The kinetic formulation of the skeleton equation

Benjamin Fehrman
University of Oxford
27 February 2023

I. Scalar conservation laws

The equation: the scalar conservation law

$$
\partial_{t} \rho+\nabla \cdot A(\rho)=0 \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho(\cdot, 0)=\rho_{0}
$$

where ρ is the scalar density and A is the \mathbb{R}^{d}-valued flux satisfying

$$
\partial_{t} \int_{U} \rho=-\oint_{\partial U} A(\rho) \cdot \nu
$$

for the unit outer normal ν to U.

Weak formulation: for every $\psi \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d} \times[0, \infty)\right)$,

$$
\int_{\mathbb{R}^{d}} \psi(x, 0) \rho_{0}(x)+\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \rho \partial_{t} \psi=-\int_{0}^{\infty} \int_{\mathbb{R}^{d}} A(\rho) \cdot \nabla \psi
$$

A weak solution is an integrable ρ satisfying this equation.

I. Scalar conservation laws

Uniqueness of smooth solutions: let ρ^{i} solve $\partial_{t} \rho_{i}+\nabla \cdot A\left(\rho^{i}\right)=0$ and let $f^{\delta}(\xi)=|\xi|^{\delta}$ so that $\left(f^{\delta}\right)^{\prime}(\xi)=\operatorname{sgn}^{\delta}(\xi)$ and $\left(f^{\delta}\right)^{\prime \prime}(\xi) \simeq \frac{4}{\delta} \mathbf{1}_{\{-\delta<\xi<\delta\}}$. Then,

$$
\begin{aligned}
\partial_{t} \int f^{\delta}\left(\rho^{1}-\rho^{2}\right) & =\int\left(f^{\delta}\right)^{\prime}\left(\rho^{1}-\rho^{2}\right) \nabla \cdot\left(A\left(\rho^{1}\right)-\left(\rho^{2}\right)\right) \\
& =-\int\left(f^{\delta}\right)^{\prime \prime}\left(\rho^{1}-\rho^{2}\right)\left(\nabla \rho^{1}-\nabla \rho^{2}\right) \cdot\left(A\left(\rho^{1}\right)-A\left(\rho^{2}\right)\right)
\end{aligned}
$$

We have that

$$
\begin{aligned}
& \left|\int\left(f^{\delta}\right)^{\prime \prime}\left(\rho^{1}-\rho^{2}\right)\left(\nabla \rho^{1}-\nabla \rho^{2}\right) \cdot\left(A\left(\rho^{1}\right)-A\left(\rho^{2}\right)\right)\right| \\
& \leq \frac{c}{\delta} \int \mathbf{1}_{\left\{\left|\rho^{1}-\rho^{2}\right|<\delta\right\} \mid}\left|\nabla \rho^{1}-\nabla \rho^{2}\right|\left|A\left(\rho^{1}\right)-A\left(\rho^{2}\right)\right| \\
& \leq c\|A\|_{\text {Lip }} \int \mathbf{1}_{\left\{\left|\rho^{1}-\rho^{2}\right|<\delta\right\}}\left(\left|\nabla \rho^{1}\right|+\left|\nabla \rho^{2}\right|\right) .
\end{aligned}
$$

Passing $\delta \rightarrow 0$ using dominated convergence, for $\rho_{t}^{i}=\rho^{i}(\cdot, t)$,

$$
\sup _{t} \int\left|\rho_{t}^{1}-\rho_{t}^{2}\right| \leq \int\left|\rho_{0}^{1}-\rho_{0}^{2}\right|
$$

Lipschitz continuity justifies

$$
\partial_{t} \int\left|\rho^{1}-\rho^{2}\right|=-2 \int \delta_{0}\left(\rho_{t}^{1}-\rho_{t}^{2}\right)\left(\nabla \rho^{1}-\nabla \rho^{2}\right) \cdot\left(A\left(\rho^{1}\right)-A\left(\rho^{2}\right)\right)=0
$$

I. Scalar conservation laws

Nonlinear transport: we have the "transport" equation, for $A=\left(A_{1}, \ldots, A_{d}\right)$,

$$
\partial_{t} \rho+\nabla \cdot(A(\rho))=\partial_{t} \rho+\sum_{i=1}^{d} A_{i}^{\prime}(\rho) \partial_{i} \rho=0
$$

Method of characteristics: we formally solve the ODE, for $A^{\prime}=\left(A_{1}^{\prime}, \ldots, A_{d}^{\prime}\right)$,

$$
\dot{X}_{t}^{x}=A^{\prime}\left(\rho\left(X_{t}^{x}, t\right)\right) \text { with } X_{0}^{x}=x
$$

and observe that, on the trajectories X_{t}^{x},

$$
\begin{aligned}
\partial_{t} \rho\left(X_{t}^{x}, t\right) & =\partial_{t} \rho\left(X_{t}^{x}, t\right)+\dot{X}_{t}^{x} \cdot \nabla \rho\left(X_{t}^{x}, t\right) \\
& =\partial_{t} \rho\left(X_{t}^{x}, t\right)+A^{\prime}\left(\rho\left(X_{t}^{x}, t\right)\right) \cdot \nabla \rho\left(X_{t}^{x}, t\right)=0
\end{aligned}
$$

The solution is constant on the trajectories X_{t}^{x},

$$
\rho\left(X_{t}^{x}, t\right)=\rho_{0}(x) \text { and } \dot{X}_{t}^{x}=A^{\prime}\left(\rho_{0}(x)\right) \text { with } X_{0}^{x}=x
$$

Representation formula: we have, for the inverse characteristics Y_{t}^{x},

$$
\rho(x, t)=\rho_{0}\left(Y_{t}^{x}\right) \text { on } \mathbb{R}^{d} \times[0, \infty)
$$

which is a local in time smooth solution [Evans; 2010].

I. Scalar conservation laws

Burger's equation: in one-dimension,

$$
\partial_{t} \rho+\partial_{x}\left(\frac{1}{2} \rho^{2}\right)=\partial_{t} \rho+\rho \partial_{x} \rho=0 .
$$

The characteristics: In this case, $A^{\prime}(\rho)=\rho$ and the characteristic equations are

$$
\dot{X}_{t}^{x}=A^{\prime}\left(\rho_{0}(x)\right)=\rho_{0}(x) \text { with } X_{t}^{x}=x+\rho_{0}(x) t .
$$

We therefore have, for the inverse characteristics Y_{t}^{x},

$$
Y_{t}^{x}=x-\rho_{0}(x) t \text { and } \rho(x, t)=\rho_{0}\left(x-\rho_{0}(x) t\right)
$$

I. Scalar conservation laws

Scalar conservation law: in one-dimension,

$$
\partial_{t} \rho+\nabla \cdot(A(\rho))=0,
$$

and there exists a shock on graph $(f(t), t)$.

Rankine-Hugoniot condition: since $A(\rho(x+f(t), t))$ is constant in time,

$$
\partial_{t}(A(\rho(x+f(t), t)))=\partial_{x}(A(\rho)) f^{\prime}(t)+\partial_{t}(A(\rho))=0,
$$

and from the equation

$$
\partial_{t}\left(\rho-\frac{1}{f^{\prime}(t)} A(\rho)\right)=0 .
$$

Hence, by equating the jump,

$$
f^{\prime}(t)=\frac{A(\beta)-A(\alpha)}{\beta-\alpha} .
$$

I. Scalar conservation laws

Burger's equation: in one-dimension,

$$
\partial_{t} \rho+\rho \partial_{x} \rho=0,
$$

and we have, for the inverse characteristics Y_{t}^{x},

$$
Y_{t}^{x}=x-\rho_{0}(x) t \text { and } \rho(x, t)=\rho_{0}\left(x-\rho_{0}(x) t\right)
$$

Rankine-Hugoniot condition: for $\rho_{0}(x)=1$ if $x \leq 0$ and $\rho_{0}(x)=0$ if $x>0$,

$$
f^{\prime}(t)=\frac{A(0)-A(1)}{0-1}=\frac{1}{2},
$$

for the shock line $(f(t), t)$ with $t \in[0, \infty)$.

I. Scalar conservation laws

Burger's equation: in one-dimension,

$$
\partial_{t} \rho+\rho \partial_{x} \rho=0,
$$

and we have, for the inverse characteristics Y_{t}^{x},

$$
Y_{t}^{x}=x-\rho_{0}(x) t \text { and } \rho(x, t)=\rho_{0}\left(x-\rho_{0}(x) t\right)
$$

Rankine-Hugoniot condition: for $\rho_{0}(x)=0$ if $x \leq 0$ and $\rho_{0}(x)=1$ if $x>0$,

$$
f^{\prime}(t)=\frac{A(1)-A(0)}{1-0}=\frac{1}{2}
$$

Shock: a weak solution is $\rho(x, t)=0$ if $x \leq \frac{1}{2} t$ and $\rho(x, t)=1$ if $x>\frac{1}{2} t$.

I. Scalar conservation laws

Burger's equation: in one-dimension,

$$
\partial_{t} \rho+\rho \partial_{x} \rho=0
$$

with $\rho_{0}(x)=0$ if $x \leq 0$ and $\rho_{0}(x)=1$ if $x>0$.
Rarefaction wave: we define $\rho(x, t)=0$ if $x \leq 0, \rho(x, t)=1$ if $x \geq t$, and $\rho(x, t)=\alpha$ on the line $(\alpha t, t)$ for $\alpha \in(0,1)$. Since ρ is constantly α on the line $(\alpha t, t)$,

$$
0=\partial_{t}(\rho(\alpha t, t))=\partial_{t} \rho(\alpha t, t)+\alpha \partial_{x} \rho(\alpha t, t)=\partial_{t} \rho+\rho \partial_{x} \rho
$$

Infinitely many weak solutions: shock vs. rarefaction wave vs. combination.

II. Entropy solutions

The regularized equation: for $\eta \in(0,1)$, the equation

$$
\partial_{t} \rho^{\eta}-\eta \Delta \rho^{\eta}+\nabla \cdot\left(A\left(\rho^{\eta}\right)\right)=0 \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho^{\eta}(\cdot, 0)=\rho_{0} \text {, }
$$

is classically well-posed for general A.
A selection principle as $\eta \rightarrow 0$: if S is convex, for the composition $S\left(\rho^{\eta}\right)$,

$$
\begin{aligned}
\partial_{t} S\left(\rho^{\eta}\right) & =\eta S^{\prime}\left(\rho^{\eta}\right) \Delta \rho^{\eta}-S^{\prime}\left(\rho^{\eta}\right) \nabla \cdot A\left(\rho^{\eta}\right) \\
& =\eta \Delta S\left(\rho^{\eta}\right)-S^{\prime}\left(\rho^{\eta}\right) \nabla \cdot A\left(\rho^{\eta}\right)-\eta S^{\prime \prime}\left(\rho^{\eta}\right)\left|\nabla \rho^{\eta}\right|^{2} \\
& \leq \eta \Delta S\left(\rho^{\eta}\right)-S^{\prime}\left(\rho^{\eta}\right) \nabla \cdot A\left(\rho^{\eta}\right) .
\end{aligned}
$$

The entropy inequality: arguing that, for all smooth and compactly supported ψ,

$$
\lim _{\eta \rightarrow 0} \int \eta \Delta S\left(\rho^{\eta}\right) \psi=\lim _{\eta \rightarrow 0} \int \eta S\left(\rho^{\eta}\right) \Delta \psi=0,
$$

if $\rho^{\eta} \rightarrow \rho$ as $\eta \rightarrow 0$ then, for all convex S,

$$
\partial_{t} S(\rho)+S^{\prime}(\rho) \nabla \cdot A(\rho)=\partial_{t} S(\rho)+\nabla \cdot \beta(\rho) \leq 0,
$$

for $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right)$ satisfying $\beta_{i}^{\prime}=S^{\prime} A_{i}^{\prime}$.

II. Entropy solutions

The regularized equation: for $\eta \in(0,1)$, the equation

$$
\partial_{t} \rho^{\eta}-\eta \Delta \rho^{\eta}+\nabla \cdot\left(A\left(\rho^{\eta}\right)\right)=0 \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho^{\eta}(\cdot, 0)=\rho_{0} \text {. }
$$

A particular choice of entropy: for $K \in \mathbb{R}$ we formally differentiate

$$
\begin{aligned}
\partial_{t}\left|\rho^{\eta}-K\right|= & \eta \operatorname{sgn}\left(\rho^{\eta}-K\right) \Delta \rho^{\eta}-\operatorname{sgn}\left(\rho^{\eta}-K\right) \nabla \cdot\left(A\left(\rho^{\eta}\right)\right) \\
= & \eta \Delta\left|\rho^{\eta}-K\right|-\operatorname{sgn}\left(\rho^{\eta}-K\right) \nabla \cdot\left(A\left(\rho^{\eta}\right)-A(K)\right)-2 \eta \delta_{0}\left(\rho^{\eta}-K\right)\left|\nabla \rho^{\eta}\right|^{2} \\
\leq & \eta \Delta\left|\rho^{\eta}-K\right|-\nabla \cdot\left(\operatorname{sgn}\left(\rho^{\eta}-K\right)\left(A\left(\rho^{\eta}\right)-A(K)\right)\right) \\
& +2 \delta_{0}\left(\rho^{\eta}-K\right) \nabla \rho^{\eta} \cdot\left(A\left(\rho^{\eta}\right)-A(K)\right) \\
= & \eta \Delta\left|\rho^{\eta}-K\right|-\nabla \cdot\left(\operatorname{sgn}\left(\rho^{\eta}-K\right)\left(A\left(\rho^{\eta}\right)-A(K)\right)\right) .
\end{aligned}
$$

Passing $\eta \rightarrow 0$ as before, if $\rho^{\eta} \rightarrow \rho$,

$$
\partial_{t}|\rho-K|+\nabla \cdot(\operatorname{sgn}(\rho-K)(A(\rho)-A(K))) \leq 0
$$

An entropy solution: we say that ρ is an entropy solution of the equation

$$
\partial_{t} \rho+\nabla \cdot(A(\rho))=0
$$

if for every $K \in \mathbb{R}$, distributionally on $\mathbb{R}^{d} \times[0, \infty)$,

$$
\partial_{t}|\rho-K|+\nabla \cdot(\operatorname{sgn}(\rho-K)(A(\rho)-A(K))) \leq 0
$$

II. Entropy solutions

An entropy solution: we say that ρ is an entropy solution of the equation

$$
\partial_{t} \rho+\nabla \cdot(A(\rho))=0
$$

if for every $K \in \mathbb{R}$, distributionally on $\mathbb{R}^{d} \times[0, \infty)$,

$$
\partial_{t}|\rho-K|+\nabla \cdot(\operatorname{sgn}(\rho-K)(A(\rho)-A(K))) \leq 0
$$

Uniqueness of entropy solutions: following the variable doubling technique of [Kružkov; 1970], we define $\Phi(x, y, s, t)=|u(x, t)-v(y, s)|$ and observe that $\partial_{t} \Phi \leq-\nabla_{x} \cdot(\operatorname{sgn}(u-v)(A(u)-A(v)))$ and $\partial_{s} \Phi \leq-\nabla_{y} \cdot(\operatorname{sgn}(v-u)(A(v)-A(u)))$.
That is, $\left(\partial_{t}+\partial_{s}\right) \Phi \leq-\left(\nabla_{x}+\nabla_{y}\right) \cdot(\operatorname{sgn}(u-v)(A(u)-A(v)))$.
Convolution trick: let $\kappa^{\varepsilon}=\kappa_{d}^{\varepsilon}(x-y) \kappa_{1}^{\varepsilon}(t-s)$ for standard scale ε convolution kernels κ_{d}^{ε} on \mathbb{R}^{d} and κ_{1}^{ε} on \mathbb{R}, for which $\left(\partial_{t}+\partial_{s}\right) \kappa^{\varepsilon}=\left(\nabla_{x}+\nabla_{y}\right) \kappa^{\varepsilon}=0$.
L^{1}-contraction: we conclude that, for every $\varepsilon \in(0,1)$,

$$
\left(\partial_{t}+\partial_{s}\right) \int_{\left(\mathbb{R}^{d}\right)^{2}} \Phi(x, y, t, s) \kappa^{\varepsilon}(x, y, t, s) \leq-\int_{\left(\mathbb{R}^{d}\right)^{2}} \Phi(x, y, t, s)\left(\nabla_{x}+\nabla_{y}\right) \kappa^{\varepsilon}=0
$$

which, after taking $\varepsilon \rightarrow 0$, yields $\partial_{t} \int_{\mathbb{R}^{d}}|u-v| \leq 0$ and $\|u-v\|_{L^{1}} \leq\left\|u_{0}-v_{0}\right\|_{L^{1}}$.

II. Entropy solutions

Uniqueness of entropy solutions [Kružkov; 1970]

Let $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be locally Lipschitz continuous and let $\rho_{0} \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)$. Then there exists a unique entropy solution of the equation

$$
\partial_{t} \rho+\nabla \cdot A(\rho)=0 \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho(\cdot, 0)=\rho_{0}
$$

Furthermore, if ρ^{1} and ρ^{2} are two solutions with initial data ρ_{0}^{1} and ρ_{0}^{2},

$$
\sup _{t \in[0, \infty)}\left\|\rho^{1}-\rho^{2}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leq\left\|\rho_{0}^{1}-\rho_{0}^{2}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}
$$

Burger's equation: in one-dimension,

$$
\partial_{t} \rho+\rho \partial_{x} \rho=0,
$$

with $\rho_{0}(x)=0$ if $x \leq 0$ and $\rho_{0}(x)=1$ if $x>0$.
The entropy solution: the rarefaction wave is a continuous and smooth (away the lines $\{x=0\}$ and $\{x=t\}$) solution, and is hence the entropy solution.

II. Entropy solutions

Burger's equation: $\partial_{t} \rho+\rho \partial_{x} \rho=0$ with $\rho_{0}(x)=0$ if $x \leq 0$ and $\rho_{0}(x)=1$ if $x>0$. Shock: a weak solution is $\rho(x, t)=0$ if $x \leq \frac{1}{2} t$ and $\rho(x, t)=1$ if $x>\frac{1}{2} t$.

Failure of the entropy condition: formally since $|\rho-K|\left(x+\frac{1}{2} t, t\right)$ is constant in time,

$$
\partial_{t}\left(|\rho-K|\left(x+\frac{1}{2} t, t\right)\right)=\frac{1}{2} \partial_{x}|\rho-K|+\partial_{t}|\rho-K|=0
$$

and so the entropy condition becomes

$$
\partial_{t}|\rho-K|+\partial_{x}\left(\operatorname{sgn}(\rho-K)\left(\frac{\rho^{2}}{2}-\frac{K^{2}}{2}\right)\right)=\frac{1}{2} \partial_{x}\left(\operatorname{sgn}(\rho-K)\left(\rho^{2}-K^{2}\right)-|\rho-K|\right) \leq 0
$$

Equating the jumps requires $1-2 K^{2} \leq 1-2 K$ for $K \in[0,1]$, a contradiction.
If $\rho_{0}(x)=1$ for $x \leq 0$ and $\rho_{0}(x)=0$ for $x>0$, the condition is $2 K^{2}-1 \leq 2 K-1$.

III. The kinetic formulation

Degenerate parabolic-hyperbolic PDE: for a nondecreasing Φ,

$$
\partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot(A(\rho, x)),
$$

and the regularization

$$
\partial_{t} \rho^{\eta}=\Delta \Phi\left(\rho^{\eta}\right)+\eta \Delta \rho^{\eta}-\nabla \cdot\left(A\left(\rho^{\eta}, x\right)\right) .
$$

The entropy formulation: for a smooth, convex S,

$$
\begin{aligned}
\partial_{t} S\left(\rho^{\eta}\right)= & S^{\prime}\left(\rho^{\eta}\right) \Delta \Phi\left(\rho^{\eta}\right)+\eta S^{\prime}\left(\rho^{\eta}\right) \Delta \rho^{\eta}-S^{\prime}\left(\rho^{\eta}\right) \nabla \cdot\left(A\left(\rho^{\eta}, x\right)\right) \\
= & \nabla \cdot\left(\Phi^{\prime}\left(\rho^{\eta}\right) \nabla S\left(\rho^{\eta}\right)\right)+\eta \Delta S\left(\rho^{\eta}\right)-S^{\prime}\left(\rho^{\eta}\right) \nabla \cdot\left(A\left(\rho^{\eta}, x\right)\right) \\
& -S^{\prime \prime}\left(\rho^{\eta}\right) \Phi^{\prime}\left(\rho^{\eta}\right)\left|\nabla \rho^{\eta}\right|^{2}-\eta S^{\prime \prime}\left(\rho^{\eta}\right)\left|\nabla \rho^{\eta}\right|^{2}
\end{aligned}
$$

If $\rho^{\eta} \rightarrow \rho$ strongly and $\nabla \rho^{\eta} \rightharpoonup \nabla \rho$ weakly as $\eta \rightarrow 0$,

$$
S^{\prime \prime}(\rho) \Phi^{\prime}(\rho)|\nabla \rho|^{2} \leq \liminf _{\eta \rightarrow 0} S^{\prime \prime}\left(\rho^{\eta}\right) \Phi^{\prime}\left(\rho^{\eta}\right)\left|\nabla \rho^{\eta}\right|^{2} \text { in the sense of measures, }
$$

and

$$
\partial_{t} S(\rho) \leq \nabla \cdot\left(\Phi^{\prime}(\rho) \nabla S(\rho)\right)-S^{\prime}(\rho) \nabla \cdot(A(\rho, x))-S^{\prime \prime}(\rho) \Phi^{\prime}(\rho)|\nabla \rho|^{2} .
$$

III. The kinetic formulation

Entropy solutions: an entropy solution of the equation

$$
\partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot(A(\rho, x))
$$

is a function ρ that satisfies, distributionally for every convex S,

$$
\partial_{t} S(\rho) \leq \nabla \cdot\left(\Phi^{\prime}(\rho) \nabla S(\rho)\right)-S^{\prime}(\rho) \nabla \cdot(A(\rho, x))-S^{\prime \prime}(\rho) \Phi^{\prime}(\rho)|\nabla \rho|^{2} .
$$

The porous media equation: in the case $\partial_{t} \rho=\Delta \rho^{[m]}$ for $\xi^{[m]}=\xi|\xi|^{m-1}$,

$$
\begin{aligned}
\partial_{t} \int|u-v| & =\int \operatorname{sgn}(u-v) \Delta\left(u^{[m]}-v^{[m]}\right) \\
& =\int \operatorname{sgn}\left(u^{[m]}-v^{[m]}\right) \Delta\left(u^{[m]}-v^{[m]}\right) \\
& =-2 \int \delta_{0}\left(u^{[m]}-v^{[m]}\right)\left|\nabla u^{[m]}-\nabla v^{[m]}\right|^{2} \leq 0 .
\end{aligned}
$$

- formally requires H^{1}-regularity of $u^{[m]}$ and therefore $\rho_{0} \in L^{m+1}$
- the entropy inequality requires convex S
- renormalized entropy solutions [Bénilan, Carrillo, Wittbold; 2000]

III. The kinetic formulation

The regularized equation: for the equation

$$
\partial_{t} \rho^{\eta}=\Delta \Phi\left(\rho^{\eta}\right)+\eta \Delta \rho^{\eta}-\nabla \cdot\left(A\left(\rho^{\eta}, x\right)\right),
$$

we have, for a smooth S,

$$
\begin{aligned}
\partial_{t} S\left(\rho^{\eta}\right)= & \nabla \cdot\left(\Phi^{\prime}\left(\rho^{\eta}\right) \nabla S\left(\rho^{\eta}\right)\right)+\eta \Delta S\left(\rho^{\eta}\right)-S^{\prime}\left(\rho^{\eta}\right) \nabla \cdot\left(A\left(\rho^{\eta}, x\right)\right) \\
& -S^{\prime \prime}\left(\rho^{\eta}\right) \Phi^{\prime}\left(\rho^{\eta}\right)\left|\nabla \rho^{\eta}\right|^{2}-\eta S^{\prime \prime}\left(\rho^{\eta}\right)\left|\nabla \rho^{\eta}\right|^{2}
\end{aligned}
$$

For a smooth test function ψ and $U \subseteq \mathbb{R}^{d}$,

$$
\begin{aligned}
& \partial_{t} \int_{U} S\left(\rho^{\eta}\right) \psi=-\int_{U} \Phi^{\prime}\left(\rho^{\eta}\right) S^{\prime}\left(\rho^{\eta}\right) \nabla \psi \cdot \nabla \rho^{\eta}+\eta \int_{U} S\left(\rho^{\eta}\right) \Delta \psi \\
& \quad-\int_{U} \psi S^{\prime}\left(\rho^{\eta}\right) \nabla \cdot\left(A\left(\rho^{\eta}, x\right)\right)-\int_{U} \psi S^{\prime \prime}\left(\rho^{\eta}\right) \Phi^{\prime}\left(\rho^{\eta}\right)\left|\nabla \rho^{\eta}\right|^{2}-\int_{U} \psi S^{\prime \prime}\left(\rho^{\eta}\right) \eta\left|\nabla \rho^{\eta}\right|^{2},
\end{aligned}
$$

we "factor out" the dependence on the "test function" $S^{\prime}(\xi) \psi(x)$,

$$
\int_{U} \Phi^{\prime}\left(\rho^{\eta}\right) S^{\prime}\left(\rho^{\eta}\right) \nabla \psi \cdot \nabla \rho^{\eta}=\int_{\mathbb{R}} \int_{U} \Phi^{\prime}(\xi) S^{\prime}(\xi) \nabla \psi \cdot \delta_{0}\left(\xi-\rho^{\eta}\right) \nabla \rho^{\eta} .
$$

III. The kinetic formulation

The regularized equation: for the equation

$$
\partial_{t} \rho^{\eta}=\Delta \Phi\left(\rho^{\eta}\right)+\eta \Delta \rho^{\eta}-\nabla \cdot\left(A\left(\rho^{\eta}, x\right)\right),
$$

we have, for a smooth S and ψ and $\delta_{\rho^{\eta}}=\delta_{0}\left(\xi-\rho^{\eta}\right)$,

$$
\begin{aligned}
& \int_{\mathbb{R}} \int_{U} S^{\prime}(\xi) \psi \delta_{\rho^{\eta}} \partial_{t} \rho^{\eta}=-\int_{\mathbb{R}} \int_{U} \Phi^{\prime}(\xi) S^{\prime}(\xi) \nabla \psi \cdot \delta_{\rho^{\eta}} \nabla \rho^{\eta}+\eta \int_{U} S\left(\rho^{\eta}\right) \Delta \psi \\
& \quad-\int_{\mathbb{R}} \int_{U} \psi S^{\prime}(\xi)\left(\partial_{\xi} A\right)(x, \xi) \cdot \delta_{\rho^{\eta}} \nabla \rho^{\eta}-\int_{\mathbb{R}} \int_{U} \psi S^{\prime}(\xi)(\nabla \cdot A)(x, \xi) \delta_{\rho^{\eta}} \\
& \quad-\int_{\mathbb{R}} \int_{U} \psi S^{\prime \prime}(\xi) \delta_{\rho^{\eta}} \Phi^{\prime}(\xi)\left|\nabla \rho^{\eta}\right|^{2}-\int_{\mathbb{R}} \int_{U} \psi S^{\prime \prime \prime}(\xi) \delta_{\rho^{\eta} \eta\left|\nabla \rho^{\eta}\right|^{2} .}
\end{aligned}
$$

The defect measures: we define the parabolic and entropy defect measures

$$
p^{\eta}=\delta_{\rho^{\eta}} \Phi^{\prime}(\xi)\left|\nabla \rho^{\eta}\right|^{2} \text { and } q^{\eta}=\delta_{\rho \eta} \eta\left|\nabla \rho^{\eta}\right|^{2} \text {. }
$$

The "energy inequality" for $\partial_{t} \rho=\Delta \Phi(\rho)$ encodes the nonlinear regularity,

$$
\frac{1}{2} \partial_{t}\left(\int \rho^{2}\right)+\int \Phi^{\prime}(\rho)|\nabla \rho|^{2}=0
$$

and the entropy measure is analogous to the "shocks" from before.

III. The kinetic formulation

The regularized equation: for a smooth S and ψ and $\delta_{\rho} \eta=\delta_{0}\left(\xi-\rho^{\eta}\right)$,

$$
\begin{aligned}
& \int_{\mathbb{R}} \int_{U} S^{\prime}(\xi) \psi \delta_{\rho \eta} \partial_{t} \rho^{\eta}=-\int_{\mathbb{R}} \int_{U} \Phi^{\prime}(\xi) S^{\prime}(\xi) \nabla \psi \cdot \delta_{\rho^{\eta}} \nabla \rho^{\eta}+\eta \int_{U} S\left(\rho^{\eta}\right) \Delta \psi \\
& \quad-\int_{\mathbb{R}} \int_{U} \psi S^{\prime}(\xi)\left(\partial_{\xi} A\right)(x, \xi) \cdot \delta_{\rho \eta} \nabla \rho^{\eta}-\int_{\mathbb{R}} \int_{U} \psi S^{\prime}(\xi)(\nabla \cdot A)(x, \xi) \delta_{\rho^{\eta}} \\
& \quad-\int_{\mathbb{R}} \int_{U} \psi S^{\prime \prime}(\xi) \mathrm{d} p^{\eta}-\int_{\mathbb{R}} \int_{U} \psi S^{\prime \prime}(\xi) \mathrm{d} q^{\eta},
\end{aligned}
$$

for the parabolic and entropy defect measures

$$
p^{\eta}=\delta_{\rho^{\eta}} \Phi^{\prime}(\xi)\left|\nabla \rho^{\eta}\right|^{2} \text { and } q^{\eta}=\delta_{\rho \eta} \eta\left|\nabla \rho^{\eta}\right|^{2} .
$$

The kinetic function: the kinetic function $\chi^{\eta}: U \times \mathbb{R} \times[0, \infty) \rightarrow\{-1,0,1\}$ of ρ^{η},

$$
\chi^{\eta}(x, \xi, t)=\mathbf{1}_{\left\{0<\xi<\rho^{\eta}(x, t)\right\}}-\mathbf{1}_{\left\{\rho^{\eta}(x, t)<\xi<0\right\}} .
$$

We observe the distributional equalities, for $\partial_{\xi} F(x, \xi)=f(x, \xi)$ and $F(x, 0)=0$,

$$
\int_{\mathbb{R}} \int_{U} \chi^{\eta}(x, \xi, t) \nabla f(x, \xi)=\int_{U} \int_{0}^{\rho^{\eta}} \nabla f(x, \xi)=\int_{U}(\nabla F)\left(x, \rho^{\eta}\right)=-\int_{U} f\left(x, \rho^{\eta}\right) \nabla \rho^{\eta}
$$

That is, $\nabla \chi^{\eta}=\delta_{\rho \eta} \nabla \rho^{\eta}, \partial_{t} \chi^{\eta}=\delta_{\rho \eta} \partial_{t} \rho^{\eta}$, and $\partial_{\xi} \chi^{\eta}=\delta_{0}-\delta_{\rho \eta}$.

III. The kinetic formulation

The regularized equation: for a smooth S and ψ and for $(\nabla \cdot A)(x, 0)=0$,

$$
\begin{aligned}
& \int_{\mathbb{R}} \int_{U} S^{\prime}(\xi) \psi \partial_{t} \chi^{\eta}=-\int_{\mathbb{R}} \int_{U} \Phi^{\prime}(\xi) S^{\prime}(\xi) \nabla \psi \cdot \nabla \chi+\eta \int_{\mathbb{R}} \int_{U} \chi^{\eta} S^{\prime}(\xi) \Delta \psi \\
& \quad-\int_{\mathbb{R}} \int_{U} \psi S^{\prime}(\xi)\left(\partial_{\xi} A\right)(x, \xi) \cdot \nabla \chi+\int_{\mathbb{R}} \int_{U} \psi S^{\prime}(\xi)(\nabla \cdot A)(x, \xi) \partial_{\xi} \chi \\
& \quad-\int_{\mathbb{R}} \int_{U} \psi S^{\prime \prime}(\xi) \mathrm{d} p^{\eta}-\int_{\mathbb{R}} \int_{U} \psi S^{\prime \prime}(\xi) \mathrm{d} q^{\eta},
\end{aligned}
$$

for the parabolic and entropy defect measures

$$
p^{\eta}=\delta_{\rho^{\eta}} \Phi^{\prime}(\xi)\left|\nabla \rho^{\eta}\right|^{2} \text { and } q^{\eta}=\delta_{\rho^{\eta} \eta} \eta\left|\nabla \rho^{\eta}\right|^{2},
$$

and for the kinetic function

$$
\chi^{\eta}(x, \xi, t)=\mathbf{1}_{\left\{0<\xi<\rho^{\eta}(x, t)\right\}}-\mathbf{1}_{\left\{\rho^{\eta}(x, t)<\xi<0\right\}} .
$$

That is, for the test function $\phi(x, \xi)=\psi(x) S^{\prime}(\xi)$,

$$
\begin{aligned}
& \int_{\mathbb{R}} \int_{U} \phi \partial_{t} \chi^{\eta}=\int_{\mathbb{R}} \int_{U} \Phi^{\prime}(\xi) \chi^{\eta} \Delta \phi+\eta \int_{\mathbb{R}} \int_{U} \chi^{\eta} \Delta \phi-\int_{\mathbb{R}} \int_{U} \phi\left(\partial_{\xi} A\right)(x, \xi) \cdot \nabla \chi^{\eta} \\
& \quad+\int_{\mathbb{R}} \int_{U} \phi(\nabla \cdot A)(x, \xi) \partial_{\xi} \chi^{\eta}-\int_{\mathbb{R}} \int_{U} \partial_{\xi} \phi \mathrm{d} p^{\eta}-\int_{\mathbb{R}} \int_{U} \partial_{\xi} \phi \mathrm{d} q^{\eta} .
\end{aligned}
$$

III. The kinetic formulation

The regularized kinetic equation: for smooth ϕ and $(\nabla \cdot A)(x, 0)=0$,

$$
\begin{aligned}
& \int_{\mathbb{R}} \int_{U} \phi \partial_{t} \chi^{\eta}=\int_{\mathbb{R}} \int_{U} \Phi^{\prime}(\xi) \chi^{\eta} \Delta \phi+\eta \int_{\mathbb{R}} \int_{U} \chi^{\eta} \Delta \phi-\int_{\mathbb{R}} \int_{U} \phi\left(\partial_{\xi} A\right)(x, \xi) \cdot \nabla \chi^{\eta} \\
& \quad+\int_{\mathbb{R}} \int_{U} \phi(\nabla \cdot A)(x, \xi) \partial_{\xi} \chi^{\eta}-\int_{\mathbb{R}} \int_{U} \partial_{\xi} \phi \mathrm{d} p^{\eta}-\int_{\mathbb{R}} \int_{U} \partial_{\xi} \phi \mathrm{d} q^{\eta}
\end{aligned}
$$

or, in the sense of distributions,

$$
\partial_{t} \chi^{\eta}=\Phi^{\prime}(\xi) \Delta \chi^{\eta}+\eta \Delta \chi^{\eta}-\left(\partial_{\xi} A\right) \cdot \nabla \chi^{\eta}+(\nabla \cdot A) \partial_{\xi} \chi^{\eta}+\partial_{\xi} p^{\eta}+\partial_{\xi} q^{\eta}
$$

The $\eta \rightarrow 0$ limit: suppose that $\rho^{\eta} \rightarrow \rho, \nabla \rho^{\eta} \rightharpoonup \nabla \rho, q^{\eta} \rightharpoonup \tilde{q}$, and $p^{\eta} \rightharpoonup \tilde{p}$. Then, $\chi^{\eta} \rightarrow \chi$ and, in the sense of measures, the parabolic defect measure p of ρ satisfies

$$
p=\delta_{\rho} \Phi^{\prime}(\xi)|\nabla \rho|^{2} \leq \liminf _{n \rightarrow \infty} \delta_{\rho^{\eta}} \Phi^{\prime}(\xi)\left|\nabla \rho^{\eta}\right|^{2}=\liminf _{n \rightarrow \infty} p^{\eta}=\tilde{p}
$$

and we define the nonnegative entropy defect measure $q=\tilde{q}+(\tilde{p}-p)$.
The kinetic equation: we have the kinetic equation, in the sense of distributions,

$$
\partial_{t} \chi=\Phi^{\prime}(\xi) \Delta \chi-\left(\partial_{\xi} A\right) \cdot \nabla \chi+(\nabla \cdot A) \partial_{\xi} \chi+\partial_{\xi} p+\partial_{\xi} q
$$

III. The kinetic formulation

The kinetic equation: for the original equation

$$
\partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot(A(\rho, x))
$$

the kinetic formulation is

$$
\partial_{t} \chi=\Phi^{\prime}(\xi) \Delta \chi-\left(\partial_{\xi} A\right) \cdot \nabla \chi+(\nabla \cdot A) \partial_{\xi} \chi+\partial_{\xi} p+\partial_{\xi} q
$$

for the kinetic function $\chi=\mathbf{1}_{\{0<\xi<\rho(x, t)\}}-\mathbf{1}_{\{\rho(x, t)<\xi<0\}}$, for a nonnegative entropy defect measure q, and for the parabolic defect measure

$$
p=\delta_{0}(\xi-\rho) \Phi^{\prime}(\xi)|\nabla \rho|^{2}
$$

Measures decay at infinity: for $\phi(\xi)=\mathbf{1}_{\{\xi \geq K\}}$ and $A(x, \xi)=A(\xi)$, since

$$
\int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \chi(x, \xi, t) \phi(\xi)=\int_{\mathbb{T}^{d}}(\rho-K)_{+}
$$

we have that

$$
\int_{\mathbb{T}^{d}}(\rho(x, T)-K)_{+}+p\left(\mathbb{T}^{d} \times\{K\} \times[0, T]\right)+q\left(\mathbb{T}^{d} \times\{K\} \times[0, T]\right)=\int_{\mathbb{T}^{d}}\left(\rho_{0}-K\right)_{+}
$$

If $\rho_{0} \in L^{1}$ then $p, q \rightarrow 0$ as $|\xi| \rightarrow \infty$.

III. The kinetic formulation

The equation: if $A(x, \xi)=A(\xi)$ we have $\partial_{t} \chi=\Phi^{\prime}(\xi) \Delta \chi-\left(\partial_{\xi} A\right) \cdot \nabla \chi+\partial_{\xi} p+\partial_{\xi} q$.
Uniqueness of kinetic solutions: let ζ be a smooth cutoff function and let ρ^{1} and ρ^{2} be two kinetic solutions with kinetic functions χ^{1} and χ^{2}. Then,

$$
\int_{\mathbb{T}^{d}}\left|\rho^{1}-\rho^{2}\right|=\int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left|\chi^{1}-\chi^{2}\right|^{2}=\int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \chi^{1} \operatorname{sgn}(\xi)+\chi^{2} \operatorname{sgn}(\xi)-2 \chi^{1} \chi^{2}
$$

we observe that

$$
\begin{aligned}
\partial_{t} & \int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left|\chi^{1}-\chi^{2}\right|^{2} \zeta=\int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left(\partial_{t} \chi^{1} \operatorname{sgn}(\xi)+\partial_{t} \chi^{2} \operatorname{sgn}(\xi)-2 \partial_{t} \chi_{t}^{1} \chi_{t}^{2}-2 \chi_{t}^{1} \partial_{t} \chi_{t}^{2}\right) \\
= & \left.-2 \zeta(0) \sum_{i=1}^{2} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left(\delta_{0} \mathrm{~d} p^{i}+\delta_{0} \mathrm{~d} q^{i}\right)\right)+2 \zeta(0) \sum_{i=1}^{2} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left(\delta_{0} \mathrm{~d} p^{i}+\delta_{0} \mathrm{~d} q^{i}\right) \\
& +4 \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \Phi^{\prime}(\xi) \delta_{\rho^{1}} \delta_{\rho^{2}} \nabla \rho^{1} \cdot \nabla \rho^{2} \zeta\left(\rho^{1}\right) \\
& -2 \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \zeta\left(\rho^{1}\right)\left(\delta_{\rho^{2}} \mathrm{~d} p^{1}+\delta_{\rho^{2}} \mathrm{~d} q^{1}\right)-2 \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \zeta\left(\rho^{1}\right)\left(\delta_{\rho^{1}} \mathrm{~d} p^{2}+\delta_{\rho^{1}} \mathrm{~d} q^{2}\right) \\
& +\sum_{i=1}^{2} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left(2 \chi^{i+1}-1\right) \zeta^{\prime}(\xi)\left(\mathrm{d} p^{i}+\mathrm{d} q^{i}\right)
\end{aligned}
$$

III. The kinetic formulation

Uniqueness of kinetic solutions: we have using the nonnegativity and definitions of the defect measures and Hölder's inequality,

$$
\begin{aligned}
& \partial_{t} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left|\chi^{1}-\chi^{2}\right|^{2} \zeta=4 \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \Phi^{\prime}(\xi) \delta_{\rho^{1}} \delta_{\rho^{2}} \nabla \rho^{1} \cdot \nabla \rho^{2} \zeta\left(\rho^{1}\right) \\
& \quad-2 \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \zeta\left(\rho^{1}\right)\left(\delta_{\rho^{2}} \mathrm{~d} p^{1}+\delta_{\rho^{2}} \mathrm{~d} q^{1}\right)-2 \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \zeta\left(\rho^{1}\right)\left(\delta_{\rho^{1}} \mathrm{~d} p^{2}+\delta_{\rho^{1}} \mathrm{~d} q^{2}\right) \\
& \quad+\sum_{i=1}^{2} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left(2 \chi^{i+1}-1\right) \zeta^{\prime}(\xi)\left(\mathrm{d} p^{i}+\mathrm{d} q^{i}\right) \\
& \leq 4 \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \Phi^{\prime}(\xi) \delta_{\rho^{1}} \delta_{\rho^{2}} \nabla \rho^{1} \cdot \nabla \rho^{2} \zeta\left(\rho^{1}\right)-2 \sum_{i=1}^{2} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \zeta\left(\rho^{1}\right) \delta_{\rho^{1}} \delta_{\rho^{2}} \Phi^{\prime}(\xi)\left|\nabla \rho^{i}\right|^{2} \\
& \quad+\sum_{i=1}^{2} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left(2 \chi^{i+1}-1\right) \zeta^{\prime}(\xi)\left(\mathrm{d} p^{i}+\mathrm{d} q^{i}\right) \\
& \leq \sum_{i=1}^{2} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left(2 \chi^{i+1}-1\right)\left|\zeta^{\prime}(\xi)\right|\left(\mathrm{d} p^{i}+\mathrm{d} q^{i}\right)
\end{aligned}
$$

The final term vanishes as $\zeta \rightarrow 1$ using the vanishing of the defect measures at infinity. We conclude that $\partial_{t} \int_{\mathbb{T}^{d}}\left|\chi^{1}-\chi^{2}\right|^{2} \leq 0$ and, therefore,

$$
\int_{\mathbb{T}^{d}}\left|\rho^{1}(x, t)-\rho^{2}(x, t)\right|=\int_{\mathbb{R}} \int_{\mathbb{T}^{d}}\left|\chi^{1}-\chi^{2}\right|^{2} \leq \int_{\mathbb{T}^{d}}\left|\rho_{0}^{1}-\rho_{0}^{2}\right| .
$$

III. The kinetic formulation

Uniqueness of kinetic solutions [Perthame; 1998]

Let $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be locally Lipschitz continuous and let $\rho_{0} \in L^{1}\left(\mathbb{R}^{d}\right)$. Then there exists a unique kinetic solution of the equation

$$
\partial_{t} \rho+\nabla \cdot A(\rho)=0 \text { in } \mathbb{R}^{d} \times(0, \infty) \text { with } \rho(\cdot, 0)=\rho_{0} .
$$

Furthermore, if ρ^{1} and ρ^{2} are two solutions with initial data ρ_{0}^{1} and ρ_{0}^{2},

$$
\sup _{t \in[0, \infty)}\left\|\rho^{1}-\rho^{2}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leq\left\|\rho_{0}^{1}-\rho_{0}^{2}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}
$$

Viscous Burger's equation: in one-dimension,

$$
\partial_{t} \rho+\partial_{x}^{2} \rho+\partial_{x}\left(\frac{1}{2} \rho^{2}\right)=0
$$

The entropy formulation is, for every convex S,

$$
\partial_{t} S(\rho)+\partial_{x}^{2} S(\rho)+\rho \partial_{x} S(\rho) \leq-S^{\prime \prime}(\rho)\left|\partial_{x} \rho\right|^{2}
$$

and the kinetic formulation is, for some nonnegative measure q,

$$
\partial_{t} \chi+\partial_{x}^{2} \chi+\xi \partial_{x} \chi=\partial_{\xi} q+\partial_{\xi}\left(\delta_{\rho}\left|\partial_{x} \rho\right|^{2}\right)
$$

IV. The skeleton equation

The rate function: for $\rho \in L^{1}\left(\mathbb{T}^{d} \times[0, T]\right)$,

$$
I(\rho)=\frac{1}{2} \inf \left\{\|g\|_{L^{2}}^{2}: \partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot\left(\Phi^{\frac{1}{2}}(\rho) g\right)\right\} .
$$

The skeleton equation: for controls $g \in L^{2}\left(\mathbb{T}^{d} \times[0, T]\right)^{d}$,

$$
\partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot\left(\Phi^{\frac{1}{2}}(\rho) g\right) \text { in } \mathbb{T}^{d} \times(0, T) \text { with } \rho(\cdot, 0)=\rho_{0} .
$$

The porous media case: for nonnegative data and $\Phi(\xi)=\xi^{m}$,

$$
\partial_{t} \rho=\Delta \rho^{m}-\nabla \cdot\left(\rho^{\frac{m}{2}} g\right) \text { in } \mathbb{T}^{d} \times(0, T) \text { with } \rho(\cdot, 0)=\rho_{0} .
$$

IV. The skeleton equation

The skeleton equation: in the porous media case $\partial_{t} \rho=\Delta \rho^{m}-\nabla \cdot\left(\rho^{\frac{m}{2}} g\right)$.
Zooming in: consider the rescaling $\tilde{\rho}(x, t)=\lambda \rho(\eta x, \tau t)$ which solves

$$
\partial_{t} \tilde{\rho}=\left(\frac{\tau}{\eta^{2} \lambda^{m-1}}\right) \Delta\left(\tilde{\rho}^{m}\right)-\nabla \cdot\left(\tilde{\rho}^{\frac{m}{2}} \tilde{g}\right),
$$

for \tilde{g} defined by

$$
\tilde{g}(x, t)=\left(\frac{\tau}{\eta \lambda^{\frac{m}{2}-1}}\right) g(\eta x, \tau t)
$$

We preserve the diffusion by fixing $\frac{\tau}{\eta^{2} \lambda^{m-1}}=1$ and for $r \in[1, \infty)$ we preserve the L^{r}-norm of the initial data by fixing $\lambda=\eta^{\frac{d}{r}}$. Then,

$$
\|\tilde{g}\|_{L^{p}\left([0, T] ; L^{q}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)\right)}=\eta^{1-\frac{d}{p}+\frac{2}{q}+\frac{d}{r}\left(\frac{m}{2}-\frac{m}{q}+\frac{1}{q}\right)}\|g\|_{L^{p}\left([0, T] ; L^{q}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)\right)}
$$

To ensure that this norm does not diverge as $\eta \rightarrow 0$, we require that

$$
1+\frac{d}{r}\left(\frac{m}{2}+\frac{1}{q}\right) \geq \frac{2}{q}+\frac{d}{p}+\frac{d m}{r q}
$$

If $p=q=2$, we conclude that $d / 2 r \geq d / 2$ and therefore that $r=1$.

IV. The skeleton equation

The skeleton equation: we have

$$
\partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot\left(\Phi^{\frac{1}{2}}(\rho) g\right)
$$

The a priori estimate: test the equation with $\psi(\rho)$ to find, for $\Psi^{\prime}=\psi$,

$$
\partial_{t} \int \Psi(\rho)+\int \Phi^{\prime}(\rho) \psi^{\prime}(\rho)|\nabla \rho|^{2}=\int \Phi^{\frac{1}{2}}(\rho) \psi^{\prime}(\rho) g \cdot \nabla \rho .
$$

It follows from Hölder's and Young's inequality that, for every $\varepsilon \in(0,1)$,

$$
\partial_{t} \int \Psi(\rho)+\int \Phi^{\prime}(\rho) \psi^{\prime}(\rho)|\nabla \rho|^{2} \leq \frac{\varepsilon}{2} \int \Phi(\rho) \psi^{\prime}(\rho)^{2}|\nabla \rho|^{2}+\frac{1}{2 \varepsilon} \int|g|^{2} .
$$

To close the estimate, we require that $\Phi^{\prime}(\xi) \psi^{\prime}(\xi) \leq \psi^{\prime}(\xi)^{2} \Phi(\xi)$, or that

$$
\frac{\Phi^{\prime}}{\Phi} \leq \psi^{\prime} \text { and, hence, we take } \psi(\xi)=\log (\Phi(\xi))
$$

Using the equality $\nabla \Phi^{\frac{1}{2}}(\rho)=\frac{\Phi^{\prime}(\rho)}{2 \Phi^{\frac{1}{2}}(\rho)} \nabla \rho$ we have

$$
\sup _{t \in[0, T]} \int_{\mathbb{T}^{d}} \Psi(\rho)+\int_{0}^{T} \int_{\mathbb{T}^{d}}\left|\nabla \Phi^{\frac{1}{2}}(\rho)\right|^{2} \lesssim \int_{\mathbb{T}^{d}} \Psi\left(\rho_{0}\right)+\int_{0}^{T} \int_{\mathbb{T}^{d}}|g|^{2}
$$

If $\Phi(\xi)=\xi^{m}$ then $\Psi(\xi)=m(\xi \log (\xi)-\xi)$ is the (negative) physical entropy.

IV. The skeleton equation

The skeleton equation: we have

$$
\partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot\left(\Phi^{\frac{1}{2}}(\rho) g\right) \text { in } \mathbb{T}^{d} \times(0, T) \text { with } \rho(\cdot, 0)=\rho_{0}
$$

and we have the a priori estimate

$$
\sup _{t \in[0, T]} \int_{\mathbb{T}^{d}} \Psi_{\Phi}(\rho)+\int_{0}^{T} \int_{\mathbb{T}^{d}}\left|\nabla \Phi^{\frac{1}{2}}(\rho)\right|^{2} \lesssim \int_{\mathbb{T}^{d}} \Psi_{\Phi}\left(\rho_{0}\right)+\int_{0}^{T} \int_{\mathbb{T}^{d}}|g|^{2},
$$

for $\Psi_{\Phi}^{\prime}(\xi)=\log (\Phi(\xi))$ and for ρ_{0} in the entropy space

$$
\operatorname{Ent}_{\Phi}\left(\mathbb{T}^{d}\right)=\left\{\rho \in L^{1}\left(\mathbb{T}^{d}\right): \rho \geq 0 \text { and } \int_{\mathbb{T}^{d}} \Psi_{\Phi}\left(\rho_{0}\right)<\infty\right\}
$$

The kinetic form: for the kinetic function χ, for a nonnegative measure q,

$$
\begin{aligned}
\partial_{t} \chi= & \Phi^{\prime}(\xi) \Delta \chi-\frac{\Phi^{\prime}(\xi)}{2 \Phi^{\frac{1}{2}}(\xi)} \nabla \chi \cdot g+\Phi^{\frac{1}{2}}(\xi)(\nabla \cdot g) \partial_{\xi} \chi+\partial_{\xi}\left(\delta_{\rho} \Phi^{\prime}(\xi)|\nabla \rho|^{2}\right)+\partial_{\xi} q \\
= & \Phi^{\prime}(\xi) \Delta \chi-\partial_{\xi}\left(\Phi^{\frac{1}{2}}(\xi) \nabla \chi \cdot g\right)+\nabla \cdot\left(\Phi^{\frac{1}{2}}(\xi) g \partial_{\xi} \chi\right) \\
& +\partial_{\xi}\left(\delta_{\rho} \frac{4 \Phi(\xi)}{\Phi^{\prime}(\xi)}\left|\nabla \Phi^{\frac{1}{2}}(\rho)\right|^{2}\right)+\partial_{\xi} q
\end{aligned}
$$

IV. The skeleton equation

The skeleton equation: we have

$$
\partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot\left(\Phi^{\frac{1}{2}}(\rho) g\right) \text { in } \mathbb{T}^{d} \times(0, T) \text { with } \rho(\cdot, 0)=\rho_{0},
$$

and the conservative kinetic form
$\partial_{t} \chi=\Phi^{\prime}(\xi) \Delta \chi-\partial_{\xi}\left(\Phi^{\frac{1}{2}}(\xi) \nabla \chi \cdot g\right)+\nabla \cdot\left(\Phi^{\frac{1}{2}}(\xi) g \partial_{\xi} \chi\right)+\partial_{\xi}\left(\delta_{\rho} \frac{4 \Phi(\xi)}{\Phi^{\prime}(\xi)}\left|\nabla \Phi^{\frac{1}{2}}(\rho)\right|^{2}\right)+\partial_{\xi} q$.
For every $\phi \in \mathrm{C}_{c}^{\infty}\left(\mathbb{T}^{d} \times(0, \infty)\right)$, for $\chi_{t}=\chi(x, \xi, t)$, using $\nabla \chi=\delta_{\rho} \nabla \rho$, the equality

$$
\int_{0}^{t} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \Phi^{\prime}(\xi) \chi \Delta \phi=-2 \int_{0}^{t} \int_{\mathbb{T}^{d}} \Phi^{\frac{1}{2}}(\rho) \nabla \Phi^{\frac{1}{2}}(\rho) \cdot(\nabla \phi)(x, \rho)
$$

and $\partial_{\xi} \chi=\delta_{0}-\delta_{\rho}$ we have that

$$
\begin{aligned}
\int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \phi \chi_{t}= & \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \phi \chi_{0}-2 \int_{0}^{t} \int_{\mathbb{T}^{d}} \Phi^{\frac{1}{2}}(\rho) \nabla \Phi^{\frac{1}{2}}(\rho) \cdot(\nabla \phi)(x, \rho) \\
& +\int_{0}^{t} \int_{\mathbb{T}^{d}}\left(\partial_{\xi} \phi\right)(x, \rho) \frac{2 \Phi(\rho)}{\Phi^{\prime}(\rho)} \nabla \Phi^{\frac{1}{2}}(\rho) \cdot g+\int_{0}^{t} \int_{\mathbb{T}^{d}} \Phi^{\frac{1}{2}}(\rho) g \cdot(\nabla \phi)(x, \rho) \\
& -\int_{0}^{t} \int_{\mathbb{T}^{d}}\left(\partial_{\xi} \phi\right)(x, \rho) \frac{4 \Phi(\rho)}{\Phi^{\prime}(\rho)}\left|\nabla \Phi^{\frac{1}{2}}(\rho)\right|^{2}-\int_{0}^{t} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \partial_{\xi} \phi \mathrm{d} q
\end{aligned}
$$

If $\Phi(\xi)=\xi^{m}$ then $\frac{\Phi(\xi)}{\Phi^{\prime}(\xi)}=m^{-1} \xi$ and the products are not integrable.

IV. The skeleton equation

The skeleton equation: the kinetic formulation, for $\Phi(\xi)=\xi^{M}$,

$$
\begin{aligned}
\int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \phi \chi_{t}= & \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \phi \chi_{0}-2 \int_{0}^{t} \int_{\mathbb{T}^{d}} \rho^{\frac{m}{2}} \nabla \rho^{\frac{m}{2}} \cdot(\nabla \phi)(x, \rho) \\
& +\frac{2}{m} \int_{0}^{t} \int_{\mathbb{T}^{d}}\left(\partial_{\xi} \phi\right)(x, \rho) \rho \nabla \rho^{\frac{m}{2}} \cdot g+\int_{0}^{t} \int_{\mathbb{T}^{d}} \rho^{\frac{m}{2}} g \cdot(\nabla \phi)(x, \rho) \\
& -\frac{4}{m} \int_{0}^{t} \int_{\mathbb{T}^{d}}\left(\partial_{\xi} \phi\right)(x, \rho) \rho\left|\nabla \rho^{\frac{m}{2}}\right|^{2}-\int_{0}^{t} \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \partial_{\xi} \phi \mathrm{d} q
\end{aligned}
$$

The cutoff: if ζ_{M} is a smooth cutoff of $\left[M^{-1}, M\right]$ on $\left[(2 M)^{-1}, M+1\right]$,

$$
\begin{aligned}
\left.\left.\left|\frac{4}{m} \int_{0}^{t} \int_{\mathbb{T}^{d}} \zeta_{M}^{\prime}(\rho) \rho\right| \nabla \rho^{\frac{m}{2}}\right|^{2} \right\rvert\, \lesssim & \int_{0}^{t} \int_{\mathbb{T}^{d}} \mathbf{1}_{\left\{(2 M)^{-1}<\rho<M^{-1}\right\}}\left|\nabla \rho^{\frac{m}{2}}\right|^{2} \\
& +(M+1) \int_{0}^{t} \int_{\mathbb{T}^{d}} \mathbf{1}_{\{M<\rho<M+1\}}\left|\nabla \rho^{\frac{m}{2}}\right|^{2}
\end{aligned}
$$

The decay of the parabolic defect measure: by dominated convergence

$$
\lim _{M \rightarrow \infty} \int_{0}^{t} \int_{\mathbb{T}^{d}} \mathbf{1}_{\left\{(2 M)^{-1}<\rho<M^{-1}\right\}}\left|\nabla \rho^{\frac{m}{2}}\right|^{2}=0
$$

and, essentially by the fact that $\left.\sum_{n} a_{n}<\infty \operatorname{implies}_{\liminf }^{n} \boldsymbol{(n a}\right)=0$,

$$
\liminf _{M \rightarrow \infty}(M+1) \int_{0}^{t} \int_{\mathbb{T}^{d}} \mathbf{1}_{\{M<\rho<M+1\}}\left|\nabla \rho^{\frac{m}{2}}\right|^{2}=0
$$

IV. The skeleton equation

Renormalized kinetic solutions [F., Gess; 2022]

A function $\rho \in \mathrm{C}\left([0, T] ; L^{1}\left(\mathbb{T}^{d}\right)\right)$ is a stochastic kinetic solution of the equation

$$
\partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot\left(\Phi^{\frac{1}{2}}(\rho) g\right) \text { in } \mathbb{T}^{d} \times(0, T) \text { with } \rho(\cdot, 0)=\rho_{0}
$$

for $\rho_{0} \in \operatorname{Ent}_{\Phi}\left(\mathbb{T}^{d}\right)$ if $\Phi^{\frac{1}{2}}(\rho) \in L^{2}\left([0, T] ; H^{1}\left(\mathbb{T}^{d}\right)\right)$ and, for every $\phi \in \mathrm{C}_{c}^{\infty}\left(\mathbb{T}^{d} \times(0, \infty)\right)$,

$$
\begin{aligned}
\int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \phi \chi_{t}= & \int_{\mathbb{R}} \int_{\mathbb{T}^{d}} \phi \chi_{0}-2 \int_{0}^{t} \int_{\mathbb{T}^{d}} \Phi^{\frac{1}{2}}(\rho) \nabla \Phi^{\frac{1}{2}}(\rho) \cdot(\nabla \phi)(x, \rho) \\
& +\int_{0}^{t} \int_{\mathbb{T}^{d}}\left(\partial_{\xi} \phi\right)(x, \rho) \frac{2 \Phi(\rho)}{\Phi^{\prime}(\rho)} \nabla \Phi^{\frac{1}{2}}(\rho) \cdot g+\int_{0}^{t} \int_{\mathbb{T}^{d}} \Phi^{\frac{1}{2}}(\rho) g \cdot(\nabla \phi)(x, \rho) \\
& -\int_{0}^{t} \int_{\mathbb{T}^{d}}\left(\partial_{\xi} \phi\right)(x, \rho) \frac{4 \Phi(\rho)}{\Phi^{\prime}(\rho)}\left|\nabla \Phi^{\frac{1}{2}}(\rho)\right|^{2} .
\end{aligned}
$$

Uniqueness and existence of kinetic solutions [F., Gess; 2022]

Assume that $\Phi(0)=0$, that $\Phi^{\prime}>0$ on $(0, \infty)$, that Φ^{\prime} is locally $1 / 2$-Hölder continuous on $(0, \infty)$, and $\sup _{0<\xi \leq M}\left|\frac{\Phi(\xi)}{\Phi^{\prime}(\xi)}\right| \leq c M$. Then renormalized kinetic solutions are unique. Existence under general assumptions including $\Phi(\xi)=\xi^{m}$ for $m \in(0, \infty)$.

IV. The skeleton equation

A weak solution: a weak solution of the equation

$$
\partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot\left(\Phi^{\frac{1}{2}}(\rho) g\right) \text { in } \mathbb{T}^{d} \times(0, T) \text { with } \rho(\cdot, 0)=\rho_{0},
$$

for $\rho_{0} \in \operatorname{Ent}_{\Phi}\left(\mathbb{T}^{d}\right)$ is a function $\rho \in \mathrm{C}\left([0, T] ; L^{1}\left(\mathbb{T}^{d}\right)\right)$ that satisfies

$$
\Phi^{\frac{1}{2}}(\rho) \in L^{2}\left([0, T] ; H^{1}\left(\mathbb{T}^{d}\right)\right)
$$

and, for every $\phi \in \mathrm{C}^{\infty}\left(\mathbb{T}^{d}\right)$,

$$
\int_{\mathbb{T}^{d}} \rho_{t} \phi=\int_{\mathbb{T}^{d}} \rho_{0} \phi-2 \int_{0}^{t} \int_{\mathbb{T}^{d}} \Phi^{\frac{1}{2}}(\rho) \nabla \Phi^{\frac{1}{2}}(\rho) \cdot \nabla \phi+\int_{0}^{t} \int_{\mathbb{T}^{d}} \Phi^{\frac{1}{2}}(\rho) g \cdot \nabla \phi .
$$

Deriving the kinetic form: for $\partial_{\xi} \Psi(x, \xi)=\psi(x, \xi)$, for $\rho^{\varepsilon}=\left(\rho * \kappa^{\varepsilon}\right)$,

$$
\begin{aligned}
& \partial_{t} \int \Psi\left(x, \rho^{\varepsilon}\right)=\int \psi\left(x, \rho^{\varepsilon}\right) \partial_{t} \rho^{\varepsilon} \\
& =-2 \int(\nabla \psi)\left(x, \rho^{\varepsilon}\right) \cdot\left(\Phi^{\frac{1}{2}}(\rho) \nabla \Phi^{\frac{1}{2}}(\rho)\right)^{\varepsilon}-\int(\nabla \psi)\left(x, \rho^{\varepsilon}\right) \cdot\left(\Phi^{\frac{1}{2}}(\rho) g\right)^{\varepsilon} \\
& \quad-2 \int_{\mathbb{T}^{d}}\left(\partial_{\xi} \psi\right)\left(x, \rho^{\varepsilon}\right) \nabla \rho^{\varepsilon} \cdot\left(\Phi^{\frac{1}{2}}(\rho) \nabla \Phi^{\frac{1}{2}}(\rho)\right)^{\varepsilon}-\int\left(\partial_{\xi} \psi\right)\left(x, \rho^{\varepsilon}\right) \nabla \rho^{\varepsilon} \cdot\left(\Phi^{\frac{1}{2}}(\rho) g\right)^{\varepsilon} .
\end{aligned}
$$

Here $\nabla \phi^{\varepsilon}$ is not defined and $\left(\Phi^{\frac{1}{2}}(\rho) \nabla \Phi^{\frac{1}{2}}(\rho)\right)^{\varepsilon}$ converges essentially in L^{1}.

IV. The skeleton equation

Equivalence of weak and renormalized kinetic solutions [F., Gess; 2022]

Under general assumptions including $\Phi(\xi)=\xi^{m}$ for every $m \in[1, \infty)$, a function $\rho \in \mathrm{C}\left([0, T] ; L^{1}\left(\mathbb{T}^{d}\right)\right)$ that satisfies $\Phi^{\frac{1}{2}}(\rho) \in L^{2}\left([0, T] ; H^{1}\left(\mathbb{T}^{d}\right)\right)$ is a renormalized kinetic solution of

$$
\partial_{t} \rho=\Delta \Phi(\rho)-\nabla \cdot\left(\Phi^{\frac{1}{2}}(\rho) g\right) \text { in } \mathbb{T}^{d} \times(0, T) \text { with } \rho(\cdot, 0)=\rho_{0}
$$

for $\rho_{0} \in \operatorname{Ent}_{\Phi}\left(\mathbb{T}^{d}\right)$, if and only if ρ is a weak solution.

- equivalence of renormalized and weak solutions [Ambrosio; 2004], [DiPerna, Lions; 1989]
- strong continuity with respect to weak convergence of the control

Weak-strong continuity [F., Gess; 2022]

If ρ_{n} are solutions of the skeleton equation with controls $g_{n} \rightharpoonup g$ and initial data $\rho_{0}^{n} \rightharpoonup \rho_{0}$ then $\rho_{n} \rightarrow \rho$ for ρ the solution of the skeleton equation with control g and initial data ρ_{0}.

IV. References

L. Ambrosio

Transport equation and Cauchy problem for BV vector fields.
Invent. Math. 158(2): 227-260, 2004.

P Bénilan and J. Carrillo and P. Wittbold
Renormalized entropy solutions of scalar conservation laws.
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4(29), 313-327, 2000.
R.J. DiPerna and P.-L. Lions

Ordinary differential equations, transport theory and Sobolev spaces.
Invent. Math. 98(3): 511-547, 1989.
L.C. Evans

Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI vol. 19, p. 749, 2010.
B. Fehrman and B. Gess

Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. arXiv:1910.11860, 2022.
S.N. Kružkov

First Order Quasilinear Equations in Several Independent Variables.
Mathematics of the USSR-Sbornik 10, 217-243, 1970.
B. Perthame

Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure.
J. Math. Pures Appl. 77 (10), 1055-1064, 1998.

