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I. Di↵usion processes and PDEs

In these talks, we will consider the longtime behavior of a di↵usion process

dXt = �(Xt) dBt + b(Xt) dt for t 2 (0,1).

• � quantifies the di↵usion

— thermal fluctuations / microscopic collisions driving a Brownian particle

• b quantifies the drift

— mean macroscopic motion / wind or current in a fluid flow
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I. Di↵usion processes and PDEs

If Xt solves
dXt = �(Xt) dBt + b(Xt) dt for t 2 (0,1),

the central limit scaling X" = "Xt/"2 solves

dX"

t = �(X"
t/") dW "

t + "�1b(X"
t/") dt.

What happens (in law) as "! 0?

• (di↵usive) If � = I and b = 0 then, in law for every " 2 (0, 1),

X"

t = Bt.

• (ballistic) If � = I and b = b 2 Rd
\ {0} then, in law for every " 2 (0, 1),

X"

t = Bt + "�1tb and almost surely |X"

t | ! 1 as "! 0.

• (degenerate / trapped) For the Ornstein-Uhlenbeck process

dXt = dBt �Xt dt and dX"

t = dW "

t � "�2X"

t dt,

and
|X"

t | ! 0 almost surely as "! 0.
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I. Di↵usion processes and PDEs

We are interested in the behavior of Xt in law.

If Xt solves
dXt = �(Xt) dBt + b(Xt) dt for t 2 (0,1),

how can we characterize

P[Xt 2 A] for every measurable A ✓ Rd?

The Feynman-Kac Formula: if ⇢ solves the equation

@t⇢ = tr(ar2⇢) + b ·r⇢ in Rd
⇥ (0,1) with ⇢(·, 0) = ⇢0,

for the covariance matrix a = 1

2
��2, then we have the formula

⇢(x, t) = Ex [⇢0(Xt)] .

• the heat equation and Brownian motion

• the solution is the average of the initial data with respect to the di↵usion

— regularizing / smoothing properties of parabolic equations

• proof using Itô’s formula (tutorial)
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I. Di↵usion processes and PDEs

In the central limit scaling X"

t
= "Xt/"2 ,

dX"

t = �(X"
t/") dW "

t + "�1b(X"
t/") dt,

and the solution ⇢" of the equation

@t⇢
" = tr(a(x/")r2⇢") + "�1b(x/") ·r⇢" in Rd

⇥ (0,1) with ⇢(·, 0) = ⇢0,

for a = 1

2
��2 satisfies

⇢(x, t) = Ex [⇢0(X
"

t )] = E x
"

h
⇢0("Xt/"2 )

i
.

• (di↵usive) If � = I and b = 0 then, for every " 2 (0, 1),

⇢" = ⇢ for @t⇢ =
1

2
�⇢.

• (ballistic) If � = I and b = b 2 Rd
\ {0} then

✓
lim
"!0

⇢"(x, t)

◆
=
⇣

lim
s!1

⇢0(x+ sb)
⌘
.

• (degenerate / trapped) In the case of the Ornstein-Uhlenbeck process,

@t⇢
" =

1

2
�⇢" � "�2x ·r⇢",

and (lim"!0 ⇢"(x, t)) = ⇢0(0).
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I. Di↵usion processes and PDEs

Characterizing the limiting behavior, as "! 0, of the solution

dX"

t = �(X"
t/") dW "

t + "�1b(X"
t/") dt,

in law is equivalent to characterizing the limiting behavior, as "! 0, of the solutions

@t⇢
" = tr(a(x/")r2⇢") + "�1b(x/") ·r⇢",

for arbitrary smooth initial data.

• The Feynan-Kac formula:
⇢"(x, t) = Ex [⇢0(X

"

t )] .

• As "! 0, we have X"
! X in law, for X solving

dXt = � dBt for some � 2 Rd⇥d,

if and only if we have ⇢" ! ⇢, for ⇢ solving

@t⇢ = tr(ar2⇢) for a =
1

2
��t.

• The divergence-form case / a reversible di↵usion:

�r · (a(x/")r⇢") = � tr(a(x/")r2⇢")� "�1(r · at(x/")) ·r⇢".
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II. Ergodic properties of di↵usions on the torus

We will restrict (for now) to periodic coe�cient fields.

• For 1-periodic coe�cients � and b, we have the di↵usion X on Rd:

dXt = �(Xt) dBt + b(Xt) dt in Rd.

Lift this to a di↵usion X on the torus Td:

dXt = �(Xt) dBt + b(Xt) dt in Td.

• For ⇢0 2 C1(Td), the function

⇢(x, t) = (P t⇢0)(x) = Ex[⇢0(Xt)] solves @t⇢ = tr(ar2⇢) + b ·r⇢ in Td.

• What are the averaging / ergodic properties of the semigroup P t?
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II. Ergodic properties of di↵usions on the torus

The invariant measure [Section 3.2, Asym. Anal. for Per. Struct.]

Assume that � and b are su�ciently regular, and assume that a = 1

2
��t is uniformly elliptic:

there exist �  ⇤ 2 (0,1) such that

� |⇠|2  ha(x)⇠, ⇠i  ⇤ |⇠|2 for every x 2 Td and ⇠ 2 Rd.

Then there exists a unique probability measure ⇡ on Td and constants c, ⇢ 2 (0,1) such
that, for every f 2 L1(Td),

sup
x2Td

����Ex

⇥
f(Xt)

⇤
�

ˆ
Td

f(y)⇡( dy)

����  c kfk
L1(Td) exp(�⇢t).

• uniform ellipticity yields exponential convergence to the invariant distribution

• The semigroup P t on functions defines an adjoint semigroup on P
⇤
t on measures:ˆ

Td
f(y)(P

⇤
tµ)( dy) :=

ˆ
Td

P tf(y)µ( dy) =

ˆ
Td

Ey [f(Xt)]µ( dy).

• Invariance: we have that (P
⇤
t ⇡) = ⇡ for every t 2 [0,1), sinceˆ

Td
P tf(y)⇡( dy) =

ˆ
Td

f(y)⇡( dy) for every t 2 [0,1),

• Uniqueness / absolute continuity with respect to Lebesgue measure (tutorial)
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II. Ergodic properties of di↵usions on the torus

For 1-periodic coe�cients,

dXt = �(Xt) dBt + b(Xt) dt in Td.

• We have the unique, mutually, absolutely continuous invariant measure (P
⇤
t ⇡) = ⇡:ˆ

Td
Ey

⇥
F (Xt)

⇤
⇡( dy) =

ˆ
Td

P tf(y)⇡( dy) =

ˆ
Td

f(y)⇡(y) dy.

• By absolute continuity, the invariant measure ⇡ has a positive density m in L1(Td):

d⇡ = m(y) dy.

• By Feynman-Kac if @t⇢ = tr(ar2⇢) + b ·r⇢ in Td thenˆ
Td
⇢0(y)m(y) dy =

ˆ
Td
⇢(y, t)m(y) dy for every t 2 [0,1).

• For the di↵erential operator

Lg = tr(ar2g) + b ·rg and its adjoint L
⇤g = (aijg)xixj �r · (gb),

we have that

0 = @t

✓ˆ
Td
⇢(y, t)m(y) dy

◆
=

ˆ
Td

(L⇢(y, t))m(y) dy =

ˆ
Td
⇢(x, t)L⇤m(y) dy.

• The density solves the adjoint equation L
⇤m = 0.
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II. Ergodic properties of di↵usions on the torus

The Fredholm alternative [Section 3.3, Asym. Anal. for Per. Struct.]

Let � and b be su�ciently regular, and let a be uniformly elliptic. Consider the equations

tr(ar2⇢) + b ·r⇢ = L⇢ = 0 in Td, (1)

and
(aijz)xixj �r · (zb) = L

⇤z = 0 in Td. (2)

Then up to a multiplicative constant there exists a unique solution of (1) and (2) (namely,
⇢ = 1 and z = m, the density invariant measure). Furthermore, for �, 2 L1(Td) satisfyingˆ

Td
�(y)m(y) dy = 0 and

ˆ
Td
 (y) dy = 0,

there exist unique solutions to the equations

Lz = � in Td with

ˆ
Td

z dy = 0 and L
⇤w =  in Td with

ˆ
Td

w(y) dy = 1.

• We can solve Lz = � provided � is orthogonal to the kernel of L⇤.

— Orthogonality is necessary: if Lz = � and L
⇤m = 0 then

h�,mi
L2(Td) = hLz,mi

L2(Td) = hz,L⇤mi
L2(Td) = 0.

— Su�ciency relies strongly on compactness.
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II. Ergodic properties of di↵usions on the torus

Examples of invariant measures m:

• Divergence-form equations / reversible di↵usions:

L
⇤m = �r · atrm = 0 implies that m = 1.

• Pure di↵usions in one-dimension: the case b = 0 and d = 1,

L
⇤m = (am)xx = 0 implies that m = ha�1

i
�1

1

a

for ha�1
i =

´
T1 a�1.

• In general, for higher dimensions and nonzero drift, they are complicated.

Using the Green’s function representation and Fubini’s theorem,ˆ
Td

Ey [f(Xt)]m(y) dy =

ˆ
Td

ˆ
Td

p
t
(y, x)f(x)m(y) dx dy

=

ˆ
Td

f(x)

✓ˆ
Td

p
t
(y, x)m(y) dy

◆
dx =

ˆ
Td

f(x)m(x) dx.

We have that, for every t 2 [0,1) and x 2 Td,

m(x) =

ˆ
Td

p
t
(y, x)m(y) dy.
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III. Homogenization of pure di↵usions

Consider the pure di↵usion dXt = �(Xt) dBt and the central limit scaling

dX"

t = �(Xt/") dW "

t ,

and the corresponding equation

@t⇢
" = tr(a(x/")r2⇢"),

for a = 1

2
��2.

What happens, for example, if �1 ! 0 and �2 ! 1?
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III. Homogenization of pure di↵usions

Consider the pure di↵usion dXt = �(Xt) dBt and the central limit scaling

dX"

t = �(Xt/") dW "

t

and the corresponding equation

@t⇢
" = tr(a(x/")r2⇢")

for a = 1

2
��2.

• Homogenization: identify a 2 Rd⇥d such that

⇢" ! ⇢

for ⇢ the solution of
@t⇢ = tr(ar2⇢).

• Equivalently, in law, X"

t
! X for dXt = � dBt.

• a complicated, nonlinear averaging
— what is a?
— it is very much not the case that a = hai

• We have hai ! 1

2
�2I as �1 ! 0, while a ! 0.
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III. Homogenization of pure di↵usions

The asymptotic expansion:

⇢̃"(x, t) = ⇢(x, t) + "⇢1(x, x/", t) + "2⇢2(x, x/", t) + . . .

• Evaluating the equation, keeping terms of order "�1, "0, and ",

@t⇢̃
"
� tr(a(x/")r2⇢̃") = "�1 tr

�
a(x/")r2

y⇢1
�

@t⇢� tr
�
a(x/")

�
r

2

x⇢+r
2

xy⇢1 +r
2

y⇢2
��

+ "@t⇢1 � " tr
�
a(x/")

�
r

2

x⇢1 +r
2

xy⇢2
��

.

• We conclude that ⇢1 = 0, which is very much related to the fact that

Xt = �(Xt) dBt is a martingale,

and therefore have that

@t⇢ = tr
�
a(x/")

�
r

2

x⇢+r
2

y⇢2
��

+O(").

• Separation of scales: we make the ansatz that ⇢2(x, y, t) =
P

d

i,j=1
wij(y)@2ij⇢ so that

@t⇢ = tr
�
a(x/")

�
eij +r

2wij(x/")
��
@2
ij
⇢+O(").

• Solvablity / Fredholm alternative requires that

tr
�
a(y)

�
eij +r

2wij(y)
��

= haij ,mi
L2(Td) in Td,

and

@t⇢ = tr(ar2⇢) for a =

ˆ
Td

a(y)m(y) dy.
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III. Homogenization of pure di↵usions

The asymptotic expansion:

⇢̃"(x, t) = ⇢(x, t) + "2wij(x/")r
2⇢(x, t) + . . .

• We define the second-order correctors:

tr(a(y)(eij +r
2wij(y))) = haij ,mi

L2(Td) in Td.

• We define the homogenized solution

@t⇢ = tr(ar2⇢) for a =

ˆ
Td

a(y)m(y) dy.

• The asymptotic expansion ⇢̃" satisfies

@t⇢̃
" = tr(a(x/")r2⇢̃") +O(") in Rd

⇥ (0,1) with ⇢̃" = ⇢0 +O("2).

• The di↵erence z" = ⇢" � ⇢̃" solves

@tz
" = tr(a(x/")r2z") +O(") in Rd

⇥ (0,1) with z" = O("2).

• Since ⇢̃" = ⇢(x, t) +O("2), the comparison principle proves that, as "! 0,

⇢" ! ⇢ for @t⇢ = tr(ar2⇢).

Or, equivalently, that in law the processes X"

t
converges in law to �Bt for a = 1

2
��2.
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III. Homogenization of pure di↵usions

Homogenization of pure di↵usions

Let b and � be su�ciently regular, and let a be uniformly elliptic. Then, for every
⇢0 2 C1

c (Rd), the solutions

@t⇢
" = tr(a(x/")r2⇢") in Rd

⇥ (0,1) with ⇢"(·, 0) = ⇢0,

converge, as "! 0, to the solution

@t⇢ = tr(ar2⇢) in Rd
⇥ (0,1) with ⇢(·, 0) = ⇢0,

for a =
´
Td a(y)m(y) dy.

• The homogenized / e↵ective matrix is the average of the original matrix with respect to
the invariant measure.

— uniformly elliptic with ellipticity constants determined by m
— emphasizes regions of small di↵usion / traps / degeneracies

• In one-dimension, we have that m(y) = ha�1
i
�1a�1 and a = ha�1

i
�1.
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IV. Periodic homogenization of divergence form equations

A random uniformly elliptic, 1-periodic coe�cient field a : Td
! Rd⇥d.

• uniform ellipticity: there exists �  ⇤ 2 (0,1) such that

� |⇠|2  ha(x)⇠, ⇠i  ⇤ |⇠|2 for every x 2 Td and ⇠ 2 Rd.

• The solution ⇢" of

�r · a(x/")r⇢" = f in U with ⇢" = g on @U.

describes the evolution of a system satisfying˛
Br(x)

a(y/",!)r⇢"(y) · ⌫ =

ˆ
Br(x)

f(y).

• For symmetric a we have the variational formulation and Feynman-Kac formula

inf
v2g+H

1
0
(U)

✓ˆ
U

ha(x/")ru,rui � fu dx

◆
and ⇢"(x) = Ex


g(X"

⌧U
) +

ˆ
⌧U

0

f(X"

s ) ds

�
.

Periodic Random tile Poisson cloud Cluster
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IV. Periodic homogenization of divergence form equations

A weak solution of the equation

�r · a(x/")r⇢" = f in U with ⇢" = g on @U.

is a function ⇢" 2 H1(U) that satisfies, for every  2 C1
c (U),ˆ

U

a(x/")r⇢" ·r dx =

ˆ
U

 f with ⇢" = g on @U.

Consider the asymptotic expansion

⇢̃"(x) = ⇢(x) + "⇢1(x, x/") + "2⇢2(x, x/") + . . .

Ignoring terms of order " and smaller, and evaluating the equation on ⇢̃",ˆ
U

a(x/")(rx⇢+ry⇢1) ·r dx =

ˆ
U

 f.

• Identify the equation satisfied by ⇢.

• Separation of scales:
⇢1(x, x/") = �i(x/")@i⇢(x).
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IV. Periodic homogenization of divergence form equations

Defined by first-order correctors �i, the asymptotic expansion

⇢̃" = ⇢+ "�i(x/")@i⇢(x) + . . .

satisfies, up to terms of order ",ˆ
U

a(x/")(rx⇢+ry⇢1) ·r dx =

ˆ
U

a(x/") ((ei +r�i(x/"))@i⇢) ·r dx

= �

ˆ
U

 a(x/")(ei +r�i(x/")) ·r@i⇢ =

ˆ
U

 f.

As "! 0,

a(x/")(ei +r�i(x/"))* ha(ei +r�i)i =: aei weakly in L2(Td),

and formally we have that

�r · a(y)(ei +r�i(y)) = 0 in Td,

and that ⇢ solves
�r · ar⇢ = f in U with ⇢ = g on @U.

• The functions xi + �i(x) are a-harmonic

— A first order Liouville theorem: any subquadratic solution of

�r · ar⇢ = 0 on Rd satisfies ⇢(x) = c+ ⇠ · x+ �⇠(x).
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IV. Periodic homogenization of divergence form equations

The perturbed test function method [See Section 3, notes]

Let a : Td
! Rd⇥d be bounded, measurable, and uniformly elliptic and let ⇢0 2 L2(Rd). For

every " 2 (0, 1) let ⇢" be the unique weak solution of

�r · a(x/")r⇢" = f in U with ⇢" = g on @U.

Then, as "! 0,
⇢" * ⇢ weakly in H1(Rd),

for ⇢ satisfying
�r · ar⇢ = f in U with ⇢ = g on @U,

for the e↵ective coe�cient field a 2 Rd⇥d defined by

aei = ha(ei +r�i)i for �r · a(ei +r�i) = 0 in Td.

• compensated compactness methods

— the div-curl lemma

• existence / uniqueness of �i follows by Fredholm or the Lax-Milgram lemma
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IV. Periodic homogenization of divergence form equations

The solution ⇢" of

�r · a(x/")r⇢" = f in U with ⇢" = g on @U.

We have formally that
⇢" ' ⇢̃" = ⇢+ "�i(x/")@i⇢(x) + . . .

and therefore that
r⇢" ' r⇢+r�i(x/")@i⇢.

As "! 0,
r⇢" * r⇢ weakly in L2(Rd

⇥ [0, T ];Rd),

but not strongly.

• weak convergence in H1 but not strong convergence
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IV. Periodic homogenization of divergence form equations

The homogenization error: the error in the two-scale expansion,

w" = ⇢" � ⇢� "�i(x/")@i⇢,

for the correctors �i and the homogenized solution ⇢ satisfying

�r · ar⇢ = f in U with ⇢ = g on @U and �r · a(ei +r�i) = 0 in Td.

The homogenization error w" satisfies

�r · a(x/")rw" = f �r · (a(x/")ei@i⇢)�r · (a(x/")r�i(x/")@i⇢)

� "r · (a(x/")�i(x/")r(@i⇢)) .

After adding and subtracting
�r · ar⇢ = f,

we have that

�r · a(x/")rw" = r · ((a(x/")(ei +r�i(x/"))� aei) @i⇢)

+ "r · (a(x/")�i(x/")(r@i⇢)).

The energy estimate, for c = c(d, f, g,�,⇤) 2 (0,1),ˆ
U

|rw"|2  c
⇣
k(a(x/")(ei +r�i(x/"))� aei)k

2

L2(Td)
+ " k�ik

2

L2(Td)

⌘
.
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IV. Periodic homogenization of divergence form equations

The homogenization error w" = ⇢" � ⇢� "�i(x/")@i⇢ satisfies

�r · a(x/")rw" = r · ((a(x/")(ei +r�i(x/"))� aei) @i⇢)

+ "r · (a(x/")�i(x/")(r@i⇢)).

The essential observation is that the vectors

qi = a(ei +r�i)� aei,

are mean zero:
hqii = ha(ei +r�i)i � aei = 0

and divergence free:
r · qi = r · a(y)(ei +r�i(y)) = 0.

• De Rham cohomology—every mean zero, divergence free field has a potential field

— there exists �i such that r · �i = qi.

• � is a d⇥ d skew-symmetric matrix

— vector field is a (d� 1)-form, skew symmetric matrix is a (d� 2)-form
— the “stream matrix” from fluids
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IV. Periodic homogenization of divergence form equations

Let q = (qi) : Td
! Rd be mean zero and divergence free.

There exists a skew-symmetric matrix � : Td
! Rd⇥d such that

r · � = q where (r · �)i = @k�ik. (3)

The solution to (3) is not unique—shift by any matrix with rows that are divergence free.

A variational problem: for � = (�jk) minimize the energyˆ
Td

��r�jk
��2 subject to the constraint r · � = q.

This leads to the well-posed equation

���jk = @jqk � @kqj on Td with h�jki = 0.

We define � = (�jk) and observe that

�(r · �)i = �(@k�ik) = @k(��ik) = �qi � @i (r · q) = �qi.

We have that

� ((r · �)i � qi) = 0 and so (r · �)i � qi = h(r · �)i � qii = 0,

and, therefore,
r · � = q.
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IV. Periodic homogenization of divergence form equations

The homogenization error: the error in the two-scale expansion,

w" = ⇢" � ⇢� "�i(x/")@i⇢,

for the correctors �i and the homogenized solution ⇢ satisfying

�r · ar⇢ = f in U with ⇢ = g on @U and �r · a(ei +r�i) = 0 in Td.

The homogenization error w" satisfies

�r · a(x/")rw" = r · ((a(x/")(ei +r�i(x/"))� aei) @i⇢)

+ "r · (a(x/")�i(x/")(r@i⇢)).

The fluxes qi: divergence free fields

qi = a(ei +r�i)� aei.

The flux correctors: skew-symmetric matrices �i satisfying

r · �i = qi fixed by ���ijk = @jqik � @kqij .

It follows from the skew-symmetry that distributionally

r · (qi(x/")@i⇢) = �"r · (�i(x/")r@i⇢) ,

and, therefore,
�r · a(x/")rw" = "r · ((a�i(x/")� �i(x/"))r@i⇢) .
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IV. Periodic homogenization of divergence form equations

Periodic homogenization of divergence form equations

Let a : Td
! Rd⇥d be bounded, measurable, and uniformly elliptic. Let ⇢0 2 C1

c (Rd) and
for every " 2 (0, 1) let

�r · a(x/")r⇢" = f in U with ⇢" = g on @U,

and let ⇢ solve
�r · ar⇢ = f in U with ⇢ = g on @U,

for aei = ha(ei +r�i)i defined by the correctors �r · a(ei +r�i) = 0. Then there exists
c = c(⇢0, d, f,�,⇤) 2 (0,1) such that the homogenization error

w" = ⇢" � ⇢� "�i(x/")@i⇢

satisfies
kw"k

H1(U))
 c"

⇣
k�ikL2(Td) + k�ikL2(Td)

⌘
.

• strong H1-convergence of the two-scale expansion

— the two-scale expansion corrects the function and the gradient

• the a-harmonic coordinates xi + �i(x)—sub-quadratic a-harmonic functions

— Liouville theorems—these are the linear functions in the geometry of a
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V. Periodic homogenization of non-divergence form equations

The di↵usion equation

tr(a(x/")r2⇢") + "�1b(x/") ·r⇢" = f in U with ⇢" = g on @U.

• Postulate an asymptotic expansion of the form

⇢̃" = ⇢+ "�i(x/")@i⇢+ "2 (x/") + . . .

• The corrector equation at order "�1:

tr(a(y)r2�i) + b(y) ·r�i = �bi in Td.

Solvability requires hb,mi = 0 for the invariant measure L
⇤m = 0.

• At order "0 the solvability condition for  requires that ⇢ solves

@t⇢ = tr(ar2⇢) for a =

ˆ
Td

(a(y)(1 +r�(y)) + �(y)⌦ b(y))m(y) dy.

• For the process dXt = �(Xt) dBt + b(Xt) dt the process

Mt = Xt + �(Xt) for � = (�1, . . . ,�d) is a martingale.

• Form the decomposition
"Xt/"2 = "Mt/"2 � "�(Xt/"2 ).
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V. Periodic homogenization of non-divergence form equations

An alternate approach using the invariant measure: for L
⇤m = 0,

tr(m(x/")a(x/")r2⇢")) + "�1m(x/")b(x/") ·r⇢"

= r · (m(x/")a(x/")r⇢")� "�1 (r · (m(x/")a(x/"))�m(x/")b(x/")) ·r⇢".

• Divergence-free drift: the vector

b̃(y) = r · (m(y)a(y))�m(y)b(y) is divergenc-free,

since r · b̃ = L
⇤m.

• Mean zero drift: We have that

hb̃i = hr · (ma)�mbi = �hmbi = 0,

if and only if b is perpendicular to m in the L2-sense that hb,mi
L2(Td) = 0.

• If the solvability condition hb,mi
L2(Td) = 0 is satisfied, there exists a potential �̃ with

r · �̃ = b̃,

such that

tr(m(x/")a(x/")r2⇢")) + "�1m(x/")b(x/") ·r⇢" = r · ((m(x/")a(x/") + �̃(x/"))r⇢")).

• For the new “di↵usion matrix”

ã = am+ �̃ we have r · ã(x/")r⇢" = f(x)m(x/").
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V. Periodic homogenization of non-divergence form equations

After multiplying the equation by m(x/"),

tr(m(x/")a(x/")r2⇢")) + "�1m(x/")b(x/") ·r⇢"

= r · (m(x/")a(x/")r⇢")� "�1 (r · (m(x/")a(x/"))�m(x/")b(x/")) ·r⇢"

= r · ((m(x/")a(x/") + �̃(x/"))r⇢") = fm(x/"),

for hb,mi
L2(Td) = 0 and for the skew-symmetric matrix �̃ satisfying

r · �̃ = r · (m(x/")a(x/"))�m(x/")b(x/").

The correctors
�r · (am+ �̃)(ei +r�i) = 0 in Td.

Observe that by Hölder’s inequality and Young’s inequality that, fo c = c(d) 2 (0,1),ˆ
Td

h(am+ �̃)r�,r�i =

ˆ
Td

har�,r�im  c
⇣
kamk

2

L2(Td)
+ k�̃k2

L2(Td)

⌘
.

The homogenized matrix a is

aei := h(am+ �̃)(ei +r�i)i,

and ⇢ solves
r · ar⇢ = fm(x/") in U with ⇢ = g on @U.
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V. Periodic homogenization of non-divergence form equations

Periodic homogenization of non-divergence form equations

Assume that a 2 C1,↵(Td;Rd⇥d) is uniformly elliptic, assume that b 2 C↵(Td;Rd), and
assume that ⇢0 2 C1

c (Td). Let m be the invariant measure L
⇤m = 0 and assume that

hb,mi
L2(Td) = 0. Let �̃ be the vector potential satisfying

r · �̃ = r · (am)� bm,

and let ã 2 C↵(Rd) be defined by ã = am+ �̃. Define the homogenization correctors

�r · ã(ei +r�i) = 0 in Td.

Then, for the e↵ective matrix aei = hã(ei +r�i)i, for ⇢ satisfying

r · ar⇢ = fm(x/") in U with ⇢ = g on @U,

the homogenization error
w" = ⇢" � ⇢� "�i@i⇢,

satisfies, for some c = c(f, g, d,�,⇤) 2 (0,1),

kw"k
L2[0,T ];H1(Td)  c"

⇣
k�ikL2(Td) + k�ikL2(Td)

⌘
,

for the flux correctors r · �i = ã(ei +r�i)� aei.

• Energy estimates for the correctors: there exists c = c(a,m, �̃) 2 (0,1) such thatˆ
Td

|r�i(y)|
2 m(y) dy  c.
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V. Periodic homogenization of non-divergence form equations

Important examples with b = 0:

• Divergence-form:

�r · a(x/")r⇢" = tr(a(
x

"
)r2⇢") + "�1(r · at(x/")) ·r⇢".

In this case m = 1 and, as the integral of a periodic gradient,

hb,mi
L2(Td) =

ˆ
Td

(r · at(y)) dy = 0.

• Mean-zero divergence free drift: for a potential s with r · s = b,

�r · a(x/")r⇢" + "�1b(x/") ·r⇢" = r · (a+ s)(x/")r⇢".

In this case m = 1 and

hb,mi
L2(Td) =

ˆ
Td

b dy =

ˆ
Td

r · s(y) dy = 0.

• Brownian motion in a periodic potential: we consider

��⇢" + "�1
rU(x/") ·r⇢" = �eU(x/")

r · (e�U(x/")
r⇢").

The invariant measure is the Gibbs measure m = he�U
i
�1e�U and

hb,mi
L2(Td) = he�U

i
�1

ˆ
Td

e�U
rU dy = �he�U

i
�1

ˆ
Td

re�U dy = 0.

• Symmetry: restricted isotropy in law implies b = 0.
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V. Periodic homogenization of non-divergence form equations

The case b = hb,mi
L2(Td) 6= 0.

• Constant coe�cients:
dXt = dBt + b dt.

In this case, for the di↵usion beginning at zero,

X"

t = W "

t + "�1tb.

Di↵usive behavior after subtracting the “e↵ective drift” b:

X"

t � "�1tb = W "

t .

• True in general: if b 6= 0 then as "! 0 the process

X"

t is ballistic in the direction b.

However, after centering about this singular trajectory, as "! 0,

X"

t � "�1bt ! �Bt in law.

• Repeating the same proof:

@t⇢
"
�r · ã(x/")r⇢" + "�1b ·r⇢" = f(x)m(x/"),

and ⇢" solves
@t⇢

"
�r · ar⇢" + "�1b ·r⇢" = f(x)m(x/").

Compare ⇢"(x� "�1bt, t) to ⇢"(x� "�1bt, t).
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VI. A random environment

The Poisson point process on Rd:

• The probability space is the space of locally finite point measures

⌦ =

8
<

:! =
X

i2I

�xi : xi are locally finite in Rd

9
=

; ,

with the sigma algebra F generated by all maps of the form

! ! !(B) = #{i 2 I : xi 2 B} for Borel subsets B ✓ Rd.

• For � 2 (0,1) there exists a unique probability measure P� on ⌦ satisfying:

— For every Borel subset B ✓ Rd,

E�[!(B)] = � |B| .

— For every collection of bounded, disjoint subsets B1, . . . , BN ✓ Rd,

the random variables ! ! !(Bk) are independent.

— For every y 2 Rd and measurable set A 2 F ,

P�(A) = P�(A+ y) for A+ y = {!(·+ y) : ! 2 A}.
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VI. A random environment

Fix a Poisson point process (⌦,F ,P�). We define the random coe�cient field
a(x,!) : Rd

⇥ ⌦! Rd⇥d, for ! =
P

i2I
�xi ,

a(x,!) = �11{[i2IB1(xi)} + �21{[i2IB1(xi)}c

For the measure-preserving transformation group {⌧x : Rd
! Rd

}
x2Rd defined by

⌧x(!)(·) = !(·� x),

we have
a(x+ y,!) = a(y, ⌧x!) for every x, y 2 Rd and ! 2 ⌦.
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VII. Stochastic homogenization

A random uniformly elliptic coe�cient field a(x,!) : Rd
⇥ ⌦! Rd⇥d.

• stationary: for a measure-preserving transformation group {⌧x : ⌦! ⌦}
x2Rd ,

a(x+ y,!) = a(x, ⌧y!).

• ergodicity: the transformation group is qualitatively mixing, for g : ⌦! R,

g(⌧x·) = g(·) for every x 2 Rd if and only if g is constant.

We are interested in the limiting behavior, as "! 0, of

�r · a(x/",!)r⇢" = f in U with ⇢" = g on @U,

describes a system in equilibrium:˛
Br(x)

a(y/",!)r⇢"(y) · ⌫ =

ˆ
Br(x)

f(y).

Periodic Random tile Poisson cloud Cluster
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VII. Stochastic homogenization

The ergodic theorem [Becker]

Let (⌦,F ,P) be a probability space equipped with an ergodic measure preserving
transformation group {⌧x : ⌦! ⌦}

x2Rd .

Then for every f 2 L1(⌦), for almost every ! 2 ⌦,

lim
R!1

 
BR

f(⌧x!) dx = E [f ] .

And in the weak form, for every  2 C1
c (Rd), as "! 0,

lim
"!0

ˆ
Rd
 (x)f(⌧x/"!) dx ! E[f ]

ˆ
Rd
 (x) dx.

• A function f : Rd
⇥ ⌦! R is stationary and ergodic if

f(x,!) = f(0, ⌧x!) =: g(⌧x!) for every x 2 Rd and ! 2 ⌦,

for some measurable g : ⌦! R and {⌧x}x2Rd is ergodic.

• Ergodicity: large-scale spatial averages almost surely approximate the expectation: 
BR

f(x,!) dx ' E [f ] as R ! 1.

• In the weak form, almost surely,

f(x/",!)* E[f ] weakly as "! 0.

B. Fehrman (University of Oxford) Stochastic Analysis in Interaction 20-24 September 2021 36 / 50



VII. Stochastic homogenization

Stochastic homogenization: for the solutions

�r · a(x/",!)⇢"(x,!)) = f in U with ⇢"(·,!) = g on @U,

there exists a deterministic a 2 Rd⇥d such that

⇢"(·,!) ! ⇢ almost surely as "! 0,

for the solution ⇢ of
�r · ar⇢ = f in U with ⇢ = g on @U.

Di↵usion in random environment: in the symmetric case, for the di↵usion processes

dX!

t = �(X!

t ,!) dBt + b(X!

t ,!) dt,

for a = 1

2
��t, we have almost surely that

"X!

t/"2
! �Bt in law,

for a = 1

2
��t.
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VII. Stochastic homogenization

—The equation
�r · a(x/",!)r⇢" = f in U with ⇢" = g on @U.

—The asymptotic expansion

⇢"(x,!) = ⇢(x) + "�i(x/",!)@i⇢(x) + . . .

—Almost surely by the ergodic theorem

a(x/",!)(ei +r�i(x/",!))* ha(0,!)(ei +r�i(0,!))i =: aei.

—By stationarity we have that a(x,!) = A(⌧x!) and r�(x,!) = �i(⌧x!), so that

a(x/",!)(ei +r�i(x/",!))* ha(0,!)(ei +r�i(0,!))i = E [A(ei + �i)] .

—The first-order correctors �i almost surely satisfy on the whole space

�r · a(y,!)(ei +r�i(y,!)) = 0 in Rd.

—For the homogenized coe�cient a we have

�r · ar⇢ = f in U with ⇢ = g on @U.
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VII. Stochastic homogenization

The corrector equation

�r · a(y,!)(ei +r�i(y,!)) = 0 in Rd.

The periodic case:

• The probability space is the torus,

⌦ = Td with the Lebesgue sigma algebra and the normalized Lebesgue measure.

• The “random” variable
A : Td

! Rd⇥d is 1-periodic.

• The transformation group {⌧x}x2Rd is defined by

⌧x! = x+ ! 2 Td for every x 2 Rd and ! 2 Td.

• The stationary “random” coe�cient field is

a(x,!) = A(x+ !) = A(⌧x!) for every x 2 Rd and ! 2 Td.

Lift the corrector equation to Td using the environment from the point of view of the particle:

�r ·A(y)(ei +r�i(y)) = 0 in Td.
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VII. Stochastic homogenization

The corrector equation

�r · a(y,!)(ei +r�i(y,!)) = 0 in Rd.

and the asymptotic expansion ⇢" = ⇢+ "�i(x/",!)@i⇢+ . . .

• Validity of the asymptotic expansion requires sublinearity: almost surely,

lim
"!0

 
sup
B1

(" |�i(x/",!)|)

!
= lim

R!1

 
R�1

 
sup
BR

|�i(y,!)|

!!
= 0.

• In an L2-sense, almost surely,

lim
R!1

0

@R�1

  
BR

�2
i
(y,!) dy

! 1

2

1

A = 0.

• A true correction of the di↵usion process dX!

t
= �(X!

t
,!) dBt + b(X!

t
,!) dt:

X!

t = X!

t + �(X!

t )� �(X!

t ).

• The environment from the point of view of the particle:

!t = ⌧X!
t
!.
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VII. Stochastic homogenization

How to lift the corrector equation to ⌦:

�r · a(y,!)(ei +r�i(y,!)) = 0 in Rd.

• Di↵erential operators on ⌦:

Dif(!) = lim
h!0

f(⌧hei!)� f(!)

h
strongly in L2(⌦).

• Smooth functions on ⌦: for  2 C1
c (Rd) and f 2 L1(⌦),

f (!) =

ˆ
Rd

f(⌧x!) (!) dx.

• Formally we have the H1-space

H
1(⌦) = \

d

i=1D(Di).

• We can hope to solve
�D · a(ei +D�i) = 0 in ⌦,

in the sense that
E [a(ei +D�i) ·D ] = 0 for all  2 H

1(⌦).

• No compactness, no Poincaré inequality, no Fredholm alternative.
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VII. Stochastic homogenization

How to lift the corrector equation to ⌦:

�r · a(y,!)(ei +r�i(y,!)) = 0 in Rd.

• The di↵erential operators and H1-space:

Dif(!) = lim
h!0

f(⌧hei!)� f(!)

h
strongly in L2(⌦) and H

1(⌦) = \
d

i=1D(Di).

• The space of generalized gradients:

L2

pot(⌦) = {D :  2 H1(⌦)}
L

2
(⌦;Rd

)

.

• Every � 2 L2
pot

(⌦) is a gradient in the sense that it is distributionally curl free:

Di�j = Dj�i for every i, j 2 {1, . . . , d}.

• The Lax-Milgram lemma: there exists a unique �i 2 L2
pot

(⌦) satisfying

�D ·A(ei + �i) = 0 in ⌦,

in the sense that

E [A(ei + �i) · ] = 0 for every  2 L2

pot(⌦).

• We construct the stationary gradient of the corrector.
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VII. Stochastic homogenization

• We construct the stationary gradients of the correctors and flux correctors:

�D ·A(ei + �i) = 0 and �D · ⌃ijk = DjQik �DkQij ,

for the fluxes Qi = A(ei + �i)� aei.

• The correctors and flux correctors are almost surely defined byˆ
B1

�i(y,!) dy = 0 with r�i(x,!) = �i(⌧x!),

and ˆ
B1

�ijk(y,!) dy = 0 with r�ijk(x,!) = ⌃ijk(⌧x!).

• For the fluxes qi = a(ei +r�i)� aei and for �i = (�ijk), almost surely,

�r · a(y,!)(ei +r�i(y,!)) = 0 and r · �i(y,!) = qi(y,!) on Rd.

• Almost surely the homogenization error

w"(x,!) = ⇢"(x,!)� ⇢(x)� "�i(x/",!)@i⇢

solves the equation

�r · a(x/",!)rw" = "r · ((a(x/",!)�i(x/", o)� �i(x/",!))r@i⇢) .
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VII. Stochastic homogenization

• Almost surely the homogenization error

w"(x,!) = ⇢"(x,!)� ⇢(x)� "�i(x/",!)@i⇢

solves the equation

�r · a(x/",!)rw" = "r · ((a(x/",!)�i(x/",!)� �i(x/",!))r@i⇢) .

• The energy estimate, for some c = c(�,⇤, d, f, g) 2 (0,1),ˆ
U

|rw"|2  c

✓ˆ
U

|"�i(x/",!)|
2 + |"�i(x/",!)|

2

◆
.

• Homogenization requires L2-sublinearity:

lim
"!0

✓ˆ
U

|"�i(x/",!)|
2 dx

◆
= 0.

• It su�ces to prove almost surely that

lim
"!0

✓ˆ
U

|"�i(x/",!)� h"�i(·/",!)iU |
2 dy

◆
= 0,

for h"�i(·/",!)iU =
´
U
"�i(x/",!) dx.
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VII. Stochastic homogenization

To prove that:

lim
"!0

✓ˆ
U

|"�i(x/",!)� h"�i(·/",!)iU |
2 dy

◆
= 0.

• The Poincaré inequality: for every " 2 (0, 1), for c = c(U) 2 (0,1),ˆ
U

|"�i(x/",!)� h"�i(·/",!)iU |
2 dy  c

ˆ
U

|r�i(x/",!)|
2 dy.

• The ergodic theorem: almost surely, for c = c(�,⇤) 2 (0,1),

lim
"!0

ˆ
U

|r�i(x/",!)|
2 dy = E

h
|�i|

2

i
 c.

• The Poincaré inequality: almost surely,

{"�i(x/",!)� h"�i(·/",!)iU}"2(0,1) is bounded in H1(U).

• The ergodic theorem: almost surely,

r�i(x/",!)* E [�i] = 0 weakly in H1(U),

and, therefore,

"�i(x/",!)� h"�i(·/",!)iU * c = 0 weakly in H1(U).

• The Sobolev embedding theorem: almost surely,

"�i(x/",!)� h"�i(·/",!)iU ! 0 strongly in L2(U).
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VII. Stochastic homogenization

Stochastic homogenization [Kozlov, Papanicolaou, Varadhan...]

Let (⌦,F ,P) be a probability space, let a : ⌦⇥ Rd
! Rd⇥d be a uniformly elliptic,

stationary, and ergodic coe�cient field and for every ! 2 ⌦ let ⇢" solve the equation

�r · a(x/",!)r⇢" = f in U with ⇢" = g on @U.

Let the homogenized coe�cient a 2 Rd⇥d be defined by

aei := E [A(ei + �i)] for �i 2 L2

pot(⌦) satisfying �D ·A(ei + �i) = 0,

and let ⇢ be defined the homogenized solution

�r · ar⇢ = f in U with ⇢ = g on @U.

Then for the homogenization correctors �i defined byˆ
B1

�i(y,!) dy = 1 with r�i(y,!) = �i(⌧y!),

the two-scale expansion

w"(x,!) = ⇢"(x,!)� ⇢(x)� "�i(x/",!)@i⇢(x),

almost surely satisfies
lim
"!0

kw"k
H1(U)

= 0.

• A regularity theory for random elliptic operators; Gloria, Neukamm, Otto

• Quantitative Stochastic Homogenization and Large-Scale Regularity; Armstrong, et al.
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VII. Stochastic homogenization

Divergence-free environments [Avelleneda, Komoroski, Majda, Olla, Kozma,
Tóth, F...]

Let (⌦,F ,P) be a probability space, let a : ⌦⇥ Rd
! Rd⇥d be a uniformly elliptic,

stationary, and ergodic coe�cient field and for every ! 2 ⌦ let ⇢" solve the equation

�r · a(x/",!)r⇢" + "�1b(x/",!) = f in U with ⇢" = g on @U,

for a stationary and ergodic, mean zero and divergence free drift b(x,!) = B(⌧x!). Assume
that b admits a stationary Lp-integrable stream matrix S:

D · S = B on ⌦ with S 2 Lp(⌦;Rd⇥d).

Let the homogenized coe�cient a 2 Rd⇥d be defined by

aei := E [(A+ S)(ei + �i)] for �i 2 L2

pot(⌦) satisfying �D · (A+ S)(ei + �i) = 0,

and let ⇢ be the homogenized solution

�r · ar⇢ = f in U with ⇢ = g on @U.

If p = 2 then almost surely
⇢" * ⇢ weakly in H1(U).

If p = d ^ (2 + �) then the two-scale expansion w" = ⇢" � ⇢� "�i@i⇢ almost surely satisfies

lim
"!0

kw"k
H1(U)

= 0.

• Also the case b = rU for a stationary potential U : Gibbs measure m = E
⇥
e�U

⇤�1
e�U
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VII. Stochastic homogenization

The di↵usion dXt = �(Xt,!) dBt.

Homogenization of balanced environments [Papanicolaou, Varadhan]

Assume that a : Rd
⇥ ⌦! Rd⇥d is uniformly elliptic, stationary, and ergodic. Then there

exists a unique mutually absolutely continuous invariant measure ⇡ for the environment from
the point of view of the particle on (⌦,F ,P): for every f 2 L1(⌦),

E⇡ [E0,! [f(⌧Xt!)]] = E⇡ [f ] .

The homogenized coe�cient a 2 Rd⇥d is defined by

a = E⇡ [a].
The solutions

@t⇢
" = tr(a(x/",!)) on Rd

⇥ (0,1) with ⇢"(·, 0) = ⇢0,

converge almost surely as "! 0 to the solution

@t⇢ = tr(ar2⇢) on Rd
⇥ (0,1) with ⇢(·, 0) = ⇢0.

• The Aleksandrov-Bakelman-Pucci estimate: suppose that ⇢" solves

tr(a(x/",!)r2⇢") = f in B1 with ⇢" = 0 on @B1.

Then, for c = c(�,⇤, d) 2 (0,1) independent of " 2 (0, 1),

k⇢"k
L1(B1)

 c kfk
Ld(B1)

.
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VII. Stochastic homogenization

Consider the di↵usion in random environment

dXt = �(Xt,!) dBt + b(Xt,!) dt.

In the periodic case, for the invariant measure m and in the central limit scaling,

hb,mi
L2(Td) = b = 0 implies a di↵usive behavior,

and
b 6= 0 implies ballistic behavior in direction b.

In the absence of an invariant measure try to rule out ballistic behavior using symmetry.
Assume that, for every orthogonal transformation r that preserves the coordinate axis,

(r�(x,!), rb(x,!))
x2Rd and (�(rx,!), b(rx,!))

x2Rd have the same law.

Then, since for every orthogonal transformation r preserving the coordinate axis,

Xt and rXt have the same law under P n P0,! .

In the annealed sense we have that

E [E0,! [Xt]] = 0.
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VII. Stochastic homogenization

Homogenization of isotropic di↵usions [Sznitman, Zeitouni, F.]

Let a : Rd
⇥ ⌦! Rd⇥d and b : Rd

⇥ ⌦! Rd be uniformly elliptic, bounded, Lipschitz
continuous, and stationary coe�cient fields satisfying a finite range of dependence. Assume
that for every orthogonal transformation r preserving the coordinate axis

(ra(x,!)rt, rb(x,!))
x2Rd and (a(rx,!), b(rx,!))

x2Rd have the same law.

Then there exists ⌘ 2 (0,1) such that if

|a� I|  ⌘ and |b|  ⌘,

then there exists a 2 R such that the solutions

@t⇢
" = tr(a(x/",!)r2⇢") + "�1b(x/",!) ·r⇢" in Rd

⇥ (0,1) with ⇢"(·, 0) = ⇢0,

converge almost surely as "! 0 to the solution of

@t⇢ = a�⇢ in Rd
⇥ (0,1) with ⇢(·, 0) = ⇢0.

Furthermore, there exists a unique mutually absolutely continuous invariant measure ⇡ on
(⌦,F ,P) for the process from the point of view of the particle: for every f 2 L1(⌦),

E⇡ [E0,! [f(⌧Xt!)]] = E⇡ [f ] .

• the perturbation says that for short times the process is like a Brownian motion

• an inductive renormalization argument controls traps / localization / coupling
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