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I. Diffusion processes and PDEs

In these talks, we will consider the longtime behavior of a diffusion process
dX: = o(X¢)dB: + b(X¢)dt for ¢ € (0,00).
e o quantifies the diffusion
— thermal fluctuations / microscopic collisions driving a Brownian particle

e b quantifies the drift

— mean macroscopic motion / wind or current in a fluid flow

%= b(x)
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I. Diffusion processes and PDEs

If X; solves
dXt = O'(Xt) dBt + b(Xt)dt for t € (0, C>O)7

the central limit scaling X¢ = 5Xt/52 solves
dX§ = o(X5/e) AWF + e~ 1b(Xi/e) dt.

What happens (in law) as ¢ — 07

o (diffusive) If o = I and b = 0 then, in law for every ¢ € (0,1),

X§ = By.
o (ballistic) If o = I and b =b € R?\ {0} then, in law for every € € (0, 1),
X¢ = By + e 1tb and almost surely |X{| — co as € — 0.
o (degenerate / trapped) For the Ornstein-Uhlenbeck process
dX; = dBy — X¢dt and dXF = dWf — e 2XZ dt,

and

|Xf| — 0 almost surely as e — 0.
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I. Diffusion processes and PDEs

We are interested in the behavior of X in law.

If X; solves
dX: = o(X¢)dBy + b(X¢)dt for t € (0,00),
how can we characterize

P[X: € A] for every measurable A C R%?

The Feynman-Kac Formula: if p solves the equation
Btp =tr(aV2p) +b-Vp in R% x (0,00) with p(-,0) = po,
for the covariance matrix a = %002, then we have the formula
p(z,t) = Bz [po(Xt)] -
e the heat equation and Brownian motion
e the solution is the average of the initial data with respect to the diffusion

— regularizing / smoothing properties of parabolic equations

e proof using Itd’s formula (tutorial) /4:
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I. Diffusion processes and PDEs

In the central limit scaling X7 = EXt/EZ s

dX¢ = o(X5/e) AW + e 1b(X{/e) dt,

and the solution p® of the equation

ap° = tr(a(v/:)V?p%) + e b(7/2) - Vp© in R? x (0,00) with p(-,0) = po,

for a = %002 satisfies

pla 1) = Ex [o0(X7)] = Ex [po(eX,y.2)] -

o (diffusive) If o = I and b = O then, for every ¢ € (0, 1),
p° =p for Oip = %Aﬁ.
o (ballistic) If o = I and b =b € R®\ {0} then
(timy o)) = (lry te+)
e (degenerate / trapped) In the case of the Ornstein-Uhlenbeck process,
orp® = %Aps — 725 V)p°,

and (lime 0 p®(z,t)) = po(0).
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I. Diffusion processes and PDEs

Characterizing the limiting behavior, as € — 0, of the solution
dX§ = o(X5/e) AWF + e~ 1b(X{/e) dt,
in law is equivalent to characterizing the limiting behavior, as € — 0, of the solutions
OpF = tr(a(z/e)V2p%) + e b(e/e) - Vi,

for arbitrary smooth initial data.

e The Feynan-Kac formula:
p*(z,t) = Eg [po(X7)] -
e Ase — 0, we have X¢ — X in law, for X solving
dX; =odB; for some o € R**9,
if and only if we have p* — p, for p solving

1
3p = tr(@av?p) for a= Eﬁt.

e The divergence-form case / a reversible diffusion:

—V - (a(#/e) V%) = —tr(a(e/s)V2p%) — e~ (V- at (e/2)) - V<.
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II. Ergodic properties of diffusions on the torus

We will restrict (for now) to periodic coefficient fields.

e For 1-periodic coefficients o and b, we have the diffusion X on R%:

dX; = o(X;)dB; + b(X;)dt in RZ
Lift this to a diffusion X on the torus T¢%:

dX: = o(X¢)dBs + b(X;) dt in T
e For pg € C°°(T?), the function
p(x,t) = (Pipo)(x) = Ex[po(Xt)] solves 8ip = tr(aV3p) +b-Vp in T

e What are the averaging / ergodic properties of the semigroup Py?
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II. Ergodic properties of diffusions on the torus

The invariant measure [Section 3.2, Asym. Anal. for Per. Struct.]

Assume that o and b are sufficiently regular, and assume that a = %oat is uniformly elliptic:

there exist A < A € (0, 00) such that

MEP < (a(z)E, &) < AJg]? for every z € T? and € € R%.
Then there exists a unique probability measure w on T% and constants ¢, p € (0, 00) such
that, for every f € Lo°(T%),

sup
zer

- [, s dy‘<CIIfIILoo(Td>exp( o).

o uniform ellipticity yields exponential convergence to the invariant distribution

e The semigroup P; on functions defines an adjoint semigroup on ﬁ: on measures:
L@@ = [ Porwnan) = [ 250l
o Invariance: we have that (P, 7) =  for every ¢ € [0, 00), since
L Pertm(an) = [ rim(ay) for every te [0,20).

o Uniqueness / absolute continuity with respect to Lebesgue measure (tutorial)
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II. Ergodic properties of diffusions on the torus

For 1-periodic coefficients,
dX¢ = o(X)dB; + b(X;) dt in TY

e We have the unique, mutually, absolutely continuous invariant measure (ﬁ: T) =T
[ B () (e = [ Pesintan = [ fm(o) .
Td Td Td

e By absolute continuity, the invariant measure 7 has a positive density m in L!(T%):

dm = m(y) dy.
e By Feynman-Kac if 0;p = tr(aV2p) +b- Vp in T¢ then
/Td po(y)m(y)dy = /Td p(y,tym(y) dy for every ¢ € [0, 00).
e For the differential operator

Lg =tr(aV3g) +b- Vg and its adjoint L*g = (@i @)z;z; — V - (gb),

we have that
0 =0 (/w p(y, )m(y) dy) = /Td (Lp(y,t)) m(y)dy = /Td p(z, )L m(y) dy.

e The density solves the adjoint equation £*m = 0.
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II. Ergodic properties of diffusions on the torus

The Fredholm alternative [Section 3.3, Asym. Anal. for Per. Struct.]

Let o and b be sufficiently regular, and let a be uniformly elliptic. Consider the equations
tr(aV2p) +b-Vp=Lp=0 in T (1)

and
(aijz):cizj -V (Zb) =L*2=0in T% (2)

Then up to a multiplicative constant there exists a unique solution of (1) and (2) (namely,
p =1 and z = m, the density invariant measure). Furthermore, for ¢, € L (T¢) satisfying

/ $(yymy)dy =0 and / () dy =0,
Td Td

there exist unique solutions to the equations

Lz=¢ in T? with / zdy =0 and L*w =1 in T¢ with / w(y)dy = 1.
Td Td

e We can solve Lz = ¢ provided ¢ is orthogonal to the kernel of L£*.
— Orthogonality is necessary: if Lz = ¢ and L*m = 0 then
(¢, m) 2(ray = (£2,m) p2(1a) = (2, Lm) 2 (pay = 0.

— Sufficiency relies strongly on compactness.
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II. Ergodic properties of diffusions on the torus

Examples of invariant measures m:
e Divergence-form equations / reversible diffusions:
L*m = -V -a'Vm =0 implies that m = 1.
e Pure diffusions in one-dimension: the case b =0 and d = 1,

1

a

L*m = (am)zy = 0 implies that m = (a™1)

for (a=t) = 1 a1t
e In general, for higher dimensions and nonzero drift, they are complicated.

Using the Green’s function representation and Fubini’s theorem,

LB treeolmdy = [ [ puwarsa@m) dedy

= [ 1@ ([, pomeay) as= [ sma)a.

We have that, for every t € [0,00) and 2 € T¢,

m(@) = [ By 2)m(y) dy.
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III. Homogenization of pure diffusions

Consider the pure diffusion dX; = ¢(X¢)dB; and the central limit scaling
dX; = o(Xt/e) AW,
and the corresponding equation

Bep° = tr(a(e/e)V?p%),

for a = %002.
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What happens, for example, if A1 — 0 and Ag — oco?
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III. Homogenization of pure diffusions

Consider the pure diffusion dX; = ¢(X¢)dB; and the central limit scaling
dX; = o(Xt/e) AW
and the corresponding equation
Oep® = tr(a(z/=)V?p®)

for a = %0'0'2.

e Homogenization: identify @ € R4%4 such that
S =P
for p the solution of
p = tr(@v?p).
o Equivalently, in law, X7 — X for dX; =5 dB;.
e a complicated, nonlinear averaging

— what is @?
— it is very much not the case that @ = (a) .
£a1 23
Ry vy, lalecs
@;@ eI N
TR Y oty v
7 N/ ///MMI,L/@A// 7
2y 7 s
/////"ﬂ//// /@///// N0

e We have (a) — %)\21 as A1 — 0, while @ — 0.
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III. Homogenization of pure diffusions

The asymptotic expansion:
55 (x, ) = p(x,t) + ep1(z, /e, t) + 2 pa(a, v/e, t) + ...
1,60 and ¢,
0p° — tr(a(e/e)V25%) = e tr (a(3/) Vi p1)

9p — tr (a(z/c) (V2B + V2,01 + Vipz))

+ e0ip1 —etr (a(z/e (V p1+ szpz))
e We conclude that p; = 0, which is very much related to the fact that

X¢ = 0(X¢)dB; is a martingale,

e Evaluating the equation, keeping terms of order e~

and therefore have that
up = tr (a(v/) (V2P + Vip2)) +O(e).
o Separation of scales: we make the ansatz that pa(z,y,t) = Z?j:l wij (y)r?fjﬁ so that
0ip = tr (a(v/c) (es; + V2wij (if/s))) P+ O(e).
e Solvablity / Fredholm alternative requires that
br (a(9) (e33 + V2wi5(0))) = otz ) p2ray in T4,

and

3p = tr(@v?p) for a = /ﬂ‘d a(y)m(y) dy.
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III. Homogenization of pure diffusions

The asymptotic expansion:
P (,t) = p(x,t) + e2wij (¢/e)V2p(x, 1) + ...
e We define the second-order correctors:

tr(a(y)(eij + V>wi;(y))) = (@ij,m)2(pay in T

e We define the homogenized solution
d¢p = tr(@v?p) for a= / a(y)m(y) dy.
Td

e The asymptotic expansion p° satisfies
0:p° = tr(a(e/e)V25%) + O(e) in R x (0,00) with 55 = pg + O(£2).
e The difference 2¢ = p® — p° solves
812° = tr(a(e/e)V22%) + O(e) in R? x (0,00) with 2& = O(e?).
e Since 5° = p(x,t) + O(?), the comparison principle proves that, as € — 0,
p° — 7 for 8:p = tr(av3p).
2

Or, equivalently, that in law the processes X; converges in law to GB; for @ = %ﬁ .
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III. Homogenization of pure diffusions

Homogenization of pure diffusions

Let b and o be sufficiently regular, and let a be uniformly elliptic. Then, for every
po € CL(R?), the solutions

8:p° = tr(a(z/e)V?p®) in RY x (0,00) with p°(-,0) = po,
converge, as € — 0, to the solution
Ap = tr(@v?p) in R? x (0,00) with (-,0) = po,
for @ = [1a a(y)m(y) dy.

v

e The homogenized / effective matrix is the average of the original matrix with respect to
the invariant measure.

— uniformly elliptic with ellipticity constants determined by m
— emphasizes regions of small diffusion / traps / degeneracies

e In one-dimension, we have that m(y) = (¢~ ')~ e~ ! and @ = (a=1)" 1.

= a=nId TF  0<NLK A

/ a=MId m>z L
7/ O<m« L.
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IV. Periodic homogenization of divergence form equations

A random uniformly elliptic, 1-periodic coefficient field a: T4 — R3*d,
e uniform ellipticity: there exists A < A € (0, 00) such that

MEP < (a(z)g, &) < AJ€|? for every = € T? and ¢ € R%.
e The solution p® of
—V -a(z/e)Vp® = f in U with p°* =g on OU.

describes the evolution of a system satisfying

¢ ) ) v = [

Br(x)

e For symmetric a we have the variational formulation and Feynman-Kac formula

it (/U(a(z/a)Vu,Vu> —fudx) and pf(z) = Eq [g(Xf.U)-i-/OTU f(Xj)ds} .

vEg+H;

Periodic Random tile Poisson cloud Cluster
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IV. Periodic homogenization of divergence form equations

A weak solution of the equation
—V -a(z/e)Vp® = f in U with p* =g on OU.
is a function p° € H'(U) that satisfies, for every ¢ € C°(U),

/ a(z/s)Vps-Vzpdx:/ Yf with p* =g on AU.
U U

Consider the asymptotic expansion

7 (2) = B(2) + p1 (@, 2/e) + 2pa(w, 5/e) + ..

Ignoring terms of order € and smaller, and evaluating the equation on p¢,

/a(z/s)(vzﬁ+vyp1)-vwdx:/ e
v U

e Identify the equation satisfied by p.

e Separation of scales:

p1(x, 7)) = ¢i(%/)0;p().
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IV. Periodic homogenization of divergence form equations

Defined by first-order correctors ¢;, the asymptotic expansion
p° =p+egi(v/e)0ip(z) + ...
satisfies, up to terms of order ¢,

[ a@/)(Tap+ Tup0) - Ve = [ alefe) (e + Vi(/2)0ip) - Vo da
U U

- / pa(afe)(ei + Vi(2/e)) - Voip = / F.
U U

Ase — 0,

a(®/<)(es + Vi (/) — (ales + V) =: ae; weakly in L%(T9),
and formally we have that
—V -a(y)(ei + Voi(y)) =0 in T¢,
and that p solves
—V-aVp=f in U with p=g on OU.
e The functions z; + ¢;(z) are a-harmonic

— A first order Liouwville theorem: any subquadratic solution of

—V-aVp=0 on R? satisfies p(z) =c+£&-z+ e ().
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IV. Periodic homogenization of divergence form equations

The perturbed test function method [See Section 3, notes]

Let a: T — R%X4 be bounded, measurable, and uniformly elliptic and let pg € L?(R%). For
every € € (0,1) let p° be the unique weak solution of
—V -a(z/e)Vp® = f in U with p* =g on OU.
Then, as € — 0,
p° — 7 weakly in H'(R?),
for p satisfying
—V.-aVp=f in U with p=g on 90U,
for the effective coefficient field @ € R?*? defined by

ae; = (ae; + V) for —V -a(e; + Vi) =0 in T

e compensated compactness methods
— the div-curl lemma

e existence / uniqueness of ¢; follows by Fredholm or the Lax-Milgram lemma
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IV. Periodic homogenization of divergence form equations

The solution p¢ of
—V -a(z/e)Vp® = f in U with p* =g on OU.
We have formally that
p° =2 p° =D+ edi(v/)0ip(z) + ...
and therefore that
Vp© = Vp+ Vi(#/e)0;p.
Ase — 0,
Vp® = Vp weakly in L%(R? x [0,T]; RY),
but not strongly.

e weak convergence in H! but not strong convergence

3 S T
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IV. Periodic homogenization of divergence form equations

The homogenization error: the error in the two-scale expansion,
wE = pf — B — e¢i(3/2)0,B,

for the correctors ¢; and the homogenized solution p satisfying

—V-aVp=fin U with p=g on 8U and —V -a(e; + V;) =0 in T

The homogenization error w® satisfies
=V -a(@/e)Vw® = f =V - (a(¥/<)ei0:p) = V - (a(%/c)Vi(#/=):p)
— eV - (a(#/e)$s(%/=)V(iP)) -
After adding and subtracting
-V-aVvp=f,
we have that
-V a(z/a)sz =V- ((a(z/s)(el + V¢l(z/e)) — aei) 8@)
+ eV - (a(2/e)¢i(*/)(VOip)).
The energy estimate, for ¢ = ¢(d, f, g, A\, A) € (0, 00),

[ 1902 < e (Wa(efe)es + Tou(e72)) =) 3oy +< i)
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IV. Periodic homogenization of divergence form equations

The homogenization error w® = p* — p — e¢;(¢/<)0;p satisfies
—V - a(#/e)Vuf = V - ((a(e/e)(e; + Vi(#/<)) — ae:) ;p)
+ eV - (a(z/e)¢i(*/)(VOip)).-
The essential observation is that the vectors
q; = a(e; + Vo;) — aey,
are mean zero:
(@) = {a(e; + Vi) —ae; =0
and divergence free:
Vg =V -a(y)(ei + Voi(y)) = 0.
e De Rham cohomology—every mean zero, divergence free field has a potential field
— there exists o; such that V- o; = ¢;.
e o is a d X d skew-symmetric matrix

— vector field is a (d — 1)-form, skew symmetric matrix is a (d — 2)-form
— the “stream matrix” from fluids

B. Fehrman (Un: Oxford) Stochastic Analysis in Interaction 20-24 September 2021

23 / 50



IV. Periodic homogenization of divergence form equations

Let ¢ = (¢;): T¢ — R? be mean zero and divergence free.

There exists a skew-symmetric matrix o: T¢ — R%X4 syuch that

V.0 =gq where (V-0); = Opoik-

3)

The solution to (3) is not unique—shift by any matrix with rows that are divergence free.

A variational problem: for o = (o)) minimize the energy
/ |Vajk|2 subject to the constraint V -o = q.
Td
This leads to the well-posed equation
—Aoj, = 9;q, — Orq; on T¢ with (oK) = 0.
We define o = (01) and observe that
A(V - 0); = A(Okoik) = Ok(Aoik) = Ag; — 0; (V- q) = Ag;.

‘We have that
A((V-0)i—qi)=0 andso (V-0);—q ={(V-0)i—¢q)=0,

and, therefore,

V.o=gqg.
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IV. Periodic homogenization of divergence form equations

The homogenization error: the error in the two-scale expansion,
w® = p° —p—e¢i(v/=)0ip,

for the correctors ¢; and the homogenized solution p satisfying

—V.aVp=fin U with p=g on 8U and —V -a(e;+ V) =0 in T%

The homogenization error we satisfies
=V -a(e/e)Vw® =V - ((a(z/e)(ei + V¢i(¥/e)) — ae;) 8ip)
+ eV - (a(2/e)$i(#/=)(VOip))-

The fluzes q;: divergence free fields
qi = ale; + Vi) — ae;.
The flux correctors: skew-symmetric matrices o; satisfying

V.o; = q; fixed by — Aok = 0jqix — Orqij-

It follows from the skew-symmetry that distributionally
V- (6:(+/2)057) = —£V - (04(+/=) VD),

and, therefore,

-V a(z/e)Vwe =eV- ((a(ﬁ,(z/e) — O'»L(T/s)) V@.ﬁ) .
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IV. Periodic homogenization of divergence form equations

Periodic homogenization of divergence form equations

Let a: T? — R?*4 be bounded, measurable, and uniformly elliptic. Let pg € CS°(R?) and
for every € € (0,1) let

—V -a(z/e)Vp® = f in U with p* =g on 9U,
and let p solve
—V.-aVp=f in U with p=g on 90U,
for ae; = (a(e; + V¢;)) defined by the correctors —V - a(e; + V;) = 0. Then there exists
¢ = c(po,d, f,\,A) € (0,00) such that the homogenization error

w® = p° —p—e¢i(7/=)0:p
satisfies
lw®ll g1 uyy < ce (”¢i”L2(Td) + ||Ui||L2(’]I‘d)) :

e strong H!'-convergence of the two-scale expansion
— the two-scale expansion corrects the function and the gradient
e the a-harmonic coordinates x; + ¢;(x)—sub-quadratic a-harmonic functions

— Liouville theorems—these are the linear functions in the geometry of a
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V. Periodic homogenization of non-divergence form equations

The diffusion equation
tr(a(=/e)V2p%) + e~ tb(z/e) - Vp = f in U with p° =g on 8U.
e Postulate an asymptotic expansion of the form
P° =D+ e¢i(2/e)0ip+ e p(/e) + ...
e The corrector equation at order e~ 1:
tr(a(y)V23¢;) + b(y) - Vi = —b; in T4

Solvability requires (b,m) = 0 for the invariant measure £*m = 0.
e At order ¥ the solvability condition for 7 requires that p solves
&ip = tr(av?p) for a= /Td (a(y)(1 + Vo(y)) + o(y) @ b(y)) m(y) dy.

e For the process dX; = o(X¢)dB: + b(X¢) dt the process
M = Xt + ¢(X¢) for ¢ = (é1,...,¢4) is a martingale.

e Form the decomposition

EXt/Ez =eM,;/ 2 — 8¢(Xt/52).
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V. Periodic homogenization of non-divergence form equations

An alternate approach using the invariant measure: for £*m = 0,
tr(m(e/<)a(e/=)V?p%)) + e~ m(z/e)b(x/e) - Vp©
= V- (m(7/e)a(7/e)Vp®) — =1 (V- (m(v/e)a(v/2)) — m(z/e)b(x/e)) - Vp°.
e Divergence-free drift: the vector
b(y) = V - (m(y)a(y)) — m(y)b(y) is divergenc-free,
since V - b = L*m.
o Mean zero drift: We have that
(B) = (V - (ma) — mb) = —(mb) = 0,
if and only if b is perpendicular to m in the L?-sense that <b,m>L2(Td> =0.
e If the solvability condition (b, m>L2(Td> = 0 is satisfied, there exists a potential & with
V-6 =b,
such that
tr(m(z/e)a(z/)V2p%)) + e~ tm(z/e)b(e/e) - Vp© =V - ((m(a/=)a(v/e) + &(v/<))VpF)).
e For the new “diffusion matrix”

a=am+ & we have V -a(z/e)Vp® = f(z)m(z/e).
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V. Periodic homogenization of non-divergence form equations

After multiplying the equation by m(z/c),

tr(m(z/e)a(z/=)V2p%)) + e~ tm(z/e)b(v/e) - Vp©

= V- (m(7/e)a(#/e)Vp®) — =1 (V - (m(v/e)a(v/=)) — m(z/e)b(x/e)) - Vp°

=V - ((m(z/e)a(z/e) + &(2/))Vp®) = fm(z/e),
for (b, m>L2(Td) = 0 and for the skew-symmetric matrix & satisfying

V.6 =V (m(z/c)a(v/e)) — m(#/)b(¥/e).
The correctors
—V - (am +5)(ei + V) =0 in T

Observe that by Holder’s inequality and Young’s inequality that, fo ¢ = ¢(d) € (0, o),

/Td {(am +5)Vo, V) = /Td (v, Vo)m < ¢ (laml|Z s pay + 1132 pa) ) -
The homogenized matrix @ is

ae; := ((am + &) (e; + Vi),

and p solves

V-aVp= fm(z/s) in U with p =g on 9U.

B. Fehrman (Unive r of Oxford) Stochastic Analysis in Interaction 20-24 September 2021 29 / 50



V. Periodic homogenization of non-divergence form equations

Periodic homogenization of non-divergence form equations

Assume that a € CH%(T%; RX?) is uniformly elliptic, assume that b € C*(T%; R%), and
assume that pg € C2°(T?). Let m be the invariant measure £*m = 0 and assume that
(b, m)Lz(-ﬂ-d) = 0. Let ¢ be the vector potential satisfying

V.6 =V"-(am)—bm,

and let @ € C%(R%) be defined by @ = am + . Define the homogenization correctors
—V -a(ei + Vi) =0 in T%
Then, for the effective matrix ae; = (a(e; + V¢;)), for p satisfying
V -aVp = fm(z/e) in U with p=g on 9T,

the homogenization error

w® = p° —p — £¢;0;p,
satisfies, for some ¢ = ¢(f, g,d, A\, A) € (0, 00),

”wE”LQ[O,T];Hl(’]Td) See <H¢i||L2(Td) + HUiHL2(Td)) )

for the flux correctors V - o; = a(e; + Vo;) — ae;.

e Energy estimates for the correctors: there exists ¢ = ¢(a,m,&) € (0,00) such that

L, Vel m()dy < c.
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V. Periodic homogenization of non-divergence form equations

Important examples with b = 0:

e Divergence-form:

=V -a(7/e)Vp® = tr(a(g)v%g) +e NV - al(7/e)) - Vit

In this case m = 1 and, as the integral of a periodic gradient,
0.0y = [ (V- a'@)dy =0.
Td

e Mean-zero divergence free drift: for a potential s with V - s = b,
V- a(#f)VoE + e b(afe) - T = V- (a + ) (/) V.

In this case m = 1 and
(b:m>L2(']1'd) = / bdy = / V- s(y)dy = 0.
Td Td
e Brownian motion in a periodic potential: we consider

—Ap® 4+ IVU(3/e) - Vp& = —eV (v . (e=V (/v pe).

The invariant measure is the Gibbs measure m = (e~Y)~1e~V and

(b,m) 12 (7a) :<87U>71/ e’UVUdy:—(e’UYl/ Ve Vdy=o0.
Td Td

o Symmetry: restricted isotropy in law implies b = 0.
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V. Periodic homogenization of non-divergence form equations

The case b = (b,m) 2 (ay # 0.

e Constant coefficients: B
dX; = dB¢ + bdt.

In this case, for the diffusion beginning at zero,
X§ = W§ e b
Diffusive behavior after subtracting the “effective drift” b:
X§—e b= WE.
e True in general: if b # 0 then as ¢ — 0 the process
X¢ is ballistic in the direction b.
However, after centering about this singular trajectory, as € — 0,
X;— e bt — 5B; in law.
e Repeating the same proof:
Bep® =V -a(e/e)Vp® + e b Vot = fx)m(v/e),

and p® solves B
&P —V -avp© +e 10 V5t = flx)m(z/e).

Compare p°(x — e~ 1bt,t) to p°(z — e~ 1bt, t).
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VI. A random environment

The Poisson point process on R¢:

e The probability space is the space of locally finite point measures

Q=L w= Z 0z, : x; are locally finite in RS
el

with the sigma algebra F generated by all maps of the form
w— w(B) =#{ieI:xz; € B} for Borel subsets B C R%.

e For )\ € (0,00) there exists a unique probability measure Py on € satisfying:
— For every Borel subset B C R¢,

Exw(B)] = A|BJ.
— For every collection of bounded, disjoint subsets By, ..., By C R%,

the random variables w — w(By) are independent.

— For every y € R? and measurable set A € F,

Py(A) =Px(A+4y) for A+y={w(-+y):weA}.
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VI. A random environment

Fix a Poisson point process (Q, F,Py). We define the random coefficient field
a(z,w): RT x Q — R4, for w =3, ; 6z,

a(z,w) = MU By (2)) T A2 {UieBi (20)}e
For the measure-preserving transformation group {7, : R — Rd}zGRd defined by

T2 (w)(-) = w(- — 2),
we have
a(z + y,w) = a(y, Tzw) for every z,y € R¢ and w € Q.

/ S
/® Zo,
/ @

S /6? /
/ S, / w»‘»‘
o ¥ 8 %5
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VII. Stochastic homogenization

A random uniformly elliptic coefficient field a(z,w): R% x Q — R4x4,

e stationary: for a measure-preserving transformation group {75: Q — Q}  cga,
a(z +y,w) = a(z, Tyw).
e ergodicity: the transformation group is qualitatively mixing, for g: Q2 — R,

g(1z-) = g(+) for every z € R? if and only if g is constant.

We are interested in the limiting behavior, as € — 0, of
=V -a(z/e,w)Vp® = f in U with p° =g on U,
describes a system in equilibrium:

g§3 VW) v = |t

Br(x)

Periodic Random tile Poisson cloud Cluster
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VII. Stochastic homogenization

The ergodic theorem [Becker]

Let (2, F,P) be a probability space equipped with an ergodic measure preserving
transformation group {7¢: Q@ — Q}  cpd-

Then for every f € L'(), for almost every w € Q,

lim 7€3R f(rew)dz =E[f].

R—00

And in the weak form, for every 1 € C°(R%), as ¢ — 0,

e—0

lim /Rd W(@) f (1a/s0) dz — Ef] /Rd »(z) da.

e A function f: R% x Q — R is stationary and ergodic if

f(@,w) = £(0, Tpw) =: g(Tw) for every € R? and w € Q,

for some measurable g: Q — R and {74}, cga is ergodic.

e [Ergodicity: large-scale spatial averages almost surely approximate the expectation:

f(z,w)dz ~E[f] as R — oo.
Br

e In the weak form, almost surely,

f(z/e,w) = E[f] weakly as e — 0.
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VII. Stochastic homogenization

Stochastic homogenization: for the solutions
—V - a(®/e,w)p®(z,w)) = f in U with p*(-,w) =g on U,
there exists a deterministic @ € R4 such that
p°(-,w) — p almost surely as e — 0,

for the solution p of
—V-aVp=f in U with p=g on 0OU.

Diffusion in random environment: in the symmetric case, for the diffusion processes
dXyY = o(X{,w)dBy + (X, w) dt,

1t

for a = 500", we have almost surely that

w _ .
th/Eg — 0Bt in law,

Y

for a = %0’0’ .

2,

/ /

N v
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VII. Stochastic homogenization

—The equation
—V - a(z/e,w)Vp® = f in U with p* =g on OU.

—The asymptotic expansion

P (2,0) = Pa) + ei(5/e, w)0P(@) + ...

—Almost surely by the ergodic theorem
a(z/e,w)(e; + Voi(z/e,w)) = (a(0,w)(e; + Vi (0,w))) =: ae;.

—By stationarity we have that a(z,w) = A(mzw) and V¢(z,w) = ®;(74w), so that
a(@/e,w)(ei + Vgi(v/e,w)) = (a(0,w)(e: + V$:(0,w))) = E[A(e; + ®4)] .

—The first-order correctors ¢; almost surely satisfy on the whole space

—V - a(y,w)(ei + Vi (y,w)) =0 in R

—For the homogenized coefficient @ we have

—V-aVp=f in U with p=g on OU.
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VII. Stochastic homogenization

The corrector equation

—V -a(y,w)(ei + Voi(y,w)) =0 in R
The periodic case:

e The probability space is the torus,
Q0 =T with the Lebesgue sigma algebra and the normalized Lebesgue measure.

e The “random” variable
A: T% - R4 g 1-periodic.

e The transformation group {7z}, cga is defined by
wa:x—i—we'ﬂ'd for every z €RY and w e T<.
e The stationary “random” coefficient field is
a(z,w) = Az + w) = A(Tzw) for every z € R and w € T%
Lift the corrector equation to T¢ using the environment from the point of view of the particle:
=V A(y)(ei + Vi(y)) =0 in T
NN

77

Dl - BR

s A
NN,
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VII. Stochastic homogenization

The corrector equation
—V - a(y,w)(e; + Voi(y,w)) =0 in R

and the asymptotic expansion p¢ = p + £¢;(¢/e,w)0ip+ ...
e Validity of the asymptotic expansion requires sublinearity: almost surely,

lim <S]1311P (E¢>¢(Z/67w))> = Jim (Rl <s];15|¢>¢(y7w)>> =0.

e In an L2-sense, almost surely,
1

2
lim | R~1 <7[ ¢§(y,w)dy> =0.
R— o0 Br

o A true correction of the diffusion process dXy = o(Xy,w)dB; + b(X}’,w) dt:
X§ = X¢ + $(XF) — 6(XE).

e The environment from the point of view of the particle:

T, B = Txww.

@// @/ /@/ crm T /®/® / /

e LY s ¥

i /:/ ///// @/ // '//
)

@/ﬁmx//
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VII. Stochastic homogenization

How to lift the corrector equation to €2:
—V - a(y,w)(e; + Voi(y,w)) =0 in RE
e Differential operators on Q:

sz(w) _ Alm f(Theiw) - f(w)

g2
im W strongly in L*(2).

e Smooth functions on Q: for ¥ € CX°(R?) and f € L>®(Q),
folw) = [ Frawys(w)do.

Formally we have the H'-space

" (Q) = N D(Dy).

‘We can hope to solve
—D-a(e; +Dg¢;) =0 in Q,

in the sense that
Ela(e; + Dg;) - Dip] = 0 for all 3 € HI(Q).

e No compactness, no Poincaré inequality, no Fredholm alternative.
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VII. Stochastic homogenization

How to lift the corrector equation to €2:
—V - a(y,w)(e; + Voi(y,w)) =0 in RE
The differential operators and H!-space:

le(w) _ }lLl_)InO f(Theiwz’ - f(w)

strongly in L2(Q) and H'(Q) = n¢_,D(D;).

The space of generalized gradients:

Lfm Q) = mm (Q;RY) .

Every @ € L12>ot (Q2) is a gradient in the sense that it is distributionally curl free:

D;®; = D;®; for every 4,5 € {1,...,d}.

2
pot

—DA(eZ-i-‘I)l) =0 in Q,

The Lax-Milgram lemma: there exists a unique ®; € L2 _. () satisfying
in the sense that
E[A(e; + @;) - U] =0 for every W € Lgot (Q).

e We construct the stationary gradient of the corrector.
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VII. Stochastic homogenization

We construct the stationary gradients of the correctors and flux correctors:
-D. A(e, + q)l) =0 and - D Zijk = DJC;)“C — Dle‘j7
for the fluxes Q; = A(e; + ®;) — ae,.

e The correctors and flux correctors are almost surely defined by
/ ¢i(y,w)dy =0 with V¢;(z,w) = ®;(1zw),
B,

and
/ crijk(y,w) dy =0 with VUijk(:E,w) = Eijk(wa)-
B

1

e For the fluxes ¢; = a(e; + V¢;) — ae; and for o; = (0451), almost surely,
—V - a(y,w)(e; + Voi(y,w)) = 0 and V-0i(y,w) = qi(y,w) on R
e Almost surely the homogenization error

ws(x’ UJ) = ps(x’ UJ) - ﬁ(az) - Ecbi(z/sv w)alﬁ
solves the equation

=V -a(v/e,w)Vw® = eV - ((a(v/e,w)$i(7/e, 0) — oi(2/e,w)) VOip) .
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VII. Stochastic homogenization

e Almost surely the homogenization error
w(z,w) = p*(z,w) — p(z) — e¢i(?/e,w)0ip
solves the equation

—V - a(z/e,w)Vw® = eV - ((a(®/e,w)pi(F/e,w) — oi(z/e,w)) VO;p) .

e The energy estimate, for some ¢ = ¢(\, A, d, f,g) € (0,00),
[ivwl <e ([ leitrewl + oitefe )
U U
e Homogenization requires L2-sublinearity:

lim (/U i (v/e, )2 dx) —0.

e It suffices to prove almost surely that
i ([ leoute/es) = (ot /e ol av) o
e—0 U
for {epi(‘/e,w))U = fU e¢i(z/e,w) dx.
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VII. Stochastic homogenization

To prove that:
iy ([ letite/ei) = (cortferul? ay) =o.
E—r U

e The Poincaré inequality: for every ¢ € (0, 1), for ¢ = ¢(U) € (0, 00),
/U lei(#/=,w) — (e¢i(/esw))ul? dy < c /U [Vi(e/2,w)|* dy.

e The ergodic theorem: almost surely, for ¢ = ¢(A, A) € (0, 00),

e—0

lim /U IV61(s/z, )2 dy = B [|#:]] < c.
o The Poincaré inequality: almost surely,
{ei(#/e,w) — (€9i(/e,w))U }ec(0,1) is bounded in HY(U).
e The ergodic theorem: almost surely,
Vi(z/e,w) = E[®;] =0 weakly in H(U),
and, therefore,
e¢i(e/e,w) — (e¢;(/e,w))y — ¢ =0 weakly in H*(U).
o The Sobolev embedding theorem: almost surely,

e¢i(v/e,w) — (e¢i(/=,w))y — O strongly in L*(U).

B. Fehrman (Univ y of Oxford) Stochastic Analysis in Interaction 20-24 September 2021

45 / 50



VII. Stochastic homogenization

Stochastic homogenization [Kozlov, Papanicolaou, Varadhan...]

Let (2, F,P) be a probability space, let a: Q x R — RXd be a uniformly elliptic,
stationary, and ergodic coefficient field and for every w € Q let p® solve the equation

—V - a(®/e,w)Vp® = f in U with p* =g on 9OU.
Let the homogenized coefficient @ € R¥X? be defined by
ae; :=E[A(e; + ®;)] for ®; € Liot(Q) satisfying — D - A(e; + ®;) =0,
and let p be defined the homogenized solution
—V.-aVp=f in U with p=g on 0OU.
Then for the homogenization correctors ¢; defined by
$i(y,w)dy =1 with Vé;(y,w) = @s(ryw),

B1
the two-scale expansion

ws(xv UJ) = ps (ZL‘, UJ) - ﬁ(.’ﬁ) —edi (:n/{.:’ w)@lﬁ(x),

almost surely satisfies

H € —
lim [l 1 1y = 0.

o A regularity theory for random elliptic operators; Gloria, Neukamm, Otto

e Quantitative Stochastic Homogenization and Large-Scale Regularity; Armstrong, et al.
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VII. Stochastic homogenization

Divergence-free environments [Avelleneda, Komor , Olla, Kozma,

T6th, F...]

Let (2, F,P) be a probability space, let a: Q x R — R%Xd be a uniformly elliptic,
stationary, and ergodic coefficient field and for every w € Q let p® solve the equation

—V - a(2/e,w)VpS 4+ e Lb(e/e,w) = f in U with p° =g on 8T,

for a stationary and ergodic, mean zero and divergence free drift b(z,w) = B(74w). Assume
that b admits a stationary LP-integrable stream matrix S:

D-S=DB on Q with S¢e LP(Q;RI*?).
Let the homogenized coefficient @ € R¥*? be defined by
ae; :=E[(A+ S)(e; + ®;)] for ®; € Lgot(Q) satisfying — D - (A+ S)(e; + ®;) =0,
and let p be the homogenized solution
—V-.aVp=f in U with p=g on 0OU.

If p = 2 then almost surely
p° — p weakly in H(U).
If p=d A (2+0) then the two-scale expansion w® = p* — p — £¢;0;p almost surely satisfies

: 1> —
lim [l g1 gy = 0.
v

e Also the case b = VU for a stationary potential U: Gibbs measure m = E [e_U} LU
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VII. Stochastic homogenization

The diffusion dX; = o(X¢,w)dBx.

Homogenization of balanced environments [Papanicolaou, Varadhan]

Assume that a: R x Q — R4*4 is uniformly elliptic, stationary, and ergodic. Then there
exists a unique mutually absolutely continuous invariant measure 7 for the environment from
the point of view of the particle on (Q, F,P): for every f € L>° (),

Er [Eo,w [f(7x,w)]] = Ex [f].
The homogenized coefficient @ € R4*? is defined by
a = Er[a].

The solutions
8:p° = tr(a(e/e,w)) on R? x (0,00) with p°(-,0) = po,

converge almost surely as € — 0 to the solution

8:p = tr(@v?p) on R x (0,00) with p(-,0) = po.

e The Aleksandrov-Bakelman-Pucci estimate: suppose that p® solves
tr(a(z/e,w)V2p®) = f in By with p° =0 on 8Bj.
Then, for ¢ = ¢(X, A, d) € (0,00) independent of € € (0,1),

1P oo (1) S €llfllpacmy) -
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VII. Stochastic homogenization

Consider the diffusion in random environment
dX: = o(X¢,w)dB: + b(X¢,w) dt.
In the periodic case, for the invariant measure m and in the central limit scaling,
(b, m>L2(Td) =b =0 implies a diffusive behavior,

and
b # 0 implies ballistic behavior in direction b.

In the absence of an invariant measure try to rule out ballistic behavior using symmetry.

Assume that, for every orthogonal transformation r that preserves the coordinate axis,

(ro(z,w), rb(x,w)),cpa and (o(re,w),b(re,w)),cga have the same law.

Then, since for every orthogonal transformation r preserving the coordinate axis,
X¢ and rX; have the same law under P x Py ..
In the annealed sense we have that

E[Ep,.[Xt]] = 0.
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VII. Stochastic homogenization

Homogenization of isotropic diffusions [Sznitman, Zeitouni, F']

Let a: R% x @ — R4%4 and b: R? x Q — R? be uniformly elliptic, bounded, Lipschitz
continuous, and stationary coefficient fields satisfying a finite range of dependence. Assume
that for every orthogonal transformation r preserving the coordinate axis

(ra(z,w)rt, rb(z,w)) yepa and (a(rz,w), b(rz,w)),cpe have the same law.

z€
Then there exists 7 € (0, 00) such that if
la —I| <mn and [b] <m,
then there exists @ € R such that the solutions
Btp° = tr(a(z/e,w)V2p®) + e 1b(2/e,w) - Vp© in RY x (0,00) with p€(-,0) = po,
converge almost surely as € — 0 to the solution of
8:p = aAp in R% x (0,00) with 5(-,0) = po.

Furthermore, there exists a unique mutually absolutely continuous invariant measure 7 on
(9, F,P) for the process from the point of view of the particle: for every f € L°°(Q),

Er [Bo,w [f(x,w)]] = Ex [f].

e the perturbation says that for short times the process is like a Brownian motion

e an inductive renormalization argument controls traps / localization / coupling
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