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ABSTRACT

The study of Frobenius endomorphism provides numerous information about its corresponding Abelian va-
riety. To understand the action of the Frobenius endomorphism, one may be interested in its eigenvalues.
According to Weil’s third conjecture ("Riemann hypothesis over finite fields"), they all have absolute value less
than or equal to 2g√p. Thus, the eigenvalues of the Frobenius endomorphism all belong to the same com-
pact subset of the complex plane, and are roots of the same monic polynomial with integer coefficients (the
characteristic polynomial of the Frobenius endomorphism). Such complex numbers are called algebraic integers
"totally" in a compact subset, which means algebraic integers all conjugates of which belong to a same given
compact subset of the complex plane.

The study of such algebraic integers helps to understand the eigenvalues of the Frobenius endomorphism,
especially their distribution. In this paper, we will study the following question : in what conditions a compact
subset of the complex plane has a finite or infinite number of algebraic integers totally in it ? The problem
can be studied in light of the notion of capacity of a compact subset, which comes from potential theory. In
this paper, we will present the theory of capacity and some theorems (Fekete, Szegö, Robinson) derived from it
that partially answer the question: in the case of a union of real segments, when the capacity is smaller (resp.
larger) than 1, it contains a finite (resp. infinite) number of algebraic integers totally in it. For instance, for
real line segments, the limit length is 4.

This paper is written as part of a collective project conducted in École Polytechnique (France). It is aimed
towards undergraduate audience in mathematics, with basic knowledge in algebra, topology, analysis, and dwells
into a modern topic of research.
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PREAMBLE

0.1 Motivation

Since the XIX-th century, research in arithmetic uses concepts from other branches of mathematics, leading
to great progress with surprising efficiency. One of the branches created by this diversification is arithmetic
geometry, which combines algebra and geometry to solve number theory problems. A quick description of the
success of this union can be found in [15].

One of the main subject of study in this area is the behavior of geometric objects (e.g. "curves") defined over
finite fields. These "curves" are rigorously defined as the domain on which a certain number of multi-variable
polynomials defined over the considered finite field vanish. For instance, the first bisector is the domain in
which the polynomial P (X,Y ) = X −Y vanishes. As a reminder, a finite field is a finite set with a well defined
addition and multiplication. For example, we can take the field Fp = Z/pZ, where p is a prime number, as well
as the extensions Fpn obtained by adding the root of an irreducible polynomial of degree n.

One of the remarkable properties of these curves is that we can associate them with abelian groups in which
it is possible – in a certain way – to "sum" two points on the curve, and to find an opposite to each point.
These groups, called abelian varieties exhibit very interesting properties and are still today an active area of
mathematical research, with numerous results [13][14].

To study the curves over finite fields, a classical method is to study the action of homomorphisms (i.e.
applications compatible with the algebraic structure of the field) on those curves. One of the most famous and
important homomorphisms in such cases is the so-called Frobenius endomorphism Fr which raises the coordi-
nates of a point of the curve to the p-th power, where p is the characteristic of the field (the smallest integer such
that p×1 = 0 in the field, with 1 the unit of the field). In general algebra, the study of Frobenius endomorphism
allows to deduce a number of properties on the set on which it acts. As such, it is natural to try to study it
in the case of curves over finite fields. Especially, since xp = x for all x ∈ Fp, the number of fixed points of
the Frobenius endomorphism is the number of points of the curve with coordinates in Fp. In the same way, the
fixed points of Frn are the points of the curve whose coordinates belong to Fpn .

It is then possible to construct the generating function exp(
∑
n≥1Nn

Tn

n ), where Nn is the number of points
of the curve with coordinates in Fpn . According to the Weil conjectures [1], this power series is actually a ratio-
nal function : more precisely, a quotient P (T )/(1−T )(1− pT ) with P ∈ Z[X] a monic polynomial with integer
coefficients. This polynomial is the characteristic polynomial of Fr acting – not on the curve as previously seen
– but on the abelian variety defined from the curve. The eigenvalues of this Frobenius endomorphism are the
root of the characteristic polynomial, which, according to Weil’s third conjecture, ("Riemann hypothesis over
finite fields"), are all inferior in absolute value to 2g√p, in which g is the dimension of the abelian variety.
In particular, they are all included in the same compact subset (i.e. closed and bounded) K of the complex
plane. The roots of such a polynomial are called algebraic integers totally included in K. Of course, all monic
polynomials with such roots are not associated with Frobenius endomorphisms. But understanding the behavior
of this kind of polynomials allows a better comprehension of Frobenius endomorphisms.

With that being said, it is natural to inquire about the distribution of those eigenvalues, which can be
deduced from the distribution of algebraic integers totally in a compact subset. This distribution itself can be
deduced from the case where K is a real line segment, studied by Robinson who showed in 1962 the following
result: if the length of K is strictly more than 4, there is an infinite number of algebraic integers totally in it; if
the length is strictly inferior to 4, there is only a finite number of such numbers. The case in which the length
is exactly 4 is – for now – only solved for a few special cases. The paper we present here gives a proof of this
result.
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0.2 Outline of the paper

In a formal way, algebraic integers are complex numbers which are the roots of a monic polynomial with
coefficients in Z. We shall call Q-conjugates of an algebraic integer α the roots of the unique monic polynomial
P with rational coefficients of minimal degree for which P (α) = 0 (minimal polynomial). Given a compact set
K of C, we say that an algebraic integer is totally in K if all his Q-conjugates are in K. We call degree of an
algebraic integer the degree of his minimal polynomial.

The study of the distribution of algebraic integers totally in a real line began in the beginning of the XX-th
century, with a first result from Schur in 1918 which solves the case of real lines with length strictly below 4.
Many other results follow in the next years. Then, some 40 years later, Robinson eventually demonstrates his
theorem, leaving only the case of length 4 unresolved.

The proof we shall give here for Robinson’s theorem follows an article from Jean-Pierre Serre [2] which
summarizes a lecture given during the Bourbaki seminar of March 2018 in Paris. The purpose of the present
paper is to be understandable by a non-specialist audience, but one that has a solid grasp on the basic elements
of algebra (group, polynomials), topology (weak convergence) and analysis (continuity, basic complex analysis).
It seems to us that an undergraduate audience can follow our work and the proof we shall give without too
much trouble. The more interested readers can find in the appendix additions on measure theory, on more
subtle analysis points used in our reasoning, as well as proofs deemed too technical and without much interest
as far as understanding the essence of this proof goes.

In the first part (Elementary remarks), we shall make a range of first observations on this problem, which
will lead to ideas of proof, or invalidate certain proof schemes that could be thought of. This part includes an
algorithmic approach that allows us to get an intuition on the result (although the programs’ complexity does
not allow for a very deep dive into polynomials of high degrees). Finally, we will demonstrate a first result first
found by Kronecker (1857) which deals with the case where the compact subset of the complex plane is the unit
circle. From this case, we will deduce the behavior of the real line [−2, 2], and, more widely, of any real line of
the form [n − 2, n + 2], with n ∈ Z. From these remarks, we will give first bounds for the length of real lines
containing an infinite/finite number of algebraic integers totally in it.

In the second part, we will look into the theory of capacity, which is the natural frame of study for dealing
with the " size" of a compact set for this problem. This notion of capacity is deeply linked to the concepts
introduced in measure theory, and some of the results from this part – once combined with results from the
last part – allow us to prove a slightly stronger result than Robinson’s theorem. In particular, we prove the
convergence (in a certain sense) of a measure associated with a sub-sequence of polynomials towards the measure
of equilibrium of the compact set.

We will then show in the third part Fekete’s theorem 3.1 which solves the case of a real line of length strictly
less than four, then, Fekete-Szegö’s theorem 3.3 which is the equivalent of Robinson’s theorem for complex
compact subset of the complex plane (as opposed to the real lines of Robinson’s theorem). We will see how
the proof of this theorem is not sufficient to yield the real case, although some ideas can be reused to solve the
latter, which is why the study of this theorem is very interesting for this proof.

In the last part of this paper, we will eventually give the full proof of Robinson’s theorem, using the tools
developed in the first parts as well as a few results pertaining to the field of algebraic geometry. After a quick
introduction to the core concept of algebraic curves, we will use those results to finish the proof of the main
result of this paper.
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1
ELEMENTARY REMARKS

Let us start by reminding ourselves of the definition of our object of study: algebraic integers totally in a
compact set.

Definition 1.1 (i) An algebraic integer is a complex number that is a root of some monic polynomial with
coefficients in Z.

(ii) Given an algebraic integer ζ ∈ C, we call minimal polynomial of ζ the unique monic polynomial with
integer coefficients among these with ζ as a root.

(iii) Let us denote by Gal(ζ) the set of all roots of the minimal polynomial of ζ.

(iv) Let E be a subset of C and ζ an algebraic integer. We say that ζ ∈ C is totally in E if Gal(ζ) ⊂ E.

1.1 First results

In this first section, we will start by stating three "elementary" remarks about the problem: first, at a fixed
degree, there is only a finite number of algebraic integers totally in a given compact set; then, the derivatives
of a minimal polynomial of algebraic integers totally in a compact set have interesting properties; finally, if
K1 ⊂ K2 are two compact sets, then the numbers of algebraic integers totally in K1 and K2 respectively, can
be compared.

Remark 1.1 Let K be a compact subset of C. Let P be a monic polynomial of degree n the roots of which
are all in K, we can upper bound the k-th coefficient of P by sup(K)k

(
n
k

)
. It is enough to assure that,

at fixed degree, there exists a finite number of such polynomials with all roots in K, and therefore a finite
number of algebraic integers of degree n totally in K.

This remark leads us to several interesting approaches:

• We can find (algorithmically) the adequate polynomials of small degrees.

• If we want to prove that there exists a finite number of algebraic integers in a compact set, it is enough
to prove that the degree of such an integer is bounded.

Remark 1.2 Let us consider a monic polynomial P with integer coefficients whose roots are algebraic integers
totally in a compact set K, where the degree of P is greater than or equal to 2, its derivative is not a monic
polynomial. However it is still a polynomial with integer coefficients, and its roots are still in K, if this
compact set is convex (which is the case for real line segments). Indeed, it follows from Gauss-Lucas theorem
that the roots of P ′ are in the convex hull of the set of roots of P .

Therefore we notice that the knowledge of P ′ gives us information on the roots of P . This idea will be
useful when we compute algorithmically algebraic integers totally in a compact set.

Remark 1.3 Let K1 and K2 be 2 compact sets such that K1 ⊂ K2, then there is at least as many algebraic
integers totally in K2 as those totally in K1 (since any algebraic integer totally in K1 is an algebraic integer
totally in K2). This somewhat obvious remark will be of great use for proofs where it is easier to work on a
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smaller compact set.

1.2 Algorithmic approach

In order to get an intuition about the algebraic integers totally in a compact set, we have decided to conceive
and implement an algorithm listing algebraic integers totally in a line segment, the minimal polynomial of
which, is of fixed degree. These results will later be compared to the demonstrated theorems.

Let K be a compact subset of C. Two questions were kept to be answered by numerical experiments:

• What are the algebraic integers totally in K? A particular focus is done on the distribution of such
numbers. The results can be compared to the cases studied in section 1.3. This question seems difficult
because it requires a fine knowledge of the algebraic integers totally in K. That is why the core question
of our paper is actually :

• Is there an infinite number of algebraic integers totally in K ? The numerical answer to this question can
be compared to the results of sections 3 and 4.

First, we will state the algorithmic principle that we use, then we will comment on the results we obtained.

1.2.1 • The algorithmic principle
In order to get numerical results, only monic polynomials with integer coefficients, the degree of which, is

less than a given integer n will be studied. The goal is to find a list as short as possible with all minimal
polynomials, with degree less than n, of algebraic integers totally in K.

The remark 1.1 allows to give bounds to the coefficients of polynomial with a given degree, the roots of
which, are all in K. Therefore, for a given degree, the polynomials that could be the minimal polynomial of an
algebraic integer totally in K can be enumerated:

Algorithm 1 Naive algorithm
l empty list
for all P monic polynomial of degree less than n, the coefficients of which, are integers in the bounds of
remarks 1.1 do
if the roots of P are totally in K then
add the roots of P to l

end if
end for
return l
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However, this method is not very efficient. Indeed, the complexity is greater than the product of the double
of the bounds:

n∏
k=1

(2 sup(K))k
(
n

k

)
C(n) > (2 sup(K))n

2/2,

where C(n) is the complexity of computing the roots of a polynomial of degree n (done by computing the
eigenvalues of the companion matrix). For instance, when the compact set K is a line segment subset of [-
2.5,2.5], this algorithm cannot list the algebraic integers totally in K with minimal polynomial of degree higher
than n = 4. This data is unfortunately not enough to make interesting conjectures.

Since we mainly focus on the case of real segments, we implemented another specific algorithm for segments
of R. Remark 1.2 can therefore apply and gives a great improvement in efficiency. Indeed, when K is a segment
of R, for all algebraic integers totally in K, all the derivatives of its minimal polynomial have simple roots and

all the zeros are in K. More generally, let l < n − 1 and let us consider the polynomials P =
n∑
k=0

akX
k where

the n− l−1 greatest coefficients al+1, . . . , an−1 are fixed and an = 1. Then P (l) = l!al+
n−l∑
k=1

(l + k)!
k! al+kX

k has

n − l roots in K. More specifically, −al is between the maximum of all local minimums and the minimum of

all local maximums of
n−l∑
k=1

(l + k)!
k! al+kX

k. Thus, by repeating for l ranging from n− 2 to 0, we obtain stricter

constraints on a0, . . . , an−1 and thus a list of polynomials likely to have all their roots in K much more restricted
than in the naive algorithm. In summary, the limits of the remark 1.1 have been refined by taking into account
the value of the other coefficients already set. Thus the polynomials whose roots are calculated are much less
numerous and of lower degree, which explains why this algorithm is more efficient than the previous one. Thanks
to this optimization, it was possible to obtain all algebraic integers, whose minimum polynomial’s degree is at
most n = 7 for segments included in [−2.5, 2.5]. The analysis of figure 1 corroborates this observation. While
it has been calculated that the naive algorithm has a complexity of at least Cn2 , the second algorithm has an
experimental complexity close to 15n.

After writing this algorithm, we tried to compare it with the state of the art. In [3], the authors combine
techniques very close to ours but more refined with algebraic properties to solve a problem close to ours. Their
algorithm allows to go up to degree 13 in a reasonable time. But unfortunately, we cannot directly apply their
algorithm to our problem.

1.2.2 • Results
Considering remark 1.3, an algebraic integer totally in a compact setK is totally in all compact sets containing

K. We can think that "large" compact sets will have an infinite number of algebraic integers while "small"
compact sets will have a finite number.

To verify this, we have plotted the evolution of the number of algebraic integers totally in K according to
the degree of their minimal polynomial for different segments K of R. The results in figure 3 show that the
length 4 is the boundary between "small" and "large" segments. For segments with lengths less than 4, there
are fewer and fewer new algebraic integers as the degree increases (blue, orange). On the contrary, for segments
longer than 4, there are more and more (green, red, purple). This observation remains valid when translating
the segments.

These observations are in accordance with the theorems that we will demonstrate in this paper. The behavior
of "small" segments is treated by Fekete’s theorem 3.1 and that of "large" segments by Robinson’s theorem 4.3.
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When K = [−2.2], we can notice that the number of new algebraic integers totally in K found at the n
degree seems to increase, but not exponentially (figure 2). We can verify that the algebraic integers found are
of the form 2 cos( 2kπ

m ) with k and m integers. We will see in the following subsection (1.1) that the algebraic
integers totally in [−2.2] are the 2 cos( 2kπ

m ) with k and m integers. However, the algorithm does not find them
by increasing m.

Beyond the finiteness of the set of algebraic integers totally in a compact set, one can be interested in the
distribution of these numbers. The figure 4 shows that the distribution is essentially the same both when
translating slightly and when the length changes. Moreover, this distribution is similar to that of the roots of
the Chebyshev polynomials.

Figure 1: Experimental complexity of the
two algorithms (length = 3.9)

Figure 2: Number of new algebraic integers in function of the
degree of the minimum polynomials for K = [−2, 2]
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Figure 3: Number of new algebraic integers found in function of the degree of the polynomials traversed

Figure 4: Distribution of algebraic integers of lower degree for different segments compared to that of the roots
of Chebyshev polynomials
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1.3 Two elementary cases : U and [−2, 2]

Let us start with the well known cases of the unit circle and segments with length 4 and integer end points.

1.3.1 • K = U : Kronecker’s theorem
When K = U is the unit circle, Kronecker’s theorem gives us the following result :

Theorem 1.1 (Kronecker). Let P ∈ Z[X] be a monic polynomial whose complex roots are all in the unit
circle U, then its roots are roots of unity.

Let us start with the following lemma :

Lemma 1.1 Let n, k ∈ N and Q be a polynomial with expression
n∏
i=1

(X − αi).

If Q ∈ Z[X], then Qk(X) :=
n∏
i=1

(X − αki ) ∈ Z[X].

Proof.
Let us consider such a polynomial Q and integers n and k. The Frobenius companion matrix M of Q is

a matrix of Mn(Z) whose characteristic polynomial is Q. Therefore the αi are the eigenvalues of M . M is
similar to an upper triangular matrix with main diagonal α1, . . . , αn, which results in Mk being similar to
an upper triangular matrix with main diagonal αk1 , . . . , αkn. Thus, the αki are the eigenvalues of Mk with the
same multiplicity as for M . It implies that Qk is the characteristic polynomial of Mk. Since this matrix has
integer coefficients, Qk has as well.

Let us prove Kronecker’s theorem:

Proof. Let us consider P = Xn + pn−1X
n−1 + · · · + p0 ∈ Z[X] a monic polynomial such that Z(P ) ⊂ U,

where Z(P ) = {α1, . . . , αn} is the set of the complex roots of P . It follows from the Vieta’s formulas that:

pn−k = (−1)k
∑

J∈Pk([1,...,n])

k∏
i=1

αji .

Since the αi are of magnitude 1, the triangle inequality gives us that |pn−k| ≤
(
n
k

)
. The coefficients of

P being integers, we deduce that En, the set of polynomials of degree n which verify the hypotheses of the
theorem, is a finite set. It implies that Rn, the set of roots of polynomials in En is also finite.

Let αi be a root of P and let us consider the multiplicative group generated by αi, G = {αki , k ∈ Z}. With
the notations from lemma 1.1, for all k ∈ Z, αki is a root of Qk ∈ En according to the lemma. Therefore, G
is a finite group since G ⊂ Rn. As a result, there exists integers k < k′ such that αk = αk

′ , which means
αk
′−k = 1.

Remark 1.4 Let us give another proof of lemma 1.1 using symmetric polynomials. Let us consider P =
n∑
j=1

pjX
j =

n∏
i=1

(X − αi) ∈ Z[X] and Q =
n∑
j=1

qjX
j =

n∏
i=1

(X − αki ). Let Sj denote the j-th elementary
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symmetric polynomial in n variables. It follows from the Vieta’s formulas that : pn−j = (−1)jSj(α1, . . . , αn)
and qn−j = (−1)jSj(αk1 , . . . , αkn). According to the fundamental theorem of symmetric polynomials,

there exists a polynomial R ∈ Z[X1, . . . , Xn] such that

Sj(Xk
1 , . . . , X

k
n) = R(S1, . . . , Sn)

Therefore, the coefficients of Q

qn−j = (−1)jSk(αk1 , . . . , αkn) = (−1)jR(−pn−1, · · · , (−1)np0)

are integers.
Actually, the fundamental theorem of symmetric polynomials applies to all the symmetric polynomials,

so that all the symmetric combinations of α1, . . . , αn, with integer coefficients, are integers.

Remark 1.5 Note that the use of companion matrices in the proof of lemma 1.1 allows us to give a direct
proof of this following particular case of the fundamental theorem of symmetric polynomials: "there exists
R ∈ Z[X1, . . . , Xn], such that Sj(Xk

1 , . . . , X
k
n) = R(S1, . . . , Sn)".

Indeed, using the previous notations, let M be the companion matix of P .

∀ 1 6 i, j 6 n, Mi,j ∈ {Sj(α1, . . . , αn)) | 0 6 j 6 n} ∪ {0, 1}.

We deduce from it that :

∀ (i, j), Mi,j ∈ Z[S0(α1, . . . , αn), . . . , Sn(α1, . . . , αn)].

Thus the coefficients of the characteristic polynomial of Mk are in Z[S0(α1, . . . , αn), . . . , Sn(α1, . . . , αn)].
However, these coefficients turn out to be, regardless of the sign, the (Si(αk1 , . . . , αkn))06i6n.
We conclude that :

∀ 0 6 i 6 n, Si(αk1 , . . . , αkn) ∈ Z[S0(α1, . . . , αn), . . . , Sn(α1, . . . , αn)].

Conclusion of the case K = U : algebraic integers totally in U are the roots of unity, and there is an infinite
number of them. We have an example of a compact set with an infinite number of algebraic integers totally in
it.

1.3.2 • K = [−2, 2]

Proposition 1.1 Let us consider P ∈ Z[X] a monic polynomial such that Z(P ) ⊂ [−2; 2].
The roots of P all have the following expression: z + z, where z is a root of unity.

Proof. Let P be a polynomial of degree n verifying the assumptions of the proposition. Let us consider
Q = XnP (X + 1

X ). Using the binomial formula, we show that Q is a monic polynomial of degree 2n with
integer coefficients. Let us note that 0 is not a root of Q since the polynomial’s constant coefficient equals 1.
Therefore, for all z ∈ C,

Q(z) = 0⇔ P (z + 1
z

) = 0.

Let z be a complex root of Q. Then, z + 1
z is a root of P , and z + 1

z ∈ [−2, 2]. In particular, z + 1
z is a real

number. If we write the obvious equality between this real number and its complex conjugate, we get that
ρ sin(θ) = 1

ρ sin(θ), where ρ and θ are the modulus and an argument of z respectively. Two cases are possible:

12
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Figure 5: examples of points totally in K = [−2, 2]

• if sin(θ) = 0, then z ∈ R. In order to verify z + 1
z ∈ [−2, 2], studying the sign of this expression shows

us that z = ±1.

• if ρ = 1
ρ , ρ = 1, since the modulus is a non-negative number.

In all cases, z ∈ U. It follows from Kronecker’s theorem that all the roots of Q are roots of unity.
Let r be a root of P . Since r ∈ [−2, 2], we can write r = z + z, with z = r

2 + i
√

1− r2

4 . Since z ∈ U,
r = z + 1

z . Therefore, z is a root of Q, which means that z is a root of unity.

Corollary 1.1 The algebraic integers totally in [−2, 2] are real numbers with the following expression: z + z,
where z is a root of unity.

Proof. The previous proposition shows us that the algebraic integers totally in [−2, 2] all have the following
expression: z + z, where z is a root of unity. Let us prove the reciprocal implication.

Let (Un)n be the Chebyshev polynomials of the second kind defined as follows:

U0 = 1 et Un+1 = 2XUn − Un−1, ∀n ≥ 1.

We use induction on n to show that Pn(X) = Un(X2 ) are monic polynomials of degree n and with integer
coefficients. They verify that ∀θ ∈ R \ πZ sin((n+1)θ)

sin θ = Pn(2 cos θ). We deduce from it that:

∀n > 1, Z(Pn) = {2 cos kπ

n+ 1 , ∀k ∈ {1, . . . , n}} ⊂ [−2, 2].

Therefore, for all n > 1, Z(Pn) is a set of algebraic integers totally in [−2, 2], which implies that for any root
of unity z, z + z is totally in [−2, 2].

Conclusion of the case K = [−2, 2] : algebraic integers totally in [−2, 2] are the z + 1
z , with z some root

of unity.

It follows from translating the previous result, this claim for any segment of R with length 4 and integer end

13
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points:

Corollary 1.2 Let K = [n− 2, n+ 2] be a real segment with length 4, integer endpoints and n ∈ Z its middle
point. The algebraic integers totally in K are n+ z + 1

z , with z a root of unity.

Proof. Let P ∈ Z[X] be a monic polynomial such that Z(P ) ⊂ [n−2, n+2] and let us considerQ = P (X+n).
Since n ∈ Z, Q is a monic polynomial with integer coefficients, and Z(Q) ⊂ [−2, 2]. The proposition 1.1 allows
us to conclude.

From this particular case, we deduce a more general theorem which gives us a first piece of information:

Theorem 1.2 (Upper bound of the minimal length to contain an infinite number of algebraic integers
totally in a segment). Segments with length greater than or equal to 5 have an infinite number of algebraic
integers totally in them.

Proof. Segments with length 5 contain a segment with length 4 and integer endpoints, and according to
remark 1.3, they contain at least as many algebraic integers as the smaller segments, therefore containing an
infinite number, according to corollary 1.2.

A first stage of the work was done with general remarks, an algorithmic approach to convince ourselves of
the result and a first particular case. Let us now build a general framework to tackle the general case of the
theorem.

14
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2
CAPACITY THEORY

First and foremost, let us focus our interest on the notion of capacity. It is a non-negative number describing
the size of a set, but not a geometric size related to its measure : the terminology comes from physics, more
specifically, from the capacity of a capacitor, which describes the ability of a set to contain electric charges. We
shall see that it is an "adequate " definition of the size of a compact set when it comes to algebraic integers. This
notion gives us a criterion which allows us to determine whether or not a compact set has an infinite number
of algebraic integers totally in it (cf. 4), with Fekete’s and Fekete-Szegö’s theorems.

The goal of this section is to give three equivalent definitions of the notion of capacity : transfinite diameter
(2.1), logarithmic capacity (2.2) and the Chebyshev’s constant (2.4). The main theorem of this section is theorem
2.10 which proves the equivalence between the three definitions, and states important properties of objects which
allow us to link these three approaches: Fekete’s measures, equilibrium measure, equilibrium potential, Fekete’s
polynomials, Chebyshev polynomials... In section 2.3, we will also prove a formula to calculate a type of capacity
thanks to semi harmonic functions: this section, which is quite technical, can be skipped at first reading.

We will first introduce the notion of transfinite diameter of a compact set thanks to Fekete points ; then we
will study the notion of logarithmic capacity and equilibrium measure before unifying these two notions. Finally
we will give a third definition of the capacity using Chebyshev polynomials. Thanks to this last approach we
will be able to calculate the capacity of segments.

2.1 Transfinite diameter, Fekete points

To get a first intuition, let us consider a geometric problem from electrostatics: let us place electrons in a
bounded domain. These electrons will tend to maximize their mutual distances in order to minimize the overall
energy. In 3 dimensions, the force is proportional to the square of the inverse of the distance, and the potential
is proportional to the inverse of the distance. Since we are working in the two-dimensional complex plane, the
force is proportional to the inverse of the distance and the potential is proportional to log of the distance.

Given K a compact subset of C and z1, . . . , zn ∈ K, let us define the potential at point zi (which can be
equal to +∞) as follows :

Uz1,...,zn(zi) = −
∑
j 6=i

log |zj − zi| .

Let us also define the energy of the configuration (z1, . . . , zn) as the mean of the potentials at each point :

E(z1, . . . , zn) = − 2
n(n− 1)

∑
i<j

log |zi − zj | = − log
∏
i<j

|zi − zj |
2

n(n−1)

Let us focus on minimizing the energy of the compact set K for a given number n of points :

E(K) = min
z1,...,zn∈K

E(z1, . . . , zn) = − log max
z1,...,zn∈K

∏
i<j

|zi − zj |
2

n(n−1)

The lower bound is reached since K is compact, hence the min in the optimization formula. The points where
this minimum is reached are called the Fekete points :
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Definition 2.1 (Fekete points). Let K be a compact subset of C. Let us define

δn(K) = max
z1,...,zn∈K

∏
i<j

|zi − zj |2/n(n−1)

This maximum value is reached at the Fekete points (of degree n).

Remark 2.1 It matches the definition of the usual diameter for n = 2.

Lemma 2.1 let f : K ×K → R ∪ {−∞} be a function and for all n ∈ N∗, let us consider

mf
n(K) = sup

x1,...,xn∈K

1
n(n− 1)

∑
i6=j

f(xi, xj).

The sequence (mf
n(K))n is decreasing.

Proof. Let n ≥ 1, and x1, . . . , xn+1 ∈ K (not necessarily distinct). We obtain the following equality:

1
n(n+ 1)

∑
i 6=j

f(xi, xj) = 1
n+ 1

n+1∑
k=1

 1
n(n− 1)

∑
i 6=j,i 6=k,j 6=k

f(xi, xj)

 ;

indeed, it is easily verified by calculating the coefficients of f(xi, xj) on each side: the term f(xi, xj) on the
right is only affected by the k ∈ [[1, n+ 1]]\{i, j} so there are n− 1 choices. Given a k, the sum

∑
i6=j,i 6=k,j 6=k

on the right can be considered as
∑
i 6=j where i, j ∈ [[1, n + 1]]\{k}, which is lower or equal to mf

n(K) by
definition. Then, as we consider the supremum on x1, . . . , xn ∈ K, we obtain that :

mf
n+1(K) 6 sup

x1,...,xn∈K

1
n+ 1

n+1∑
k=1

mf
n(K) = mf

n(K).

Definition 2.2 (Transfinite diameter). The sequence (δn(K))n>2 is non-negative and decreasing. The limit

τ(K) = lim
n→∞

δn(K)

is called the transfinite diameter.

Proof. We deduce the fact that (δn(K))n>2 is decreasing from lemma 2.1.
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We have given our first definition of the notion of capacity : the transfinite diameter. Let us now prove a
few elementary properties and give a few examples as well.

Proposition 2.1 Let K be a compact subset of C, then

1. if a, b ∈ C, then τ(aK + b) = |a| τ(K);

2. δn(K) = δn(∂K) and then τ(K) = τ(∂K).

Proof. (a) can be easily deduced from the definition.

(b) Let us consider n ≥ 2 and h(z1, . . . , zn) =
∏

1≤i<j≤n(zi−zj). It is a holomorphic function of n complex
variables on Cn, therefore ‖h‖Kn = ‖h‖(∂K)n (we can use the maximum modulus principle of a holomorphic
function of one variable), where δn(K) = δn(∂K).

Proposition 2.2 (Unit circle). The Fekete points on U are the n-th roots of unity, up to a rotation. The
transfinite diameter of the unit circle equals 1.

Proof. Let us consider n > 2 and x1, . . . , xn ∈ U, let us denote by D(x1, . . . , xn) the determinant of the
Vandermonde matrix D(x1, . . . , xn) = det((xj−1

i )1≤i,j≤n) =
∏
i<j(xj − xi).

We have δn(U) = max
x1,...,xn∈U

|D(x1, . . . , xn)|
2

n(n−1) . Hadamard’s inequality gives us

|D(x1, . . . , xn)| ≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1
...
1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1

...
xn


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

. . .

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x

n−1
1
...

xn−1
n


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= n
n
2 .

Therefore, δn(U) ≤ n 1
n−1 .

The equality is reached when the row vectors form a family of orthogonal vectors that are linearly inde-
pendent or contains a null vector, which can be written as follows :

D(x1, . . . , xn) = n
n
2 ⇔ ∀i < j ∈ [[1, n]],

 x0
i
...

xn−1
i

 ·
 x0

j
...

xn−1
j

 = 0

⇔ ∀i < j ∈ [[1, n]],
n−1∑
k=0

(xjxi)k = 0

⇔ ∀i < j ∈ [[1, n]], xj 6= xi et
1− (xjxi)n

1− xjxi
= 0

⇔ ∀i < j ∈ [[1, n]], xjxi ∈ Un − {1}
⇔ {x1, . . . , xn} = x1Un

Therefore δn(U) = n
1

n−1 , the Fekete points on U are the n-th roots of unity, up to a rotation, and then
τ(U) = lim

n→∞
n

1
n−1 = 1.
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Corollary 2.1 We have τ(B(0, ρ)) = ρ.

Proof. It follows from Prop. 2.1 and Prop. 2.2 that

τ(B(0, ρ)) = ρ τ(B(0, 1)) = ρ τ(∂B(0, 1)) = ρ τ(U) = ρ.

Proposition 2.3 Let us consider K = {0} ∪ {1, 1
2 ,

1
3 , . . . }. We have τ(K) = 0.

Proof. Let us consider n ≥ 2. Let xn ≤ y ≤ xn−1 ≤ · · · ≤ x1 be a choice of Fekete points in K ⊂ [0, 1],
then

δn+1(K)
(n+1)n

2 = (y − xn)
(
n−1∏
i=1

(xi − y)
) ∏

1≤i<j≤n
(xi − xj)


≤ (y − xn)

(
n−1∏
i=1

(xi − y)
)
δn(K)

n(n−1)
2

We can obtain an upper bound using xn > 0 and since all points are distinct, xi ≤ 1
i for i ∈ [[1, n − 1]] and

y ≤ 1
n , therefore

(y − xn)
(
n−1∏
i=1

(xi − y)
)
≤
(

1
n
− 0
) n−1∏
i=1

(
1
i
− 0
)

= 1
n !

Hence
δn+1(K)

(n+1)n
2 ≤ 1

n !δn(K)
n(n−1)

2

Therefore we obtain by induction, using δ2(K) = 1, the following inequality

δn+1(K) ≤
(

n∏
i=2

i !
)− 2

(n+1)n

Finally, let us notice that this last term tends to 0 when n→∞. Indeed, we obtain for n ≥ 8

log
(

n∏
i=2

i !
)

=
n∑
i=2

i∑
j=2

log j =
n∑
j=2

(n+ 1− j) log j

≥
3[n4 ]∑
j=[n4 ]

· · · ≥
3[n4 ]∑
j=[n4 ]

n

4 log
[n

4

]
= Θ(n2 logn), n→∞

We will be able to give another proof later (cf. Ex. 2.4, Thm. 2.3).
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2.2 Passage from discrete to continuous : equilibrium measure
and logarithmic capacity

In this section, we will use probability measures on a compact set and a few results on measures. Notions
from the theory of measures are provided in the appendix A.

Fekete points describe an equilibrium when dealing with a finite number of particles. The transfinite diameter
describes the ability of a compact set to have electric charges (like in a capacitor). When the number of charges
tends to infinity, their distribution becomes continuous.

This passage to the limit can be formalized using the concept of weak convergence-∗ of measures. Let us
remind ourselves of the definition here:

Definition 2.3 (Weak-∗ convergence). Let us consider D ⊂ C and (µn)n∈N a sequence of measures on D.
Let µ be a measure on D. We say that (µn)n∈N converges weakly to µ, written µn

∗−→ µ, if and only if

∀f ∈ C0
c (D,R), lim

n→∞

∫
D

f dµn =
∫
D

f dµ

.

Example 2.1 (Riemann integral). The Riemann integral can be considered as the limit measure of a
sequence of counting measures: indeed, if f : [0, 1]→ R, we have

lim
n→∞

1
n

n∑
k=0

f

(
k

n

)
=
∫ 1

0
f dx

If we denote by νn the counting measure with respect to the points { kn | k = 0, . . . , n}, the continuous linear

form
∫ 1

0
is the limit measure of the sequence (νn) for the weak convergence-∗.

Example 2.2 If νn is the counting measure with respect to the set of the n-th roots of unity {e 2πik
n | k =

0, . . . , n− 1}, then

lim
n→∞

∫
f dνn = 1

2π

∫ 2π

0
f(eiθ) dθ

The space of probability measures on a compact set can be equipped with a topology associated with this
notion of convergence: the weak-* topology. The main result is that this space is sequentially compact.

Theorem 2.1 (Banach-Alaoglu-Bourbaki). Let K be a compact subset of C. Let us denote by P(K) the
set of probability measures on K. P(K) is sequentially a compact set for the weak topology-*.

In other words, for any sequence of probability measures (µn)n, there exists a sub-sequence (µϕ(n))n and
a probability measure µ such that µϕ(n)

∗−→ µ, i.e.

∀φ ∈ C(X),
∫
X

φ dµϕ(n)−→
∫
X

φ dµ

The proof of this claim is given in the appendix A.

Let K ⊂ C be a compact set and use again the electrostatic model introduced in sub-subsection 2.1. We
can consider a probability measure µ ∈ P(K) as a distribution of positive electric charges in K. For example,
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a punctual charge at point z can be modelled by δz a Dirac measure centered on z, and a discrete distribution
can be modelled by a counting measure.

Definition 2.4 (Potential, energy). Let K ⊂ C be a compact set. Let us consider µ ∈ P(K) a probability
measure on K.

Let us define the potential of µ in z

Uµ(z) =
∫
K

log 1
|z − t|

dµ(t)

and the energy of the compact set K, with respect to µ

I(µ) =
∫
K

Uµ(z) dµ(z) =
∫∫

K2
log 1
|z − t|

dµ(z) dµ(t)

At equilibrium, the distribution of the charges tends to minimize the overall energy. We therefore have an
energy minimization problem on the space of measures on K.

Definition 2.5 (Logarithmic capacity, equilibrium measure). Let us define the Robin constant

VK = inf
µ∈P(K)

I(µ)

and the logarithmic capacity
Cap(K) = e−VK .

If the infimum VK = infµ∈P(K) I(µ) is reached for a measure µK , this measure is called equilibrium
measure. In that case, we have Cap(K) = e−I(µK).

The potential UµK associated with the equilibrium measure is called the equilibrium potential.

Definition 2.6 The capacity of a borel set B ⊂ C is defined as

Cap(B) = sup {Cap(K) : K ⊂ B,K compact}

Definition 2.7 ("quasi-almost everywhere"). Let K be a compact set. We write that some property holds
quasi-almost everywhere (q-a. e.) in a set K, if there exists a compact subset S of capacity zero such that
the property holds for all ζ ∈ K\S.

Example 2.3 Let us consider µ ∈ P(K); if there exists a point z ∈ K such that µ({z}) > 0, then I(µ) = +∞
by definition. Furthermore, if for all µ ∈ P(K) there exists such a point, then Cap(K) = 0.

Example 2.4 A countable set has a capacity of zero. In fact, a probability measure on such a set is atomic.
The previous example gives us the expected result.

Remark 2.2 (Heuristic approach). If we consider νF the averaged counting measure with respect to F =
{z1, . . . , zn}, by neglecting the divergent terms, we find the discrete definition given in sub-section 2.1

I(νF ) = − 1
n(n− 1)

∑
i 6=j

log |zi − zj | = − log
∏
i 6=j
|zi − zj |

2
n(n−1)
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To determine the measure that minimizes the energy, it becomes natural to consider the limit measure of
the counting measures with respect to the Fekete points.

This intuition will be justified later.

Lemma 2.2 Let (µn) be a sequence of measures of P(K) such that µn
∗→ µ, then for all z ∈ C,

Uµ(z) 6 lim inf
n→∞

Uµn(z)

hence
I(µ) 6 lim inf

n→∞
I(µn)

Proof. This lemma is a consequence of proposition A.3 applied to t 7→ log 1
|z−t| which is l.s.c. :∫

K

log 1
|z − t|

dµ(t) 6 lim inf
n→∞

∫
K

log 1
|z − t|

dµn(t)

for all z ∈ K, hence the first inequality. The second inequality follows by integrating with respect to dµ(z)
and by applying Fatou’s lemma.

Theorem 2.2 (Equilibrium measure). There always exists an equilibrium measure. Moreover, if VK < +∞
(or equivalently Cap(K) > 0), the equilibrium measure is unique.

Proof. The uniqueness follows directly from the fact that µ 7→ I(µ) is strictly convex on {µ ∈ P(K) :
I(µ) <∞} ([4], Chap. I, Thm. 1.3(b), Lem. 1.8). The existence results from theorem A.1 which states that
the space of probability measures on a compact set is a compact set. In fact,

VK = inf
µ∈P(K)

I(µ)

Let (µn) be a sequence of measures such that I(µn) → VK . By compactness, there exists µ ∈ P(K) and a
sub-sequence (µnk) such that µnk

∗−→ µ. By lemma 2.2 :

I(µ) 6 lim inf
k→+∞

I(µnk) = VK 6 I(µ)

since VK is the infimum. Hence VK = I(µ).
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We now have all the keys to prove the equivalence between the two definitions of the capacity which were
previously defined.

Theorem 2.3 Let K be a compact subset of C. We have

τ(K) = Cap(K).

Moreover, if Cap(K) > 0 and we denote by µK the equilibrium measure ofK and by νn the counting measures
with respect to the Fekete points, then

νn
∗−→ µK

The Fekete points are said to be equidistributed with respect to the equilibrium measure of K.

Proof. Let us rather compare VK = log 1
Cap(K) and log 1

τ(K) . First of all, let us show that log 1
Cap(K) >

log 1
τ(K) .

Let us define for z1, . . . , zn ∈ K :

F (z1, . . . , zn) :=
∑
i<j

log 1
|zi − zj |

Let us remind ourselves of the definition of δn(K) in definition 2.1 :

δn(K) = max
z1,...,zn∈K

∏
i<j

|zi − zj |2/n(n−1)

and that τ(K) = lim δn(K). Let us also define the minimal energy associated with a n-point configuration:

En := min
z1,...,zn∈K

F (z1, . . . , zn) = n(n− 1)
2 log 1

δn(K)

Let µK be an equilibrium measure on K. Let us consider

J :=
∫
· · ·
∫
F (z1, . . . , zn) dµK(z1) . . . dµK(zn)

=
∑
i<j

∫
· · ·
∫

log 1
|zi − zj |

dµK(z1) . . . dµK(zn)

=
∑
i<j

∫ ∫
log 1
|zi − zj |

dµK(zi) dµK(zj)

=
∑

16i<j6n
VK

= n(n− 1)
2 VK

On the other hand

J >
∫
· · ·
∫
En dµK(z1) . . . dµK(zn)

= En

= n(n− 1)
2 log 1

δn(K)

22



Collective project

Hence VK = log 1
Cap(K) > log 1

τ(K) .

Let us denote by νn the counting measures with respect to the Fekete points {z1, . . . , zn}. By compactness,
there exists a sub-sequence (νnk) and µ ∈ P(K) so that νnk

∗−→ µ. Then

I(µ) =
∫∫

log 1
|z − t|

dµ(z) dµ(t)

= lim
M→+∞

∫∫
min[M, log 1

|z − t|
] dµ(z) dµ(t)

= lim
M→+∞

lim
k→+∞

∫∫
min[M, log 1

|z − t|
] dνnk(z) dνnk(t)

= lim
M→+∞

lim
k→+∞

1
n2
k

∑
16i,j6nk

min[M, log 1
|zi − zj |

]

6 lim
M→+∞

lim
k→+∞

1
n2
k

(
nk∑
i=1

M + 2
∑

16i<j6nk

log 1
|zi − zj |

)

6 lim
M→+∞

lim
k→+∞

1
n2
k

(nkM + nk(nk − 1) log 1
δnk(K) )

= log 1
τ(K)

Then
I(µ) 6 log 1

τ(K) 6 log 1
Cap(K) = VK 6 I(µ)

Therefore, τ(K) = Cap(K).
Furthermore, I(µ) = VK = I(µK). In the case where Cap(K) > 0, µ = µK the unique equilibrium

measure on K. (νn) is a sequence of elements of a compact set with µK as its unique accumulation point,
therefore

νn
∗−→ µK

Example 2.5 The equilibrium measures µU and µB of the unit circle U and the unit disk B are both dθ
2π on

U, and the corresponding equilibrium potential is

Uµ(z) = − log+ |z| = −max(0, log |z|)

Figure 6: Fekete points for n ∈ {8, 16} and equilibrium measure with K = U
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Proof.

• Let f be a continuous function. By applying the convergence theorem of Riemann sums to θ 7→ f(eiθ),
we obtain :

ν(Un)(f) = 1
n

n−1∑
k=0

f(exp 2ikπ
n

) →
n→∞

∫ 2π

0
f(eiθ) dθ2π

But Un is a set of Fekete points of U (Prop. 2.2) therefore ν(Un) ∗−→ µU (Thm. 2.3). Hence µU = dθ
2π .

• By making the substitution t := θ + φ :

UµU(z) = −
∫ 2π

0
log(

∣∣z − eiθ∣∣) dθ2π = −
∫ 2π

0
log(

∣∣zeiφ − eit∣∣) dt2π = UµU(|z|)

Let us consider r ∈ R+

Uν(Un)(r) = − 1
n

log
∣∣∣∣∣
n−1∏
k=0

(r − e 2ikπ
n )
∣∣∣∣∣ = − 1

n
log |rn − 1|

– If r < 1, |rn − 1| → 1, therefore Uν(Un)(r) = − 1
n log |rn − 1| →

n→∞
0

– If r > 1, Uν(Un)(r) = − 1
n log |rn − 1| = − log(r)− 1

n log
∣∣ 1
r

n − 1
∣∣ →
n→∞

− log(r)

When r 6= 1, the function t ∈ U 7→ − log |z − t| ∈ C is continuous, therefore

UµU(r) = lim
n→∞

Uν(Un)(r) =
{

0 if r < 1
log 1

r if r > 1
When r = 1, by using 2.2 and 2.3 we obtain : 0 = − log(τ(U)) = VU =

∫
U U

µU(z) dµU(z) = UµU(1)
Hence UµU(z) = − log+ |z|

• From the proposition 2.4(c), it follows that Cap(U) = Cap(B) and VB = I(µU) 6= +∞ thanks to the
uniqueness of the equilibrium measure, hence µB = µU and UµB = UµU .

Now that we have unified the two notions of capacity previously defined, let us introduce a few properties of
our capacity.

Proposition 2.4 Let us consider (Kn) compact subsets of C.

(a) Let us consider K1 ⊂ K2, then Cap(K1) ≤ Cap(K2).

(b) Let us consider α, β ∈ C, then Cap(αK + β) = |α|Cap(K).

(c) Cap(K) = Cap(∂K).

(d) Let us consider (Kn)n a decreasing sequence and let us consider K =
⋂
nKn, then Cap(K) =

limn Cap(Kn).

(e) Let us consider (Kn)n an increasing sequence and let us assume that K =
⋃
nKn is a compact set,

then Cap(K) = limn Cap(Kn).
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(f) Assume that Cap(K) = 0. Then ν(K) = 0, for all finite measures with compact support ν on C such
that I(ν) < +∞. In particular, Lebesgue measure m2(K) = 0.

Proof. (a) and (b) are immediate consequences of the definition.

(c) results from theorem 2.3 and proposition 2.1.

(d) According to (a), it is enough to show that Cap(K) ≥ limn Cap(Kn), and moreover we can assume
that Cap(Kn) > 0 for all n. Let µKn be the equilibrium measure of Kn, then µEn ∈ P(K0). According to
Banach-Alaoglu-Bourbaki theorem, we can extract a sub-sequence (µEϕ(n))n which converges weakly-* to a
measure µ? ∈ P(K0). Then lemma 2.2 gives us

I(µ?) ≤ lim inf
n

I(µϕ(n)) = lim inf
n

(
− log Cap(Kϕ(n))

)
= − lim

n
log Cap(Kn)

On the other hand, Prop. A.1 implies that

suppµ? ⊂
⋂
n

suppµEϕ(n) ⊂
⋂
n

Kϕ(n) =
⋂
n

Kn = K

Therefore µ? ∈ P(K), then

Cap(K) ≥ e−I(µ
?) ≥ exp

(
lim
n

log Cap(Kn)
)

= lim
n

Cap(Kn)

(e) According to (a), it is enough to show that Cap(K) ≤ limn Cap(Kn), and moreover we can assume
that Cap(K) > 0. Let us consider µ ∈ P(K). Since limn µ(Kn) = µ(K) = 1, we have µ(Kn) > 0 for a
sufficiently large n . Then for such a n, we consider µ|Kn

µ(Kn) ∈ P(Kn). We have

− log Cap(Kn) ≤ I
(
µ|Kn
µ(Kn)

)
= 1
µ(Kn)2

∫
Kn

∫
Kn

log 1
|z − t|

dµ(t) dµ(z)

Since the domain of integration Kn ×Kn increases with n and tends to K ×K, because (Kn) is increasing
and tends to K, we obtain that

− log
(

lim
n

Cap(Kn)
)
≤ 1

limn µ(Kn)2

∫
K

∫
K

log 1
|z − t|

dµ(t) dµ(z) = I(µ)

where we apply the monotone convergence theorem, after verifying that on K×K, log 1
|z−t| is lower bounded

by log(1/δ2(K)). In particular, when µ = µK the equilibrium measure of K, I(µK) = − log Cap(K), we
obtain that Cap(K) ≤ limn Cap(Kn).

(f) Let ν be a measure verifying the theorem’s assumptions. If ν(K) > 0, then ν|K
ν(K) ∈ P(K), therefore

since Cap(K) = 0, we have

I

(
ν|K
ν(K)

)
= 1
ν(K)2

∫
K

∫
K

log 1
|z − t|

dν(t) dν(z) = +∞
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Then

I(ν) =
∫∫

log 1
|z − t|

dν(t) dν(z)

=
(∫ ∫

(K×K)c
+
∫
K

∫
K

)
log 1
|z − t|

dν(t) dν(z)

>
(
1− ν(K)2) log 1

δ2(supp(ν)) + ν(K)2I

(
ν|K
ν(K)

)
= +∞

which is contradicted by I(ν) < +∞.

If K ⊂ B(0, r), we have m2|B(0,r)(C) = πr2 and I(m2|B(0,r)) < +∞. In fact, for all z ∈ B(0, r),∫
B(0,r)

log 1
|z − t|

dm2(t) ≤
∫
B(z,2r)

log 1
|z − t|

dm2(t)

=
∫ 2π

0

∫ 2r

0

(
log 1

ρ

)
ρ dρ ≤ 4πr ‖ρ log ρ‖L∞(]0,r]) < +∞

Therefore we can apply what we have just proved to obtain that m2(K) = 0.

Corollary 2.2 Let a = (a1 < · · · < a2n) be a set of strictly increasing real numbers. Let us consider

Ea =
n−1⋃
k=0

[a2k+1, a2k+2]. The capacity of Ea continuously varies with a.

Proof. Let us consider d = mini{ai+1 − ai} and ε ∈]0, d/2[. Let

aε,+ = (a1 − ε, a2 + ε, . . . a2n−1 − ε, a2n + ε), aε,− = (a1 + ε, a2 − ε, . . . a2n−1 + ε, a2n − ε),

We have Eaε,− ⊂ Ea ⊂ Eaε,+ .

The left (resp. right) continuity of Cap(Ea) with respect to a is equivalent to Cap(Ea) = sup Cap(Eaε,−)
(resp. Cap(Ea) = inf Cap(Eaε,+)). These two conditions are insured by points (d) and (e) of the previous
proposition.

Definition 2.8 Let K ⊂ C be a compact subset. Let us denote by ΩK the unbounded connected component
of C\K. Let us define the external boundary of a compact set K ⊂ C as the boundary of ΩK , subset of C:

∂∞K := ∂ΩK

and the essential closure as the complement of ΩK with respect to C:

Kce := C\ΩK

Corollary 2.3 Let K ⊂ C be a compact set, then:

(a) If K̊ is non-empty, then Cap(K) > 0; in other words, Cap(K) = 0 implies that K = ∂K;
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(b) ΩK = Ω∂K = Ω∂∞K = ΩKce ;

(c) ∂∞K = ∂Kce, Kce ⊃ K ⊃ ∂∞K;

(d) Cap(Kce) = Cap(∂∞K) = Cap(K) = Cap(∂K).

(e) Let µK be the equilibrium measure of K. If Cap(K) > 0, then supp(µK) ⊂ ∂∞K and µK = µKce =
µ∂∞K .

(f) Let (Kn) be an increasing sequence of compact subsets of C, and B =
⋃
nKn. Then Cap(B) =

limn Cap(Kn).

Proof. (a) results from Prop. 2.4 (f) using Lebesgue measure.

(b) and (c) result from the definition.

(d) can be deduced from (c) and Prop. 2.4 (a),(c). And (e) results from it, given the uniqueness (Thm.
2.2).

(f) Let us suppose Kn of finite capacity. Let K ⊂ B be a compact. Then (K ∩ Kn) is an increasing
sequence that converges to K, then we have

Cap(K) = lim
n

Cap(K ∩Kn)

hence Cap(B) ≤ limn Cap(Kn). The other inequality is trivial.

2.3 Potentials and semi harmonic functions

For some probability measure µ, the associated potential Uµ is a function of a complex variable belonging to
a specific family of functions: semi-harmonic functions. These are semi-continuous functions which verify the
maximum/minimum modulus principle. Notions on these functions are provided in the appendix B.

By using properties of these functions, we will prove several important results on potentials and capacities.
First, we will prove Frostman’s theorem (Thm. 2.5) which states that the equilibrium potential of a compact
set K has the shape of a platter on K. Secondly we will prove theorem 2.8 which states that under a few
assumptions of regularity, a holomorphic function transforms the capacity of a compact set according to its
monomial of highest degree. This theorem and its two corollaries 2.10, 2.11, provide a useful tool to calculate
some capacities.

A few technical proofs are gathered in the appendix B.1.

2.3.1 • Frostman’s theorem
To begin with, let us remind ourselves of the definition of semi-harmonic functions and give two important
examples of super-harmonic functions.

Definition 2.9 ((super-,sub-)harmonic functions). Let D ⊂ C be an open set. A function f : D → R is
called harmonic (resp. super-harmonic, sub-harmonic) if it is continuous (resp. lower semi-continuous, upper
semi-continuous) and if it verifies the mean value property (resp. super-mean, sub-mean): for all z ∈ D, if
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the disk {|ζ − z| ≤ r} ⊂ D, we have

f(z) = 1
2π

∫ 2π

0
f(z + reiθ) dθ (resp. ≥,≤)

Example 2.6 g(z) = log 1
|z−t| is superharmonic and harmonic at points z 6= t.

Example 2.7 Let µ be a positive measure with compact support K, then the potential

Uµ(z) =
∫

log 1
|z − t|

dµ(t)

is superharmonic on C and harmonic on C\K.

Proof. Uµ is lower semi-continuous since log 1
|z−t| is for all t. By using Fubini-Tonelli theorem, we obtain

1
2π

∫ 2π

0
Uµ(z + reiθ) dθ =

∫ 1
2π

∫ 2π

0
log 1
|z + reiθ − t|

dθ dµ(t).

The example 2.6 gives us that this last integral is smaller than
∫

log 1
|z − t|

dµ(t) = Uµ(z). Therefore, Uµ

is superharmonic on C. By considering z /∈ K and r < dist(z,K), it follows from example 2.6 that this last
integral is equal to Uµ(z), hence the harmonicity.

Theorem 2.4 (Maximum principle for potentials). Let µ be a finite positive measure with compact support.
If Uµ(z) ≤M for all z ∈ supp(µ), then the same goes for all z ∈ C.

The proof is given in the appendix B, Corollary B.1.

Let us state and prove an important theorem on equilibrium potentials : Frostman’s theorem, which claims
that the equilibrium potential has the shape of a platter and is upper bounded every where by Robin’s constant
(cf. Figure 7).

Theorem 2.5 (Frostman). Let K be a compact subset of C such that Cap(K) > 0, then

1. UµK (z) 6 VK for all z ∈ C

2. UµK (z) = VK for all z ∈ K − S where Cap(S) = 0

3. UµK (z) < VK for all z ∈ Ω where Ω is the non bounded connected component of C−K

Proof. The formal argument proceeds in three steps. First of all, let us define for n ≥ 1 the following sets:
Kn = {z ∈ K|UµK ≤ VK − 1/n} and Ln = {z ∈ support (µK) |UµK (z) > VK + 1/n}. We will first show that
the Kn have capacity zero, then that the Ln are empty, and we will finally conclude, using the maximum
principle for potentials (2.4).

Let us argue by contradiction to prove that Cap(Kn) = 0. Assume there exists n ≥ 1 such that Cap(Kn) >
0. We remind that VK = I (µK) =

∫
UµKdµK , therefore, there exists some z0 in the support of µK verifying
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Figure 7: Frostman’s theorem

UµK (z0) ≥ VK . By using the lower semi-continuity of UµK , there exists a closed ball denoted by B with
radius r > 0 and center z0, on which we have UµK (z) > VK − 1/2n. Then, we have B ∩ Kn = ∅, and
µK(B) = a > 0 because z0 is in the support of µK . To get a contradiction, we want to build a measure that
contradicts the fact that VK is minimal. To do so, we use the assumption that Cap(Kn) > 0. In fact, we can
consider a measure µ on Kn such that I(µ) is finite. We then build the following measure:

σ =

 µ, on Kn

−µK/a, on B
0, on the rest

Let us then consider the family of probability measures µt = µK + tσ for t ∈]0; a[. Given how we built B,
we obtain :

I (µK)− I (µt) ≥ 2t (VK − 1/2n− VK + 1/n) +O
(
t2
)

Therefore for all t sufficiently close to 0 (we remind that here n is fixed), we have I (µK) = VK ≥ I (µt),
which contradicts the fact that µK is minimal since here , µt 6= µK .

Secondly, let us show by contradiction that Ln = ∅. If one of the Ln is non-empty, using the same
argument as earlier, there exists a closed ball B̃ on which UµK (z) > VK + 1/n. As we did earlier, we consider
ã = µK(B̃) > 0. According to the previous point, we obtain for all n, µK(Kn) = 0, therefore, UµK (z) ≥ VK
except on a set with measure zero. We then have :

VK = I (µK) =
∫
K

UµKdµK

=
∫
B̃

UµKdµK +
∫
K\B̃

UµKdµK

≥
(
VK + 1

n

)
ã+ VK(1− ã) > VK

We obtain a contradiction, and the Ln are empty.
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These two facts allow us to prove the three claims of the theorem : since all the Ln are empty, we have
the inequality of the first claim on the support of µK , therefore, on C, thanks to the maximum principle. The
second claim results from the fact that Cap(

⋃
nKn) = 0 which gives us that UµK (z) ≥ VK on K\

⋃
nKn,

and from the first claim which states that UµK (z) ≤ VK . Finally, the last claim results from the harmonicity
of UµK on Ω.

Example 2.8 When K = U (Prop. 2.5), the potential UµU(z) =
{

0 = VU if |z| 6 1
log( 1

|z| ) if |z| > 1
verifies Frostman’s

theorem with S = ∅.

Corollary 2.4 Let K ⊂ C be a compact set with Cap(K) > 0 and µK its equilibrium measure. Then
UµK ≡ VK in the interior of K. Moreover, since µK = µKce (Cor. 2.3(e)), we have UµK ≡ VK in the interior
of Kce.

Proof. Frostman’s theorem implies that

UµK (z) = VK , q − a.e. in ∂K

On the other hand, UµK is superharmonic and lower bounded by log(1/d2(K)) in K. Then the maximum
principle can be applied to UµK on each connected component of K̊ to obtain UµK ≥ VK in K̊. However,
Frostman’s theorem already gives us an upper bound, VK . Therefore UµK = VK in K̊.

2.3.2 • Calculation of capacities
The goal of this section is theorem 2.8, which states that a holomorphic function transforms the capacity

according to its monomial of highest degree, and two corollaries which serve as tools to calculate some capacities.

The main tool of this proof is Green’s function with respect to a compact set.

Theorem 2.6 Let K ⊂ C be a compact set with Cap(K) > 0 and ΩK the non bounded connected component
of C\K. Then there exists a unique function gK(·,∞) : ΩK → R characterized by the following properties:

1. gK(·,∞) is harmonic on ΩK and bounded outside of all the neighborhoods of ∞;

2. gK(·,∞)− log |·| is bounded on a neighborhood of ∞;

3. limz→ζ gK(z,∞) = 0 q-a.e. in ∂ΩK .

Proof. The existence is given by Frostman’s theorem and example 2.7 if we consider

gK(z,∞) = VK − UµK (z). (1)

Let g, g′ be two functions verifying these three properties, then g − g′ is harmonic and bounded on ΩK ,
and therefore can be extended to a harmonic function on ΩK ∪{∞}. According to the second point, we have
g(z) > 0 (resp. g′(z) > 0) for R � 0 so that K ⊂ B(0, R); the minimum principle applied on ΩK ∩ B(0, R)
gives us that g(z) > 0 (resp. g′(z) > 0) on ΩK ∩ B(0, R), and then on ΩK . The uniqueness results from
the third property and the minimum principle applied twice on ΩK ∪ {∞} to g(z) − g′(z) and g′(z) − g(z)
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respectively.

Definition 2.10 Let us denote by gK(·,∞) : ΩK → R the Green’s function with respect to K, with a pole at
infinity.

Corollary 2.5 Let K ⊂ C be a compact set such that Cap(K) > 0. We then have gK(·,∞) > 0 on ΩK .

Corollary 2.6 If two compact sets K1,K2 ⊂ C are such that Cap(K1) > 0 or Cap(K2) > 0, and that
ΩK1 = ΩK2 , then

gK1(·,∞) = gK2(·,∞).

In particular, let K ⊂ C be a compact set with Cap(K) > 0, then

gK(·,∞) = g∂K(·,∞) = g∂∞K(·,∞) = gKce(·,∞).

Proof. Note that the three claims in Thm. 2.6 only depend on ΩK , the non bounded connected component
of C\K ; therefore the result immediately follows from the definition and Cor. 2.3.

Theorem 2.7 Let K ⊂ C be a compact set with Cap(K) > 0 and gK(·,∞) Green’s function with respect to
K, with a pole at infinity. Then

1. gK(z,∞) = log |z|+ VK + oz→∞(1);

2. The equilibrium potential of K is UµK = VK − gK(·,∞); then (Thm. 2.5) gK(·,∞) > 0 on ΩK .

Proof. It immediately results from the formula (1) given in the proof of theorem 2.6 and in the definition
of the potential UµK .

Let us define the notion of regularity of a compact set. We will see later that it is the right assumption to
link the capacity of two compact sets and thanks to Prop 2.7, it is a special case that will be useful in a more
general approach.

Definition 2.11 Let K ⊂ C be a compact set such that Cap(K) > 0. We call ζ0 ∈ ∂ΩK a regular point if

lim
ΩK3z→ζ0

UµK (z) = VK ;

otherwise, we write that ζ0 is an irregular point. We write that ΩK is a regular set if all the points of ∂ΩK
are regular.

According to the relation between the potential and Green’s function (Thm. 2.7), we have the following
property :

Corollary 2.7 A point ζ0 ∈ ∂ΩK is regular if and only if limz→ζ0 gK(z,∞) = 0.

31



Collective project

Proposition 2.5 Let K ⊂ C be a compact set such that Cap(K) > 0. Then UµK (ζ0) = VK implies the
continuity of UµK at point ζ0. The reciprocal implication is true if ζ0 ∈ supp(µK).

Proof. It follows from the semi-continuity of UµK and Frostman’s theorem that:

UµK (ζ0) ≤ lim inf
z→ζ0

UµK (z) ≤ lim sup
z→ζ0

UµK (z) ≤ VK .

Therefore if UµK (ζ0) = VK , UµK is continuous at point ζ0.

Conversely, if UµK is continuous at point ζ0 and UµK (ζ0) < VK , then there exists r > 0 such that
UµK < VK on B(ζ0, r), therefore according to Frostman’s theorem, Cap(B(ζ0, r)) ∩K) ≤ Cap(S) = 0, then
according to Prop. 2.4(f), we have

µK(B(ζ0, r) ∩K) = 0.

Therefore µK(B(ζ0, r)) = 0 and we deduce from it that ζ0 /∈ supp(µK).

Corollary 2.8 Let us consider ζ0 ∈ supp(µK) then for all r > 0, Cap(B(ζ0, r) ∩K) > 0.

Proof. It is indeed the contrapositive of the last argument of the previous proof.

Corollary 2.9 The set of all irregular points has capacity zero.

Proof. Let us assume that Cap(K) > 0. Then the corollary results from Frostman’s theorem.

To get a sufficient condition of regularity, let us introduce the following notion:

Definition 2.12 Let us consider Ω ⊂ C. We write that Ω verifies the cone condition if for all ζ ∈ ∂Ω, there
exists ζ1 6= ζ such that the segment [ζ, ζ1] ⊂ C\Ω.

Proposition 2.6 Let K ⊂ C be a compact set with Cap(K) > 0. If ΩK verifies the cone condition, then ΩK
is a regular set.

The proof is given in appendix C.1.

The following proposition will be useful in order to consider the domain regular.

Proposition 2.7 Let K ⊂ C be a non-empty compact set and let Kε = {z ∈ C : dist(z,K) ≤ ε}. Then
Cap(Kε) > 0 and ΩKε verifies the cone condition, therefore ΩKε is regular.

Proof. Since the interior of Kε is non-empty, we have Cap(Kε) > 0. Moreover, by definition, all points ζ in
∂Kε are exactly at a distance of ε from K, therefore there exists ζ1 ∈ K such that [ζ, ζ1] ⊂ Kε ⊂ C\ΩK .
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We will now prove a few results that allow us to compare the capacity of two compact sets thanks to
holomorphic functions and the notion of regularity previously defined.

Lemma 2.3 Let f be a non locally constant holomorphic function defined at ∞ by f(∞) =∞. Then there
exists some integer n ∈ N∗ and some A 6= 0 such that

f(z) ∼ Azn, z →∞

log |f(z)| = n log |z|+ log |A|+ o(1), z →∞

Let us define Af = A,nf = ord∞(f) = n.

Theorem 2.8 Let K1,K2 ⊂ C be two non-empty compact sets. Let f : ΩK1 ∪ {∞} → ΩK2 ∪ {∞} be a non
constant holomorphic function such that f(∞) =∞. Then,

(a) |Af |Cap(K1)nf ≥ Cap(K2).

(b) Moreover assume that :

(i) Cap(K2) > 0;
(ii) f−1(∞) = {∞};
(iii) ΩK2 is regular;
(iv) f can be continuously extended to the boundaries ∂ΩK1 → ∂ΩK2 .

Then, Cap(K1)>0, ΩK1 is a regular set and

gK1(·,∞) = 1
nf
gK2(f(·),∞)

|Af |Cap(K1)nf = Cap(K2).

The complete proof is provided in the appendix B.1.

To understand how to apply this theorem, let us see when the conditions in (b) are verified:

(ii) holds when f is biholomorphic, or when f is a polynomial;
(iii) holds when ΩK verifies the cone condition (Prop. 2.6).

We therefore have the two following corollaries (by applying the same technique as in Prop. 2.7 if necessary):

Corollary 2.10 If f is biholomorphic, we have nf = nf−1 = 1 and AfAf−1 = 1; Let us apply (a) twice to
obtain (with notation f ′(∞) = Af )

|f ′(∞)|Cap(K1) = Cap(K2).

Corollary 2.11 Assume that f is a polynomial function of degree n:

f(z) =
n∑
i=0

aix
i, an 6= 0.
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Let K ⊂ C be a compact set. Then

|an|Cap(f−1(K))n = Cap(K).

Proof. Assume that K 6= ∅. Let us try to apply theorem 2.8 (b). Since f is a polynomial function, (ii)
is verified for all compacts in C. For ε > 0, let us consider Kε = {z ∈ C : dist(z,K) ≤ ε}. Let us show
that the conditions (i),(iii),(iv) of the theorem are verified for the compact sets f−1(Kε) and Kε and that
f(Ωf−1(Kε)) ⊂ ΩKε ; It will result in

|an|Cap(f−1(Kε))n = Cap(Kε).

When ε→ 0, it allows us to conclude.

(i) Kε has a non-empty interior, therefore Cap(Kε) > 0 (Cor. 2.3).

(iii) results from Prop. 2.6 and Prop. 2.7.

(iv) We will actually prove this claim for all compact sets K (instead of Kε). A topological analysis shows
that f(∂f−1(K)) = ∂K. We have left to prove that f(∂Ωf−1(K)) ⊂ ∂ΩK . We have f(∞) = ∞ and K a
compact set, therefore f−1(K) is a compact set; likewise, the inverse image of each (open) bounded connected
component of C\K is bounded, therefore included in one of the bounded component of f−1(K). Therefore
Ωf−1(K) ⊂ f−1(ΩK), then

f(Ωf−1(K)) ⊂ ΩK

f(∂Ωf−1(K)) ⊂ ΩK .

We finally obtain that
f(∂Ωf−1(K)) ⊂ ΩK ∩ ∂K = ∂ΩK ,

which allows us to apply theorem 2.8 (b) to obtain the final result.

2.4 Chebyshev constant

Let us now give a third equivalent definition of the capacity, defined thanks to Chebyshev polynomials. This
point of view is very useful to calculate the capacity of segments of R.

First, let us state the equioscillation theorem :

Theorem 2.9 (Equioscillation). Let us consider n ∈ N. Let f be a continuous function on [a, b]. Let us
consider P ∈ Rn[X]. P minimizes ||f − P ||∞,[a,b] if and only if there exists n + 2 points a 6 x0 < x1 <
. . . xn+1 6 b such that f(xi)− P (xi) = ±(−1)i||f − P ||∞,[a,b]

The proof of this theorem is not that hard but is quite long. In order not to overfill this paper, we advise
the reader to read article [5] for a complete and illustrated proof.

Definition 2.13 (The Chebyshev constant). Let us consider some n ∈ N and K a compact subset of C, let
us denote by || · ||K the uniform norm on K and :

tn(K) = inf
P∈Cn−1[X]

||Xn + P ||K .

If K contains an infinite number of points, there exists a unique monic polynomial Tn ∈ Rn[X], called Cheby-
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shev polynomial such that tn(K) = ||Tn||K .

Let us define the Chebyshev constant as follows :

Cheb(K) = lim
n→+∞

tn(K) 1
n .

Proof.

• If K is an infinite set, || · ||K is a norm on C[X]. The existence of Tn follows from the fact that the
distance to a closed vector subspace is reached. The uniqueness follows from the reciprocal implication
of the equioscillation theorem (2.9).

• Let us consider n,m ∈ N. Since TnTm is a monic polynomial of degree n+m, we have

||Tn+m||K = inf
P∈Cn+m[X]

monic

||P ||K 6 ||TnTm||K 6 ||Tn||K ||Tm||K

Therefore tn+m(K) 6 tn(K)tm(K) and (log(tn(K)))n∈N is sub-additive. It follows from the sub-
additivity lemma that ( 1

n log(tn(K)))n∈N converges, which proves that Cheb(K) is well defined.

The Chebyshev constant is equivalent to the logarithmic capacity and the transfinite diameter :

Theorem 2.10 Let us consider K a compact subset of C, then

τ(K) = Cap(K) = Cheb(K).

Let Fn = {z(n)
1 , . . . , z

(n)
n } be a set of n Fekete points and Fn(X) =

n∏
i=1

(X − z(i)
n ) the associated Fekete

polynomial. We have
lim

n→+∞
||Fn||1/nK = Cheb(K).

Moreover, if Cap(K) > 0, noting µK the equilibrium measure of K, we have

∀z ∈ C\K, lim
n→+∞

Fn(z) 1
n = exp(−UµK (z))

The convergence is uniform on all compact subsets of C\K.

Proof. We argue using theorem 2.3.

• Let us consider n ∈ N, z ∈ C and Fn = {z(n)
1 , . . . , z

(n)
n } a set of n Fekete points.

Let us consider {y1, . . . , yn+1} = {z(n)
1 , . . . , z

(n)
n , z}, then

δn+1(K)n(n+1)/2 = max
{y1,...,yn+1}⊂K

∏
16i<j6n+1

|yi − yj | >
n∏
i=1
|z − z(n)

i |
∏

16i<j6n
|z(n)
i − z(n)

j |

Let Fn =
∏n
i=1(X − z(n)

i ). Since Fn is a set of Fekete points :

δn+1(K)n(n+1)/2 > |Fn(z)|δn(K)(n−1)n/2.
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By considering supz∈K , we obtain ||Fn||K 6
(
δn+1(K)
δn(K)

)(n−1)n/2
δn+1(K)n. However, the δn(K) are

decreasing, therefore ||Fn||1/nK 6 δn+1(K). Moreover by definition, tn(K) 6 ||Fn||1/nK 6 δn+1(K).
Finally, by considering the limit, we have

τ(K) > lim sup
n→∞

||Fn||1/nK > lim inf
n→∞

||Fn||1/nK > Cheb(K).

• To conclude, it is enough to show that Cheb(K) > τ(K). If τ(K) = 0, it is trivial, otherwise K contains

an infinite number of points and we can consider Tn =
n∏
i=1

(X − xi), the n-th Chebyshev polynomial

with respect to K and ν(Tn) the counting measure with respect to x1, . . . , xn.
Since x ∈ R∗+ 7→ log 1

x is a decreasing function,

1
n

log 1
tn(K) = inf

z∈K

1
n

log 1
|Tn(z)| = inf

z∈K

1
n

n∑
i=1

log 1
|z − xi|

= inf
z∈K

Uν(Tn)(z).

It follows from prop A.3 that:

inf
z∈K

Uν(Tn)(z) = µK( inf
z∈K

Uν(Tn)(z)) 6 µK(Uν(Tn)).

Then,

µK(Uν(Tn)) = µK( 1
n

n∑
i=1

log 1
|z − xi|

) = 1
n

n∑
i=1

µK(log 1
|z − xi|

) = ν(Tn)(UµK )

Frostman’s theorem 2.5 gives us that

1
n

log 1
tn(K) 6 ν(Tn)(UµK ) 6 VK .

Finally, passing to the limit n→ +∞ and composing by x 7→ e−x, we obtain :

Cheb(K) > Cap(K) = τ(K),

which concludes the first claim of the theorem.

• Let fn(z) = log(|Fn(z)|1/n) = 1
n

∑n
k=1 log |z − tk| where t1, . . . , tn are the roots of Fn. Let L be a

compact subset of C−K, then :

∀t ∈ K,∀z ∈ L, log d(L,K) 6 log |z − t| 6 log sup
z′∈L,t′∈K

|z′ − t′|.

However, by compactness of L and K, d(L,K) > 0 and supz′∈L,t′∈K |z′ − t′| <∞.
Moreover, we have

∀n ∈ N,∀z ∈ L, |fn(z)| 6 1
n

n∑
k=1

∣∣∣∣log
(

1
d(L,K) + sup

z′∈L,t′∈K
|z′ − t′|

)∣∣∣∣
6

∣∣∣∣log
(

1
d(L,K) + sup

z′∈L,t′∈K
|z′ − t′|

)∣∣∣∣ <∞.
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therefore the fn are uniformly bounded on L. Therefore, fn is a sequence of holomorphic functions,

uniformly bounded on all compact sets, which converges pointwise on C\K. It follows from Vitali
theorem that the convergence is uniform on all compact sets.

This new definition of capacity allows us to calculate the capacity of a segment in a simple manner.

Example 2.9 (Capacity of a segment). The capacity of a segment with length 2l is equal to l
2 .

Proof.

• Let us first prove the claim when the segment can be written as [−l, l].
Let us denote by T̃n the unique polynomial verifying:

∀θ ∈ R, T̃n(l cos(θ)) = lcos(nθ)

The uniform norm of T̃n is obviously equal to l. And like in the well-known case [−1, 1], we show easily
that our polynomial reaches alternatively ±l at n+ 1 distinct points. (1)
Using De Moivre’s formula, we show that the leading coefficient of T̃n is equal to c := ( 2

l )n−1.
Minimizing ‖P‖[−l,l], for P ∈ Cn[X] a monic polynomial, is equivalent to minimizing ‖Xn−Q‖[−l,l] for
Q living in Cn−1[X]. In other words, we are trying to calculate the distance of Xn to Cn−1[X]. Let us
consider Q? := Xn − 1

c T̃n(X). We obviously have that Q? ∈ Cn−1[X]. Moreover, Xn −Q? = 1
c T̃n(X),

which equioscillates at n + 1 points according to (1). Therefore, it follows from lemma 2.1 that Q?
minimizes the distance of Xn from polynomials of Cn−1[X]. Therefore 1

c T̃n is the Chebyshev polynomial
with respect to [−l, l].
Hence tn([−l, l]) = ‖ 1

c T̃n(X)‖ = l
c = l( l2 )n−1.

Therefore, Cheb([−l, l]) = lim
n→∞

tn([−l, l]) 1
n = l

2 .

• In the general case of a segment of the form [a, b], with length 2l, it is enough to consider the following
polynomial function: T̃n(X− (a+ l)) which, on [a, b], has the same behavior as T̃n on [−l, l]. Therefore,
the capacity is not changed by the translation. Hence Cheb([a, b]) = l

2 .

Let us now calculate the capacity of the union of two segments, which is symmetric with respect to the origin
0.

Example 2.10 Let us consider 0 6 b < a. Then Cheb([−a,−b] ∪ [b, a]) =
√
a2−b2

2 .

Proof. Let us consider F an infinite compact subset of C and denote by TFn the Chebyshev polynomial of
degree n with respect to F . Let us consider E = [−a,−b] ∪ [b, a].
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• Let us consider k ∈ N. Let us show that TE2k is even.∥∥∥∥TE2k(X) + TE2k(−X)
2

∥∥∥∥
E

6
1
2(
∥∥TE2k(X)

∥∥
E

+
∥∥TE2k(−X)

∥∥
E

)

But E is symmetric with respect to the origin, therefore∥∥TE2k(−X)
∥∥
E

= sup
z∈E

∣∣TE2k(−z)
∣∣ = sup

z∈E

∣∣TE2k(z)
∣∣ =

∥∥TE2k(−X)
∥∥
E
.

Thus
∥∥∥TE2k(X)+TE2k(−X)

2

∥∥∥
E
6
∥∥TE2k∥∥E and by the uniqueness of the Chebyshev polynomial of degree 2k,

TE2k = TE2k(X)+TE2k(−X)
2 . Therefore TE2k is even.

• We deduce from it that TE2k can be written as follows: q(X2) with q ∈ Pk, the set of monic polynomials
of degree k. As a result :

t2k(E) = inf
q∈Pk

sup
x∈E
|q(x2)|

= inf
q∈Pk

sup
x2∈[b2,a2]

|q(x2)|

= inf
q∈Pk

sup
y∈[b2,a2]

|q(y)|.

Therefore TE2k = T
[b2,a2]
k (X2). But in the example 2.9 we saw that ( 2

l )k−1T
[−l,l]
k (l cos(θ)) = l cos(kθ).

Therefore, by considering x = l cos(θ), we have :

T
[−l,l]
k (x) = lk

2k−1 cos
(
k arccos

(x
l

))
.

Then by translation we obtain :

T
[b2,a2]
k (x) = (a2 − b2)k

22k−1 cos
(
k arccos

(
2 x− b

2

a2 − b2
− 1
))

.

And finally TE2k(x) = (a2−b2)k
22k−1 cos

(
k arccos

(
2x2−b2

a2−b2 − 1
))

.

• t2k(E) =
∥∥TE2k∥∥E = 2

(√
a2−b2

2

)2k
. Hence

Cheb(E) = lim
k→∞

t2k(E) 1
2k = lim

k→∞

2
(√

a2 − b2
2

)2k
 1

2k

=
√
a2 − b2

2 .
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3
FEKETE’S THEOREM. FEKETE-SZEGÖ’S THEOREM

Now that we have introduced the notion of capacity and showed the equivalence between the three definitions
(transfinite diameter/potential/Chebyshev polynomials), let us now focus on how this notion gives us informa-
tion on the fact that there is (or not) an infinite number of algebraic integers totally in a given compact set.
The goal of this section is to prove Fekete’s theorem (Thm. 3.1) and Fekete-Szegö’s theorem (Thm. 3.3) : the
former states that if the capacity of a compact set is strictly smaller than 1, there is a finite number of algebraic
integers totally in it; the latter states that if the capacity of the compact set is greater than or equal to 1, we
can find an infinite number of algebraic integers totally in any neighborhood (with respect to C) of the compact
set.

3.1 Fekete’s theorem

This section is dedicated to the proof of Fekete’s theorem.

Theorem 3.1 (Fekete). Let K ⊂ C be a compact set with Cap(K) < 1. Then there exists an open
neighborhood U of K such that the set of the algebraic integers totally in U is finite. In particular, there is
a finite number of algebraic integers totally in K.

The proof mainly comes from the fact that τ(K) = Cap(K).

Proof. It is enough to prove the last claim of the theorem; in fact, since Cap(K) < 1, we have Cap(Kε) < 1
for some ε > 0 sufficiently small, where Kε = {z ∈ C : dist(z,K) ≤ ε}; for such a ε, U =

◦
Kε verifies the

assumption of the theorem. Assume that EK , the set of algebraic integers totally in K, is infinite and let us
argue by contradiction.

Let us start with the case where the degrees of all the minimal polynomials p of ζ ∈ EK are bounded by
an integer N > 0. Then the coefficient before Xdeg(p)−i is bounded by(

deg(p)
i

)
‖K‖i∞ ≤

(
N

i

)
‖K‖i∞, where ‖K‖∞ = max

z∈K
|z| .

There is only a finite number of such minimal polynomials (we remind that the coefficients are integer), hence
#EK <∞, which contradicts our initial assumption.

Otherwise, there exists a sequence ζn ∈ EK such that the sequence dn = deg(pn) is strictly increasing,
where pn ∈ Z[X] is the (monic) minimal polynomial of ζn.

Let us remind ourselves of the notion of n-distance (Definition 2.1) :

δn(K) = max
z1,...,zn∈K

∏
i<j

|zi − zj |2/n(n−1)

And the capacity as the transfinite diameter :

τ(K) = lim
n→+∞

δn(K)
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Let us notice that

δdn(K)dn(dn−1) ≥

∣∣∣∣∣∣
∏

ξ 6=η∈Gal(ζn)

(ξ − η)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∏

ξ∈Gal(ζn)

p′n(ξ)

∣∣∣∣∣∣ > 1

The equality in the middle results from the fact that pn only has simple roots. Moreover, as a symmetric
combination with integer coefficients of the ξ (the roots of pn),

∏
ξ∈Gal(ζn) p

′
n(ξ) is an integer, according to

remark 1.4, non-zero since the roots are simple, therefore greater than 1.
Therefore δdn(K) ≥ 1, hence τ(K) ≥ 1 by passing to the limit n → +∞, which leads to a contradiction

because τ(K) = Cap(K) < 1.

3.2 Fekete-Szegö’s theorem

This section is dedicated to the proof of Fekete-Szegö’s theorem 3.3. Let us first define a set which plays a
major part in the proof, the Hilbert lemniscate :

Definition 3.1 Let p ∈ C[X] be a monic polynomial of degree d > 0 and ρ ∈ R?+ a real constant. The
lemniscate of polynomial p and constant ρ is the following set

L = Lp,ρ = p−1(B(0, ρd)
)

= {z ∈ C| |p(z)| ≤ ρd}.

Remark 3.1 According to corollary 2.11, we have Cap(Lp,ρ) = Cap
(
B(0, ρd)

)1/d, which is equal to ρ thanks
to corollary 2.1 and theorem 2.3.

The idea of the proof of Fekete-Szegö’s theorem is to find an infinite number of algebraic integers totally in
a set. Hilbert lemniscates provide us with examples of such sets :

Proposition 3.1 Let P ∈ Z[X] be a monic polynomial. The lemniscate LP,1 = {z ∈ C | |P (z)| 6 1} contains
an infinite number of algebraic integers totally in it.

Proof. Let us consider S =
⋃
n∈N∗{z ∈ C | P (z)n = 1}. The function

{
S → U
z 7→ P (z) is well defined,

surjective since C is algebraically closed. Therefore S is infinite. Moreover, the elements of S are algebraic
integers totally in S (since they are the roots of Pn − 1 ∈ Z[X] monic, for some n). We conclude by noticing
that S ⊂ LP,1.

The main step of the proof is the following theorem which states that, under some assumptions, we can
always find a Hilbert lemniscate in any neighborhood of the compact set.

Theorem 3.2 (Hilbert’s lemniscate). Let K ⊂ C be a compact set with Cap(K) > 0 and U ⊃ K an open
neighborhood of K such that C\U is connected. Then there exists a monic polynomial p ∈ C[X] of degree
d > 0 and a constant ρ > Cap(K) such that

K ⊂ Lp,ρ ⊂ U.
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Proof. This proof relies on theorem 2.10 (Chebyshev constant) and theorem 2.5 (Frostman).
Even if it means restricting U , we can assume that U is bounded. Let us consider R > 0 such that

K ⊂ U ⊂ B(0, R)

It follows from Frostman’s theorem that UµK (z) < VK for all z ∈ B(0, R)\U . Therefore there exists ε > 0
such that

∀z ∈ B(0, R)\U, UµK (z) 6 VK − ε

This upper bound is uniform since B(0, R)\U is compact.
According to the last claim of theorem 2.10, log 1

F
1
n
n

uniformly converges to UµK : there exists n0 ∈ N

such that for all n > n0,

∀z ∈ B(0, R)\U,
∣∣∣∣∣log 1
|Fn(z)|

1
n

− UµK (z)
∣∣∣∣∣ < ε/2

which implies that
∀z ∈ B(0, R)\U, log 1

|Fn(z)|
1
n

< VK − ε/2

in other words,

∀z ∈ B(0, R)\U, |Fn(z)|
1
n > e−VK+ε/2 = Cap(K)eε/2

But z 7→ 1
Fn(z) is holomorphic on C\U , therefore it follows from the maximum modulus principle that the

previous inequality holds for all z ∈ C\U . Let us consider ρ := Cap(K)eε/2, we then have LFn,ρ ⊂ U for all
n > n0. On the other hand, according to theorem 2.10, there exists n1 ∈ N such that for all n > n1,

||Fn||
1
n

K < Cap(K)eε/2 = ρ

By considering d = max(n0, n1), we have K ⊂ LFd,ρ ⊂ U .

Let us now prove Fekete-Szegö’s theorem :

Theorem 3.3 (Fekete-Szegö). Let K ⊂ C be a compact set that is symmetric with respect to complex
conjugation and such that Cap(K) ≥ 1. If U is an open set containing K such that C\U is connected, then
U contains an infinite number of algebraic integers totally in U .

Proof. The idea is to find a known set included in U , which contains an infinite number of algebraic integers
totally in it. According to proposition 3.1, the lemniscate of a monic polynomial with integer coefficients seems
to be a good contender. The theorem 3.2 gives us a lemniscate Lp,ρ included in U , but for a polynomial P
with complex coefficients (and ρ > 1). We must now bring its coefficients to Z.

Even if it means considering U ∪U? (where U? is the set of the complex conjugates of the elements of U),
we can assume that U is symmetric with respect to the real axis. Under this assumption, we have

∀z ∈ C\U, |p(z)| > ρd > 1,

then
∀z ∈ C\U, |p(z) p(z)| > ρ2d > 1,
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Therefore Lp p,ρ ⊂ U and p p ∈ R[X]. We keep on denoting p this polynomial with real coefficients.

Then assume that U ⊂ B(0, R), even if it means restricting the open set U . We have

∀z ∈ B(0, R)\U,
∣∣∣∣ 1
p(z)

∣∣∣∣ < ρ−d.

It follows from the density of Q in R and the continuity of the roots (since |z| 6 R) that we can choose a
polynomial q ∈ Q[X] whose roots are still all in U and such that

∀z ∈ B(0, R)\U,
∣∣∣∣ 1
q(z)

∣∣∣∣ < ρ−d.

And since 1
q is holomorphic on C\U , the maximum modulus principle gives:

∀z ∈ C\U,
∣∣∣∣ 1
q(z)

∣∣∣∣ < ρ−d,

which implies that Lq,ρ ⊂ U .

We now have to bring the coefficients of q to Z, which is the goal of the two following lemmas (3.1, 3.2).

Lemma 3.1 Let us consider p ∈ Q[X] of degree d ≥ 1 and n ∈ N∗ such that

p(X) = Xd + 1
n
γ(x), γ(X) ∈ Z[X].

Let us consider µ ∈ N∗, σ = µd and ν = σ!nσ. Then there exists a monic polynomial Γ(X) ∈ Z[X] of degree
ν d = deg(pν) such that r(X) := pν(X)− Γ(X) is a polynomial which can be written as follows:

r(X) =
ν−µ−1∑
l=0

pl(X)ql(X)

where the (ql)0≤l≤ν−µ−1 are polynomials of degree not greater than d− 1, with coefficients in Q ∩ [0, 1[.

Proof. Let us consider the following decomposition:

pν(X) = E(X) +R(X)

where
E(X) =

σ∑
i=0

(
ν

i

)
1
ni
X(ν−i)dγi(X) (monic)

R(X) =
ν∑

i=σ+1

(
ν

i

)
1
ni
X(ν−i)dγi(X).

Let us study the coefficients of E(X): for 0 ≤ i ≤ σ, since i!ni divides σ!nσ = ν, then
(
ν
i

) 1
ni ∈ Z.

Therefore E(X) ∈ Z[X].
Let us now take a look at R(X): for i ≥ σ + 1, we have deg(X(ν−i)dγi(X)) ≤ (ν − i)d + i(d − 1) ≤

νd− σ − 1 = (ν − µ)d− 1, therefore deg(R) ≤ (ν − µ)d− 1.
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Since {pl(X)Xk | 0 ≤ l ≤ ν − µ − 1, 0 ≤ k ≤ d − 1} forms a basis of Qd(ν−µ)−1[X], R(X) is a Q-linear
combination of this basis. Moreover, pl(X)Xk are monic polynomials which are, pairwise, of different degrees,
therefore we can find by induction cl,k ∈ Q∩ [0, 1[ in the order k = d− 1, . . . , 0 and l = ν − µ− 1, . . . , 0, such
that

pν(X)−
l,k∑

cl,kp
l(X)Xk ∈ Z[X].

Let us finally consider

ql =
d−1∑
k=0

cl,kX
k

r(X) =
ν−µ−1∑
l=0

pl(X)ql(X).

Then Γ(X) := pν(X)− r(X) ∈ Z[X] is the monic polynomial we were looking for.

Lemma 3.2 Let L be a lemniscate of polynomial p ∈ Q[X] of degree d ≥ 1 and constant ρ > 1, then there
exists a lemniscate of polynomial Γ ∈ Z[X] and constant 1 included in L.

Proof. It is obvious that ∂L = {z ∈ C | |p(z)| = ρd}.
Let us consider M = supz∈∂L(1 + |z|+ · · ·+ |z|d−1), µ ∈ N∗ such that M

ρµd(ρd−1) ≤ 1/2 and ρµd

2 > 1. Let
Γ be the polynomial in the previous lemma, which corresponds to our choice of µ, and let us use the same
notations as in the lemma.

For all z ∈ ∂L, we have

|pν(z)− Γ(z)|
|pν(z)| = |r(z)|

ρνd
=

∣∣∣∣∣
ν−µ−1∑
l=0

pl(z)ql(z)
∣∣∣∣∣

ρνd
6

M

ρνd

ν−µ−1∑
l=0

ρld 6
M(ρ(ν−µ)d − 1)
ρνd(ρd − 1) ≤ M

ρµd(ρd − 1) ≤
1
2 .

It follows from Rouché’s theorem that Γ−1(0) ⊂ L. On the other hand, this inequality implies that for all
z ∈ ∂L

|Γ(z)| ≥ |pν(z)| − |r(z)| ≥ 1
2 |p

ν(z)| ≥ ρµd

2 > 1.

But 1
Γ is holomorphic on C\L because Γ−1({0}) ⊂ L, therefore, according to the maximum modulus

principle, |Γ(z)| > 1 for all z /∈ L.
Therefore LΓ,1 ⊂ L.
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4
ROBINSON’S THEOREM

In this section, we shall state and prove the main theorem of this article: Robinson’s theorem. Let us consider
some segment K of R. The second section of this piece (2.9) allows us to calculate its capacity. If it is strictly
smaller than 1, Fekete’s theorem 3.1 gives us that the number of algebraic integers totally in K is finite. On the
contrary, when the capacity is greater than or equal to 1, Fekete-Szegö’s theorem 3.3 gives us that there is an
infinite number of algebraic integers arbitrarily close to K with respect to C. However, when K is a segment of
R, this property is not enough to show that there is an infinite number of algebraic integers totally in K. Hence
the potential theory is not enough to fully understand the case of compact subsets of R. To prove Robinson’s
theorem, we will have to use algebraic curves.

In section 4.1, we will first define a few notions on algebraic curves: regular/rational functions on a curve,
group of divisors... Then we will build a smooth completion of a hyperelliptic curve. Finally, section 4.2 is
dedicated to the proof of Robinson’s theorem. We will cleverly use hyperelliptic curves to prove a theorem
which, at first sight, has nothing to do with them.

We shall also use charts, holomorphic and meromorphic forms on a Riemann surface. An introduction to
this notions is provided in [6], in particular in sections I.1 and B.2.

4.1 A few notions on algebraic curves

An algebraic curve is an object of dimension 1 locally defined by an algebraic (i.e. polynomial) equation.
Since all polynomials are analytic functions, the algebraic approach gives us less information than the analytic
approach.

We assume that the field K is C, but we shall use K or C according to the approach (algebraic or analytic).
Several definitions or results where the field is referred as K can be generalized, but we will not focus on this
here.

We will give a visual example at the end of section 4.1.7, which can be useful to understand the paragraphs
that precede.

44



Collective project

4.1.1 • Algebraic curve: affine case

Definition 4.1 Let F ∈ K[X,Y ] be a non-constant polynomial in two variables which is irreducible, in other
words which cannot be written as the product of two non-constant polynomials of K[X,Y ]. An algebraic
curve C in the affine space A2

K (which is isomorphic to K2) is the set of all the points (x, y) ∈ K2 verifying
the equation F (x, y) = 0. It is represented as follows:

C : F (x, y) = 0.

• Algebraic approach:
The ring of regular functions on curve C is by definition the ring

A(C) := K[X,Y ]/(F ).

In other words, it is the ring of polynomials modulo an equivalence relation, for which two polynomials
are equivalent if and only if they are equal on the points of curve C. A(C) is an integral domain since F is
irreducible; its field of fractions is called the field of rational functions of the curve and is referred as R(C).
• Analytic approach (more intuitive):
It follows from the implicit function theorem that, if ∇F = (∂xF, ∂yF ) 6= 0 at a point (x0, y0) ∈ C(C),

then in a neighborhood of (x0, y0), the curve is locally the graph of some holomorphic function y = y(x) or
x = x(y). The curve has a good behavior in the neighborhood of such a point (x0, y0) : we say that (x0, y0) is
a smooth point. More precisely, the curve has a 1-dimensional complex manifold structure in the neighborhood
of (x0, y0). That is why it is called a curve (1-dimensional). On the contrary, some point of C with ∇F = 0 is
called a singular point. A curve without any singular point is called smooth. A smooth curve has the natural
structure of a Riemann surface.

Let us consider (affine) hyperelliptic curves, whose definition is given in a restricted manner in order to fit
our problem.

Definition 4.2 An hyperelliptic curve is an algebraic curve

C : y2 = D(x)

where D ∈ C[X] is a monic polynomial in X of degree 2g+ 2 (g ≥ 0) whose roots are distinct. We write that
C is a real hyperelliptic curve if D ∈ R[X].

With this definition, we check that a hyperelliptic curve is smooth.

4.1.2 • Divisors
Let us consider F (X,Y ) ∈ C[X,Y ] non constant and irreducible, as well as the complex algebraic curve

associated with C. The group of divisors on C, referred as div(C), is the free abelian group generated by the
basis {P}P∈C . More precisely, a divisor D on C is a formal linear combination with integer coefficients of a
finite number of points P ∈ C:

D =
n∑
i=1

niPi, where n ∈ N, ni ∈ Z, Pi ∈ C.

Different points are considered linearly independent. The group of divisors div(C) refers to the set of divisors
on C equipped with a structure of group with the addition of coefficients (point by point). We have a natural
group homomorphism called degree of a divisor :

deg : div(C) −→ Z,
∑

niPi 7−→
∑

ni.
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Assume curve C is smooth. According to the implicit function theorem, C has a 1-dimensional complex
manifold structure. Let us consider f ∈ R(C)×. f can be seen as a meromorphic function on C and therefore,
ordP (f) is well defined for all P ∈ C as the order of the meromorphic function f at point P . Let us define the
principal divisor associated with f ∈ R(C) as

div(f) :=
∑

ordP (f)P.

We have div(f) ∈ div(C) since there is a finite number of non-zero coefficients. We verify that we have just
defined a group homomorphism

div :
(
R(C)×, ·

)
−→ (div(C),+) .

Let us define the jacobian variety J(C) of the (smooth) curve C as the cokernel of the homomorphism above,
i.e.

J(C) := div(C)/div R(C)×.

We say that two divisors D1 and D2 are linearly equivalent if D1 −D2 is a principal divisor, in other words,
if D1 = D2 in J(C).

Notice that the smoothness assumption was necessary to define the notions above. That is why we will look
for a smooth completion of the hyperelliptic curve in the following sections.

4.1.3 • A naive compactification
When we talk about the compactness of a curve, we talk about the subjacent set of the curve equipped

with the induced topology of C2. A compact curve has interesting properties which motivates us to compactify
curves. Moreover, we want the compactified curve to be smooth in order to have a Riemann surface structure.

The hyperelliptic curve y2 = D(x) is not compact : in fact, intuitively, there is (are) a point(s) at infinity
which is (are) not on the affine curve. A first possible approach is to use the projective plane P2

K, which
compactifies the affine plane A2

K = K2 by adding a projective line at infinity. The compactification induced on
the curve is the closure of C in P2

K. More precisely, the steps of this compactification are :

• Write the homogeneous form of the equation of the curve z2gy2 = z2g+2D(x/z);

• Define the compactification as the algebraic curve defined on P2
K by this equation.

We will not detail this approach. However, we state that this compactified curve is not smooth at point
∞ = [0 : 1 : 0] ∈ P2

K when g > 0. Therefore we need another compactification.

4.1.4 • Interlude: adjunction of two affine algebraic curves
Before constructing a smooth completion, let us focus on the adjunction of two affine algebraic curves.

C1 : F (x, y) = 0, C2 : G(u, v) = 0

on the affine spaces K2
x,y and K2

u,v respectively (with coordinates x, y or u, v).

Definition 4.3 Let C : F (x, y) = 0 be an affine algebraic curve. A closed algebraic subset of C is the set of
the roots in C of a finite number of polynomials Hi ∈ K[X,Y ] for i ∈ I where I is a finite set. We call it
ZC(Hi, i ∈ I), or simply Z(Hi, i ∈ I), if there is no confusion.
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Definition 4.4 Let C1 (resp. C2) be an algebraic curve on K2
x,y (resp. K2

u,v). A function ϕ : C1 → C2 is
called a rational homomorphism if ϕ = (u(x, y), v(x, y)) where u, v ∈ R(C1).

In other words, ϕ is rational if it can be written as u(x, y) = H11/H12, v(x, y) = H21/H22 where Hij ∈
K[X,Y ] and H12, H22 are non zero on C1. Let us notice that such a ϕ is «ẁell defined» (in terms of subjacent
function) on C1\Z(H12, H22).

Definition 4.5 An Adjunction between two Riemann surfaces C1 and C2 is given by:

(i) two closed algebraic subsets Σ1 and Σ2 respectively of C1 and C2;

(ii) a couple of rational homomorphisms
C1 C2

ϕ

ψ

inducing a well-defined isomorphism

ϕ : C1\Σ1 C2\Σ2 : ψ∼

With the notion of adjunction, one can obtain a new algebraic curve C ′ by considering the disjoint union
C1∪̇C2 and identifying the points of C1\Σ1 and C2\Σ2 using ϕ and ψ. When considering a point coming from
Ci, we can look at its neighborhood in C ′ which can be identified to Ci with the corresponding homomorphism.
However, the new curve is not necessarily an affine curve.

Notions of field of rational functions, smoothness, divisors, principal divisors, etc. can be generalized to the
case of curves obtained by the adjunction of two affine curves, by considering the definitions on affine curves C1
and C2. For example, f is a rational function on C ′ if f |C1 and f |C2 are both rational functions, on C1 and C2
respectively. We will not get into more details here.

4.1.5 • Smooth completion
Let D ∈ K[x] be a monic polynomial of degree 2g + 2 whose roots are all distinct. We have an affine

hyperelliptic curve
C : y2 = D(x).

Its compactification, referred as C̃ for now, can be obtained by adding two points at infinity ∞+ and ∞−. It
is the curve that we will study in the following sections.

This compactification can be built as follows : C̃ = U0 ∪ U∞, where

U0 : y2 = D(x), U∞ : v2 = u2g+2D(1/u),

the adjunction of this two affine curves being given by

U0 U∞

U0\{x = 0} U∞\{u = 0}

(x, y) (1/x, y/xg+1)

(1/u, v/ug+1) (u, v).

∼

(2)

The points ∞± correspond to (0,±1) on U∞, i.e. on the curve v2 = u2g+2D(1/u). By restricting our study
to U0 or U∞, we check immediately that the obtained curve C̃ is smooth ; it is equipped with a natural complex
manifold structure. Moreover, we have
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Proposition 4.1 C̃ is a compact Riemann surface of genus equals to g.

Once we have the compactification C̃ , we will refer to it as C with no risk of confusion.

Proposition 4.2 On a (smooth) compactified hyperelliptic curve, the degree of all the principal divisors is
zero. In other words, we have (deg ◦ div)R(C)× = 0.

Proof. It follows from the residue theorem on a compact Riemann surface ([6], Prop. B.2.2) that the sum
of residues of some meromorphic form is zero. Let f be a rational function, by applying the previous result
to the form df/f , the argument principle gives us that f has as many zeros as it has poles, counted with
multiplicity.

The compactified curve is equipped with an involution ι induced by the function (x, y) 7→ (x,−y) on the
affine space, which swaps ∞+ and ∞−. We call ι the conjugation of this hyperelliptic curve. This conjugation
induces an involution on the group of divisors on the curve:

∑
niPi 7→

∑
niι(Pi).

Example 4.1 (Calculation of a principal divisor on C). Let us denote by α1, . . . , α2g+2 the roots of D(x)
(which are assumed to be distinct) and by Pi ∈ C their corresponding points, then

div(1/y2) = −2
2g+2∑
i=1

Pi + (2g + 2) (∞+ +∞−) . (3)

Its degree is zero, as expected.

Proof. Let us first define the function 1/y2: It is defined as 1/y2 on U0 and u2g+2/v2 on U∞; We check
that they coincide on U0 ∩ U∞ by using the substitution (2), therefore this rational function is well defined.

Then to simplify, let us consider the case where g = 1, D(x) = x(x3 − 1) and calculate the multiplicity
from a "complex analysis" point of view (i.e with charts, etc.). The equation of the curve on U∞ becomes
v2 = 1− u3.

Let us calculate its multiplicity at point ∞±. Let us consider U∞. Then ∞+ = (0, 1), and in a neighbor-
hood of ∞+, we can use the chart (V1 being some neighborhood of 0)

ϕ1 : C ⊃ V1 −→ C, z 7−→ (u, v) = (z,
√

1− z3).

For this chart, ϕ1(0) =∞+ and
1/y2 = u4/v2 = z4/(1− z3),

therefore
ord∞+(1/y2) = 4 = 2g + 2.

Likewise we have
ord∞−(1/y2) = 4 = 2g + 2.

Let us calculate the multiplicity of 1/y2 at point P1 = (x, y) = (0, 0) ∈ U0, for example. Previously u was
a local (holomorphic) parameter of C near ∞±. Now, the variable y will be used as a local parameter of C
near P1. Therefore

ordP1(1/y2) = −2.

More precisely, since D(x) = x(x3 − 1) has a simple root at x = 0, the holomorphic function ψ : x 7→
w = x(x3 − 1) is locally biholomorphic at points x = 0 and w = 0, in other words, on sufficiently small
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neighborhoods of x = 0 and w = 0, ψ has a holomorphic inverse function which we will call ψ−1(w).
Therefore, by considering the following chart (V2 being some neighborhood of 0):

ϕ2 : C ⊃ V2 −→ C, z 7−→ (x, y) = (ψ−1(z2), z),

we have
1/y2 = 1/z2,

therefore
ordP1(1/y2) = −2.

The same goes for all the Pi = (αi, 0) ∈ U0 where αi is a root of D(x). Note that 1/y2 has no other pole nor
root, hence the formula (3).

Example 4.2 Let A ∈ R[x] be a monic polynomial and ηA = A(x) dx
y the differential form associated with

A. If degA = g, then ηA has simple poles at points ∞+ and ∞−,with residues −1 and +1 respectively; if
degA < g, then ηA is a holomorphic form.

Proof. It is enough to make the calculations using the two charts, like in the previous example.

4.1.6 • Hyperelliptic curves and Pell-Abel equation
Let us prove an important result : A link between the existence of solutions to Pell-Abel equation and

hyperelliptic curves.

Definition 4.6 Let D ∈ K[X] be a monic polynomial of degree 2g + 2 with distinct roots. We call Pell-Abel
equation the equation with unknowns (P,Q) ∈ K[x]2 of the form :

P 2 −DQ2 = c, with c ∈ K∗.

The degree of a solution (P,Q) is, by definition, the degree of P .

Theorem 4.1 The following claims are equivalent:

1. The Pell-Abel equation has a solution of degree r in K[x].

2. The divisor r((∞−)− (∞+)) on the curve C (cf. section 4.1.5) is linearly equivalent to 0.

Proof. Let C be the curve defined by y2 = D(x). The ring of regular functions on C is a K[x]-module with
basis {1, y}, with y2 = D(x).

Assume there exists P,Q ∈ K[x], c ∈ K∗ such that P 2 − DQ2 = c. Let us consider ϕ+ = P + yQ,
ϕ− = P − yQ. Since ϕ+ and ϕ− are regular functions on the affine hyperelliptic curve, their poles are in
the set {∞+,∞−}. However ϕ+ϕ− = P 2 − DQ2 = c, therefore their zeros are also in the set {∞+,∞−}.
Therefore div(ϕ+) = a(∞−) + b(∞+). However deg(div(ϕ+)) = 0, therefore b = −a and the degree of P
gives us that a = r. Therefore r ((∞−)− (∞+)) is principal (therefore linearly equivalent to 0).

Conversely, assume that r((∞−) − (∞+)) is linearly equivalent to 0. Let ψ be a rational function such
that div(ψ) = r((∞−) − (∞+)). Since ψ has no pole on the affine space, ψ is regular. Therefore ψ can be
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written as ψ = P + yQ with P,Q ∈ K[x], and degP = r. Its conjugate is ψ = P − yQ. However conjugation
is involutory and swaps ∞+ and ∞−, therefore div(ψ) = (−r)((∞−)− (∞+)), hence div(ψψ) = 0. Therefore
P 2 −DQ2 = ψψ is a non-zero constant of K.

4.1.7 • A visual example
Let us introduce the hyperelliptic curve that we will use in the proof of Robinson’s theorem. Let

a0 < b0 < a1 < · · · < ag < bg

be distinct real numbers. Let us consider Ej = [aj , bj ], E =
g⋃
j=0

Ej and the polynomial

D =
g∏
j=0

(X − aj)(X − bj)

and let us call C the compactified hyperelliptic curve associated with D (cf. section 4.1.5).

Let us provide an illustration of this curve in the case where g = 2.

Figure 8: Case g = 2: C as a Riemann surface (above) or a curve on the affine plane (bellow)
.

Figure 8 shows the connection between these two representations of curve C. The figure below, on the affine
plane (solid lines represent real points) can be obtained by intersecting the surface above with a horizontal
plane (and by removing points " at infinity "∞±). We clearly see the position of∞±, the two points at infinity
added to the affine hyperelliptic curve. We also understand the singularity of the naive compactification (cf.
section 4.1.3) : it can be found again by attaching the two points ∞± in the figure above !
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Let us denote by αj the cycle on the curve which covers the interval [bj−1, aj ]. Then there exists a cycle
βj crossing the j-th «hole» of the surface, which only intersects cycle αj and with multiplicity 1. We say that
{α1, . . . , αg, β1, . . . , βg} forms a symplectic basis of the singular homology H1(C,Z). This basis is illustrated,
when g = 2, in Figure 9.

Figure 9: Case g = 2: a symplectic basis of H1(C;Z)
.

The genus g, which intuitively corresponds to the number of holes in the surface, also corresponds to the
dimension of the space of holomorphic forms.

Proposition 4.3 The complex dimension of the space of holomorphic 1-forms on some Riemann surface of
genus g is equal to g.

The integral of a holomorphic form along a cycle provides a perfect coupling, as explained below :

Theorem 4.2 Let {α1, . . . , αg, β1, . . . , βg} be a symplectic basis of H1(C,Z). Let {ω1, . . . , ωg} be a basis
of the space of holomorphic 1-forms on C. Then the g-by-g square matrix with coefficients Ai,j defined as
follows, is invertible:

Aij =
∫
αj

ωi.

The proof of this theorem is provided in [6], Theorem III.1.2.
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4.2 Proof of Robinson’s theorem

The goal of the following section is to prove what follows :

Theorem 4.3 (Robinson). Let E be a finite union of intervals of R such that Cap(E) > 1, then there exists
an infinite number of algebraic integers totally in E.

Remark 4.1 It is enough to prove the theorem for a union of disjoint segments, since the union of two
non-disjoint segments forms a segment, and the capacity of an open interval is defined as the supremum of
the capacities of segments included in the interval.

Let us consider a0 < b0 < a1 < · · · < an < bn, Ej = [aj , bj ] and E =
g⋃
j=0

Ej .

Let us consider D =
g∏
j=0

(X − aj)(X − bj). The proof of Robinson’s theorem is based on the geometry of

the hyperelliptic curve y2 = D(x). We prove it first for the Pell-Abel case, then we generalize the result using
density.

4.2.1 • Pell-Abel case
Assume the Pell-Abel equation with respect to polynomial D has a solution, i.e. there exists P,Q ∈ R[X]

such that
P 2 −DQ2 = c

where c is a non-zero real number. Let us consider r := deg(P ).

Note first that c > 0, in fact c = P (a0)2 since a0 is a root of D. Let us then consider M =
√
c and write

Pell-Abel equation as follows :

P 2 −DQ2 = M2.

Let us notice immediate properties of polynomials P and Q:

Proposition 4.4 Let us consider x ∈ R,

1. |P (x)| 6M ⇔ x ∈ E or Q(x) = 0.

2. |P (x)| = M ⇔ x is a root of Q or one of the ai, bj .

Proof. These two properties directly follow from the Pell-Abel equation, by noticing that D(x) 6 0⇔ x ∈
E. Indeed, D tends to +∞ when x tends to ∞, and changes sign at points ai, bj .

52



Collective project

The key to the proof of Robinson’s theorem is based on the following property of the roots of polynomials
P and Q, illustrated in figure 10.

Proposition 4.5 Let us denote by rj the number of roots of P in Ej .

1. The roots of P and Q are simple, interlaced, and all belong to
◦
E =

⋃g
j=0]aj , bj [.

2. The roots of Q in Ej divide Ej into rj sub-intervals; in each of them, the polynomial P is either strictly
increasing, or strictly decreasing, with extreme values M and −M .

These properties are illustrated in figure 10 (case g = 1, r1 = 4, r2 = 6). The pi are the roots of P and qi
are the roots of Q.

Figure 10: Shape of P , case g = 1, r1 = 4, r2 = 6

This proposition is the very key to the proof of Robinson’s theorem. Because of its importance, it is very
enlightening to prove it in the case g = 0 (in other words, E = [a, b] is a single segment). It allows to show the
major steps of the proof, by dissociating the difficulties.

4.2.2 • Proof of proposition 4.5 in the case g = 0
We focus here on the case where E = [a, b] is a segment of R, therefore g = 0 and D(X) = (X − a)(X − b). Let

us consider f = P + yQ, regular function on the curve y2 = D(x) completed as in the beginning of the chapter
(the curve is not hyperelliptic anymore but only quadratic). Let us start with the calculation of df/f :

Proposition 4.6 We have df/f = r dx/y, where r = degP .

Proof. We know that div(f) = r((∞−)− (∞+)) (cf. the proof of theorem 4.1), therefore,∞− is a zero of f
with multiplicity r and ∞+ is a pole with the same multiplicity. Hence, df/f has two simple poles at points
(∞+), (∞−) with residues −r and r. Let us calculate the poles of the form dx/y and their multiplicity. The
only potential poles of dx/y are either (∞+), (∞−), or the roots of polynomial D.

• If α is a root ofD in the affine space, since the roots ofD are simple, we can writeD(X) = (X−α)H(X),
withH(α) 6= 0. By differentiating y2 = (X−α)H(X), we obtain in a neighborhood of α : dx ∼ 2y

H(α) dy.

Therefore dx/y = 2
H(α) dy has no pole at point α.
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• At points ∞±, with coordinates (u = 1
x , v = y

x ), ∞+ = (0, 1), and the equation of the curve is
v2 = u2D( 1

u ). Therefore dx
y = −uv

du
u2 = − du

±
√
u2D( 1

u )u
∼ ∓ du

u since the constant coefficient of u2D( 1
u )

is 1. Hence ∞+ is a simple pole of dx/y, and the same goes for ∞−.

Therefore df/f
dx/y has no zero nor pole neither on the affine space, nor at infinity : It is a constant function.

But according to the previous calculation, the residues of dx/y at ∞± are ∓1, hence the constant is equal
to r.

Let us now prove proposition 4.5 in the case where E is a segment, illustrated in figure 11 :

Proposition 4.7 1. The roots of P and Q are simple, interlaced, and all belong to
◦
E.

2. The roots of Q divide E into r sub-intervals; in each of them, the polynomial P is either strictly
increasing, or strictly decreasing, with extreme values M and −M .

Figure 11: Shape of P , in the case g = 0, r = 8

Proof. A representative of f = P + yQ in E is f(x) = P (x) + iy1(x)Q(x), with y1(x) =
√
−D(x) since

D(x) 6 0 for all x ∈ E. The Pell-Abel equation implies that |f(x)|2 = P (x)2 −D(x)Q(x)2 = M2, therefore
f has a constant magnitude which is equal to M on E.

We can then write that f(x) = Meiθ(x), with θ : E → R of class C1. Hence, we have P (x) = M cos(θ(x)),
y1(x)Q(x) = M sin(θ(x)). And since f(a) = ±M , f(b) = ±M , we have θ(a) = c0π, θ(a) = c1π, where
c0, c1 ∈ Z. Moreover, we have that

∫ b
a

df
f = i

∫ b
a

dθ = i(c1 − c0)π. However df
f = r dx

y , and
∫ b
a

dx
y = ±iπ

(the residue of dx
y at infinity is ±1 and the curve y2 = D(x) is a covering map of degree 2 of E = [a, b]. The

sign ± depends on the orientation.) We deduce from it that |c1 − c0| = r.

However, according to proposition 4.6, f ′ is never zero on E, therefore θ′ is never zero on E. Hence, θ is
strictly monotonic on E, taking values in the range c0π to c1π, therefore cos(θ(x)) is equal to zero |c1 − c0| = r
times, and sin(θ(x)) is equal to zero |c1 − c0| − 1 = r − 1 times (end points not included). Since degP = r,
degQ = r − 1, we found all the roots of P and Q. The other claims of the proposition directly follow from
the sinusoidal shapes of P and Q.

The case where E is a single segment already allows us to use the main steps of the proof in the general case
while omitting a major difficulty : when E is the union of segments Ej , we do not know a priori how many
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roots of P are in each Ej , and how we can state that we have found all the roots. To solve this problem in the
general case, we will use the periods of a differential form on the hyperelliptic curve of genus g > 0.

4.2.3 • Proof of proposition 4.5 when g > 0

Let us consider the general case: E =
g⋃
i=0

[ai, bi].

As previously stated, the difficulty is to determine how many roots are in Ej = [aj , bj ] and to check that we
have indeed found all the roots of P . To do so, we shall use the periods of a particular differential form on the
curve y2 = D(x), called canonical form.

Theorem 4.4 There exists a unique polynomial R ∈ R[X] of degree g such that, for j = 1, . . . , g,∫ aj

bj−1

R(x)√
D(x)

dx = 0.

The differential form η = R(x) dx
y is said to be of the third kind.

Proof. Let us consider the curve y2 = D(x) as a Riemann surface thanks to the covering map (x, y) 7→ x.
The dimension of the space of holomorphic forms is g. A residue calculation with coordinates (u = 1

x , v = y
xg+1 )

gives us that for i = 0, . . . , g − 1, the xi dx/y are holomorphic forms, therefore form a basis of holomorphic
forms.

Let us denote by αj the cycle on the curve which covers (quadratically) the interval [bj−1, aj ]. A monic

polynomial of degree g, R(X) = Xg +
g−1∑
j=0

cjX
j verifies the wanted condition if and only if its coefficients

c0, . . . cg−1 verify the following system of g equations with g unknowns:

g−1∑
i=0

ci

∫
αj

xi dx
y

= −
∫
αj

xg dx
y

, j = 1, . . . g.

It follows from theorem 4.2 that the determinant associated with this system is non-zero and therefore the
system has a unique solution.

Remark 4.2 By a calculation with coordinates (u = 1/x, v = y/xg+1), we can show that η is a meromorphic
form which has two simple poles at ∞+ and ∞−, with residues −1 and 1 respectively.

Remark 4.3 The relations
∫ aj
bj−1

R(x)√
D(x)

dx = 0 require that R has at least one zero in each [bj−1, aj ], for
j = 1, . . . , g. Since R is of degree g, these are all its roots. In particular, R has a constant sign on Ej = [aj , bj ].

Let us focus on the periods of η on the cycles that cover segments [aj , bj ] (it is a quadratic covering space,

ramified in points aj , bj). These periods are equal to 2ηj , with ηj =
∫ bj

aj

R(x)
i
√
−D(x)

dx.
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Proposition 4.8 Let us note ηj =
∫ bj

aj

R(x)
i
√
−D(x)

dx, for j = 0, . . . g.

There exists (εj)0≤j≤g ∈ {−1, 1}g+1 such that

g∑
j=0

εjηj = iπ.

Figure 12: Case where g = 2:
⋃g
j=0 Γj is the boundary of the medial hemi-surface.

Proof. Let us denote by Γj the cycles which cover the segments [aj , bj ] (cf. Figure 12), the periods of η on
these cycles are equal to ±2ηj . Let us denote by Γ∞ a cycle around the point ∞− (cf. Figure 12).

The form η is holomorphic on the domain framed by
⋃

Γj and Γ∞. Therefore, Cauchy’s theorem on a
Riemann surface gives us that

g∑
j=0

∫
Γj
η =

∫
Γ∞

η = 2iπ

since the residue of η at ∞− is equals to 1. Hence
g∑
j=0

εjηj = iπ, the signs depend on the orientation of the

cycles.

Like in the case g = 0, the calculation of df/f will be useful later :

Proposition 4.9 We have df/f = rη, where r = degP and η is the differential form of the third kind
previously defined.

Proof. We know that the forms df/f and rη have∞+ and∞− as their only poles. These poles are simple,
with residues −r and r respectively. Therefore, df/f − rη is a holomorphic form which can be written as a
linear combination of xj dx/y for j = 0, . . . g − 1. We know that the periods of η on the [bj−1, aj ] are zero.
To show that this linear combination is zero, thanks to theorem 4.2, it is enough to show that the periods of
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df/f on [bj−1, aj ] are also zero.

Let us consider j ∈ {0, . . . , g}. A representative of y on the [bj−1, aj ] is y =
√
D(x), since D(x) is

non-negative. Then f(x) = P (x) +
√
D(x)Q(x) can be seen as a real function on [bj−1, aj ]. We have

|f(bj−1)| = |P (bj−1)| = M , |f(aj)| = |P (aj)| = M . Since (P +
√
DQ)(P −

√
DQ) = M2, the function f is

never zero, hence has a constant sign ε ∈ {−1, 1} on [bj−1, aj ]. Therefore f(bj−1) = f(aj) = εM . Thus,∫ aj

bj−1

df
f

=
∫ aj

bj−1

d(log(εf)) = log(εf(aj))− log(εf(bj−1)) = 0,

hence the final result.

Let us finally prove proposition 4.5 in the general case. More precisely we have :

Proposition 4.10 Let us consider ηj =
∫ bj

aj

R(x)
i
√
−D(x)

dx and rj = r |ηj | /π for j = 0, . . . , g.

1. The number of roots of P in Ej = [aj , bj ] is rj .

2. The roots of P and Q are simple, interlaced, and all belong to
◦
E.

3. The roots of Q in Ej divide Ej into rj sub-intervals; in each of them, the polynomial P is either strictly
increasing, or strictly decreasing, with extreme values M and −M .

Figure 13: Shape of P in the case g = 1, r0 = 4, r1 = 6

Proof. The beginning of the proof is identical to the case where g = 0. Let us consider j ∈ {0, . . . , g} and
the segment Ej = [aj , bj ]. A representative of f on Ej is f(x) = P (x) + i

√
−D(x)Q(x). We have |f | = M

constant, therefore f(x) = Meiθ(x), with θ : Ej → R continuous, and θ(aj) = c0π, θ(bj) = c1π, with c0, c1 ∈ Z
since f(aj), f(bj) are equal to ±M . We therefore have

P (x) = M cos(θ(x)),
√
−D(x)Q(x) = M sin(θ(x)).

Since df/f = rη = rR(x) dx/y and R is never zero on Ej according to 4.3, f ′ is never zero on Ej .
Therefore θ is strictly monotonic on Ej , and the number of roots of P in Ej is equal to |c1 − c0|, the number
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of roots of Q in Ej is equal to |c1 − c0| − 1 (since D is only zero at end points).

Let us calculate |c1 − c0|. We notice that :

(c1 − c0)iπ = i(θ(bj)− θ(aj)) = i

∫ bj

aj

dθ =
∫ bj

aj

df/f = rηj .

As a result, |c1 − c0| = r |ηj | /π = rj . Therefore the number of roots of P in Ej is equal to rj . Since P is of
degree r, we first have that

g∑
j=0

rj 6 r.

But proposition 4.8 shows that there exists some (εj)0≤j≤g ∈ {−1, 1}g+1 such that

g∑
j=0
±rj = r.

It follows that
∑g
j=0 rj = r. Hence, the only roots of P are in the Ej . The sinusoidal shapes of P and Q give

us the claims 2 and 3 of the proposition, since θ is strictly monotonic.

4.2.4 • End of the proof of Robinson’s theorem
Proposition 4.5, which precisely describes the behavior of polynomials P and Q, is the key to the proof of

Robinson’s theorem. Let us start with some immediate consequences of this result.

Let us remind ourselves of the notations : E =
g⋃
j=0

Ej , Ej = [aj , bj ], D(X) =
g∏
j=0

(X − aj)(X − bj),

P 2 −DQ2 = M2, degP = r.

Proposition 4.11 Cap(E) = (M2 )1/r.

Proof. It is a consequence of corollary 2.11. Indeed, propositions 4.4 and 4.5 show that
P−1([−M,M ]) = E. But Cap([−M,M ]) = M

2 and P is a monic polynomial of degree r. Corollary 2.11 gives
us that Cap(E) = P−1([−M,M ]) = (M2 )1/r.

Proposition 4.12 P is the Chebyshev polynomial of degree r with respect to E.

Proof. Proposition 4.5 shows that P , a monic polynomial of degree r, reaches its extreme values, ±M ,
r + 1 times on E, hence the result using the equioscillation theorem 2.9.

Let us state a last very simple lemma which plays a major part in the proof : a small perturbation does not
change the number of roots of P in E.

Lemma 4.1 Let us consider q ∈ R[X] such that |q(x)| < M for all x ∈ E. Then P − q has at least r roots in
E.
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Proof. Let us denote by q1 < · · · < qr−1 the roots of Q with the notations q0 = a and qr = b. P (qi) = ±M
and since |q(qi)| < M , P (qi)− q(qi) has the same sign as P (qi). Therefore P − q changes sign on each interval
[qi, qi + 1], for i in range 0 to r − 1, hence the result.

We now have all the elements to finish the proof of Robinson’s theorem. Let us transform the real coefficients
into rational ones.

Proposition 4.13 We can replace M,P,Q,D,E by M̃, P̃ , Q̃, D̃, Ẽ, so that proposition 4.5 is still verified, but
with M̃ ∈ Q, P̃ ∈ Q[X] (still of degree r), D̃ ∈ Q[X], Q̃ = 1, Ẽ ⊂ E and Cap(Ẽ) arbitrarily close to Cap(E).

Proof. Let us consider M̃ ∈ [0,M ] ∩ Q. According to lemma 4.1 applied to q = ±M , P 2 − M̃2 has 2r
roots in E : u1 < · · · < u2r with [ui, ui+1] ⊂ [qi, qi+1], where qi are the roots of Q. By continuity of the
roots, we can choose P̃ with rational coefficients sufficiently close to P , so that the roots of P̃ 2 − M̃2 are
still ordered the same way ũ1 < · · · < ũ2r. We then consider D̃ = P̃ 2 − M̃2, Ẽ =

⋃
[ũi, ũi+1] ⊂ E. Since

Cap(Ẽ) = ( M̃2 ) 1
r , we can choose M̃ , a rational number sufficiently close to M , so that Cap(Ẽ) is arbitrarily

close to Cap(E).

From now on, assume that P,Q,D,M have rational coefficients. Let us now prove Robinson’s theorem, in
the Pell-Abel case.

Theorem 4.5 (Robinson). If Cap(E) > 1, then there exists an infinite number of algebraic integers totally
in E. More precisely, there exists a sequence of monic polynomials with integer coefficients whose degrees
tend to infinity and whose roots are all in E.

Proof. Since Cap(E) = (M2 )1/r, Cap(E) > 1 is equivalent to M > 2. Let us consider λ = M
2 . We have

λ > 1.

We already have a polynomial with rational coefficients whose roots are all in E : P . To find more of
them, the idea is to raise the polynomial to higher powers. But instead of using P , like in the proof of
Fekete-Szegö’s theorem 3.3, we will implement this method using f = P + yQ.

We saw that f(x) = P (x) + iy1(x)Q(x) = 2λeiθ(x). Therefore f(x)n = (2λ)neinθ(x) = 2n−1(Pn(x) +
iy1(x)Qn(x)), with Pn, Qn ∈ Q[X] monic polynomials. We can also rewrite Pn as follows

Pn(x) = 2λn cos(nθ(x))

Let Tn be the Chebyshev polynomial of degree n with respect to [−2, 2], we have Pn = λnTn(P/λ). With
the explicit expression of Tn :

Tn =
n/2∑
k=0

(−1)k n
k

(
n− k − 1
k − 1

)
Xn−2k

We can completely expand the expression of the polynomial Pn to write it the following way:

Pn(X) = Xnr +
nr∑
k=1

αkX
nr−k

with αk ∈ Q. The goal is now to provoke a perturbation of Pn using a polynomial qn of degree < nr, such
that Pn − qn ∈ Z[X] and qn(x) < 2λn on E. Hence, according to lemma 4.1, Pn − qn will have all its nr
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roots in E and will still be a monic polynomial with integer coefficients. We will see that it is possible for an
infinite number of degrees tending to infinity, which will conclude the proof.

Let us consider m ∈ N∗ such that P = Xr + 1
mΓ, where Γ ∈ Z[X]. Let l ∈ N∗ be a random integer (we

will fix it later). Let us consider nl = (l!)2ml. If 0 6 k 6 l, we have that k!mk divides nl ; if 0 6 2i+ j 6 l,
we have that mj i! j! divides nl. Therefore, we verify that α1, . . . , αlr are integers. What remains in the sum
is a polynomial Rn of degree not greater than nr − lr − 1 whose coefficients belong to Q. Let us choose
(XjPk(X))06j<r, 06k<n−l as a basis of Qnr−lr−1[X], and cj,k ∈ Q∩ [0, 1[ such that Pnl − qnl ∈ Z[X] (c.f. the
proof of lemma 3.1), where

qnl =
∑

06j<r

∑
06k<n−l

cj,kX
jPk

Let us remind that Pk oscillates between ±2λk. Let us consider C = max
x∈E

(
r−1∑
k=0
|x|k). Since λ > 1, there

exists l0 such that for all l > l0, C
λl(λ−1) < 1. Therefore for l > l0 :

|qnl(x)| 6
∑
j,k

|x|j 2λk 6 2C
n−l−1∑
k=0

λk 6 2C λn−l

λ− 1 < 2λn

Therefore, we built a sequence of monic polynomials with integer coefficients whose degrees tend to infinity
and whose roots all belong to E (the sequence being (Pnl − qnl)l>l0).
QED

By refining this proof and using the fact that a polynomial function transforms an equilibrium measure into
an equilibrium measure, we have the following stronger theorem :

Theorem 4.6 For the sequence Pn previously built, let us denote by µPn the (normalized) counting measure
with respect to the roots of Pn. We then have µPn

∗−→ µK , where µK is the equilibrium measure of E.

This result is deep. Not only have we built an infinite number of algebraic integers totally in compact set
E, but we also know that they are equidistributed with respect to the equilibrium measure of E. It partially
answers the question asked in the introduction which dealt with the distribution of algebraic integers totally in
a compact set. The proof of this theorem can be found in Serre’s article [2].

4.2.5 • From the Pell-Abel case to the general case
Let us give arguments that allows us to reduce the general case to Pell-Abel case. Let us consider g > 0 and

U = {(a0, b0, . . . , ag, bg) ∈ R2g+2 | a0 < b0 < · · · < ag < bg}

UPA is the subset of U such that for polynomial D =
g∏
j=0

(X − aj)(X − bj), Pell-Abel equation has a solution.

We have the following result :

Theorem 4.7 UPA is dense in U .

We shall give here the main steps of the proof. With an element u ∈ U can be associated a point on the
jacobian variety of curve y2 = D(x) : ν(u) = ∞− −∞+ ∈ Rg/Zg. Theorem 4.1 states that u ∈ UPA if and
only if ν(u) = ∞− −∞+ is a point with finite multiplicity (a torsion point) on the jacobian variety. However
we can lift ν : U → Rg/Zg in order to obtain a continuous function θ : U → Qg, and ν(u) is a point of finite
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multiplicity in Rg/Zg if and only if θ(u) ∈ Qg. We then conclude thanks to the density of Qg in Rg. Additional
details of this proof are provided in Serre’s article [2].

Thanks to theorem 4.6, it is easy to reduce the general case to Pell-Abel case. In fact, if Eu is a union of
segments given by u ∈ U such that Cap(Eu) > 1, we can find u′ ∈ UPA arbitrarily close to u so that we still
have Cap(Eu′) > 1, by continuity of Cap(Eu) with respect to u (corollary 2.2).
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CONCLUSION

In this paper, we have responded to the initial problem in the majority of cases:

" Which R segments have an infinity of algebraic integers totally in them ?"

First, based on "elementary" remarks and numerical results, we had the intuition that segments longer than
4 had an infinity of algebraic integers totally included in them, while segments shorter than 4 had only a finite
number of them. However, in order to be able to demonstrate these conjectures, it was necessary to consider
our problem as a particular case of a more general problem and not only to consider the R segments, but all
the compact subsets of the complex plane.

We had to clarify the notion of size to have an equivalent of the length of a segment for compact subsets of
C. Thus, we introduced the notion of capacity resulting from the theory of potential. Using this concept, we
have highlighted that the limit value of capacity for this problem is 1. Potential theory gives several results in
this direction but in the case of real segments, it is necessary to combine it with properties of algebraic curves
to obtain the desired results.

The "elementary" results of the section 1 allowed us to develop the following intuitions:

1. Capacity is the measurement of size adapted to our problem for compact subsets of C.

2. Generally compact sets with a capacity of less than 1 (including segments with a length of less than 4)
have a finite number of algebraic integers totally in them.

3. Generally compact sets with a capacity greater than 1 (including segments with a length greater than 4)
have an infinity of algebraic integers totally in them.

The rest of our paper consists in proving results that are in the direction of these intuitions. The main ones
are set out below.

The first theorem resulting from the theory of potential gives a complete answer for the second point:

Theorem (Fekete). Any compact with capacity strictly smaller than 1 has a finite number of algebraic
integers totally in it.

Corollary Any segment with length strictly smaller than 4 has a finite number of algebraic integers totally
in it.

The third point is more complex, but the theory of potential manages to give a partial result:

Theorem (Fekete-Szegö). Let us consider a compact subset of C with capacity greater than or equal to 1,
symmetric with respect to complex conjugation. Then any neighborhood (whose complement is connected)
of this compact subset has an infinite number of algebraic integers totally in it.

However, unlike the previous theorem, this theorem is not applicable to R segments. By mixing notions of
algebraic curves with the notion of capacity, we obtain a much stronger theorem that completes the discussion
for the R segments.

Theorem (Robinson). Any finite union of intervals of R with capacity strictly greater than 1 has an infinite
number of algebraic integers totally in it.
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Corollary Any segment with length strictly greater than 4 has an infinite number of algebraic integers totally
in it.

We give here several avenues for reflection for the interested reader. Many problems remain open.

In the case of R segments, the situation where the segment length is equal to 4 is unknown, except in the case
where the boundaries of the segment are integers. We know that there is then an infinite number of algebraic
integers totally in it. What happens if the segment has length 4 and the boundaries are not integers ?

Then, in this paper we were mainly interested in the finiteness of algebraic integers totally in a segment. A
natural extension would be to seek to know more about these numbers, especially to know their distribution.
Some of the results are contained in our paper. For example, we have found all the algebraic integers totally in the
[−2.2] segment. In addition, for a segment E with length strictly greater than 4, by refining the demonstration
of Robinson’s theorem, it is possible to demonstrate the existence of a sequence of monic polynomials with
integer coefficients having all their roots in E and whose counting measure with respect to their roots converges
weakly-* to the equilibrium measure of E (4.6). Let us consider a sequence of distinct algebraic integers totally
in E. Do the counting measure with respect to their conjugates converge weakly-* to the equilibrium measure
of E?
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A
MEASURE THEORY

A.1 Measures

The notion of measure that we use is Radon measure.

Definition A.1 (Radon measure). Consider D ⊂ C. Let C0
c (D,R) denote the space of functions on D with

compact support.
We call Radon measure any continuous linear functional on C0

c (D,R).
If µ is a Radon measure, we write

∫
D

f dµ = µ(f).

Example A.1 (Dirac measure). Let us consider z0 ∈ D. The Dirac measure on z, denoted by δz0 , is the
linear continuous functional which maps f ∈ C0

c (D,R) to f(z0), i.e.
∫
f dδz0 = f(z0).

Example A.2 ((Averaged) Counting measure). Let F = {z1, . . . , zn} be a finite subset of D, the (averaged)

counting measure with respect to F is given by νF = 1
n

n∑
i=1

δzi , i.e.
∫
f dνF = 1

n

n∑
i=1

f(zi).

Definition A.2 (Measure of a set). Let µ be a measure on D ⊂ C.

1. If D is compact, the measure of D is defined by µ(D) :=
∫
D

1 dµ.

2. If K ⊂ D is a compact subset, then µ(K) =
∫
D

1K dµ =
∫
K

1 dµ.

3. If D = ∪n∈NKn where (Kn)n∈N is an increasing sequence of compact subsets, then the measure of D is
µ(D) := limn→∞ µ(Kn).

4. If µ(D) = 1, we call µ a probability measure on D.

Remark A.1
∫
D
1K dµ =

∫
K

1 dµ is defined by inf{µ(f) : f ∈ C0
c (D,R), 0 ≤ f ≤ 1, f |K = 1}.

Definition A.3 (Support of a measure). Let µ be a measure on D ⊂ C and let U ⊂ D. We say that µ has
its support in U if and only if

∀f ∈ C0
c (D,R), f |U = 0⇒

∫
D

f dµ = 0

The support of µ is the intersection of all the closures of such U . Equivalently, it is also the smallest closed
subset U of D verifying the previous condition. The support of µ is denoted by supp(µ).
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Definition A.4 (Restriction/Extension of a measure). Let µ be a measure on D whose support is included
in a compact subset K ⊂ D. For all f ∈ C0(K,R), there exists f̃ ∈ C0

c (D,R) such that f̃ |K = f . We define
the integral of f with respect to µ by

µ(f) :=
∫
K

f dµ :=
∫
D

f̃ dµ

The definition does not dependent on the choice of f̃ ; µ becomes in this way a measure restricted to K (which
will be denoted by µ as well for convenience). For all f ∈ C0(D,R), the following integral is well-defined.

µ(f) :=
∫
D

f dµ := µ(f |K)

This extends the domain of definition of µ to C0(D,R).

Remark A.2 Let µ be a measure on D with support in a compact subset K, then µ(D) = µ(K) =
∫
D

1 dµ.

Remark A.3 Following these definitions, we can define a measure µ̃ by

µ̃(A) = inf
U⊃A

sup
K⊂U

µ(K)

where U is open and K is closed. In this way we extend the measure to any mesurable subset of D.

A.2 Weak-∗ convergence

Let us define now the import notion of weak-∗ convergence of measures.

Definition A.5 (Weak-∗ convergence). Let D ⊂ C and (µn)n∈N be a sequence of measures on D. Let µ be
a measure on D. We say that (µn)n∈N converges weakly to µ, denoted by µn

∗−→ µ, if and only if

∀f ∈ C0
c (D,R), lim

n→∞

∫
D

f dµn =
∫
D

f dµ.

Example A.3 (Riemann integral). We can consider Riemann integral as the limit measure of a sequence of
counting measures : indeed, if f : [0, 1]→ R, we have

lim
n→∞

1
n

n∑
k=0

f(k
n

) =
∫ 1

0
f dx.

Let νn denote the counting measure with respect to points { kn | k = 0, . . . , n}. The continuous linear

functional
∫ 1

0
is the limit measure of the sequence (νn) for weak-∗ convergence.
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Example A.4 If νn is the counting measure with respect to n-th roots of unity {e 2πik
n | k = 0, . . . , n − 1},

then
lim
n→∞

∫
f dνn = 1

2π

∫ 2π

0
f(eiθ) dθ.

Proposition A.1 Let K be a compact subset of C such that K =
⋂
n∈N

Bn , where (Bn)n∈N is a decreasing

sequence of compact sets. If there exists a sequence of probability measures (µn)n such that µn
∗−→ µ and

supp(µn) ⊂ Bn for each n, then supp(µ) ⊂ K.

Proof. Consider f ∈ C0
c (D,R) such that f |K = 0, let us show that for all ε > 0, we have

∣∣∫
K
f dµ

∣∣ < ε.
The open set (f is continuous) U := {|f | < ε} contains K =

⋂
nBn. Since all Ki are compact, there exists

an integer N such that ∀n ≥ N,Bn ⊂ U . Consider φn ∈ C0
c (D,R) such that

φn|Bn = 1, φn|Uc = 0, 0 ≤ φn ≤ 1

Then for all n ≥ N , |φnf | < ε, (1−φn)f |Bn = 0, so that
∣∣∫
D
f dµn

∣∣ =
∣∣∫
D
φnf dµn

∣∣ < ε; thus µn
∗−→ µ gives∣∣∫

K
f dµ

∣∣ ≤ ε
We are now interested in the space of measures on a given topological space. Let X be a compact metric

space. Let C(X) denote the set of continuous functions from X to R, and P(X) denote the set of probability
measures on X.

Theorem A.1 (Banach-Alaoglu-Bourbaki). P(X) is sequentially compact for the topology associated with
the weak-∗ convergence (i.e., weak-∗ topology).

In other words, for any sequence of probability measures (µn)n, there are a sub-sequence (µϕ(n))n and a
probability measure µ such that µϕ(n)

∗−→ µ, i.e.

∀φ ∈ C(X),
∫
X

φ dµϕ(n)−→
∫
X

φ dµ

Proof.
X is a compact metric space, so that C(X) is separable, i.e. there is a dense sequence (φn)n in C(X).

The idea is to do a diagonal extraction. For φ1, we have (
∫
X
φ1 dµn)n which is bounded. So we can extract

a sub-sequence (µϕ1(n))n such that (
∫
X
φ1 dµϕ1(n))n converges. We can extract in the same way (µϕ2(n))n

from the sequence (µϕ1(n))n. Thus, we construct (µϕk(n))n for all k ∈ N, which is extracted from the previous
sequences.

We consider then the sequence (µϕn(n))n. For k ∈ N, (
∫
X
φk dµϕn(n))n converges : indeed, for some suffi-

ciently large n , ϕn is extracted from ϕk. Using the density of (φn)n, (
∫
X
φ dµϕn(n))n converges for φ ∈ C(X).

Let us define the functional

Λ : C(X) −→ R

φ 7−→ lim
n→+∞

∫
X

φ dµϕn(n)
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It is clearly a positive linear functional. By Riesz–Markov–Kakutani representation theorem, we have :
Λ(φ) =

∫
X
φ dµ where µ is a measure C(X).

To prove the compactness of P(X), it is enough to show that µ ∈ P(X), since we have by construction
∀φ ∈ C(X),

∫
X
φ dµϕn(n)−→

∫
X
φ dµ. This fact is true because

∫
X
dµ = lim

k→+∞

∫
X
dµϕn(n) = 1.

A.3 Lower semi-continuous functions

We wish to extend the concept of measure and weak-∗ convergence to functions that are not necessarily con-
tinuous.

Definition A.6 (Lower semi-continuous function). A function f : D ⊂ Rm → R∪{+∞} is said to be lower
semi-continuous (l.s.c.) if one of the following equivalent properties is satisfied:

(i) ∀z0 ∈ D, f(z0) 6 lim inf
z→z0

f(z)

(ii) On all compact subsets K ⊂ D, f is a pointwise limit of an increasing sequence of continuous functions

(iii) ∀α ∈ R, {f > α} := f−1(]−∞, α[) is a open set.

Definition A.7 Let f be a l.s.c. function and µ be a positive measure with support in a compact subset
K ⊂ D. We define the integral of f with respect to µ :∫

K

f dµ = lim
n→∞

∫
K

fn dµ

where (fn) is an increasing sequence of continuous functions on K which converges pointwise to f |K

Proposition A.2 Any l.s.c function defined on a compact set has a minimum point.

Proof. Consider the sets {f > n}n∈Z and {f ≤ 1
n + inf f}n∈N∗ .

Proposition A.3 Let f be a l.s.c. function verifying f |K ≥ α and let µ ∈ P(D) with supp(µ) = K ⊂ D.
Then

∫
K
f dµ ≥ α. In addition,

∫
K
f dµ = α if and only if f |K ≡ α.

Proof. Since µ is a probability measure, we can assume without loss of generality that α = 0. Let (fn) be
an increasing sequence of continuous functions on K which converges pointwise to f |K ≥ 0. Then ∀ε > 0,
K = ∪n≥1{fn > −ε}. By compactness, ∃N ∀n ≥ N, fn > −ε on K, which implies

∫
K
f dµ ≥ −ε. So that∫

K
f dµ ≥ 0.

For the second assertion, assume there exists ζ0 ∈ K such that f(ζ0) > 0. Then we have
∫
K
f dµ > 0.

Indeed, there exists two open neighborhoods B1 ⊂ B2 of ζ0 in D such that f |B2 ≥ 1
2f(ζ0). Let χ ∈ C0

c (B2,R)
such that χ|B1 = 1 and 0 ≤ χ ≤ 1. Then f− 1

2f(ζ0)χ is a l.s.c function on D and positive on K. By the above,∫
K

(f − 1
2f(ζ0)χ) dµ ≥ 0, so that

∫
K
f dµ ≥ 1

2f(ζ0)
∫
K
χ dµ. The last quantity is strictly positive, otherwise
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we would have supp(µ) ⊂ K\B1 ( K (let φ ∈ C0
c (D,R) such that φ|K\B1 = 0, then (1 − χ)φ±|K = 0,∫

K
φ± dµ =

∫
K
χφ± dµ ≤ ‖φ‖∞

∫
K
χ dµ = 0, then

∫
K
φ dµ = 0), which is a contradiction.

Proposition A.4 Let f be a l.s.c. function and (µn) be a sequence of positive measures with support included
in a compact subset K such that µn

∗→ µ. Then:∫
K

f dµ 6 lim inf
n→∞

∫
K

f dµn

Proof. Let (fn) be an increasing sequence of continuous functions which converges pointwise to f . Let
ε > 0. There exists n ∈ N such that

∫
K
fn dµ ≥

∫
K
f dµ − ε. There exists m0 ∈ N such that for m ≥ m0,∫

K
fn dµm ≥

∫
K
fn dµ− ε. Then :

∀m ≥ m0,

∫
K

fdµm ≥
∫
K

fn dµm ≥
∫
K

f dµ− 2ε

Thus lim inf
m→∞

∫
K

f dµm ≥
∫
K

f dµ− 2ε

Example A.5 Let z ∈ C, the function t 7→ log(1/ |z − t|) is lower semi-continuous, because it is continuous
on t 6= z and equal to +∞ on t = z.
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B
SEMI-HARMONIC FUNCTIONS

Definition B.1 ((super-,sub-)harmonic functions). Let D ⊂ C be an open subset. A function f : D → R
is said to be harmonic (resp. super-harmonic, sub-harmonic) if it is continuous (resp. lower/upper semi-
continuous) and satisfies the mean value property: for all z ∈ D and a disc {|ζ − z| ≤ r} ⊂ D, we have

f(z) = 1
2π

∫ 2π

0
f(z + reiθ) dθ (resp. ≥,≤)

A function is called semi-harmonic if it is harmonic or super-harmonic or sub-harmonic.

Intuitively, a super-harmonic function takes values larger than its local mean values. However, it cannot
take too large values because of the lower semi-continuity.

f(z) ≤ lim inf
ζ→z

f(ζ).

Remark B.1 Let f : D → R be a continuous (resp. lower semi-continuous, upper semi-continuous) function.
Then f is harmonic (resp. super-harmonic, sub-harmonic) if and only if it satisfies the mean (resp. super-
mean, sub-mean) value property : for all z ∈ D, there exists δ > 0 such that the disk {|ζ − z| ≤ δ} ⊂ D and
for all 0 < r ≤ δ, we have

f(z) = 1
2π

∫ 2π

0
f(z + reiθ) dθ (resp. ≥,≤)

Remark B.2 Assume f ∈ C2(D). Then f is super-harmonic if and only if −∆f ≥ 0. To understand this
claim, we can consider the function

m(r; z) = 1
2π

∫ 2π

0
f(z + reiθ) dθ

and use the following formula
∂rm(r; z) = 1

2π |r|

∫
B(z,|r|)

∆f.

Proof. Consider f as a function from R2 to R . Let −→n (θ) = (cos θ, sin θ):

∂rf((Re(z), Im(z)) + rn(θ)) = −→∇f · −→n (θ).

By Green’s theorem:

∂rm(r; z) = 1
2π

∮
∂B(z,r)

−→
∇f · −→n (θ) dl

r

= 1
2πr

∫∫
B(0,r)

−→
∇ ·
−→
∇f · ds.
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Example B.1 Le F be a holomorphic function on an open subset D ∈ C. Then for p > 0, |F |p and log |F |
are sub-harmonic. Indeed, it is enough to prove this claim on the open set {F 6= 0}. Since locally F p

(resp. logF ) has a holomorphic branch, we can verify the continuity and apply Cauchy’s formula. Then we
conclude by using the triangular inequality for integrals (by considering the real part resp.).

Proposition B.1 Let f, g be two super-harmonic function on U . Then min(f, g) is also super-harmonic on
U .

Proof. The minimum of two l.s.c. functions is still a l.s.c. function. Then we conclude by verifying the
super-mean property.

Theorem B.1 (Minimum principle for super-harmonic functions). Let D ⊂ C be a connected and bounded
open subset. Let f be a non-constant super-harmonic function on D such that

lim inf
z→ζ

f(z) ≥ m, ∀ζ ∈ ∂D

Then f(z) > m for all z ∈ D. Thus, no non-constant super-harmonic function on a connected open set (not
necessarily bounded) reaches its minimum.

Proof. The idea of the proof is to use the super-mean property and an open-closed set argument.

Firstly, we extend f(z) to all points ζ ∈ ∂D by f̃(ζ) = lim infz→ζ f(z) and f̃ |D = f . So f̃ is a l.s.c.
function on D and super-harmonic on D. Since D ⊂ C is bounded and D is compact, f̃ reaches its minimum
m′ = minD̄ f̃ on D (Prop. A.2).

Since f is l.s.c., the set {f = m′} = {f ≤ m′} is closed in D. On the other hand, for all ζ0 ∈ D verifying
f(ζ0) = m′, we have for some δ > 0 and all r ∈]0, δ],

m′ = f(ζ0) ≥ 1
2π

∫ 2π

0
f(ζ0 + reiθ) dθ ≥ m′

By Prop. A.3, for all r ∈]0, δ], θ ∈ [0, 2π], we have f(ζ0 + reiθ) = f(ζ0) = m′, i.e. f ≡ m′ in a neighborhood
of ζ0, which shows that {f = m′} is an open subset of D. Thus, {f ≤ m′} = {f = m′} is open-closed in D;
it is not D since f is non-constant, so it is empty because D is connected, i.e. f(z) > m′, ∀z ∈ D.

On the other hand, since m′ is effectively reached by f̃ , there exists ζ0 ∈ D\D = ∂D such that f̃(ζ0) = m′.
By definition of f̃ and the hypothesis in the statement of the theorem (finally!), we have

f̃(ζ0) = lim inf
z→ζ0

f(z) ≥ m

. So that m′ ≥ m. Then we conclude that f(z) > m, ∀z ∈ D.

Corollary B.1 (Maximum principle for potentials). Let µ be a finite positive measure with compact support.
If Uµ(z) ≤M for all z ∈ supp(µ), then it holds for all z ∈ C.

Proof. Let K = supp(µ). Let us define f(z) := −Uµ(z), which is a harmonic function, a fortiori super-
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harmonic on C\K. It is non-constant and converges to +∞ when z →∞. For all ζ0 ∈ ∂K, we have

lim inf
z→ζ0

f(z) ≥ −M. (4)

Then f reaches its minimum if there exists z ∈ C such that Uµ(z) > M .

Now we should prove (4). Let r > 0. We have

f(ζ)− f(z) =
∫

log |ζ − t|
z − t

dµ(t) =
(∫

K∩B(ζ0,r)
+
∫
K\B(ζ0,r)

)
log |ζ − t|
|z − t|

dµ(t).

Let us choose ζ = ζ(z) ∈ arg minζ∈K |ζ − z|. Then for all t ∈ K, we have

|ζ − t|
|z − t|

= |ζ − z|+ |z − t|
|z − t|

≤ |t− z|+ |z − t|
|z − t|

= 2.

We derive that ∫
K∩B(ζ0,r)

log |ζ − t|
|z − t|

dµ(t) ≤ 2µ(B(ζ0, r)).

On the other hand, when z → ζ0, we have ζ → ζ0. So,∫
K\B(ζ0,r)

log |ζ − t|
|z − t|

dµ(t)→ µ(B(ζ0, r)c)× log(1) = 0.

The assumption on Uµ(z) implies that f(ζ) ≥ −M > −∞. By passing to the limit z → ζ0, we have

lim inf
z→ζ0

f(z) ≥ −M − 2µ(B(ζ0, r)). (5)

Since f ≥ −M on K by hypothesis, we have f > −∞ everywhere on C by the definition of f = −Uµ(z). So

lim
r→0

µ(B(ζ0, r)) = µ({ζ0}) = 0.

Combining with (5), we conclude the proof of (4).

We state the following theorem which generalizes the minimum principle:

Theorem B.2 (Generalized minimum principle). Let D ⊂ C be a connected open set such that Cap(∂D) >
0. Let f be a non-constant super-harmonic function, lower-bounded in D, verifying quasi-almost everywhere
in D the inequality :

lim inf
z→ζ

f(z) ≥ m.

Then we have f(z) > m for all z ∈ D.

A proof of the theorem can be found in [7], Theorem 3.6.9.

Proposition B.2 (Backward-pulling by holomorphic mapping). Let f be a non-constant holomorphic func-
tion on a connected open subset D ⊂ C. Let D′ = f(D) (a connected open set as well). Then for any (sub-,
super-)harmonic function u : D′ → R, u ◦ f is also (sub-, super-)harmonic.

A proof of the proposition can be found ([7], Corollary 2.4.3).
This proposition allows us to extend the definition of (sub-, super-)harmonic functions to the Riemann

sphere C = C ∪ {∞}:
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Definition B.2 ((Super-, sub-)harmonic function on Riemann sphere). A function f(z) defined on a
neighborhood of ∞ (∞ included) is said to be (sub-,super-)harmonic on a neighborhood of ∞ if f(1/z) is
(sub-, super-)harmonic at point 0. A function f : C ⊃ D → R is said to be (sub-,super-)harmonic if all points
of D have a neighborhood where f is (sub-,super-)harmonic.

C
SOME TECHNICAL PROOFS

C.1 Proof of proposition 2.6

Proposition C.1 Let K ⊂ C be a compact subset with Cap(K) > 0. If ΩK verifies the cone condition, then
ΩK is regular.

Proof. We shall prove that for all ζ0 ∈ ∂ΩK ,

lim
z→ζ0

gK(z,∞) = 0

(i) First, let χ(z) be a positive super-harmonic function defined on a non-empty connected open set
Ω0 = ΩK ∩B(ζ0, δ) such that

A = inf
{
χ(z) : z ∈ ΩK ,

δ

2 < |z − ζ0| < δ

}
> 0

lim
z→ζ0

χ(z) = 0.

Since gK(·,∞) is bounded on Ω0 (Thm. 2.6), one can find a large enoughM > 0 such thatMA > gK(·,∞)
on Ω0; thus for all ζ ∈ ΩK ∩ ∂B(ζ0, δ), we have

lim inf
z→ζ

(Mχ(z)− gK(z,∞)) ≥ 0;

we also deduce that Mχ− gK(·,∞) is bounded from below on Ω0. Also, because χ is positive, for all ζ ∈ ∂ΩK
such that |ζ − ζ0| ≤ δ, we have

lim inf
z→ζ

χ(z) ≥ 0,

then we have q.-a.e. in ∂ΩK ,
lim inf
z→ζ

(Mχ(z)− gK(z,∞)) ≥ 0.

On the other hand, χ is super-harmonic on Ω0, so Mχ − gK(·,∞) is super-harmonic because gK(·,∞) is
harmonic. Observing that

∂Ω0 ⊂ {ζ ∈ ∂ΩK : |ζ − ζ0| ≤ δ} ∪ {ζ ∈ ΩK : |ζ − ζ0| = δ}

and that (Prop. 2.4(c)) Cap(∂Ω0) = Cap(Ω0) > 0 since Ω0 is open and non-empty (Cor. 2.3(a)). By applying
the generalized minimum principle on Ω0, we have for all z ∈ Ω0,

Mχ(z)− gK(z,∞) ≥ 0,
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therefore,
0 = lim

z→ζ0
Mχ(z) ≥ lim sup

z→ζ0

gK(z,∞) ≥ 0

lim
z→ζ0

gK(z,∞) = 0.

(ii) Let χ be a positive super-harmonic function on Ω1 = ΩK ∩B(ζ0, δ) 6= ∅ such that

A = inf
{
χ(z) : z ∈ ΩK ,

δ

2 < |z − ζ0| < δ

}
> 0

lim
z→ζ0

χ(z) = 0

For z ∈ ΩK , define

χ̃(z) =
{

min
(
χ(z)
A , 1

)
z ∈ Ω1

1 z ∈ ΩK\Ω1

By definition, 0 < χ̃ ≤ 1. As the minimum of two super-harmonic functions, χ̃ is also super-harmonic on Ω1;
χ̃ ≡ 1 is super-harmonic on ΩK ∩ {|z − ζ0| > δ

2}; therefore, χ̃ is super-harmonic on ΩK . Furthermore, we
have

lim
z→ζ0

χ̃(z) = 0.

Take R > 2δ large enough such that ∂ΩK ⊂ B(ζ0, R), then Ω0 = ΩK ∩B(ζ0, R) 6= ∅ is connected because ΩK
is connected. Also, we have

inf
{
χ(z) : z ∈ ΩK ,

R

2 < |z − ζ0| < R

}
= 1 > 0.

We have reduced our proof to the case (i) with (χ, δ) := (χ̃, R).

(iii) For all ζ0 ∈ ∂ΩK , we shall prove the existence of such a function χ as in (ii) (for some δ > 0). We
can take the composition of a Möbius transformation and an analytic branch of <(1/ logw), |w| < 1.

More precisely, since the cone condition is verified, one can choose ζ1 6= ζ0 such that the segment [ζ0, ζ1] ⊂
C\ΩK . Then take

χ(z) = <
(

1
/

log z − ζ0
z − ζ1

)
, z ∈ ΩK ,

∣∣∣∣z − ζ0z − ζ1

∣∣∣∣ < 1

for some well-chosen δ. Taking Prop. B.2 into account, the verification of this construction will be direct.

Remark C.1 Notice that it is only in step (iii) that we have used the cone condition, which aimed at
constructing a pair (δ, χ) for (ii); therefore, without the cone condition, if one can construct a pair (δ, χ) for
all ζ0 ∈ ∂ΩK verifying the conditions in (ii), then ΩK is still regular.
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C.2 Proof of theorem 2.8

Theorem C.1 Let K1,K2 ⊂ C be two non-empty compact subsets. Let f : ΩK1 ∪ {∞} → ΩK2 ∪ {∞} be a
non-constant holomorphic mapping such that f(∞) =∞. Then,

(a) |Af |Cap(K1)nf ≥ Cap(K2).

(b) If we assume in addition :

(i) Cap(K2) > 0;
(ii) f−1(∞) = {∞};
(iii) ΩK2 is regular;
(iv) f can be continuously extended to the boundaries ∂ΩK1 → ∂ΩK2 .

Then, Cap(K1)>0, ΩK1 is regular and

gK1(·,∞) = 1
nf
gK2(f(·),∞)

|Af |Cap(K1)nf = Cap(K2).

Proof. (a). We can assume that Cap(K2) > 0 without loss of generality. Then gK2(·,∞) > 0 is harmonic on
ΩK2 . So that gK2(f(·),∞) > 0 is super-harmonic (Prop. B.2) on ΩK1 (and it is harmonic if f−1(∞) = {∞}).
Furthermore, we have gK2(w,∞) = log |w|+ VK2 + o(1) when w →∞. Then,

gK2(f(z),∞) = log |f(z)|+ VK2 + o(1) = nf log |z|+ log |Af |+ VK2 + o(1), z →∞

Assume first that Cap(K1) > 0. Let us define

h(z) := gK2(f(z),∞)− nfgK1(z,∞).

Then h is super-harmonic on ΩK1 , and even on ΩK1 ∪ {∞} if we remove this isolated singularity by defining

h(∞) := log |Af |+ VK2 − nfVK1 .

According to Thm. 2.6, limz→ζ gK1(z,∞) = 0 for quasi-almost every ζ ∈ ∂ΩK1 . So, we have for quasi-almost
every ζ ∈ ∂ΩK1

lim inf
z→ζ

h(z) ≥ 0.

Besides, we have seen that h(z) in bounded on a neighborhood of ∞; beyond this neighborhood , gK1(·,∞)
is bounded. Thus h(z) is lower-bounded. So, the generalized minimun principle implies that either h(z) ≡ 0
or h(z) > 0 on ΩK1 . In particular,

h(∞) = log |Af |+ VK2 − nfVK1 ≥ 0.

Henceforth, we no longer assume Cap(K1) > 0. For ε > 0, let Kε
1 = {z ∈ C : dist(z,K1) ≤ ε}, which has

non-empty interior. Thus, Cap(Kε
1) > 0 according to Cor. 2.3(a). Then we have |Af |Cap(Kε

1)nf ≥ Cap(K2)
by previous arguments. Applying Prop. 2.4(d) to the sequence (K1/n

1 ), we have

|Af |Cap(K1)nf ≥ Cap(K2)
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(b). We have Cap(K1) > 0 by (a). By the continuous extension theorem, we have that limz→ζ0 f(z) exists
and belongs to ΩK2 for all ζ0 ∈ ∂ΩK1 . So the regularity of ΩK2 implies that

lim
z→ζ0

gK2(f(z),∞) = 0, ∀ζ0 ∈ ∂ΩK1

We keep the notations of (a). We remind that h(z) is bounded on a neighborhood U of∞; The conditions
(ii) and (iv) imply that f(U) is included in the complementary of a neighborhood of ∞ in ΩK2 . Then
gK2(f(·),∞) is bounded in ΩK1\U . We have then shown that h(z) is a harmonic function which is bounded
on ΩK1 ∪ {∞} and verifies

lim
z→ζ

h(z) = 0.

for quasi-almost every ζ ∈ ∂ΩK1 . By the generalized minimum principle applied to h and to −h, we have
h(z) ≡ 0, in particular h(∞) = 0. So, we have

VK1 = 1
nf

(log |Af |+ VK2)

Cap(K1) =
(

Cap(K2)
|Af |

)1/nf
.
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