Weak solutions of the skeleton equation

Benjamin Fehrman

LSU

June 26, 2025

I. The kinetic formulation of the skeleton equation

The skeleton equation: in the case of the zero range process,

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g) \text{ in } \mathbb{T}^d \times (0,T),$$

for an L^2 -control $g \in (L^2_{t,x})^d$. We specialize to the case, for some $\alpha \in (0,\infty)$,

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g).$$

The kinetic formulation: for $\chi = \mathbf{1}_{\{0 < \xi < \rho\}}$,

$$\partial_t \chi = \alpha \xi^{\alpha - 1} \Delta \chi + \partial_\xi q - \partial_\xi (\xi^{\frac{\alpha}{2}} g \cdot \nabla \chi) + \nabla \cdot (\xi^{\frac{\alpha}{2}} (\partial_\xi \chi) g),$$

for a locally finite, nonnegative measure q on $\mathbb{T}^d\times\mathbb{R}\times[0,T]$ with

$$q \ge \delta_{\rho}(\alpha \xi^{\alpha - 1} |\nabla \rho|^2).$$

We have that, for $\psi \in C_c^{\infty}(\mathbb{T}^d \times (0, \infty))$,

$$\begin{split} \int_{\mathbb{T}^d} \int_{\mathbb{R}} \psi(x,\xi) \chi \Big|_{r=0}^{r=t} &= -\int_0^t \int_{\mathbb{T}^d} \alpha \rho^{\alpha-1} \nabla \rho \cdot (\nabla \psi)(x,\rho) - \int_0^t \int_{\mathbb{T}^d} \int_{\mathbb{R}} \partial_\xi \psi q \\ &+ \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x,\rho) + \int_0^t \int_{\mathbb{T}^d} (\partial_\xi \psi)(x,\rho) \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho. \end{split}$$

I. The kinetic formulation of the skeleton equation

Well-posedness of renormalized kinetic solutions [F., Gess; 2023]

Let $\rho_0 \in L^1(\mathbb{T}^d)$ be nonnegative and $g \in (L^2_{t,x})^d$. Then, there exists a unique renormalized kinetic solution of the equation

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g)$$
 in $\mathbb{T}^d \times (0,T)$ with $\rho(\cdot,0) = \rho_0$.

Furthermore, if ρ_1 and ρ_2 are two solutions with initial data $\rho_{1,0}$ and $\rho_{2,0}$, then

$$\max_{t \in [0,T]} \|\rho_1(x,t) - \rho_2(x,t)\|_{L^1(\mathbb{T}^d)} = \|\rho_{1,0} - \rho_{2,0}\|_{L^1(\mathbb{T}^d)}$$

The entropy estimate: we have that

$$\max_{t \in [0,T]} \int_{\mathbb{T}^d} \rho \log(\rho) + \int_0^T \int_{\mathbb{T}^d} |\nabla \rho^{\frac{\alpha}{2}}|^2 \lesssim \int_{\mathbb{T}^d} \rho_0 \log(\rho_0) + \int_0^T \int_{\mathbb{T}^d} |g|^2$$

An interpolation inequality: we have that

$$\|\rho^{\frac{\alpha}{2}}\|_{L^{2}_{t}L^{2}_{x}} \lesssim \|\rho_{0}\|^{\alpha}_{L^{1}_{x}} + \|\nabla\rho^{\frac{\alpha}{2}}\|_{L^{2}_{t}L^{2}_{x}}.$$

The skeleton equation: we have that

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot \left(\rho^{\frac{\alpha}{2}} g \right) = 2 \nabla \cdot \left(\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} \right) - \nabla \cdot \left(\rho^{\frac{\alpha}{2}} g \right).$$

I. The kinetic formulation of the skeleton equation

Weak solutions of the skeleton equation [F., Gess; 2023]

A weak solution is a nonnegative $\rho \in \mathcal{C}([0,T];L^1(\mathbb{T}^d))$ that satisfies:

The entropy estimate: we have

 $\rho^{\frac{\alpha}{2}} \in L^2([0,T]; H^1(\mathbb{T}^d)).$

The equation: for every $\psi \in C^{\infty}(\mathbb{T}^d)$ and $t \in [0, T]$,

$$\int_{\mathbb{T}^d} \rho(x,s)\psi(x)\Big|_{s=0}^{s=t} = -2\int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} \cdot \nabla \psi + \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot \nabla \psi$$

The kinetic formulation: for $\psi \in C_c^{\infty}(\mathbb{T}^d \times (0, \infty))$,

$$\begin{split} \int_{\mathbb{T}^d} \int_{\mathbb{R}} \psi(x,\xi) \chi \Big|_{r=0}^{r=t} &= -\int_0^t \int_{\mathbb{T}^d} \alpha \rho^{\alpha-1} \nabla \rho \cdot (\nabla \psi)(x,\rho) - \int_0^t \int_{\mathbb{T}^d} \partial_\xi \psi q \\ &+ \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x,\rho) + \int_0^t \int_{\mathbb{T}^d} (\partial_\xi \psi)(x,\rho) \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho. \end{split}$$

Weak-strong continuity: does a weakly convergent sequence $g_n \rightharpoonup g \in (L^2_{t,x})^d$ induce a strongly convergent sequence $\rho_n \rightarrow \rho \in L^1_{t,x}$?

B. Fehrman (LSU)

II. Scalar conservation laws

Burger's equation: in one-dimension,

$$\partial_t \rho + \partial_x \left(\frac{1}{2}\rho^2\right) = \partial_t \rho + \rho \partial_x \rho = 0.$$

The characteristics: In this case, $A'(\rho) = \rho$ and the characteristic equations are

$$\dot{X}_t^x = A'(\rho_0(x)) = \rho_0(x)$$
 with $X_t^x = x + \rho_0(x)t$.

 $Y_t^x = x - \rho_0(x)t$ and $\rho(x, t) = \rho_0(x - \rho_0(x)t).$

We therefore have, for the inverse characteristics Y_t^x ,

(

II. Scalar conservation laws

Burger's equation: in one-dimension,

$$\partial_t \rho + \rho \partial_x \rho = 0,$$

and we have, for the inverse characteristics Y_t^x ,

$$Y_t^x = x - \rho_0(x)t$$
 and $\rho(x, t) = \rho_0(x - \rho_0(x)t).$

Shock vs. Rarefaction Wave:

II. Entropy solutions

The regularized equation: for $\eta \in (0, 1)$, the equation

$$\partial_t \rho_\eta - \eta \Delta \rho_\eta + \frac{1}{2} \nabla \cdot (\rho_\eta)^2 = 0$$
 in $\mathbb{T}^d \times (0, \infty)$ with $\rho_\eta(\cdot, 0) = \rho_0$.

A selection principle as $\eta \to 0$: if S is convex and ϕ is nonnegative,

$$\partial_t \left(\int_{\mathbb{T}^d} \phi(x) S(\rho_\eta) \right) = \eta \int_{\mathbb{T}^d} \phi(x) S'(\rho_\eta) \Delta \rho_\eta - \frac{1}{2} \int_{\mathbb{T}^d} \phi(x) S'(\rho_\eta) \nabla (\rho_\eta)^2 \\ = -\eta \int_{\mathbb{T}^d} S'(\rho_\eta) \nabla \rho_\eta \cdot \nabla \phi - \int_{\mathbb{T}^d} \phi S''(\rho_\eta) |\nabla \rho_\eta|^2 + \int_{\mathbb{T}^d} \beta(\rho_\eta) \nabla \phi,$$

for $\beta(0) = 0$ and $\beta'(\xi) = S'(\xi)\xi$.

The entropy inequality: as $\eta \to 0$, if $\rho_{\eta} \to \rho$,

$$\partial_t \left(\int_{\mathbb{T}^d} \phi(x) S(\rho) \right) \leq \int_{\mathbb{T}^d} \beta(\rho_\eta) \nabla \phi,$$

or, in the sense of distributions,

$$\partial_t S(\rho) + \nabla \cdot \beta(\rho) \le 0.$$

— an ensemble of equations for all "entropy-flux pairs" (S, β)

B. Fehrman (LSU)

II. Scalar conservation laws

Inviscid and Viscous Burger's equations: in one-dimension,

$$\partial_t \rho + \rho \partial_x \rho = 0$$
 and $\partial_t \rho_\eta + \rho_\eta \partial_x \rho_\eta = \eta \Delta \rho_\eta$,

and we have, for the inverse characteristics Y_t^x ,

$$Y_t^x = x - \rho_0(x)t$$
 and $\rho(x,t) = \rho_0(x - \rho_0(x)t).$

The kinetic formulation: for the kinetic function $\chi = \mathbf{1}_{\{0 < \xi < \rho(x,t)\}} - \mathbf{1}_{\{\rho(x,t) < \xi < 0\}}$,

$$\partial_t \chi_\eta + \xi \nabla_x \chi_\eta = \eta \Delta \chi_\eta + \partial_\xi q_\eta,$$

and for a *nonnegative* "defect measure" $q = \lim_{\eta \to 0} \eta |\nabla \rho_{\eta}|^2$ and $q_{\eta} = \eta |\nabla \rho_{\eta}|^2$.

Shock vs. Rarefaction Wave:

II. Scalar conservation laws

DiPerna–Lions theory [DiPerna, Lions; 1989], [Ambrosio; 2004]

Let $b \in (L_t^1 B V_x)^d$ and $(\nabla \cdot b) \in (L_t^1 L_x^\infty)^d$. Then, for every $\rho_0 \in L^\infty(\mathbb{T}^d)$,

 $\partial_t \rho = \nabla \cdot (\rho b),$

has a unique weak solution in $(L^1 \cap L^\infty)(\mathbb{T}^d \times [0,T])$.

Relaxed assumptions: a one-sided bounded on $\nabla \cdot b$ is sufficient [Ambrosio; 2004]

Optimality: counterexamples for b failing to be BV on hyperplane [Depauw; 2003]

Commutator estimates: for a weak solution ρ , for $\rho_{\varepsilon} = (\rho * \kappa_{\varepsilon})$,

$$\partial_t \int_{\mathbb{T}^d} S(\rho_\varepsilon) \phi(x) = \int_{\mathbb{T}^d} \phi(x) S'(\rho_\varepsilon) \nabla \cdot (\rho b)_\varepsilon \simeq \int_{\mathbb{T}^d} \phi(x) S'(\rho_\varepsilon) \nabla \cdot (\rho_\varepsilon b).$$

The skeleton equation: for $g \in (L^2_{t,x})^d$, for any $m \in (0,\infty)$,

$$\partial_t \rho = \Delta \rho^m - \nabla \cdot \left(\rho^{\frac{m}{2}} g \right)$$

III. Weak solutions of the skeleton equation

Equivalence of weak and kinetic solutions: for initial data with finite entropy, is a weak solution

$$\int_{\mathbb{T}^d} \rho(x,s)\psi(x)\Big|_{s=0}^{s=t} = -2\int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} \cdot \nabla \psi + \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot \nabla \psi,$$

a kinetic solution

$$\begin{split} \int_{\mathbb{T}^d} \chi \psi \Big|_{s=0}^{s=t} &= -\int_0^t \int_{\mathbb{T}^d} \alpha \rho^{\alpha-1} \nabla \rho \cdot (\nabla \psi)(x,\rho) - \int_0^t \int_{\mathbb{T}^d} \int_{\mathbb{R}} (\partial_{\xi} \psi)(x,\xi) q \\ &+ \int_0^t \int_{\mathbb{T}^d} (\partial_{\xi} \psi)(x,\rho) \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho + \int_0^T \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x,\rho)? \end{split}$$

Deriving the kinetic form: for $\partial_{\xi}\Psi(x,\xi) = \psi(x,\xi)$, for $\rho_{\varepsilon} = (\rho * \kappa^{\varepsilon})$,

$$\begin{aligned} \partial_t \int \Psi(x,\rho_{\varepsilon}) &= \int \psi(x,\rho_{\varepsilon})\partial_t \rho_{\varepsilon} \\ &= -2 \int (\nabla\psi)(x,\rho_{\varepsilon}) \cdot (\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}})_{\varepsilon} - \int (\nabla\psi)(x,\rho_{\varepsilon}) \cdot (\rho^{\frac{\alpha}{2}}g)_{\varepsilon} \\ &- 2 \int_{\mathbb{T}^d} (\partial_{\xi}\psi)(x,\rho_{\varepsilon}) \nabla \rho_{\varepsilon} \cdot (\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}})_{\varepsilon} - \int (\partial_{\xi}\psi)(x,\rho_{\varepsilon}) \nabla \rho_{\varepsilon} \cdot (\rho^{\frac{\alpha}{2}}g)_{\varepsilon}. \end{aligned}$$

II. Weak solutions of the skeleton equation

The equation satisfied by the convolution: for $\rho = (\rho * \kappa^{\varepsilon})$,

$$\partial_t \rho_{\varepsilon} = -(2\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} * \nabla \kappa^{\varepsilon}) + (\rho^{\frac{\alpha}{2}} g * \nabla \kappa^{\varepsilon}).$$

Deriving the kinetic form: if ρ is a weak solution, for $\partial_{\xi}\Psi(x,\xi) = \psi(x,\xi)$,

$$\partial_t \int_{\mathbb{T}^d} \Psi(x,\rho_\varepsilon) = -2 \int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon) (\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} * \nabla \kappa^\varepsilon) + \int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon) (\rho^{\frac{\alpha}{2}} g * \nabla \kappa^\varepsilon).$$

A useful decomposition: let $\mathrm{Supp}(\psi)\subseteq \mathbb{T}^d\times [0,M]$ and let

$$A_k = \{(x,t) \colon \rho^{\frac{\alpha}{2}}(x,t) \ge M^{\frac{\alpha}{2}} + k\} \text{ and let } A_0 = (\mathbb{T}^d \times [0,T]) \setminus A_1.$$

We then write, for $\mathbf{1}_k = \mathbf{1}_{A_{k+1} \setminus A_k}$,

$$\begin{split} &\int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}) \\ &= \int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\mathbf{1}_{A_0}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}) + \sum_{k=1}^{\infty} \int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\mathbf{1}_k\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}) \\ &\lesssim \int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\mathbf{1}_{A_0}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}) \\ &+ \varepsilon^{-1} \|g\|_{L^2_{t,x}} \Big(\sum_{k=1}^{\infty} (M^{\frac{\alpha}{2}} + k + 1)^2 \int_{\mathbb{T}^d} |\psi(x,\rho_{\varepsilon})| \big(\mathbf{1}_{A_k} * |\varepsilon \nabla \kappa^{\varepsilon}|\big)\Big)^{\frac{1}{2}}. \end{split}$$

B. Fehrman (LSU)

Equivalence of weak and renormalized kinetic solutions [F., Gess; 2023]

Under assumptions including $\Phi(\xi) = \xi^m$ for every $m \in [1, \infty)$, a nonnegative function $\rho \in \mathcal{C}([0, T]; L^1(\mathbb{T}^d))$ that satisfies

$$\Phi^{\frac{1}{2}}(\rho) \in L^{2}([0,T]; H^{1}(\mathbb{T}^{d}))$$

is a renormalized kinetic solution of the skeleton equation

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g)$$
 in $\mathbb{T}^d \times (0,T)$ with $\rho(\cdot,0) = \rho_0$,

for a nonnegative ρ_0 with finite entropy if and only if ρ is a weak solution. In particular, weak solutions exist and are unique.

- equivalence of renormalized and weak solutions [DiPerna, Lions; 1989], [Ambrosio; 2004].
- strong continuity with respect to weak convergence of the control
- for example, $\Phi^{\frac{1}{2}}$ convex or concave or Φ satisfies that $0 < \lambda \leq \Phi' \leq \Lambda$.

Weak-strong continuity [F., Gess; 2023]

If ρ_n are solutions of the skeleton equation with controls $g_n \to g$ and initial data $\rho_{0,n} \to \rho_0$ with uniformly bounded entropy, then $\rho_n \to \rho$ for ρ the solution of the skeleton equation with control g and initial data ρ_0 .

The entropy estimate: if $\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot (\rho_n^{\frac{\alpha}{2}} g_n)$ then

$$\max_{e \in [0,T]} \int_{\mathbb{T}^d} \rho_n \log(\rho_n) + \int_0^T \int_{\mathbb{T}^d} |\nabla \rho_n^{\frac{\alpha}{2}}|^2 \lesssim \int_{\mathbb{T}^d} \rho_{0,n} \log(\rho_{0,n}) + \int_0^T \int_{\mathbb{T}^d} |g_n|^2.$$

Compactness since the g_n are uniformly $(L_{t,x}^2)^d$ -bounded,

 ρ_n is strongly compact in $L_{t,x}^1$ and $\rho_n^{\frac{\alpha}{2}}$ is weakly compact in $L_t^2 H_x^1$.

Uniqueness of the limit: We have for some ρ that, along a subsequence,

$$\rho_n \to \rho \text{ in } L^1_{t,x} \text{ and } \rho_n^{\frac{\alpha}{2}} \rightharpoonup \rho^{\frac{\alpha}{2}} \text{ in } L^2_t H^1_x,$$

from which we conclude that

$$\partial_t \rho = 2\nabla \cdot \left(\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}}\right) - \nabla \cdot \left(\rho^{\frac{\alpha}{2}} g\right),$$

and that $\rho_n \to \rho$ along the full sequence $n \to \infty$.

B. Fehrman (LSU)

III. L.s.c. envelope of the rate function

The zero range process: μ^N on $\mathbb{T}^1 \times [0,T]$ for N = 15 and $T(k) \sim ke^{-kt}$,

The heat equation: the hydrodynamic limit $\underline{\partial_t \overline{p}} = \Delta \overline{\rho}$,

The skeleton equation: the controlled equation $\partial_t \rho = \Delta \rho - \nabla \cdot (\sqrt{\rho} \cdot g)$,

The rate function: we have $\mathbb{P}(\mu^N \simeq \rho) \simeq \exp(-NI(\rho))$ for

$$I(\rho) = \frac{1}{2} \inf\{\|g\|_{L^2_{t,x}}^2 : \partial_t \rho = \Delta \rho - \nabla \cdot (\sqrt{\rho}g)\}.$$

B. Fehrman (LSU)

III. L.s.c. envelope of the rate function

The rate function: we have that

$$I(\rho) = \frac{1}{2} \inf \left\{ \left\| g \right\|_{L^2(\mathbb{T}^d \times [0,T];\mathbb{R}^d)}^2 \colon \partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot \left(\rho^{\frac{\alpha}{2}} \cdot g \right) \right\}.$$

Large Deviations Principle [Benois, Kipnis, Landim; 1995]

For every closed $A \subseteq D([0,T]; \mathcal{M}_+(\mathbb{T}^d)),$

$$\limsup_{N \to \infty} \frac{1}{N} \log \left(\mathbb{P}(\mu^N \in A) \right) \le - \inf_{m \in A} I(m).$$

For the space of smooth fluctuations

$$\mathcal{S} = \{\partial_t m = \Delta m^{\alpha} - \nabla \cdot (m^{\alpha} \nabla H) \colon H \in \mathbf{C}^{3,1}(\mathbb{T}^d \times [0,T])\},\$$

for every open subset $A \subseteq D([0,T]; \mathcal{M}_+(\mathbb{T}^d)),$

$$\limsup_{N \to \infty} \frac{1}{N} \log \left(\mathbb{P}(\mu^N \in A) \right) \ge -\inf_{\rho \in A} \overline{I(\rho)|_{\mathcal{S}}}^{\mathrm{lsc}}.$$

IV. L.s.c. envelope of the rate function

The rate function: we have

$$I(\rho) = \frac{1}{2} \inf \left\{ \|g\|_{L^2}^2 : \partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) \right\}.$$

The Hilbert space: $H^1_{\rho^{\alpha}}$ is the strong closure w.r.t. the inner product

$$\langle \nabla \psi, \nabla \phi \rangle = \int_0^T \int_{\mathbb{T}^d} \rho^{\alpha} \nabla \psi \cdot \nabla \phi \text{ for } \phi, \psi \in \mathbf{C}^{\infty}$$

Unique minimizer: the equation defines

$$\partial_t \rho - \Delta \rho^{\alpha} = -\nabla \cdot (\rho^{\frac{\alpha}{2}}g) \in H^{-1}_{\rho^{\alpha}},$$

and if $I(\rho) < \infty$ then the minimizer $g = \rho^{\frac{\alpha}{2}} \nabla H$ for $H \in H^1_{\rho^{\alpha}}$ and

$$I(\rho) = \frac{1}{2} \int_0^T \int_{\mathbb{T}^d} \rho^{\alpha} |\nabla H|^2 = \frac{1}{2} ||H||^2_{H^{1}_{\rho^{\alpha}}} = \frac{1}{2} ||\partial_t \rho - \Delta \Phi(\rho)||^2_{H^{-1}_{\rho^{\alpha}}}.$$

The "ill-posed" equation: we have the formally "supercritical" equation

$$\partial_t \rho = \Delta \rho^\alpha - \nabla \cdot \left(\rho^\alpha \nabla H \right)$$

IV. L.s.c envelope of the rate function

The space of smooth fluctuations: we have that

$$\mathcal{S} = \{\partial_t m = \Delta m^{\alpha} - \nabla \cdot (m^{\alpha} \nabla H) \colon H \in \mathbf{C}^{3,1}(\mathbb{T}^d \times [0,T])\}.$$

The recovery sequence: given an arbitrary fluctuation

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g),$$

to show that $\overline{I|_{\mathcal{S}}}^{lsc}(\rho) = I(\rho)$ we need to find a sequence $\rho_n \in \mathcal{S}$ such that

$$\rho_n \to \rho \in L^1_{t,x}$$
 and $I(\rho_n) \to I(\rho)$.

A first attempt: there exists $H \in H^1_{\rho^{\alpha}}$ such that

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\alpha} \nabla H) \text{ and } I(\rho) = \frac{1}{2} \int_0^T \int_{\mathbb{T}^d} \rho^{\alpha} |\nabla H|^2.$$

Let ρ_{ε} solve

$$\partial_t \rho_{\varepsilon} = \Delta \rho_{\varepsilon}^{\alpha} - \nabla \cdot (\rho_{\varepsilon}^{\alpha} (\nabla H * \kappa_{\varepsilon})).$$

- supercritical with no stable estimates with respect to ∇H
- the Hilbert space framework is too rigid

IV. L.s.c envelope of the rate function

A second attempt: for some $g \in L^2_{t,x}$ and ρ_0 with finite entropy,

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) \text{ with } \rho(\cdot, 0) = \rho_0.$$

Regularizing the data: we consider

$$\rho_{0,n} = \left(\left(\rho_0 \wedge n \right) \vee \frac{1}{n} \right) * \kappa_x^{\frac{1}{n}} \text{ and } g_n = g * \kappa_{t,x}^{\frac{1}{n}},$$

and solve

$$\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot (\rho_n^{\frac{\alpha}{2}} g_n) \text{ with } \rho_n(\cdot, 0) = \rho_{0,n}.$$

There exists $H_n \in H^1_{\rho_n^{\alpha}}$ such that

$$\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot (\rho_n^{\alpha} \nabla H_n) \text{ with } \rho_n(\cdot, 0) = \rho_{0,n}.$$

Deducing the regularity of H_n : we have the elliptic equation

$$-\nabla \cdot (\rho_n^{\alpha} \nabla H_n) = \partial_t \rho_n - \Delta \rho_n^{\alpha}.$$

- is not necessarily uniformly elliptic
- how regular is ρ_n ?

IV. L.s.c envelope of the rate function

The final attempt: for some $g \in L^2_{t,x}$ and ρ_0 with finite entropy,

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) \text{ with } \rho(\cdot, 0) = \rho_0.$$

Regularizing the data: we consider

$$\rho_{0,n} = \left(\left(\rho_0 \wedge n \right) \lor \frac{1}{n} \right) \ast \kappa_x^{\frac{1}{n}} \text{ and } g_n = g \ast \kappa_{t,x}^{\frac{1}{n}},$$

"Turning off" the control: for $\sigma_n(\xi) = 0$ if $\xi \leq \frac{1}{n}$ or $\xi \geq n$, solve

$$\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot \left(\rho_n^{\frac{\alpha}{2}} \sigma_n(\rho_n) g_n\right)$$
$$= \Delta \rho_n^{\alpha} - \nabla \cdot \left(\rho_n^{\frac{\alpha}{2}} \tilde{g}_n\right),$$

for the control $\tilde{g}_n = \sigma_n(\rho_n)g_n$.

Regularity of ρ_n : we have that $\frac{1}{n} \leq \rho_n \leq n$ and $\rho_n \in C^{\infty}(\mathbb{T}^d \times [0,T])$.

Deducing the regularity of H_n : There exists $H_n \in H^1_{\rho_n^{\alpha}}$ such that

$$\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot (\rho_n^{\alpha} \nabla H_n) \text{ and } - \nabla \cdot (\rho_n^{\alpha} \nabla H_n) = \partial_t \rho_n - \Delta \rho_n^{\alpha}.$$

IV. L.s.c. envelope of the rate function

The fluctuation: for some $g \in L^2_{t,x}$ and ρ_0 with finite entropy,

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) \text{ with } \rho(\cdot, 0) = \rho_0.$$

The recovery sequence: for $\sigma_n(\xi) = 0$ if $\xi \leq \frac{1}{n}$ or $\xi \geq n$, solve

$$\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot \left(\rho_n^{\frac{\alpha}{2}} \sigma_n(\rho_n) g_n \right) = \Delta \rho_n^{\alpha} - \nabla \cdot \left(\rho_n^{\frac{\alpha}{2}} \tilde{g}_n \right),$$

for the control $\tilde{g}_n = \sigma_n(\rho_n)g_n$ and with $\rho_n(\cdot, 0) = \rho_{0,n}$.

Compactness: the ρ_n satisfy uniformly the entropy estimate and

$$\rho_n \to \rho \text{ and } \sigma(\rho_n) g_n \mathbf{1}_{\{\rho > 0\}} \to g \mathbf{1}_{\{\rho > 0\}} \text{ and } I(\rho_n) \le \|\sigma(\rho_n) g_n\|_2^2 \to \|g\|_2^2.$$

Large deviations of the zero range process [F., Gess; 2023]

For the space of smooth fluctuations

$$\mathcal{S} = \{\partial_t m = \Delta m^{\alpha} - \nabla \cdot (m^{\alpha} \nabla H) \colon H \in \mathbf{C}^{3,1}(\mathbb{T}^d \times [0,T])\},\$$

we have that

$$\overline{I(\rho)}\Big|_{\mathcal{S}}^{\mathrm{lsc}} = I(\rho) = \frac{1}{2} \inf\{\|g\|_{2}^{2} \colon \partial_{t}\rho = \Delta\rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g)\}.$$

B. Fehrman (LSU)

VII. References

L.

L. Ambrosio

Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158(2): 227-260, 2004.

O. Benois and C. Kipnis and C. Landim

Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stochastic Process. Appl., 55(1): 65-89, 1995.

N Depauw

Non unicité des solutions bornées pour un champ de vecteurs BV en dehors dún hyperplan. C. R. Math. Acad. Sci. Paris, 337(4): 249-252, 2003.

R.J. DiPerna and P.-L. Lions

Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3): 511-547, 1989.

B. Fehrman and B. Gess

Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Invent. Math., 234:573-636, 2023.