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I. The simple random walk

Let {X;}ien be independent coin flips.

That is, {X; }ien are independent random variables with
PX; =1 =P[X; = —1] = /2.

The simple random walk (Sy)nen, is defined by So = 0 and

Spn=X14+...+ X,
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A realization of S11.
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I. The simple random walk

If T is the random time
T =inf{n € N: S,, =1},

then T' < oo almost surely but
E[T] = cc.

If Ty is the stopping time

Tn =inf{fneN: S, =1 or S, = —-N},

then

P[Sry = —N] = ——.
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A simple random walk.
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I. The simple random walk

The Law of Large Numbers: the large scale limit

lim ————

n— 00 n

=E[X;]=0.
The Central Limit Theorem: for every a < b € R,

. X ++Xn b _1 x2
nh_{T;oP[aﬁlTSb]:/Q(Qw) 2exp(f?)dm.

Approximate Large Deviations Principle: as n — oo, for every § € (0, 00),

IP’[X1+"'+X"

- Zg]ZP[MZ\/ﬁg}

\/ﬁ
2/ (277)71exp(—%)dx

V/né
62
~ exp (= 7).

— (X1 4+ ...+ X») is expected to be of order \/n
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I. The simple random walk

Large deviations principle: a sequence of random variables X,,: @ — R satisfy a
large deviations principle with rate function I: R — [0, c0] if, for every A C R,

— inf I(z) < hmlnf—log( (X, € A)) <limsup — log( (Xn € A)) < — inf I(z).

zC€A° n—00 n—o0 z€A
Informally, this means that, as n — oo,
P(X, ~ z) ~ e @),
The linear central limit expansion: as n — oo,

Xi+...+X - .
At A ~ “law of large numbers” + “central limit correction”

1
:0+ﬁ'/\[(0’1)’

for a normal random variable A/(0, 1) predicts that

P w ) ~ e g i) = %52.

— although \W\ <1
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I. The simple random walk

Cramér’s theorem: for the rate function

1 anh— anh—
e tanhfl(x)a: ~log (5 (e— tanh ™1 (z) +€tdnh 1(1))) if |z <1,

+ o0 if || > 1,

the random variables % satisfy the large deviations principle

P |:X1++Xn > 5:| 2’67”](6).
n

The Large Deviations Principle: a Taylor expansion proves that

1

I(6) ~ 552+o(52) with I(£1) =log(2) and I(8) = oo if |6 > 1,

and therefore, as n — oo,

Xi1+...+ X

P >l e o efn‘%efn'(’(‘ﬂ).

n

— linear CLT expansion correctly predicts small fluctuations

— nonlinear LDP captures large fluctuations
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II. Brownian motion

Brownian motion: The simple random walk
Sn=X1+...+X, and W(t) ISUJ.

The Brownian path

B(t) = lim %W(nt) in distribution on C([0, 00)) (technically, D([0, c0)).
n—oo v/N

Properties: (i) B(0) = 0, (ii) continuous sample paths, (iii) independent increments:
B(t) — B(s) is independent of B(s), and (iv) normally distributed:

B(t) — B(s) has distribution (27 (¢ — 3))*% exp ( _ %)
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II. Brownian motion
The rate function: let I: C([0,7]) — [0, oo] be defined by
L .
I(z) = 3 |£(t)|” d¢ if = is differentiable,
0
and I(xz) = oo otherwise.

Schilder’s theorem: for every ¢ € (0, 1),
We(t) = VeB(t).
The paths {W*}.¢c(0,1) satisfy a large deviations principle on C([0,T7):

P(Ws c A) ~ e—(sflinfweA I(z))

exp (- ‘/5)
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II. Brownian motion

The Ornstein—Uhlenbeck Process: We consider the solution
dX;{ = —X; dt + /edBx.

The Controlled ODE: for a “control” z(t) € H'([0,T]), we solve

dy: = —y dt + ¢ dt,
and define the large deviations rate function

I(y) = %inf{/T () dt: dye = —ye dt + &, dt}.

0

The Freidlin—Wentzell Theorem: we have the large deviations principle

P(XS € A) e (57 tea ),

B. Fehrman (LSU) UC Irvine June 23, 2025

9/21



III. Interacting particle systems

e Statistical physics

— Zero range process
— Ising and Potts models

e Belief/infection propagation
— voter model
— contact process

e Traffic models
— exclusion processes

e Neural networks as interacting particle systems

The voter model [Swart; 2020]
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III. Interacting particle systems

e Let g: No — Ny be nondecreasing " T«
— g(0)=0and g(k) >0if k#0
e Independent random clocks T'(k) with distribution
T (k) ~ g(k) exp(—g(k)t) on [0,00).
7
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The zero range process
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III. Interacting particle systems

The generator: for a compactly supported p with zero mean }___,. zp(z) =

(L)) =32, cena P(2)g (@) (f(0™77%) = f(n)).

N N
° :. ®
o 0000 o 000000
o 000000 00000000
00000000 00000000

The cases N = 4,8, 15.
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III. Interacting particle systems
The zero range process 7;° on (Z%/NZ?), and the empirical density

W= L 6
4/N

z€(Z 74)

N
N2y (2).

Zls

Hydrodynamic limit [Ferrari, Presutti, Vares; 1988]

For every continuous f: T x [0,7] — R and 6 € (0, 1),
dim P[I(£,1M) = (£,7)] > 8] =0,
—00
for (f, u™¥ = fu®, and for  the solution
8tﬁ = Aq)(ﬁ),

for the mean local jump rate ® [Kipnis, Landim; 1999].

— I T(k) ~ ™" then 9,5 = A(%).
— If T'(k) ~ ke~ "t then 8:p = Ap.
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III. Interacting particle systems

N T N

A space-time white noise: a d-dimensional Gaussian noise d¢ satisfying
B [d¢(z,t) d€(y, s)] = do(x — y)do(s —t).
On the torus T?, we have the spectral representation

&= Z (sin(27k - 2)BF + cos(2rk - a:)Wtk)

kezd
for independent d-dimensional Brownian motions B* and W*.

d+1

Analogue of Schilder’s theorem: we have that, for A C C([0, T7; H‘T(']I‘d)d),
plefe e A = mmoca )
for the large deviations rate function

10) = gint { s, : @0 = [ a(e.s)ds}

— formally g = g—;’ as L?-valued processes
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III. Interacting particle systems

The zero range process with nonzero mean: let 5’ be the zero range process
on TY with transition kernel p satisfying D eza 2p(2) = 7.

The hyperbolic rescaling: let ;' be the hyperbolically rescaled density

1
Mév = Nd Z 5% '7711\\%(5”)‘

z€(Z4/NZ1)

Hydrodynamic limit [Rezakhanlou; 1991]

For every continuous f: T x [0,7] — R and 6 € (0, 1),
Jim P [1(£,5™) = (£,2)] > 6] =0,
— 00
where 7: T¢ x [0, 7] — R is the unique solution of the equation

5 =V - (@),

for the mean local jump rate ® [Kipnis, Landim; 1999].

Mobility: the mobility of the zero range process is m(p) = ®(p)
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III. Interacting particle systems
The zero range process: u¥ on T x [0,7] for N = 15 and T(k) ~ ke™**,

N T N,

The heat equation: the hydrodynamic limit 0:p = Ap,

.
°
» o o
o “veee olnee (g (Setd
ool fovesees oL, o 00 @ ecoseee o
oon

The skeleton equation: the controlled equation d¢p = Ap —V - ({/p - g),

The rate function: we have P(u" ~ p) ~ exp(—N%I(p)) for

1.
I(p) = 5 inf{llgll72 : dp=Ap =V (Vpg)}-
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III. Interacting particle systems

The hydrodynamic limit: for the parabolically rescaled, mean zero particle
process pui' on T%, as N — oo, for J(5) = Vo (p),

py — pdz for 8:p = Ao(p) =V - J(p).

Macroscopic fluctuation theory: for a space-time fluctuation (p, j) satisfying

Op =V -3, (&/Up:/an-y)

we have the large deviations bound [Bertini et al.; 2014]

P ~ p] = exp (— NI(p)) for I(p / [, =70 m(e) G = TG0
The skeleton equation: if (j — = /m(p)g then I(p fo Jralgl? and
Op=V"-(J(p)+ (G —J(p) =Aalp - (v/m(p)g)-

The zero range process: o(p) = ®(p) and m(p) = ®(p) and

dup = Ad(p) — V - (22 (p)g).
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III. Interacting particle systems

Large Deviations Principle [Benois, Kipnis, Landim; 1995], [F., Gess; 2023]

For every measurable A C L([0,77]; L*(T%)) or A C C([0, T]; M (T%)),
P |:NN - A] ~ e—Nd(infweA I(W))’
for the large deviations rate function

I(m) = int {||gl3s : O = Ad(m) = V- (23 (m)g) }.

The linearized skeleton equation: for 9;p = A®(p),
1
o = A®(m) — V- (22 (p)g).

e N

o vose oo So “ess St
coly fosesesy oo’ 3o so00ce Seeevvees seeee
00l ¢

B. Fehrman (LSU) UC Irvine June 23, 2025 18 /21



III. Interacting particle systems

The rate function: for p € L'(T? x [0, 7)),
1. 1
1(p) = 5 int {|lgll}= : ip = A®(p) = V - (@2 (p)g) } .
The skeleton equation: for controls g € L?(T? x [0,7])?,

Oip = D®(p) =V - (2% (p)g) in T* x (0,7) with p(-,0) = po.

— energy critical in L' and supercritical in L? for p € (1, 00),

— kinetic (renormalized) solutions

T 7T

% S
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IV. Fluctuating hydrodynamics

a miscible mixture develops a rough diffusive interface [Donev; 2018]

Fluctuating hydrodynamics of the zero range process: the stochastic PDE
[Spohn; 1991]
d 1
Orpe = A®(pe) — €2V - (22 (pe) 0 ).

Large deviations: formally, the p. satisfy a large deviations principle
Plp. € A] ~ e—(s*dianEA I(P))’

for I(p) = 3 inf{”Q”igz L Oup = AR(p) — V- (2% (p)g)}.
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