Non-equilibrium fluctuations, the skeleton equation, and SPDEs with conservative noise

Benjamin Fehrman

University of Oxford

28 February 2023

- Statistical physics
 - zero range process
 - Ising and Potts models
- Belief/infection propagation
 - voter model
 - contact process
- Traffic models
 - exclusion processes
- Neural networks as interacting particle systems

The voter model [Swart; 2020]

University of Konstanz

The zero range process:

- let $g: \mathbb{N}_0 \to \mathbb{N}_0$ be nondecreasing — q(0) = 0 and q(k) > 0 if $k \neq 0$
- independent random clocks T(k) with distribution

 $T(k) \sim g(k) \exp(-g(k)t)$ on $[0, \infty)$.

A zero range process: on $\mathbb{T}_N^d = (\mathbb{Z}^d / N \mathbb{Z}^d)$ with generator

$$(\mathcal{L}_N f)(\eta) = \sum_{x \in \mathbb{T}_N^d} \sum_{z \in \mathbb{T}_N^d} p_N(z) g(\eta(x)) \big(f(\eta^{x, x+z}) - f(\eta) \big),$$

The transition kernel: $p_N(z) = \sum_{y \in \mathbb{Z}^d} p(z+y_N)$ for a compactly supported p with zero mean $\sum_{z \in \mathbb{T}^d} zp(z) = 0$.

Parabolic rescalings: for N = 4, 8, 15,

The zero range process η_t^N on $(\mathbb{Z}^d/N\mathbb{Z}^d)$ and the scaled empirical density

$$\mu_t^N = \frac{1}{N^d} \sum_{x \in (\mathbb{Z}^d/N\mathbb{Z}^d)} \delta_{\frac{x}{N}} \cdot \eta_{N^2 t}^N(x).$$

Hydrodynamic limit [Ferrari, Presutti, Vares; 1988]

For every continuous $f: \mathbb{T}^d \times [0,T] \to \mathbb{R}$ and $\delta \in (0,1)$,

$$\lim_{N \to \infty} \mathbb{P}\left[|\langle f, \mu^N \rangle - \langle f, \overline{\rho} \rangle| > \delta \right] = 0,$$

where $\overline{\rho} \colon \mathbb{T}^d \times [0,T] \to \mathbb{R}$ is the unique solution of the equation

$$\partial_t \overline{\rho} = \frac{1}{2} \Delta \Phi(\overline{\rho})$$

for the mean local jump rate Φ [Kipnis, Landim; 1999].

•
$$\langle f, \mu^N \rangle = \int f \mu^N$$
 and $\langle f, \overline{\rho} \rangle = \int f \overline{\rho}$

• if
$$T(k) \sim e^{-t}$$
 then $\partial_t \overline{\rho} = \frac{1}{2} \Delta \left(\frac{\overline{\rho}}{1+\overline{\rho}} \right)$

• if
$$T(k) \sim k e^{-kt}$$
 then $\partial_t \overline{\rho} = \frac{1}{2} \Delta \overline{\rho}$

The symmetric simple exclusion process:

- independent exponentially distributed clocks T(1) with rate 1
 - $-T(1) \sim \exp(-t)$ on $[0,\infty)$
- the generator on \mathbb{T}_N^d ,

$$\mathcal{L}_N f(\eta) = \sum_{x \in \mathbb{T}_N^d} \sum_{z \in \mathbb{T}_N^d} p_N(z) \eta(x) (1 - \eta(x+z)) (f(\eta^{x,z}) - f(\eta)),$$

• the transition kernel $p_N(z) = \sum_{y \in \mathbb{Z}^d} p(z + Ny)$ for a compactly supported p satisfying $\sum_{z \in \mathbb{Z}^d} zp(z) = 0$.

The symmetric simple exclusion process η_t^N on $(\mathbb{Z}^d/N\mathbb{Z}^d)$ and the scaled density

$$\mu_t^N = \frac{1}{N^d} \sum_{x \in (\mathbb{Z}^d/N\mathbb{Z}^d)} \delta_{\frac{x}{N}} \cdot \eta_{N^2 t}^N(x).$$

Hydrodynamic limit [Kipnis, Olla, Varadhan; 1989]

For every continuous $f : \mathbb{T}^d \times [0,T] \to \mathbb{R}$ and $\delta \in (0,1)$,

$$\lim_{N \to \infty} \mathbb{P}\left[|\langle f, \mu^N \rangle - \langle f, \overline{\rho} \rangle| > \delta \right] = 0,$$

where $\overline{\rho} \colon \mathbb{T}^d \times [0,T] \to \mathbb{R}$ is the unique solution of the equation

$$\partial_t \overline{\rho} = \frac{1}{2} \Delta \overline{\rho}.$$

For initial data $0 \le \rho_0 \le 1$, the hydrodynamic limit of the symmetric simple exclusion process and zero range process with jump rates g(k) = k are the same.

Mean-field limit of independent brownian motions: for B_t^i on \mathbb{T}^d ,

$$m_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{B_t^i} \rightharpoonup \overline{\rho} \, \mathrm{d}x \ \text{ for } \ \partial_t \overline{\rho} = \frac{1}{2} \Delta \overline{\rho}.$$

Under the parabolic rescaling $\varepsilon B^i_{\varepsilon^{-2}t} \sim B^i_t$.

Forced brownian motions: let $dX_t^i = dB_t^i + b(X_t^i) dt$ and $X_t^{\varepsilon,i} = \varepsilon X_{\varepsilon^{-1}t}^i$,

$$m_t^{N,\varepsilon} = \frac{1}{N} \sum_{i=1}^N \delta_{X_i^{\varepsilon,t}} \rightharpoonup \overline{\rho}^\varepsilon \, \mathrm{d}x \ \text{ for } \ \partial_t \overline{\rho}^\varepsilon = \frac{\varepsilon}{2} \Delta \overline{\rho}^\varepsilon - \nabla \cdot (\overline{\rho}^\varepsilon b),$$

for the flux $j(\overline{\rho}^{\varepsilon}) = \frac{\varepsilon}{2} \nabla \overline{\rho}^{\varepsilon} - \overline{\rho}^{\varepsilon} b$. The drift diverges in the parabolic scaling.

The hyperbolic scaling limit: as $\varepsilon \to 0$, the law of the $X_t^{\varepsilon,i}$ satisfies

$$\overline{\rho}^{\varepsilon} \to \overline{\rho} \text{ for } \partial_t \overline{\rho} + \nabla \cdot (\overline{\rho} b) = 0,$$

for the flux $j(\overline{\rho}) = -\overline{\rho}b$.

A notion of mobility: the mobility of the system is $m(\overline{\rho}) = \overline{\rho}$.

The zero range process with nonzero mean: let η_t^N be the zero range process on \mathbb{T}_N^d with transition kernel p satisfying $\sum_{z \in \mathbb{Z}^d} zp(z) = \gamma$.

The hyperbolic rescaling: let μ_t^N be the hyperbolically rescaled

$$\mu_t^N = \frac{1}{N^d} \sum_{x \in (\mathbb{Z}^d/N\mathbb{Z}^d)} \delta_{\frac{x}{N}} \cdot \eta_{Nt}^N(x).$$

Hydrodynamic limit [Rezakhanlou; 1991]

For every continuous $f \colon \mathbb{T}^d \times [0,T] \to \mathbb{R}$ and $\delta \in (0,1)$,

$$\lim_{N \to \infty} \mathbb{P}\left[|\langle f, \mu^N \rangle - \langle f, \overline{\rho} \rangle| > \delta \right] = 0,$$

where $\overline{\rho} \colon \mathbb{T}^d \times [0,T] \to \mathbb{R}$ is the unique solution of the equation

 $\partial_t \overline{\rho} = \nabla \cdot (\Phi(\overline{\rho})\gamma),$

for the mean local jump rate Φ [Kipnis, Landim; 1999].

Mobility: the mobility of the zero range process is $m(\overline{\rho}) = \Phi(\overline{\rho})$

The exclusion process with nonzero mean: let η_t^N be the exclusion process on \mathbb{T}_N^d with transition kernel p satisfying $\sum_{z \in \mathbb{Z}^d} zp(z) = \gamma$.

The hyperbolic rescaling: let μ_t^N be the hyperbolically rescaled

$$\mu_t^N = \frac{1}{N^d} \sum_{x \in (\mathbb{Z}^d/N\mathbb{Z}^d)} \delta_{\frac{x}{N}} \cdot \eta_{Nt}^N(x).$$

Hydrodynamic limit [Rezakhanlou; 1991]

For every continuous $f \colon \mathbb{T}^d \times [0,T] \to \mathbb{R}$ and $\delta \in (0,1)$,

$$\lim_{N \to \infty} \mathbb{P}\left[|\langle f, \mu^N \rangle - \langle f, \overline{\rho} \rangle| > \delta \right] = 0,$$

where $\overline{\rho} \colon \mathbb{T}^d \times [0,T] \to \mathbb{R}$ is the unique solution of the equation

$$\partial_t \overline{\rho} = \nabla \cdot (\overline{\rho}(1 - \overline{\rho})\gamma)$$

Mobility: the mobility of the exclusion process is $m(\overline{\rho}) = \overline{\rho}(1-\overline{\rho})$

The hydrodynamic limit: the parabolically rescaled, mean zero particle process μ_t^N on \mathbb{T}_N^d , as $N \to \infty$,

$$\mu_t^N \rightharpoonup \overline{\rho} \, \mathrm{d}x \ \text{ for } \ \partial_t \overline{\rho} = \Delta \sigma(\overline{\rho}) = \nabla \cdot J(\overline{\rho}),$$
for $J(\overline{\rho}) = \nabla \sigma(\overline{\rho}).$

Macroscopic fluctuation theory: the probability of observing a space-time fluctuation (ρ, j) satisfying

$$\partial_t \rho = \nabla \cdot j$$

satisfies the large deviations bound [Bertini et al.; 2014]

$$\mathbb{P}[\mu^N \simeq \rho] \simeq \exp\left(-NI(\rho, j)\right) \text{ for } I(\rho, j) = \int_0^T \int_{\mathbb{T}^d} (j - J(\rho)) \cdot m(\rho)^{-1} (j - J(\rho)).$$

The skeleton equation: if $(j - J(\rho)) = \sqrt{m(\rho)}g$ then $I(\rho, j) = \int_0^T \int_{\mathbb{T}^d} |g|^2$ and

$$\partial_t \rho = \nabla \cdot (J(\rho) + (j - J(\rho))) = \Delta \sigma(\rho) - \nabla \cdot (\sqrt{m(\rho)g}).$$

The zero range process: $\sigma(\rho) = \Phi(\rho)$ and $m(\rho) = \Phi(\rho)$ and

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g).$$

The exclusion process: $\sigma(\rho) = \rho$ and $m(\rho) = \rho(1 - \rho)$ and

$$\partial_t \rho = \Delta \rho - \nabla \cdot (\sqrt{\rho(1-\rho)g}).$$

Space-time white noise: a Gaussian noise ξ on \mathbb{T}^d defined by

$$d\xi = \sum_{k \in \mathbb{Z}^d} \left(\sqrt{2} \sin(k \cdot x) \, \mathrm{d}B_t^k + \sqrt{2} \cos(k \cdot x) \, \mathrm{d}W_t^k \right),$$

for independent Brownian motions $(B^k, W^k)_{k \in \mathbb{Z}^d}$. Distributionally, we have that

$$\langle \xi(x,t)\xi(y,s)\rangle = \delta_0(x-y)\delta_0(t-s).$$

Schilder's theorem: for a Brownian motion B and $A \subseteq C([0,T])$,

$$\mathbb{P}[\sqrt{\varepsilon}B \in A] \simeq \exp\left(-\varepsilon^{-1} \inf_{x \in A} I(x)\right) \text{ for } I(x) = \frac{1}{2} \int_0^T |\dot{x}(s)|^2 \, \mathrm{d}s.$$

The contraction principle: for the solutions

$$\partial_t \rho^{\varepsilon} = \Delta \Phi(\rho^{\varepsilon}) - \sqrt{\varepsilon} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^{\varepsilon})\xi),$$

we have formally that, for $A \subseteq L_t^1 L_x^1$,

$$\mathbb{P}[\rho^{\varepsilon} \in A] \simeq \exp\left(-\varepsilon^{-1} \inf_{\rho \in A} I(\rho)\right),$$

for the rate function

$$I(\rho) = \frac{1}{2} \inf \left\{ \int_0^T \int_{\mathbb{T}^d} |g|^2 \colon \partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot \left(\Phi^{\frac{1}{2}}(\rho) g \right) \right\}.$$

B. Fehrman (University of Oxford)

The mean behavior: the hydrodynamic limit

$$\partial_t \overline{\rho} = \Delta \sigma(\overline{\rho}) = \nabla \cdot \nabla \sigma(\overline{\rho}),$$

for the flux $J(\overline{\rho}) = \nabla \sigma(\overline{\rho})$.

Fluctuating hydrodynamics: the isotropic non-equilibrium fluctuations ρ described by the continuity equation

$$\partial_t = \nabla \cdot j(\rho)$$
 with $j(\rho) = J(\rho) + \alpha$,

for the mobility m and a Gaussian noise α satisfying [Spohn; 1991]

$$\langle \alpha_i(x,t)\alpha_j(y,s)\rangle = m(\rho)\delta_{ij}\delta_0(x-y)\delta_0(y-s).$$

The formal SPDE: the noise $\alpha = \sqrt{m(\rho)}\xi$ for ξ a space-time white noise,

$$\partial_t \rho = \Delta \sigma(\rho) - \nabla \cdot (\sqrt{m(\rho)}\xi).$$

The zero range process: $\sigma(\rho)=\Phi(\rho)$ and $m(\rho)=\Phi(\rho)$ and

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)\xi).$$

The exclusion process: $\sigma(\rho) = \rho$ and $m(\rho) = \rho(1 - \rho)$ and

$$\partial_t \rho = \Delta \rho - \nabla \cdot (\sqrt{\rho(1-\rho)}\xi).$$

B. Fehrman (University of Oxford)

- a miscible mixture developing a rough diffusive interface due to the effect of thermal fluctuations [Donev; 2018]
- Fluctuating hydrodynamics, for example, [Spohn; 1991]
 - in the zero range case, the formal SPDE

$$\partial_t \rho^{\varepsilon} = \Delta \Phi(\rho^{\varepsilon}) - \sqrt{\varepsilon} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^{\varepsilon})\xi).$$

— fluctuation-dissipation relation, for the free energy $\Psi'_{\Phi}(\xi) = \log(\Phi(\xi))$,

$$\Phi'(\rho) = \Phi(\rho)\Psi_{\Phi}''(\rho).$$

— coarse-graining and correlated noise

The empirical density: let m_n denote the measure

$$m_n(x,t) = \frac{1}{n} \sum_{k=1}^n \delta(x - B_t^k)$$

for independent Brownian motions B^k on \mathbb{T}^d .

The derivation: for every $f \in C^{\infty}(\mathbb{T}^d)$,

$$\partial_t \left(\int_{\mathbb{T}^d} f(x) m_n \right) = \partial_t \left(\frac{1}{n} \sum_{k=1}^n f(B_t^k) \right)$$
$$= \frac{1}{2} \int_{\mathbb{T}^d} \Delta f \ m_n + \text{``Gaussian noise''}$$
$$= \frac{1}{2} \int_{\mathbb{T}^d} \Delta f \ m_n + \frac{1}{\sqrt{n}} \int_{\mathbb{T}^d} \nabla f \cdot \sqrt{m_n} \ \xi,$$

for ξ an \mathbb{R}^d -valued space-time white noise.

The Dean-Kawasaki equation:

$$\partial_t m_n = \frac{1}{2} \Delta m_n - \frac{1}{\sqrt{n}} \nabla \cdot (\sqrt{m_n} \xi).$$

B. Fehrman (University of Oxford)

University of Konstanz

The Dean–Kawasaki equation: we have,

$$\partial_t \rho^{\varepsilon} = \frac{1}{2} \Delta \rho^{\varepsilon} - \sqrt{\varepsilon} \nabla \cdot (\sqrt{\rho^{\varepsilon}} \xi).$$

The Zero Range Process: the formal SPDE describing non-equilibrium behavior,

$$\partial_t \rho^{\varepsilon} = \Delta \Phi(\rho^{\varepsilon}) - \sqrt{\varepsilon} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^{\varepsilon})\xi).$$

- Supercritical in the language of regularity structures [Hairer; 2014]
 no solution theory
- Ill-posedness vs. triviality
 - for example, [Konarovskyi, Lehmann, von Renesse; 2019]
- Degenerate diffusions
 - porous media and fast diffusions, $\Phi(\xi) = \xi^m$ for every $m \in (0, \infty)$
- Irregular noise coefficients

The Dean-Kawasaki equation: for independent Brownian motions,

$$\partial_t \rho = \frac{1}{2} \Delta \rho - \sqrt{\varepsilon} \nabla \cdot (\sqrt{\rho} \xi).$$

• White noise is too singular (particles systems, course graining, and function-valued large deviations):

• Spatially correlated noise:

$$\xi^{\delta} = \xi \ast \kappa^{\delta} \text{ for a convolution kernel } \kappa^{\delta} \text{ of scale } \delta \in (0,1).$$

The Dean–Kawasaki equation with correlated noise: the Stratonovich equation,

$$\partial_t \rho = \frac{1}{2} \Delta \rho - \sqrt{\varepsilon} \nabla \cdot (\sqrt{\rho} \circ \xi^{\delta}).$$

Fluctuations and large deviations formally the same for Itô vs. Stratonovich.

The Stratonovich-to-Itô correction: we consider the Stratonovich SPDE

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\sigma(\rho) \circ f(x) \, \mathrm{d}B_t),$$

for the *d*-dimensional noise $d\xi = f dB_t$. The Stratonovich integral

$$\begin{split} &\int_0^t \int_{\mathbb{T}^d} \sigma(\rho_s) \circ f \, \mathrm{d}B_s = \int_{\mathbb{T}^d} f \sum_{|\mathcal{P}| \to 0} \frac{\sigma(\rho_{t_{i+1}}) + \sigma(\rho_{t_i})}{2} (B_{t_{i+1}} - B_{t_i}) \\ &= \int_{\mathbb{T}^d} f \Big(\frac{1}{2} \sum_{|\mathcal{P}| \to 0} (\sigma(\rho_{t_{i+1}}) - \sigma(\rho_{t_i})) (B_{t_{i+1}} - B_{t_i}) + \sum_{|\mathcal{P}| \to 0} \sigma(\rho_{t_i}) (B_{t_{i+1}} - B_{t_i}) \\ &= \frac{1}{2} \int_0^t \int_{\mathbb{T}^d} f \sigma'(\rho) \, \mathrm{d}\langle \partial_t \rho, B \rangle_s + \int_0^t \int_{\mathbb{T}^d} f \sigma(\rho) \, \mathrm{d}B_s \\ &= \frac{1}{2} \int_0^t \int_{\mathbb{T}^d} f \sigma'(\rho) \nabla(\sigma(\rho) f) \, \mathrm{d}s + \int_0^t \int_{\mathbb{T}^d} f \sigma(\rho) \, \mathrm{d}B_s. \end{split}$$

The Itô-form of the SPDE: we have that

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\sigma(\rho)f(x) \, \mathrm{d}B_t) + \frac{1}{2} \nabla \cdot (\sigma'(\rho)f\nabla(\sigma(\rho)f)).$$

A general SPDE with conservative noise: for consider the Stratonovich SPDE

$$\partial_t \rho = \Delta \Phi(\rho) - \sqrt{\varepsilon} \nabla \cdot (\sigma(\rho) \circ \mathrm{d}\xi^\delta),$$

for probabilistically stationary noise $\xi^{\delta}=(\xi*\kappa^{\delta})$ and scalar $\sigma.$

The Itô-formulation for the spatially constant quadratic variation $\langle \xi^{\delta} \rangle$,

$$\partial_t \rho = \Delta \Phi(\rho) - \sqrt{\varepsilon} \nabla \cdot (\sigma(\rho) \,\mathrm{d}\xi^\delta) + \frac{\varepsilon \langle \xi^\delta \rangle}{2} \nabla \cdot (\sigma'(\rho) \nabla \sigma(\rho)).$$

Logarithmic divergence of the correction: if $\sigma(\rho) = \sqrt{\rho}$ then

$$\frac{\varepsilon \langle \xi^{\delta} \rangle}{2} \nabla \cdot (\sigma'(\rho) \nabla \sigma(\rho)) = \frac{\varepsilon \langle \xi^{\delta} \rangle}{8} \nabla \cdot \left(\frac{1}{\rho} \nabla \rho\right) = \frac{\varepsilon \langle \xi^{\delta} \rangle}{8} \Delta \log(\rho),$$

and we have, in the Dean-Kawasaki case,

$$\partial_t \rho = \Delta \rho - \sqrt{\varepsilon} \nabla \cdot (\sqrt{\rho} \, \mathrm{d}\xi^\delta) + \frac{\varepsilon \langle \xi^\delta \rangle}{8} \Delta \log(\rho).$$

A general SPDE with conservative noise: for the Itô-equation

$$\partial_t \rho = \Delta \Phi(\rho) + \eta \Delta \rho - \sqrt{\varepsilon} \nabla \cdot (\sigma(\rho) \,\mathrm{d}\xi^\delta) + \frac{\varepsilon \langle \xi^\delta \rangle}{2} \nabla \cdot (\sigma'(\rho) \nabla \sigma(\rho)),$$

we have using Itô's formula, for smooth S and ψ ,

$$\begin{aligned} \partial_t \int \psi S(\rho) &= \int \psi S'(\rho) \, \mathrm{d}\rho + \frac{1}{2} \int \psi S''(\rho) \, \mathrm{d}\langle\rho\rangle = \\ &- \int \Phi'(\rho) S'(\rho) \nabla \rho \cdot \nabla \psi - \sqrt{\varepsilon} \int \psi S'(\rho) \nabla \cdot (\sigma(\rho) \, \mathrm{d}\xi^{\delta}) - \frac{\varepsilon \langle \xi^{\delta} \rangle}{2} \int (\sigma'(\rho))^2 \nabla \rho \cdot S'(\rho) \nabla \psi \\ &- \int \psi S''(\rho) \Phi'(\rho) |\nabla \rho|^2 - \eta \int \psi S''(\rho) |\nabla \rho|^2 - \frac{\varepsilon \langle \xi^{\delta} \rangle}{2} \int \psi S''(\rho) |\nabla \sigma(\rho)|^2 \\ &+ \frac{\varepsilon \langle \xi^{\delta} \rangle}{2} \int \psi S''(\rho) |\nabla \sigma(\rho)|^2 + \frac{\varepsilon \langle \nabla \xi^{\delta} \rangle}{2} \int \psi S''(\rho) \sigma(\rho)^2. \end{aligned}$$

Stochastic coercivity: identical techniques treat the Itô equation

$$\partial \rho = \Delta \rho - \sqrt{\varepsilon} \nabla \cdot (\sqrt{\rho} \, \mathrm{d} \xi^{\delta}),$$

provided that $(\sigma')^2 \leq \Phi'$. In the Dean–Kawasaki case, this means controlling $|\nabla \sqrt{\rho}|^2$ by $|\nabla \rho|^2$ [F., Gess, Gvalani; 2022].

A general SPDE with conservative noise: for the Itô-equation

$$\partial_t \rho = \Delta \Phi(\rho) - \sqrt{\varepsilon} \nabla \cdot (\sigma(\rho) \,\mathrm{d}\xi^\delta) + \frac{\varepsilon \langle \xi^\delta \rangle}{2} \nabla \cdot (\sigma'(\rho) \nabla \sigma(\rho)).$$

The kinetic formulation: for the kinetic function $\chi = \mathbf{1}_{\{0 < \xi < \rho(x,t)\}} - \mathbf{1}_{\{\rho(x,t) < \xi < 0\}}$, and for a nonnegative measure q, we have for every $\phi \in C_c^{\infty}(\mathbb{T}^d \times (0, \infty))$,

$$\begin{split} \int_{\mathbb{R}} \int_{\mathbb{T}^d} \phi \chi_t &= \int_{\mathbb{R}} \int_{\mathbb{T}^d} \phi \chi_0 - \int_0^t \int_{\mathbb{T}^d} \Phi'(\rho) \nabla \rho(x,\rho) \cdot (\nabla \phi)(x,\rho) \\ &- \sqrt{\varepsilon} \int_0^t \int_{\mathbb{T}^d} \phi(x,\rho) \nabla \cdot (\sigma(\rho) \, \mathrm{d}\xi^{\delta}) - \frac{\varepsilon \langle \xi^{\delta} \rangle}{2} \int_0^t \int_{\mathbb{T}^d} (\sigma'(\rho))^2 \nabla \rho \cdot (\nabla \phi)(x,\rho) \\ &- \int_0^t \int_{\mathbb{T}^d} (\partial_{\xi} \phi)(x,\rho) \Phi'(\rho) |\nabla \rho|^2 - \int_0^t \int_{\mathbb{R}} \int_{\mathbb{T}^d} \partial_{\xi} \phi \, \mathrm{d}q \\ &+ \frac{\varepsilon \langle \nabla \xi^{\delta} \rangle}{2} \int_0^t \int_{\mathbb{T}^d} (\partial_{\xi} \phi)(x,\rho) \sigma(\rho)^2. \end{split}$$

Or, distributionally, for $\delta_{\rho} = \delta(\xi - \rho)$ and for the measure $p = \delta_{\rho} \Phi'(\xi) |\nabla \rho|^2$,

$$\partial_t \chi = \Phi'(\xi) \Delta_x \chi - \sqrt{\varepsilon} \sigma'(\xi) \, \mathrm{d}\xi^{\delta} \cdot \nabla \chi + \sqrt{\varepsilon} \sigma(\xi) \partial_\xi \chi \nabla \cdot \, \mathrm{d}\xi^{\delta} + \frac{\varepsilon \langle \xi^{\circ} \rangle}{2} \nabla \cdot \left((\sigma'(\xi))^2 \nabla \chi \right) \\ + \partial_\xi p + \partial_\xi q - \partial_\xi \left(\delta_\rho \frac{\varepsilon \langle \nabla \xi^{\delta} \rangle}{2} \sigma(\xi)^2 \right).$$

B. Fehrman (University of Oxford)

Stochastic kinetic solutions [F. Gess; 2021]

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $(\mathcal{F}_t)_{t \in [0,\infty)}$ be a filtration on (Ω, \mathcal{F}) , let the noise ξ^{δ} be \mathcal{F}_t -adapted, and let $\rho_0 \in L^1$ be nonnegative and \mathcal{F}_0 -measurable. A stochastic kinetic solution is a continuous $L^1(\mathbb{T}^d)$ -valued, \mathcal{F}_t -predictable process ρ that satisfies the following five properties.

- (i) Preservation of mass: for every $t \in [0,T]$, $\mathbb{E}[\|\rho(\cdot,t)\|_{L^1(\mathbb{T}^d)}] = \mathbb{E}[\|\rho_0\|_{L^1(\mathbb{T}^d)}]$.
- (ii) Integrability of the flux: we have $\sigma(\rho) \in L^2(\Omega \times \mathbb{T}^d \times [0,T])$.
- (iii) Local regularity: for every $K \in \mathbb{N}$, $(\rho \wedge K) \vee (1/\kappa) \in L^2(\Omega \times [0,T]; H^1(\mathbb{T}^d))$. (iv) Vanishing at infinity: $\liminf_{M \to \infty} \mathbb{E}[(p+q)(\mathbb{T}^d \times [M, M+1] \times [0,T])] = 0$. (v) The equation: for a nonnegative measure q, for every $\phi \in C_c^{\infty}(\mathbb{T}^d \times (0,\infty))$,

$$\begin{split} &\int_{\mathbb{R}} \int_{\mathbb{T}^d} \phi \chi_t = \int_{\mathbb{R}} \int_{\mathbb{T}^d} \phi \chi_0 - \int_0^t \int_{\mathbb{T}^d} \Phi'(\rho) \nabla \rho \cdot (\nabla \phi)(x,\rho) \\ &- \sqrt{\varepsilon} \int_0^t \int_{\mathbb{T}^d} \phi(x,\rho) \nabla \cdot (\sigma(\rho) \, \mathrm{d}\xi^\delta) - \frac{\varepsilon \langle \xi^\delta \rangle}{2} \int_0^t \int_{\mathbb{T}^d} (\sigma'(\rho))^2 \nabla \rho \cdot (\nabla \phi)(x,\rho) \\ &- \int_0^t \int_{\mathbb{T}^d} (\partial_\xi \phi)(x,\rho) \Phi'(\rho) |\nabla \rho|^2 - \int_0^t \int_{\mathbb{R}} \int_{\mathbb{T}^d} \partial_\xi \phi \, \mathrm{d}q + \frac{\varepsilon \langle \nabla \xi^\delta \rangle}{2} \int_0^t \int_{\mathbb{T}^d} (\partial_\xi \phi)(x,\rho) \sigma(\rho)^2. \end{split}$$

Extensions: we consider general equations of the type

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot \left(\sigma(\rho) \circ \xi^{\delta} + \nu(\rho) \right) + \lambda(\rho) + \phi(\rho) \xi^{\delta},$$

including non-equilibrium fluctuations of asymmetric systems, mean-field games, stochastic geometric PDEs, and branching interacting diffusions.

• The generalized Dean-Kawasaki equation with correlated noise

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot \left(\Phi(\rho) + \Phi^{\frac{1}{2}}(\rho) \circ \xi^{\delta} \right).$$

• Nonlinear Dawson-Watanabe equation

$$\partial_t \rho = \Delta \Phi(\rho) + \sqrt{\rho} \xi^{\delta}.$$

• Fluctuating mean-curvature equation

$$\partial_t \rho = \nabla \cdot \left(\frac{\nabla \rho}{1 + \rho^2} \right) + \nabla \cdot \left((1 + \rho^2)^{\frac{1}{4}} \circ \xi^{\delta} \right).$$

- Fast diffusion and porous media: $\Phi(\xi) = \xi^m$ for any $m \in (0, \infty)$.
- • ϕ is globally 1/2-Hölder continuous, λ is globally Lipschitz continuous.

The Dean-Kawasaki equation: we consider the Dean-Kawasaki equation

$$\partial_t \rho = \Delta \Phi(\rho) - \sqrt{\varepsilon} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho) \circ \mathrm{d}\xi^{\delta}).$$

for which we have, almost surely for every $\phi \in C_c^{\infty}(\mathbb{T}^d \times (0, \infty))$,

$$\begin{split} &\int_{\mathbb{R}} \int_{\mathbb{T}^d} \phi \chi_t = \int_{\mathbb{R}} \int_{\mathbb{T}^d} \phi \chi_0 - \int_0^t \int_{\mathbb{T}^d} \Phi'(\rho) \nabla \rho \cdot (\nabla \phi)(x,\rho) \\ &- \sqrt{\varepsilon} \int_0^t \int_{\mathbb{T}^d} \phi(x,\rho) \nabla \cdot (\Phi^{\frac{1}{2}}(\rho) \, \mathrm{d}\xi^{\delta}) - \frac{\varepsilon \langle \xi^{\delta} \rangle}{2} \int_0^t \int_{\mathbb{T}^d} (\Phi^{\frac{1}{2}})'(\rho)^2 \nabla \rho \cdot (\nabla \phi)(x,\rho) \\ &- \int_0^t \int_{\mathbb{T}^d} (\partial_{\xi} \phi)(x,\rho) \Phi'(\rho) |\nabla \rho|^2 - \int_0^t \int_{\mathbb{R}} \int_{\mathbb{T}^d} \partial_{\xi} \phi \, \mathrm{d}q + \frac{\varepsilon \langle \nabla \xi^{\delta} \rangle}{2} \int_0^t \int_{\mathbb{T}^d} (\partial_{\xi} \phi)(x,\rho) \Phi(\rho). \end{split}$$

Entropy estimate: let $\Psi_{\Phi}(\xi) = \int_{0}^{\xi} \log(\Phi(\xi')) dx'$ and $\phi(\xi) = \log(\Phi(\xi))$,

$$\begin{split} \int_{\mathbb{T}^d} \Psi_{\Phi}(\rho_t) &= \int_{\mathbb{T}^d} \Psi_{\Phi}(\rho_0) - \sqrt{\varepsilon} \int_0^t \int_{\mathbb{T}^d} \log(\Phi(\rho)) \nabla \cdot (\Phi^{\frac{1}{2}}(\rho) \,\mathrm{d}\xi^{\delta}) \\ &- \int_0^t \int_{\mathbb{T}^d} \frac{\Phi'(\rho)^2}{\Phi(\rho)} |\nabla \rho|^2 - \int_0^t \int_{\mathbb{R}} \int_{\mathbb{T}^d} \frac{\Phi'(\xi)}{\Phi(\xi)} \,\mathrm{d}q + \frac{\varepsilon \langle \nabla \xi^{\delta} \rangle}{2} \int_0^t \int_{\mathbb{T}^d} \Phi'(\rho). \end{split}$$

and, using the definition of p,

$$\int_0^t \int_{\mathbb{T}^d} \frac{\Phi'(\rho)^2}{\Phi(\rho)} |\nabla \rho|^2 = \int_0^t \int_{\mathbb{R}} \int_{\mathbb{T}^d} \frac{\Phi'(\xi)}{\Phi(\xi)} \, \mathrm{d}p.$$

B. Fehrman (University of Oxford)

The entropy estimate: we consider the Dean-Kawasaki equation

$$\partial_t \rho = \Delta \Phi(\rho) - \sqrt{\varepsilon} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho) \circ \mathrm{d}\xi^{\delta}),$$

and for $\Psi_{\Phi} = \int_0^{\xi} \log(\Phi(\xi')) dx'$ and $\phi(\xi) = \log(\Phi(\xi))$,

$$\begin{split} & \mathbb{E} \sup_{t \in [0,T]} \int_{\mathbb{T}^d} \Psi_{\Phi}(\rho_t) + \mathbb{E} \int_0^t \int_{\mathbb{R}} \int_{\mathbb{T}^d} \frac{\Phi'(\xi)}{\Phi(\xi)} (\,\mathrm{d}p + \,\mathrm{d}q) \leq \\ & \mathbb{E} \int_{\mathbb{T}^d} \Psi_{\Phi}(\rho_0) + \mathbb{E} \sup_{t \in [0,T]} |\sqrt{\varepsilon} \int_0^t \int_{\mathbb{T}^d} \log(\Phi(\rho)) \nabla \cdot (\Phi^{\frac{1}{2}}(\rho) \,\mathrm{d}\xi^{\delta})| + \frac{\varepsilon \langle \nabla \xi^{\delta} \rangle}{2} \mathbb{E} \int_0^T \int_{\mathbb{T}^d} \Phi'(\rho). \\ & \text{sing } \nabla \log(\Phi(\rho)) = \frac{\Phi'(\rho)}{\Phi(\rho)} \nabla \rho \text{ and the Burkholder-Davis-Gundy inequality,} \end{split}$$

$$\mathbb{E}\sup_{t\in[0,T]}|\sqrt{\varepsilon}\int_0^t\int_{\mathbb{T}^d}\log(\Phi(\rho))\nabla\cdot(\Phi^{\frac{1}{2}}(\rho)\,\mathrm{d}\xi^{\delta})|\leq c\sqrt{\varepsilon}\langle\xi^{\delta}\rangle^{\frac{1}{2}}\mathbb{E}\Big(\int_0^T\int_{\mathbb{R}}\int_{\mathbb{T}^d}\frac{\Phi'(\xi)}{\Phi(\xi)}\,\mathrm{d}p\Big)^{\frac{1}{2}},$$

and using Hölder's and Young's inequality, assuming $\frac{\Phi(\xi)}{\Phi'(\xi)} \leq c\xi$ so that $\frac{\Phi'(\xi)}{\Phi(\xi)} \geq \frac{1}{c\xi}$,

$$\begin{split} & \mathbb{E}\Big(\sup_{t\in[0,T]}\int_{\mathbb{T}^d}\Psi_{\Phi}(\rho_t) + \int_0^t\int_0^{\infty}\int_{\mathbb{T}^d}\frac{1}{\xi}(\,\mathrm{d} p + \,\mathrm{d} q)\Big) \\ & \leq c\mathbb{E}\Big(\int_{\mathbb{T}^d}\Psi_{\Phi}(\rho_0) + \varepsilon\langle\xi^{\delta}\rangle + \frac{\varepsilon\langle\nabla\xi^{\delta}\rangle}{2}\int_0^T\int_{\mathbb{T}^d}\Phi'(\rho)\Big). \end{split}$$

B. Fehrman (University of Oxford)

U

The equation:
$$\partial_t \rho = \Delta \Phi(\rho) - \sqrt{\varepsilon} \nabla \cdot \left(\Phi^{\frac{1}{2}}(\rho) \circ \xi^F \right).$$

The kinetic measure vanishes at zero [F. Gess; 2021]

Let $\rho_0 \in L^1(\Omega; L^1(\mathbb{T}^d))$ be nonnegative and \mathcal{F}_0 -measurable, and let ρ be a stochastic kinetic solution with initial data ρ_0 with kinetic measure q. Then,

$$\liminf_{\beta \to 0} \left(\beta^{-1} \mathbb{E} \left[(p+q) (\mathbb{T}^d \times [\beta/2, \beta] \times [0, T] \right] \right) = 0.$$

• Essentially equivalent to the preservation of the L^1 -norm.

Existence and uniqueness [F. Gess; 2021]

Let $\rho_0 \in L^1(\Omega; L^1(\mathbb{T}^d))$ be nonnegative and \mathcal{F}_0 -measurable. Then, there exists a unique stochastic kinetic solution with initial data ρ_0 . Furthermore, two solutions ρ^1 and ρ^2 almost surely satisfy, for every $t \in [0, T]$,

$$\left\| \rho^{1}(\cdot,) - \rho^{2}(\cdot,t) \right\|_{L^{1}(\mathbb{T}^{d})} \leq \left\| \rho^{1}_{0} - \rho^{2}_{0} \right\|_{L^{1}(\mathbb{T}^{d})}.$$

 Stochastic dynamics, random dynamical systems, and invariant measures [F., Gess, Gvalani; 2022].

The kinetic equation: for test functions $\phi \in C_c^{\infty}(\mathbb{T}^d \times (0, \infty))$,

$$\partial_t \chi = \Phi'(\xi) \Delta_x \chi - \sqrt{\varepsilon} \delta_\rho \nabla \cdot (\Phi^{\frac{1}{2}}(\rho) \,\mathrm{d}\xi^\delta) + \frac{\varepsilon \langle \xi^\delta \rangle}{2} \nabla \cdot ((\sigma'(\xi))^2 \nabla \chi) + \partial_\xi p + \partial_\xi q - \partial_\xi \Big(\delta_\rho \frac{\varepsilon \langle \nabla \xi^\delta \rangle}{2} \Phi(\xi)^2 \Big).$$

Let ζ_M be a cutoff of $[\frac{1}{M}, M]$ supported on $[\frac{1}{2M}, M+1]$ so that

$$|\zeta'_M| \le cM \mathbf{1}_{(\frac{1}{2M}, \frac{1}{M})} + c \mathbf{1}_{(M, M+1)}.$$

The uniqueness proof: the proof is based on differentiating the identity

$$\partial_t \int_{\mathbb{T}^d} |\rho_t^1 - \rho_t^2| = \partial_t \int_{\mathbb{R}} \int_{\mathbb{T}^d} |\chi^1 - \chi^2|^2 = \partial_t \int_{\mathbb{R}} \int_{\mathbb{T}^d} \chi^1 \operatorname{sgn}(\xi) + \chi^2 \operatorname{sgn}(\xi) - 2\chi^1 \chi^2,$$

for which we introduce the cutoff and differentiate

$$\partial_t \int_{\mathbb{R}} \int_{\mathbb{T}^d} \left(\chi^1 \operatorname{sgn}(\xi) + \chi^2 \operatorname{sgn}(\xi) - 2\chi^1 \chi^2 \right) \zeta_M = \int_R \int_{\mathbb{T}^d} \left(\operatorname{deterministic terms} \right) \zeta_M \\ + \int_{\mathbb{R}} \int_{\mathbb{T}^d} (2\chi^2 - 1) \delta_{\rho^1} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^1) \, \mathrm{d}\xi^{\delta}) \zeta_M + (2\chi^1 - 1) \delta_{\rho^2} \nabla \cdot (\Phi^{\frac{1}{2}} \, \mathrm{d}\xi^{\delta}) \zeta_M \\ - \sum_{i=1}^2 \int_{\mathbb{R}} \int_{\mathbb{T}^d} \zeta'_M(\xi) (\, \mathrm{d}p^i + \mathrm{d}q^i) + \sum_{i=1}^2 \frac{\varepsilon \langle \nabla \xi^{\delta} \rangle}{2} \int_{\mathbb{T}^d} \zeta'_M(\rho^i) \Phi(\rho^i)^2.$$

The stochastic term: for the term

$$\int_{\mathbb{R}} \int_{\mathbb{T}^d} (2\chi^2 - 1) \delta_{\rho^1} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^1) \, \mathrm{d}\xi^{\delta}) \zeta_M + (2\chi^1 - 1) \delta_{\rho^2} \nabla \cdot (\Phi^{\frac{1}{2}} \, \mathrm{d}\xi^{\delta}) \zeta_M$$

we have that, without the cutoff ζ_M ,

$$\int_{\mathbb{R}} (2\chi^2 - 1)\delta_{\rho^1} = \int_{\mathbb{R}} \operatorname{sgn}(\rho^2 - \xi)\delta_{\rho^1} = \operatorname{sgn}(\rho^1 - \rho^2).$$

Therefore, ignoring the cutoff ζ_M (a bad idea),

$$\begin{split} &\int_{\mathbb{R}} \int_{\mathbb{T}^d} (2\chi^2 - 1)\delta_{\rho^1} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^1) \,\mathrm{d}\xi^{\delta})\zeta_M + (2\chi^1 - 1)\delta_{\rho^2} \nabla \cdot (\Phi^{\frac{1}{2}} \,\mathrm{d}\xi^{\delta}) \\ &= \int_{\mathbb{T}^d} \mathrm{sgn}(\rho^1 - \rho^2) \nabla \cdot ((\Phi^{\frac{1}{2}}(\rho^1) - \Phi^{\frac{1}{2}}(\rho^2)) \,\mathrm{d}\xi^{\delta}) \\ &= -2 \int_{\mathbb{T}^d} \delta_0(\rho^1 - \rho^2) (\nabla \rho^1 - \nabla \rho^2) \cdot (\Phi^{\frac{1}{2}}(\rho^1) - \Phi^{\frac{1}{2}}(\rho^2)) \,\mathrm{d}\xi^{\delta} = 0? \end{split}$$

- $\Phi^{\frac{1}{2}}$ is not Lipschitz continuous and ρ^i is not regular
- exploit the cutoff ζ_M , local regularity of ρ^i , and local Lipschitz continuity of $\Phi^{\frac{1}{2}}$

The uniqueness proof: we have that

$$\partial_t \int_{\mathbb{R}} \int_{\mathbb{T}^d} \left(\chi^1 \operatorname{sgn}(\xi) + \chi^2 \operatorname{sgn}(\xi) - 2\chi^1 \chi^2 \right) \zeta_M = \int_R \int_{\mathbb{T}^d} \left(\operatorname{deterministic terms} \right) \zeta_M \\ + \int_{\mathbb{R}} \int_{\mathbb{T}^d} (2\chi^2 - 1) \delta_{\rho^1} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^1) \, \mathrm{d}\xi^\delta) \zeta_M + (2\chi^1 - 1) \delta_{\rho^2} \nabla \cdot (\Phi^{\frac{1}{2}} \, \mathrm{d}\xi^\delta) \zeta_M \\ - \sum_{i=1}^2 \int_{\mathbb{R}} \int_{\mathbb{T}^d} \zeta'_M(\xi) (\, \mathrm{d}p^i + \, \mathrm{d}q^i) + \sum_{i=1}^2 \frac{\varepsilon \langle \nabla \xi^\delta \rangle}{2} \int_{\mathbb{T}^d} \zeta'_M(\rho^i) \Phi(\rho^i)^2.$$

The cutoff terms: for the cutoff terms, we have that

$$\begin{split} &|\int_{\mathbb{R}} \int_{\mathbb{T}^d} \zeta'_M(\xi) (\,\mathrm{d} p^1 + \,\mathrm{d} q^1)| + |\frac{\varepsilon \langle \nabla \xi^\delta \rangle}{2} \int_{\mathbb{T}^d} \zeta'_M(\rho^1) \Phi(\rho^1)^2| \\ &\leq c(p^1 + q^1) (\mathbb{T}^d \times (M, M + 1) \times \{t\}) + c \int_{\mathbb{T}^d} \mathbf{1}_{\{M < \rho^1 < M + 1\}} \Phi(\rho^1) \\ &+ c M(p^1 + q^1) \Big(\mathbb{T}^d \times \Big(\frac{1}{2M}, \frac{1}{M}\Big) \times \{t\} \Big) + c M \int_{\mathbb{T}^d} \mathbf{1}_{\{\frac{1}{2M} < \rho^1 < \frac{1}{M}\}} \Phi(\rho^1). \end{split}$$

Vanishes as $M \to \infty$ due to singular moments and decay of the measures.

The Large Deviations Principle [F., Gess; 2022]

The scaling limit: let $\delta(\varepsilon)$ be any sequence satisfying, as $\varepsilon \to 0$,

$$\varepsilon \delta(\varepsilon)^{-(d+2)} \to 0 \text{ and } \delta(\varepsilon) \to 0,$$

and for every $\varepsilon \in (0,1)$ let ρ^{ε} be the solution

$$\partial_t \rho^{\varepsilon} = \Delta \Phi(\rho^{\varepsilon}) - \sqrt{\varepsilon} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^{\varepsilon}) \circ \xi^{\delta(\varepsilon)}).$$

The large deviations principle: the solutions ρ^{ε} satisfy a large deviations principle with rate function

$$I(\rho) = \frac{1}{2} \inf \left\{ \|g\|_{L^2}^2 : \partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g) \right\}.$$

The linear fluctuating hydrodynamics: the linear fluctuating hydrodynamics

$$\partial_t \tilde{\rho}^{\varepsilon} = \Delta \Phi(\tilde{\rho}^{\varepsilon}) - \sqrt{\varepsilon} \nabla \cdot (\Phi^{\frac{1}{2}}(\bar{\rho}) \xi^{\delta(\varepsilon)}),$$

for the hydrodynamics limit $\partial_t \overline{\rho} = \Delta \Phi(\overline{\rho})$ satisfy an LDP with rate function

$$\tilde{I}(\rho) = \frac{1}{2} \inf \left\{ \left\| g \right\|_{L^2}^2 : \partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot \left(\Phi^{\frac{1}{2}}(\overline{\rho}) g \right) \right\}.$$

B. Fehrman (University of Oxford)

The Large Deviations Principle [F., Gess; 2022]

The scaling limit: let $\delta(\varepsilon)$ be any sequence satisfying, as $\varepsilon \to 0$,

$$\varepsilon \delta(\varepsilon)^{-(d+2)} \to 0 \text{ and } \delta(\varepsilon) \to 0,$$

and for every $\varepsilon \in (0,1)$ let ρ^{ε} be the solution

$$\partial_t \rho^{\varepsilon} = \Delta \Phi(\rho^{\varepsilon}) - \sqrt{\varepsilon} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^{\varepsilon}) \circ \xi^{\delta(\varepsilon)}).$$

The large deviations principle: the solutions ρ^{ε} satisfy a large deviations principle with rate function

$$I(\rho) = \frac{1}{2} \inf \left\{ \left\| g \right\|_{L^2}^2 : \partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot \left(\Phi^{\frac{1}{2}}(\rho) g \right) \right\}.$$

The controlled SPDE: for weakly convergent controls $g^{\varepsilon} \rightharpoonup g$ the solutions

$$\partial_t \rho^{\varepsilon} = \Delta \Phi(\rho^{\varepsilon}) - \sqrt{\varepsilon} \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^{\varepsilon})) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho^{\varepsilon})g^{\varepsilon}),$$

converge in the scaling limit $\varepsilon \langle \nabla \xi^{\delta} \rangle \simeq \varepsilon \delta(\varepsilon)^{-(d+2)} \to 0$ to the solution

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g).$$

Weak approach to large deviations [Budhiraja, Dupuis, Maroulas; 2008].

The rate function: for $\rho \in L^1([0,T]; L^1(\mathbb{T}^d))$,

$$I(\rho) = \frac{1}{2} \inf \left\{ \|g\|_{L^2}^2 : \partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g) \right\}.$$

The Hilbert space: $H^1_{\Phi(\rho)}$ is the strong closure w.r.t. the inner product

$$\langle \nabla \psi, \nabla \phi \rangle = \int_0^T \int_{\mathbb{T}^d} \Phi(\rho) \nabla \psi \cdot \nabla \phi \text{ for } \phi, \psi \in \mathbf{C}^{\infty}.$$

Unique minimizer: if $I(\rho) < \infty$ then the minimizer $g = \Phi^{\frac{1}{2}}(\rho) \nabla H$ for $H \in H^{1}_{\Phi(\rho)}$,

$$I(\rho) = \frac{1}{2} \int_0^T \int_{\mathbb{T}^d} \Phi(\rho) |\nabla H|^2 = \frac{1}{2} \|H\|_{H^1_{\Phi(\rho)}}^2 = \frac{1}{2} \|\partial_t \rho - \Delta \Phi(\rho)\|_{H^{-1}_{\Phi}(\rho)}^2,$$

where the equation defines $\partial_t \rho - \Delta \Phi(\rho) = -\nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g) \in H^{-1}_{\Phi(\rho)}$.

The "ill-posed" equation: we have the formally "supercritical" equation

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi(\rho) \nabla H).$$

The space of smooth fluctuations S: we define the space

 $\mathcal{S} = \{ \rho \colon \partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi(\rho) \nabla H) \text{ for } \rho_0 \in \mathcal{C}^{\infty}(\mathbb{T}^d) \text{ and } H \in \mathcal{C}^{3,1}(\mathbb{T}^d \times [0,T]) \}.$ Recovery sequence: suppose that $I(\rho) < \infty$ and, for the minimizer g,

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g)$$

Let ρ_n solve, for cutoff functions σ_n on $(0, \infty)$,

$$\partial_t \rho_n = \Delta \Phi(\rho_n) - \nabla \cdot (\sigma_n(\rho_n) \Phi^{\frac{1}{2}}(\rho_n)g).$$

Then, there exists H_n with $\int \Phi(\rho_n) |\nabla H_n|^2 \leq \int \sigma_n (\rho_n)^2 |g|^2$ such that

$$-\nabla \cdot (\Phi(\rho_n)\nabla H_n) = \partial_t \rho_n - \Delta \Phi(\rho_n).$$

[Kipnis, Olla, Varadhan; 1989], [Benois, Kipnis, Landim; 1995]

The zero range process satisfies a large deviations upper bound with rate function I and a large deviations lower bound with rate function $\overline{I_{|S}}(\rho)$, the l.s.c. envelope of I restricted to S.

[F., Gess; 2022]

These rate functions coincide and are equal to I.

V. References

O. Benois and C. Kipnis and C. Landim

Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stochastic Process. Appl. 55(1): 65-89, 1995.

L Bertini and A. De Sole and D. Gabrielli and G. Jona-Lasinio and C. Landim

Macroscopic fluctuation theory. arXiv:1404.6466, 2014.

A. Budhiraja and P. Dupuis and V. Maroulas

Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36(4): 1390-1420, 2008.

N. Dirr and B. Fehrman and B. Gess

Conservative stochastic PDE and fluctuations of the symmetric simple exclusion process. arXiv:arXiv:2012.02126, 2020.

A. Donev

Fluctuating hydrodynamics and coarse-graining. First Berlin - Leipzig Workshop on Fluctuating Hydrodynamics, Berlin, 2019.

B. Fehrman and B. Gess

Well-posedness of the Dean-Kawasaki and the nonlinear Dawson-Watanabe equation with correlated noise. arxiv:arXiv:2108.08858, 2021.

B. Fehrman and B. Gess

Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. arXiv:1910.11860, 2022.

B. Fehrman and B. Gess

Well-Posedness of nonlinear diffusion equations with nonlinear, conservative noise. Arch. Rat. Mech. Anal. 233(1): 249-322, 2019.

V. References

B. Fehrman and B. Gess and R. Gvalani

Ergodicity and random dynamics systems of conservative SPDEs. arXiv:2206.14789, 2022.

P. Ferrari and E. Presutti and M. Vares

Nonequilibrium fluctuations for a zero range process. Ann. Inst. H. Poincaré Probab. Statist. 24(2): 237-268, 1988.

M. Hairer

A theory of regularity structures. Invent. Math. 198: pp. 269-504, 2014.

C. Kipnis and S. Olla and S.R.S Varadhan

Hydrodynamics and large deviation for simple exclusion processes. Comm. Pure Appl. Math. 42(2): 115-137, 1989.

V. Konarovskyi and T. Lehmann and M.-K. von Renesse

Dean-Kawasaki dynamics: ill-posedness vs. triviality. Electron. Commun. Probab. 24: 1-9, 2019.

F. Rezakhanlou

Hydrodynamic limit for attractive particle systems on \mathbb{Z}^d . Comm. Math. Phys. 140(3): 417-448, 1991.

H. Spohn

Large Scale Dynamics of Interacting Particles. Springer-Verlag, Heidelberg, 1991.

J.M. Swart

A Course in Interacting Particle Systems arXiv:1703.10007, 2017.