The Kinetic Formulation of the Skeleton Equation

Benjamin Fehrman

LSU

June 24, 2025

The zero range process: with random clocks $T(k) \sim ke^{-kt}$,

The heat equation: the hydrodynamic limit $\partial_t \overline{p} = \Delta \overline{\rho}$,

The skeleton equation: the controlled equation $\partial_t \rho = \Delta \rho - \nabla \cdot (\sqrt{\rho}g)$,

The rate function: we have $\mathbb{P}(\mu^N \simeq \rho) \simeq \exp(-NI(\rho))$ for

$$I(\rho) = \frac{1}{2} \inf \left\{ \left\| g \right\|_{L^2_{t,x}}^2 : \partial_t \rho = \Delta \rho - \nabla \cdot (\sqrt{\rho}g) \right\}.$$

B. Fehrman (LSU)

2/27

The skeleton equation: in the case of the zero range process,

$$\partial_t \rho = \frac{1}{2} \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g) = \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)(\nabla \Phi^{\frac{1}{2}}(\rho) - g)),$$

for $g \in (L^2_{t,x})^d$ and $\nabla \Phi = 2\Phi^{\frac{1}{2}}(\rho)\nabla \Phi^{\frac{1}{2}}(\rho).$

Fast diffusion and porous media: for $\alpha \in (0, \infty)$,

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g).$$

The rescaling: for $\lambda, \eta, \tau \to 0$ the rescaling $\tilde{\rho}(x, t) = \lambda \rho(\eta x, \tau t)$ solves

$$\partial_t \tilde{\rho} = \left(\frac{\tau}{\eta^2 \lambda^{\alpha - 1}}\right) \Delta\left(\tilde{\rho}^{\alpha}\right) - \nabla \cdot \left(\tilde{\rho}^{\frac{\alpha}{2}}\tilde{g}\right)$$

for $\tilde{g}(x,t) = \left(\frac{\tau}{\eta \lambda^{\frac{\alpha}{2}-1}}\right) g(\eta x, \tau t).$

Preserve diffusivity and L^r **-norm**: fix $\frac{\tau}{\eta^2 \lambda^{\alpha-1}} = 1$ and $\lambda = \eta^{\frac{d}{r}}$.

Energy criticality: the Ladyzhenskaya–Prodi–Serrin (LPS) condition yields

$$\|\tilde{g}\|_{L^{2}_{t}L^{2}_{x}} = \eta^{-d\left(\frac{1}{2} - \frac{1}{2r}\right)} \|g\|_{L^{2}_{t}L^{2}_{x}}.$$

Energy critical if r = 1 and supercritical if $r \in (1, \infty)$.

A formal uniqueness proof: if ρ_1 and ρ_2 solve

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g),$$

we have using the distributional equalities

$$|\xi|' = \operatorname{sgn}(\xi) \text{ and } \operatorname{sgn}'(\xi) = 2\delta_0(\xi),$$

that, integrating on the torus \mathbb{T}^d ,

$$\partial_t \left(\int |\rho_1 - \rho_2| \right) = \int \operatorname{sgn}(\rho_1 - \rho_2) \Delta(\rho_1^{\alpha} - \rho_2^{\alpha}) - \int \operatorname{sgn}(\rho^1 - \rho^2) \nabla \cdot \left(\left(\rho_1^{\frac{\alpha}{2}} - \rho_2^{\frac{\alpha}{2}} \right) g \right) \\ = \int \operatorname{sgn}(\rho_1^{\alpha} - \rho_2^{\alpha}) \Delta(\rho_1^{\alpha} - \rho_2^{\alpha}) - \int \operatorname{sgn}(\rho_1^{\frac{\alpha}{2}} - \rho_2^{\frac{\alpha}{2}}) \nabla \cdot \left(\left(\rho_1^{\frac{\alpha}{2}} - \rho_2^{\frac{\alpha}{2}} \right) g \right) \\ = - \int 2\delta_0(\rho_1^{\alpha} - \rho_2^{\alpha}) |\nabla \rho_1^{\alpha} - \nabla \rho_2^{\alpha}|^2 - \int \nabla \cdot \left(|\rho_1^{\frac{\alpha}{2}} - \rho_2^{\frac{\alpha}{2}} |g \right) \\ = - \int 2\delta_0(\rho_1^{\alpha} - \rho_2^{\alpha}) |\nabla \rho_1^{\alpha} - \nabla \rho_2^{\alpha}|^2 - 0 \\ \leq 0.$$

We therefore have that

$$\max_{t \in [0,T]} \|\rho_1 - \rho_2\|_{L^1(\mathbb{T}^d)} = \|\rho_{1,0} - \rho_{2,0}\|_{L^1(\mathbb{T}^d)}.$$

A slightly less naive uniqueness proof: for $f^{\delta} = (f * \kappa^{\delta})$, and ρ_1 , ρ_2 solving

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g),$$

we have that

$$\partial_t \left(\int |\rho_1 - \rho_2|^{\delta} \right) = \int \operatorname{sgn}^{\delta} (\rho_1 - \rho_2) \Delta(\rho_1^{\alpha} - \rho_2^{\alpha}) - \int \operatorname{sgn}^{\delta} (\rho^1 - \rho^2) \nabla \cdot \left(\left(\rho_1^{\frac{\alpha}{2}} - \rho_2^{\frac{\alpha}{2}} \right) g \right) \\ = -\int 2\delta_0^{\delta} (\rho_1 - \rho_2) \nabla(\rho_1 - \rho_2) \cdot \nabla(\rho_1^{\alpha} - \rho_2^{\alpha}) + \int 2\delta_0^{\delta} (\rho_1 - \rho_2) (\rho_1^{\frac{\alpha}{2}} - \rho_2^{\frac{\alpha}{2}}) \nabla(\rho_1 - \rho_2) \cdot g d\theta$$

The nondegenerate case: if $\alpha = 1$, using Hölder's and Young's inequalities,

$$\begin{aligned} &\partial_t \left(\int |\rho_1 - \rho_2|^{\delta} \right) + \int 2\delta_0^{\delta}(\rho_1 - \rho_2) |\nabla(\rho_1 - \rho_2)|^2 \\ &\leq \varepsilon \int \delta_0^{\delta}(\rho_1 - \rho_2) |\nabla(\rho_1 - \rho_2)|^2 + \frac{1}{\varepsilon} \int \delta_0^{\delta}(\rho_1 - \rho_2) (\sqrt{\rho_1} - \sqrt{\rho_2})^2 |g|^2. \end{aligned}$$

Therefore, using that $\delta_0^{\delta}(\rho_1 - \rho_2) \lesssim \delta^{-1} \mathbf{1}_{\{|\rho_1 - \rho_2| < \delta\}},$

$$\partial_t \Big(\int |\rho_1 - \rho_2|^{\delta} \Big) + \int \delta_0^{\delta}(\rho_1 - \rho_2) |\nabla(\rho_1 - \rho_2)|^2 \lesssim \int \mathbf{1}_{\{0 < |\rho_1 - \rho_2| < \delta\}} |g|^2.$$

Conservation of mass: solutions preserve mass if $\rho_0 \ge 0$,

$$\partial_t \Big(\int_{\mathbb{T}^d} \rho(x, t) \Big) = \int_{\mathbb{T}^d} \partial_t \rho = \int_{\mathbb{T}^d} \nabla \cdot \left(2\rho^{\frac{\alpha}{2}} (2\nabla \rho^{\frac{\alpha}{2}} - g) \right) = 0.$$

An a priori estimate: for an arbitrary nonlinearity Ψ with $\psi = \Psi'$,

$$\partial_t \Big(\int_{\mathbb{T}^d} \Psi(\rho) \Big) = -\alpha \int_{\mathbb{T}^d} \rho^{\alpha-1} \psi'(\rho) |\nabla \rho|^2 + \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot \psi'(\rho) \nabla \rho.$$

Therefore, using Hölder's and Young's inequalities, for every $\varepsilon \in (0, 1)$,

$$\partial_t \Big(\int_{\mathbb{T}^d} \Psi(\rho) \Big) + \alpha \int_{\mathbb{T}^d} \rho^{\alpha - 1} \psi'(\rho) |\nabla \rho|^2 \leq \frac{1}{2\varepsilon} \int_{\mathbb{T}^d} |g|^2 + \frac{\varepsilon}{2} \int_{\mathbb{T}^d} \rho^{\alpha} \psi'(\rho)^2 |\nabla \rho|^2.$$

To close the estimate,

$$ho^{lpha}\psi'(
ho)^2\lesssim\psi'(
ho)
ho^{lpha-1}\ ext{ so }\ \psi'(\xi)\lesssimrac{1}{\xi}.$$

Entropy dissipation: if $\psi(\xi) = \log(\xi)$ then $\Psi(\xi) = \xi \log(\xi) - \xi$ and using

$$\rho^{\alpha-2} |\nabla \rho|^2 = |\rho^{\frac{\alpha-2}{2}} \nabla \rho|^2 = \frac{4}{\alpha^2} |\nabla \rho^{\frac{\alpha}{2}}|^2,$$

we have that (for nonnegative solutions!)

$$\max_{t\in[0,T]}\int_{\mathbb{T}^d}\rho\log(\rho)+\int_0^T\int_{\mathbb{T}^d}|\nabla\rho^{\frac{\alpha}{2}}|^2\lesssim\int_{\mathbb{T}^d}\rho_0\log(\rho_0)+\int_0^T\int_{\mathbb{T}^d}|g|^2.$$

The equation: we have that

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g).$$

A local H^1 -estimate: for $M \in (0, \infty)$, $\psi'_M = \mathbf{1}_{\{M < \xi < M+1\}}$, and $\Psi'_M = \psi_M$,

$$\max_{t \in [0,T]} \int_{\mathbb{T}^d} \Psi_M(\rho) + \int_0^T \int_{\mathbb{T}^d} \mathbf{1}_{\{M < \rho < M+1\}} \rho^{\alpha - 1} |\nabla \rho|^2 \lesssim \int_{\mathbb{T}^d} \Psi_M(\rho_0) + \int_0^T \int_{\mathbb{T}^d} |g|^2 \rho^{\frac{1}{2}} \rho^{\frac{\alpha - 1}{2}} \nabla \rho \mathbf{1}_{\{M < \rho < M+1\}},$$

Since $\Psi_M(\xi) \leq (\xi - M)_+$, we have from Hölder's and Young's inequalities that

$$\begin{split} \int_{0}^{T} \int_{\mathbb{T}^{d}} \mathbf{1}_{\{M < \rho < M+1\}} \rho^{\alpha - 1} |\nabla \rho|^{2} &\lesssim \int_{\mathbb{T}^{d}} (\rho_{0} - M)_{+} + \int_{0}^{T} \int_{\mathbb{T}^{d}} \rho |g|^{2} \rho \mathbf{1}_{\{M < \rho < M+1\}} \\ &\lesssim \int_{\mathbb{T}^{d}} (\rho_{0} - M)_{+} + \int_{0}^{T} \int_{\mathbb{T}^{d}} (M + 1) |g|^{2} \mathbf{1}_{\{M < \rho < M+1\}} \end{split}$$

Local regularity: for every $K \in (1, \infty)$,

$$\left((\rho \wedge K) \vee K^{-1}\right) \in L^2_t H^1_x$$

The skeleton equation: for an $(L_{t,x}^2)^d$ -valued control g,

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g).$$

 L^1 -contraction: if ρ_1 and ρ_2 are solutions,

$$\max_{t \in [0,T]} \|\rho_1 - \rho_2\|_{L^1(\mathbb{T}^d)} = \|\rho_{1,0} - \rho_{2,0}\|_{L^1(\mathbb{T}^d)}.$$

Preservation of nonnegativity and mass: if $\rho_0 \ge 0$ then $\rho \ge 0$ with

$$\|\rho(x,t)\|_{L^1(\mathbb{T}^d)} = \|\rho_0\|_{L^1(\mathbb{T}^d)}.$$

The entropy estimate: if ρ_0 is nonnegative then

$$\max_{t\in[0,T]}\int_{\mathbb{T}^d}\rho\log(\rho)+\int_0^T\int_{\mathbb{T}^d}|\nabla\rho^{\frac{\alpha}{2}}|^2\lesssim\int_{\mathbb{T}^d}\rho_0\log(\rho_0)+\int_0^T\int_{\mathbb{T}^d}|g|^2.$$

The local H^1 -estimate: for every $M \in (0, \infty)$,

$$\int_0^T \int_{\mathbb{T}^d} \mathbf{1}_{\{M < \rho < M+1\}} \rho^{\alpha-1} |\nabla \rho|^2 \lesssim \int_{\mathbb{T}^d} (\rho_0 - M)_+ + \int_0^T \int_{\mathbb{T}^d} (M+1) |g|^2 \mathbf{1}_{\{M < \rho < M+1\}}.$$

The entropy space: nonnegative functions with finite entropy

$$\operatorname{Ent}(\mathbb{T}^d) = \{ \rho \in L^1(\mathbb{T}^d) \colon \rho \text{ is nonnegative and measurable with } \int_{\mathbb{T}^d} \rho \log(\rho) < \infty \}.$$

Heat equation: for the skeleton equation with $\alpha = 1$, g = 0, and $\rho_0 \in \text{Ent}(\mathbb{T}^d)$,

$$\partial_t \rho = \Delta \rho - 0$$
 in $\mathbb{T}^d \times [0,T]$ with $\rho(\cdot,0) = \rho_0$,

we have that

$$\max_{t \in [0,T]} \int_{\mathbb{T}^d} \rho \log(\rho) + \int_0^T \int_{\mathbb{T}^d} |\nabla \rho^{\frac{1}{2}}|^2 \lesssim \int_{\mathbb{T}^d} \rho_0 \log(\rho_0).$$

Time reversibility: if $\tilde{\rho}(x,t) = \rho(x,T-t)$ then, since $\nabla \tilde{\rho} = 2\tilde{\rho}^{\frac{1}{2}} \nabla \tilde{\rho}^{\frac{1}{2}}$,

$$\begin{aligned} \partial_t \tilde{\rho} &= -\Delta \tilde{\rho} = -2\nabla \cdot \left(\tilde{\rho}^{\frac{1}{2}} \nabla \tilde{\rho}^{\frac{1}{2}} \right) \\ &= 2\nabla \cdot \left(\tilde{\rho}^{\frac{1}{2}} \nabla \tilde{\rho}^{\frac{1}{2}} - 2\tilde{\rho}^{\frac{1}{2}} \nabla \tilde{\rho}^{\frac{1}{2}} \right) \\ &= \Delta \tilde{\rho} - \nabla \cdot \left(\tilde{\rho}^{\frac{1}{2}} \tilde{g} \right), \end{aligned}$$

for the L^2 -valued control $\tilde{g}(x,t) = 4\nabla \tilde{\rho}^{\frac{1}{2}}(x,t) = 4\nabla \rho^{\frac{1}{2}}(x,T-t).$

A renormalized equation: for $\eta \in (0, 1)$ we consider the regularized equation

$$\partial_t \rho_\eta = \Delta \rho_\eta^\alpha + \eta \Delta \rho_\eta - \nabla \cdot (\rho_\eta^{\frac{\alpha}{2}}g).$$

Then, for a smooth $S \colon \mathbb{R} \to \mathbb{R}$ and $\phi \in C^{\infty}(\mathbb{T}^d)$,

$$\begin{split} \partial_t \Big(\int_{\mathbb{T}^d} S(\rho_\eta) \phi(x) \Big) &= \int S'(\rho_\eta) \phi(x) \big(\Delta \rho_\eta^\alpha + \eta \Delta \rho_\eta - \nabla \cdot (\rho_\eta^{\frac{\alpha}{2}} g) \big) \\ &= -\int S'(\rho_\eta) \nabla \phi(x) \cdot (\alpha \rho_\eta^{\alpha-1} \nabla \rho_\eta + \eta \nabla \rho_\eta) \\ &- \int S''(\rho_\eta) \phi(x) \big(\alpha \rho_\eta^{\alpha-1} |\nabla \rho_\eta|^2 + \eta |\nabla \rho_\eta|^2 \big) \\ &+ \int S''(\rho_\eta) \phi(x) \rho_\eta^{\frac{\alpha}{2}} g \cdot \nabla \rho_\eta + S'(\rho_\eta) \nabla \phi(x) \cdot (\rho_\eta^{\frac{\alpha}{2}} g). \end{split}$$

The entropy formulation: if $S'' \ge 0$, $\phi \ge 0$, and $\rho_{\eta} \to \rho$ as $\eta \to 0$,

$$\begin{aligned} \partial_t \Big(\int_{\mathbb{T}^d} S(\rho) \phi(x) \Big) &\leq -\int S'(\rho) \nabla \phi(x) \cdot (\alpha \rho^{\alpha-1} \nabla \rho) - \int S''(\rho) \phi(x) (\alpha \rho^{\alpha-1} |\nabla \rho|^2) \\ &+ \int S''(\rho) \phi(x) \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho + S'(\rho) \nabla \phi(x) \cdot (\rho^{\frac{\alpha}{2}} g). \end{aligned}$$

The kinetic function: for $\xi \in \mathbb{R}$ and $\chi_{\eta}(x,\xi,t) = \mathbf{1}_{\{0 < \xi < \rho_{\eta}(x,t)\}} - \mathbf{1}_{\{\rho_{\eta}(x,t) < \xi < 0\}}$,

$$\partial_{\xi} \chi_{\eta} = \delta_0 - \delta_{\rho_{\eta}} \text{ and } \nabla_x \chi_{\eta} = \delta_{\rho_{\eta}} \nabla \rho_{\eta},$$

for $\delta_{\rho_{\eta}} = \delta_0(\xi - \rho_{\eta}(x, t)).$

A renormalized equation: since we have that

$$\begin{split} \partial_t \Big(\int_{\mathbb{T}^d} S(\rho_\eta) \phi(x) \Big) &= -\int S'(\rho_\eta) \nabla \phi(x) \cdot (\alpha \rho_\eta^{\alpha-1} \nabla \rho_\eta + \eta \nabla \rho_\eta) \\ &- \int S''(\rho_\eta) \phi(x) \big(\alpha \rho^{\alpha-1} |\nabla \rho_\eta|^2 + \eta |\nabla \rho_\eta|^2 \big) \\ &+ \int S''(\rho_\eta) \phi(x) \rho_\eta^{\frac{\alpha}{2}} g \cdot \nabla \rho_\eta + S'(\rho_\eta) \nabla \phi(x) \cdot (\rho_\eta^{\frac{\alpha}{2}} g), \end{split}$$

we have using the equality $\int_{\mathbb{R}} S'(\xi) \chi_{\eta}(x,\xi,t) \, \mathrm{d}\xi = S(\rho_{\eta})$ that

$$\partial_t \left(\int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_\eta S'(\xi) \phi(x) \right) = -\int \int \nabla_x (S'(\xi) \phi(x)) \cdot (\alpha \xi^{\alpha - 1} \nabla \chi_\eta + \eta \nabla \chi_\eta) \\ -\int \int \partial_\xi (S'(\xi) \phi(x)) \delta_{\rho_\eta} (\alpha \xi^{\alpha - 1} |\nabla \rho_\eta|^2 + \eta |\nabla \rho_\eta|^2) \\ +\int \int \partial_\xi (S'(\xi) \phi(x)) \xi^{\frac{\alpha}{2}} g \cdot \nabla \chi_\eta - \nabla_x (S'(\rho) \phi(x)) \cdot (\xi^{\frac{\alpha}{2}} \partial_\xi \chi_\eta g)$$

- the test function $\psi(x,\xi) = S'(\xi)\phi(x)$

A renormalized equation: for the regularized skeleton equation

$$\partial_t \rho_\eta = \Delta \rho_\eta^\alpha + \eta \Delta \rho_\eta - \nabla \cdot (\rho_\eta^{\frac{\alpha}{2}}g),$$

we have for $\chi_{\eta} = \mathbf{1}_{\{0 < \xi < \rho_{\eta}(x,t)\}}$, for every $\psi \in C_{c}^{\infty}(\mathbb{T}^{d} \times (0,\infty))$,

$$\partial_t \left(\int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_\eta \psi \right) = -\int \int \nabla \psi \cdot (\alpha \xi^{\alpha - 1} \nabla \chi_\eta + \eta \nabla \chi_\eta) \\ -\int \int \partial_{\xi} \psi \delta_{\rho_\eta} \left(\alpha \xi^{\alpha - 1} |\nabla \rho_\eta|^2 + \eta |\nabla \rho_\eta|^2 \right) \\ +\int \int \partial_{\xi} \psi \xi^{\frac{\alpha}{2}} g \cdot \nabla \chi_\eta - \nabla \psi \cdot (\xi^{\frac{\alpha}{2}} \partial_{\xi} \chi_\eta g),$$

or, distributionally, for the measure $q_{\eta} = \delta_{\rho_{\eta}} \left(\alpha \xi^{\alpha-1} |\nabla \rho_{\eta}|^2 + \eta |\nabla \rho_{\eta}|^2 \right)$

$$\partial_t \chi_\eta = \alpha \xi^{\alpha - 1} \Delta_x \chi_\eta + \eta \Delta_x \chi_\eta + \partial_\xi q_\eta - \partial_\xi (\xi^{\frac{\alpha}{2}} g \cdot \nabla_x \chi_\eta) + \nabla_x \cdot (\xi^{\frac{\alpha}{2}} \partial_\xi \chi_\eta g).$$

Using the distributional equalities $\nabla \chi_{\eta} = \delta_{\rho_{\eta}} \nabla \rho_{\eta}$ and $\partial_{\xi} \chi_{\eta} = \delta_0 - \delta_{\rho_{\eta}}$,

$$\begin{aligned} \partial_t \Big(\int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_\eta \psi \Big) &= -\int (\alpha \rho_\eta^{\alpha - 1} + \eta) (\nabla \psi)(x, \rho_\eta) \cdot \nabla \rho_\eta \\ &- \int \int \partial_\xi \psi(x, \xi) q_\eta \\ &+ \int (\partial_\xi \psi)(x, \rho_\eta) \rho_\eta^{\frac{\alpha}{2}} g \cdot \nabla \rho_\eta + \rho_\eta^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x, \rho_\eta). \end{aligned}$$

The kinetic formulation of the skeleton equation: for the regularized equation

$$\partial_t \rho_\eta = \Delta \rho_\eta^\alpha + \eta \Delta \rho_\eta - \nabla \cdot (\rho_\eta^{\frac{\alpha}{2}} g),$$

for the defect measure $q_{\eta} = \delta_{\rho_{\eta}} (\alpha \xi^{\alpha-1} |\nabla \rho_{\eta}|^2 + \eta |\nabla \rho_{\eta}|^2)$, the kinetic formulation is

$$\partial_t \chi_\eta = \alpha \xi^{\alpha - 1} \Delta \chi_\eta + \eta \Delta \chi_\eta + \partial_\xi q_\eta - \partial_\xi (\xi^{\frac{\alpha}{2}} g \cdot \nabla \chi_\eta) + \nabla \cdot (\xi^{\frac{\alpha}{2}} (\partial_\xi \chi_\eta) g).$$

If $\rho_{\eta} \to \rho$ as $\eta \to 0$ then,

$$q_{\eta} \rightharpoonup q \ge \delta_{\rho}(\alpha \xi^{\alpha - 1} |\nabla \rho|^2),$$

and, for the kinetic function $\chi = \mathbf{1}_{\{0 < \xi < \rho(x,t)\}}$ of ρ ,

$$\partial_t \chi = \alpha \xi^{\alpha - 1} \Delta \chi + \partial_{\xi} q - \partial_{\xi} (\xi^{\frac{\alpha}{2}} g \cdot \nabla \chi) + \nabla \cdot (\xi^{\frac{\alpha}{2}} (\partial_{\xi} \chi) g),$$

for a locally finite, nonnegative measure q on $\mathbb{T}^d\times\mathbb{R}\times[0,T]$ with

$$q \ge \delta_{\rho}(\alpha \xi^{\alpha - 1} |\nabla \rho|^2).$$

- the kinetic formulation exactly quantifies this "entropy inequality"
- for example, [Perthame; 1998], [Chen, Perthame; 2003]

The skeleton equation: for $g \in (L^2_{t,x})^d$ and $\alpha \in (0,\infty)$,

 $\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot \left(\rho^{\frac{\alpha}{2}} g \right)$

for $\chi = \mathbf{1}_{\{0 < \xi < \rho(x,t)\}} - \mathbf{1}_{\{\rho(x,t) < \xi < 0\}}$ the kinetic formulation is

 $\partial_t \chi = \alpha \xi^{\alpha - 1} \Delta \chi + \partial_{\xi} q - \partial_{\xi} (\xi^{\frac{\alpha}{2}} g \cdot \nabla \chi) + \nabla \cdot (\xi^{\frac{\alpha}{2}} (\partial_{\xi} \chi) g),$

for a locally finite, nonnegative measure $q \ge \delta_{\rho} (\alpha \xi^{\alpha-1} |\nabla \rho|^2)$.

The entropy estimate: for the test function $\psi(\xi) = \log(\xi)$,

$$\begin{split} \int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi \log(\xi) \Big|_{s=0}^{s=T} &= -\int_0^T \int_{\mathbb{T}^d} \int_{\mathbb{R}} \frac{1}{\xi} q + \int_0^T \rho^{\frac{\alpha}{2}-1} g \cdot \nabla \rho \\ &= -\int_0^T \int_{\mathbb{T}^d} \int_{\mathbb{R}} \frac{1}{\xi} q + \frac{2}{\alpha} \int_0^T g \cdot \nabla \rho^{\frac{\alpha}{2}}. \end{split}$$

Regularity from the measure: we have that

$$\frac{1}{\xi}q \ge \frac{1}{\xi} \cdot \delta_{\rho}\left(\xi^{\alpha-1} |\nabla \rho|^2\right) = \rho^{\alpha-2} |\nabla \rho|^2 \simeq |\nabla \rho^{\frac{\alpha}{2}}|^2,$$

and that, by the preservation of mass and $\int_{\mathbb{R}} \chi \log(\xi) = \rho \log(\rho) - \rho$,

$$\max_{t\in[0,T]}\int_{\mathbb{T}^d}\rho\log(\rho) + \int_0^T\int_{\mathbb{T}^d}\int_{\mathbb{R}}\frac{1}{\xi}q \lesssim \int_{\mathbb{T}^d}\rho_0\log(\rho_0) + \int_0^T\int_{\mathbb{T}^d}|g|^2.$$

The kinetic formulation of the skeleton equation: for $q \ge \delta_{\rho} \alpha \xi^{\alpha-1} |\nabla \rho|^2$,

$$\partial_t \chi = \alpha \xi^{\alpha - 1} \Delta \chi + \partial_{\xi} q - \partial_{\xi} (\xi^{\frac{\alpha}{2}} g \cdot \nabla \chi) + \nabla \cdot (\xi^{\frac{\alpha}{2}} (\partial_{\xi} \chi) g).$$

Preservation of nonnegativity and mass: if $\rho_0 \ge 0$ then $\rho \ge 0$ with

$$\|\rho(x,t)\|_{L^{1}(\mathbb{T}^{d})} = \|\chi\|_{L^{1}(\mathbb{T}^{d}\times\mathbb{R})} = \|\rho_{0}\|_{L^{1}(\mathbb{T}^{d})}.$$

The entropy estimate: if ρ_0 is nonnegative with finite entropy then

$$\begin{split} \max_{t\in[0,T]} &\int_{\mathbb{T}^d} \rho \log(\rho) + \int_0^T \int_{\mathbb{T}^d} |\nabla \rho^{\frac{\alpha}{2}}|^2 \\ \lesssim &\max_{t\in[0,T]} \int_{\mathbb{T}^d} \rho \log(\rho) + \int_0^T \int_{\mathbb{T}^d} \int_{\mathbb{R}} \frac{1}{\xi} q \\ \lesssim &\int_{\mathbb{T}^d} \rho_0 \log(\rho_0) + \int_0^T \int_{\mathbb{T}^d} |g|^2. \end{split}$$

The local H^1 -estimate: for every $M \in (0, \infty)$,

$$\begin{split} &\int_{0}^{T} \int_{\mathbb{T}^{d}} \mathbf{1}_{\{M < \rho < M+1\}} |\nabla \rho^{\frac{\alpha+1}{2}}|^{2} \\ &\lesssim \int_{0}^{T} \int_{\mathbb{T}^{d}} \int_{M}^{M+1} q \\ &\lesssim \int_{\mathbb{T}^{d}} (\rho_{0} - M)_{+} + (M+1) \int_{0}^{T} \int_{\mathbb{T}^{d}} \mathbf{1}_{\{M < \rho < M+1\}} |g|^{2}. \end{split}$$

B. Fehrman (LSU)

15/27

The local H^1 -estimate: if $\psi'(\xi) = \mathbf{1}_{\{M < \xi < M+1\}}$,

$$\int_0^T \int_{\mathbb{T}^d} \int_M^{M+1} q \lesssim \int_{\mathbb{T}^d} (\rho_0 - M)_+ + (M+1) \int_0^T \int_{\mathbb{T}^d} \mathbf{1}_{\{M < \rho < M+1\}} |g|^2.$$

A real analysis lemma: if a_k are nonnegative with $\sum_{k=1}^{\infty} a_k < \infty$ then

$$\liminf_{k \to \infty} k a_k = 0.$$

Initial data: if $\rho_0 \in L^1(\mathbb{T}^d)$ then $\lim_{M\to\infty} \int_{\mathbb{T}^d} (\rho_0 - M)_+ = 0$.

The control: if for $k \in \mathbb{N}$,

$$a_k = \int_0^T \int_{\mathbb{T}^d} \mathbf{1}_{\{k-1 < \rho < k\}} |g|^2,$$

then $\sum_{k=1}^{\infty} a_k \leq \int_0^T \int_{\mathbb{T}^d} |g|^2 < \infty$ and

$$\liminf_{k \to \infty} ka_k = \liminf_{M \to \infty} \left(M + 1 \right) \int_0^T \int_{\mathbb{T}^d} \mathbf{1}_{\{M < \rho < M + 1\}} |g|^2 = 0.$$

Vanishing of the defect measure at infinity: from the local H^1 -estimate,

$$\liminf_{M\to\infty}\int_0^T\int_{\mathbb{T}^d}\int_M^{M+1}q=0.$$

A renormalized kinetic solution of the skeleton equation [F., Gess; 2023]

Let $\rho_0 \in L^1(\mathbb{T}^d)$ be nonnegative and $g \in (L^2_{t,x})^d$. A renormalized kinetic solution of the skeleton equation is a nonnegative $\rho \in \mathcal{C}([0,T]; L^1(\mathbb{T}^d))$ that satisfies:

- Preservation of mass: $\|\rho(x,t)\|_{L^1(\mathbb{T}^d)} = \|\rho_0\|_{L^1(\mathbb{T}^d)}$ for every $t \in [0,T]$.
- Local H^1 -regularity: $\left((\rho \wedge K) \vee \frac{1}{K}\right) \in L^2([0,T]; H^1(\mathbb{T}^d))$ for every $K \in \mathbb{N}$.

Furthermore, there exists a nonnegative, locally finite measure q on $\mathbb{T}^d\times\mathbb{R}\times[0,T]$ such that:

- Regularity and vanishing of the measure at infinity: we have that

— The equation: for every $\psi \in C_c^{\infty}(\mathbb{T}^d \times (0,\infty))$ and $t \in [0,T]$,

$$\begin{split} \int_{\mathbb{T}^d} \chi \psi \Big|_{s=0}^{s=t} &= -\int_0^t \int_{\mathbb{T}^d} \alpha \rho^{\alpha-1} \nabla \rho \cdot (\nabla \psi)(x,\rho) - \int_0^t \int_{\mathbb{T}^d} \int_{\mathbb{R}} (\partial_{\xi} \psi)(x,\xi) q \\ &+ \int_0^t \int_{\mathbb{T}^d} (\partial_{\xi} \psi)(x,\rho) \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho + \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x,\rho). \end{split}$$

- the equation is not enforced on the set $\{\rho = 0\}!$ Why are solutions unique?

Vanishing of the defect measure: for the equation

$$\partial_t \chi = \alpha \xi^{\alpha - 1} \Delta \chi + \partial_{\xi} q - \partial_{\xi} (\xi^{\frac{\alpha}{2}} g \cdot \nabla \chi) + \nabla \cdot (\xi^{\frac{\alpha}{2}} (\partial_{\xi} \chi) g)$$

for the test functions $\psi'_{\beta} = \frac{2}{\beta} \mathbf{1}_{\{\frac{\beta}{2} < \xi < \beta\}}$ and $\zeta'_M = -\mathbf{1}_{\{M < \xi < M+1\}}$,

$$\begin{split} \int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi \psi_\beta \zeta_M \Big|_{s=0}^{s=t} &= -\frac{2}{\beta} \int_0^t \int_{\mathbb{T}^d} \int_{\frac{\beta}{2}}^\beta q + \int_0^t \int_{\mathbb{T}^d} \int_M^{M+1} q \\ &+ \frac{2}{\beta} \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho \mathbf{1}_{\{\frac{\beta}{2} < \rho < \beta\}} + \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho \mathbf{1}_{\{M < \rho < M+1\}}. \end{split}$$

We have using $\rho^{\frac{\alpha}{2}} \nabla \rho = \rho^{\frac{1}{2}} \cdot \rho^{\frac{\alpha-1}{2}} \nabla \rho$ and Hölder's and Young's inequalities that

$$\begin{split} &\int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi \psi_\beta \zeta_M \Big|_{s=0}^{s=t} + \frac{2}{\beta} \int_0^t \int_{\mathbb{T}^d} \int_{\frac{\beta}{2}}^{\beta} q \\ &\lesssim \int_0^t \int_{\mathbb{T}^d} \int_M^{M+1} q + \frac{1}{\beta} \int_0^t \int_{\mathbb{T}^d} \rho |g|^2 \mathbf{1}_{\{\frac{\beta}{2} < \rho < \beta\}} + \int_0^t \int_{\mathbb{T}^d} \rho |g|^2 \mathbf{1}_{\{M < \rho < M+1\}}. \end{split}$$

The righthand side vanishes as $M \to \infty$ and $\beta \to 0$. Therefore,

A renormalized kinetic solution of the skeleton equation [F., Gess; 2023]

Let $\rho_0 \in L^1(\mathbb{T}^d)$ be nonnegative and $g \in (L^2_{t,x})^d$. A renormalized kinetic solution of the skeleton equation is a nonnegative $\rho \in \mathcal{C}([0,T]; L^1(\mathbb{T}^d))$ that satisfies:

- Preservation of mass: $\|\rho(x,t)\|_{L^1(\mathbb{T}^d)} = \|\rho_0\|_{L^1(\mathbb{T}^d)}$ for every $t \in [0,T]$.
- Local H¹-regularity: $\left((\rho \wedge K) \vee \frac{1}{K}\right) \in L^2([0,T]; H^1(\mathbb{T}^d))$ for every $K \in \mathbb{N}$.

Furthermore, there exists a nonnegative, locally finite measure q on $\mathbb{T}^d\times\mathbb{R}\times[0,T]$ such that:

- Regularity and vanishing of the measure at infinity: we have that

$$\delta_{\rho}\left(lpha\xi^{lpha-1}|
abla
ho|^2\right) \leq q \text{ and } \liminf_{M\to\infty}q\left(\mathbb{T}^d\times[M,M+1]\times[0,T]\right)=0.$$

— The equation: for every $\psi \in C_c^{\infty}(\mathbb{T}^d \times (0,\infty))$ and $t \in [0,T]$,

$$\begin{split} \int_{\mathbb{T}^d} \chi \psi \Big|_{s=0}^{s=t} &= -\int_0^t \int_{\mathbb{T}^d} \alpha \rho^{\alpha-1} \nabla \rho \cdot (\nabla \psi)(x,\rho) - \int_0^t \int_{\mathbb{T}^d} \int_{\mathbb{R}} (\partial_{\xi} \psi)(x,\xi) q \\ &+ \int_0^t \int_{\mathbb{T}^d} (\partial_{\xi} \psi)(x,\rho) \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho + \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x,\rho). \end{split}$$

- we have that $\lim_{\beta \to 0} \left(\beta^{-1}q \left(\mathbb{T}^d \times \left(\frac{\beta}{2}, \beta \right) \times [0, T] \right) \right) = 0.$

A useful identity: if ρ_1 and ρ_2 are nonnegative kinetic solutions, for

$$\chi_i(x,\xi,t) = \mathbf{1}_{\{0 < \xi < \rho_i(x,t)\}} - \mathbf{1}_{\{\rho_i(x,t) < \xi < 0\}},$$

we have

$$\begin{split} \int_{\mathbb{T}^d} |\rho_1 - \rho_2| &= \int_{\mathbb{T}^d} \int_{\mathbb{R}} |\chi_1 - \chi_2|^2 = \int_{\mathbb{T}^d} \int_{\mathbb{R}} (\chi_1)^2 + (\chi_2)^2 - 2\chi_1\chi_2 \\ &= \int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_1 \mathrm{sgn}(\xi) + \chi_2 \mathrm{sgn}(\xi) - 2\chi_1\chi_2 \\ &= \int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_1 + \chi_2 - 2\chi_1\chi_2. \end{split}$$

The cutoff functions: the cutoff at zero, for $\beta \in (0, 1)$,

$$\psi_{\beta}(0) = 0 \text{ and } \psi'_{\beta} = \frac{2}{\beta} \mathbf{1}_{\{\frac{\beta}{2} < \xi < \beta\}},$$

and the cutoff at infinity, for $M \in (1, \infty)$,

$$\zeta_M(0) = 1$$
 and $\zeta'_M = -\mathbf{1}_{\{M < \xi < M+1\}}.$

The essential identity: we will use that

$$\int_{\mathbb{T}^d} |\rho_1 - \rho_2| = \lim_{\beta \to 0} \lim_{M \to \infty} \left(\int_{\mathbb{T}^d} \int_{\mathbb{R}} (\chi_1 + \chi_2 - 2\chi_1 \chi_2) \psi_\beta \zeta_M \right).$$

The equation: we have that

$$\partial_t \chi = \alpha \xi^{\alpha - 1} \Delta \chi + \partial_\xi q - \partial_\xi (\xi^{\frac{\alpha}{2}} g \cdot \nabla \chi) + \nabla \cdot (\xi^{\frac{\alpha}{2}} (\partial_\xi \chi) g),$$

and we use that

$$\int_{\mathbb{T}^d} |\rho_1 - \rho_2| = \lim_{\beta \to 0} \lim_{M \to \infty} \left(\int_{\mathbb{T}^d} \int_{\mathbb{R}} \left(\chi_1 + \chi_2 - 2\chi_1 \chi_2 \right) \psi_\beta \zeta_M \right).$$

The singletons: we have that

$$\begin{split} \partial_t \Big(\int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_i \psi_\beta \zeta_M \Big) &= -\int_{\mathbb{T}^d} \int_{\mathbb{R}} q_i \partial_{\xi} (\psi_\beta \zeta_M) + \int_{\mathbb{T}^d} \left(\partial_{\xi} (\psi_\beta \zeta_M) \right) (\rho_i) \rho_i^{\frac{\alpha}{2}} g \cdot \nabla \rho_i \\ &= -\frac{2}{\beta} q_i \Big(\mathbb{T}^d \times \big(\frac{\beta}{2}, \beta \big) \times (0, t) \big) + q_i \Big(\mathbb{T}^d \times (M, M+1) \times (0, t) \big) \\ &+ \frac{2}{\beta} \int_{\mathbb{T}^d} \mathbf{1}_{\{\frac{\beta}{2} < \rho_i < \beta\}} \zeta_M(\rho_i) \rho_i^{\frac{1}{2}} g \cdot \rho_i^{\frac{\alpha-1}{2}} \nabla \rho_i + \int_{\mathbb{T}^d} \mathbf{1}_{\{M < \rho_i < M+1\}} \psi_\beta(\rho_i) \rho_i^{\frac{1}{2}} g \cdot \rho_i^{\frac{\alpha-1}{2}} \nabla \rho_i \\ &\lesssim \int_0^t \int_{\mathbb{T}^d} \int_M^{M+1} q + \frac{1}{\beta} \int_0^t \int_{\mathbb{T}^d} \rho |g|^2 \mathbf{1}_{\{\frac{\beta}{2} < \rho < \beta\}} + \int_0^t \int_{\mathbb{T}^d} \rho |g|^2 \mathbf{1}_{\{M < \rho < M+1\}}. \end{split}$$

These terms vanish in the limit $M \to \infty$ and $\beta \to 0$.

The mixed term: we have that

$$\partial_t \chi = \alpha \xi^{\alpha - 1} \Delta \chi + \partial_{\xi} q - \partial_{\xi} (\xi^{\frac{\alpha}{2}} g \cdot \nabla \chi) + \nabla \cdot (\xi^{\frac{\alpha}{2}} (\partial_{\xi} \chi) g),$$

and, therefore,

$$\begin{split} \partial_t \Big(\int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_1 \chi_2 \psi_\beta \zeta_M \Big) \\ &= - \int_{\mathbb{T}^d} \int_{\mathbb{R}} q_1 (\partial_{\xi} \chi_2) \psi_\beta \zeta_M - \int_{\mathbb{T}^d} \int_{\mathbb{R}} q_2 (\partial_{\xi} \chi_1) \psi_\beta \zeta_M - 2 \int_{\mathbb{T}^d} \int_{\mathbb{R}} \alpha \xi^{\alpha - 1} \nabla \chi_1 \cdot \nabla \chi_2 \\ &+ \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_{\xi} \chi_2 g \cdot \nabla \chi_1 \psi_\beta \zeta_M + \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_{\xi} \chi_1 g \cdot \nabla \chi_2 \psi_\beta \zeta_M \\ &- \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_{\xi} \chi_1 g \cdot \nabla \chi_2 \psi_\beta \zeta_M - \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_{\xi} \chi_2 g \cdot \nabla \chi_1 \psi_\beta \zeta_M \\ &+ \int_{\mathbb{T}^d} \int_{\mathbb{R}} \partial_{\xi} (\psi_\beta \zeta_M) \chi_2 \xi^{\frac{\alpha}{2}} g \cdot \nabla \chi_1 + \int_{\mathbb{T}^d} \int_{\mathbb{R}} \partial_{\xi} (\psi_\beta \zeta_M) \chi_1 \xi^{\frac{\alpha}{2}} g \cdot \nabla \chi_2 \\ &- \int_{\mathbb{T}^d} \int_{\mathbb{R}} q_1 \chi_2 \partial_{\xi} (\psi_\beta \zeta_M) - \int_{\mathbb{T}^d} \int_{\mathbb{R}} q_2 \chi_1 \partial_{\xi} (\psi_\beta \zeta_M). \end{split}$$

In comparison to the skeleton equation

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) + \text{``cutoff error"}.$$

The dissipative error: for $\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) + \text{``cutoff error"}$,

$$\begin{aligned} \partial_t \Big(\int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_1 \chi_2 \psi_\beta \zeta_M \Big) \\ &= - \int_{\mathbb{T}^d} \int_{\mathbb{R}} q_1 (\partial_\xi \chi_2) \psi_\beta \zeta_M - \int_{\mathbb{T}^d} \int_{\mathbb{R}} q_2 (\partial_\xi \chi_1) \psi_\beta \zeta_M - 2 \int_{\mathbb{T}^d} \int_{\mathbb{R}} \alpha \xi^{\alpha - 1} \nabla \chi_1 \cdot \nabla \chi_2 \psi_\beta \zeta_M \\ &= \int_{\mathbb{T}^d} \int_{\mathbb{R}} \delta_{\rho_2} q_1 \psi_\beta \zeta_M + \int_{\mathbb{T}^d} \int_{\mathbb{R}} \delta_{\rho_1} q_2 \psi_\beta \zeta_M - 2 \int_{\mathbb{T}^d} \int_{\mathbb{R}} \alpha \xi^{\alpha - 1} \nabla \rho_1 \cdot \nabla \rho_2 \delta_{\rho_1} \delta_{\rho_2} \psi_\beta \zeta_M \\ &\geq \int_{\mathbb{T}^d} \int_{\mathbb{R}} \delta_{\rho_1} \delta_{\rho_2} \alpha \xi^{\alpha - 1} \big(|\nabla \rho_1|^2 + |\nabla \rho_2|^2 \big) \psi_\beta \zeta_M - 2 \int_{\mathbb{T}^d} \int_{\mathbb{R}} \alpha \xi^{\alpha - 1} \nabla \rho^1 \cdot \nabla \rho^2 \delta_{\rho_1} \delta_{\rho_2} \psi_\beta \zeta_M \\ &\geq 0. \end{aligned}$$

Local regularity: after regularizing $\chi_i^{\delta} = (\chi * \kappa^{\delta})$, for $\overline{\kappa}_i^{\delta} = \kappa^{\delta}(\rho_i - \xi)$,

$$2\int_{\mathbb{T}^d} \int_{\mathbb{R}} \alpha \xi^{\alpha-1} \nabla \chi_1^{\delta} \cdot \nabla \chi_2^{\delta} \psi_{\beta} \zeta_M = \int_{\mathbb{T}^d} \int_{\mathbb{R}} (\alpha \rho_1^{\alpha-1} + \alpha \rho_2^{\alpha-1}) \nabla \rho_1 \cdot \nabla \rho_2 \delta_{\rho_1}^{\delta} \delta_{\rho_2}^{\delta} \psi_{\beta} \zeta_M$$
$$= \int_{\mathbb{T}^d} \int_{\mathbb{R}} \alpha \left(\rho_1^{\frac{\alpha-1}{2}} - \rho_2^{\frac{\alpha-1}{2}} \right)^2 \nabla \rho_1 \cdot \nabla \rho_2 \overline{\kappa}_1^{\delta} \overline{\kappa}_2^{\delta} \psi_{\beta} \zeta_M$$
$$+ 2 \int_{\mathbb{T}^d} \int_{\mathbb{R}} \alpha \rho_1^{\frac{\alpha-1}{2}} \rho_2^{\frac{\alpha-1}{2}} \nabla \rho_1 \cdot \nabla \rho_2 \overline{\kappa}_1^{\delta} \overline{\kappa}_2^{\delta} \psi_{\beta} \zeta_M.$$

The conservative error: for $\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) + \text{"cutoff error"}$,

$$\partial_t \left(\int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_1 \chi_2 \psi_\beta \zeta_M \right) \ge \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_\xi \chi_2 g \cdot \nabla \chi_1 \psi_\beta \zeta_M + \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_\xi \chi_1 g \cdot \nabla \chi_2 \psi_\beta \zeta_M \\ - \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_\xi \chi_1 g \cdot \nabla \chi_2 \psi_\beta \zeta_M - \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_\xi \chi_2 g \cdot \nabla \chi_1 \psi_\beta \zeta_M$$

Local regularity of $\xi^{\frac{\alpha}{2}}$: after regularizing $\chi_i^{\delta} = (\chi * \kappa^{\delta})$, for $\overline{\kappa}_i^{\delta} = \kappa^{\delta}(\rho_i - \xi)$,

$$\partial_{\xi}\chi_{i}^{\delta}(x,\xi,t) = (\partial_{\xi}\chi * \kappa^{\delta})(x,\xi,t) = \kappa^{\delta}(\xi) - \kappa^{\delta}(\rho_{i}-\xi),$$

and

$$\begin{split} &\int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_{\xi} \chi_2 g \cdot \nabla \chi_1 \psi_{\beta} \zeta_M + \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_{\xi} \chi_1 g \cdot \nabla \chi_2 \psi_{\beta} \zeta_M \\ &- \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_{\xi} \chi_1 g \cdot \nabla \chi_2 \psi_{\beta} \zeta_M - \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} \partial_{\xi} \chi_2 g \cdot \nabla \chi_1 \psi_{\beta} \zeta_M \\ &= \int_{\mathbb{T}^d} \int_{\mathbb{R}} \left(\rho_2^{\frac{\alpha}{2}} - \rho_1^{\frac{\alpha}{2}} \right) g \cdot \nabla \rho_1 \overline{\kappa}_1^{\delta} \overline{\kappa}_2^{\delta} \psi_{\beta} \zeta_M + \int_{\mathbb{T}^d} \int_{\mathbb{R}} \left(\rho_1^{\frac{\alpha}{2}} - \rho_2^{\frac{\alpha}{2}} \right) g \cdot \nabla \rho_2 \overline{\kappa}_1^{\delta} \overline{\kappa}_2^{\delta} \psi_{\beta} \zeta_M \\ &\simeq \int_{\mathbb{T}^d} \int_{\mathbb{R}} \mathbf{1}_{\{0 < |\rho_1 - \rho_2| < \delta\}} |g| \left(|\nabla \rho_1| + |\nabla \rho_2| \right) \psi_{\beta}(\rho_1) \zeta_M(\rho_1). \end{split}$$

The cutoff error: for $\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) + \text{"cutoff error"},$

$$\begin{aligned} \partial_t \Big(\int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_1 \chi_2 \psi_\beta \zeta_M \Big) &\geq \dots \\ &+ \int_{\mathbb{T}^d} \int_{\mathbb{R}} \partial_{\xi} (\psi_\beta \zeta_M) \chi_2 \xi^{\frac{\alpha}{2}} g \cdot \nabla \chi_1 + \int_{\mathbb{T}^d} \int_{\mathbb{R}} \partial_{\xi} (\psi_\beta \zeta_M) \chi_1 \xi^{\frac{\alpha}{2}} g \cdot \nabla \chi_2 \\ &- \int_{\mathbb{T}^d} \int_{\mathbb{R}} q_1 \chi_2 \partial_{\xi} (\psi_\beta \zeta_M) - \int_{\mathbb{T}^d} \int_{\mathbb{R}} q_2 \chi_1 \partial_{\xi} (\psi_\beta \zeta_M). \end{aligned}$$

We have that

$$\begin{split} &\int_{\mathbb{T}^{d}} \int_{\mathbb{R}} \partial_{\xi}(\psi_{\beta}\zeta_{M})\chi_{2}\xi^{\frac{\alpha}{2}}g \cdot \nabla\chi_{1} = \int_{\mathbb{T}^{d}} \rho_{1}^{\frac{\alpha}{2}}g \cdot \nabla\rho_{1}\chi_{2}(x,\rho_{1},t)\partial_{\xi}(\psi_{\beta}\zeta_{M})(\rho_{1}) \\ &\lesssim \int_{\mathbb{T}^{d}} \rho_{1}^{\frac{1}{2}}g \cdot \rho_{1}^{\frac{\alpha-1}{2}} \nabla\rho_{1}\left(\frac{2}{\beta}(\mathbf{1}_{\{\frac{\beta}{2}<\rho_{1}<\beta\}} + \mathbf{1}_{\{M<\rho_{1}$$

Conclusion: we have that $\partial_t \int_{\mathbb{T}^d} \int_{\mathbb{R}} \chi_1 \chi_2 \ge 0$ and, therefore,

$$\partial_t \int_{\mathbb{T}^d} |\rho_1 - \rho_2| = \partial_t \int_{\mathbb{T}^d} \int_{\mathbb{R}} \left(\chi_1 + \chi_2 - 2\chi_1 \chi_2 \right) \le 0.$$

Well-posedness of renormalized kinetic solutions [F., Gess; 2023]

Let
$$T \in (0,\infty)$$
, $d \in \mathbb{N}$, and let $\Phi \in C^1_{loc}((0,\infty)) \cap C([0,\infty))$ satisfy that

-
$$\Phi(0) = 0$$
 with $\Phi' > 0$ on $(0, \infty)$,

— Φ' is locally 1/2-Hölder continuous on $(0, \infty)$,

— and
$$\max_{\{0 < \xi \le M\}} \frac{\Phi(\xi)}{\Phi'(\xi)} \le cM$$
.

Then for every nonnegative $\rho_0 \in L^1(\mathbb{T}^d)$ and $g \in (L^2_{t,x})^d$ there exists a unique renormalized kinetic solution of the equation

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g)$$
 in $\mathbb{T}^d \times (0,T)$ with $\rho(\cdot,0) = \rho_0$.

Furthermore, if ρ_1 and ρ_2 are two solutions with initial data $\rho_{1,0}$ and $\rho_{2,0}$, then

$$\max_{t \in [0,T]} \|\rho_1 - \rho_2\|_{L^1(\mathbb{T}^d)} = \|\rho_{1,0} - \rho_{2,0}\|_{L^1(\mathbb{T}^d)}.$$

- including $\Phi(\xi) = \xi^{\alpha}$ for every $\alpha \in (0, \infty)$, for which

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot \left(\rho^{\frac{\alpha}{2}} g \right)$$

III. References

G.-Q. Chen and B. Perthame

Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. Henri Pioncaré Non Linéaire, 20(4): 645-668, 2003.

B. Perthame

Kinetic formulation of conservation laws. Oxford Lecture Series in Mathematics and its Applications, Volume 21: 2002.

B. Fehrman and B. Gess

Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Invent. Math., 234:573-636, 2023.