_{\mathbb{T}^{d}} \nabla \cdot s(y) \mathrm{d} y=0 .
$$

- Brownian motion in a periodic potential: we consider

$$
-\Delta \rho^{\varepsilon}+\varepsilon^{-1} \nabla U(x / \varepsilon) \cdot \nabla \rho^{\varepsilon}=-e^{U(x / \varepsilon)} \nabla \cdot\left(e^{-U(x / \varepsilon)} \nabla \rho^{\varepsilon}\right) .
$$

The invariant measure is the Gibbs measure $m=\left\langle e^{-U}\right\rangle^{-1} e^{-U}$ and

$$
\langle b, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=\left\langle e^{-U}\right\rangle^{-1} \int_{\mathbb{T}^{d}} e^{-U} \nabla U \mathrm{~d} y=-\left\langle e^{-U}\right\rangle^{-1} \int_{\mathbb{T}^{d}} \nabla e^{-U} \mathrm{~d} y=0
$$

- Symmetry: restricted isotropy in law implies $\bar{b}=0$.

V. Periodic homogenization of non-divergence form equations

The case $\bar{b}=\langle b, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)} \neq 0$.

- Constant coefficients:

$$
\mathrm{d} X_{t}=\mathrm{d} B_{t}+\bar{b} \mathrm{~d} t .
$$

In this case, for the diffusion beginning at zero,

$$
X_{t}^{\varepsilon}=W_{t}^{\varepsilon}+\varepsilon^{-1} t \bar{b} .
$$

Diffusive behavior after subtracting the "effective drift" \bar{b} :

$$
X_{t}^{\varepsilon}-\varepsilon^{-1} t \bar{b}=W_{t}^{\varepsilon} .
$$

- True in general: if $\bar{b} \neq 0$ then as $\varepsilon \rightarrow 0$ the process

$$
X_{t}^{\varepsilon} \text { is ballistic in the direction } \bar{b} \text {. }
$$

However, after centering about this singular trajectory, as $\varepsilon \rightarrow 0$,

$$
X_{t}^{\varepsilon}-\varepsilon^{-1} \bar{b} t \rightarrow \bar{\sigma} B_{t} \text { in law. }
$$

- Repeating the same proof:

$$
\partial_{t} \rho^{\varepsilon}-\nabla \cdot \tilde{a}(x / \varepsilon) \nabla \rho^{\varepsilon}+\varepsilon^{-1} \bar{b} \cdot \nabla \rho^{\varepsilon}=f(x) m(x / \varepsilon),
$$

and $\bar{\rho}^{\varepsilon}$ solves

$$
\partial_{t} \bar{\rho}^{\varepsilon}-\nabla \cdot \bar{a} \nabla \bar{\rho}^{\varepsilon}+\varepsilon^{-1} \bar{b} \cdot \nabla \bar{\rho}^{\varepsilon}=f(x) m(x / \varepsilon) .
$$

Compare $\rho^{\varepsilon}\left(x-\varepsilon^{-1} \bar{b} t, t\right)$ to $\bar{\rho}^{\varepsilon}\left(x-\varepsilon^{-1} \bar{b} t, t\right)$.

VI. A random environment

The Poisson point process on \mathbb{R}^{d} :

- The probability space is the space of locally finite point measures

$$
\Omega=\left\{\omega=\sum_{i \in I} \delta_{x_{i}}: x_{i} \text { are locally finite in } \mathbb{R}^{d}\right\}
$$

with the sigma algebra \mathcal{F} generated by all maps of the form

$$
\omega \rightarrow \omega(B)=\#\left\{i \in I: x_{i} \in B\right\} \text { for Borel subsets } B \subseteq \mathbb{R}^{d}
$$

- For $\lambda \in(0, \infty)$ there exists a unique probability measure \mathbb{P}_{λ} on Ω satisfying:
- For every Borel subset $B \subseteq \mathbb{R}^{d}$,

$$
\mathbb{E}_{\lambda}[\omega(B)]=\lambda|B|
$$

- For every collection of bounded, disjoint subsets $B_{1}, \ldots, B_{N} \subseteq \mathbb{R}^{d}$, the random variables $\omega \rightarrow \omega\left(B_{k}\right)$ are independent.
- For every $y \in \mathbb{R}^{d}$ and measurable set $A \in \mathcal{F}$,

$$
\mathbb{P}_{\lambda}(A)=\mathbb{P}_{\lambda}(A+y) \text { for } A+y=\{\omega(\cdot+y): \omega \in A\}
$$

VI. A random environment

Fix a Poisson point process $\left(\Omega, \mathcal{F}, \mathbb{P}_{\lambda}\right)$. We define the random coefficient field $a(x, \omega): \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}^{d \times d}$, for $\omega=\sum_{i \in I} \delta_{x_{i}}$,

$$
a(x, \omega)=\lambda_{1} \mathbf{1}_{\left\{\cup_{i \in I} B_{1}\left(x_{i}\right)\right\}}+\lambda_{2} \mathbf{1}_{\left\{\cup_{i \in I} B_{1}\left(x_{i}\right)\right\}^{c}}
$$

For the measure-preserving transformation group $\left\{\tau_{x}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}\right\}_{x \in \mathbb{R}^{d}}$ defined by

$$
\tau_{x}(\omega)(\cdot)=\omega(\cdot-x)
$$

we have

$$
a(x+y, \omega)=a\left(y, \tau_{x} \omega\right) \text { for every } x, y \in \mathbb{R}^{d} \text { and } \omega \in \Omega
$$

VII. Stochastic homogenization

A random uniformly elliptic coefficient field $a(x, \omega): \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}^{d \times d}$.

- stationary: for a measure-preserving transformation group $\left\{\tau_{x}: \Omega \rightarrow \Omega\right\}_{x \in \mathbb{R}^{d}}$,

$$
a(x+y, \omega)=a\left(x, \tau_{y} \omega\right)
$$

- ergodicity: the transformation group is qualitatively mixing, for $g: \Omega \rightarrow \mathbb{R}$,

$$
g\left(\tau_{x} \cdot\right)=g(\cdot) \text { for every } x \in \mathbb{R}^{d} \text { if and only if } g \text { is constant. }
$$

We are interested in the limiting behavior, as $\varepsilon \rightarrow 0$, of

$$
-\nabla \cdot a(x / \varepsilon, \omega) \nabla \rho^{\varepsilon}=f \text { in } U \text { with } \rho^{\varepsilon}=g \text { on } \partial U
$$

describes a system in equilibrium:

$$
\oint_{B_{r}(x)} a(y / \varepsilon, \omega) \nabla \rho^{\varepsilon}(y) \cdot \nu=\int_{B_{r}(x)} f(y)
$$

Periodic
Random tile

Poisson cloud

Cluster

VII. Stochastic homogenization

The ergodic theorem [Becker]

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space equipped with an ergodic measure preserving transformation group $\left\{\tau_{x}: \Omega \rightarrow \Omega\right\}_{x \in \mathbb{R}^{d}}$.

Then for every $f \in L^{1}(\Omega)$, for almost every $\omega \in \Omega$,

$$
\lim _{R \rightarrow \infty} f_{B_{R}} f\left(\tau_{x} \omega\right) \mathrm{d} x=\mathbb{E}[f]
$$

And in the weak form, for every $\psi \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, as $\varepsilon \rightarrow 0$,

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d}} \psi(x) f\left(\tau_{x / \varepsilon} \omega\right) \mathrm{d} x \rightarrow \mathbb{E}[f] \int_{\mathbb{R}^{d}} \psi(x) \mathrm{d} x
$$

- A function $f: \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}$ is stationary and ergodic if

$$
f(x, \omega)=f\left(0, \tau_{x} \omega\right)=: g\left(\tau_{x} \omega\right) \text { for every } x \in \mathbb{R}^{d} \text { and } \omega \in \Omega,
$$

for some measurable $g: \Omega \rightarrow \mathbb{R}$ and $\left\{\tau_{x}\right\}_{x \in \mathbb{R}^{d}}$ is ergodic.

- Ergodicity: large-scale spatial averages almost surely approximate the expectation:

$$
f_{B_{R}} f(x, \omega) \mathrm{d} x \simeq \mathbb{E}[f] \text { as } R \rightarrow \infty
$$

- In the weak form, almost surely,

$$
f(x / \varepsilon, \omega) \rightharpoonup \mathbb{E}[f] \text { weakly as } \varepsilon \rightarrow 0
$$

VII. Stochastic homogenization

Stochastic homogenization: for the solutions

$$
\left.-\nabla \cdot a(x / \varepsilon, \omega) \rho^{\varepsilon}(x, \omega)\right)=f \text { in } U \text { with } \rho^{\varepsilon}(\cdot, \omega)=g \text { on } \partial U
$$

there exists a deterministic $\bar{a} \in \mathbb{R}^{d \times d}$ such that

$$
\rho^{\varepsilon}(\cdot, \omega) \rightarrow \bar{\rho} \text { almost surely as } \varepsilon \rightarrow 0
$$

for the solution $\bar{\rho}$ of

$$
-\nabla \cdot \bar{a} \nabla \bar{\rho}=f \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U
$$

Diffusion in random environment: in the symmetric case, for the diffusion processes

$$
\mathrm{d} X_{t}^{\omega}=\sigma\left(X_{t}^{\omega}, \omega\right) \mathrm{d} B_{t}+b\left(X_{t}^{\omega}, \omega\right) \mathrm{d} t
$$

for $a=\frac{1}{2} \sigma \sigma^{t}$, we have almost surely that

$$
\varepsilon X_{t / \varepsilon^{2}}^{\omega} \rightarrow \bar{\sigma} B_{t} \text { in law }
$$

for $\bar{a}=\frac{1}{2} \overline{\sigma \sigma}^{t}$.

VII. Stochastic homogenization

-The equation

$$
-\nabla \cdot a(x / \varepsilon, \omega) \nabla \rho^{\varepsilon}=f \text { in } U \text { with } \rho^{\varepsilon}=g \text { on } \partial U .
$$

-The asymptotic expansion

$$
\rho^{\varepsilon}(x, \omega)=\bar{\rho}(x)+\varepsilon \phi_{i}(x / \varepsilon, \omega) \partial_{i} \bar{\rho}(x)+\ldots
$$

-Almost surely by the ergodic theorem

$$
a(x / \varepsilon, \omega)\left(e_{i}+\nabla \phi_{i}(x / \varepsilon, \omega)\right) \rightharpoonup\left\langle a(0, \omega)\left(e_{i}+\nabla \phi_{i}(0, \omega)\right)\right\rangle=: \bar{a} e_{i} .
$$

-By stationarity we have that $a(x, \omega)=A\left(\tau_{x} \omega\right)$ and $\nabla \phi(x, \omega)=\Phi_{i}\left(\tau_{x} \omega\right)$, so that

$$
a(x / \varepsilon, \omega)\left(e_{i}+\nabla \phi_{i}(x / \varepsilon, \omega)\right) \rightharpoonup\left\langle a(0, \omega)\left(e_{i}+\nabla \phi_{i}(0, \omega)\right)\right\rangle=\mathbb{E}\left[A\left(e_{i}+\Phi_{i}\right)\right] .
$$

-The first-order correctors ϕ_{i} almost surely satisfy on the whole space

$$
-\nabla \cdot a(y, \omega)\left(e_{i}+\nabla \phi_{i}(y, \omega)\right)=0 \text { in } \mathbb{R}^{d}
$$

-For the homogenized coefficient \bar{a} we have

$$
-\nabla \cdot \bar{a} \nabla \bar{\rho}=f \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U .
$$

VII. Stochastic homogenization

The corrector equation

$$
-\nabla \cdot a(y, \omega)\left(e_{i}+\nabla \phi_{i}(y, \omega)\right)=0 \text { in } \mathbb{R}^{d}
$$

The periodic case:

- The probability space is the torus,

$$
\Omega=\mathbb{T}^{d} \text { with the Lebesgue sigma algebra and the normalized Lebesgue measure. }
$$

- The "random" variable

$$
A: \mathbb{T}^{d} \rightarrow \mathbb{R}^{d \times d} \text { is 1-periodic. }
$$

- The transformation group $\left\{\tau_{x}\right\}_{x \in \mathbb{R}^{d}}$ is defined by

$$
\tau_{x} \omega=x+\omega \in \mathbb{T}^{d} \text { for every } x \in \mathbb{R}^{d} \text { and } \omega \in \mathbb{T}^{d}
$$

- The stationary "random" coefficient field is

$$
a(x, \omega)=A(x+\omega)=A\left(\tau_{x} \omega\right) \text { for every } x \in \mathbb{R}^{d} \text { and } \omega \in \mathbb{T}^{d}
$$

Lift the corrector equation to \mathbb{T}^{d} using the environment from the point of view of the particle:

VII. Stochastic homogenization

The corrector equation

$$
-\nabla \cdot a(y, \omega)\left(e_{i}+\nabla \phi_{i}(y, \omega)\right)=0 \text { in } \mathbb{R}^{d}
$$

and the asymptotic expansion $\rho^{\varepsilon}=\bar{\rho}+\varepsilon \phi_{i}(x / \varepsilon, \omega) \partial_{i} \bar{\rho}+\ldots$

- Validity of the asymptotic expansion requires sublinearity: almost surely,

$$
\lim _{\varepsilon \rightarrow 0}\left(\sup _{B_{1}}\left(\varepsilon\left|\phi_{i}(x / \varepsilon, \omega)\right|\right)\right)=\lim _{R \rightarrow \infty}\left(R^{-1}\left(\sup _{B_{R}}\left|\phi_{i}(y, \omega)\right|\right)\right)=0 .
$$

- In an L^{2}-sense, almost surely,

$$
\lim _{R \rightarrow \infty}\left(R^{-1}\left(f_{B_{R}} \phi_{i}^{2}(y, \omega) \mathrm{d} y\right)^{\frac{1}{2}}\right)=0
$$

- A true correction of the diffusion process $\mathrm{d} X_{t}^{\omega}=\sigma\left(X_{t}^{\omega}, \omega\right) \mathrm{d} B_{t}+b\left(X_{t}^{\omega}, \omega\right) \mathrm{d} t$:

$$
X_{t}^{\omega}=X_{t}^{\omega}+\phi\left(X_{t}^{\omega}\right)-\phi\left(X_{t}^{\omega}\right)
$$

- The environment from the point of view of the particle:

$$
\bar{\omega}_{t}=\tau_{X_{t}} \omega
$$

VII. Stochastic homogenization

How to lift the corrector equation to Ω :

$$
-\nabla \cdot a(y, \omega)\left(e_{i}+\nabla \phi_{i}(y, \omega)\right)=0 \text { in } \mathbb{R}^{d}
$$

- Differential operators on Ω :

$$
D_{i} f(\omega)=\lim _{h \rightarrow 0} \frac{f\left(\tau_{h e_{i}} \omega\right)-f(\omega)}{h} \text { strongly in } L^{2}(\Omega)
$$

- Smooth functions on Ω : for $\psi \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and $f \in L^{\infty}(\Omega)$,

$$
f_{\psi}(\omega)=\int_{\mathbb{R}^{d}} f\left(\tau_{x} \omega\right) \psi(\omega) \mathrm{d} x
$$

- Formally we have the H^{1}-space

$$
\mathcal{H}^{1}(\Omega)=\cap_{i=1}^{d} \mathcal{D}\left(D_{i}\right) .
$$

- We can hope to solve

$$
-D \cdot a\left(e_{i}+D \phi_{i}\right)=0 \text { in } \Omega,
$$

in the sense that

$$
\mathbb{E}\left[a\left(e_{i}+D \phi_{i}\right) \cdot D \psi\right]=0 \text { for all } \psi \in \mathcal{H}^{1}(\Omega)
$$

- No compactness, no Poincaré inequality, no Fredholm alternative.

VII. Stochastic homogenization

How to lift the corrector equation to Ω :

$$
-\nabla \cdot a(y, \omega)\left(e_{i}+\nabla \phi_{i}(y, \omega)\right)=0 \text { in } \mathbb{R}^{d}
$$

- The differential operators and H^{1}-space:

$$
D_{i} f(\omega)=\lim _{h \rightarrow 0} \frac{f\left(\tau_{h e_{i}} \omega\right)-f(\omega)}{h} \text { strongly in } L^{2}(\Omega) \text { and } \mathcal{H}^{1}(\Omega)=\cap_{i=1}^{d} \mathcal{D}\left(D_{i}\right)
$$

- The space of generalized gradients:

$$
L_{\mathrm{pot}}^{2}(\Omega)={\overline{\left\{D \psi: \psi \in \mathcal{H}^{1}(\Omega)\right\}}}^{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)}
$$

- Every $\Phi \in L_{\mathrm{pot}}^{2}(\Omega)$ is a gradient in the sense that it is distributionally curl free:

$$
D_{i} \Phi_{j}=D_{j} \Phi_{i} \text { for every } i, j \in\{1, \ldots, d\}
$$

- The Lax-Milgram lemma: there exists a unique $\Phi_{i} \in L_{\mathrm{pot}}^{2}(\Omega)$ satisfying

$$
-D \cdot A\left(e_{i}+\Phi_{i}\right)=0 \text { in } \Omega
$$

in the sense that

$$
\mathbb{E}\left[A\left(e_{i}+\Phi_{i}\right) \cdot \Psi\right]=0 \text { for every } \Psi \in L_{\mathrm{pot}}^{2}(\Omega)
$$

- We construct the stationary gradient of the corrector.

VII. Stochastic homogenization

- We construct the stationary gradients of the correctors and flux correctors:

$$
-D \cdot A\left(e_{i}+\Phi_{i}\right)=0 \text { and }-D \cdot \Sigma_{i j k}=D_{j} Q_{i k}-D_{k} Q_{i j}
$$

for the fluxes $Q_{i}=A\left(e_{i}+\Phi_{i}\right)-\bar{a} e_{i}$.

- The correctors and flux correctors are almost surely defined by

$$
\int_{B_{1}} \phi_{i}(y, \omega) \mathrm{d} y=0 \text { with } \nabla \phi_{i}(x, \omega)=\Phi_{i}\left(\tau_{x} \omega\right)
$$

and

$$
\int_{B_{1}} \sigma_{i j k}(y, \omega) \mathrm{d} y=0 \text { with } \nabla \sigma_{i j k}(x, \omega)=\Sigma_{i j k}\left(\tau_{x} \omega\right)
$$

- For the fluxes $q_{i}=a\left(e_{i}+\nabla \phi_{i}\right)-\bar{a} e_{i}$ and for $\sigma_{i}=\left(\sigma_{i j k}\right)$, almost surely,

$$
-\nabla \cdot a(y, \omega)\left(e_{i}+\nabla \phi_{i}(y, \omega)\right)=0 \text { and } \nabla \cdot \sigma_{i}(y, \omega)=q_{i}(y, \omega) \text { on } \mathbb{R}^{d}
$$

- Almost surely the homogenization error

$$
w^{\varepsilon}(x, \omega)=\rho^{\varepsilon}(x, \omega)-\bar{\rho}(x)-\varepsilon \phi_{i}(x / \varepsilon, \omega) \partial_{i} \bar{\rho}
$$

solves the equation

$$
-\nabla \cdot a(x / \varepsilon, \omega) \nabla w^{\varepsilon}=\varepsilon \nabla \cdot\left(\left(a(x / \varepsilon, \omega) \phi_{i}(x / \varepsilon, o)-\sigma_{i}(x / \varepsilon, \omega)\right) \nabla \partial_{i} \bar{\rho}\right) .
$$

VII. Stochastic homogenization

- Almost surely the homogenization error

$$
w^{\varepsilon}(x, \omega)=\rho^{\varepsilon}(x, \omega)-\bar{\rho}(x)-\varepsilon \phi_{i}(x / \varepsilon, \omega) \partial_{i} \bar{\rho}
$$

solves the equation

$$
-\nabla \cdot a(x / \varepsilon, \omega) \nabla w^{\varepsilon}=\varepsilon \nabla \cdot\left(\left(a(x / \varepsilon, \omega) \phi_{i}(x / \varepsilon, \omega)-\sigma_{i}(x / \varepsilon, \omega)\right) \nabla \partial_{i} \bar{\rho}\right) .
$$

- The energy estimate, for some $c=c(\lambda, \Lambda, d, f, g) \in(0, \infty)$,

$$
\int_{U}\left|\nabla w^{\varepsilon}\right|^{2} \leq c\left(\int_{U}\left|\varepsilon \phi_{i}(x / \varepsilon, \omega)\right|^{2}+\left|\varepsilon \sigma_{i}(x / \varepsilon, \omega)\right|^{2}\right)
$$

- Homogenization requires L^{2}-sublinearity:

$$
\lim _{\varepsilon \rightarrow 0}\left(\int_{U}\left|\varepsilon \phi_{i}(x / \varepsilon, \omega)\right|^{2} \mathrm{~d} x\right)=0
$$

- It suffices to prove almost surely that

$$
\lim _{\varepsilon \rightarrow 0}\left(\int_{U}\left|\varepsilon \phi_{i}(x / \varepsilon, \omega)-\left\langle\varepsilon \phi_{i}(\cdot / \varepsilon, \omega)\right\rangle_{U}\right|^{2} \mathrm{~d} y\right)=0
$$

for $\left\langle\varepsilon \phi_{i}(\cdot / \varepsilon, \omega)\right\rangle_{U}=\int_{U} \varepsilon \phi_{i}(x / \varepsilon, \omega) \mathrm{d} x$.

VII. Stochastic homogenization

To prove that:

$$
\lim _{\varepsilon \rightarrow 0}\left(\int_{U}\left|\varepsilon \phi_{i}(x / \varepsilon, \omega)-\left\langle\varepsilon \phi_{i}(\cdot / \varepsilon, \omega)\right\rangle_{U}\right|^{2} \mathrm{~d} y\right)=0
$$

- The Poincaré inequality: for every $\varepsilon \in(0,1)$, for $c=c(U) \in(0, \infty)$,

$$
\int_{U}\left|\varepsilon \phi_{i}(x / \varepsilon, \omega)-\left\langle\varepsilon \phi_{i}(\cdot / \varepsilon, \omega)\right\rangle_{U}\right|^{2} \mathrm{~d} y \leq c \int_{U}\left|\nabla \phi_{i}(x / \varepsilon, \omega)\right|^{2} \mathrm{~d} y .
$$

- The ergodic theorem: almost surely, for $c=c(\lambda, \Lambda) \in(0, \infty)$,

$$
\lim _{\varepsilon \rightarrow 0} \int_{U}\left|\nabla \phi_{i}(x / \varepsilon, \omega)\right|^{2} \mathrm{~d} y=\mathbb{E}\left[\left|\Phi_{i}\right|^{2}\right] \leq c
$$

- The Poincaré inequality: almost surely,

$$
\left\{\varepsilon \phi_{i}(x / \varepsilon, \omega)-\left\langle\varepsilon \phi_{i}(\cdot / \varepsilon, \omega)\right\rangle_{U}\right\}_{\varepsilon \in(0,1)} \text { is bounded in } H^{1}(U)
$$

- The ergodic theorem: almost surely,

$$
\nabla \phi_{i}(x / \varepsilon, \omega) \rightharpoonup \mathbb{E}\left[\Phi_{i}\right]=0 \text { weakly in } H^{1}(U)
$$

and, therefore,

$$
\varepsilon \phi_{i}(x / \varepsilon, \omega)-\left\langle\varepsilon \phi_{i}(\cdot / \varepsilon, \omega)\right\rangle_{U} \rightharpoonup c=0 \text { weakly in } H^{1}(U)
$$

- The Sobolev embedding theorem: almost surely,

$$
\varepsilon \phi_{i}(x / \varepsilon, \omega)-\left\langle\varepsilon \phi_{i}(\cdot / \varepsilon, \omega)\right\rangle_{U} \rightarrow 0 \text { strongly in } L^{2}(U)
$$

VII. Stochastic homogenization

Stochastic homogenization [Kozlov, Papanicolaou, Varadhan...]

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $a: \Omega \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$ be a uniformly elliptic, stationary, and ergodic coefficient field and for every $\omega \in \Omega$ let ρ^{ε} solve the equation

$$
-\nabla \cdot a(x / \varepsilon, \omega) \nabla \rho^{\varepsilon}=f \text { in } U \text { with } \rho^{\varepsilon}=g \text { on } \partial U .
$$

Let the homogenized coefficient $\bar{a} \in \mathbb{R}^{d \times d}$ be defined by

$$
\bar{a} e_{i}:=\mathbb{E}\left[A\left(e_{i}+\Phi_{i}\right)\right] \text { for } \Phi_{i} \in L_{\mathrm{pot}}^{2}(\Omega) \text { satisfying }-D \cdot A\left(e_{i}+\Phi_{i}\right)=0
$$

and let $\bar{\rho}$ be defined the homogenized solution

$$
-\nabla \cdot \bar{a} \nabla \bar{\rho}=f \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U .
$$

Then for the homogenization correctors ϕ_{i} defined by

$$
\int_{B_{1}} \phi_{i}(y, \omega) \mathrm{d} y=1 \text { with } \nabla \phi_{i}(y, \omega)=\Phi_{i}\left(\tau_{y} \omega\right)
$$

the two-scale expansion

$$
w^{\varepsilon}(x, \omega)=\rho^{\varepsilon}(x, \omega)-\bar{\rho}(x)-\varepsilon \phi_{i}(x / \varepsilon, \omega) \partial_{i} \bar{\rho}(x),
$$

almost surely satisfies

$$
\lim _{\varepsilon \rightarrow 0}\left\|w^{\varepsilon}\right\|_{H^{1}(U)}=0
$$

- A regularity theory for random elliptic operators; Gloria, Neukamm, Otto
- Quantitative Stochastic Homogenization and Large-Scale Regularity; Armstrong, et al.

VII. Stochastic homogenization

Divergence-free environments [Avelleneda, Komoroski, Majda, Olla, Kozma, Tóth, F...]

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $a: \Omega \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$ be a uniformly elliptic, stationary, and ergodic coefficient field and for every $\omega \in \Omega$ let ρ^{ε} solve the equation

$$
-\nabla \cdot a(x / \varepsilon, \omega) \nabla \rho^{\varepsilon}+\varepsilon^{-1} b(x / \varepsilon, \omega)=f \text { in } U \text { with } \rho^{\varepsilon}=g \text { on } \partial U,
$$

for a stationary and ergodic, mean zero and divergence free drift $b(x, \omega)=B\left(\tau_{x} \omega\right)$. Assume that b admits a stationary L^{p}-integrable stream matrix S :

$$
D \cdot S=B \text { on } \Omega \text { with } S \in L^{p}\left(\Omega ; \mathbb{R}^{d \times d}\right) .
$$

Let the homogenized coefficient $\bar{a} \in \mathbb{R}^{d \times d}$ be defined by

$$
\bar{a} e_{i}:=\mathbb{E}\left[(A+S)\left(e_{i}+\Phi_{i}\right)\right] \text { for } \Phi_{i} \in L_{\mathrm{pot}}^{2}(\Omega) \text { satisfying }-D \cdot(A+S)\left(e_{i}+\Phi_{i}\right)=0,
$$

and let $\bar{\rho}$ be the homogenized solution

$$
-\nabla \cdot \bar{a} \nabla \bar{\rho}=f \text { in } U \text { with } \bar{\rho}=g \text { on } \partial U
$$

If $p=2$ then almost surely

$$
\rho^{\varepsilon} \rightharpoonup \bar{\rho} \text { weakly in } H^{1}(U) .
$$

If $p=d \wedge(2+\delta)$ then the two-scale expansion $w^{\varepsilon}=\rho^{\varepsilon}-\bar{\rho}-\varepsilon \phi_{i} \partial_{i} \bar{\rho}$ almost surely satisfies

$$
\lim _{\varepsilon \rightarrow 0}\left\|w^{\varepsilon}\right\|_{H^{1}(U)}=0
$$

- Also the case $b=\nabla U$ for a stationary potential U : Gibbs measure $m=\mathbb{E}\left[e^{-U}\right]^{-1} e^{-U}$

VII. Stochastic homogenization

The diffusion $\mathrm{d} X_{t}=\sigma\left(X_{t}, \omega\right) \mathrm{d} B_{t}$.

Homogenization of balanced environments [Papanicolaou, Varadhan]

Assume that $a: \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}^{d \times d}$ is uniformly elliptic, stationary, and ergodic. Then there exists a unique mutually absolutely continuous invariant measure π for the environment from the point of view of the particle on $(\Omega, \mathcal{F}, \mathbb{P})$: for every $f \in L^{\infty}(\Omega)$,

$$
\mathbb{E}_{\pi}\left[E_{0, \omega}\left[f\left(\tau_{X_{t}} \omega\right)\right]\right]=\mathbb{E}_{\pi}[f]
$$

The homogenized coefficient $\bar{a} \in \mathbb{R}^{d \times d}$ is defined by

$$
\bar{a}=\mathbb{E}_{\pi}[a] .
$$

The solutions

$$
\partial_{t} \rho^{\varepsilon}=\operatorname{tr}(a(x / \varepsilon, \omega)) \text { on } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho^{\varepsilon}(\cdot, 0)=\rho_{0}
$$

converge almost surely as $\varepsilon \rightarrow 0$ to the solution

$$
\partial_{t} \bar{\rho}=\operatorname{tr}\left(\bar{a} \nabla^{2} \bar{\rho}\right) \text { on } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho(\cdot, 0)=\rho_{0}
$$

- The Aleksandrov-Bakelman-Pucci estimate: suppose that ρ^{ε} solves

$$
\operatorname{tr}\left(a(x / \varepsilon, \omega) \nabla^{2} \rho^{\varepsilon}\right)=f \text { in } B_{1} \text { with } \rho^{\varepsilon}=0 \text { on } \partial B_{1} .
$$

Then, for $c=c(\lambda, \Lambda, d) \in(0, \infty)$ independent of $\varepsilon \in(0,1)$,

$$
\left\|\rho^{\varepsilon}\right\|_{L^{\infty}\left(B_{1}\right)} \leq c\|f\|_{L^{d}\left(B_{1}\right)} .
$$

VII. Stochastic homogenization

Consider the diffusion in random environment

$$
\mathrm{d} X_{t}=\sigma\left(X_{t}, \omega\right) \mathrm{d} B_{t}+b\left(X_{t}, \omega\right) \mathrm{d} t .
$$

In the periodic case, for the invariant measure m and in the central limit scaling,

$$
\langle b, m\rangle_{L^{2}\left(\mathbb{T}^{d}\right)}=\bar{b}=0 \text { implies a diffusive behavior, }
$$

and

$$
\bar{b} \neq 0 \text { implies ballistic behavior in direction } \bar{b} \text {. }
$$

In the absence of an invariant measure try to rule out ballistic behavior using symmetry. Assume that, for every orthogonal transformation r that preserves the coordinate axis,

$$
(r \sigma(x, \omega), r b(x, \omega))_{x \in \mathbb{R}^{d}} \text { and }(\sigma(r x, \omega), b(r x, \omega))_{x \in \mathbb{R}^{d}} \text { have the same law. }
$$

Then, since for every orthogonal transformation r preserving the coordinate axis, X_{t} and $r X_{t}$ have the same law under $\mathbb{P} \ltimes P_{0, \omega}$.

In the annealed sense we have that

$$
\mathbb{E}\left[E_{0, \omega}\left[X_{t}\right]\right]=0
$$

VII. Stochastic homogenization

Homogenization of isotropic diffusions [Sznitman, Zeitouni, F.]

Let $a: \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}^{d \times d}$ and $b: \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}^{d}$ be uniformly elliptic, bounded, Lipschitz continuous, and stationary coefficient fields satisfying a finite range of dependence. Assume that for every orthogonal transformation r preserving the coordinate axis

$$
\left(r a(x, \omega) r^{t}, r b(x, \omega)\right)_{x \in \mathbb{R}^{d}} \text { and }(a(r x, \omega), b(r x, \omega))_{x \in \mathbb{R}^{d}} \text { have the same law. }
$$

Then there exists $\eta \in(0, \infty)$ such that if

$$
|a-I| \leq \eta \text { and }|b| \leq \eta,
$$

then there exists $\bar{a} \in \mathbb{R}$ such that the solutions

$$
\partial_{t} \rho^{\varepsilon}=\operatorname{tr}\left(a(x / \varepsilon, \omega) \nabla^{2} \rho^{\varepsilon}\right)+\varepsilon^{-1} b(x / \varepsilon, \omega) \cdot \nabla \rho^{\varepsilon} \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho^{\varepsilon}(\cdot, 0)=\rho_{0}
$$

converge almost surely as $\varepsilon \rightarrow 0$ to the solution of

$$
\partial_{t} \bar{\rho}=\bar{a} \Delta \bar{\rho} \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \bar{\rho}(\cdot, 0)=\rho_{0}
$$

Furthermore, there exists a unique mutually absolutely continuous invariant measure π on $(\Omega, \mathcal{F}, \mathbb{P})$ for the process from the point of view of the particle: for every $f \in L^{\infty}(\Omega)$,

$$
\mathbb{E}_{\pi}\left[E_{0, \omega}\left[f\left(\tau_{X_{t}} \omega\right)\right]\right]=\mathbb{E}_{\pi}[f]
$$

- the perturbation says that for short times the process is like a Brownian motion
- an inductive renormalization argument controls traps / localization / coupling

