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I. The kinetic formulation of the skeleton equation

The skeleton equation: in the case of the zero range process,

ωtε = !”(ε)→↑ · (”
1

2 (ε)g) in Td ↓ (0, T ),

for an L
2
-control g ↔ (L

2
t,x)

d
. We specialize to the case, for some ϑ ↔ (0,↗),

ωtε = !ε
ω →↑ · (ε

ω
2 g).

The kinetic formulation: for ϖ = 1{0<ε<ϑ},

ωtϖ = ϑϱ
ω→1

!ϖ+ ωεq → ωε(ϱ
ω
2 g ·↑ϖ) +↑ · (ϱ

ω
2 (ωεϖ)g),

for a locally finite, nonnegative measure q on Td ↓ R↓ [0, T ] with

q ↘ ςϑ(ϑϱ
ω→1|↑ε|2).

We have that, for φ ↔ C
↑
c (Td ↓ (0,↗)),

ˆ
Td

ˆ
R
φ(x, ϱ)ϖ

∣∣∣
r=t

r=0
= →

ˆ
t

0

ˆ
Td

ϑε
ω→1↑ε · (↑φ)(x, ε)→

ˆ
t

0

ˆ
Td

ˆ
R
ωεφq

+

ˆ
t

0

ˆ
Td

ε
ω
2 g · (↑φ)(x, ε) +

ˆ
t

0

ˆ
Td
(ωεφ)(x, ε)ε

ω
2 g ·↑ε.
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I. The kinetic formulation of the skeleton equation

Well-posedness of renormalized kinetic solutions [F., Gess; 2023]

Let ε0 ↔ L
1
(Td

) be nonnegative and g ↔ (L
2
t,x)

d
. Then, there exists a unique

renormalized kinetic solution of the equation

ωtε = !”(ε)→↑ · (”
1

2 (ε)g) in Td ↓ (0, T ) with ε(·, 0) = ε0.

Furthermore, if ε1 and ε2 are two solutions with initial data ε1,0 and ε2,0, then

max
t↓[0,T ]

≃ε1(x, t)→ ε2(x, t)≃L1(Td) = ≃ε1,0 → ε2,0≃L1(Td).

The entropy estimate: we have that

max
t↓[0,T ]

ˆ
Td

ε log(ε) +

ˆ
T

0

ˆ
Td

|↑ε
ω
2 |2 ↭

ˆ
Td

ε0 log(ε0) +

ˆ
T

0

ˆ
Td

|g|2.

An interpolation inequality: we have that

≃ε
ω
2 ≃

L
2
tL

2
x
↭ ≃ε0≃ωL1

x
+ ≃↑ε

ω
2 ≃

L
2
tL

2
x
.

The skeleton equation: we have that

ωtε = !ε
ω →↑ · (ε

ω
2 g) = 2↑ · (ε

ω
2 ↑ε

ω
2 )→↑ · (ε

ω
2 g).
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I. The kinetic formulation of the skeleton equation

Weak solutions of the skeleton equation [F., Gess; 2023]

A weak solution is a nonnegative ε ↔ C([0, T ];L
1
(Td

)) that satisfies:

The entropy estimate: we have

ε
ω
2 ↔ L

2
([0, T ];H

1
(Td

)).

The equation: for every φ ↔ C
↑
(Td

) and t ↔ [0, T ],

ˆ
Td

ε(x, s)φ(x)

∣∣∣
s=t

s=0
= →2

ˆ
t

0

ˆ
Td

ε
ω
2 ↑ε

ω
2 ·↑φ +

ˆ
t

0

ˆ
Td

ε
ω
2 g ·↑φ.

The kinetic formulation: for φ ↔ C
↑
c (Td ↓ (0,↗)),

ˆ
Td

ˆ
R
φ(x, ϱ)ϖ

∣∣∣
r=t

r=0
= →

ˆ
t

0

ˆ
Td

ϑε
ω→1↑ε · (↑φ)(x, ε)→

ˆ
t

0

ˆ
Td

ωεφq

+

ˆ
t

0

ˆ
Td

ε
ω
2 g · (↑φ)(x, ε) +

ˆ
t

0

ˆ
Td
(ωεφ)(x, ε)ε

ω
2 g ·↑ε.

Weak-strong continuity: does a weakly convergent sequence gn ↼ g ↔ (L
2
t,x)

d

induce a strongly convergent sequence εn ⇐ ε ↔ L
1
t,x?
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II. Scalar conservation laws

Burger’s equation: in one-dimension,

ωtε+ ωx

(
1

2
ε
2
)
= ωtε+ εωxε = 0.

The characteristics: In this case, A
↔
(ε) = ε and the characteristic equations are

Ẋ
x

t = A
↔
(ε0(x)) = ε0(x) with X

x

t = x+ ε0(x)t.

We therefore have, for the inverse characteristics Y
x

t ,

Y
x

t = x→ ε0(x)t and ε(x, t) = ε0(x→ ε0(x)t).
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II. Scalar conservation laws

Burger’s equation: in one-dimension,

ωtε+ εωxε = 0,

and we have, for the inverse characteristics Y
x

t ,

Y
x

t = x→ ε0(x)t and ε(x, t) = ε0(x→ ε0(x)t).

Shock vs. Rarefaction Wave:
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II. Entropy solutions

The regularized equation: for ↽ ↔ (0, 1), the equation

ωtεϖ → ↽!εϖ +
1

2
↑ · (εϖ)2 = 0 in Td ↓ (0,↗) with εϖ(·, 0) = ε0.

A selection principle as ↽ ⇐ 0: if S is convex and ⇀ is nonnegative,

ωt

( ˆ
Td

⇀(x)S(εϖ)
)
= ↽

ˆ
Td

⇀(x)S
↔
(εϖ)!εϖ → 1

2

ˆ
Td

⇀(x)S
↔
(εϖ)↑(εϖ)

2

= →↽

ˆ
Td

S
↔
(εϖ)↑εϖ ·↑⇀→

ˆ
Td

⇀S
↔↔
(εϖ)|↑εϖ|2 +

ˆ
Td

⇁(εϖ)↑⇀,

for ⇁(0) = 0 and ⇁
↔
(ϱ) = S

↔
(ϱ)ϱ.

The entropy inequality: as ↽ ⇐ 0, if εϖ ⇐ ε,

ωt

( ˆ
Td

⇀(x)S(ε)
)
⇒
ˆ
Td

⇁(εϖ)↑⇀,

or, in the sense of distributions,

ωtS(ε) +↑ · ⇁(ε) ⇒ 0.

— an ensemble of equations for all “entropy-flux pairs” (S,⇁)

B. Fehrman (LSU) UC Irvine June 26, 2025 7 / 21



II. Scalar conservation laws

Inviscid and Viscous Burger’s equations: in one-dimension,

ωtε+ εωxε = 0 and ωtεϖ + εϖωxεϖ = ↽!εϖ,

and we have, for the inverse characteristics Y
x

t ,

Y
x

t = x→ ε0(x)t and ε(x, t) = ε0(x→ ε0(x)t).

The kinetic formulation: for the kinetic function ϖ = 1{0<ε<ϑ(x,t)} → 1{ϑ(x,t)<ε<0},

ωtϖϖ + ϱ↑xϖϖ = ↽!ϖϖ + ωεqϖ,

and for a nonnegative “defect measure” q = limϖ↗0 ↽|↑εϖ|2 and qϖ = ↽|↑εϖ|2.

Shock vs. Rarefaction Wave:
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II. Scalar conservation laws

DiPerna–Lions theory [DiPerna, Lions; 1989], [Ambrosio; 2004]

Let b ↔ (L
1
tBVx)

d
and (↑ · b) ↔ (L

1
tL

↑
x )

d
. Then, for every ε0 ↔ L

↑
(Td

),

ωtε = ↑ · (εb),

has a unique weak solution in (L
1 ⇑ L

↑
)(Td ↓ [0, T ]).

Relaxed assumptions: a one-sided bounded on ↑ · b is su#cient [Ambrosio; 2004]

Optimality: counterexamples for b failing to be BV on hyperplane [Depauw; 2003]

Commutator estimates: for a weak solution ε, for εϱ = (ε ⇓ κϱ),

ωt

ˆ
Td

S(εϱ)⇀(x) =

ˆ
Td

⇀(x)S
↔
(εϱ)↑ · (εb)ϱ ⇔

ˆ
Td

⇀(x)S
↔
(εϱ)↑ · (εϱb).

The skeleton equation: for g ↔ (L
2
t,x)

d
, for any m ↔ (0,↗),

ωtε = !ε
m →↑ · (ε

m
2 g).
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III. Weak solutions of the skeleton equation

Equivalence of weak and kinetic solutions: for initial data with finite entropy,

is a weak solution

ˆ
Td

ε(x, s)φ(x)

∣∣∣
s=t

s=0
= →2

ˆ
t

0

ˆ
Td

ε
ω
2 ↑ε

ω
2 ·↑φ +

ˆ
t

0

ˆ
Td

ε
ω
2 g ·↑φ,

a kinetic solution

ˆ
Td

ϖφ

∣∣∣
s=t

s=0
= →

ˆ
t

0

ˆ
Td

ϑε
ω→1↑ε · (↑φ)(x, ε)→

ˆ
t

0

ˆ
Td

ˆ
R
(ωεφ)(x, ϱ)q

+

ˆ
t

0

ˆ
Td
(ωεφ)(x, ε)ε

ω
2 g ·↑ε+

ˆ
T

0

ˆ
Td

ε
ω
2 g · (↑φ)(x, ε)?

Deriving the kinetic form: for ωε$(x, ϱ) = φ(x, ϱ), for εϱ = (ε ⇓ κϱ
),

ωt

ˆ
$(x, εϱ) =

ˆ
φ(x, εϱ)ωtεϱ

= →2

ˆ
(↑φ)(x, εϱ) · (ε

ω
2 ↑ε

ω
2 )ϱ →

ˆ
(↑φ)(x, εϱ) · (ε

ω
2 g)ϱ

→ 2

ˆ
Td
(ωεφ)(x, εϱ)↑εϱ · (ε

ω
2 ↑ε

ω
2 )ϱ →

ˆ
(ωεφ)(x, εϱ)↑εϱ · (ε

ω
2 g)ϱ.
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II. Weak solutions of the skeleton equation

The equation satisfied by the convolution: for ε = (ε ⇓ κϱ
),

ωtεϱ = →(2ε
ω
2 ↑ε

ω
2 ⇓ ↑κ

ϱ
) + (ε

ω
2 g ⇓ ↑κ

ϱ
).

Deriving the kinetic form: if ε is a weak solution, for ωε$(x, ϱ) = φ(x, ϱ),

ωt

ˆ
Td

$(x, εϱ) = →2

ˆ
Td

φ(x, εϱ)(ε
ω
2 ↑ε

ω
2 ⇓ ↑κ

ϱ
) +

ˆ
Td

φ(x, εϱ)(ε
ω
2 g ⇓ ↑κ

ϱ
).

A useful decomposition: let Supp(φ) ↖ Td ↓ [0,M ] and let

Ak = {(x, t) : ε
ω
2 (x, t) ↘ M

ω
2 + k} and let A0 = (Td ↓ [0, T ]) \A1.

We then write, for 1k = 1Ak+1\Ak
,

ˆ
Td

φ(x, εϱ)(ε
ω
2 g ⇓ ↑κ

ϱ
)

=

ˆ
Td

φ(x, εϱ)(1A0
ε

ω
2 g ⇓ ↑κ

ϱ
) +

↑∑

k=1

ˆ
Td

φ(x, εϱ)(1kε
ω
2 g ⇓ ↑κ

ϱ
)

↭
ˆ
Td

φ(x, εϱ)(1A0
ε

ω
2 g ⇓ ↑κ

ϱ
)

+ ε
→1≃g≃

L
2
t,x

( ↑∑

k=1

(M
ω
2 + k + 1)

2
ˆ
Td

|φ(x, εϱ)|
(
1Ak ⇓ |ε↑κ

ϱ|
)) 1

2

.
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II. Weak solutions of the skeleton equation

Equivalence of weak and renormalized kinetic solutions [F., Gess; 2023]

Under assumptions including ”(ϱ) = ϱ
m

for every m ↔ [1,↗), a nonnegative function

ε ↔ C([0, T ];L
1
(Td

)) that satisfies

”
1

2 (ε) ↔ L
2
([0, T ];H

1
(Td

))

is a renormalized kinetic solution of the skeleton equation

ωtε = !”(ε)→↑ · (”
1

2 (ε)g) in Td ↓ (0, T ) with ε(·, 0) = ε0,

for a nonnegative ε0 with finite entropy if and only if ε is a weak solution. In

particular, weak solutions exist and are unique.

— equivalence of renormalized and weak solutions [DiPerna, Lions; 1989],

[Ambrosio; 2004].

— strong continuity with respect to weak convergence of the control

— for example, ”
1

2 convex or concave or ” satisfies that 0 < ▷ ⇒ ”
↔ ⇒ %.
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II. Weak solutions of the skeleton equation

Weak-strong continuity [F., Gess; 2023]

If εn are solutions of the skeleton equation with controls gn ↼ g and initial data

ε0,n ↼ ε0 with uniformly bounded entropy, then εn ⇐ ε for ε the solution of the

skeleton equation with control g and initial data ε0.

The entropy estimate: if ωtεn = !ε
ω

n →↑ · (ε
ω
2
n gn) then

max
t↓[0,T ]

ˆ
Td

εn log(εn) +

ˆ
T

0

ˆ
Td

|↑ε

ω
2
n |2 ↭

ˆ
Td

ε0,n log(ε0,n) +

ˆ
T

0

ˆ
Td

|gn|2.

Compactness since the gn are uniformly (L
2
t,x)

d
-bounded,

εn is strongly compact in L
1
t,x and ε

ω
2
n is weakly compact in L

2
tH

1
x.

Uniqueness of the limit: We have for some ε that, along a subsequence,

εn ⇐ ε in L
1
t,x and ε

ω
2
n ↼ ε

ω
2 in L

2
tH

1
x,

from which we conclude that

ωtε = 2↑ · (ε
ω
2 ↑ε

ω
2 )→↑ · (ε

ω
2 g),

and that εn ⇐ ε along the full sequence n ⇐ ↗.
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III. L.s.c. envelope of the rate function

The zero range process: µN
on T1 ↓ [0, T ] for N = 15 and T (k) ↙ ke

→kt
,

The heat equation: the hydrodynamic limit ωtp = !ε,

The skeleton equation: the controlled equation ωtε = !ε→↑ · (∝ε · g),

The rate function: we have P(µN ⇔ ε) ⇔ exp(→NI(ε)) for

I(ε) =
1

2
inf{≃g≃2

L
2
t,x

: ωtε = !ε→↑ · (∝εg)}.
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III. L.s.c. envelope of the rate function

The rate function: we have that

I(ε) =
1

2
inf

{
≃g≃2

L2(Td↘[0,T ];Rd) : ωtε = !ε
ω →↑ · (ε

ω
2 · g)

}
.

Large Deviations Principle [Benois, Kipnis, Landim; 1995]

For every closed A ↖ D([0, T ];M+(Td
)),

lim sup
N↗↑

1

N
log

(
P(µN ↔ A)

)
⇒ → inf

m↓A

I(m).

For the space of smooth fluctuations

S = {ωtm = !m
ω →↑ · (mω↑H) : H ↔ C

3,1
(Td ↓ [0, T ])},

for every open subset A ↖ D([0, T ];M+(Td
)),

lim sup
N↗↑

1

N
log

(
P(µN ↔ A)

)
↘ → inf

ϑ↓A

I(ε)|S
lsc
.
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IV. L.s.c. envelope of the rate function

The rate function: we have

I(ε) =
1

2
inf

{
≃g≃2

L2 : ωtε = !ε
ω →↑ · (ε

ω
2 g)

}
.

The Hilbert space: H1
ϑω is the strong closure w.r.t. the inner product

′↑φ,↑⇀∞ =
ˆ

T

0

ˆ
Td

ε
ω↑φ ·↑⇀ for ⇀,φ ↔ C

↑
.

Unique minimizer: the equation defines

ωtε→!ε
ω
= →↑ · (ε

ω
2 g) ↔ H

→1
ϑω ,

and if I(ε) < ↗ then the minimizer g = ε
ω
2 ↑H for H ↔ H

1
ϑω and

I(ε) =
1

2

ˆ
T

0

ˆ
Td

ε
ω|↑H|2 =

1

2
≃H≃2

H
1

εω
=

1

2
≃ωtε→!”(ε)≃2

H
→1

εω
.

The “ill-posed” equation: we have the formally “supercritical” equation

ωtε = !ε
ω →↑ · (εω↑H).
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IV. L.s.c envelope of the rate function

The space of smooth fluctuations: we have that

S = {ωtm = !m
ω →↑ · (mω↑H) : H ↔ C

3,1
(Td ↓ [0, T ])}.

The recovery sequence: given an arbitrary fluctuation

ωtε = !ε
ω →↑ · (ε

ω
2 g),

to show that I|S
lsc

(ε) = I(ε) we need to find a sequence εn ↔ S such that

εn ⇐ ε ↔ L
1
t,x and I(εn) ⇐ I(ε).

A first attempt: there exists H ↔ H
1
ϑω such that

ωtε = !ε
ω →↑ · (εω↑H) and I(ε) =

1

2

ˆ
T

0

ˆ
Td

ε
ω|↑H|2.

Let εϱ solve

ωtεϱ = !ε
ω

ϱ →↑ · (εωϱ (↑H ⇓ κϱ)).

— supercritical with no stable estimates with respect to ↑H

— the Hilbert space framework is too rigid
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IV. L.s.c envelope of the rate function

A second attempt: for some g ↔ L
2
t,x and ε0 with finite entropy,

ωtε = !ε
ω →↑ · (ε

ω
2 g) with ε(·, 0) = ε0.

Regularizing the data: we consider

ε0,n =
(
(ε0 ∈ n) ∋ 1

n

)
⇓ κ

1

n
x and gn = g ⇓ κ

1

n
t,x

,

and solve

ωtεn = !ε
ω

n →↑ · (ε
ω
2
n gn) with εn(·, 0) = ε0,n.

There exists Hn ↔ H
1
ϑωn

such that

ωtεn = !ε
ω

n →↑ · (εωn↑Hn) with εn(·, 0) = ε0,n.

Deducing the regularity of Hn: we have the elliptic equation

→↑ · (εωn↑Hn) = ωtεn →!ε
ω

n.

— is not necessarily uniformly elliptic

— how regular is εn?
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IV. L.s.c envelope of the rate function

The final attempt: for some g ↔ L
2
t,x and ε0 with finite entropy,

ωtε = !ε
ω →↑ · (ε

ω
2 g) with ε(·, 0) = ε0.

Regularizing the data: we consider

ε0,n =
(
(ε0 ∈ n) ∋ 1

n

)
⇓ κ

1

n
x and gn = g ⇓ κ

1

n
t,x

,

“Turning o!” the control: for ◁n(ϱ) = 0 if ϱ ⇒ 1
n
or ϱ ↘ n, solve

ωtεn = !ε
ω

n →↑ · (ε
ω
2
n ◁n(εn)gn)

= !ε
ω

n →↑ · (ε
ω
2
n g̃n),

for the control g̃n = ◁n(εn)gn.

Regularity of εn: we have that
1
n
⇒ εn ⇒ n and εn ↔ C

↑
(Td ↓ [0, T ]).

Deducing the regularity of Hn: There exists Hn ↔ H
1
ϑωn

such that

ωtεn = !ε
ω

n →↑ · (εωn↑Hn) and →↑ · (εωn↑Hn) = ωtεn →!ε
ω

n.
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IV. L.s.c. envelope of the rate function

The fluctuation: for some g ↔ L
2
t,x and ε0 with finite entropy,

ωtε = !ε
ω →↑ · (ε

ω
2 g) with ε(·, 0) = ε0.

The recovery sequence: for ◁n(ϱ) = 0 if ϱ ⇒ 1
n
or ϱ ↘ n, solve

ωtεn = !ε
ω

n →↑ · (ε
ω
2
n ◁n(εn)gn) = !ε

ω

n →↑ · (ε
ω
2
n g̃n),

for the control g̃n = ◁n(εn)gn and with εn(·, 0) = ε0,n.

Compactness: the εn satisfy uniformly the entropy estimate and

εn ⇐ ε and ◁(εn)gn1{ϑ>0} ⇐ g1{ϑ>0} and I(εn) ⇒ ≃◁(εn)gn≃22 ⇐ ≃g≃22.

Large deviations of the zero range process [F., Gess; 2023]

For the space of smooth fluctuations

S = {ωtm = !m
ω →↑ · (mω↑H) : H ↔ C

3,1
(Td ↓ [0, T ])},

we have that

I(ε)
∣∣
S

lsc
= I(ε) =

1

2
inf{≃g≃22 : ωtε = !ε

ω →↑ · (ε
ω
2 g)}.
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