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I. Fluctuating hydrodynamics

thermal fluctuations create a rough diffusive interface in miscible fluids [Donev; 2018]

e A general conservative stochastic PDE
Bip = A®(p) — V- (0(p)d€) = V - (¥'(p)Vp — o (p) dE),

for a d-dimensional space-time noise &.

— fluctuating hydrodynamics, [Spohn; 1991]
— macroscopic fluctuation theory, [Bertini et al.; 2014]
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I. Fluctuating hydrodynamics

Brownian motion: continuous paths with independent, Gaussian increments

It6 integration: we have that, strongly in L(f),

[ £(B)dB. = lim SF(Bi)(Br,, - B

Alternate integration theories: for € (0,1),
[ #(B) o0 dB. = lim ST(6F(Buiyy) + (1= O)f(Be)) (e, — Be)
~ l%ilglozaf/(Bti)(Btm — Bu)* + |,F1’i‘rgozf(Bti))(Bti+l — By;)
t t
=0 [ f(Bds+ [ f(B.)dB,

where 8 = 0 is Ito, 6§ = 1/2 is Stratonovich, and 6 = 1 is Klimontovich.
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I. Fluctuating hydrodynamics

It6’s formula: for a Brownian motion By,
1

f(Bti+1) - f(Bti) =~ f/(Bt'i)(Bt'H»l - Bti) + Efll(Bti)(Bti+l - Bti)Q'

After passing to the limit P — 0, for o = o1,
t
By) ) dBs "(Bs)ds = [ f'(Bs)o dBs,

F(B) ~ f(Bo) = [ F(ByaB.+ 5 [ 1" (Byds = [ (B o

or, in differential form,

df(B.) = f'(B,)dB, + %f”(BS) ds = f'(B.) o dB..

— Stratonovich integration satisfies the chain rule
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I. Fluctuating hydrodynamics
The empirical density: let m,, denote the measure
1
) D k=1 53,’?-
The derivation: for every f € C*(T%),
11 P RSy &
B == ~Af(B — By
([, 1) Zf D) = 5 oA B + 03 [, Vi w)o dB

The covariance: for points (z,t) and (y, s),
1 iy ook 1o N i 1 !
E[~ k} 1: do(w — BF)dBE - Y 1: boly — BY)dBL| = —b0(x = BY)do(x — y)do(s — 1)
= i=

1
= (z,t)00(z — y)do(s — t).
The Dean—Kawasaki equation: for d¢ an R%-valued space-time white noise,
1 1 <
8t( . f(f)mn) =3 Ja Afmn + ﬁ;/ﬂ‘d Vf(z)-/my,dE.
Or, in the sense of distributions,

%V(\/Wndﬁ)-

1
Oymy, = iAm" -
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I. Fluctuating hydrodynamics

A zero range process: on T%
(Lnf)(n
TE'JTd ze'ﬂ’d

The transition kernel: py(z) =
with zero mean ) .54 2p(2) = 0.

Parabolic rescalings: for N = 4,8, 15,

= (Zd/NZd) with generator

=2 2w

@) (fF(™*=) = f(n)),

= ZyEZd’ p(z + yn) for a compactly supported p

N ° N
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I. Fluctuating hydrodynamics

Hydrodynamic limit: for a parabolically rescaled, centered particle process, as the
particle number N — oo [Ferrari et al.; 1988],

py — pdx for 8:p = A®(p).

Sensitivity to fluctuations: if the jumps are biased in direction v € R?, the
hyperbolically rescaled densities v} satisfy, as N — oo,

v —wdz for 8,5 =V -(m(v)y),
for the mobility m(v) [Rezakhonlou; 1991].
The SPDE: the following formal SPDE, for a finite particle number N,
m
Oup = A®(p) — V-« for Ela(z, t)a(y,s)] = NL/;)(So(Z' —y)oo(t — s).
Formally, for a space time white noise d¢,
Op = AD(p) NTEV. (v/m(p) dE).
Examples: for the zero range and symmetric simple exclusion processes
d 1 d
Op=AP(p) = N"2V-(22(p)df) and dp=Ap—N"2V-(y/p(1—p)dE).
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I. Fluctuating hydrodynamics

The zero range process: for the zero range process with finite particle number N,
dp = Ad(p) — N™EV - (82 (p) de).

The Dean—Kawasaki equation: in the case of independent particles,

Bp=Ap— N"2V - (/pde).

— supercritical in the language of singular SPDE
— formally derived by [Dean; 1996] and [Kawasaki; 1998] as the SPDE satisfied by

mn(z,t) NdZ(SoBt

— ill-posedness vs. triviality [Konarovskyi, Lehmann, von Renesse; 2018]

e White noise is too singular (particles systems, course graining):
O—E& 50t 30—t—0 t ,0t 50

. : .‘ 5 ‘ ) s : ‘ : S
e Spatially correlated noise: £° = & x k° for convolution kernels {x°}s¢(0,1)-
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I. Fluctuating hydrodynamics

The Dean—-Kawasaki equation: with a spatially correlated noise £, for e the
inverse particle number,

Bup=Ap—e?V - (Jpde)
= Ap—e2(Vyp)- A€’ — <% /p(V - deP)

—AP—TVP de¢? —EQW(V dg’).

Parabolicity and stochastic transport: for a Brownian motion B; and a,b € R,
Ov = alAv + bVv - dB;.

If ¥ solves
2

oo = (a— %)Af} then wv(w,t) = 0(z + bB4,t).

Parabolic and well-posed if and only if % < a.
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I. Fluctuating hydrodynamics

The noise: if £ takes the form

&€ =3 fu(x)B; then (€)1="
k=1 k=1

Probabilistic stationarity: we assume that

s

(€°)1 is spatially constant with (V- &%), = Z IV fi]* < .
k=1

The Dean—Kawasaki equation: analyzing the parabolicity yields that

oip = p77Vp de® — % /p(V - d¢)

= a(p— 0 1og()) — <t (v - ae’)"
The corrected equation: for 6 € [0, 00), we consider the corrected equation

S
atp:Ap—V.(\/‘EdEts)_’_‘%i)l

Alog(p).

Itd integration is @ = 0, Stratonovich is § = 1/2, and Kilmontovich is 6 = 1.
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I. Fluctuating hydrodynamics
The Dean—Kawasaki equation with correlated Stratonovich noise:
dip=Ap—V - (ypde®) + £ > Alog(p).
The entropy formulation: for a convex S and a nonnegative P,
L. / [ (9 (o) 50V = [ [ 5" ()l
f//Td (Ve 2//V£p8”<>¢

The kinetic formulation: for n € R and a nonnegative measure g,

X((L’,t,ﬁ) = 1{0<T]<p(z,t)} - 1{p(z,t)<’r]<0} and 6P‘vp|2 S q,
for 6, = do(n — p), we have the distributional equalities
Vx =d(n—p)Vp and dyx =do -9, and D{XS/(U) =5(p),

and we have

Lo == [ fofu+ Emresiso- [ L fadsva

_/Ad/S 1,5V(fd§ Q/A‘d/vg )116,0, (S'1).
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I. Fluctuating hydrodynamics

Renormalized kinetic solutions [F., Gess; 2024]

Let po € L*(Q; L*(T?)) be nonnegative and Fo-measurable. A renormalized kinetic
solution is a nonnegative, P-a.s. continuous Ll(']I‘d)—valued, and JF;-predictable
function p € L>(Q; L* (T x [0, T]) that satisfies:

— Preservation of mass: P-a.s. for every time , ||p(z,?)|| 1 (1ay = llPoll 1 (ray-
— Local regularity: P-a.s. for every K € [1, 00),
((pAK)Vv K™Y € L*([0,T); H'(TY).

Furthermore, there exists a nonnegative parabolic defect measure g that satisfies:
— Regularity: P-a.s. in the sense of measures, 6,|Vp|* < q.

— Vanishing at infinity: P-a.s. liminfar—eo ¢(T¢ x [0, T] x [M, M +1]) =

— The equation: P-a.s. for every ¢ € C° (Td % (0, 00)),

fu kol == [ L o+

—//Td/zMV \fdé Q/A,d/anTﬁVflm;

n¢ dq
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I. Fluctuating hyrdodynamics

A useful equality: for two solutions p; and po,
_ _ 2 _ _
Laler=eol= [ [ o =xal = [, [ bal+ bel - 2ax
= /Td /ngn(n)m + sgn(n)x2 — 2x1x2-

The stochastic integral: since

5
Bipi = Dpi =V - (i d€’) + %Alog(pi),

formally differentiating the above,
=t [P = VER)olor = p2) V(o — p2) - dE°
ot [T = VR o~ p2)V (1~ p2) - S

« i — 5
St A7 R Yoo <my V(o1 — p2) - dE”
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I. Fluctuating hydrodynamics

Renormalized kinetic solutions [F. Gess; 2024]

Let po € L*(Q; L*(T?)) be nonnegative and Fo-measurable. Then, there exists a
unique renormalized kinetic solution of the equation

Bip=Ap—V-(/pde’) + %Alog(p),

with initial data pg. Furthermore, two solutions p; and p2 satisfy P-a.s. that

maxgcio, 7] ||p1 — pt”Ll(Td) < |lp1,0 — p2,0 |L1('ﬂ‘d) 5

Extensions: general equations of the type
0up = A2(p) = V- (0(p) 0 & +v(p)) + Ap) + (p)E’,
including ®(p) = p™ for every m € (0,00), o(p) = p 2, and ¢(p) = VP

Flux through zero: if p is a nonnegative solution of the heat equation,

lim /'t BVl —0
550 Jo Jra Pl L{8/2<p<p}y = U.
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I. Fluctuating hydrodynamics

Random dynamical system [F., Gess, Gvalani; 2024]

Let p(¢, po,w) denote the solution

p 5
Op = Ap—55V~(\fpd£‘5(w)) <§ )1 Alog(p) in T% x (¢, 0),

with p(t, po,w)(x,t) = po. The solutions p(t, po,w) generate a random dynamical
system on with respect to the usual Borel o-algebra on the space of nonnegative,
integrable functions on T¢.

— the pathwise contraction of solutions controls zero sets
— new estimates for the initial time continuity of the flow

Invariant measures [F., Gess, Gvalani; 2024]

The Markov process p(t, -, -) is uniquely ergodic: it has a unique invariant probability
measure and is strongly mixing.

— the entropy dissipation estimate:

]E[ max [ plog(p ] +]E[/O'T/W |V\/ﬁ\2} SEMd polog(po)] +e((EN+T(V ).

te[0,T] JT
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I. Fluctuating hyrdrodynamics

Quantitative LLN and Central Limit Theorem [Clini, F.; 2025]

The scaling limit: let d(¢) be any sequence satisfying, as ¢ — 0,
£6(e)" D 50 and 6(e) — 0,
and for every € € (0, 1) let p° be the solution
0up” = AB(p7) =2V - (2% (p7) 0 6°).
Law of Large Numbers: then almost surely with a quantitative rate, as € — 0,
p° — p for Oip = AP(p).

Central Limit Theorem: then as distributions, as € — 0,

€

(MY

(0" —p) = v for dw=A(P (p)v) — V- (@ (p)E).

The central limit theorem is a statement about “universal” behavior:

0" = AB(F°) — 2V - (23 ()¢’ ).
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II. Macroscopic fluctuation theory
The zero range process: u¥ on T x [0,7] for N = 15 and T(k) ~ ke™**,

N T N,

The heat equation: the hydrodynamic limit 0:p = Ap,

°
H
.
o Coese olnee (g [ 3oed
ool foveoees. e0L Ty ¢ 00 @ 0000000 o
oo

The skeleton equation: the controlled equation d¢p = Ap —V - ({/p - g),

The rate function: we have P(u" ~ p) ~ exp(—N%I(p)) for

1.
I(p) = 5 inf{llgll72 : dp=Ap =V (Vpg)}-
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II. Macroscopic fluctuation theory

The hydrodynamic limit: for the parabolically rescaled, mean zero particle
process ui’ on T%, as N — oo, for J(p) = Vo (p),
p — pdz for 8:p = Ao(p) =V - J(p).

Macroscopic fluctuation theory: the probability of observing a space-time
fluctuation (p, j) satisfying

8tp =V. .j7
satisfies the large deviations bound [Bertini et al.; 2014]
Plu™ =~ p] = exp (— NI(p)) for I(p / [.G- m(p)~ (i — J(p))-

The skeleton equation: if (j — J(p)) = 1/m(p)g then I(p / /]l‘d lg|? and
Oup=V-(J(p)+ (j = I(p) = Ac(p) = V- (vVm(p)g).
The zero range process: we have that, for ®(p) = p™ for any m € [1, 00),
1
op = A2(p) — V- (22(p)g).
The exclusion process: we have that

Op=2p—=V-(y/p(1-p)g).
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II. Macroscopic fluctuation theory

The large deviations rate function: for every m € L'(T% x [0,T]),

1.
I(m) = 3 inf { ||g||2LQ(TdX[0’TDd :Om = Am —V - (Vmg) }.

Large Deviations Principle [Benois, Kipnis, Landim; 1995], [F., Gess; 2023]

For every measurable A C L*([0, T]; L*(T%)),

P[”N c A] ~ e—Nd(infﬂ.eA I(7r))'

SN T

oo gl co Se "ess Pt
eol) fesssssd o0/ 3 S300de Seactioes seees
SSei

)
“—

4
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II. Macroscopic fluctuation theory

The Large Deviations Principle [F., Gess; 2024]

The scaling limit: let §(¢) be any sequence satisfying, as e6(e) 7% — 0 and
0(e) -+ 0 as e — 0, and for every € € (0,1) let p. be the solution

Otpe = Ape — E%V (\ngg(s)) <€ h —=>"=Alog(pe).

The large deviations principle: the solutions p. satisfy a large deviations
principle in L} , and C([0,7]; M) with rate function

1p) = 3 inf { lgl22 : Gup = Ap — V- (79)}.

The linear fluctuating hydrodynamics: the linear fluctuating hydrodynamics
Orpe = Ape — VeV - (1/pde™®),

for the hydrodynamics limit 9;p = A®(p) satisfy an LDP with rate function

Tp) = ginf { Igll2: : p = Ap— V- (V/70)}-
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