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I. Scalar conservation laws

The equation: the scalar conservation law
dip+V-A(p) =0 in R x (0,00) with p(-,0) = po,

where p is the scalar density and A is the R%valued fluz satisfying

o[ p=-¢ a()-v
U U

for the unit outer normal v to U.

Weak formulation: for every ¢ € C(R¢ x [0, 0)),

[ v 0mla //patw— / [ A)-vu.

A weak solution is an integrable p satisfying this equation.
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I. Scalar conservation laws

Uniqueness of smooth solutions: let p’ solve d;p; + V - A(p*) = 0 and let
F2(€) = [€]° so that (£°)'(€) = sgn’(€) and (f°)"(€) =~ §1{_s<e<s} Then,

o / P — ) = / Y (0 — PV - (A(PY) — (b))

_ / (FY' (0 — pA)(Vp' — V) - (A(p) — A(?)).
‘We have that

| / V(0" — 02 (Vo' — Vp?) - (A(p") — A()|
< g/ 1t 21<01 Vo' = VPP A(p") — A(p7)]

<clAll, / 101 p21<y (IV6'] + [V52)).

Passing § — 0 using dominated convergence, for pi = p’(-, 1),

sgp/lptl—pfl < /|Pé—ﬂg|-

Lipschitz continuity justifies

o / Pt — ol = -2 / So(pt — p) (Vo' — Vp?) - (A(pY) — A(pY)) = 0.
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I. Scalar conservation laws

Nonlinear transport: we have the “transport” equation, for A = (A4,..., Aq),

d
Oip+ V- (A(p) = Dip+ > Ai(p)dip = 0.
i=1

Method of characteristics: we formally solve the ODE, for A" = (A1,..., A}),
Xi = A(p(X7,t)) with X§ =,
and observe that, on the trajectories X,

8tp(Xf7t) = atp(Xf7t) + Xf ) Vp(th7 t)
= 0p(X7,t) + A (p(X7 1)) - Vp(X{, 1) = 0.

The solution is constant on the trajectories X7,
p(X7 . t) =po(z) and X7 = A'(po(z)) with X§ = z.
Representation formula: we have, for the inverse characteristics Y;*,
p(x,t) = po(Y,") on R? x [0,00),

which is a local in time smooth solution [Evans; 2010].
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I. Scalar conservation laws

Burger’s equation: in one-dimension,

dep + Oy (%pQ) = Oip + pdzp = 0.

The characteristics: In this case, A'(p) = p and the characteristic equations are

XF = A'(po(x)) = po(z) with X7 = + po(z)t.

We therefore have, for the inverse characteristics Y;*,

Y =2~ po(a)t and ple,t) = pola — po(a)?).

t ,L/MA = i('ﬁ,’ﬂl K-(J. ("‘)+ < d.g
' \ ; X
1
po=@ p=-a p= Y
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I. Scalar conservation laws

Scalar conservation law: in one-dimension,
dip+ V- (A(p)) =0,
and there exists a shock on graph (f(t),t).

/ (%, ¥V = (x+$00) +)

i/// ///

Rankine-Hugoniot condition: since A(p(z + f(t) is constant in time,

& (Ao + 1(1), 1)) = 8I(A(p))f’(t) + 0h(A(p)) =0,

and from the equation

1
(p— 7 Alp) =0
f(@)
Hence, by equating the jump,
iy — AB) = Ala)
B —a
B. Fehrman (Univ r of Oxford) University of Kostanz 27 February 2023

6 /35



I. Scalar conservation laws

Burger’s equation: in one-dimension,
Op + pOzp =0,
and we have, for the inverse characteristics Y;*,
Y =@~ po(a)t and pla,t) = po(a — po(a)?).
Rankine-Hugoniot condition: for po(z) =1 if z <0 and po(z) =0 if z > 0,

=202 _ 2
for the shock line (f(t),t) with ¢ € [0, 00).

(iH 1

=4 pe=0
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I. Scalar conservation laws

Burger’s equation: in one-dimension,
Otp + pOzp =0,
and we have, for the inverse characteristics Y;*,
V" =z —po(x)t and p(x,t) = po(x — po(x)t).
Rankine-Hugoniot condition: for po(z) =0 if z <0 and po(z) =1 if z > 0,

py = A=A

1
5
Shock: a weak solution is p(z,t) = 0 if 2 < 3t and p(z,t) = 1 if z > it.

'
(i"ﬂ’\
ez0 ezt
N N
e r— ?=0 oz 1
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I. Scalar conservation laws

Burger’s equation: in one-dimension,
Op + pOzp =0,
with po(z) =0if 2 <0 and po(z) =1if 2 > 0.

Rarefaction wave: we define p(z,t) =0if x <0, p(z,t) =1if x > ¢, and
p(z,t) = a on the line (at,t) for a € (0,1). Since p is constantly « on the line (at,t),

0=0:(p(at,t)) = dip(at,t) + adep(at,t) = Oup + pOup.

Infinitely many weak solutions: shock vs. rarefaction wave vs. combination.

3hY ()
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II. Entropy solutions

The regularized equation: for 5 € (0, 1), the equation
0ip" = nAp" + V- (A(p")) =0 in R x (0,00) with p"(-,0) = po,
is classically well-posed for general A.
A selection principle as n — 0: if S is convex, for the composition S(p"),
39S (p") = nS'(p")Ap" — S (p")V - A(p")
=nAS(p") = S'(p")V - A(p") —nS" (p")|Vp"|?
<nAS(p") = S"(p")V - A(p").
The entropy inequality: arguing that, for all smooth and compactly supported 2,
timy [ 9AS(e")0 =t [ 056w =0,
if p7 — p as n — 0 then, for all convex S,

9:S(p) + 8" (p)V - A(p) = 8:S(p) + V - B(p) <0,
for 8= (Bu,...,Ba) satisfying 8; = S"A].
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II. Entropy solutions

The regularized equation: for n € (0, 1), the equation
ep" —nAp" +V - (A(p") =0 in R x (0,00) with p"(-,0) = po.
A particular choice of entropy: for K € R we formally differentiate
Alp" = K| =mnsgn(p” — K)Ap" —sgn(p” — K)V - (A(p"))

=nAlp" — K| - Sgn(p” — K)V - (A(p") — A(K)) — 2nd0(p" — K)|Vp"|*

<nAlp" — K| =V (sgn(p” — K)(A(p") — A(K)))
+ 200(p" - K)VP (A(p") — A(K))
=nAlp" — K| =V - (sgn(p” — K)(A(p") — A(K))).

Passing 7 — 0 as before, if p"7 — p,
Olp — K|+ V- (sgn(p — K)(A(p) — A(K))) < 0.
An entropy solution: we say that p is an entropy solution of the equation
Brp+ Y - (A(p)) = 0,
if for every K € R, distributionally on R¢ x [0, c0),
Otlp — K|+ V - (sgn(p — K)(A(p) — A(K))) < 0.

B. Fehrman (Univ r of Oxford) University of Kostanz 27 February 2023

11 / 35



II. Entropy solutions

An entropy solution: we say that p is an entropy solution of the equation
dp+ V- (A(p)) =0,
if for every K € R, distributionally on R¢ x [0, c0),
Olp — K|+ V- (sgn(p — K)(A(p) — A(K))) < 0.

Uniqueness of entropy solutions: following the variable doubling technique of
[Kruzkov; 1970], we define ®(z,y, s,t) = |u(x,t) — v(y, s)| and observe that

P < -V, (sgn(u—v)(A(u) — A(v))) and 9:P < =V, - (sgn(v — u)(A(v) — A(w))).
That is, (0; + 95)® < —(Vs + Vy) - (sgn(u — v)(A(u) — A(v))).

Convolution trick: let k* = kj(z — y)ki(t — s) for standard scale £ convolution
kernels x5 on R and x5 on R, for which (8; 4+ 85)x° = (Vo 4+ V)& = 0.

L'-contraction: we conclude that, for every ¢ € (0,1),

(0 +04) / B,y b, $)R° (2,41, 5) < / B, .1, 5)(Va + Vy)i* =0,
(R4)2

(R)2

which, after taking e — 0, yields 8 [, Ju—v] <0 and [Ju—v| ;1 < [Juo — vollp1-
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II. Entropy solutions

Uniqueness of entropy solutions [Kruzkov; 1970]

Let A: RY — R? be locally Lipschitz continuous and let po € L*(R?) N L°°(R%). Then
there exists a unique entropy solution of the equation

dip+V-A(p) =0 in R? x (0,00) with p(-,0) = po.
Furthermore, if p! and p? are two solutions with initial data p¢ and pg,

tes[gzo) ”Pl - pZHLl(Rd) = Hpé - ngLl(Rd> ’

Burger’s equation: in one-dimension,
Otp+ pOep = 0,

with po(z) =0if z <0 and po(z) =1 if = > 0.

The entropy solution: the rarefaction wave is a continuous and smooth (away the
lines {z = 0} and {z = t}) solution, and is hence the entropy solution.
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II. Entropy solutions
Burger’s equation: 9;p + pd.p = 0 with po(z) =0if z <0 and po(z) =1 if z > 0.
Shock: a weak solution is p(z,t) = 0 if < 3t and p(z,t) = 1 if z > 1t.

Failure of the entropy condition: formally since |p — K|(z 4 1¢,t) is constant in
time,

1 1
o(lp— K|(z+ §t,t)) = 50:lp = K|+ 0ip - K| =0,
and so the entropy condition becomes
1
Ohlp — K|+ da(sen(p — K)(5 = =) = 50 (senlp — K)(p* = K*) ~[p— K|) <0
Equating the jumps requires 1 — 2K? < 1 — 2K for K € [0, 1], a contradiction.

If po(x) = 1 for x < 0 and po(z) = 0 for > 0, the condition is 2K? — 1 < 2K — 1.

Ty
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III. The kinetic formulation

Degenerate parabolic-hyperbolic PDE: for a nondecreasing &,
Oip = A®(p) = V- (A(p, @),
and the regularization
oep" = AD(p") + nAp" =V - (A(p", z)).
The entropy formulation: for a smooth, convex S,

3:S(p") = S'(p")AR(p") + 1S (") Ap" = S (p")V - (A(p", )
=V (@ (p")VS(p") +nAS(p") = S (p")V - (A(p", x))
— 8" (p")® (p")|Vp"|* = nS" (p")|Vp"|*.
If p7 — p strongly and Vp"7 — Vp weakly as n — 0,

5" (p)® (p)|Vp|* < ligljglf S (pM)®' (p")|Vp"|? in the sense of measures,

and

0:S(p) <V - (' (p)VS(p)) — S (p)V - (Alp, ) — S (p)®' (p)|Vp[*.
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III. The kinetic formulation

Entropy solutions: an entropy solution of the equation
Oip = AD(p) = V- (A(p, x)),
is a function p that satisfies, distributionally for every convex S,
2S(p) < V- (¥ (0)VS(p)) — S'(0)V - (Alp, ) — " () (0)|Vp|*.

The porous media equation: in the case dip = Ap[m] for ¢l = glepm1t,
O / |lu —v| = /sgn(u - U)A(u[m] - v[m])
_ /Sgn(u[mJ o) Al - o)
= —2/50(u[m] - U[m])|Vu[m] —vol™)? <o.

e formally requires H'-regularity of u[™ and therefore py € L™**
e the entropy inequality requires convex S

e renormalized entropy solutions [Bénilan, Carrillo, Wittbold; 2000]
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III. The kinetic formulation

The regularized equation: for the equation
9ep” = A2(p") +nAp" =V - (A(p", 2)),
we have, for a smooth S,
S (p") =V - (@' (p")VS(p") +nAS(p") = S'(p")V - (A(p", x))
—5"(p")®' (p")|Vp" > = nS" (p")|Vp"|*.

For a smooth test function ¥ and U C R?,

o / (") = — / & (") (") - T 41 / S(p")AY

— [ 086V = [ 6s @@ @V = [ 08 G
we “factor out” the dependence on the “test function” S'(&)(z),
o ens @ ve-ver = [ [ 28 @90 b - e
U
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III. The kinetic formulation

The regularized equation: for the equation
Oep" = AD(p") +nAp" — V- (A(p", 2)),

we have, for a smooth S and ¢ and d,n = 60(§ — p"),

//s Y1b8,n Op” = — // V?/J5erp+77/S Ay
- / /U S (€)(DeA)(x,€) - 5,0 V" — / / S (€)Y - A) (&, )0,
- /R /U 8" ()5, (©)| V[ - / / $S"(€)6,mm|V " .

The defect measures: we define the parabolic and entropy defect measures
p" = 8,0 ® (€)|Vp"|* and ¢" = 5,1n|Vp"[*.

The “energy inequality” for 0:p = A®(p) encodes the nonlinear regularity,

5o ([ )+ [ =

and the entropy measure is analogous to the “shocks” from before.
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III. The kinetic formulation

The regularized equation: for a smooth S and ¥ and d,m = do(§ — p"),

/R /U S/ (€) o dhp” = — / / VY - 5,V 41 / S(p") A
- / /U S (€)(DeA)(2,€) - 5,0 V" — / /U S (€)Y - A)(w, )0,
- /R /U S (&) dp" — /R /U S (€)dg",

for the parabolic and entropy defect measures
p" = 8,n®' ()|Vp"|* and ¢" = 8,nn|Vp"[*.
The kinetic function: the kinetic function x”7 : U X R x [0,00) — {=1,0,1} of p",

X"(#,€,t) = Lioce<pn(a,t)} — Lipn(a,t)<e<0}-
We observe the distributional equalities, for 9:F(z, &) = f(z,€) and F(x,0) =0,

// (2,6, 00V f (2, €) = // V(€)= /( ,p">=—/Uf(a:,p")Vp'

That is, VX" = 0,mVp", O:x" = 6,m0:p", and Oex" = do — Jpn.
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III. The kinetic formulation

The regularized equation: for a smooth S and 1 and for (V- A)(z,0) =0,

[ stom==[ [owome v fos
—/R/Uq/JS'(ﬁ)(ﬁgA)(x,ﬁ)-VX+/R/U1/JS/(5)(V'A)(xvf)aﬁx
[ [esm©a = [ [ vs"©an

for the parabolic and entropy defect measures
p" = 8pn® ()[Vp"[* and ¢" = S,mn|Vp"[?,
and for the kinetic function

X" (2,€:1) = Lioce<pn (a0} — Lipn(a,t)<e<0}-
That is, for the test function ¢(z,&) = ¥(x)S’(£),

[ oo = [ [ @ecaoin ] [ xao- [ [ oo v

+AAMVAM%@ﬂfAA&MﬂfAL&MW
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III. The kinetic formulation

The regularized kinetic equation: for smooth ¢ and (V- A)(z,0) =0,

/R/thx":/R/U<I>’(£)x”A¢+n/R/UX"A¢—/R/U¢(8§A)(:c,§)-VX”
[ [ o n@ooe - [ [ oo - [ [ aoar

or, in the sense of distributions,
ax" = () AX" + nAx" — (0cA) - VX" + (V- A)dex” + ep” + Jeq”-

The n — 0 limit: suppose that p” — p, Vp" — Vp, ¢" — G, and p" — p. Then,
x" — x and, in the sense of measures, the parabolic defect measure p of p satisfies

p=0,9(&)|Vp|* < liminf 8,2 ®'(€)|Vp"|* = liminf p” = 5,
n— oo n— oo
and we define the nonnegative entropy defect measure ¢ = ¢+ (p — p).

The kinetic equation: we have the kinetic equation, in the sense of distributions,

dix = @' (£)Ax — (9eA) - Vx + (V- A)dex + Oep + Oeq.
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III. The kinetic formulation

The kinetic equation: for the original equation
Orp = AP(p) = V - (A(p, x)),
the kinetic formulation is
Oix = @' (§)Ax — (9cA) - Vx + (V- A)dex + Oep + Ocq,

for the kinetic function X = 1j0<¢<p(a,t)} — 1{p(z,t)<e<0}, for a nonnegative entropy
defect measure ¢, and for the parabolic defect measure

p=00(¢ — p)@'()|Vp|*.

Measures decay at infinity: for ¢(§) = 1>k} and A(x,§) = A(£), since

/R/]rd X(@, &, 1)6(8) = /W(P - K)y

[ ol ) = Ky +p(T 4K x 0.70) + (1 x {8} 5 0.7 = [ (o= K

we have that

If po € L' then p,q — 0 as [¢] = oo.
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III. The kinetic formulation
The equation: if A(z, &) = A(£) we have Oyx = &' (§)Ax — (OcA) - VX + Oep + Okq.

Uniqueness of kinetic solutions: let ¢ be a smooth cutoff function and let p! and
p> be two kinetic solutions with kinetic functions x* and x?. Then,

/d ot = P’ ://d IXI—XQIQZ//d x'sgn(€) + x*sgn(€) — 2x'x%,
T RJT R JT

we observe that

o [ [ I == [ [ (@ocsene) + ansen() - 200 - 2t
R J1d R J1d
2 . 2
= —2¢(0) Z/ / (50 dpi + do dqi)) +2¢(0) Z/ / (50 dpi + do dqi)
i=1 /R JTI i=1 /R JT?
+4// @'(£)6,10,2Vp' - Vp*¢(p")
R JTd
—2/ C(pl)(épz dp' + 0,2 dql) —2/ C(pl)(épl dp2+6p1 dq2)
R JTd R JTd

2 . .
+Z/ @7 — D)E)(dp' + dg).
i=1 YR /T4
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III. The kinetic formulation

Uniqueness of kinetic solutions: we have using the nonnegativity and definitions
of the defect measures and Holder’s inequality,

1 22, _ , oo
8t-/R/Td|X —XIC—4/R/Td<I>(§)6p16p2Vp Vp=C(p?)

-2 /'/" <uf>(6pzdp14kapqu1)Afzjéjgd<<pw(6pldp24+ap1dq2)
/ /“ X =1 E(dp' + dg)
<4// "(€)8,18,2Vp' - Vp*¢(p 722/ / C(p")3,18,29"(€)|Vp'[?
2
+24LWM—W@WWMU
<Z/Alwl|uww+m>

The final term vanishes as ( — 1 using the vanishing of the defect measures at infinity. We
conclude that 8 [ra [x* — x?|> < 0 and, therefore,

/|Mmoffmm=//W#—ﬁPs/|%f£L
Td R JTd Td
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III. The kinetic formulation

Uniqueness of kinetic solutions [Perthame; 1998]

Let A: RY — R? be locally Lipschitz continuous and let po € L*(R%). Then there
exists a unique kinetic solution of the equation

dip+V-A(p) =0 in R? x (0,00) with p(-,0) = po.
Furthermore, if p! and p? are two solutions with initial data p$ and pg,

1 2 1 2
t:ﬁ,‘;) 0" =p ||L1(1Rd) < [lpo _POHLl(Rd)'

Viscous Burger’s equation: in one-dimension,
1
Oup + 02p + 0, (§p2) —0.
The entropy formulation is, for every convex S,

0:S(p) + 925(p) + pd=S(p) < =S" (p)|0upl”,

and the kinetic formulation is, for some nonnegative measure ¢,

ux + 02X + E0ax = Deq + O (5p|81p|2)~
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IV. The skeleton equation

The rate function: for p € L*(T¢ x [0,T7]),

1. 1
I(p) = 5 lnf{l\glliz 10 = Ad(p) =V - (92 (p)g)} :
The skeleton equation: for controls g € L*(T% x [0,T])¢,

Oup = A®(p) = V- (92 (p)g) in T x (0,T) with p(-,0) = po.

The porous media case: for nonnegative data and ®(§) = £™,

dp=Ap" —V-(p?g) in T x (0,T) with p(-,0) = po.

N T TN,
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IV. The skeleton equation

The skeleton equation: in the porous media case dyp = Ap™ — V- (p% g).

Zooming in: consider the rescaling p(z,t) = Ap(nz, 7t) which solves

0= (ayamr )2 G™ =V (7%9).

for g defined by

T

nAz 7t

3(w,0) = (== )9z, 70).

We preserve the diffusion by fixing W =1 and for r € [1,00) we preserve the

L"-norm of the initial data by fixing A = 77%. Then,

d, 2 ,d(m
1-g+2+d (g

~ m 1
”gHLP([O,T];LQ(Rd;]Rd)) =n 4 ‘Z) ”g”LP([O,T];L‘I(Rd;JRd))‘

To ensure that this norm does not diverge as 7 — 0, we require that
d 1 2 d d
1+2(Z+-)22+2+ 2
r\2 ¢ g p Tq
If p = g = 2, we conclude that 4/2r > 4/2 and therefore that r = 1.
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IV. The skeleton equation

The skeleton equation: we have

dup = AD(p) — V- (22 (p)g).

The a priori estimate: test the equation with 1(p) to find, for ¥/ = 1,

& / W(p) + / & (o) (0)| V| = / 3% ()0 (p)g - Vp.

It follows from Holder’s and Young’s inequality that, for every ¢ € (0, 1),

o [ o)+ [ ¥ IV <5 [ 20w 0?7 +f/\g|

To close the estimate, we require that ®'(£)y’(€) < o' (€)*®(€), or that

% <9’ and, hence, we take ¥(£) = log(®(£)).
Using the equality Vo (p) = wVp we have
292 (p)

T 1 T
sup / \11(p)+/ \vqﬂ(p)ﬁs/ ‘I’(Po)-i-/ / ol
te[0,7] JT1d 0 Td Td 0 Td

If ®(&) =&™ then U(£) = m(&log(€) — &) is the (negative) physical entropy.
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IV. The skeleton equation
The skeleton equation: we have

dup = Ad(p) — V- (% (p)g) in T? x (0,T) with p(-,0) = po,

and we have the a priori estimate

T 1
sup / \I/¢(p)+/ \vqn(p)Fs/ Wa(po) / / lol?,
tefo,7) J1d o Jrd Td

for U4 (&) = log(®(€£)) and for po in the entropy space

Ente(T%) = {pe LY(T%): p >0 and /

Td

Wa(po) <OO}-

The kinetic form: for the kinetic function y, for a nonnegative measure ¢,

drx = @' (€) A - ;’ﬁw g+ BV 9)Iex + ¢ (5, () V) + Deq

i (¢)
= (&) Ax — 0 (P Vx - g) + V- (@2 (€)g0x)
+ 06 (8, e (V0 () + Oca
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IV. The skeleton equation

The skeleton equation: we have
1
dip = Ad(p) — V- (®2(p)g) in T x (0,T) with p(-,0) = po,

and the conservative kinetic form

O0x = ¥ () = 06 (33 ©Vx-9) + V- (83 €000 + 0 (5, 3 IV 81 ()I) + 0

For every ¢ € C°(T¢ x (0,00)), for x: = x(z, &, 1), using Vx = 6,Vp, the equality

///‘P( XM——?/ [, 22 0vei () (vo)a.p)

and O0:x = do — J, we have that

// = // o Z/Ot / P2 (p)VE (p) - (Vo) (. p)

[ oown vt g+ [ oo Vo)

- [ [ owenmlwstor- [ [ [ oo

If ®(¢) = £™ then <I>’(§) = m ¢ and the products are not integrable.

=~
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IV. The skeleton equation

The skeleton equation: the kinetic formulation, for ®(¢) = ¢M,

// oxe = / / $x0 =2 / / pEVpE (Vo) (x,p)
+%/t/ (9c0)(x, p)pVp s ‘g+/t/ p%g-(Ve)(z,p)
L YA

The cutoff: if (ur is a smooth cutoff of [M ™', M] on [(2M)™", M + 1],

4 / / OLAEIRES / / 1{<2M>71<,3<M71}\Vp7\2
m Jo Jrd o Jrd

t
+ (M+ 1)/ /d 1{IM<p<1VI+1}|vP7|2'
0o Jrd

The decay of the parabolic defect measure: by dominated convergence

and, essentially by the fact that > an, < co implies lim inf,(na,) = 0,

hmlnf (M+1) / / 1{M<p<M+1}|me|
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IV. The skeleton equation

Renormalized kinetic solutions [F., Gess; 2022]

A function p € C([0,T]; L*(T%)) is a stochastic kinetic solution of the equation
dp = A®(p) — V- (2 (p)g) in T? x (0,T) with p(-,0) = po,

for po € Ente(T?) if 2 (p) € L2([0, T]; H*(T%)) and, for every ¢ € C°(T% x (0, 00)),

// ¢”“:// ¢X°’2/t/qrd@%<f>>v<1>%<p>-<v¢)<x,p>

/ 1 %:0)(@:0) @/((ﬁ))vqﬁ‘ 9+/ /<I> (Vo) (x,p)

Uniqueness and existence of kinetic solutions [F., Gess; 2022]

Assume that ®(0) = 0, that ® > 0 on (0, c0), that @’ is locally !/2-Holder continuous
on (0,00), and Supy_¢< s |§,(—é))| < cM. Then renormalized kinetic solutions are
unique. Existence under general assumptions including ®(§) = €™ for m € (0, 00).
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IV. The skeleton equation
A weak solution: a weak solution of the equation
dup = AB(p) =V - (2 (p)g) in T*x (0.T) with p(-0) = po,
for po € Ente(T) is a function p € C([0, T]; L*(T?)) that satisfies
% (p) € L([0.7]; H'(T"),
and, for every ¢ € C>(T%),

[oo= [ mo=2[ [ at@veti).vor [ [ o}
Deriving the kinetic form: for 9:¥(z, &) = 1(z, £), for p° = (p * K°),
o [ W) = [ viw 000"
— -2 [(V)(a.) - @ VO (0)" - [(T0)(apT) - @2 (o))"
=2 [ @) IV - @2 )VRE ) — [l VH - (@F )"

Here V¢© is not defined and (<I>% (p)V@é (p))¢ converges essentially in L'.
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IV. The skeleton equation

Equivalence of weak and renormalized kinetic solutions [F., Ge

Under general assumptions including ®(§) = £™ for every m € [1,00), a function
p € C([0,T]; L*(T%)) that satisfies <I>%(p) € L2([0,T]; H*(T%)) is a renormalized
kinetic solution of

dp = Ad(p) — V- (% (p)g) in T? x (0,T) with p(-,0) = po,

for po € Ente (']I‘d)7 if and only if p is a weak solution.

e equivalence of renormalized and weak solutions [Ambrosio; 2004], [DiPerna,
Lions; 1989]

e strong continuity with respect to weak convergence of the control

Weak-strong continuity [F., Gess; 2022]

If p,, are solutions of the skeleton equation with controls g, — g and initial data
po — po then p, — p for p the solution of the skeleton equation with control g and
initial data po.
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