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I. The simple random walk

Let {Xi}i→N be independent coin flips.

That is, {Xi}i→N are independent random variables with

P[Xi = 1] = P[Xi = →1] = 1/2.

The simple random walk (Sn)n→N0 is defined by S0 = 0 and

Sn = X1 + . . .+Xn.

A realization of S11.
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I. The simple random walk

If T is the random time

T = inf{n ↑ N : Sn = 1},

then T < ↓ almost surely but

E[T ] = ↓.

If TN is the stopping time

TN = inf{n ↑ N : Sn = 1 or Sn = →N},

then

P[STN = →N ] =
1

N + 1
.

A simple random walk.
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I. The simple random walk

The Law of Large Numbers: the large scale limit

lim
n↑↓

X1 + . . .+Xn

n
= E[X1] = 0.

The Central Limit Theorem: for every a ↔ b ↑ R,

lim
n↑↓

P
[
a ↔ X1 + . . .+Xn↗

n
↔ b

]
=

ˆ b

a

(2ω)
↔ 1

2 exp
(
→ x

2

2

)
dx.

Approximate Large Deviations Principle: as n ↘ ↓, for every ε ↑ (0,↓),

P
[
X1 + . . .+Xn

n
≃ ε

]
= P

[
X1 + . . .+Xn↗

n
≃

↗
nε

]

⇐
ˆ ↓

↗
nω

(2ω)
↔1

exp
(
→ x

2

2

)
dx

⇐ exp
(
→ nε

2

2

)
.

— (X1 + . . .+Xn) is expected to be of order
↗
n

B. Fehrman (LSU) UC Irvine June 23, 2025 4 / 21



I. The simple random walk

Large deviations principle: a sequence of random variables Xn : ! ↘ R satisfy a

large deviations principle with rate function I : R ↘ [0,↓] if, for every A ⇒ R,

→ inf
x→A→

I(x) ↔ lim inf
n↑↓

1

n
log

(
P(Xn ↑ A)

)
↔ lim sup

n↑↓

1

n
log

(
P(Xn ↑ A)

)
↔ → inf

x→A
I(x).

Informally, this means that, as n ↘ ↓,

P(Xn ⇐ x) ⇐ e
↔nI(x)

.

The linear central limit expansion: as n ↘ ↓,

X1 + . . .+Xn

n
⇐ “law of large numbers” + “central limit correction”

= 0 +
1↗
n
· N (0, 1),

for a normal random variable N (0, 1) predicts that

P
[
X1 + . . .+Xn

n
≃ ε

]
⇐ e

↔nĨ(ω)
for Ĩ(ε) =

1

2
ε
2
.

— although |X1+...+Xn
n | ↔ 1!
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I. The simple random walk

Cramér’s theorem: for the rate function

I(x) =






tanh
↔1

(x)x→ log

(
1

2

(
e
↔ tanh↑1(x)

+ e
tanh↑1(x)

))
if |x| ↔ 1,

+↓ if |x| > 1,

the random variables
X1+...+Xn

n satisfy the large deviations principle

P
[
X1 + . . .+Xn

n
≃ ε

]
⇐ e

↔nI(ω)
.

The Large Deviations Principle: a Taylor expansion proves that

I(ε) ⇐ 1

2
ε
2
+ o(ε

2
) with I(±1) = log(2) and I(ε) = ↓ if |ε| > 1,

and therefore, as n ↘ ↓,

P
[
X1 + . . .+Xn

n
≃ ε

]
⇐ e

↔nI(ω) ⇐ e
↔n· ω

2

2 e
↔n·o(ω2)

.

— linear CLT expansion correctly predicts small fluctuations

— nonlinear LDP captures large fluctuations
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II. Brownian motion

Brownian motion: The simple random walk

Sn = X1 + . . .+Xn and W (t) = S↘t≃.

The Brownian path

B(t) = lim
n↑↓

1↗
n
W (nt) in distribution on C([0,↓)) (technically, D([0,↓)).

Properties: (i) B(0) = 0, (ii) continuous sample paths, (iii) independent increments:

B(t)→B(s) is independent of B(s), and (iv) normally distributed:

B(t)→B(s) has distribution (2ω(t→ s))
↔ 1

2 exp

(
→ |x|2

2(t→ s)

)
.
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II. Brownian motion

The rate function: let I : C([0, T ]) ↘ [0,↓] be defined by

I(x) =
1

2

ˆ T

0

|ẋ(t)|2 dt if x is di”erentiable,

and I(x) = ↓ otherwise.

Schilder’s theorem: for every ϑ ↑ (0, 1),

W
ε
(t) =

↗
ϑB(t).

The paths {W ε}ε→(0,1) satisfy a large deviations principle on C([0, T ]):

P(W ε ↑ A) ⇐ e
↔
(
ε↑1 infx↓A I(x)

)
.
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II. Brownian motion

The Ornstein–Uhlenbeck Process: We consider the solution

dX
ε
t = →X

ε
t dt+

↗
ϑ dBt.

The Controlled ODE: for a “control” x(t) ↑ H
1
([0, T ]), we solve

dyt = →yt dt+ ẋt dt,

and define the large deviations rate function

I(y) =
1

2
inf

{ ˆ T

0

|ẋ(t)|2 dt : dyt = →yt dt+ ẋt dt

.

The Freidlin–Wentzell Theorem: we have the large deviations principle

P
(
X

ε ↑ A) ⇐ e
↔
(
ε↑1 infy↓A I(y)

)
.
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III. Interacting particle systems

• Statistical physics

— zero range process

— Ising and Potts models

• Belief/infection propagation

— voter model

— contact process

• Tra#c models

— exclusion processes

• Neural networks as interacting particle systems

10 CHAPTER 1. INTRODUCTION

Figure 1.1: Four snapshots of a two-dimensional voter model with periodic
boundary conditions. Initially, the types of sites are i.i.d. Time evolved in
these pictures is 0, 1, 32, and 500.

dimensions 3 and more. In Figure 1.2, we see the four snapshots of the time
evolution of a three-dimensional voter model. The model is simulated on a
cube with periodic boundary conditions, and the types of the middle layer
are shown in the pictures. In this case, we see that even after a long time,
there are still many di↵erent types near the origin.2

2
On a finite lattice, such as we use in our simulations, one would eventually see one

type take over, but the time one has to wait for this is very long compared to dimensions

1 and 2. On the infinite lattice, the probability that the origin has a di↵erent type from

its right neighbor tends to a positive limit as time tends to infinity.
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dimensions 3 and more. In Figure 1.2, we see the four snapshots of the time
evolution of a three-dimensional voter model. The model is simulated on a
cube with periodic boundary conditions, and the types of the middle layer
are shown in the pictures. In this case, we see that even after a long time,
there are still many di↵erent types near the origin.2

2
On a finite lattice, such as we use in our simulations, one would eventually see one

type take over, but the time one has to wait for this is very long compared to dimensions

1 and 2. On the infinite lattice, the probability that the origin has a di↵erent type from

its right neighbor tends to a positive limit as time tends to infinity.

The voter model [Swart; 2020]
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III. Interacting particle systems

• Let g : N0 ↘ N0 be nondecreasing

— g(0) = 0 and g(k) > 0 if k ⇑= 0

• Independent random clocks T (k) with distribution

T (k) ⇓ g(k) exp(→g(k)t) on [0,↓).

T(4) T(3) T(1) T(2) T(4) T(2) T(2) T(2)

T(4) T(2) T(3) T(1) T(3) T(2) T(3) T(2)

The zero range process
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III. Interacting particle systems

The generator: for a compactly supported p with zero mean


z→Zd zp(z) = 0,

(LNf)(ϖ) =


x,z→Td
N
p(z)g(ϖ(x))

(
f(ϖ

x,x+z
)→ f(ϖ)

)
.

A rescaling: a zero range process defined on (Zd
/NZd

) rescaled in space and time,

The cases N = 4, 8, 15.
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III. Interacting particle systems

The zero range process ϖ
N
t on (Zd

/NZd
), and the empirical density

µ
N
t =

1

Nd



x→(Zd/NZd)

ε x
N

· ϖN
N2t(x).

Hydrodynamic limit [Ferrari, Presutti, Vares; 1988]

For every continuous f : Td ⇔ [0, T ] ↘ R and ε ↑ (0, 1),

lim
N↑↓

P
[
|↖f, µN ↙ → ↖f, ϱ↙| > ε

]
= 0,

for ↖f, µN ↙ =
´
fµ

N
, and for ϱ the solution

ςtϱ = $%(ϱ),

for the mean local jump rate % [Kipnis, Landim; 1999].

— If T (k) ⇓ e
↔t

then ςtϱ = $
(

ϑ
1+ϑ

)
.

— If T (k) ⇓ ke
↔kt

then ςtϱ = $ϱ.
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III. Interacting particle systems

A space-time white noise: a d-dimensional Gaussian noise dφ satisfying

E [ dφ(x, t) dφ(y, s)] = ε0(x→ y)ε0(s→ t).

On the torus Td
, we have the spectral representation

φ =



k→Zd

(
sin(2ωk · x)Bk

t + cos(2ωk · x)W k
t

)

for independent d-dimensional Brownian motions B
k
and W

k
.

Analogue of Schilder’s theorem: we have that, for A ⇒ C([0, T ];H
↔ d+1

2 (Td
)
d
),

P

ϑ

d
2 φ ↑ A


⇐ e

↔
(
ε↑d infε↓A I(ϖ)

)

for the large deviations rate function

I(↼) =
1

2
inf

{
∝g∝2L2

t,x
: ↼(x, t) =

ˆ t

0

g(x, s) ds

.

— formally g =
ϱϖ
ϱt as L

2
-valued processes
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III. Interacting particle systems

The zero range process with nonzero mean: let ϖ
N
t be the zero range process

on Td
N with transition kernel p satisfying


z→Zd zp(z) = ↼.

The hyperbolic rescaling: let µ
N
t be the hyperbolically rescaled density

µ
N
t =

1

Nd



x→(Zd/NZd)

ε x
N

· ϖN
Nt(x).

Hydrodynamic limit [Rezakhanlou; 1991]

For every continuous f : Td ⇔ [0, T ] ↘ R and ε ↑ (0, 1),

lim
N↑↓

P
[
|↖f, µN ↙ → ↖f, ϱ↙| > ε

]
= 0,

where ϱ : Td ⇔ [0, T ] ↘ R is the unique solution of the equation

ςtϱ = ′ · (%(ϱ)↼),

for the mean local jump rate % [Kipnis, Landim; 1999].

Mobility: the mobility of the zero range process is m(ϱ) = %(ϱ)
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III. Interacting particle systems

The zero range process: µ
N

on T1 ⇔ [0, T ] for N = 15 and T (k) ⇓ ke
↔kt

,

The heat equation: the hydrodynamic limit ςtp = $ϱ,

The skeleton equation: the controlled equation ςtϱ = $ϱ→′ · (↗ϱ · g),

The rate function: we have P(µN ⇐ ϱ) ⇐ exp(→N
d
I(ϱ)) for

I(ϱ) =
1

2
inf{∝g∝2L2

t,x
: ςtϱ = $ϱ→′ · (↗ϱg)}.
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III. Interacting particle systems

The hydrodynamic limit: for the parabolically rescaled, mean zero particle

process µ
N
t on Td

N , as N ↘ ↓, for J(ϱ) = ′↽(ϱ),

µ
N
t ⇀ ϱ dx for ςtϱ = $↽(ϱ) = ′ · J(ϱ).

Macroscopic fluctuation theory: for a space-time fluctuation (ϱ, j) satisfying

ςtϱ = ′ · j,
(
ςt

ˆ
U

ϱ =

ˆ
ϱU

j · ⇁
)

we have the large deviations bound [Bertini et al.; 2014]

P[µN ⇐ ϱ] ⇐ exp
(
→N

d
I(ϱ)

)
for I(ϱ) =

1

2

ˆ T

0

ˆ
Td
(j → J(ϱ)) ·m(ϱ)

↔1
(j → J(ϱ)).

The skeleton equation: if (j → J(ϱ)) =


m(ϱ)g then I(ϱ) =
´ T
0

´
Td |g|2 and

ςtϱ = ′ ·
(
J(ϱ) + (j → J(ϱ))

)
= $↽(ϱ)→′ · (


m(ϱ)g).

The zero range process: ↽(ϱ) = %(ϱ) and m(ϱ) = %(ϱ) and

ςtϱ = $%(ϱ)→′ · (%
1
2 (ϱ)g).
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III. Interacting particle systems

Large Deviations Principle [Benois, Kipnis, Landim; 1995], [F., Gess; 2023]

For every measurable A ⇒ L
1
([0, T ];L

1
(Td

)) or A ⇒ C([0, T ];M+(Td
)),

P
[
µ
N ↑ A

]
⇐ e

↔Nd
(
infϑ↓A I(ς)

)
,

for the large deviations rate function

I(ω) = inf
{
∝g∝2L2

t,x
: ςtω = $%(ω)→′ ·

(
%

1
2 (ω)g

)
.

The linearized skeleton equation: for ςtϱ = $%(ϱ),

ςtω = $%(ω)→′ ·
(
%

1
2 (ϱ)g

)
.
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III. Interacting particle systems

The rate function: for ϱ ↑ L
1
(Td ⇔ [0, T ]),

I(ϱ) =
1

2
inf


∝g∝2L2 : ςtϱ = $%(ϱ)→′ · (%

1
2 (ϱ)g)


.

The skeleton equation: for controls g ↑ L
2
(Td ⇔ [0, T ])

d
,

ςtϱ = $%(ϱ)→′ · (%
1
2 (ϱ)g) in Td ⇔ (0, T ) with ϱ(·, 0) = ϱ0.

— energy critical in L
1
and supercritical in L

p
for p ↑ (1,↓),

— kinetic (renormalized) solutions
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IV. Fluctuating hydrodynamics
Di↵usion with Hydrodynamics: FHD

Giant Fluctuations in Di↵usive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough di↵usive interface due to the e↵ect of thermal fluctuations.
These giant fluctuations have been studied experimentally and with
hard-disk molecular dynamics.

A. Donev (CIMS) FHD 8/2019 34 / 70

a miscible mixture develops a rough di!usive interface [Donev; 2018]

Fluctuating hydrodynamics of the zero range process: the stochastic PDE

[Spohn; 1991]

ςtϱε = $%(ϱε)→ ϑ
d
2 ′ · (%

1
2 (ϱε) ∞ φ).

Large deviations: formally, the ϱε satisfy a large deviations principle

P[ϱε ↑ A] ⇐ e
↔
(
ε↑d infϖ↓A I(ϑ)

)
,

for I(ϱ) =
1
2 inf{∝g∝2L2

t,x
: ςtϱ = $%(ϱ)→′ · (% 1

2 (ϱ)g)}.
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