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I. The kinetic formulation of the skeleton equation

The skeleton equation: in the case of the zero range process,
dup = Ad(p) — V- (2% (p)g) in T x (0,7),
for an L?-control g € (Liz)d. We specialize to the case, for some a € (0, 00),
dip=Ap* =V (p%yg).
The kinetic formulation: for x = 1jo<e<,3,
Bix = o™ A+ 0eq — 9e(§3 g - V) + V- (62 (9ex)9),
for a locally finite, nonnegative measure g on T¢ x R x [0, T] with

q > 3,(a€* Vo).

We have that, for ¢ € C2°(T¢ x (0, c0)),

L, [ ox] _

:—/ Tlozp“ 'Y (V) (z,p) //ri/ Bepq
+/0 po?g.(vw)(:r,p)Jr/o /jrd(asw)(xm)pfg'vp.
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I. The kinetic formulation of the skeleton equation

Well-posedness of renormalized kinetic solutions [F., Gess; 2023]

Let po € L' (T%) be nonnegative and g € (L7 ,)®. Then, there exists a unique
renormalized kinetic solution of the equation

dp = Ad(p) — V- (2% (p)g) in T* x (0,T) with p(-,0) = po.
Furthermore, if p1 and p2 are two solutions with initial data p1,0 and p2,0, then

i llp1(z,t) — p2(, )|l L1 (ray = llp1,0 — p2,0ll L1 (ra)-

The entropy estimate: we have that

ax, /polog(p) +/OT/W |Vp2|? S/Td po log(po) +/0T/Td lgl”.

An interpolation inequality: we have that
o2 ll2ee S llpollzy +1IVe2 llL2p2-
The skeleton equation: we have that

Qip=Ap* =V - (p%g) =2V (p2Vp?) = V- (p%yg).
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I. The kinetic formulation of the skeleton equation

Weak solutions of the skeleton equation [F., Gess; 2023]

A weak solution is a nonnegative p € C([0,T]; L'(T%)) that satisfies:
The entropy estimate: we have
o% € L2(0, T]; H(T).

The equation: for every 1 € C*®(T%) and ¢ € [0, T7,

Loo@sw@| ==2["[ p5vpf vut [ p%g v

The kinetic formulation: for ¢ € C2*(T¢ x (0, 00)),

/Td/Rw(x,S) ‘ =—/ /(, p* 'V (VY)(z, p) // derq

+/0 a Pjg'(wﬁ)(ﬂ?vp”/o [, @ev)(@.p)p%g- V.

Weak-strong continuity: does a weakly convergent sequence g, — g € (Lf,z)d

induce a strongly convergent sequence p, — p € L,}’m?
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II. Scalar conservation laws

Burger’s equation: in one-dimension,

Oup + Op (%,ﬁ) = 0ip + pdup = 0.

The characteristics: In this case, A'(p) = p and the characteristic equations are

X7 = A(po(x)) = po(z) with X7 =z + po(z)t.

We therefore have, for the inverse characteristics Y,

Yi* =z — po(2)t and p(z,t) = po(z — po(@)t).

t Jinn = {(f,ﬂ: *-pu ()t = nL's

T \

u t X
fl=1 fl:o o= -l'.L p=H
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II. Scalar conservation laws

Burger’s equation: in one-dimension,
Op + pdzp =0,
and we have, for the inverse characteristics Y;®,
Y =2 = po(2)t and p(a,t) = pola — po(a)?).

Shock vs. Rarefaction Wave:

(it,H)

"
S

e
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II. Entropy solutions

The regularized equation: for n € (0, 1), the equation
1 . .
Qepy —1Dpn + 5V - (pn)” =0 in T x (0,00) with py(-,0) = po.

A selection principle as n — 0: if S is convex and ¢ is nonnegative,

ou( [, 6@)S(0n) =1 [, 6@)S (o) Apn = 3 [, ) (pn)V (p0)?
== [, S (o) Vpy- V6 = [, 68" (o) IV pul* + [, B(pa) V9,
for B(0) = 0 and B'(§) = S'(§)¢.
The entropy inequality: as n — 0, if p, — p,
on( [,@)S(p) < [, B(p)V9,
or, in the sense of distributions,

oS(p) +V - B(p) <0

— an ensemble of equations for all “entropy-flux pairs” (S, 3)
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II. Scalar conservation laws

Inviscid and Viscous Burger’s equations: in one-dimension,
Otp+ pOzp =0 and Oipy + pnOzpy = NApy,
and we have, for the inverse characteristics Y;",
Y =a — po(x)t and p(x,t) = po(z — po(z)t).
The kinetic formulation: for the kinetic function x = 1o<e<p(z,t)} — 1{p(e,t)<e<0}>
Aexn + EVaxn = 12Xy + Oedn,

and for a nonnegative “defect measure” q = lim,—on|Vp,|* and ¢, = n|Vp,|*.

Shock vs. Rarefaction Wave:

(3,1 GhEY (¢h1)
p=0 ezt
=0 foz 1 =0 oz 1
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II. Scalar conservation laws

DiPerna-Lions theory [DiPerna, Lions; 1989], [Ambrosio; 2004]

Let b € (L BV,)® and (V - b) € (L{ L®)®. Then, for every po € L>(T%),
Owp =V - (pb),

has a unique weak solution in (L' N L*®)(T¢ x [0, T]).

Relaxed assumptions: a one-sided bounded on V - b is sufficient [Ambrosio; 2004]
Optimality: counterexamples for b failing to be BV on hyperplane [Depauw; 2003]

Commutator estimates: for a weak solution p, for p. = (p * k.),

o [ S(po)e /qs pbs_/ 6(2)S' (p:)V - (p2b).

Td

The skeleton equation: for g € (Lf,x)d, for any m € (0, o),

dp=A0p" —V-(p?g).
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ITI. Weak solutions of the skeleton equation

Equivalence of weak and kinetic solutions: for initial data with finite entropy,

is a weak solution

Lo @)

a kinetic solution

Lo == [0 Vo o)) - [ [, [@ct)

+/; [, @ev)(@,p)pg- Vp+/f L.p%9- (V). p)?
Deriving the kinetic form: for d:¥(z,£) = (x, €), for p. = (p * k%),
o [W(@,p2) = [ V(@ p)Ohp-
= =2 [(V)(,p:) - (2 V). = [(Ve)(@,p2) - (0 g)-
=2 [ 0cv)(w,p) Ve - (03 V0?): ~ [(0c)(w,p) Vi - (0 g)e.

D2l Lt ves [ pta o
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II. Weak solutions of the skeleton equation

The equation satisfied by the convolution: for p = (p * k%),
Oipe = —(2p2Vp? % VK*) + (p2 g x V).
Deriving the kinetic form: if p is a weak solution, for 9:¥(z, &) = ¥ (z,§),
O [, W(a.pe) = =2 [ (e p) (0 Vp% VR + [ (e po)(p% g x V).
A useful decomposition: let Supp(y)) C T¢ x [0, M] and let
Ag ={(z,t): p2 (x,t) > M % +k} and let Ay = (T x [0,7]) \ A;.

We then write, for 1 = 14, \A,;

[ (@ pe)(p% g% V)
= Ad b(@,pe)(Lagp? g+ V) + Z/Td W(z, pe)(1rp? g * V&)
k=1

< [ 0@ o) (Lagpt g Vi)

e gl (DM 4k +1)? [ 0@, po)l (1a, # VA7) .

k=1
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II. Weak solutions of the skeleton equation

Equivalence of weak and renormalized kinetic solutions [F., Gess; 2023]

Under assumptions including ®(&) = £™ for every m € [1,00), a nonnegative function
p € C([0, T]; L*(T%)) that satisfies

% (p) € L*([0,7]; H'(T%)
is a renormalized kinetic solution of the skeleton equation
dp = A®(p) — V- (22 (p)g) in T? x (0,T) with p(-,0) = po,

for a nonnegative po with finite entropy if and only if p is a weak solution. In
particular, weak solutions exist and are unique.

— equivalence of renormalized and weak solutions [DiPerna, Lions; 1989],
[Ambrosio; 2004].

— strong continuity with respect to weak convergence of the control

— for example, ®2 convex or concave or & satisfies that 0 < A <P <A
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II. Weak solutions of the skeleton equation

Weak-strong continuity [F., Gess; 2023]

If p,, are solutions of the skeleton equation with controls g, — g and initial data
po,n — po with uniformly bounded entropy, then p, — p for p the solution of the
skeleton equation with control g and initial data po.

The entropy estimate: if d;p, = Ap;; — V - (p? ») then

max pn log(pn) + /OT /ﬂ‘d |Vp§\2 s /ﬂ‘d po,n log(po,n) + /OT /]l‘d lgn|”.

te[0,7] JTd
Compactness since the g, are uniformly (Lf,x)d—bounded,
pn is strongly compact in L%@ and p§ is weakly compact in LIH!.
Uniqueness of the limit: We have for some p that, along a subsequence,
pn — p in L;z and p,% —\p% in L?H;,
from which we conclude that
dip=2V-(p2Vp?) =V (p%g),

and that p, — p along the full sequence n — co.
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III. L.s.c. envelope of the rate function
The zero range process: u¥ on T x [0,7] for N = 15 and T(k) ~ ke™**,

N T N

The heat equation: the hydrodynamic limit 0:p = Ap,

N T N,

oo Qe o
oo osvcel esiae iy

eos foosssees esoc-"¢ 3 o0 ®
ooos

The rate function: we have P(u" ~ p) ~ exp(—NI(p)) for

1.
I(p) = 5 nf{llgll7z : ip=Dp— V- (/pg)}
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III. L.s.c. envelope of the rate function

The rate function: we have that

[N)
)
=

——

1. o
I(p) = 5 lnf{”gHiQ(']I‘dx[O,T];JRd): Oep=Ap" =V - (p

Large Deviations Principle [Benois, Kipnis, Landim; 1995]

For every closed A C D([0, T]; M4 (T%)),

lim sup % log (P(/JN € A)) < — inf I(m).

N— o0 meA

For the space of smooth fluctuations
S={8m=Am*-V.-(m*VH): H e C*(T* x [0,T])},

for every open subset A C D([0, T]; ML (T4)),

0 1 N . 1sc
1 = log (P A)) > —inf T
imsup og (P(u™ € 4)) 2 — inf I(p)ls
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IV. L.s.c. envelope of the rate function

The rate function: we have
1, o «
1(p) = 5 inf {llgl3: 0o = Ap™ = V- (pE g }.
The Hilbert space: H;a is the strong closure w.r.t. the inner product
Vi, V vV b =
(V. V9) = [ [, 5V Vo for ¢4 € C.
Unique minimizer: the equation defines
dip— DNp™ ==V - (p%g) € H,

and if I(p) < oo then the minimizer g = p2 VH for H € H}o and

I 1 1
I(p) == YVHP = Z|H|5n = = |0 — AD(p)||%, -1
=3 [ [ IvHE =318, = 5100 - A0,
The “ill-posed” equation: we have the formally “supercritical” equation

Op=Ap* —V - (p*VH).
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IV. L.s.c envelope of the rate function

The space of smooth fluctuations: we have that
S={8m=Am*—-V-(m*VH): H e C**(T* x [0,T])}.
The recovery sequence: given an arbitrary fluctuation
dip=20p~ —V-(p?yg),
to show that mlsc(p) = I(p) we need to find a sequence p, € S such that
pn = pE L;I and I(pn) = I(p).

A first attempt: there exists H € H;a such that

Op=Ap* —V-(p*VH) and I(p)zf/ / p*|IVH?.
2 0 Td
Let p. solve
Ope = ApS =V - (pd (VH * ke)).
— supercritical with no stable estimates with respect to VH

— the Hilbert space framework is too rigid
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IV. L.s.c envelope of the rate function

A second attempt: for some g € LET and po with finite entropy,
Bip=Ap* =V - (p%g) with p(-,0) = po.

Regularizing the data: we consider

1 1

1 s 1
pon = ((po An)V E) * kg and gn = g * Ky,

and solve N
Oepn = App, — V- (pi gn) with pn(+,0) = po.n.

There exists H,, € H;% such that
Otpn = Apy, — V- (pnVHy) with pn(-,0) = po,n.
Deducing the regularity of H,: we have the elliptic equation
=V - (pnVHy) = Oupn — Apj,.

— is not necessarily uniformly elliptic

— how regular is p,?
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IV. L.s.c envelope of the rate function

The final attempt: for some g € Lfvz and po with finite entropy,

dip = Dp™ — V- (p% g) with p(-,0) = po.
Regularizing the data: we consider

1 1

1 1 1
pon = ((po A)V —) s kil and gn = g* KLy,
“Turning off” the control: for ,,(§) =0 if £ < % or £ > n, solve

Otpn = Apy =V - (p
=Apy, =V -(p

n(pn)gn)

Selp S

K<}
3
—

for the control gn = on(pn)gn.
Regularity of p,: we have that 2 < p, <n and p, € C™(T* x [0,77).
Deducing the regularity of H,: There exists H, € Hﬂlﬁ such that

Otpn = Apy — V- (pnVHy) and — V- (o VHy) = Oipn — Apyy.
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IV. L.s.c. envelope of the rate function

The fluctuation: for some g € Lir and po with finite entropy,
Bip=Ap* =V - (p%g) with p(-,0) = po.
The recovery sequence: for 0,(§) =0if £ < L or £ > n, solve
Oipn = Dpy — V- (pid onlpn)gn) = Dpn — V- (pi Gn),
for the control gn = on(pn)gn and with pn(-,0) = po,n.
Compactness: the p, satisfy uniformly the entropy estimate and

pn = p and o(pn)gnlipso; = glipsop and I(pn) < [lo(pn)gnllz — llgll3-

Large deviations of the zero range process [F., Gess; 2023]

For the space of smooth fluctuations

S={8m=Am*-V.-(m*VH): H e C*(T* x [0,T])},

we have that

1. . o
I(p)|g =1(p)= 5mf{\|g||3: dp=A0p* =V -(p2g)}.
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