
MSc in Mathematics and Foundations of Computer Science

Dissertation

(Co)limit computations for diagrams
of vector spaces

student 1358975

Kellogg College

Trinity Term 2021

Contents

Introduction 2

1 Quivers, (co)sections and (co)limits 2
1.1 Quivers . 2
1.2 Sections and limits . 3
1.3 Cosections and colimits . 5

2 Computing (co)sections 8
2.1 Case of a tree-like quiver . 9

2.1.1 Sections of an out-tree . 9
2.1.2 Cosections of an in-tree . 10

2.2 Case of a strongly connected quiver . 11
2.2.1 Sections of a strongly connected quiver 13
2.2.2 Cosections of a strongly connected quiver 14

2.3 Acyclic reduction . 16
2.3.1 Acyclic reduction conserving sections 16
2.3.2 Acyclic reduction conserving cosections 18

2.4 Arboreal replacement . 20
2.4.1 Augmented quiver . 20
2.4.2 Out-tree replacement . 22
2.4.3 In-tree replacement . 24

2.5 Connected components . 28
2.6 Generalisation to other categories . 29

3 Implementation of the method 31
3.1 Scope and description . 31
3.2 Performance analysis . 32

3.2.1 Theoretical time complexities . 32
3.2.2 Empirical time complexities . 34

Conclusion 38

A Annexes 39
A.1 Quotients of finite-dimensional vector spaces 39
A.2 Elements of category theory . 39
A.3 Elements of numerical linear algebra . 42
A.4 Directed Erdős–Rényi model . 43

B Python code 43

1

Abstract

(Co)limits of finite diagrams of finite-dimensional vector spaces appear in sev-
eral applied and computational contexts. Earlier this year, an efficient method to
compute limits of such diagrams was published in [SHN21]. One of my main con-
tributions is to dualise the described method so as to compute colimits. I have also
implemented in Python the algorithm and have analysed the code performances.

Introduction

As detailed in section 1, finite diagrams of finite-dimensional vector spaces can be seen
as quiver representations. From this point of view, a limit of such a diagram becomes the
space of sections.

Many abstract problems can be expressed as a quiver representation, including a
whole range of problems from linear algebra. In most cases, the main properties are
linked to the decomposability of the associated quiver [BGP73]. However, more recently,
quiver representations started to appear in more applied contexts like the study of cellular
sheaves [Cur14]. More precisely, the 0th sheaf cohomology group is given by the limit of
the associated quiver representation.

The goal of this dissertation is to describe, implement and analyse an algorithm to
compute limits and colimits (the dual notion) of a quiver representation. We hope that
our algorithm will be applied one day in a computational setting. We thus aim to provide
an efficient algorithm.

Section 2 describes two dual algorithms to compute limits and colimits of quiver rep-
resentations. The approach for limits follows [SHN21]; and I obtained the algorithm for
colimits by dualising step by step the one for limits. In addition to the description from
[SHN21], I considered, in subsection 2.5, the advantages of computing separately each
connected component. And, in subsection 2.6, I extended some of the main propositions
to other categories.

I then implemented in Python the algorithm described in section 2 (the code is in annex
B). Section 3 details the choices of implementation, and compares the performances to
those of a more direct and simple approach.

Finally, to understand, adapt and implement the algorithm from [SHN21], elements
from various theories like category theory, numerical linear algebra or networks are nec-
essary. The most important ones are summarised in annex A.

1 Quivers, (co)sections and (co)limits

1.1 Quivers

We start by defining the notion of diagrams of vector spaces. From the category theory
point of view, they are diagrams of finite shape in the category of finite dimensional vector
spaces. In this dissertation we will use a more practical definition by decomposing it into
two components: the quiver and the representation.

Definition 1.1 A quiver Q is a finite multi-digraph.
More precisely a quiver Q consists of two finite sets V (the vertices) and E (the edges)
together with two functions s, t : E → V called the source and the target.

2

Example 1.1

We will use this quiver as our running exam-
ple. Note that it contains self-loops and mul-
tiple edges.

We fix a field F. We denote VectFin−Dim the category of finite-dimensional vector
spaces over F.

Definition 1.2 A representation A• of a quiver Q is the data of finite-dimensional
F-vector spaces Av for all v ∈ V and linear maps Ae : As(e) → At(e) for all e ∈ E.

Remark 1.1 A quiver Q can be seen as a category (see annex A.2) with

• objects ob(Q) := V

• and morphisms homQ(u, v) := {e ∈ E | (s(e), t(e)) = (u, v)}, (plus the identity
when u = v).

A representation of Q can be seen as a functor from Q to VectFin−Dim or alternatively
as a Q-shaped diagram in VectFin−Dim.

Definition 1.3 Let Q = (V,E) be a quiver and A• a representation of Q. A path p in Q
is a list of edges e1, . . . , em with distinct sources such that s(ei+1) = t(ei) for 1 6 i < m.
We define t(p) := t(em), s(p) := s(e1) and Ap := Aem ◦ . . .Ae1 . For v1, v2 ∈ V , we
denote P(Q, v1, v2) or P(v1, v2) the set of all paths in Q from v1 to v2.

1.2 Sections and limits

Let Q = (V,E, s, t) be a quiver and A• be a representation of Q. Once again the notion
of limit comes from category theory. We will reformulate it in our particular setting as a
certain subspace of the total space

∏
v∈V Av.

Definition 1.4 (Limit).
• A cone of (Q,A•) is a finite dimensional vector

space C together with linear maps φv : C →
Av for v ∈ V , so that, for all e ∈ E, we have
the following compatibility requirement:

φt(e) = Ae ◦ φs(e)

• A limit of (Q,A•) is a cone (C, (φv)V) so
that, for all other cones (C ′, (φ′v)V), there is
a unique linear map α : C ′ → C such that,
for all v ∈ V ,

φ′v = φv ◦ α

C

C ′

C

Au Av

∃!φ′u φ′v

φu φv

Ae

It follows from this definition that limits are unique up to ismorphisms. Nonetheless,

3

we still allow ourselves to speak of ”the” limit, when the property holds for any of the iso-
morphic limits. Many algebraic constructions can be expressed as limits:

Example 1.2
Construction Formula As limit of a diagram

Product Au ×Av u v

Fixed points ker(Ae − idAv) v e

Equalizer Eq(Ae,Ae′) := ker(Ae −Ae′) e′

e

Pullback
Au ×Aw Av :=

{(a, b) ∈ Au ×Av | Ae(a) = Ae′(b)} u w

v

e

e′

The problem of the definitions above is that cones and limits are defined up to iso-
morphism: our algorithm will need to choose one of the isomorphic limits to output.

Using the map θ

{
C →

∏
v∈V Av

x 7→ (φv(x))v∈V
for every cone

(C, (φv)V), we will show that we can choose the limit to be
a subspace of

∏
v∈V Av together with the projection maps

(πv :
∏

u∈V Au → Av)v∈V .

θ(C)

C Av

πvθ

φv

Definition 1.5 A section γ associated with Q and A• is an element (γv)v∈V ∈
∏
v∈V

Av

such that for every edge e ∈ E, we have the following compatibility requirement:
Ae(γs(e)) = γt(e). The set of all sections is denoted Γ(Q,A•).

Proposition 1.1

Γ(Q,A•) =
⋂
e∈E

ker
(
πt(e) −Ae ◦ πs(e)

)
.

Proof. Let γ := (γv)v∈V ∈
∏

v∈V Av.

γ ∈ Γ(Q,A•)⇐⇒ ∀e ∈ E, Ae(πs(e)(γ))− πt(e)(γ) = 0

⇐⇒ ∀e ∈ E, γ ∈ ker
(
πt(e) −Ae ◦ πs(e)

)

Corollary 1.1 Γ(Q,A•) is a subspace of
∏

v∈V Av.

Proposition 1.2 Γ(Q,A•) together with the restrictions of the projection maps (πv)v∈v
is a limit of the Q-shaped diagram corresponding to A•.

4

Proof.

For every e ∈ E, the compatibility condition of
a section translates into the following commu-
tative diagram:

Γ(Q,A•)

As(e) At(e)

πs(e) πt(e)

Ae

Hence, Γ(Q,A•) is a cone. Moreover, if (C, (φv)v∈V) is another cone, θ(C) ⊆ Γ(Q,A•)
and for a linear map α : C → Γ(Q,A•):

∀v ∈ V, πv ◦ α = φv ⇐⇒ ∀c ∈ C, α(c) = θ(c)

Thus, Γ(Q,A•) is a limit of (Q,A•).

Proposition 1.2 proves that limits of a finite diagram in VectFin−Dim is the same as the
sections of the corresponding quiver with its representation. Proposition 1.1 already gives
an algorithm to compute Γ(Q,A•). However it requires multiple computations in the total
space

∏
v∈V Av, which would only be realistic for very small quivers. Section 2 describes

an algorithm inspired from [SHN21] to compute the sections space more efficiently.

1.3 Cosections and colimits

Colimits are the dual notion of limits as defined in definition 1.4. Like in the previous
paragraph, we want to reformulate colimits in our particular setting by establishing the
dual of proposition 1.2. Let Q = (V,E) be a quiver and A• a representation of Q.

Definition 1.6 (Colimit).
• A cocone of (Q,A•) is a finite dimensional

vector space C, together with linear maps ψv :
Av → C for v ∈ V so that, for all e ∈ E, we
have the following compatibility requirement:

ψs(e) = ψt(e) ◦Ae

• A colimit of (Q,A•) is a cocone (C, (ψv)V) so
that, for all other cocones (C ′, (ψ′v)V), there
is a unique linear map α : C → C ′ such that,
for all v ∈ V ,

ψ′v = α ◦ ψv

C

Au Av

C

C ′

Ae

ψu

ψ′u

ψv

ψ′v
∃!

As for limits, colimits are unique up to isomorphism and are a way to formulate many
algebraic constructions.

Example 1.3

5

Construction Formula As colimit of a diagram

Coequalizer
Coeq(Ae,Ae′) :=

Av

/
Im(Ae −Ae′)

u v

e′

e

Pushout
Au ⊗Aw Av :=

Au

⊕
Av

/
Im ((Ae,−Ae′))

u w

v

e

e′

We denote iv : Av →
⊕

u∈V Au the in-
clusion maps for v ∈ V . Then, using the

map ω

{ ⊕
v∈V Av → C∑

v∈V iv(xv) 7→
∑

V ψv(xv)
for every cocone

(C, (ψv)V), we will show that one of the isomorphic col-
imits is a quotient of

⊕
v∈V Av together with the maps

induced by the inclusions (iv)V .

⊕
v∈V

Av
/

kerω

C Av

ω

ψv

iv

Definition 1.7 We define the space of cosections

∆(Q,A•) :=

⊕
v∈V

Av
/∑
e∈E

Im(is(e) − it(e) ◦Ae)

where iv : Av ↪→
⊕

u∈V Au is the canonical inclusion map.

Note that since all spaces have a finite dimension,
⊕

v Av =
∏

v Av. We prefer the
⊕

notation to highlight that this definition is the dual of proposition 1.1. To simplify the
expressions, we use the following notation, for any edge e ∈ E or path p of Q:

IA•(e) := Im
(
is(e) − it(e) ◦Ae

)
and IA•(p) := Im

(
is(p) − it(p) ◦Ap

)
.

Example 1.4 Consider the quiver Q = u v
e

e′

The colimit of a representation A• of Q is Coeq(Ae,Ae′) = Av

/
Im(Ae′ − Ae). On

the other hand:

∆(Q,A•) = Au

⊕
Av
/

Im(iu − iv ◦Ae′) + Im(iu − iv ◦Ae)

= Au

⊕
Av
/

Im(iu − iv ◦Ae′)
⊕

Im(iv ◦ (Ae′ −Ae))

∼= Av
/

Im(Ae′ −Ae)
using corollary A.1

One can check that the isomorphism ∆(Q,A•) ∼= Coeq(Ae,Ae′) transforms iu into Ae

and iv into idAv where x is the class of x ∈ Av in Av

/
Im(Ae′ −Ae).

We can prove the dual of proposition 1.2:

6

Proposition 1.3 ∆(Q,A•), together with the maps induced by the inclusions (iv)v∈V ,
is a colimit of the Q-shaped diagram corresponding to A•.

Proof. We denote x the class of an element x ∈
⊕

v∈V Av in ∆(Q,A•).

For every e ∈ E, the following diagram commutes
since for x ∈ As(e),

it(e) ◦Ae(x) = it(e) ◦Ae(x) = is(e)(x) = is(e)(x)

As(e) At(e)

∆(Q,A•)

Ae

is(e) it(e)

Hence, ∆(Q,A•) is a cocone. Moreover, if (D, (ψv)v∈V) is another cocone then, for any
linear map α : ∆(Q,A•)→ D:

∀v ∈ V, α ◦ iv = ψv ⇐⇒ ∀x = (xv)v∈V ∈
⊕
v∈V

Av, α(x) =
∑
v∈V

ψv(xv)

⇐⇒ α is the quotient map associated with
∑
v∈V

ψv ◦ πv

where πv :
⊕

u∈V Au → Av is the canonical projection. Since D is a cocone, we have
for e ∈ E,

(∑
v

ψv ◦ πv

)
◦ (is(e) − it(e) ◦Ae) = ψs(e) ◦ πs(e) ◦ is(e) − ψt(e) ◦ πt(e) ◦ it(e) ◦Ae

= ψs(e) − ψt(e) ◦Ae = 0.

Hence,
∑

v∈V ψv ◦πv is trivial on
∑

e∈E Im(is(e)− it(e) ◦Ae). Its quotient map is well
defined and it is the only map of cocone from ∆(Q,A•) to D. Finally, ∆(Q,A•) is a
colimit of the diagram induced by Q and A•.

We fix a basis for each Av, for v ∈ V . Each A(u,v) for (u, v) ∈ E is now represented
by a matrix dim Av × dim Au.

Definition 1.8 The transpose quiver of Q is QT = (V,ET := {(v, u) | (u, v) ∈ E})
and the transpose representation of A• is AT

• defined by AT
v := Av for v ∈ V and

AT
(u,v) := (A(v,u))

T for (u, v) ∈ ET .

Proposition 1.4 Let (L, (φv)v∈V) be a limit of (QT ,AT
•). If we fix a basis of L, then

(L, (φTv)v) is a colimit of (Q,A•).

Proof.

• Let (u, v) ∈ E. Since L is a cone of (QT ,AT
•), one has AT

(v,u) ◦ φv = φu and

7

(φv)
T ◦ (AT

(v,u))
T = (φu)

T i.e. (φv)
T ◦A(u,v) = (φu)

T .

u

L cC

v
φv

φu

(ψ′v)T

α

(ψ′v)T

AT
(v,u)

u

L cC

v

φTu

ψ′u

A(u,v)
αT

φTv

ψ′v

• Let (cC, (ψ′v)v∈V)) be a cocone of (Q,A•). Then for (u, v) ∈ E, (ψ′u)
T = (ψ′v ◦

A(u,v))
T = AT

(v,u)◦(ψ′v)T hence (L, ((ψ′v)
T)v∈V) is a cone of (QT ,AT

•). By definition

of limits, there is a unique map α : cC → L such that for all v ∈ V , (ψ′v)
T = φv ◦α

and after transposing this expression, αT is the only map L → cC such that
ψ′v = αT ◦ (φv)

T for all v ∈ V . Finally, (L, (φTv)v) is a colimit of (Q,A•).

The colimit of (Q,A) can be computed as the limit of the transpose quiver and repre-
sentation. A possible method could be to devise an algorithm for limits and to use it on
the transpose to compute colimits. This approach would have two drawbacks:

• On the one hand, any vector space of the right dimension could be used as a colimit
but the cosections space has a particularly nice definition as a quotient of the total
space, which is not given directly by proposition 1.4.

• On the other hand, the method described in this essay could be extended to the
computation of (co)limits of finite diagrams in a (co)complete category (see 2.6).
In this more general setting, it may not be possible to transpose maps. Worst, the
category might not be both complete and cocomplete.

That’s why in the following section, computations for sections and cosections are
provided as two separate methods.

2 Computing (co)sections

In the last section, we defined (co)limits of finite diagrams of finite-dimensional vector
spaces and reformulate it as the space of (co)sections of a quiver representation. We
now fix a quiver Q and a representation A• of Q. The goal of this section is to design
an algorithm to compute the (co)sections spaces Γ(Q,A•) and ∆(Q,A•). The formulae
from proposition 1.1 and definition 1.7 already give possible algorithms. However, those
algorithms imply computations in the total space which dimension is too large, except for
very small examples.

For larger examples, we describe algorithms that keep computations in a smaller space.
The algorithm for sections comes from [SHN21] and I adapted it to the case of cosections
by dualizing each step. In this section we follow [SHN21](2-4) while proving in parallel
the dual statements.

8

The main idea of these algorithms is to transform Q and A•, while keeping the same
(co)sections space, until Q is a rooted tree. We will first show that computations are
easy for rooted trees (see 2.1). Then we will see how to remove cycles (2.2 for strongly
connected quivers and 2.3 for the general case) and finally how to add a root and to
remove parallel paths (2.4).

When changing Q and A•, we want to keep the space of (co)sections unchanged, up
to isomorphism. However, in order to retrieve the maps associated with the (co)limit,
we need to keep track of these isomorphisms. In fact, the isomorphisms involved in our
transformations will mostly be induced by the canonical injection or quotient maps.

Definition 2.1 Let Q = (V,E) and Q′ = (V,E ′) two quivers with their representations
A• and A′•. We write

• (Q,A•)
Γ
/ (Q′,A′•) if for all v ∈ V , Av ⊆ A′v and the inclusion

⊕
V Av ↪→

⊕
V A′v

induces an isomorphism Γ(Q,A•) ∼= Γ(Q′,A′•).

• (Q,A•)
∆
/ (Q′,A′•) if for all v ∈ V , Av = A′v

/
Bv for some Bv ⊆ A′v and the

quotient map
⊕

V A′v →
⊕

V Av induces an isomorphism ∆(Q′,A′•)
∼= ∆(Q,A•).

2.1 Case of a tree-like quiver

We start by showing that computing (co)sections of a directed rooted tree is easy.
Indeed, when Q is a directed rooted tree, the representation space of the root is either
the sections space or the cosections space, depending on whether Q is an out-tree or an
in-tree.

2.1.1 Sections of an out-tree

Definition 2.2 Q is called an out-tree with root r if, for all
v in V , there is a unique path p[v] from r to v.

r

v1 v2

v11 v12 v13

Proposition 2.1 If Q is an out-tree with root r then the projection πr :
∏

v∈V Av → Ar

induces an isomorphism Γ(Q,A•) ∼= Ar.

Proof. For a path p = e1, . . . , em, we denote Ap := Aem ◦ · · · ◦ Ae1 . Let’s consider
the linear map:

Φ

{
Ar → Γ(Q,A•)
x 7→ (Ap[v](x))v∈V

Φ is well defined. Indeed, for x ∈ Ar and e ∈ E, the uniqueness of p[t(e)] justifies the
following statement:

Ae(Φ(x)s(e)) = Ap[s(e)],e(x) = Ap[t(e)](x) = Φ(x)t(e).

9

For γ ∈ Γ(Q,A•), we have Φ ◦ πr(γ) = Φ(γr) = (Ap[v](γr))v∈V = γ. Similarly, for
x ∈ Ar, we have:

πr ◦ Φ(x) = πr((Ap[v](x))v) = x. Hence, Γ(Q,A•)
πr∼= Ar.

2.1.2 Cosections of an in-tree

Definition 2.3 Q is called an in-tree with root r if, for all
v ∈ V , there is a unique path q[v] from v to r.

r

v1 v2

v11 v12 v13

Lemma 2.1 Let p be a path in Q. Then, IA•(p) ⊆
m∑
i=1

IA•(ei).

Proof.

is(e1) − it(em) ◦Ap = is(e1) − it(em) ◦Aem ◦ · · · ◦Ae1

=
m∑
i=1

(is(ei) − it(ei) ◦Aei) ◦Aei−1
◦ · · · ◦Ae1

Proposition 2.2 If Q is an in-tree with root r, then the inclusion map ir induces an
isomorphism Ar

∼= ∆(Q,A•).

Proof. Let’s show first that∑
e∈E

IA•(e) =
∑

v∈V \{r}

IA•(q[v]). (1)

⊆ Let e ∈ E. If t(e) = r, then (e) = q[s(e)] and
IA•(e) = IA•(q[s(e)]). Otherwise, by uniqueness
of q[s(e)], we have q[s(e)] = (e, q[t(e)]) and:

s(e) t(e) r

q[s(e)]

e q[t(e)]

IA•(e) = Im(is(e) − it(e) ◦Ae)

= Im
((
is(e) − ir ◦Aq[s(e)]

)
−
(
it(e) − ir ◦Aq[t(e)]

)
◦ Ae

)
⊆ Im

(
is(e) − ir ◦Aq[s(e)]

)
+ Im

(
it(e) − ir ◦Aq[t(e)]

)
= IA•(q[s(e)]) + IA•(q[t(e)])

10

⊇ Let v ∈ V . A direct application of lemma 2.1 with p = q[v] = (e1, . . . , em) gives
IA•(q[v]) ⊆

∑m
i=1 IA•(ei).

Using (1), we can now write

∆(Q,A•) =

⊕
v∈V

Av
/∑
v 6=r

IA•(q[v]).

Moreover,
∑

v 6=r IA•(q[v]) is a direct sum. Indeed for (xv)v 6=r ∈
∏

v 6=r Av, by pro-
jecting on

⊕
v 6=r Av:∑

v 6=r

(iv − ir ◦Aq[v])(xv) = 0 =⇒ ∀v 6= r, iv(xv) = 0

=⇒ ∀v 6= r, (iv − ir ◦Aq[v])(xv) = 0.

Hence,

dim ∆(Q,A•) = dim Ar +
∑
v 6=r

(
dim Av − dim

(
(iv − ir ◦Aq[v])(Av)

))
= dim Ar.

Let Ψ

{ ⊕
v∈V Av → Ar∑
v∈V xv 7→ xr +

∑
v 6=r Aq[v](xv)

. Since Ψ ◦ ir = idAr , Ψ is surjective.

Furthermore, for all v ∈ V \ {r}, Ψ(IA•(q[v])) = Ψ
(
Im(iv − ir ◦Aq[v])

)
= 0, so Ψ is

also well defined on ∆(Q,A•). Finally, the equality on dimensions implies that the map
induced by Ψ on ∆(Q,A•) is an isomorphism which inverse is induced by ir.

The results from this subsection allow us to compute (co)sections of an out(in)-tree. We
now want to transform a general quiver into a rooted tree. The first step of this process
is to remove the cycles.

2.2 Case of a strongly connected quiver

In this paragraph, we study how to remove cycles in a strongly connected quiver. The
results from this particular case will be necessary to remove cycles in a general quiver.

Definition 2.4 Q is said to be strongly connected if for all u, v ∈ V there is a path from
u to v.

Example 2.1 Cycles and complete graphs are strongly connected quivers.

If Q is strongly connected, we will decompose it as an union of smaller and simpler
quivers.

Definition 2.5 A quiver Q′ = (V ′, E ′) is a subquiver of Q if V ′ ⊆ V , E ′ ⊆ E and for
all e′ ∈ E ′, (t(e′), s(e′)) ∈ V ′2. We write Q′ ⊆ Q.

11

Remark 2.1 • If we look at Q as a category like in remark 1.1, then a subquiver
is a subcategory of Q.

• a path (e1, . . . , em) defines a subquiver Q′ with V ′ = {s(e1), . . . , s(em), t(em)} and
E ′ = {e1, . . . , em}. We denote s(Q′) = s(e1) and t(Q′) = t(em)

Definition 2.6 An ear decomposition Q• of Q is a list of c ∈ N∗ subquivers
{Qi = (Vi, Ei) | i ∈ [c]} which are paths of Q such that:

1. {Ei | i ∈ [c]} is a partition of E.

2. s(Q1) = t(Q1)

3. for i > 1, Vi ∩ ∪j<iVj = {s(Qi), t(Qi)}

Theorem 2.1 A quiver with at least two vertices is strongly connected if and only if it
admits an ear decomposition.

The proof of the theorem is given in [BJG09] through the following algorithm:

Algorithm 1: ear decomposition

input: Q, a strongly connected quiver
output: Q• an ear decomposition of Q
Q• = {Q1} where Q1 is any cycle of Q;
i=1;
while

⋃
j6i Vj 6= V do

Let e ∈ E such that s(e) ∈
⋃
j6i Vj and t(e) /∈

⋃
j6i Vj;

Let p be a shortest path from t(e) to
⋃
j6i Vj;

Add the path e, p to Q• and increment i;

for e /∈
⋃
j6iEi do

Add e to Q•;

This algorithm is correct since the strong connectivity of Q implies the existence of
Q1, e and p. Moreover, at the end of the while-loop all the remaining edges are self-loops
which are ears on their own.

proof of theorem 2.1
⇒ The result is a consequence of the correctness of algorithm 1.

⇐ By induction on i ∈ [c],
⋃
j6i

Qj :=

(⋃
j6i

Vj,
⋃
j6i

Ej

)
is strongly connected.

Until the end of this section, we assume Q to be strongly connected, we denote Q•
one of its ear decompositions and we choose r = s(Q1) = t(Q1) ∈ V1.

Definition 2.7 • the depth |e| of an edge e is the unique i ∈ [c] such that e ∈ Ei

• A path p is said to be increasing(decreasing) if its edges are in increasing(decreasing)
depth order.

12

• for v ∈ V , l(v) := min{i ∈ [c] | v ∈ Vi}

Proposition 2.3 For any vertex v ∈ V \ {r}, there exists:

1. a unique Q•-increasing path p[v] from r to v with all edges of depth ≤ l(v), and,

2. a unique Q•-decreasing path q[v] from v to r with all edges of depth ≤ l(v).

Proof.
We will prove the 2. by induction on l(v).
If l(v) = 1, Q1 is a cycle and there is a unique path with
all edges of depth 1 from v to r.
Let c > l > 1. Assume that the property holds for all
u ∈ ∪i<lVi and let v ∈ V such that l(v) = l. Ql is a
path between s(Ql) and t(Ql) so there is a unique path
of depth l from v to ∪i<lVi and it lands in t(Ql). By
induction, there is a unique decreasing path from t(Ql)
to r. Finally, there is a unique decreasing path from v to
r.

r

v

Q1

r

s(Ql) t(Ql)

v

∪i<lQi
q[t(Ql)]

Ql

2.2.1 Sections of a strongly connected quiver

To compute the sections of the strongly connected quiver Q, we will remove the last edge
of each ear of Q• to obtain an out-tree. The representation space of the root will be
modified to keep the same space of sections.

More precisely, for each i ∈ [c], there is a unique εi ∈ Ei called i-th terminal edge,
such that t(εi) = t(Qi). We denote Eter = {εi | i ∈ [c]} the set of terminal edges of
Q.

Definition 2.8 The out-tree induced by Q• is the subquiver Tout = Tout(Q) defined by
the vertices V and the edges E \ Eter.

Example 2.2 Let

r1

R1 :=

Q1

Q2

Q3
and r2R2 :=

Q′1

{Q1, Q2, Q3} and {Q1
′} are ear decompositions of respectively R1 and R2. The dashed

edges are the terminal edges. Thus, Tout(R1) and Tout(R2) are given by the solid lines.

Proposition 2.4 Tout is an out-tree with root r.

13

Proof. Since all paths in Tout are increasing,

the result is a consequence of proposition 2.3.
∪i<lVi

Ql

×

As in section 2.1.1, we denote p[v] the unique path from r to v in Tout and we write

K(Q•,A•) :=
⋂

ε∈Eter

ker
(
Ap[t(ε)] −Aε ◦Ap[s(ε)]

)
.

Proposition 2.5 Γ(Q,A•) ∼= K(Q•,A•).

Proof. By proposition 2.1, Ar

Φ∼= Γ(Tout,A•) via Φ :

{
Ar → Γ(Tout,A•) ⊂

∏
v∈V Av

x 7→ (Ap[v](x))v∈V
Then Γ(Q,A•) = {γ ∈ Γ(Tout,A•) | ∀ε ∈ Eter,Aε(γs(ε)) = γt(ε)} and composing by Φ:

Γ(Q,A•) = Φ
(
{x ∈ Ar | ∀ε ∈ Eter,Aε(Ap[s(ε)](x)) = Ap[t(ε)](x)}

)
= Φ (K(Q•,A•))

Proposition 2.6 Let A′• be the representation of Tout defined by:

A′v =

{
Av if v 6= r

K(Q•,A•) if v = r
and A′e =

{
Ae if s(e) 6= r

(Ae)|A′r if s(e) = r

where v ∈ V and e ∈ E \ Eter. One has:

(Tout,A
′
•)

Γ
/ (Q,A•)

Proof. By propositions 2.1 and 2.5, Γ(Tout,A
′
•)
∼= K(Q,A•) ∼= Γ(Q,A•) and the

isomorphism is Φ|K(Q,A) ◦ (πr)|Γ(Tout,A′•). By the proof of proposition 2.5, it is induced
by the inclusion of the total spaces.

2.2.2 Cosections of a strongly connected quiver

Dually, Q is transformed into a in-tree with the same cosections by removing the first
edges of every ear of Q• and by quotienting the root representation space.

For each i ∈ [c], there is a unique εi ∈ Ei called i-th initial edge, such that s(εi) = s(Qi).
We denote Eini = {εi | i ∈ [c]} the set of initial edges of Q.

Definition 2.9 The in-tree induced by Q• is the subquiver Tin = Tin(Q) defined by the
vertices V and the edges E \ Eini.

Example 2.3 Continuing ex. 2.2. Tin(R1) and Tin(R2) are given by the solid lines of:

14

r1

R1 :=

Q1

Q2

Q3
and r2R2 :=

Q′1

A direct consequence of proposition 2.3 is that:

Proposition 2.7 Tin is an in-tree with root r.

As in section 2.1.2, we denote q[v] the unique path from v to r in Tin and we write

CK(Q•,A•) := Ar
/ ∑
ε∈Eini

Im(Aq[s(ε)] −Aq[t(ε)] ◦Aε)

We apply proposition 2.2 to Tin and define Ψ :
⊕

v∈V Av −→ Ar as in the proof of
proposition 2.2.

Lemma 2.2 Ψ induces an isomorphism ∆(Q,A•) ∼= CK(Q•,A•).

Proof. Ψ induces a linear map Ψ̃ : ∆(Q,A•) →
⊕

V Av

/
Ψ(
∑

e∈E IA•(e)) which is
surjective because so is Ψ. Since Ψ is null on IA•(e), for every edge e of Tin, one has:

Ψ̃(∆(Q,A•)) = Ar
/

Ψ

 ∑
e∈E\Eini

IA•(e)

+ Ψ

(∑
ε∈Eini

IA•(ε)

)

= Ar
/

0 +
∑
ε∈Eini

Im Ψ ◦ (is(ε) − it(ε) ◦Aε)

But from equation (1), Ψ ◦ iv = Ψ ◦ ir ◦Aq[v] = Aq[v] for any v ∈ V . Hence:

Ψ̃(∆(Q,A•)) = Ar
/ ∑
ε∈Eini

Im(Aq[s(ε)] −Aq[t(ε)] ◦Aε)
= CK(Q•,A•).

Finally, for x ∈
⊕

V Av,

Ψ̃

(
x+

∑
e∈E

IA•(e)

)
= 0⇐⇒ Ψ(x) ∈ Ψ

(∑
e∈E

IA•(e)

)
= Ψ

(∑
e∈Eini

IA•(e)

)
⇐⇒ x ∈

∑
e∈Eini

IA•(e) + ker Ψ =
∑
e∈E

IA•(e).

Thus, Ψ̃ is injective and ∆(Q,A•)
Ψ̃∼= CK(Q•,A•).

15

Proposition 2.8 Let A′• be the representation of Tin defined by:

A′v =

{
Av if v 6= r

CK(Q•,A•) if v = r
and A′e =

{
Ae if t(e) 6= r
[Ae] if t(e) = r

where [x] denotes the class of x ∈ Ar in the quotient CK(Q•,A•).

(Tin,A
′
•)

∆
/ (Q,A•)

Proof. From proposition 2.2 applied to (Tin,A
′
•) and lemma 2.2, we have the following

ismorphisms{
∆(Tin,A

′
•) → CK(Q,A•) ← ∆(Q,A•)

[[x]⊕
V A′v]∆(Tin,A′•) 7→ [Ψ(x)]CK(Q,A•) ←[[x]∆(Q,A•)

for x ∈
⊕
v∈V

Av.

So the isomorphism ∆(Q,A•) ∼= ∆(Tin,A
′
•) is induced by the quotient map⊕

v∈V Av →
⊕

V A′v.

2.3 Acyclic reduction

Let Q = (V,E) be any quiver with a representation A•. The goal of this paragraph
is to transform (Q,A•) into (Q∗,A∗•) such that Q∗ is acyclic and the space (co)sections
of (Q,A•) and (Q∗,A∗•) are isomorphic via a simple map. The strategy is to apply the
previous paragraph, independently, to all maximal strongly connected subquivers of Q,
and then to ”repair” the representation to obtain a valid representation.

We denote MSC(Q) the maximal (for the inclusion) strongly connected subquivers
of Q. For each subquiver R ∈MSC(Q) we fix an ear decomposition R• like in definition
2.6.

Proposition 2.9 Distinct subquivers of MSC(Q) have distinct vertices.

Proof. Assume w ∈ R ∩R′, with R,R′ ∈MSC(Q). Then for all v, v′ ∈ R ∪R′ there
is a path from v to v′ going through w. Hence R ∪R′ is also strongly connected and R
is not maximal.

Like previously, we can define forR ∈MSC(Q), the terminal edges ofR, Eter(R) (resp.
initial edges Eini(R)) and the out-tree induced by R, Tout(R) (resp. in-tree Tin(R)). We
also denote ρ(R), V (R) and E(R) the root, vertices and edges of R•.

We will define the acyclic reduction of Q by removing the terminal (resp. initial edges)
of Q. The goal of this subsection is to find a representation of the acyclic reduction with
the same (co)sections as Q.

2.3.1 Acyclic reduction conserving sections

16

Definition 2.10 The acyclic reduction Q∗ter of Q is the subquiver with vertices V and

edges E∗ = E \
⋃

R∈MSC(Q)

Eter(R).

Example 2.4

Continuing examples 1.1 and 2.2,
MSC(Q) = {R1, R2}. The acyclic re-
duction (with respect to the ear decom-
position from 2.2), Q∗ter is given by the
solid lines of:

r1

r2

R2 R1

By construction, Q∗ter as no cycle. In order to build a representation A∗• of Q∗ter such
that Γ(Q∗ter,A

∗
•)
∼= Γ(Q,A•) we start by applying the transformation from last section

independently to each R ∈MSC(Q). For v ∈ V let:

A◦,terv =

{
K
(
R, (A•)|R)

)
if v = ρ(R)

Av else

Note that A◦,ter• may not be a representation of Q∗ter. For instance, in example 2.4, the
representation map of the black edge going to r1 has no reason to land in K(R1, (A•)|R1).
Hence, we restrict the representation to account for the dependence between the subquiv-
ers of MSC(Q) and to obtain a valid representation of Q∗ter.

Definition 2.11 Let R ∈ MSC(Q) and v ∈ V . The constrained space induced by R
on A◦,terv is:

Λv,R := {x ∈ A◦,terv | Ap(x) ∈ K
(
R, (A•)|R)

)
,∀p ∈ P(Q∗ter, v, ρ(R))}

We define
A∗v =

⋂
R∈MSC(Q)

Λv,R

Proposition 2.10 A∗• is a valid representation of Q∗ter.

Proof. Let e ∈ E∗, R ∈MSC(Q) and x ∈ Λs(e),R. For all p ∈ P(Q∗ter, t(e), ρ(R)), we
have, Ap(Ae(x)) = Ae,p(x) ∈ K(R, (A•)|R) i.e. Ae(x) ∈ Λt(e),R.

Proposition 2.11

(Q∗ter,A
∗
•)

Γ
/ (Q,A•)

Proof. First,
⊕

v A∗v ⊆
⊕

v Av and E∗ ⊆ E so we only need to prove that
Γ(Q,A•) ⊆

⊕
v A∗v and Γ(Q∗ter,A

∗
•) ⊆ Γ(Q∗,A•).

Let γ ∈ Γ(Q,A•) and R ∈MSC(Q). γ restricts to a section of Γ(R,A•). Hence, by
lemma 2.5, γρ(R) ∈ K

(
R, (A•)|R

)
= A◦,terρ(R) and by compatibility, for every v ∈ V and

17

every p ∈ P(Q∗ter, v, ρ(R)), Ap(γv) = γρ(R) ∈ A◦,terρ(R) i.e. γv ∈
⋂
R Λv,R = A∗v.

Let γ∗ ∈ Γ(Q∗ter,A
∗
•). Since A∗e is a restriction of Ae for e ∈ E∗, we only need

to check the compatibility on E \ E∗. Let ε ∈ E \ E∗, there is R ∈ MSC(Q) such
that ε ∈ Eter(R). If we denote Φ the map from the proof of lemma 2.5 applied to R,
we have (γ∗v)v∈V (R) = Φ(γ∗ρ(R)) (because of the compatibility on E \ E∗). Moreover,

γ∗ρ(R) ∈ A∗ρ(R) ⊆ K
(
R, (A•)|R

)
, so (γ∗v)v∈V (R) ∈ Γ(R, (A•)|R) and in particular γ∗ is

A•-compatible with respect to ε.

2.3.2 Acyclic reduction conserving cosections

Definition 2.12 The acyclic reduction Q∗ini of Q is the subquiver with vertices V and

edges E∗ = E \
⋃

R∈MSC(Q)

Eini(R).

Example 2.5

Continuing examples 1.1 and 2.3, Q∗ini
is given by the solid lines of:

r1

r2

R2 R1

By construction, Q∗ini has no cycle. Our goal is to find a quotient A∗• of A• such that
∆(Q∗ini,A

∗
•) = ∆(Q,A•). For v ∈ V and R ∈MSC(Q) we denote qR[v] the unique path

from v to ρ(R) in Tin(R) and we define:

Ip,R =
∑

ε∈Eini(R)

Im Ap ◦ (AqR[s(ε)] −AqR[t(ε)] ◦Aε)

A∗v = Av
/ ∑

R ∈MSC(Q)
p ∈ P(Q∗ini, ρ(R), v)

Ip,R

For v = ρ(R), we have P(Q∗ini, ρ(R), ρ(R)) = ∅. We continue to use the general
formula with the convention∑

p∈P(ρ(R),ρ(R))

Ip,R =
∑

e∈Eini(R)

Im(AqR[s(e)] −AqR[t(e)] ◦Ae).

Notice that for R ∈MSC(Q), one has Aρ(R)

/ ∑
p∈P(ρ(R),ρ(R)) Ip,R = CK

(
R, (A•)|R

)
.

Quotienting by P(Q∗ini, ρ(R), ρ(R)) is equivalent to applying independently for each R ∈
MSC(Q) the transformation from section 2.2. The other paths account for the depen-
dence between the subquivers of MSC(Q).

Proposition 2.12 For ε ∈ E∗, Aε induces a map A∗ε : A∗s(ε) → A∗t(ε).

18

Proof. Let ε ∈ E∗. We will prove that Aε sends representatives of a class of A∗s(ε) to
the same class in A∗t(ε).

• First assume that s(ε) 6= ρ(R) for all R ∈MSC(Q). We only need to check that
for R ∈MSC(Q), e ∈ Eini(R) and p ∈ P(Q∗ini, ρ(R), s(ε)):

Aε

(
Im Ap ◦ (AqR[s(e)] −AqR[t(e)] ◦Ae)

)
⊆
∑
R

∑
p∈P(ρ(R),t(ε))

Ip,R.

But (p, ε) ∈ P(Q∗ini, ρ(R), t(ε)) so

Aε

(
Im Ap ◦ (AqR[s(e)] −AqR[t(e)] ◦Ae)

)
= Im A(p,ε) ◦ (AqR[s(e)] −AqR[t(e)] ◦Ae)

⊆ I(p,ε),R

• if s(ε) = ρ(R) for some R ∈MSC(Q), we also need to check that:

Aε

 ∑
e∈Eini(R)

Im(AqR[s(e)] −AqR[t(e)] ◦Ae)

 ⊆∑
R

∑
p∈P(ρ(R),t(ε))

Ip,R.

Since (ε) ∈ P(Q∗ini, ρ(R), t(ε)), Aε

(∑
e∈ini(R) Im(AqR[s(e)] −AqR[t(e)] ◦Ae)

)
= I(ε),R

As a consequence, A∗• is a representation of Q∗ini.

Proposition 2.13 (Q∗ini,A
∗
•)

∆
/ (Q,A•)

Proof. By definition:

∆(Q,A•) =

⊕
v∈V

Av
/∑
e∈E

IA•(e)

Let q be the quotient map
⊕

v Av →
⊕

v A∗v. By proposition 2.12, q(IA•(e)) = IA∗•(e)
for e ∈ E∗, hence q induces an isomorphism:

∆(Q∗ini,A
∗
•)
∼=
⊕
v∈V

Av
/∑

R

∑
v∈V

iv

 ∑
p∈P(Q∗ini,ρ(R),v)

Ip,R

+
∑
e∈E∗
IA•(e)

We need to show that

∑
e∈E

IA•(e) =
∑
R

∑
v∈V

iv

(∑
p∈P(ρ(R),v)

Ip,R

)
+
∑
e∈E∗
IA•(e)

19

⊆ Let ε ∈ E\E∗, let’s prove that Im(is(e)−it(e)◦Ae) is included in the right term. There
is a unique R ∈MSC(Q) such that ε ∈ Eini(R). By lemma 2.1, Im(is(ε)−iρ(R)◦AqR[s(ε)])
and Im(it(ε) − iρ(R) ◦AqR[t(ε)]) are included in

∑
e∈E∗ Im(is(e) − it(e) ◦Ae). And:

Im(is(ε) − it(ε) ◦Aε) ⊆ Im(is(ε) − iρ(R) ◦AqR[s(ε)]) ⊆
∑
e∈E∗

Im(is(e) − it(e) ◦Ae)

+ Im iρ(R) ◦ (AqR[s(ε)] −AqR[t(ε)] ◦Aε) = iρ(R)

 ∑
p∈P(Q∗ini,ρ(R),ρ(R))

Ip,R

+ Im(it(ε) − iρ(R) ◦AqR[t(ε)]) ◦Aε ⊆

∑
e∈E∗

Im(is(e) − it(e) ◦Ae)

⊇ Let R ∈MSC(Q) and v ∈ V \ {ρ(R)}, let’s show that for p ∈ P(Q∗ini, ρ(R), v):

iv (Ip,R) ⊆
∑
e∈E

Im(is(e) − it(e) ◦Ae).

Let ε ∈ Eini(R),

iv ◦Ap ◦
(
AqR[s(ε) −AqR[t(ε)] ◦Aε

)
= iv ◦ (A(p,qR[s(ε)]) −A(p,qR[t(ε)],ε))

=
(
iv ◦A(p,qR[s(ε)]) − is(ε)

)
−
(
iv ◦A(p,qR[t(ε)],ε))− is(ε)

)
Then by lemma 2.1 applied to the paths (p, qR[t(ε)]) and (p, qR[t(ε)], ε) in Q:

iv ◦Ap

(
Im
(
AqR[s(ε) −AqR[t(ε)] ◦Aε

))
⊆
∑
e∈E

Im(is(e) − it(e) ◦Ae).

This concludes the proof in the case where v 6= ρ(R). When v = ρ(R), we apply instead
the lemma 2.1 to qR[t(ε)] and (qR[t(ε)], ε).

2.4 Arboreal replacement

Let Q = (V,E) be an acyclic quiver and A• a representation of Q.

2.4.1 Augmented quiver

The closure of the following relation on V defines a partial order on V :

u < v ⇐⇒ there is a path in Q from u to v

Definition 2.13 We denote Vmin and Vmax the minimal and maximal vertices of V for
the relation <.

• Q− :=
(
V − := V ∪ {r}, E− := E ∪

⋃
v∈Vmin{(r, v)}

)
is the negative augmented

quiver

20

• Q+ :=
(
V + := V ∪ {r}, E+ := E ∪

⋃
v∈Vmax{(v, r)}

)
is the positive augmented

quiver

Example 2.6 Continuing our running example:

r

Q∗−ter

r

Q∗+ini

For v ∈ Vmin, πv :
∏

u∈Vmin Au → Av is the canonical projection and for v ∈ Vmax,
ιv : Av ↪→

⊕
u∈Vmax Au is the inclusion.

Let A• be a representation of Q, we define A−• and A+
• which are representations of

respectively Q− and Q+ by:

A−v :=

{
Av if v ∈ V∏

v∈Vmin Av if v = r
and A−e :=

{
Ae if e ∈ E
πv if e = (r, v) with v ∈ Vmin

Similarly,

A+
v :=

{
Av if v ∈ V⊕

v∈Vmax Av if v = r
and A+

e :=

{
Ae if e ∈ E
ιv if e = (v, r) with v ∈ Vmax

Proposition 2.14

• The projection
⊕

v∈V − Av →
⊕

v∈V Av induces an isomorphism

Γ(Q−,A−•) ∼= Γ(Q,A•)

• The inclusion
⊕

v∈V Av →
⊕

v∈V + A+
v induces an isomorphism

∆(Q,A•) ∼= ∆(Q+,A+).

Proof.

•

Γ(Q,A•) → Γ(Q−,A−•)

γ 7→ γ̃
(γ′v)v∈V ←[γ′

where γ̃ :=

{
γv if v ∈ V

(γu)u∈Vmin if v = r
is an isomor-

phism.

• For v ∈ V +, i+v denotes the inclusion A+
v ⊆

⊕
u∈V + A+

u . Since for v ∈ Vmax, the
projection

⊕
u∈V + A+

u → A+
v induces an isomorphism IA+

•
((v, r)) = Im(i+v − i+r ◦

ιv) ∼= A+
v , the following sum is direct:⊕

v∈Vmax

IA+
•

((v, r)).

21

Moreover, since A+
r ∩

∑
e∈E IA+

•
(e) = {0},(∑

e∈E

IA+
•

(e)

)
∩
⊕

v∈Vmax

IA+
•

((v, r)) = {0}.

Hence, using corollary A.1,

dim ∆(Q+,A+
•) = dim ∆(Q,A•) + dim A+

r −
∑

v∈Vmax

dim Im(i+v − i+r ◦ ιv)

= dim ∆(Q,A•) +
∑

v∈Vmax

dim Av −
∑

v∈Vmax

dim Av

= dim ∆(Q,A•).

Finally, the inclusion
⊕

v∈V Av →
⊕

v∈V + A+
v induces a surjective linear map

∆(Q,A•)→ ∆(Q+,A+
•) which is also an isomorphism because of the dimensions.

Hence we can replace Q by Q− to compute sections and by Q+ to compute cosections.

2.4.2 Out-tree replacement

The goal of this paragraph is to compute Γ(Q−,A−•).

Definition 2.14 For v ∈ V −, we define inductively the flow space Φv ⊂ A−r and the
flow map φ : Φv → A−v :

• Φr := A−r and φr = idA−r

• Let v 6= r such that (Φu, φu) is already defined for all u < v. In particular, it is
defined for the sources of all edges in E−in(v) := {e ∈ E− | t(e) = v}. Then:

Φv := Eq
{(

A−e ◦ φs(e)
)
|Φ′v
| e ∈ E−in(v)

}
and φv =

(
A−e ◦ φs(e)

)
|Φv

for any e ∈ E−in(v), where Eq is the equalizer and

Φ′v :=
⋂

e∈E−in(v)

Φs(e).

By construction, the assignement

{
(V −,6) → (A−r ,⊆)

v 7→ Φv
is decreasing. For v ∈ V −,

let Q−6v = (V −6v, E
−
6v) be the subquiver of Q− induced by V −6v := {u ∈ V − | u 6 v}.

Proposition 2.15 For v ∈ V and p ∈ P(Q−, r, v), we have φv =
(
A−p
)
|Φv

.

Proof. By induction on (V,<) we have:

22

• For v ∈ Vmin, P(Q−, r, v) = {(r, v)}, so φv = (A(r,v) ◦ φr)|Φv = (A(r,v))Φv .

• For v ∈ V \ Vmin, any path from r to v is of the form p, e with p ∈ P(Q−, r, s(e))
and e ∈ E−in(v). Then by induction and since v 7→ Φv is decreasing:

φv = (Ae ◦ φs(e))|Φv = (Ae ◦ (Ap)|Φs(e))|Φv = (Ap,e)|Φv

Proposition 2.16 Let v ∈ V , one has Φv =
⋂
u6v Eq

{
A−p | p ∈ P(Q−, r, u)

}
.

Proof. ⊆ Let v ∈ V , by proposition 2.15: Φv ⊆ Eq
{
A−p | p ∈ P(Q−, r, v)

}
and

since u 7→ Φu is decreasing,

Φv ⊆
⋂
u6v

Φu ⊆
⋂
u6v

Eq
{
A−p | p ∈ P(Q−, r, u)

}
.

⊇ If v ∈ Vmin, Φv = Eq{A(r,v)} =
⋂
u6v Eq

{
A−p | p ∈ P(Q−, r, v)

}
. Let v ∈ V

such that proposition 2.16 holds for u ∈ V −6v, then by induction:⋂
u6v

Eq
{
A−p | p ∈ P(Q−, r, u)

}
⊆

⋂
e∈E−in(v)

⋂
u6s(e)

Eq
{
A−p | p ∈ P(Q−, r, u)

}
⊆

⋂
e∈E−in(v)

Φs(e) = Φ′v

Then using proposition 2.15,⋂
u6v

Eq
{
A−p | p ∈ P(Q−, r, u)

}
⊆ Eq{(A−e,p)|Φ′v | e ∈ E

−
in(v), p ∈ P(r, s(e))} = Φv.

Proposition 2.17 Let γ ∈
∏

v∈V − A−v , one has for v ∈ V :

(γu)u6v ∈ Γ(Q−6v,A
−
•)⇐⇒ γr ∈ Φv and ∀u 6 v, γu = φu(γr)

Proof. Let v ∈ V ,
=⇒ By compatibility, for u ∈ V −6v and p ∈ P(r, u), Ap(γr) = γu is independent of p:

γr ∈
⋂
u6v

Eq
{
A−p | p ∈ P(Q−, r, u)

}
=
2.16

Φv and ∀u ∈ V −6v, γu =
2.15

φu(γr).

⇐= For e ∈ E−6v there exits p ∈ P(Q−, r, s(e)). By proposition 2.15:

Ae(γs(e)) = Ae ◦ φs(e)(γr) = Ae,p(γr) = φt(e)(γr) = γt(e).

23

Let T− be any spanning tree of Q− and A′ − the representation of T− defined by:

A′ −v =

{
Av if v 6= r⋂

v∈Vmax Φv if v = r
and A′ −e =

{
Ae if s(e) 6= r

(Ae)|A′ −r if s(e) = r

Proposition 2.18

(T−,A′ −•)
Γ
/ (Q−,A−•)

Proof. Let γ ∈
∏

v∈V A−v , we have:

γ ∈ Γ(Q−,A−•)⇐⇒ ∀v ∈ V, (γu)u6v ∈ Γ(Q−6v,A
−
•)

⇐⇒ ∀v ∈ V,
{
γr ∈ Φv

∀u 6 v, γu = φu(γr)

⇐⇒
{
γr ∈

⋂
v∈Vmax Φv

∀v ∈ V, γv = φv(γr)

Hence the map x ∈
⋂
v∈Vmax Φv 7→ (φv(x))v∈V − ∈

∏
V − Av restricts to an isomorphism⋂

v∈Vmax Φv
∼= Γ(Q−,A−•). But by proposition 2.1, the same map is also an isomorphism⋂

v∈Vmax Φv
∼= Γ(T−,A′−). Thus, (T−,A′ −•)

Γ
/ (Q−,A−•).

2.4.3 In-tree replacement

The goal is to compute ∆(Q+,A+). Like for out-trees, we introduce for v ∈ V :

• Q>v = (V +
>v, E

+
>v) the subquiver of Q+ induced by {u ∈ V + | u > v}

• E+
out(v) := {e ∈ E+ | s(e) = v} and we choose ev ∈ E+

out(v).

The sequence

{
u0 = v
un+1 = t(eun)

is increasing in (V +,6) and stops when un = r. Since

Q+ is acyclic, it happens in finite time. Hence, we obtain a path q[v] ∈ P(Q+
>v, v, r). Its

representation Aq[v] can easily been computed inductively.

Definition 2.15 We define the co-flow space, Ψv = A+
r

/
Bv where Bv ⊆ A+

r is built
inductively on (V +,>):

• Br := 0

• assume Bu is defined for u > v, then let B′v :=
∑

e∈E+
out(v)

Bt(e) and

Bv := B′v +
∑

(e,e′)∈E+
out(v)2

Im
(
Aq[t(e)] ◦Ae −Aq[t(e′)] ◦Ae′

)
.

24

From the definition, it is clear that

{
(V +,>) → (subspaces of A+

r ,⊆)
v 7→ Bv

is increasing

and thus v 7→ dim Ψv is decreasing. The next proposition shows that for v ∈ V , [A+
q[v]]Ψv ,

the class of A+
q[v] in Ψv plays the role of φv in paragraph 2.4.2.

Proposition 2.19 Let v ∈ V , then for all p ∈ P(Q+, v, r), one has [A+
p]Ψv = [A+

q[v]]Ψv .

Proof. For v = r, P(Q+, r, r) = ∅. Let v ∈ V such that the property holds for all
u > v. Let p ∈ P(Q+, v, r), p can be decomposed into p = e, p0 where e ∈ E+

out(v)
and p0 ∈ P(Q+, t(e), r). We need to prove that Im(A+

p − A+
q[v]) ⊆ Bv. By induction,

Im(A+
p0
−A+

q[t(e)]) ⊆ Bt(e) and

Im
(
A+
p −A+

q[v]

)
= Im

(
A+
p0
◦A+

e −A+
q[t(ev)] ◦A+

ev

)
⊆ Im

(
(A+

p0
−A+

q[t(e)]) ◦A+
e

)
+ Im(A+

q[t(e)] ◦A+
e −A+

q[t(ev)] ◦A+
ev)

⊆ Bt(e) +Bv = Bv

Proposition 2.20 For v ∈ V ,

Bv =
∑
u>v

∑
P(u,r)2

Im(A+
p −A+

p′)

where the second sum is over (p, p′) ∈ P(Q+, u, r)2.

Proof. The result is proved by induction.

• For v = r, Br = 0 and the second sum is empty.

• if the equality is valid for u > v, since u 7→ Bu is increasing:∑
u>v

∑
P(u,r)2

Im(A+
p −A+

p′) =
∑
u>v

Bu︸ ︷︷ ︸
=B′v

+
∑

p,p′∈P(v,r)

Im(A+
p −A+

p′)

The result to prove becomes:

B′v +
∑

e,e′∈E+
out(v)

Im(A+
q[t(e)] ◦A+

e −A+
q[t(e′)] ◦A+

e′)︸ ︷︷ ︸
Ψv

= B′v +
∑

p,p′∈P(v,r)

Im(A+
p −A+

p′).

25

⊆ Let e, e′ ∈ E+
out(v), since e, q[t(e)] and e′, q[t(e′)] are paths of P(Q+, v, r),

Im(A+
q[t(e)] ◦A+

e −A+
q[t(e′)] ◦A+

e′) = Im(A+
e,q[t(e)]−A+

e′,q[t(e′)]) ⊆
∑
P(v,r)2

Im(A+
p −A+

p′).

⊇ Let (p, p′) ∈ P(Q+, v, r)2, by proposition 2.19, [A+
p]Ψv = [A+

q[v]]Ψv = [A+
p′]Ψv ,

so Im(A+
p −A+

p′) ⊆ Ψv.

Lemma 2.3 Let v ∈ V , one has∑
e∈E+

>v

IA+
•

(e) =
∑
u>v

IA+
•

(eu) + i+r (Bv).

Proof.
⊆ Let e ∈ E+

>v,

i+s(e) − i
+
t(e) ◦A+

e =
(
i+s(e) − i

+
r ◦A+

q[s(e)]

)
−
(
i+t(e) − i

+
r ◦A+

q[t(e)]

)
◦A+

e

+ i+r ◦
(
A+
q[s(e)] −A+

q[t(e)] ◦A+
e

)
r

s(e) t(e)

q[s(e)]

e

q[t(e)]

So,

IA+
•

(e) ⊆ IA+
•

(q[s(e)]) + IA+
•

(q[t(e)]) + i+r

(
Im(A+

q[s(e)] −A+
e,q[t(e)])

)
.

By lemma 2.1, for u′ 6 v, IA+
•

(q[u′]) ⊆
∑

u6v IA+
•

(eu). Moreover, by proposition 2.20,

Im(A+
q[s(e)] −A+

e,q[t(e)]) ⊆ Bv. Hence, IA+
•

(e) =
∑

u>v IA+
•

(eu) + i+r (Bv).

⊇ Using prop. 2.20, we only need to prove that for u ∈ V +
>v and p, p′ ∈ P(Q+, u, r),

Im
(
i+r ◦A+

p − i+r ◦A+
p′

)
⊆
∑
e∈E+

>v

IA+
•

(e).

For such u, p, p′, one has

Im
(
i+r ◦A+

p − i+r ◦A+
p′

)
= Im

((
i+u − i+r ◦A+

p′

)
−
(
i+u − i+r ◦A+

p

))
⊆ IA+

•
(p) + IA+

•
(p′)

But lemma 2.1 implies that IA+
•

(p) and IA+
•

(p′) are included in
∑

E+
>v
IA+
•

(e). Finally,

i+r (Bv) =
∑

u,p,p′ i
+
r

(
Im(A+

p −A+
p′)
)
⊆
∑

E+
>v
IA+
•

(e).

26

Lemma 2.4 Let W ⊆ V . The following sum is direct:(⊕
u∈W

IA+
•

(eu)

)⊕
i+r (A+

r).

Proof. We prove the result by induction on card(W).

• For W = {v}, if v /∈ Vmax, then it is obvious. Else if v ∈ Vmax, let y ∈ A+
v such

that i+v (y)− i+r ◦A+
ev(y) ∈ Im(i+r). We have i+v (y) = 0 so i+v (y)− i+r (A+

ev)(y) = 0
and IA+

•
(ev) ∩ Im(i+r) = {0}.

• Let W ⊆ V such that the result holds for any W ′ with cardW ′ < cardW . Assume

0 =
∑
r>u>v

(i+u − it(eu) ◦Aeu)(xu) + i+r (xr)

where xu ∈ Au for u ∈ W and xr ∈ A+
v . Let v ∈ minW , then u is not the

target of any of the (eu)u∈W . Hence, the projection on A+
v gives i+v (xv) = 0 and

xv = 0. Applying the induction hypothesis with W \ {v}, we obtain that for all
u ∈ W ∪ {r}, xu = 0 i.e. the sum is direct.

Proposition 2.21 For v ∈ V , the map Ψ

{ ⊕
u>v A+

u → A+
r

(xu)u>v 7→
∑

u>v A+
q[u](xu)

(where A+
q[r] := idA+

r
) induces an isomorphism ∆(Q>v,A

+
•) ∼= Ψv.

Proof. By using lemma 2.3,

∆(Q>v,A
+
•) =

⊕
u>v

A+
u

/ ∑
e∈E+

>v

IA+
•

(e) =

⊕
u>v

A+
u

/∑
u>v

IA+
•

(eu) + i+r (Bv)

By lemma 2.4 applied to V>v, the following sum is direct:(⊕
u>v

IA+
•

(eu)

)⊕
i+r (Bv).

Hence,

dim ∆(Q>v,A
+
•) =

∑
r>u>v

(dim A+
u − dim IA+

•
(eu)) + dim A+

r − dimBv = dim A+
r

/
Bv

Finally, ∆(Q>v,A
+
•) ∼= Ψv.

27

Ψ is well defined from ∆(Q>v,A
+
•) to Ψv since Ψ(i+r (Bv)) = Bv and for r > u > v

and x ∈ A+
u , Ψ(i+u (x) − it(eu) ◦ A+

eu(x)) = Aq[u](x) − Aeu,q[t(eu)](x) ∈ Bv. More-
over, Ψ is injective. By the equality of dimensions, Ψ induces the desired ismorphism
∆(Q>v,A

+
•) ∼= Ψv.

Let T+ be a spanning tree of Q+ and A′+ the representation of T+ defined by

A′+v =

{
Av if v 6= r

A+
r

/ ∑
v∈Vmin Bv if v = r

and A′+e =

{
Ae if t(e) 6= r

[Ae]∑Vmin
Bv if t(e) = r

.

Proposition 2.22

(T+,A′+•)
∆
/ (Q+,A+

•).

Proof. Let Ψ

{ ⊕
u∈V + A+

u → A+
r

(xu)u∈V + 7→
∑

u∈V + A+
q[u](xu)

. For the same reason as in the

proof of proposition 2.21, Ψ is well defined from ∆(Q,A+
•) to A+

r

/ ∑
v∈Vmin Bv and

is injective. Moreover, for y ∈ A+
r and v ∈ Vmin, by the isomorphism of proposition

2.21, there is x ∈
⊕

V + A+
u with Ψ(x) ∈ y + Bv ⊆ y +

∑
v∈Vmin Bv. Hence Ψ in-

duces an isomorphism ∆(Q+,A+
•) ∼= A+

r

/ ∑
v∈Vmin Bv and since for x ∈

⊕
u∈V + A+

u

[(Ψ(x), 0, . . . , 0)]∆(Q+,A+
•) = [x]∆(Q+,A+

•) , the inverse of this isomorphism is induced by
i+r .

By the proof of proposition 2.2 applied to (T+,A′+•), Ψ also induces an isomor-
phism ∆(T+,A′+•) ∼= A+

r

/ ∑
v∈Vmin Bv, which inverse is induced by the inclusion of

A+
r

/ ∑
v∈Vmin Bv in

⊕
u A′+u . Hence

{
∆(Q+,A+

•) → ∆(T+,A+
•)

[x]∆(Q+,A+
•) 7→ [(Ψ(x), 0, . . . , 0)]∆(T+,A+

•)
in-

duces an isomorphism ∆(Q>v,A
+
•) ∼= ∆(T+,A′+•). But for x ∈

⊕
V + A+

u and denoting
q′[u] the path from u to r in T+:

[(Ψ(x), 0, . . . , 0)]∆(T+,A′+•) = [(xr +
∑
u6=r

A′+q[u](xu), 0, . . . , 0)]∆(T+,A′+•) by definition

= [(xr +
∑
u6=r

A′+q′[u](xu), 0, . . . , 0)]∆(T+,A′+•) by prop 2.19

= [(xr, (xu)u6=r)]∆(T+,A+
•) since IA′+• (q′) = 0 in ∆(T+,A′+•)

Finally, (T+,A′+•)
∆
/ (Q+,A+

•).

2.5 Connected components

A simpler trick to improve efficiency of (co)sections computations is to process sepa-
rately each connected component. This technique is independent, but not incompatible,
with the method described above. It is not part of [SHN21], and is my own idea because
I thought that isolated vertices may sometimes arise in real applications.

28

Let Q = (V,E) be a quiver with a representation A•. Assume that V can be parti-
tioned into two subsets V1 t V2 = V without any edge between the two: there are two
subquivers Q1 = (V1, E1) and Q2 = (V2, E2) such that E = E1 t E2. Let A1

• and A2
• be

the associated restrictions of A• to Q1 and Q2.

Proposition 2.23
Γ(Q,A•) = Γ(Q1,A

1
•)× Γ(Q2,A

2
•)

Proof. For v ∈ V , we denote the projections πv :
∏

u∈V Au → Av and for i ∈ {1, 2}
such that v ∈ Vi, πiv :

∏
u∈Vi Au → Av.

Γ(Q,A•) =
{

(u1, u2) ∈
(∏
V1

Av

)
×
(∏
V2

Av

) ∣∣ ∀e ∈ E1 t E2, πt(e)((u1, u2)) =

Ae ◦ πs(e)((u1, u2))
}

=
{

(u1, u2) ∈
(∏
V1

Av

)
×
(∏
V2

Av

) ∣∣∣ ∀e ∈ E1, π1
t(e)(u1) = Ae ◦ π1

s(e)(u1)

∀e ∈ E2, π2
t(e)(u2) = Ae ◦ π2

s(e)(u2)

}
= Γ(Q1,A

1
•)× Γ(Q2,A

2
•)

More precisely Γ(Q,A•) = Γ(Q1,A
1
•)×Γ(Q2,A

2
•) is induced by the isomorphism

(∏
V1

Av

)
×(∏

V2
Av

) ∼= ∏V Av.

Proposition 2.24
∆(Q,A•) = ∆(Q1,A

1
•)⊕∆(Q2,A

2
•)

Proof.

∆(Q,A•) =
(⊕

V1

Av

)
⊕
(⊕

V2

Av

)/(⊕
E1

IA•(e)
)
⊕
(⊕

E2

IA•(e)
)

=

⊕
V1

Av
/⊕

E1

IA•(e)⊕
⊕
V2

Av
/⊕

E2

IA•(e)

= ∆(Q1,A
1
•)⊕∆(Q2,A

2
•)

More precisely ∆(Q,A•) = ∆(Q1,A
1
•) ⊕ ∆(Q2,A

2
•) is induced by the isomorphism(⊕

V1
Av

)
⊕
(⊕

V2
Av

) ∼= ⊕V Av.

2.6 Generalisation to other categories

In remark 1.1, a quiver with a representation is seen as a finite diagram in the category
VectFin−dim(F) of finite dimensional vector spaces over a field F. Annex A.2 defines the
notion of finite diagram in a general category. The method described in this section to

29

compute (co)limits for quivers with a representation could be extended to diagrams in
other categories. As an example, we give here a generalised proof of the computation of
limits in out-trees and strongly-connected quivers.

Let C be a category with all products and equalizers. By proposition A.2, finite limits
exist in this category. We use the notations of annex A.2, for instance denoting×
the pullback. Let D : J → C be a finite diagram in C. We name the objects of J ,
ob J = {A1, A2, . . . , An}. [SHN21] suggested but did not prove that a generalisation of
the method was possible. The following propositions and proofs are my own.

Proposition 2.25 Assume D to be an out-tree i.e. card homJ (Ai, Aj) = 1i6j for
1 6 i, j 6 n. Then denoting Aij the unique map of homJ (Ai, Aj), we have that
(D(A1), D(A1v)v) is a limit of D.

Proof.
First, it is a cone of D since for 1 6 i < j 6 n, Aij ◦
A1i = A1j by uniqueness of A1j. Then if (C, (φv)v is
another cone of D, and α : C → D(A1),

∀v, φv = A1v ◦ α⇐⇒ α = φ1

So (D(A1), D(A1v)v) is a limit of D.

C

A1

A2 A3

φ1

φ3φ2

A13A12

Proposition 2.26 Assume D to be a strongly connected diagram (for 1 6 i, j 6 n,
card(homJ (Ai, Aj)) > 0). Let Q• be an ear decomposition of the associated quiver
Q with root r. By removing all the maps of J corresponding to terminal edges of
Q•, we obtain an out-tree diagram D′ : J ′ → C. We denote Ai,j the unique map of
homJ ′(Ai, Aj). Let

L = ×
D(Ar)

(
Eq
(
D(A1,t(ε)), D(As(ε),t(ε)) ◦D(A1,s(ε))

))
ε∈Eter(Q)

and let φ : L → D(Ar) be the map defined by the pullbacks. Together with the maps
(D(A1,v) ◦ φ)v, L is a limit of D.

Proof. For ε ∈ Eter(Q) we denote Bε := Eq
(
A1,t(ε), As(ε),t(ε) ◦ A1,s(ε)

)
and eqε the map

Bε → Ar defined by the equalizer. We also enumerate Eter(Q) = {ε1, . . . , εm}.

Bε2 A2

L A1 = Ar

Bε1 A3

eqε2

ε1
φ

eqε1
ε2

30

Let’s prove that L is a cone ofD. By definition of the maps, it is already a cone ofD′. Let
ε ∈ Eter(Q), we only need to check that, φ◦A1,t(ε) = φ◦As(ε),t(ε)◦A1,s(ε). But for some map
f we have, φ = f ◦eqε. By definition of the equalizer eqε ◦A1,t(ε) = eqε ◦As(ε),t(ε) ◦A1,s(ε),
which concludes that L is a cone of D.

Let (C, (ψv)v) be another cone of D. By universal property of equalizers, for all

1 6 i 6 m, there is a unique C
αi→ Bεi such that eqεi ◦ αi = ψr.

Assume that the following diagram (except the
dashed arrow) is commutative. Then by property
of pullbacks there is a unique βi : C →×Ar

(Bj)j6i
which makes the whole diagram commutative.
Hence, by induction on 1 6 i 6 m, there is a map
βi : C →×Ar

(Bj)j6i such that φi ◦ βi = ψr thus βm
verifies A1,v ◦ φ ◦ βm = ψv for all v ∈ {1, . . . , n}.

C

×Ar
(Bj)j6i Bi

×Ar
(Bj)j<i Ar

αi

βi−1

βi

eqεi

φi−1

Uniqueness is proved similarly, using at each step of the induction the uniqueness of αi
and then of βi.

3 Implementation of the method

3.1 Scope and description

One of our main contributions is the implementation in Python of an algorithm to
compute finite (co)limits in the category of finite-dimensional vector spaces. Given a
quiver Q and a representation A• of Q, the limit is computed following the method
described in section 2 and article [SHN21]. As for the colimit, we use the algorithm for
limits on the transpose quiver and representation, as suggested by proposition 1.4.

The obtained algorithms work on any field. Classical fields (R, C, Q, F2) are predefined
but custom fields may be added by creating an object ”element of the field” and overriding
the operators +,−,−(unitary),×, /,=. In the case of the fields R or C, the most time-
consuming computations are replaced with faster functions exploiting the properties of R
and C and the compatibility with the module numpy, partly written in C.

Naive implementations using directly formulas from proposition 1.1 and definition 1.7
are also available. They are used as a benchmark in the performance analyses of next
subsection and as an empirical verification of the correctness of our algorithms.

In comparison with the description from [SHN21], our algorithm computes separately
a limit for each connected component before using the results from subsection 2.5. This
idea, although quite simple, brings important gains in time for quivers with few edges.

The theoretical description of section 2 is quite precise. In addition to the implementa-
tion of the basic matrix operations, only the computation of the constrained representation
spaces in the acyclic reduction step (definition 2.11) needs to be detailed.

These constrained representation spaces, A∗v, are computed as backwards breadth-
first searches starting from the roots of each strongly connected component. Keeping
the notations from definition 2.11, when edge e = (u, v) is explored for the ith strongly
connected component Ri, the representation space of v has already been replaced by⋂
j6i Λv,Rj . The representation space of u is then intersected with A−1

e

(⋂
j6i Λv,Rj

)
.

31

The main basic operations in this algorithm are intersections of linear subspaces and
kernels of linear maps. The latter is computed either with a singular value decomposition
if the field is R or C as in proposition A.5 or by Gaussian elimination of the augmented
matrix as in proposition A.6. The intersection of two subspaces spanned by U and V is

computed as

{
Uu

∣∣ (u
v

)
∈ ker (U | − V)

}
. Inverse images are always solved with

a Gaussian elimination. In the case of R or C, entries very close to 0 are regularly flattened
to 0 to improve stability and display. The threshold to flatten to 0 is ε = 10−12. This
parameter is important for the correctness of the algorithm: if ε > 10−10, the probability
to have a matrix entry in [−ε, ε] is no more negligible, since the number of matrix entries
computed in an hour is ∼ 1010. Similarly, if ε < 10−15, numerical errors do occur.

The output of the limit algorithm is:

• the dimension of the limit together with

• the matrices of the maps lim→ Av for v ∈ V .

Since the limit is only defined up to isomorphism, the maps are dependent on a choice
of isomorphism from the algorithm. In option, this choice can be made so that the map
to the largest representation space has a matrix in echelon form with only unit pivots.
Different testing functions are provided including quivers from example 1.2 in the different
predefined fields

3.2 Performance analysis

The naive approach implementing the formula from proposition 1.1 uses cubic operations
like intersections in the total space which has very high dimension. We will see that the
approach described in section 2 will reduce the size of the space in which computations
are made, and thus enhance considerably the performances.

To simplify the analysis, we assume that all representation spaces have the same
dimension k. If it is not the case, one can use k = maxV dim Av and obtain upper
bounds for the time complexities. We denote n = |V | and m = |E|. The basic functions
(intersection, kernel, inverse image) which are done through Gaussian pivot or SVD are
cubic in the dimensions of the matrix and so are matrix multiplications. Those dimensions
are often large as we are dealing with subspaces of the total space. Other operations
including the graph searches and matrix constructions will be in practice negligible. As
complexities are the same for sections and cosections, we only consider sections. We
call naive approach the use of formula 1.1 and we speak of advanced approach for the
implementation of the method described in [SHN21] and section 2.

3.2.1 Theoretical time complexities

Rough worst-case complexity bounds for the naive and advanced approaches can be found
easily, but we will see later that our algorithms are in practice much faster than the
described bounds.

Naive approach The complexity of the naive approach using proposition 1.1 is O(m(kn)3) .

Indeed for e ∈ E, ker(πt(e) −Ae ◦ πs(e)) is a subspace of the total space of dimension kn.
It might be represented by a matrix as big as kn× kn .

32

Assume that there are NCC = o(min(m,n)) connected components of the same size
in the quiver Q. The complexity of the naive approach with separate computations for

each connected component becomes O
(
m
(

kn
NCC

)3
)

. In reality, this gain is only important

when there are few edges, as otherwise NCC is often close to 1.

Strongly connected quiver We consider the complexity of the strongly connected
step (subsection 2.2) for a strong quiver of size n,m. There are three phases for this step:

• Finding the ear decomposition which takes O(mn)

• Building the paths in the tree: |E| − |Eter| multiplications i.e. O((|E| − |Eter|)k3)

• Computing K with |Eter| intersections in Ar: O(|Eter|k3)

Which gives a total of O (m(n+ k3)). However, we expect the constant for the graph
search in O(mn) to be small.

Acyclic reduction The step described in subsection 2.3 is realized through a breadth-
first search for each strongly connected component. If we denote NSCC the number of
strongly connected components, the cost of computing A∗• from the sections of each of
the strongly connected components is O(NSCC ×mk3).

Arboreal reduction Applying the method of subsection 2.4 to an acyclic quiver of
size n,m gives a time complexity O ((m+ [Vmax|)(k|Vmin|)3). Indeed, in 2.17, each edge
is associated with a finite number of cubic operations (1 binary equalizer, 1 intersec-
tion, 1 matrix multiplication) in the space A−r of dimension k|Vmin|. Moreover, the final
computations of proposition 2.18 are |Vmax| intersections in the same space.

Before looking at the finished algorithm, the first and last steps can already compute
limits in the case of respectively strongly connected and acyclic quivers. The time com-
plexity of applying these parts of our algorithm directly to the corresponding special cases
is compared to the naive approach in following table.

Acyclic quiver Strongly Connected Naive

cubic operations |E|+ |Vmax| |E| |E|
Computation space A−r :=

∏
v∈Vmin Av Ar

∏
v∈V Av

Time complexity (|E|+ |Vmax|)k3|Vmin|3 |E|k3 +mn |E|k3|V |3

Advanced approach By summing the complexity of each step, we obtain a total com-
plexity of:

O
(
mn+ (m+ |Vmax|)(NSCC + |Vmin|3)k3

)
(2)

Let’s look in more details at each of the terms of equation (2):

• The term mn, which comes from the strongly connected step is rough upper bound

of O
(∑

R∈MSC(Q) mRnR

)
where mR and nR are the number of edges and vertices

of R. For instance if all strongly connected components are of the same size, the

complexity of the graph search is O
(

mn
NSCC

)
. Moreover, since the graph search is

made of simpler computations, we expect the constant to be small in practice.

33

• The term (m + |Vmax|)NSCCk
3 is also at most quadratic in the size of the quiver.

Furthermore, NSCC is sub-linear in n and m in most examples of families of quivers.

• The term from the arboreal reduction m|Vmin|3k3 is the only one which is not
quadratic in the size of the quiver. Compared to the naive approach complex-
ity, we have replaced a factor |V |3 by |Vmin|3. When the are very few edges we have
|Vmin| ≈ |V | and, on the contrary, we expect to obtain |Vmin| << |V | when m� n.
For instance let’s take a quiver generated through the Erdős–Rényi directed model
(see A.4) with probability p = a

n
. Then the probability of a vertex u to be minimal

is (1 − p)n−1 ≈ e−a and the expected size of |Vmin| is ne−a, asymptotically. This
means that when we increase linearly m, the number of minimal edges decreases
exponentially. In this model, when m� n, the gains of our algorithm compared to
the naive approach will be significant.

In summary, our theoretical upper bound suggests that our algorithm will have a
complexity better than a polynomial of degree 4 in the size of the quiver when m� n and
better than quadratic when m � n. Unlike the naive approach, the advanced approach
seems to be slower when there are only a few edges.

Computing separately each connected component could help overcome this flaw. In
the case where m � n, we have NCC ≈ n, |Vmin| ≈ |V | and the term m(|Vmink)3 is
dominant. In this case the gain could be as much as 1

n3 .

3.2.2 Empirical time complexities

The empirical time complexity is tested on families of random quivers indexed by the
number of vertices or of edges. More precisely, on all the following graphs, for each set of
parameters (n or m, k, method to generate Q and A•), ntest = 15 quivers are generated
and the time is averaged on these ntest quivers.

Generation of quivers and representations In order to generate random quivers,
we will use the directed Erdős–Rényi model (see A.4 as it is one of the simplest and
most intuitive. However, to test particular steps of the algorithm, we need graphs with
specific properties, namely being strongly connected or acyclic. Since the models are not
as intuitive as for general quivers, we provide two different models for each step. All
graphs in this essay will be generated with the first models and the second ones will only
be used as a verification.

• For acyclic quivers, in the first model, we choose m edges directed in increasing
order uniformly at random with repetitions. In the second model, for each of the m
edges, we choose uniformly at random the source in {1, . . . , n} and then the target
is chosen uniformly in {source, . . . , n}.

• For strongly connected quivers, in the first model we gen-
erate a graph with Erdős–Rényi model. Then we select a
vertex in each strongly connected component and we add
an edge between every couple of selected vertices. In the al-
ternative model, we first create a cycle 1, . . . , n, we then add
m − n + 1 random edges uniformly at random and finally,
we shuffle the vertex order.

5 3

4

1 2 6

5 3

4

1 2

34

In the performance tests, representation spaces are all real vector spaces of the same
dimension k, with most of the time k = 5. The maps are generated by perturbing the
identity matrix independently for each map. More precisely, a representation map is
obtained from the identity by adding 1 at each cell independently with probability η > 0.
η needs to be adjusted carefully. Indeed, if η is too large the limit will nearly always be
0 and if η is too small the limit will most of time be

∏
Vmin

Av. The value η = 1
km

works
well empirically.

Empirical results To evaluate our algorithm, we perform empirical analyses of com-
putation time for both the naive approach and the advanced approach. We want to know
how our algorithm performs for different sizes of quivers (n) and different density (m).
The two first experiments show the time analysis when n varies and m is either linear
in n for figure 1 or superlinear in n for figure 3. The last one, in figure 4, explores the
dependence on m with n fixed.

(a) Advanced vs naive approaches (b) Advanced vs naive in log-scale

(c) Arboreal step (d) Strongly connected step

Figure 1: Comparison with the naive approach of the general advanced algorithm (1a)
and (1b) and of special cases of the advanced algorithm for acyclic (1c) and strongly
connected (1d) quivers for a linear number of edges m = 2n.

Figure 1 is generated with the parameters described above and a linear number of
edges (m ≈ 2n or p = 2

n
). Although the model of random quivers is different between

(1a), (1c) and (1d), we observe that the arboreal step (subsection 2.4) seems to take as
much time as the whole algorithm. This is what we expected for a low number of edges.

35

The log-log graph of performances (1b) displays an asymptotic performance gain for the
advanced algorithm even with only m = 2n edges. Using the least square method in the
log-log graph, we obtain an empirical exponent of n in the time complexity of only n1.8

and n2.6 for, respectively, the advanced and naive approaches.

The empirical complexities are much faster than our
theoretical worst-case bounds which is O(n4) for both
approaches when m = 2n. One explanation could be
that the intersections to compute are most of time
between very simple subspaces: either both spaces to
intersect are the same or the bases are block matrices
with all blocks being idk or 0k×k. That’s why in figure
2, the dimension of the limit goes down nearly always
by either 0 or k = 5 when a new edge is added to the
quiver.

Figure 2: Dimension of the limit
for the subquiver with only the
m′ 6 m first edges of a quiver
with m = 2n = 100 edges

Figure 3 is generated with the same parameters as figure 1 except for the number
of edges m ≈ 2n1.2 (or p = 2

n0.8). In this situation our algorithm allows to compute in
reasonable time quivers nearly 10 times bigger than the naive approach (3a). Comparing
with figure 1, the time complexity of the naive approach increased with the number of
edges and the exponent in 1b and 3b hints that the increase is linear in m. On the
contrary, the advanced algorithm is much faster with denser quivers as the decrease of the
dimension of the space of computations, |Vmin|k, allows important speed gains. We also
observe that general quivers are easier to compute than random acyclic quivers. This is
due to the fact that a quiver with a huge strongly connected component will nearly be
an out-tree at the end of the acyclic reduction and thus have much less than m = n1.2

edges. Indeed, proposition A.7 shows that our quivers are strongly connected with very
high probability when m ≈ n1.2(or p = 2

n0.8) but not when m = 2n (or p = 2
n
).

36

(a) Advanced vs naive approaches (b) Advanced vs naive in log-scale

(c) Arboreal step (d) Strongly connected step

Figure 3: Comparison with the naive approach of the general advanced algorithm (1a)
and (1b) and of special cases of the advanced algorithm for acyclic (1c) and strongly
connected (1d) quivers for a superlinear number of edges m = 2n1.2.

(a) (b)

Figure 4: Comparison between the naive and advanced approaches with or without com-
puting separately each connected components, for n = 25 and m varying.

Figure 4 shows the impact of changing the number of edges on the computation time
for a quiver with n = 25 and k = 5. We observe in figure (4a), that the advanced approach

37

without computing separately each connected component (green) is worse than the naive
approach for m � n. However, the advanced approach with separate computations for
each component is always better than the naive approach. In figure (4b), one can see that
while increasing m makes the naive approach slower almost linearly, it has no significant
effect on the advanced approach. More precisely, increasing m makes computations easier
when m ≈ n as it reduces |Vmin|. On the contrary, when m� n, |Vmin| is already close to
1 and increasing m increases the complexity as there are more intersections to compute
but the overall time remains small since the computation space is often of dimension only
k.

As explained above, the implementation
of the most costly operations are optimised
for computations in the field R. We see
in figure 5 that computations take much
longer in F2 both for the naive approach
(green vs blue curbs) and the advanced ap-
proach (red vs orange). A log-log analysis
shows that the exponent of n in the ad-
vanced approach does not increase signifi-
cantly in F2 compared to R, which suggest
that a large part of the difference could be
due to the use of faster C-based numpy. Figure 5: performances in F2 vs R

Conclusion

Summary The point of view of quivers and representations, helped devise a new method
to compute finite (co)limits in the category of finite-dimensional vector spaces. The
strategy of this advanced approach, described in [SHN21], is to remove cycles and parallel
paths to obtain out(in)-trees, which (co)limits are easy to compute. (Co)limits can also
be computed directly, but it involves operations on very large matrices. The advanced
approach, which uses smaller matrices, is thus necessary to compute limits of large quivers.
My main contribution has been to implement this algorithm. It is in practice much
more efficient than the direct computation, especially when the quiver is dense: for real
representations, one can compute limits of (not too sparse) quivers with hundreds of
vertices.

Outlook This dissertation could be continued in several directions:

• The propositions of section 2 could probably be generalised to any (co)complete
category. The general proofs for the simplest propositions are already given in
subsection 2.6. One could write and try to prove a generalised version of the entire
method.

• The scope of the algorithm could also be extended to other category. We do not ex-
pect our algorithm to be easily adaptable to any (co)complete categories. However,
it would be interesting to make our algorithm work for modules over a ring and not
only for fields.

• One could find a practical example, maybe with cellular sheaves, where our algo-
rithm is useful.

38

A Annexes

A.1 Quotients of finite-dimensional vector spaces

Cosections involve many quotient computations for finite-dimensional vector spaces.
We will recall here some basic properties of these quotients.

Definition A.1 Let W ⊂ V ∈ VectFin−Dim, we define V
/
W := {v + W | v ∈ V } and

we equip it with the induced finite-dimensional vector space structure.

A useful trick to compute quotients in VectFin−Dim is that we only need to look at the
dimensions:

Proposition A.1 Let W ⊂ V ∈ VectFin−Dim, we have dimV
/
W = dimV − dimW .

Proof.

Let W ′ be a complement of W in V . Then

 V
/
W → W ′

v +W 7→ πW ′(v)
w′ +W ←[w′

is an isomorphism

where πW ′ is the projection on W ′.

Corollary A.1 Let V, V ′ ∈ VectFin−Dim. We have:

• If W ⊂ V and W ′ ⊂ V ′ then V
⊕

V ′
/
W
⊕

W ′ ∼= V
/
W
⊕

V ′
/
W ′.

• If W
⊕

W ′ ⊂ V
⊕

V ′ then

V
⊕

V ′
/
W
⊕

W ′ ∼=

(
V
⊕

V ′
/
W

)/
{w′ +W | w′ ∈ W ′}.

• Let W ⊂ V and φ ∈ homVectFin−Dim
(W,V) injective then V

/
W ∼= V

/
φ(W)

A.2 Elements of category theory

(Co)sections of a quiver with a representation can be seen in the more general con-
text of category theory. This annex contains the definitions and properties from cat-
egory theory used in this essay especially in sections 1 and 2.6. It is inspired from
[Lei16].

Definition A.2 (category). A category C is the data of

• A collection of objects ob(C)

• For each pair (A,B) of objects a collection of maps homC(A,B) from A to B.

• For each A,B,C ∈ ob C a composition map{
homC(B,C)× homC(A,B) → homC(A,C)

(g, f) 7→ g ◦ f

39

• For each A ∈ ob C an element identity 1A ∈ homC(A,A)

with the following properties

• associativity: for each (f, g, h) ∈ homC(A,B)× homC(B,C)× homC(C,D) where
A,B,C,D ∈ ob C, we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• identity laws: for A,B ∈ ob C and f ∈ homC(A,B), we have 1B ◦ f = f ◦ 1A = f .

Definition A.3 A functor F from a category C to another category D is

• A function

{
ob C → ob D
A 7→ F (A)

and

• For (A,B) ∈ ob C a function

{
homC(A,B) → homD(A,B)

f 7→ F (f)

with the two properties

• F (f ′ ◦ f) = F (f ′) ◦ F (f) for A
f→ A′

f ′→ A′′ in C

• F (1A) = 1F (A) for A ∈ ob C

Definition A.4 Let J a category (with a finite number of objects and maps), a (finite)
diagram in C is a functor D : J → C. We represent a diagram without writing the
identities and the maps obtained by composition. The diagram is said to be commuta-
tive if for each A,B ∈ ob J , card homC(D(A), D(B)) 6 1; or alternatively, composing
along different paths with the same extremities always give the same map.

A quiver Q = (V,E) can be associated to a finite diagram D : J → C by:

• V := ob J

• E := {[A,B] | ∃f ∈ homJ (A,B) s.t. f 6= 1A and 6 ∃A g→ C
h→ B, f = h ◦ g}

The definition of finite limits in a general category C can be obtained from definition
1.4 by replacing

• ”quiver with a representation” by ”diagram in C”

• ”finite-dimensional vector spaces” by ”objects of C”

• ”linear maps” by ”maps in C”.

Important examples includes the ones described in 1.2: products, equalizers, pullbacks.
However, in this more general setting, finite limits may not always exist.

Definition A.5 A category where all (finite) limits exist is said to be complete.

Proposition A.2 A category where all products and equalizer exist is complete.

Let C be a complete category.

40

Lemma A.1 In the following diagram in C, if both squares are pullbacks then the large

rectangle is also a pullback:
A B C

D E F

f1

h1

f2

h2 h3

g1 g2

Proof.

• The two square being commutative, the large rectangle is commutative:

h3 ◦ f2 ◦ f1 = g2 ◦ h2 ◦ f1 since the right square is a pullback

= g2 ◦ g1 ◦ h1 since the left square is a pullback

Hence, (A, f2 ◦ f1, h1) is a cone of the diagram D → F ← C:

• Let (A′, A′,
f ′→ C,

h′→ D) be another cone of D → F ← C. (A′, A′,
f ′→ C,

g1◦h′−→ E) is
a cone of E → F ← C. Since the right square is a pullback, there is a unique map
A′

α→ B such that the following dia-
gram commutes:
But now (A′, α, h′) is a cone of D →
E ← B and there is a unique map

A′
β→ A such that α = f1 ◦ β and

h′ = h1 ◦ β.

A′

A B C

D E F

h′

f ′

α

f1

h1

f2

h2 h3

g1 g2

Hence f ′ = f2 ◦ f1 ◦ β and h′ = h1 ◦ β. Moreover, if β′ verifies f ′ = f2 ◦ f1 ◦ β′ and
h′ = h1 ◦ β′, by uniqueness of α, f1 ◦ β′ = α and by uniqueness of β, β′ = β.

Proposition A.3 (Associativity of pullbacks). Let A,B,C,D,E ∈ ob(C), there is an
isomorphism (A×B C)×D E ∼= A×B (C ×D E).

Proof. Let’s apply lemma A.1 to the horizontal and vertical rectangles of the following

diagram made of pullback squares:

P C ×D E E

A×B C C D

A B

We obtain that

P ∼= A×B (C×DE) (vertical rectangle) and P ∼= (A×BC)×DE (horizontal rectangle),
which means A×B (C ×D E) ∼= (A×B C)×D E.

It follows that we can write×B
(Ai)i∈I for a finite set I and B,Ai ∈ ob(C) without

worrying about the order.

41

The dual notions - colimits, cocomplete, coproduct, coequalizer, pushforward - can be
defined in a similar fashion.

A.3 Elements of numerical linear algebra

In this annex inspired from [TB97], the methods from numerical linear algebra used in
our algorithm are explained especially SVD and Gaussian elimination.

Proposition A.4 (SVD). Let m,n > 0 and A ∈ Cm×n, then there is U ∈ Cm×m

and V ∈ Cn×n two unitary matrices and Σ ∈ Rm×n a diagonal matrix with entries
σ1 > σ2 > · · · > σmin(m,n) > 0 such that

A = UΣV ∗.

Moreover, if M is a real matrix, U and V are also real.

Proof. Let’s prove it by induction on m. If m = 1, A = (||A||2)A∗. If m > 1
let σ1 = ||A||2, by compacity, there is u1 ∈ Cm and v1 ∈ Cn of of norm 1 such that
Av1 = σ1u1. We complete u and v into orthogonal basis U1 and V1 of respectively Cm

and Cn. Then, U∗1AV1 =

(
σ1 w∗

0 A′

)
where w ∈ Cm−1 and B ∈ C(m−1)×(n−1).

σ1 = ||A||2 = ||U1AV
∗

1 ||2 >
∥∥∥∥(σ1 w∗

0 A′

)(
σ1

w

)∥∥∥∥
2

/

∥∥∥∥(σ1

w

)∥∥∥∥
2

>
√
σ2

1 + [[w||22

So w = 0. By applying the induction hypothesis to A′, A′ = U ′Σ′V ′∗ with U ′ and V ′

unitary and Σ′ diagonal with real nonpositive entries in decreasing order. Finally,

A = U1

(
1 0
0 U ′

)
︸ ︷︷ ︸

U

(
σ1 0
0 Σ′

)
︸ ︷︷ ︸

Σ

(
1 0
0 V ∗′

)
V ∗1︸ ︷︷ ︸

V ∗

.

The proof still holds when A is real and C is replaced everywhere by R.

Proposition A.5 Let A ∈ Cm×n with its SVD decomposition A = UΣV . Then if r
is the rank of A (and the last nonzero column of Σ), the columns r + 1, . . . , n of V
constitutes a basis of the kernel of A.

Proof. The last n− r columns of AV = UΣ are zeros.

This methods only works for R or C as it relies on square roots/absolute value of reals.
Its complexity is O(n2(m+ n)). The nullspace obtained has some stability properties as
very small singular values can be considered as 0.

Proposition A.6 (Gaussian elimination and kernel). Let A ∈ Cm×n. We put the

augmented matrix

(
A
Im

)
into column echelon form

(
AP
P

)
where P is invertible.

42

The nullspace of A is spanned by the columns of P corresponding to zero-columns of
AP .

This method works with any field its complexity is O(n2(m + n)). As explained in
[TB97], when partial pivoting is used this method is stable in practice.

A.4 Directed Erdős–Rényi model

Directed random graphs are used to test our algorithm. This annex contains the definition
of the model alongside an interesting proposition on strong connectedness proved in article
[GP08].

Definition A.6 (Erdős–Rényi for digraphs). In the directed Erdős–Rényi model with
parameter n, the vertices are 1, . . . , n and for each i 6= j the edge (i, j) is chosen
independently with probability p.

Proposition A.7 For any ε > 0, asymptotically a directed Erdős–Rényi graph is

• strongly connected if p > (1 + ε) lnn
n

• not strongly connected if p < (1− ε) lnn
n

More precisely, if (Gn) is a family of directed Erdős–Rényi graphs with parameters
(n, p(n))n∈N, then lim∞ P(Gn is strongly connected) is 1 if p(n) > (1 + ε) lnn

n
and 0 if

p(n) < (1− ε) lnn
n

for n large enough.

B Python code

The Python code corresponding to the algorithm to compute limits is provided below. It
contains neither the dual algorithm for the cosections space nor the testing functions used
to generate the graphs of the empirical performance analysis. The code is organized in 5
files: a main, 3 files for the 3 steps of the algorithm and a file for low-level functions.

main simple.py

#linear algebra

import numpy as np

from aux_fun_simple import proj, intersection,null_space

#quiver and matrix in fields

from aux_fun_simple import Field,eye_mat,Quiver

#display

from aux_fun_simple import print_limit

#steps of advanced algo

from arboreal_simple import arboreal_out

from acycli_red_simple import acyclic_red

#graph

import networkx as nx

epsilon=1e-12

NAIVE APPROACH

def sections_naive(Q):

43

field=Q.field

#compute partial dimensions in \sum_v Av

partial_sum_Av=[0]

for i in range(Q.n):

partial_sum_Av.append(partial_sum_Av[-1]+Q.Av[i])

#Initialize Gamma as the total space

Gamma= eye_mat(partial_sum_Av[-1],field)

for i_e,e in enumerate(Q.E):

#build projections

pi_se=proj(partial_sum_Av[e[0]],Q.Av[e[0]],partial_sum_Av[-1],field)

pi_te=proj(partial_sum_Av[e[1]],Q.Av[e[1]],partial_sum_Av[-1],field)

#update Gamma

Gamma = intersection(Gamma,null_space(pi_te-np.matmul(Q.Ae[i_e],pi_se),field),field=field)

return len(Gamma[0])

ADVANCED APPROACH

def compute_sections(Q,CC_separated=True):

field=Q.field

#if all connected components are computed together

if not(CC_separated):

Q_star,Av_star=acyclic_red(Q)

return arboreal_out(Q_star,True)

#compute the weakly connected components

G=nx.DiGraph()

G.add_nodes_from(range(Q.n))

G.add_edges_from(Q.E)

weak_compos,sub_nodes,sub_edges=[],[],[]

ind_inv=[[-1,-1] for _ in range(Q.n)] #reordering

for i_compo,compo in enumerate(nx.weakly_connected_components(G)):

#build subgraphs

sub_nodes.append(np.array(list(compo)))

sub_edges.append([i_e for i_e,e in enumerate(Q.E) if (e[0] in compo and e[1] in compo)])

#keep track of labels

for i_v,v in enumerate(sub_nodes[-1]):

ind_inv[v]=[i_compo,i_v]

#relabel

renamed_edges=[[ind_inv[Q.E[i][0]][1],ind_inv[Q.E[i][1]][1]] for i in sub_edges[-1]]

weak_compos.append(Quiver(len(sub_nodes[-1]),renamed_edges,

[Q.Av[x] for x in sub_nodes[-1]],[Q.Ae[x] for x in sub_edges[-1]],field))

#section computation by weakly connected compo

lim,maps=[],[]

for Q_c in weak_compos:

Q_star,Av_star=acyclic_red(Q_c)#acyclic reduction

lim_c,maps_c=arboreal_out(Q_star,True) #arboreal reduction

#reconstruction of the maps

for i in range(len(maps_c)):

if maps_c[i].shape[0]*maps_c[i].shape[1]==0:

maps_c[i]=np.zeros((Q_c.Av[i],lim_c))

else:

maps_c[i]=np.dot(Av_star[i], maps_c[i])

lim.append(lim_c)

maps.append(maps_c)

total limit and maps from the limit and maps of each CC

lim_final=sum(lim)

maps_final=[]

for v in range(Q.n):

i_compo=ind_inv[v][0]

44

blocks=[np.zeros((Q.Av[v],sum(lim[:i_compo]))), maps[i_compo][ind_inv[v][1]]]

maps_final.append(np.concatenate(blocks,axis=1))

return lim_final,maps_final

TEST

def test_classics():

print("===")

print("pullback")

Q=Quiver(3,[[0,2],[1,2]],[3,2,2],[np.array([[1,0,1],[1,1,0]]),np.eye(2)],Field('R'))

print(Q)

print_limit(compute_sections(Q))

print("===")

print("equalizer")

Q=Quiver(2,[[0,1],[0,1]],[3,3],[np.array([[1,0,1],[0,1,0],[0,1,1]]),np.array([[1,1,0],[0,1,0],[0,0,2]])],Field('R'))

print(Q)

print_limit(compute_sections(Q))

print("===")

print("different fields")

for field in [Field("Q"),Field("F_2")]:

mat_11_temp=eye_mat(2,field)

mat_11_temp[0][0]= field.one+field.one+field.one

Q=Quiver(2,[[0,1],[1,1]],[2,2],[eye_mat(2,field),mat_11_temp],field)

print(Q)

print_limit(compute_sections(Q,field),field)

test_classics()

arboreal simple.py

#linear algebra

from aux_fun_simple import intersection,proj,null_space,flatten_zero

#quiver and matrix in fields

from aux_fun_simple import E_in_out,shift_vertices,zeros_mat,eye_mat

import numpy as np

Reordering vertices so that edges are increasing

def swap_int(x,u,v):

if x==u:

return v

if x==v:

return u

return x

def swap_vertices(Q,u,v):

Q.Av[u],Q.Av[v]=Q.Av[v],Q.Av[u]

Q.E=[[swap_int(e[0],u,v),swap_int(e[1],u,v)] for e in Q.E]

def order_vertices(Q):

order=list(range(Q.n))

i_e=0

while i_e<len(Q.E):

cur_edge=Q.E[i_e]

if cur_edge[0]>cur_edge[1]:

swap_vertices(Q,cur_edge[0],cur_edge[1])

45

order=[swap_int(x, cur_edge[0], cur_edge[1]) for x in order]

#print("swap",cur_edge[0],cur_edge[1],order)

i_e=-1

i_e+=1

return order

sections of an acyclic quiver

def arboreal_out(Q,maps):

#solve separately the trivial quiver for speed when m<<n

if Q.n==1 and len(Q.E)==0:

if maps:

return Q.Av[0], [np.eye(Q.Av[0])]

return Q.Av[0]

#reorder V to make edges increasing

order=order_vertices(Q)

#add a root

Q=shift_vertices(Q)

order=[x+1 for x in order]

field=Q.field

Phi=[np.array([]) for _ in range(Q.n)]

phi=[np.array([]) for _ in range(Q.n)]

E_in,E_out=E_in_out(Q)

#computing minimal and maximal vertices

V_min,V_max=[],[]

for v in range(1,Q.n):

if E_out[v]==[]:

V_max.append(v)

if E_in[v]==[]:

V_min.append(v)

Av_min=[Q.Av[v] for v in V_min]

sum_Av_min=sum(Av_min)

#special case: root of dim 0

if sum_Av_min==0:

if maps:

return 0, [np.array([]).reshape(Q.Av[i],0) for i in range(1,Q.n)]

else:

return 0

representation of the root

Q.Av[0]=sum_Av_min

Phi[0]= eye_mat(sum_Av_min,field)

phi[0]= eye_mat(sum_Av_min,field)

#maps root-> minimal vertices

sum_Av_min_p=0

for i in range(len(V_min)):

Phi[V_min[i]] = eye_mat(sum_Av_min,field)

phi[V_min[i]] = proj(sum_Av_min_p,Av_min[i],sum_Av_min,field)

sum_Av_min_p+=Av_min[i]

#computation if sections by going down the graph

for v in range(1,Q.n):

for e in E_out[v]:

u=Q.E[e][1]#current vertex

#if u not seen

if len(Phi[u])==0:

Phi[u]=Phi[v]

#dimension 0

if Q.Ae[e].shape[1]==0:

phi[u]=zeros_mat(Q.Av[u],phi[v].shape[1],field)

46

else:

phi[u]= np.dot(Q.Ae[e],phi[v])

else:

if Q.Ae[e].shape[1]==0:#dim 0

equali=phi[u]#difference of functions in equalizer

else:

equali=phi[u]-np.dot(Q.Ae[e],phi[v])

equali= flatten_zero(equali,field)

if Q.Av[u]!=0:

Phi[u]=intersection(null_space(equali,field),intersection(Phi[v],Phi[u],field),field)

#compute total flow space

result_space = Phi[0]

for v in V_max:

result_space=intersection(result_space,Phi[v],field)

if maps:

#return dim(Av*) and isomorphism field^dim(Av*)-> subspace of Av

result_maps=[]

for v in range(0,Q.n-1):

result_maps.append(np.dot(phi[order[v]],result_space))

return result_space.shape[1],result_maps

return len(result_space[0])

acycli red simple.py

#linear algebra

from aux_fun_simple import intersection,row_echelon,col_echelon,solve_triangular,null_space

#Quiver and matrices in fields

from aux_fun_simple import Quiver,E_in_out,zeros_mat,eye_mat,is_all_zero_mat

from strongly_connected_simple import SG_to_tree

import numpy as np

import networkx as nx

import copy

epsilon=1e-12

compute the inverse image of M restricted to Im(M)\cap K

def inverse_image(M,K,field):

#column echelon form

Img_M=col_echelon(M,field)

#eliminate zero columns

if field.descr in ['R','C']:

non_zero_cols=np.where(np.max(np.abs(Img_M),axis=0)>epsilon)[0]

else:

non_zero_cols=[i for i,M_col_i in enumerate(list(Img_M.transpose())) if not(is_all_zero_mat(M_col_i,field))]

Img_M=Img_M[:,non_zero_cols]

#basis of Im(M)\cap K

Img_inter=intersection(Img_M,K,field)

#solve Mx=y for y in Im(M)\cap K

x=inverse_image_vect(M,Img_inter,field)

ker = null_space(M,field)#add a basis of ker(M)

return np.concatenate((x, ker),axis=1)

#solve Mx=y

def inverse_image_vect(M,y,field):

#empty matrix

if M.shape[1]*M.shape[0]==0:

return np.array([]).reshape(M.shape[1],0)

#column echelon form of the augmented matrix

Augmented_mat,pivots=row_echelon(np.concatenate((M,y),axis=1),field)

M_ech=Augmented_mat[:,:len(M[0])]

47

#no solution

if len(pivots)>0 and pivots[-1]>= np.shape(M)[1]:

return np.array([]).reshape(np.shape(M)[0],0)

#tranform into square invertible triangular matrix and solve

non_zero_rows = np.array([i for i in range(len(M_ech)) if not(is_all_zero_mat(M_ech[i], field))])

x_part= solve_triangular(M_ech[non_zero_rows][:,np.array(pivots)],Augmented_mat[non_zero_rows][:,len(M[0]):] ,field)

#reintegrate 0 rows and non pivots

x=zeros_mat(len(M[0]),len(x_part[0]),field)

for i_p,p in enumerate(pivots):

x[p]=x_part[i_p]

return x

def acyclic_red(Q):

field=Q.field

#find strongly connected components

G=nx.DiGraph()

G.add_nodes_from(range(Q.n))

G.add_edges_from(Q.E)

SG_compo,sub_nodes,sub_edges=[],[],[]

ind_inv=[[-1,-1] for _ in range(Q.n)]#keep track of the decomposition

for i_compo,compo in enumerate(nx.strongly_connected_components(G)):

sub_nodes.append(np.array(list(compo)))

sub_edges.append([i_e for i_e,e in enumerate(Q.E) if (e[0] in compo and e[1] in compo)])

for i_v,v in enumerate(sub_nodes[-1]):

ind_inv[v]=[i_compo,i_v]

renamed_edges=[[ind_inv[Q.E[i][0]][1],ind_inv[Q.E[i][1]][1]] for i in sub_edges[-1]]

SG_compo.append(Quiver(len(sub_nodes[-1]),renamed_edges,

[Q.Av[x] for x in sub_nodes[-1]],[Q.Ae[x] for x in sub_edges[-1]],field))

Q_star=Q

#apply SG_to_tree to each SC component

roots,E_star,Av_star,AE_star=[],[],[eye_mat(k,field) for k in Q.Av],[]

for i_R,R in enumerate(SG_compo):

K,T,r=SG_to_tree(R,True)

roots.append(sub_nodes[i_R][r])

E_star.extend([[sub_nodes[i_R][e[0]],sub_nodes[i_R][e[1]]] for e in T.E])

Av_star[roots[-1]]=K

AE_star.extend(T.Ae)

#add edges not in a stronggly connected component

for i_e,e in enumerate(Q.E):

if ind_inv[e[0]][0]!=ind_inv[e[1]][0]:

E_star.append(e)

AE_star.append(Q.Ae[i_e])

#transform Av,Ae into a valid representation Av*,Ae*

Q_star=Quiver(Q.n,E_star,Q.Av,AE_star,field)

E_in,E_out=E_in_out(Q_star)

for i_R,R in enumerate(SG_compo):

stack=[roots[i_R]]

while len(stack)!=0:

v=stack.pop()

for i_e in E_in[v]:

Av_star[Q_star.E[i_e][0]]=intersection(Av_star[Q_star.E[i_e][0]],inverse_image(copy.deepcopy(Q_star.Ae[i_e]),Av_star[v],field),field)

if not(Q_star.E[i_e][0] in stack):

stack.append(Q_star.E[i_e][0])

transform from subspaces of Av to field^d

Av_star_dim=[len(A[0]) for A in Av_star]

48

Ae_star=[inverse_image_vect(Av_star[Q_star.E[i_y][1]], np.dot(y,Av_star[Q_star.E[i_y][0]]),field) for (i_y,y) in enumerate(Q_star.Ae)]

for i in range(len(Ae_star)):

if Ae_star[i].shape[0]*Ae_star[i].shape[1]==0:

Ae_star[i]=np.zeros((Av_star_dim[Q_star.E[i][1]],Av_star_dim[Q_star.E[i][0]]))

Q_star.Av=Av_star_dim

Q_star.Ae=Ae_star

return Q_star,Av_star

strongly connected simple.py

import numpy as np

#linear algebra

from aux_fun_simple import intersection,null_space

#Quiver and matrices in fields

from aux_fun_simple import E_in_out,Quiver,eye_mat

#build ear decomposition of a SG quiver

def find_ear_decompo(Q):

E_in,E_out=E_in_out(Q)

v_ear=-1*np.ones(Q.n,dtype=int)#all vertices not seen

e_ear=-1*np.ones(len(Q.E),dtype=int)# all edges not seen

#find a cycle

start=0

v_ear[start]=0

e_ear[E_out[start][0]]=0

v= Q.E[E_out[start][0]][1]

l=[start]#visited vertices

while(v_ear[v]!=0):

l.append(v)

#mark as seen

v_ear[v]=0

e_ear[E_out[v][0]]=0

#go to next vertex

v= Q.E[E_out[v][0]][1]

r=v#first point of the cycle

#mark as unseen vertices not in the cycle

for u in l[:l.index(r)]:

v_ear[u]=-1

e_ear[E_out[u][0]]=-1

#build ear decomposition

ear_num=0#last built ear

while(len(np.where(v_ear==-1)[0])!=0):

#edge outgoing from decompo

e0=None

for i_e,e in enumerate(Q.E):

if v_ear[e[0]]>=0 and v_ear[e[1]]==-1:

e0=i_e

break

w=Q.E[e0][1]

#shortest pasth w-> ear_num

distances=(2*Q.n+1)*np.ones(Q.n)

previous_edge=[[] for _ in range(Q.n)]#shortest paths from w to x

d=0#distance to w

distances[w]=d

49

previous_edge[w]=e0

e_ear[e0]=ear_num+1

arrived=False

while(not arrived):

for w_cur in np.where(distances==d)[0]:

for e_cur in E_out[w_cur]:

#if new vertex in the ear decompo choose this path

if not(arrived) and v_ear[Q.E[e_cur][1]]!=-1:

arrived=True

#retrieve the path inductively

e_backwards=e_cur

while (v_ear[Q.E[e_backwards][0]]==-1):

v_ear[Q.E[e_backwards][0]]=ear_num+1

e_ear[e_backwards]=ear_num+1

e_backwards=previous_edge[Q.E[e_backwards][0]]

ear_num+=1

break

#continue search

if distances[Q.E[e_cur][1]]>d+1:

distances[Q.E[e_cur][1]]=d+1

previous_edge[Q.E[e_cur][1]]=e_cur

if arrived:

break

if arrived:

break

d+=1

for e in np.where(e_ear==-1)[0]:

e_ear[e]=ear_num+1

ear_num+=1

return r,v_ear,e_ear

#strongly connected quiver to out-tree

def SG_to_tree(Q,only_K):

field=Q.field#retrieve field

#trivial quiver

if len(Q.E)==0:

if only_K:

return eye_mat(Q.Av[0],field),Q,0

return Q

#choose an ear decomposition

r,v_ear,e_ear=find_ear_decompo(Q)

#find terminal edges

ter_edges=[]

non_ter_edges=[]

for i_e,e in enumerate(Q.E):

if e_ear[i_e]>v_ear[e[1]] or e[1]==r:

ter_edges.append(i_e)

else:

non_ter_edges.append(i_e)

#build out-tree

T=Quiver(Q.n,[Q.E[i_e] for i_e in non_ter_edges],Q.Av,[Q.Ae[i_e] for i_e in non_ter_edges],field)

E_in_T,E_out_T=E_in_out(T)

#build paths from root

phi=[[] for _ in range (Q.n)]

phi[r]=eye_mat(Q.Av[r],field)

50

stack=[r]

while not len(stack)==0:

v=stack.pop()

for i_e in E_out_T[v]:

phi[T.E[i_e][1]]=np.dot(T.Ae[i_e],phi[v])

stack.append(T.E[i_e][1])

#compute K

K=eye_mat(Q.Av[r],field)

for epsilon in ter_edges:

K=intersection(K,null_space(phi[Q.E[epsilon][1]]-np.dot(Q.Ae[epsilon],phi[Q.E[epsilon][0]]),field),field=field)

if only_K:

return K,T,r

#return as a quiver

T.Av[r]=len(K[0])

for i_e in E_out_T[r]:

T.Ae[i_e]=np.dot(T.Ae[i_e],K)

return T

aux fun simple.py

import numpy as np

import scipy.linalg

import copy

from fractions import Fraction

Q_pb=[]

#maximum computation error

epsilon=1e-12

COMPUTATIONS IN ALL FIELDS

#field F_2

class F_2():

#definition

is_one=False

def __init__(self, is_one):

self.is_one=is_one

#override operators

def __add__(self,b):

return F_2(self.is_one^b.is_one)

def __sub__(self,b):

return self+b

def __mul__(self,b):

return F_2(self.is_one&b.is_one)

def __truediv__(self,b):

if not(b.is_one):

raise ValueError("Divide by 0")

else:

return self

def __neg__(self):

return self

def __eq__(self,b):

return isinstance(b, F_2) and self.is_one==b.is_one

#display

def __str__(self):

return "cl("+str(int(self.is_one))+")"

def __repr__(self):

51

return "cl("+str(int(self.is_one))+")"

#general field definition

class Field:

descr='O'

zero=0.

one=1.

def __init__(self,*args):

usual fields R, C, F_2, Q

if len(args)==1:

if args[0] in ['R','C']:

self.descr=args[0]

elif args[0]=='F_2':

self.descr=args[0]

self.zero=F_2(0)

self.one=F_2(1)

elif args[0]=='Q':

self.descr=args[0]

self.zero=Fraction(0)

self.one=Fraction(1)

else:

raise ValueError("No predefined field "+args[0])

#user-defined fields

else:

self.zero=args[0]

self.one=args[1]

if len(args)==3:

self.descr=args[2]

#Replacing numpy operations if the field is not R or C

#np.zeros

def zeros_mat(n,m,field):

if field.descr=='R':

return np.zeros((n,m))

if field.descr=='R':

return np.zeros((n,m),dtype=complex)

return np.array([[field.zero for _ in range(m)]for _ in range(n)]).reshape((n,m))

#np.eye

def eye_mat(n,field):

if field.descr =='R':

return np.eye(n)

if field.descr=='C':

return np.eye(n,dtype=complex)

I=zeros_mat(n,n,field)

for i in range(n):

I[i][i]=field.one

return I

def is_all_zero_mat(M,field):

if field.descr in ['R','C']:

return np.max(np.abs(M))<epsilon

return all([m==field.zero for m in M.flatten()])

def is_all_zero_elem(x,field):

return is_all_zero_mat(np.array([x]),field)

#Remove computation errors

def flatten_zero(U,field):

52

if field.descr in ['R','C']:

V=U.flatten()

V[np.where(np.abs(V)<epsilon)[0]]=0.

return V.reshape(U.shape)

return U

QUIVER

#definition

class Quiver:

field='R'

def __init__(self, n,edges,rep_spaces,rep_maps,field):

self.n = n #|V|

self.E = edges

self.Av=np.array(rep_spaces,dtype=int) #dimension of A_v

self.Ae=rep_maps

self.field=field

#display

def __str__(self):

if self.field.descr in ['R','C']:

Ae_rounded=[np.round(ae,3) for ae in self.Ae]

return "n="+str(self.n)+" E="+str(self.E)+" Av="+str(self.Av)+"\n Ae="+str(Ae_rounded)

return "n="+str(self.n)+" E="+str(self.E)+" Av="+str(self.Av)+"\n Ae="+str([self.Ae])

def __repr__(self):

if self.field.descr in ['R','C']:

return "n="+str(self.n)+" E="+str(self.E)+" Av="+str(self.Av)+"\n Ae="+str([np.round(ae,3) for ae in self.Ae])

return "n="+str(self.n)+" E="+str(self.E)+" Av="+str(self.Av)+"\n Ae="+str(self.Ae)

#add new vertices with order 0,1,...

def shift_vertices(Q,shi=1):

E=[]

for e in Q.E:

E.append([e[0]+1,e[1]+1])

return Quiver(Q.n+1,E,[-1]+list(Q.Av),Q.Ae,Q.field)

#sort edges by starting/arriving extremity

def E_in_out(Q):

E_in=[[] for _ in range(Q.n)]

E_out=[[] for _ in range(Q.n)]

for i_e,e in enumerate(Q.E):

E_in[e[1]].append(i_e)

E_out[e[0]].append(i_e)

return E_in,E_out

LINEAR ALGEBRA

Row echelon form (Gaussion pivot)

def row_echelon(M_input,field):

M=copy.deepcopy(M_input)

#empty matrix

if M.shape[0]*M.shape[1]==1:

if is_all_zero_elem([M[0][0]],field):

return M,[0]

return M,[]

pivots=[]

#create one new echelon

def echelonify(next_pivot_row, col):

53

#choose best row to pivot

if field.descr in ['R','C']:

best_row= next_pivot_row+np.argmax(np.abs(M[next_pivot_row:,col]))

else:

non_zero_rows_sub=np.where(M[next_pivot_row:,col]!=field.zero)[0]

if len(non_zero_rows_sub)==0:

best_row=next_pivot_row

else:

best_row=next_pivot_row+non_zero_rows_sub[0]

#swap rows

if not is_all_zero_elem([M[best_row][col]],field):

rw=np.copy(M[next_pivot_row])

M[next_pivot_row]=np.copy(M[best_row])

M[best_row]=rw

rw=np.copy(M[next_pivot_row])

pivots.append(col)

else: # the column col is null

return next_pivot_row

#echelonify the matrix

for j, row in enumerate(M[(next_pivot_row+1):]):

M[j+next_pivot_row+1] = row - np.array([row[col] / rw[col]])* rw

return next_pivot_row+1

next_pivot_row=0#nb of pivoted rows +1

for i in range(M.shape[1]):#column to pivot

if next_pivot_row>=M.shape[0]:#all possible rows pivoted

break

next_pivot_row=echelonify(next_pivot_row, i)

#remove some computation errors

M=flatten_zero(M,field)

return np.array(M),pivots

#put in column echelon form

def col_echelon(M,field):

return np.transpose(row_echelon(np.transpose(M),field)[0])

#compute kernel of M

def null_space(M,field):

if field is R or C: SVD

if field.descr in ['R','C']:

return scipy.linalg.null_space(M,rcond=epsilon)

otherwise column echelon of the augmanted matrix

M=flatten_zero(M,field)

aug_mat=flatten_zero(col_echelon(np.concatenate([M,eye_mat(M.shape[1],field)]),field),field)

#column of the kernel base

zero_col_top=[is_all_zero_mat(aug_mat[:M.shape[0],i], field) for i in range(M.shape[1])]

return aug_mat[M.shape[0]:,np.array(zero_col_top)]

#intersection of two families U and V by computing the kernel of

#(U)

#(-V)

def intersection(U,V,field):

U=flatten_zero(U,field)

V=flatten_zero(V,field)

M=np.concatenate((U,-V),axis=1)

#empty matrix

54

if np.shape(M)[0]*np.shape(M)[1]==0:

return np.array([]).reshape(np.shape(M))

u=null_space(M,field)[:np.shape(U)[1]]

return np.dot(U,u)

matrix of a projection from dim tot to dim b

def proj(a,b,tot,field,B=None):

if B==None:

B=eye_mat(b,field)

return np.concatenate((zeros_mat(b,a,field),B,zeros_mat(b,tot-a-b,field)),axis=1)

transform a matrix from row echelon form to diagonal

def ech_to_diag_row(T_input,field):

T=copy.deepcopy(T_input)

#P_pivots s.t. T*P_pivot diag

pivots=[]

for i in range(min(T.shape)):

col_piv=i

while col_piv < T.shape[1] and is_all_zero_elem(T[i][col_piv], field) :

col_piv+=1

if col_piv<T.shape[1]:

pivots.append(col_piv)

else:

pivots.append(-1)

for i in range(min(T.shape)):

if pivots[i]!=-1:

T[i]=T[i]/T[i][pivots[i]]

for i in range(min(T.shape)):

if pivots[i]!=-1:

for i_2 in range(i):

T[i_2]= T[i_2] - np.array([T[i_2][pivots[i]]/T[i][pivots[i]]])*T[i]

return T

transform a matrix from column echelon form to diagonal

def ech_to_diag_col(T_input,field):

return np.transpose(ech_to_diag_row(np.transpose(copy.deepcopy(T_input)),field))

solve Mx=y with M triangular (square)

def solve_triangular(M,y,field):

if y.shape[1]==0:

return np.array([]).reshape(M.shape[0],0)

if field.descr in ['R','C']:

return scipy.linalg.solve_triangular(M,y)

aug_mat=ech_to_diag_row(np.concatenate([M,y],axis=1),field)

y_ech=aug_mat[:,M.shape[1]:]

for i in range(M.shape[0]):

y_ech[i]=y_ech[i]/aug_mat[i][i]

return y_ech

DISPLAY TOOLS

#display of a limit with its maps

def print_limit(lim_and_maps,field=Field('R')):

lim,maps=lim_and_maps

55

#the limit

print("lim="+field.descr+"^"+str(lim))

#choosing a isomorphic limit with simpler maps (isomorphism given by P_pivot)

maps_prod_dim=[maps[i].shape[0]*maps[i].shape[1] for i in range(len(maps))]

i=np.argmax(np.array(maps_prod_dim))

aug_map=np.concatenate([maps[i],eye_mat(maps[i].shape[1],field)])

P_pivot=ech_to_diag_col(col_echelon(aug_map,field),field)[len(maps[i]):]

for v in range(len(maps)):

print("lim ->",v,"\n",flatten_zero(np.dot(maps[v],P_pivot) ,field))

References

[BGP73] I. N. Bernstein, I. M. Gel’fand, and V. A. Ponomarev. Coxeter functors and gabriel’s theorem.
USP.MAT.NAUK, 1973.

[BJG09] Jørgen Bang-Jensen and Gregory Gutin. Digraphs: Theory, Algorithms and Applications, pages
198–201. Springer, 2nd edition, 2009.

[Cur14] Justin Curry. Sheaves, cosheaves and applications, 2014.

[GP08] Alasdair Graham and David Pike. A note on thresholds and connectivity in random directed
graphs. Atlantic Electronic Journal of Mathematics, 3, 01 2008.

[Lei16] Tom Leinster. Basic category theory, 2016.

[SHN21] Anna Seigal, Heather A. Harrington, and Vidit Nanda. Principal components along quiver
representations, 2021.

[TB97] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

56

	Introduction
	Quivers, (co)sections and (co)limits
	Quivers
	Sections and limits
	Cosections and colimits

	Computing (co)sections
	Case of a tree-like quiver
	Sections of an out-tree
	Cosections of an in-tree

	Case of a strongly connected quiver
	Sections of a strongly connected quiver
	Cosections of a strongly connected quiver

	Acyclic reduction
	Acyclic reduction conserving sections
	Acyclic reduction conserving cosections

	Arboreal replacement
	Augmented quiver
	Out-tree replacement
	In-tree replacement

	Connected components
	Generalisation to other categories

	Implementation of the method
	Scope and description
	Performance analysis
	Theoretical time complexities
	Empirical time complexities

	Conclusion
	Annexes
	Quotients of finite-dimensional vector spaces
	Elements of category theory
	Elements of numerical linear algebra
	Directed Erdos–Rényi model

	Python code

