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Abstract

(Co)limits of finite diagrams of finite-dimensional vector spaces appear in sev-
eral applied and computational contexts. Earlier this year, an efficient method to
compute limits of such diagrams was published in [SHN21]. One of my main con-
tributions is to dualise the described method so as to compute colimits. I have also
implemented in Python the algorithm and have analysed the code performances.

Introduction

As detailed in section [I], finite diagrams of finite-dimensional vector spaces can be seen
as quiver representations. From this point of view, a limit of such a diagram becomes the
space of sections.

Many abstract problems can be expressed as a quiver representation, including a
whole range of problems from linear algebra. In most cases, the main properties are
linked to the decomposability of the associated quiver [BGP73|]. However, more recently,
quiver representations started to appear in more applied contexts like the study of cellular
sheaves [Curl4]. More precisely, the 0" sheaf cohomology group is given by the limit of
the associated quiver representation.

The goal of this dissertation is to describe, implement and analyse an algorithm to
compute limits and colimits (the dual notion) of a quiver representation. We hope that
our algorithm will be applied one day in a computational setting. We thus aim to provide
an efficient algorithm.

Section [2| describes two dual algorithms to compute limits and colimits of quiver rep-
resentations. The approach for limits follows [SHN21]; and I obtained the algorithm for
colimits by dualising step by step the one for limits. In addition to the description from
[SHN21], I considered, in subsection , the advantages of computing separately each
connected component. And, in subsection [2.6] I extended some of the main propositions
to other categories.

[ then implemented in Python the algorithm described in section (the code is in annex
. Section [3| details the choices of implementation, and compares the performances to
those of a more direct and simple approach.

Finally, to understand, adapt and implement the algorithm from [SHN21], elements
from various theories like category theory, numerical linear algebra or networks are nec-
essary. The most important ones are summarised in annex [A]

1 Quivers, (co)sections and (co)limits

1.1 Quivers

We start by defining the notion of diagrams of vector spaces. From the category theory
point of view, they are diagrams of finite shape in the category of finite dimensional vector
spaces. In this dissertation we will use a more practical definition by decomposing it into
two components: the quiver and the representation.

Definition 1.1 A quiver @ is a finite multi-digraph.
More precisely a quiver @) consists of two finite sets V' (the vertices) and E (the edges)
together with two functions s,t: ' — V called the source and the target.




Example 1.1
O——

We will use this quiver as our running exam-
ple. Note that it contains self-loops and mul-

tiple edges. =

We fix a field F. We denote Vectpi,_pim the category of finite-dimensional vector
spaces over .

Definition 1.2 A representation A, of a quiver () is the data of finite-dimensional
[F-vector spaces A, for all v € V' and linear maps A, : Age) — Ay for all e € E.

Remark 1.1 A quiver () can be seen as a category (see annex [A.2]) with
e objects ob(Q) ==V

e and morphisms homg(u,v) := {e € E | (s(e),t(e)) = (u,v)}, (plus the identity
when u = v).

A representation of () can be seen as a functor from ) to Vectpy,_pim Or alternatively
as a Q-shaped diagram in Vectgi,_pim.

Definition 1.3 Let @ = (V, E) be a quiver and A, a representation of (). A path pin @
is a list of edges e, ..., e, with distinct sources such that s(e; 1) = t(e;) for 1 <i < m.
We define t(p) = t(em), s(p) := s(e;) and A, := A, o...A.,. For vi,v5 € V, we
denote P(Q,v1,v3) or P(v1,vs) the set of all paths in @ from v; to vs.

1.2 Sections and limits

Let @ = (V, E, s,t) be a quiver and A, be a representation of (). Once again the notion
of limit comes from category theory. We will reformulate it in our particular setting as a
certain subspace of the total space [, ., A..

Definition 1.4 (Limit).
e A coneof (@, A,) is a finite dimensional vector

space C together with linear maps ¢, : C — C
A, for v € V, so that, for all e € E, we have / \
the following compatibility requirement:
Pi(e) = Ac © Ds(e) —y i@
O\_/'

e A limit of (Q,A,) is a cone (C,(¢,)v) so

that, for all other cones (C’, (¢))v), there is 1o
a unique linear map « : ¢/ — C such that, o C 4
forallv eV, K
A, o A,
Qb; = va o

It follows from this definition that limits are unique up to ismorphisms. Nonetheless,



we still allow ourselves to speak of "the” limit, when the property holds for any of the iso-
morphic limits. Many algebraic constructions can be expressed as limits:

Example 1.2
Construction Formula As limit of a diagram
Product A, x A, @ @
Fixed points ker(A, —ida,) Woe
&
cdli=e
Equalizer Eq(A¢, Ay) :=ker(A, — Ay) ¢
A, xa, A, = C?e
Pullback 10 1y e Ay x A Au(a) = Au(®)) Or:0)

The problem of the definitions above is that cones and limits are defined up to iso-
morphism: our algorithm will need to choose one of the isomorphic limits to output.

Using the map ¢ { ¢ = llLev A for every cone 6(C)
v e (600, ]
(C, (¢y)v), we will show that we can choose the limit to be 9/' N
a subspace of [] ., A, together with the projection maps C — A,

(7ot [Tuev Au = Ay)vev.

Definition 1.5 A section v associated with @ and A, is an element (V,)yey € H A,

veV
such that for every edge e € E, we have the following compatibility requirement:

Ac(Vs(e)) = Ve(e)- The set of all sections is denoted I'(Q, A,).

Proposition 1.1
P(Q’ Ao) = m ker (ﬂ-t(e) —Aco 71-s(e)) .

ecE

Proof. Let v := (V)vev € [[,ev Av-

7eT(Q,A,) < Ve € E, Ae(me)(v)) Ti(e)(7) = 0
<:>V66E,”y€ker( AOWS(e)

Corollary 1.1 T'(Q, A,) is a subspace of ]

’UEV

Proposition 1.2 T'(Q, A,) together with the restrictions of the projection maps (7, )yey
is a limit of the -shaped diagram corresponding to A,.




Proof.

For every e € E, the compatibility condition of (@, As)
2 a o Ts(e) Tt(e)
a section translates into the following commu- /
tative diagram: Ay A, » Ao

Hence, I'(Q, A,) is a cone. Moreover, if (C, (¢,),cv) is another cone, (C) C I'(Q, A,)
and for a linear map o : C' — I'(Q, A,):

YoeV, moa=¢, <= VceC, alc)=16(c)

Thus, I'(Q, A,) is a limit of (Q, A,). ]

Proposition proves that limits of a finite diagram in Vectgi,_pim is the same as the
sections of the corresponding quiver with its representation. Proposition already gives
an algorithm to compute I'(Q, A,). However it requires multiple computations in the total
space ],y Ay, which would only be realistic for very small quivers. Section [2| describes
an algorithm inspired from [SHN21] to compute the sections space more efficiently.

1.3 Cosections and colimits

Colimits are the dual notion of limits as defined in definition Like in the previous
paragraph, we want to reformulate colimits in our particular setting by establishing the
dual of proposition [1.2] Let @ = (V, E) be a quiver and A, a representation of Q.

Definition 1.6 (Colimit).
e A cocone of (@, A,) is a finite dimensional
vector space C, together with linear maps 1, :
A, — C for v € V so that, for all e € E, we
have the following compatibility requirement:

77ZJs(e) = ¢t(e) oA,

C
e A colimit of (@, A,) is a cocone (C, (1,)y) so AL
that, for all other cocones (C’,(¢)y), there A“\ ; Ay
is a unique linear map « : C' — C” such that, Yul o Yo
forallv eV, ” <A "
L (7\(/ (

%:Oéo%

As for limits, colimits are unique up to isomorphism and are a way to formulate many
algebraic constructions.

Example 1.3



Construction Formula

As colimit of a diagram

Coequalizer Av/ Im(A. — A.)
Au ®A AU =
Pushout v
AU@AU/ Im ((A., —A.))
We denote i, : A, — P, As the in-
clusion maps for v € V. Then, wusing the

m @UGV Av — C
e { Sy o) = Xy ()

(C, (¢y)v), we will show that one of the isomorphic col-
imits is a quotient of €, ., A, together with the maps
induced by the inclusions (i, )y .

for every cocone

(a2

Definition 1.7 We define the space of cosections

— A,
A') T 1;66% /Z Im(is(e) —

eceE

where i, : A, — P

ueVv

A, is the canonical inclusion map.

(e) © Ae)

Note that since all spaces have a finite dimension, @, A, = [[, A,. We prefer the
notation to highlight that this definition is the dual of proposition [I.1} To simplify the
expressions, we use the following notation, for any edge e € E or path p of Q:

Za,(e) :=1Im (is(e) — Qy(e) © Ae) and Za,(p) :==Im (is(p) — Gy(p) © Ap) .

Example 1.4 Consider the quiver Q = u - § v

the other hand:

=4 /(A - A)

We can prove the dual of proposition [1.2}

_APA,
A(Qa A') - @ /Im(lu — iv o Ae/) + Im@u - Z"u o Ae)

— Au AU
= @ /Im(zu — iy 0 Ag) @Im(iv o(Ac —A,))

using corollary

A1

The colimit of a representation A, of @ is Coeq(A., A.) = A, / Im(As — A.). On

One can check that the isomorphism A(Q, A,) = Coeq(A,, A./) transforms 4, into A,
and i, into ida, where ¥ is the class of z € A, in Av/ Im(Ays — A,).



Proposition 1.3 A(Q, A,), together with the maps induced by the inclusions (i,),ev,
is a colimit of the @)-shaped diagram corresponding to A,.

Proof. We denote T the class of an element xz € @, ., A, in A(Q, A,).

For every e € E, the following diagram commutes A, e > Ay

since for © € Ay, \ /
: is(e) U(e)
A<Q7 A’)

@OAJ = Li(e) © A (r) = iS(e)(x) = is(e)(x)
Hence, A(Q, A,) is a cocone. Moreover, if (D, (¢,),ev) is another cocone then, for any
linear map « : A(Q, A,) — D:

Yo eV, a0, =1, @Vz-(mvveve@Av,a Zwvxv

veV veV

<= « is the quotient map associated with Z Py O Ty
veV

where m, : @uev A, — A, is the canonical projection. Since D is a cocone, we have
fore € F,

(Z ¢v © Wv) Zs(e it(e) oA ) ,QZJS (e) © Ts(e) © Us (e) — wt O Ti(e) © Z‘t(e) © Ae
= ¢s(e) - ¢t(e) © Ae = 0.

Hence, ) oy, ¥y om, is trivial on ), 5 Im(ise) — is(e) © Ae). Its quotient map is well
defined and it is the only map of cocone from A(Q, A,) to D. Finally, A(Q, A,) is a
colimit of the diagram induced by @ and A,. O

We fix a basis for each A, for v € V. Each A(,.) for (u,v) € E is now represented
by a matrix dim A, x dim A,,.

Definition 1.8 The transpose quiver of Q is QT = (V,ET := {(v,u) | (u,v) € E})
and the transpose representation of A, is Al defined by AT := A, for v € V and
Al = (Apw)" for (u,v) € ET.

Proposition 1.4 Let (L, (¢,)vev) be a limit of (QT, AT). If we fix a basis of L, then
(L, (¢T),) is a colimit of (Q, A,).

Proof.
e Let (u,v) € E. Since L is a cone of (QT, AT), one has Aa’u) o ¢, = ¢, and
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=

4
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S

Yo

e Let (cC, (¥)vev)) be a cocone of (Q,A,). Then for (u,v) € E, (¢¥.)T = (¢! o
Aww)" = Al 0 W,)" hence (L, ((¥,)" )vev) is a cone of (Q7, AJ). By definition
of limits, there is a unique map « : ¢C' — L such that for allv € V, (¢))T = ¢, 0

and after transposing this expression, a’ is the only map L — ¢C such that
P =al o(¢,)T for all v € V. Finally, (L, (¢1),) is a colimit of (Q, A,).

]

The colimit of (@, A) can be computed as the limit of the transpose quiver and repre-
sentation. A possible method could be to devise an algorithm for limits and to use it on
the transpose to compute colimits. This approach would have two drawbacks:

e On the one hand, any vector space of the right dimension could be used as a colimit
but the cosections space has a particularly nice definition as a quotient of the total
space, which is not given directly by proposition [1.4}

e On the other hand, the method described in this essay could be extended to the
computation of (co)limits of finite diagrams in a (co)complete category (see [2.6).
In this more general setting, it may not be possible to transpose maps. Worst, the
category might not be both complete and cocomplete.

That’s why in the following section, computations for sections and cosections are
provided as two separate methods.

2 Computing (co)sections

In the last section, we defined (co)limits of finite diagrams of finite-dimensional vector
spaces and reformulate it as the space of (co)sections of a quiver representation. We
now fix a quiver () and a representation A, of (). The goal of this section is to design
an algorithm to compute the (co)sections spaces I'(Q, A,) and A(Q, A,). The formulae
from proposition and definition already give possible algorithms. However, those
algorithms imply computations in the total space which dimension is too large, except for
very small examples.

For larger examples, we describe algorithms that keep computations in a smaller space.
The algorithm for sections comes from [SHN2I| and I adapted it to the case of cosections
by dualizing each step. In this section we follow [SHN21](2-4) while proving in parallel
the dual statements.



The main idea of these algorithms is to transform ) and A,, while keeping the same
(co)sections space, until @) is a rooted tree. We will first show that computations are
easy for rooted trees (see 2.1)). Then we will see how to remove cycles for strongly
connected quivers and for the general case) and finally how to add a root and to

remove parallel paths (2.4]).

When changing @ and A,, we want to keep the space of (co)sections unchanged, up
to isomorphism. However, in order to retrieve the maps associated with the (co)limit,
we need to keep track of these isomorphisms. In fact, the isomorphisms involved in our
transformations will mostly be induced by the canonical injection or quotient maps.

Definition 2.1 Let Q = (V, E) and @' = (V, E’) two quivers with their representations
A, and Al. We write

e (Q, A,) 4 (Q',A,) if for allv € V, A, C A and the inclusion H,, A, = P, A/,
induces an isomorphism I'(Q, A,) = I'(Q', AY).

e (Q,A,) a (Q',A)) if for all v € V, A, = Al / B, for some B, C A/, and the
quotient map €, A;, — @, A, induces an isomorphism A(Q’, A,) = A(Q, A,).

2.1 Case of a tree-like quiver

We start by showing that computing (co)sections of a directed rooted tree is easy.
Indeed, when @) is a directed rooted tree, the representation space of the root is either
the sections space or the cosections space, depending on whether () is an out-tree or an
in-tree.

2.1.1 Sections of an out-tree

r
Definition 2.2 () is called an out-tree with root r if, for all / \
v in V, there is a unique path p[v] from r to v. (G} Vg

V11 V12 V13

Proposition 2.1 If () is an out-tree with root r then the projection 7, : [T o, Ay — A,
induces an isomorphism I'(Q, A,) = A,.

Proof. For a path p = ey,..., ey, we denote A, :== A, o---0A. . Let’s consider

the linear map:
o { A, —-T(Q,A,)
z = (APM (2))vev

® is well defined. Indeed, for x € A, and e € E, the uniqueness of p[t(e)] justifies the
following statement:

A (D(2)s(e)) = Apise)e(T) = Appre)(7) = () (e)-




For v € T'(Q, A,), we have ® o m.(7) = ®(7) = (App)(%))vev = 7. Similarly, for
xr € A,., we have:

&

T 0 ®(x) = m ((App)(2))0) = . Hence, T'(Q,A,) = A,.
[
2.1.2 Cosections of an in-tree
-
Definition 2.3 () is called an in-tree with root r if, for all / \
v € V, there is a unique path ¢[v] from v to r. Uy
V12 V13
Lemma 2.1 Let p be a path in Q. Then, Za,(p) C ZIA_(@L-).
Proof.
Us(er) = Tifem) © Ap = faler) ~ e n) 0 Ae,, 00 A,
Z Zs(e ) © Ael) o 1Aez 1 -0 Ael
]

Proposition 2.2 If () is an in-tree with root r, then the inclusion map 4, induces an
isomorphism A, = A(Q, A,).

Proof. Let’s show first that

> Iale)= D Zaldl)). 1)

eel veV\{r}
Let e € E. If t(e) = r, then (e) = ¢[s(e)] and s(e) —= #(e) aliell
IA.( ) = Za,(q[s(e)]). O herw1se by uniqueness \j
of ¢[s(e)], we have ¢[s(e)] = (e, [t(e)]) and: qls(e)]
IA. (6) = Im(is(e) — it(e) o Ae)
= Tm ((ise) = ir 0 Agise) = (i) = ir © Agpie) © Ac)
C Tm (i(e) = ir © Agis(e) +Tm (ixe) = ir © Agie))

= Za.(q[s(e)]) + Za.(qlt(e)])

10



Let v € V. A direct application of lemma [2.1| with p = ¢[v] = (ey, ..., e,) gives
Za.(q[v]) € 3201 Zau(e).

Using , we can now write

Ad) = UEBAU/ZIA.(Q[U])‘

v#Er

Moreover, >, . Za,(q[v]) is a direct sum. Indeed for (z,)vzr € [, Av, by pro-
jecting on €, A,

g (i — 3r 0 Agp]) (T0) =0 =YV #£ 7, Gy(2,) =0
v#Er
—=> Yo # 1, (iy — iy 0 Agp)) (@) = 0.

Hence,

dim A(Q, A,) = dim A, + ) _ (dim A, — dim ((i, — 4, 0 Agp)(Ay))) = dim A,.
VET

®UEV AU — A’I’ . .. B . .
Let \II{ STy Ty _{_ZU#T Ag(2) Since Vo4, = ida,, W is surjective.

Furthermore, for all v € V' \ {r}, ¥(Za,(q[v])) = ¥ (Im(i, — i, 0 Agpy)) = 0, so ¥ is
also well defined on A(Q, A,). Finally, the equality on dimensions implies that the map
induced by ¥ on A(Q, A,) is an isomorphism which inverse is induced by i,. O]

The results from this subsection allow us to compute (co)sections of an out(in)-tree. We
now want to transform a general quiver into a rooted tree. The first step of this process
is to remove the cycles.

2.2 Case of a strongly connected quiver

In this paragraph, we study how to remove cycles in a strongly connected quiver. The
results from this particular case will be necessary to remove cycles in a general quiver.

Definition 2.4 () is said to be strongly connected if for all u,v € V there is a path from
u to v.

Example 2.1 Cycles and complete graphs are strongly connected quivers.

If @ is strongly connected, we will decompose it as an union of smaller and simpler
quivers.

Definition 2.5 A quiver Q' = (V', E') is a subquiver of Q if V! C V  E' C E and for
all ¢ € E', (t(e'),s(e') € V2. We write Q' C Q.

11



Remark 2.1 e If we look at @) as a category like in remark then a subquiver
is a subcategory of Q.

e apath (eq,...,e,) defines a subquiver Q' with V' = {s(e;), ..., s(en),t(en)} and
= {e1,...,en}. We denote s(Q') = s(e1) and t(Q') = t(e )

Definition 2.6 An ear decomposition (), of () is a list of ¢ € N* subquivers
{Qi = (Vi, E;) | i € [c]} which are paths of @) such that:

1. {E; | i € [c]} is a partition of E.
s(Q1) = t(Q1)
3. fori > 1, V;NU,;V; = {s(Q:), t(Q:)}

Theorem 2.1 A quiver with at least two vertices is strongly connected if and only if it
admits an ear decomposition.

The proof of the theorem is given in [BJG09] through the following algorithm:

Algorithm 1: ear decomposition

input: @), a strongly connected quiver

output: (), an ear decomposition of @)

Qe = {Q1} where @ is any cycle of Q;

i=1;

Whlle U;; Vi #V do
Let e € E such that s(e) € U,; V; and t(e) € U, Vi
Let p be a shortest path from t(e) to U, ; Vj;
Add the path e, p to ), and increment i;

fore ¢ ;. Ei do
L Add e to Q,;

This algorithm is correct since the strong connectivity of () implies the existence of
(1, e and p. Moreover, at the end of the while-loop all the remaining edges are self-loops
which are ears on their own.

proof of theorem
The result is a consequence of the correctness of algorithm .

<] By induction on i € | U Q; = (U Vi, U Ej> is strongly connected. O]

j<i j<i <

Until the end of this section, we assume () to be strongly connected, we denote (),
one of its ear decompositions and we choose r = s(Q1) = t(Q1) € V4.

Definition 2.7 e the depth |e| of an edge e is the unique i € [¢] such that e € E;

e A path pis said to be increasing(decreasing) if its edges are in increasing(decreasing
depth order.

12



e forveV, I(v):=min{i € [¢] | v e V;}

Proposition 2.3 For any vertex v € V' \ {r}, there exists:

1. a unique Qe-increasing path p[v] from r to v with all edges of depth < [(v), and,

2. a unique Q,-decreasing path ¢[v] from v to r with all edges of depth < [(v).

Proof.

We will prove the 2. by induction on I(v).

If [(v) =1, @ is a cycle and there is a unique path with " 0

all edges of depth 1 from v to 7. v < ’\

Let ¢ > | > 1. Assume that the property holds for all

u € U;V; and let v € V such that [(v) = [. @, is a - 0
path between s((Q);) and t(();) so there is a unique path S
of depth [ from v to U;o;V; and it lands in ¢(Qi). By 4(Q)) @) HQ)
induction, there is a unique decreasing path from ¢(Q;)

to r. Finally, there is a unique decreasing path from v to v

r.

2.2.1 Sections of a strongly connected quiver

To compute the sections of the strongly connected quiver (), we will remove the last edge
of each ear of (), to obtain an out-tree. The representation space of the root will be
modified to keep the same space of sections.

More precisely, for each i € [c], there is a unique ¢; € E; called i-th terminal edge,
such that t(e;) = t(Q;). We denote Ei.,. = {€; | i € [c]} the set of terminal edges of

Q.

Definition 2.8 The out-tree induced by Q, is the subquiver T,,; = T,.+(Q) defined by
the vertices V' and the edges E \ Eje,.

Example 2.2 Let

Q1 .
R, = * and Ry = "o
' FT L Pov Qs i @\”
QQ Ql

{Q1,Q2,Q3} and {Q1'} are ear decompositions of respectively R; and Ry. The dashed
edges are the terminal edges. Thus, T,,:(R;) and T,,.(R2) are given by the solid lines.

Proposition 2.4 T, is an out-tree with root r.

13



Proof. Since all paths in T,,; are increasing,

the result is a consequence of proposition 2.3 \\} . // [

—
Q1

As in section [2.1.1] we denote p[v] the unique path from r to v in T, and we write

K(QuA) = () ker (Api) — Aco Ayguey)-

EeEter

Proposition 2.5 I'(Q, A.) = K(Q., A,).

i @ : A, =T (Tou,Ad) CIl,cv A
Proof. By proposition|2.1, A, = I'(T,.:, A,) via P : " oL veV v
rREp I Chirold) { = (App)(2))vev

Then I'(Q, As) = {7 € T'(Tout, As) | Ve € Eier, Ac(7s(e)) = Ve(e)} and composing by @:

F(Q, A.) = ({ZE €A, | e € W Aé(Ap[s(E)] (l‘)) = Ap[t(e)}(x)}) = (K(Q., A'))

Proposition 2.6 Let A/ be the representation of T,; defined by:

i A, ifv#r g A, if s(e) #r
Ay = { K(Q.A) ifv=r 24 A= { (A)la, ifs(e) =r

where v € V and e € E'\ Ej,. One has:

(Tou, AL) < (Q, AL)

Proof. By propositions and 2.5 ['(T,u, A,) = K(Q,A.) = I'(Q,A,) and the
isomorphism is ®|x(g,a) © (7)|r(1,.:,a,)- By the proof of proposition , it is induced
by the inclusion of the total spaces. O

2.2.2 Cosections of a strongly connected quiver

Dually, @) is transformed into a in-tree with the same cosections by removing the first
edges of every ear of (), and by quotienting the root representation space.

For each i € [c], there is a unique ¢; € E; called i-th initial edge, such that s(e;) = s(Q;).
We denote E;,; = {¢; | i € [c]} the set of initial edges of Q).

Definition 2.9 The in-tree induced by Q. is the subquiver T}, = T}, (Q) defined by the
vertices V' and the edges E \ Fjp;.

Example 2.3 Continuing ex. 2.2 T;,(R;) and T}, (Rs) are given by the solid lines of:
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Q
Rl = ! \--‘ and R2 o= @A:—>O

A direct consequence of proposition is that:

Proposition 2.7 T, is an in-tree with root r.

As in section [2.1.2] we denote ¢[v] the unique path from v to r in T, and we write

_ A,
CE(Q As) = / > Im(Age) — Agpo) © Ao
EeEini
We apply proposition to Tj, and define ¥ : @ ., A, — A, as in the proof of

proposition [2.2]
Lemma 2.2 V¥ induces an isomorphism A(Q, A,) = CK(Q., As).

Proof. ¥ induces a linear map ¥ : A(Q, A,) — @, A, /¥ (Y .cpZa.(e)) which is
surjective because so is W. Since ¥ is null on Zx, (e), for every edge e of Tj,, one has:

U(A(Q,A)) = A’"/\p > Tale) |+ ¥ ( > ZA.(6)>

EGE\Eini €€EEin;

_ A,
= /() —+ Z ImW¥o (Zs(e) — it(e) e} Ag)

€€ Ein;
But from equation (1)), ¥ oi, = W o4, 0 Ay = Agpy for any v € V. Hence:

HA@ AW = Ar/ > In(Ags) — Aguoy 0 A) = OK Qe Ae):

€€EEin;

Finally, for z € @, A,,

% (:1:—{— ZIA.(6)> —0<= U(z) eV (ZIA,(6)> = ( > IA,(e))

e€EE eEEin;
ez Y Ia(e)+kerT =) Ta,(e)

ecl;n; ecll

- NG
Thus, ¥ is injective and A(Q, A,) = CK(Q., A,).
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Proposition 2.8 Let A/ be the representation of T;, defined by:

;o A, ifv#£r ] A ift(e) #
Ay = { CK(Q., A, ifv=r and A, = { [A,] ift(e)=r

where [z] denotes the class of # € A, in the quotient C'K(Q., A.).

(T, AL) 3 (Q, A)

Proof. From proposition[2.2applied to (T,, A) and lemma2.2] we have the following
ismorphisms

{ [ [, ay Ja@inay — [¥(@)ck@an < []a@.ad) for @€ vEBA”'

So the isomorphism A(Q, A,) = A(T;,, Al) is induced by the quotient map
@UEV A, — @V Al O

2.3 Acyclic reduction

Let Q@ = (V,E) be any quiver with a representation A,. The goal of this paragraph
is to transform (@, A,) into (Q*, A}) such that Q* is acyclic and the space (co)sections
of (@Q,A,) and (Q*, A}) are isomorphic via a simple map. The strategy is to apply the
previous paragraph, independently, to all maximal strongly connected subquivers of @),
and then to "repair” the representation to obtain a valid representation.

We denote MSC(Q) the maximal (for the inclusion) strongly connected subquivers
of Q. For each subquiver R € MSC(Q) we fix an ear decomposition R, like in definition
2.0l

Proposition 2.9 Distinct subquivers of MSC(Q) have distinct vertices.

Proof. Assume w € RN R, with R, " € MSC(Q). Then for all v,v" € RU R’ there
is a path from v to v’ going through w. Hence RU R’ is also strongly connected and R
is not maximal. ]

Like previously, we can define for R € MISC(Q), the terminal edges of R, Ey.,(R) (resp.
initial edges Ej,;(R)) and the out-tree induced by R, T,.,:(R) (resp. in-tree T;,(R)). We
also denote p(R), V(R) and E(R) the root, vertices and edges of R,.

We will define the acyclic reduction of () by removing the terminal (resp. initial edges)
of ). The goal of this subsection is to find a representation of the acyclic reduction with

the same (co)sections as Q).

2.3.1 Acyclic reduction conserving sections
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Definition 2.10 The acyclic reduction @j,, of ) is the subquiver with vertices V' and
edges B*=E\ | ] Ewn(R).
REMSC(Q)

Example 2.4

Continuing examples and
MSC(Q) = {71, Ry}. The acyclic re-
duction (with respect to the ear decom-

position from , Q;., 1s given by the
solid lines of:

By construction, ()}, as no cycle. In order to build a representation A} of ()}, such
that I'(Qf,, Al) = I'(Q, A,) we start by applying the transformation from last section
independently to each R € MSC(Q). For v € V let:

o,ter K (R, (AJ)r ifv=p(R
A® _{ (év i) if v = ()

Note that A2™" may not be a representation of Q},,.. For instance, in example , the
representation map of the black edge going to 71 has no reason to land in K(Ry, (A,)r,)-
Hence, we restrict the representation to account for the dependence between the subquiv-
ers of MSC(Q) and to obtain a valid representation of Q..

Definition 2.11 Let R € MSC(Q) and v € V. The constrained space induced by R

on A2 is:

Ao = {2 € AV | Ap(z) € K (R, (Ad)jr)) ,¥p € P(Qfer, vs p(R))}

We define

REMSC(Q)

Proposition 2.10 A} is a valid representation of Q)},,.

Proof. Let e € E*, R € MSC(Q) and x € Ay g. For all p € P(Q},,.t(e), p(R)), we
have, Ap(Ac(2)) = Acp(x) € K(R, (Ad)r) i-e. Ac(x) € Aye),r- O

Proposition 2.11

(QL,, A2 < (Q, A)

Proof. First, @, A5 C P, A, and E* C E so we only need to prove that
D(Q,A.) C @, AL and T(Q,, AZ) C T(Q", Ad).

Let v € T'(Q, A,) and R € MSC(Q). y restricts to a section of I'( R, A,). Hence, by
lemma Yor) € K (R, (Ad)r) = A;’(tg)" and by compatibility, for every v € V and
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every p € P(Qfem v;ﬂ(R))> Ap(%)) = Yp(R) € A;kt]%n Le. Y € ﬂR AU,R = A:

Let v* € I'(Q},,, A}). Since A’ is a restriction of A, for e € E*, we only need
to check the compatibility on E \ E*. Let e € E'\ E*, there is R € MSC(Q) such
that € € Ej..(R). If we denote ® the map from the proof of lemma [2 - 2.5 applied to R,
we have (7;)vev(r) = (7)) (because of the compatibility on £\ E). Moreover,
Tor) € Ay © K (R, (AW)r), s0 (7})vev(r) € T(R, (A4)r) and in particular v* is
A ,-compatible with respect to e. O

2.3.2 Acyclic reduction conserving cosections

Definition 2.12 The acyclic reduction @
edges B*=E\ | J Eim(R).
ReMSC(Q

i of @ is the subquiver with vertices V' and

Example 2.5

o—(11)
Continuing examples and 2.3 Q% 2 \
is given by the solid hnes of: @ o/_\‘o'

R2 Rl

By construction, ()}, has no cycle. Our goal is to find a quotient A of A, such that
A(Q:, AL) = A(Q,A,). For v € V and R € MSC(Q) we denote ¢t[v] the unique path
from v to p(R) in Tj,(R) and we define:

Lyp= Y TmA, o0 (A — Agrye) © Ac)

€EF;n; (R)

Af = Ao / 3 .

R € MSC(Q)
P € P(Qfni: p(R),v)

For v = p(R), we have P(Q%,, p(R),p(R)) = 0. We continue to use the general
formula with the convention

Yoo L= Y Im(Agnpe) — Agrpe) © Al

pEP(p(R),p(R)) e€Eini(R)

Notice that for R € MSC(Q), one has A ) / 2 peP(p(R)p(R)) Ink = CK (R, (Ad)ir)-
Quotienting by P(Q5.;, p(R), p(R)) is equivalent to applying independently for each R €
MSC(Q) the transformation from section 2.2 The other paths account for the depen-
dence between the subquivers of MSC(Q).

Proposition 2.12 For € € E*, A, induces a map A} : A*

s(e€)

— Aj(e)
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Proof. Let e € E*. We will prove that A, sends representatives of a class of A:(g) to
the same class in A:(e)

e First assume that s(e) # p(R) for all R € MSC(Q). We only need to check that
for R € MSC(Q), e € Eii(R) and p € P(Q5,;, p(R), s(€)):

A (ImA, 0 (A — A ©A)) €Y. > Lk
R peP(p(R).4())

But (p, €) € P(Q7.:, p(R), t(€)) so

Ac (Im Ay o (Agris(e) = Agrpie) © Ac)) = T A, © (Agrps(e) = Agrsey) © Ac)
€ lpo.r

e if s(€) = p(R) for some R € MSC(Q), we also need to check that:

Al Y ImAgrpe) —Appei oA | €Y Y. Lk

eEEini(R) R pEP( ( ) (6))

Since( ) S P(le, ,0<R) t( )), A€ <Ze€mi(R) Im(AqR[S(e)] —A qR[t(e)] © A )) = I(e),R
[]

As a consequence, A} is a representation of Q7.

Proposition 2.13 (Q7,;, AZ) 3 (Q,A,)

Proof. By definition:

Uev /Z Ta. (e

ecE

Let g be the quotient map @, A, — €@, A}. By proposition [2.12 ¢(Za,(e)) = Zaz(e)
for e € E*, hence ¢ induces an isomorphism:

8@ a) =D/ (s L )iy

R wveV pE'P(Q;‘m,p(R),U) ecbE*

Y Iale)=) D i ( > Jp,R) + 3 Za.(e)

PEP(p(R),v) ecE*
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Let e € E\ E*, let’s prove that Im(i () —i¢e)0Ac) is included in the right term. There
is a unique R € MSC(Q) such that € € Ejy;(R). By lemma 2.1}, Im (4s(e) — () © A gr[s(e)])

and Im(iye) — i5(r) © Agrye)) are included in ) . p. Im(ige) — dye) © Ae). And:

Im(45(e) — tg(e) © Ae) € Im(ise) — Gp(r) © Agrs(e))) C Z Im(ig(e) — te(e) © Ae)
ecE*
+ Imipr) 0 (Agris) = Agripe) © Ac) = lp() > IR
PEP(Q},;,p(R),p(R))
+Im(ye) = p(r) © Agriyo)) © Ae C > Im(ise) = ise © Ac)
e+

Let R € MSC(Q) and v € V' \ {p(R)}, let’s show that for p € P(Q%,;, p(R),v):

v (Ip,r) € ) Im(is(e) — i) © Ae)-

ecE
Let € € Ean(R),
i © Ap 0 (Agn(s) — Agriy(e) © Ae) = iv 0 (Aggriso)) — Apariio].o)
= (iv © Agpgrisol) — is(0) = (v © Agpgrireg) — is0)
Then by lemma applied to the paths (p, ¢"[t(¢)]) and (p, ¢%[t(€)], €) in Q:

i 0 Ay (I (Agrisg — Agrpo) © Ac)) © D Tm(ise) — i) © Ac).

eck

This concludes the proof in the case where v # p(R). When v = p(R), we apply instead
the lemma [2.1 to ¢%[t(e)] and (¢%[t(€)], €). O

2.4 Arboreal replacement

Let Q = (V, E) be an acyclic quiver and A, a representation of Q).

2.4.1 Augmented quiver

The closure of the following relation on Vdefines a partial order on V:

u < v <= there is a path in ) from u to v

Definition 2.13 We denote V,,,;, and V4, the minimal and maximal vertices of V' for
the relation <.

e Q = (V- =VU{rh,E-:= EU,q. {(r,v)}) is the negative augmented
quiver
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e Q" = (VI :=VU{r},ET :=EU,. {(v,7)}) is the positive augmented
quiver

Example 2.6 Continuing our running example:

VAN NN

ter Qi

For v € Vin, my : Huevmin A, — A, is the canonical projection and for v € V4.,
Lyt Ay = @D,ey. Ay is the inclusion.

Let A, be a representation of @, we define A, and A which are representations of
respectively @~ and Q% by:

A_'—{ A, ifveV {Ae ifeeF

v ey, Ay ifo=7 and A, = m, ife= (r,v) with v € Vi,

Similarly,

A ifveV A, ifeekFk
+ . v + . e
Aq) = { @vevmar A,U 1f - and A'e = { Ly 1f e = (’U’ 7’) Wlth v E Vmaz

Proposition 2.14

e The projection @, .- A, = @, A, induces an isomorphism
F(Qia A:) = F(Q> A')
e The inclusion @, ., Ay = @, .+ A induces an isomorphism

A(Q,A,) 2 A(QT,AT).

Proof.
) g =y where 7y := { (7) ’ Fo— is an isomor-
(oer Wit O
phism.

e For v € V*, i} denotes the inclusion A} C @, + A, Since for v € V44, the
projection P,c\+ A — Ay induces an isomorphism Z,+((v,7)) = Im(i) — 3} o
Ly) = A}, the following sum is direct:

D Zar(w,n).

UEVmaz
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Moreover, since A N Y 5T+ (e) = {0},

(Z:fme)) NP Zus(w,r) = {0}.

eeE VEVmax

Hence, using corollary [A.T]

dim A(QT,Af) = dim A(Q, A,) + dim Af — Y dimIm(i} — i} o1,)

VEVmax VEVmaz

=dimA(Q, A,).

Finally, the inclusion @, ., A, = @+ A, induces a surjective linear map
A(Q,A,) — A(QT, A}) which is also an isomorphism because of the dimensions.

]

Hence we can replace Q by )~ to compute sections and by Q* to compute cosections.

2.4.2 Out-tree replacement

The goal of this paragraph is to compute I'(Q~, A ).

Definition 2.14 For v € V~, we define inductively the flow space ®, C A, and the
flow map ¢ : &, = A :

o &, :=A" and ¢, = idA:

e Let v # r such that (®,,¢,) is already defined for all u < v. In particular, it is
defined for the sources of all edges in E, (v) :={e € E~ | t(e) = v}. Then:

o, = Eq{(Ae_ © 9255(6))‘@4] | ec E;L<U)}

and ¢, = (Ae_ o (bs(e))l% for any e € E; (v), where Eq is the equalizer and

= () Dy

e€E, (v)

V7)) = (A5 9)

[ —

v — @,
let Q, = (Vg E_,) be the subquiver of @~ induced by V_, :={u € V™ | u < v}.

By construction, the assignement { is decreasing. Forv € V—,

Proposition 2.15 For v € V and p € P(Q~,r,v), we have ¢, = (A*)|<I> .

P

Proof. By induction on (V, <) we have:
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e For v € Vmi’ru P(Qia r, U) = {(7”7 U)}, S0 ¢v - (A(r,v) o ¢T)\<I>v - (A(r,v))<1>v~

e For v € V'\ Vi, any path from r to v is of the form p, e with p € P(Q~,, s(e))
and e € E, (v). Then by induction and since v — ®,, is decreasing:

Do = (Ae 0 Ps(e))ja, = (Ac 0 (Ap)a, ) )a, = (Ape)a,

Proposition 2.16 Let v € V, one has &, =, Eq{A; |peP(@Q,r, u)}

Proof. Let v € V, by proposition [2.15; &, C Eq {A; |peP(@,r, v)} and
since u — P, is decreasing,

®, C (% C[)Ea{A, |peP@ ,ru)}.

u<Lv ULY

If v € Viin, @ = Eq{Apn} = Nuo Eq{A; | peP(Q,rv)}. Letv eV
such that proposition holds for u € V_,, then by induction:

(VEa{A, IpeP@ ., rw)}< (] () Ea{A, [peP@ ,ru)}

uv ecE, (v) u<s(e)

C ﬂ (I)s(e) = q);
e€E; (v)

Then using proposition [2.15

(Ea{A;, |p€P@Q,r,u)} CEA{(AL,); | € € B, (v),p € P(r,5(e)} = .

uv

Proposition 2.17 Let v € [, - A;, one has forv € V:

('VU)u@J € F(Q;m Ao_) <~ 7 € P, and Vu < v, v, = ¢u('7r)

Proof. Letv eV,
By compatibility, for u € V_, and p € P(r,u), A,(7r) = 7, is independent of p:

Tr € ﬂ Eq{A; | pE P(Q_7T7 u)} CI)U and Vu e V<_1n ’Yuqsu(’}/r)

u<Lv

For e € E_, there exits p € P(Q~,r,s(e)). By proposition [2.15

Ac(Vs(e) = Ae 0 se) (V) = Aep(Wr) = Dre) () = Vi(e)-
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]

Let T~ be any spanning tree of Q~ and A’ ~ the representation of T~ defined by:

A, if s(e) #r
A)la - ifs(e)=r

A, ifv#r

e e
A, _{muevmaxq)v oy and A, —{<

Proposition 2.18

(T, A,7) (@, AL)

Proof. Lety €[], ., A, we have:

YeT(Q,A]) <= YWeV, (Yu)uw € P(Q;on—)
YV € Dy
Vu<v, Y%= ¢U(7T)

Tr € mveV (I)U
<:> max
{ Yo €V, 7 = (V)

<:>VUGV,{

Hence the map z € (o, @y = (u(7))vev- € [~ A, restricts to an isomorphism
ﬂvevmm o, 2T(Q,A,). But by proposition , the same map is also an isomorphism

&, = (T, A’"). Thus, (T—, A, )< (Q,AD). 0
UGVmaz

2.4.3 In-tree replacement

The goal is to compute A(Q*, A™). Like for out-trees, we introduce for v € V:

e s, = (VZ,, EZ,) the subquiver of QT induced by {u € V* | u > v}

o E!,(v):={e€ ET|s(e)=v} and we choose e, € E},(v).
The sequence { UUO B ; (: ) is increasing in (V*, <) and stops when wu,, = r. Since
n+l — Un

Q1 is acyclic, it happens in finite time. Hence, we obtain a path ¢[v] € P(Q;v, v,r). Its
representation A, can easily been computed inductively.

Definition 2.15 We define the co-flow space, ¥,, = At /Bv where B, C A is built
inductively on (VT, >):

e B.:=0
e assume B, is defined for u > v, then let B, := Z By(ey and

eEE;rut(v)

B, := B, + Z Im (Agit(e)] © Ae — Agip(ery) © Aer) -

(e,e")EES,(v)?
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> fAF . .
From the definition, it is clear that { 7(JV 2) : gubspaces of A7, C) is increasing

and thus v — dim U, is decreasing. The next proposition shows that for v € V, [Aq[v]]\pv,
the class of A;r[v} in ¥, plays the role of ¢, in paragraph [2.4.2]

Proposition 2.19 Let v € V, then for all p € P(Q",v,r), one has [Af]y, = [A;r[v]]

Proof. For v =r, P(Q",r,r) =0. Let v € V such that the property holds for all
u > v. Let p € P(QT,v,r), p can be decomposed into p = e, py where e € E},(v)
and py € P(QF,t(e),r). We need to prove that Im(A} — A;“M) C B,. By induction,

IIIl(xAJr A+ ) g Bt(e) and

alt(e
Im (A7 = Aj,) = Im (A}, 0 AF — Al 0 AL)

+ + + + + +
C Im ((A — Al 0 Af ) +Im(Ay .y 0 A — Al 0 AL)
< Bt(e) + B, = B,

Proposition 2.20 For v € V,

ZZIm )

uzv  P(u

where the second sum is over (p,p’) € P(QT,u,r)>.

Proof. The result is proved by induction.
e For v =r, B, = 0 and the second sum is empty.
e if the equality is valid for v > v, since u — B, is increasing:
> > Im(A => B,+ > 1 — A%)

uzv  P(u,r)? u>v p,p' €P(v,r)

The result to prove becomes:

By+ > Im(Af oAl —Af oAl =B+ Y Im(A;-A})
e’ €EL (v) p,p'€P(v,r)

N /

-~

v,
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Let e,¢’ € Ef,(v), since e, g[t(e)] and €', g[t(e')] are paths of P(QT,v,7),

calt(e)] ~ A gt Z Im(A,; —A7).

(v,r)2

Im (A+ o A: = A;'[t o A+) = Im(A

[t(e)]

Let (p,p') € P(Q",v,7)?, by proposition 2.19, [Af]y, = [A;r[v] = [A)]w,,
so Im(Af — AY) C U,

]

Lemma 2.3 Let v € V, one has

ZIA+ ZIAJr 6u —|—Z B)

+ u=v
eEE‘/v

Proof.
Let e € EY,,

+ -+ +_ o+ At
Z5(6) o Zzt(e) © Ae <zs(e) & © ACI[S(@)]) q[s(/' r\[t

(Zte OAq[t )OA: s(e) ————— t(e

i+ oA+
i (Aq[s a1~ Aqg

qlt(e)]
So,

Ta:(€) € Taz (als(@)]) + Zag (@) + i (In(Af 0y — Al o) -

By lemma , for ' < v, Tp+(q[u']) C > ., Zas(eu). Moreover, by proposition m,
Using prop. [2.20, we only need to prove that for v € VZ, and p,p’ € P(Q",u,r),

Im (i 0 A} —if 0 AZ) C Y Tys(e)

eEE;U
For such u, p,p’, one has

Im (57 0 Af — i 0 AF) = Im (i — iF 0 AF) — (i — if 0 AY)) € Ty () + Tz (7)

u

But lemma [2.1] implies that Z,+(p) and Z,+(p') are included in ) 5, Zps(e). Finally,
i (Bo) = Xy pp b (Im(AF — AZ)) C 3 pr Tys(e). O

w,p,p” T
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Lemma 2.4 Let W C V. The following sum is direct:

(@zuiten) D

ueW

Proof. We prove the result by induction on card(W).

e For W = {v}, if v & Vj,4s, then it is obvious. Else if v € V4, let y € AF such
that i (y) — 4 o A} (y) € Im(4;). We have i (y) = 0 so i (y) — 4,7 (AL )(y) =0
and Z,+(e,) N Im(i) = {0}.

e Let W C V such that the result holds for any W’ with card W’ < card W. Assume

0= Z (& — it(ea) © A, )(Tu) + i (2)

r>u>v

where z, € A, for u € W and z, € A]. Let v € min W, then u is not the
target of any of the (e,).ew. Hence, the projection on A} gives i (z,) = 0 and
x, = 0. Applying the induction hypothesis with W \ {v}, we obtain that for all
u€ WuU{r}, z, =0 i.e the sum is direct.

O

@u}v A;— — Av—"i_
(Tu)uze = Zu>v A(—;[u] (@)
(where A :=1id,+) induces an isomorphism A(Qs., AJ) = V,.

Proposition 2.21 For v € V', the map ¥ {

Proof. By using lemma [2.3

+ +

U= U=
+ u=v
eEEZU Z

By lemma [2.4] applied to V%, the following sum is direct:

(@%r(%)) D (B.).

Hence,
dmAQs, AY) = Y (dimAf — dimZ,; (e,)) + dim A} — dim B, = dim A /B

r>u>v

FinanY? A(Q>v7 Aj—) = ‘Ilv-
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U is well defined from A(Qs,, A) to U, since V(i (B,)) = B, and for r > u > v
and x € Af, Uil (x) — iye,) © AL (2)) = Agu(z) — Acygii(en)(®) € B,. More-
over, V¥ is injective. By the equality of dimensions, ¥ induces the desired ismorphism

A(Q2U7AT) = \I]U' L

Let Tt be a spanning tree of Q1 and A’" the representation of T defined by

A ifvr A, if t(e) #r
+ v +
A _{ AY ) Soev By ifv=r and A, —{ Ay, 5 iftle)=r

min

Proposition 2.22

(T, AL) S (QF, AY).

@uev+ A:[ — A:_

(Tu)uev+ > Dyev+ A;r[u} (@u) -
proof of proposition m U is well defined from A(Q,A}) to AS/ > ey, By and
is injective. Moreover, for y € A} and v € V,;,, by the isomorphism of proposition
2.21} there is # € @+ A with ¥(z) € y+ B, € y+ >, B, Hence ¥ in-
duces an isomorphism A(QT,A}) = Af / > vev,, Bv and since for x € @, o+ A
[(¥(2),0,...,0)]a0+.as) = [T]a+ as) - the inverse of this isomorphism is induced by

-+
i,

Proof. Let \II{ For the same reason as in the

By the proof of proposition applied to (TF,AL"), ¥ also induces an isomor-
phism A(T*, AJf) = Af /> ., B, which inverse is induced by the inclusion of
: AQTAY) — AT, A))
Af B, in At Hence e e
P/ Doeri, B in DA { Fagaty = [(B@),0. ., 0lyrs an
duces an isomorphism A(Qs,, Ay) = A(T*, AY). But for z € @+ A, and denoting
¢'[u] the path from u to r in T7:

n-

(U(),0,...,0)as arhy = (@ + > A (24),0,...,0)] s+ azry by definition

u#r
(st Z Aq [u] c 7O>]A(T+,A’.+) by prop
uF#Er

= [(@r, @upr)larras)  since Tyu(q) = 0in AT, ALY)

Finally, (T+, A%) 2 (Q*, A7). 0

2.5 Connected components

A simpler trick to improve efficiency of (co)sections computations is to process sepa-
rately each connected component. This technique is independent, but not incompatible,
with the method described above. It is not part of [SHN21|, and is my own idea because
I thought that isolated vertices may sometimes arise in real applications.
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Let @ = (V, E) be a quiver with a representation A,. Assume that V' can be parti-
tioned into two subsets Vi LU Vo = V' without any edge between the two: there are two
subquivers Q; = (V1, E}) and Qy = (Va, Ey) such that £ = E; U E,. Let Al and A2 be
the associated restrictions of A, to ()1 and ()s.

Proposition 2.23

I'(Q,A.) =T(Q1,A) x [(Q2,A?)

Proof. For v € V, we denote the projections m, : [],.,, Au — A, and for i € {1,2}
such that v € Vi, 7}« [[,ep, Au — Ao

F@AQ:{%W HA x (TTAv) | Ye € By U By, myey(un, uz)) =

Va ‘Ae Oﬂs(e)((UbuQ))}
wea,@J)—Aow(w
= { Uy, Us) 'u) X (I;IAU) Ve € E,, Wfie;( ) = A, ows(e (uz) }
(@i, A ) X F(Q27A2)
O

More precisely I'(Q, A,) = ['(Q1, AL)xT'(Q2, A?) is induced by the isomorphism ( Iy, Av) X

Proposition 2.24

A(Q,A.) = A(Q1,A,) © A(Q2, A7)

Proof.

B (GV?A ®A / @IA. @IA.
:G\/?Av/@IA.( /@IA.

= A(Q1,Al) & A(Qy, A2)
u

More precisely A(Q,A,) = A(Q1, Al) & A(Q2, A2) is induced by the isomorphism
(@\ﬁ A“) & (®V2 AU) = 69\/ A

2.6 Generalisation to other categories

In remark [1.1] a quiver with a representation is seen as a finite diagram in the category
Vectpin_aim(IF) of finite dimensional vector spaces over a field F. Annex defines the
notion of finite diagram in a general category. The method described in this section to
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compute (co)limits for quivers with a representation could be extended to diagrams in
other categories. As an example, we give here a generalised proof of the computation of
limits in out-trees and strongly-connected quivers.

Let C be a category with all products and equalizers. By proposition [A.2] finite limits
exist in this category. We use the notations of annex , for instance denoting X
the pullback. Let D : J — C be a finite diagram in C. We name the objects of 7,
ob J ={A1, Ay, ..., A,}. [SHN21|] suggested but did not prove that a generalisation of
the method was possible. The following propositions and proofs are my own.

Proposition 2.25 Assume D to be an out-tree i.e. cardhomy(4;, 4;) = 1,¢; for

1 < 4,57 < n. Then denoting A;; the unique map of homy(A4;, A;), we have that
(D(A1), D(A1,),) is a limit of D.

Proof.
First, it is a cone of D since for 1 <i < j < n, Aj;;0 C
Ay; = Ay by uniqueness of A;;. Then if (C, (¢y), is l"ﬁl
another cone of D, and a: C' — D(A4,), o s
Ay
Yu, ¢, = Ay 00 <= a = ¢ / \
A1z Asg
So (D(A;), D(Ay,),) is a limit of D. Az As

Proposition 2.26 Assume D to be a strongly connected diagram (for 1 < i,j < n,
card(homy(A;, A;)) > 0). Let Qs be an ear decomposition of the associated quiver
) with root r. By removing all the maps of J corresponding to terminal edges of
()., we obtain an out-tree diagram D’ : J' — C. We denote A, ; the unique map of
hom/(A;, Aj). Let

L= >< (Eq (D(Al,t(6)>? D(AS(E),t(ﬁ)) © D(Al’s(e))))eeEt”(Q)

D(Ar)

and let ¢ : L — D(A,) be the map defined by the pullbacks. Together with the maps
(D(A1,) 0 @)y, L is a limit of D.

Proof. For e € E,.(Q) we denote B, := Eq (ALt(E), Ag(o)t(e) © Al,s(e)) and eq, the map
B. — A, defined by the equalizer. We also enumerate Fi.,.(Q) = {€1,...,€n}-




Let’s prove that L is a cone of D. By definition of the maps, it is already a cone of D’. Let
€ € Eir(Q), we only need to check that, poA; ye) = p0Ay(e) ()0 A1, 5(e)- But for some map
f we have, ¢ = foeq,. By definition of the equalizer eq, 0 A; ;) = eq, 0 Ay() t(e) © A1,s(e),
which concludes that L is a cone of D.

Let (C,(¢y),) be another cone of D. By universal property of equalizers, for all
1 < i < m, there is a unique C' % B, such that eq,, o a; = ;.
Assume that the following diagram (except the
dashed arrow) is commutative. Then by property
of pullbacks there is a unique 3; : C' = X, (Bj);<i
which makes the whole diagram commutative.
Hence, by induction on 1 < ¢ < m, there is a map l Jeq ;
Bi: C = X, (Bj);<i such that ¢; o 5; = 1, thus G, $i1
verifies AIW%T(b ojﬁjm =, for allv e {1,...,n}. X Biici == Ar
Uniqueness is proved similarly, using at each step of the induction the uniqueness of «;
and then of ;. ]

X, (Bj)j<i — B

F

3 Implementation of the method

3.1 Scope and description

One of our main contributions is the implementation in Python of an algorithm to
compute finite (co)limits in the category of finite-dimensional vector spaces. Given a
quiver () and a representation A, of (), the limit is computed following the method
described in section 2| and article [SHN21]. As for the colimit, we use the algorithm for
limits on the transpose quiver and representation, as suggested by proposition [1.4]

The obtained algorithms work on any field. Classical fields (R, C, Q, [Fy) are predefined
but custom fields may be added by creating an object ”element of the field” and overriding
the operators +, —, —(unitary), x, /,=. In the case of the fields R or C, the most time-
consuming computations are replaced with faster functions exploiting the properties of R
and C and the compatibility with the module numpy, partly written in C.

Naive implementations using directly formulas from proposition [1.1] and definition
are also available. They are used as a benchmark in the performance analyses of next
subsection and as an empirical verification of the correctness of our algorithms.

In comparison with the description from [SHN21], our algorithm computes separately
a limit for each connected component before using the results from subsection 2.5 This
idea, although quite simple, brings important gains in time for quivers with few edges.

The theoretical description of section [2]is quite precise. In addition to the implementa-
tion of the basic matrix operations, only the computation of the constrained representation
spaces in the acyclic reduction step (definition needs to be detailed.

These constrained representation spaces, A}, are computed as backwards breadth-
first searches starting from the roots of each strongly connected component. Keeping
the notations from definition , when edge e = (u,v) is explored for the i*® strongly
connected component R;, the representation space of v has already been replaced by

AU,R]).

N,<i Av.r,;- The representation space of u is then intersected with A7 (ﬂ i<
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The main basic operations in this algorithm are intersections of linear subspaces and
kernels of linear maps. The latter is computed either with a singular value decomposition
if the field is R or C as in proposition or by Gaussian elimination of the augmented
matrix as in proposition [A.6] The intersection of two subspaces spanned by U and V is

computed as {U u | ( Z ) cker(U | - V)} Inverse images are always solved with

a Gaussian elimination. In the case of R or C, entries very close to 0 are regularly flattened
to 0 to improve stability and display. The threshold to flatten to 0 is e = 10712, This
parameter is important for the correctness of the algorithm: if € > 107'%, the probability
to have a matrix entry in [—¢, €] is no more negligible, since the number of matrix entries
computed in an hour is ~ 10'°. Similarly, if € < 107'%, numerical errors do occur.

The output of the limit algorithm is:
e the dimension of the limit together with
e the matrices of the maps lim — A, for v € V.

Since the limit is only defined up to isomorphism, the maps are dependent on a choice
of isomorphism from the algorithm. In option, this choice can be made so that the map
to the largest representation space has a matrix in echelon form with only unit pivots.
Different testing functions are provided including quivers from example|1.2|in the different
predefined fields

3.2 Performance analysis

The naive approach implementing the formula from proposition uses cubic operations
like intersections in the total space which has very high dimension. We will see that the
approach described in section [2] will reduce the size of the space in which computations
are made, and thus enhance considerably the performances.

To simplify the analysis, we assume that all representation spaces have the same
dimension k. If it is not the case, one can use £ = maxy dim A, and obtain upper
bounds for the time complexities. We denote n = |V| and m = |E|. The basic functions
(intersection, kernel, inverse image) which are done through Gaussian pivot or SVD are
cubic in the dimensions of the matrix and so are matrix multiplications. Those dimensions
are often large as we are dealing with subspaces of the total space. Other operations
including the graph searches and matrix constructions will be in practice negligible. As
complexities are the same for sections and cosections, we only consider sections. We
call naive approach the use of formula [I.1] and we speak of advanced approach for the
implementation of the method described in [SHN21] and section [2|

3.2.1 Theoretical time complexities

Rough worst-case complexity bounds for the naive and advanced approaches can be found
easily, but we will see later that our algorithms are in practice much faster than the
described bounds.

Naive approach The complexity of the naive approach using propositionis O(m(kn)*)|

Indeed for e € E, ker(mye) — A 0 Ty()) is a subspace of the total space of dimension kn.
It might be represented by a matrix as big as kn x kn .
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Assume that there are Noo = o(min(m,n)) connected components of the same size

in the quiver ). The complexity of the naive approach with separate computations for

each connected component becomes O <m(%)3> In reality, this gain is only important

when there are few edges, as otherwise NC'C' is often close to 1.

Strongly connected quiver We consider the complexity of the strongly connected
step (subsection for a strong quiver of size n,m. There are three phases for this step:

e Finding the ear decomposition which takes O(mn)
e Building the paths in the tree: |E| — | Ey.,| multiplications i.e. O((|E| — |Eier|)k?)
e Computing K with |Ey.,| intersections in A,: O(|E,|k?)

Which gives a total of O (m(n + k?)). However, we expect the constant for the graph
search in O(mn) to be small.

Acyclic reduction The step described in subsection is realized through a breadth-
first search for each strongly connected component. If we denote Ngoe the number of
strongly connected components, the cost of computing A} from the sections of each of
the strongly connected components is O(Ngoc x mk?).

Arboreal reduction Applying the method of subsection to an acyclic quiver of
size n,m gives a time complexity O ((m + [Viuaz|) (k|Vinin])?). Indeed, in each edge
is associated with a finite number of cubic operations (1 binary equalizer, 1 intersec-
tion, 1 matrix multiplication) in the space A of dimension k|V,,;,|. Moreover, the final
computations of proposition are | V4| intersections in the same space.

Before looking at the finished algorithm, the first and last steps can already compute
limits in the case of respectively strongly connected and acyclic quivers. The time com-
plexity of applying these parts of our algorithm directly to the corresponding special cases
is compared to the naive approach in following table.

Acyclic quiver Strongly Connected | Naive
# cubic operations |E| + | Vinaz| |E| |F|
Computation space A= Hvevmm A, A, [Lev Av
Time complexity (IE] + [VinazDE? | Vinin|* |E|k3 +mn |E|3|V]?

Advanced approach By summing the complexity of each step, we obtain a total com-
plexity of:

O (mn + (m + |Vmaw|)(NSCC + |Vmin|3)k3> (2)
Let’s look in more details at each of the terms of equation :

e The term mn, which comes from the strongly connected step is rough upper bound
of O (ZReMSC(Q) mRnR) where mp and ng are the number of edges and vertices
of R. For instance if all strongly connected components are of the same size, the
complexity of the graph search is O <%) Moreover, since the graph search is
made of simpler computations, we expect the constant to be small in practice.
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e The term (m + |Viaz|) Nscck?® is also at most quadratic in the size of the quiver.
Furthermore, Ngc¢ is sub-linear in n and m in most examples of families of quivers.

e The term from the arboreal reduction m|V,,,|3k is the only one which is not
quadratic in the size of the quiver. Compared to the naive approach complex-
ity, we have replaced a factor |V|> by |V,in|?. When the are very few edges we have
|Vinin| = |V | and, on the contrary, we expect to obtain |V, << |V| when m > n.
For instance let’s take a quiver generated through the Erdds—Rényi directed model
(see with probability p = =. Then the probability of a vertex u to be minimal
is (1 —p)"! “ and the expected size of |V,,;,| is ne™®, asymptotically. This
means that when we increase linearly m, the number of minimal edges decreases
exponentially. In this model, when m > n, the gains of our algorithm compared to
the naive approach will be significant.

~ e

In summary, our theoretical upper bound suggests that our algorithm will have a
complexity better than a polynomial of degree 4 in the size of the quiver when m < n and
better than quadratic when m > n. Unlike the naive approach, the advanced approach
seems to be slower when there are only a few edges.

Computing separately each connected component could help overcome this flaw. In
the case where m < n, we have Noc = n, |Vl = |V| and the term m(|V,imk)? is
dominant. In this case the gain could be as much as %

3.2.2 Empirical time complexities

The empirical time complexity is tested on families of random quivers indexed by the
number of vertices or of edges. More precisely, on all the following graphs, for each set of
parameters (n or m, k, method to generate @) and A,), n4ss = 15 quivers are generated
and the time is averaged on these n;.s quivers.

Generation of quivers and representations In order to generate random quivers,
we will use the directed Erdés—Rényi model (see as it is one of the simplest and
most intuitive. However, to test particular steps of the algorithm, we need graphs with
specific properties, namely being strongly connected or acyclic. Since the models are not
as intuitive as for general quivers, we provide two different models for each step. All
graphs in this essay will be generated with the first models and the second ones will only
be used as a verification.

e For acyclic quivers, in the first model, we choose m edges directed in increasing
order uniformly at random with repetitions. In the second model, for each of the m
edges, we choose uniformly at random the source in {1,...,n} and then the target
is chosen uniformly in {source, ..., n}.

e For strongly connected quivers, in the first model we gen-
erate a graph with Erdés—Rényi model. Then we select a 'QD '@
vertex in each strongly connected component and we add @_:t@:) (?
an edge between every couple of selected vertices. In the al-
ternative model, we first create a cycle 1,...,n, we then add OO O
m — n + 1 random edges uniformly at random and finally,
we shuffle the vertex order.
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In the performance tests, representation spaces are all real vector spaces of the same
dimension k, with most of the time k£ = 5. The maps are generated by perturbing the
identity matrix independently for each map. More precisely, a representation map is
obtained from the identity by adding 1 at each cell independently with probability n > 0.
n needs to be adjusted carefully. Indeed, if n is too large the limit will nearly always be
0 and if 7 is too small the limit will most of time be [, ~A,. The value n = —— works
well empirically.

Empirical results To evaluate our algorithm, we perform empirical analyses of com-
putation time for both the naive approach and the advanced approach. We want to know
how our algorithm performs for different sizes of quivers (n) and different density (m).
The two first experiments show the time analysis when n varies and m is either linear
in n for figure (1] or superlinear in n for figure |3l The last one, in figure [4] explores the
dependence on m with n fixed.

computation time for a general guiver (k=5,ER p=2/n) computation time for a general quiver (k=5,ER p=2/n}

— naive T — naive A o
0.4 advanced = advanced - =
(] “f
. e
&1
03 =
E oz E
1072
01
y ’//
10 20 30 40 50 60 70 10t
n n (log-scale)
(a) Advanced vs naive approaches (b) Advanced vs naive in log-scale
05 computatien time for an acyclic quiver (k=5.m=2n} computation time for a SG quiver (k=5,ER p=2/n)
- malve 200 — naive
advanced advanced
04 175
150
03 125
) W
E . T 100
“ors
01 0.50
025
0.0 0007 =
10 20 0 40 50 60 70 10 20 30 a0 50 80 70
n n

(c) Arboreal step (d) Strongly connected step

Figure 1: Comparison with the naive approach of the general advanced algorithm ([lal)
and and of special cases of the advanced algorithm for acyclic and strongly
connected quivers for a linear number of edges m = 2n.

Figure [1] is generated with the parameters described above and a linear number of
edges (m ~ 2n or p = %) Although the model of random quivers is different between

, and , we observe that the arboreal step (subsection seems to take as
much time as the whole algorithm. This is what we expected for a low number of edges.
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The log-log graph of performances displays an asymptotic performance gain for the
advanced algorithm even with only m = 2n edges. Using the least square method in the
log-log graph, we obtain an empirical exponent of n in the time complexity of only n'?®
and n?¢ for, respectively, the advanced and naive approaches.

Dimension of the limit with only the m® first edges (m=2n)

The empirical complexities are much faster than our -
theoretical worst-case bounds which is O(n*) for both .
approaches when m = 2n. One explanation could be fo
that the intersections to compute are most of time T
between very simple subspaces: either both spaces to m
intersect are the same or the bases are block matrices 0

0 10 0 30 40 50
m

with all blocks being idy or Ogy,. That’s why in figure
2] the dimension of the limit goes down nearly always Figure 2: Dimension of the limit
by either 0 or £ = 5 when a new edge is added to the for the subquiver with only the

quiver. m’ < m first edges of a quiver
with m = 2n = 100 edges

Figure (3] is generated with the same parameters as figure |1 except for the number
of edges m ~ 2n'? (or p = %) In this situation our algorithm allows to compute in
reasonable time quivers nearly 10 times bigger than the naive approach . Comparing
with figure [I} the time complexity of the naive approach increased with the number of
edges and the exponent in [Ib] and [BD] hints that the increase is linear in m. On the
contrary, the advanced algorithm is much faster with denser quivers as the decrease of the
dimension of the space of computations, |V,..,|k, allows important speed gains. We also
observe that general quivers are easier to compute than random acyclic quivers. This is
due to the fact that a quiver with a huge strongly connected component will nearly be
an out-tree at the end of the acyclic reduction and thus have much less than m = n'?
edges. Indeed, proposition [A.7] shows that our quivers are strongly connected with very

high probability when m ~ n'2(or p = —55) but not when m = 2n (or p = 2).
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Figure 3: Comparison with the naive approach of the general advanced algorithm ([Lal)
and and of special cases of the advanced algorithm for acyclic and strongly
connected quivers for a superlinear number of edges m = 2n'?2.
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Figure 4: Comparison between the naive and advanced approaches with or without com-
puting separately each connected components, for n = 25 and m varying.

Figure {4 shows the impact of changing the number of edges on the computation time
for a quiver with n = 25 and k = 5. We observe in figure , that the advanced approach
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without computing separately each connected component (green) is worse than the naive
approach for m < n. However, the advanced approach with separate computations for
each component is always better than the naive approach. In figure , one can see that
while increasing m makes the naive approach slower almost linearly, it has no significant
effect on the advanced approach. More precisely, increasing m makes computations easier
when m & n as it reduces |V,,;,|. On the contrary, when m > n, |V,,;,| is already close to
1 and increasing m increases the complexity as there are more intersections to compute

but the overall time remains small since the computation space is often of dimension only
k.

As explained above, the implementatjon computation time for a general quiver (k=5,ER p=2/n"0.8)
of the most costly operations are optimised ’ e
for computations in the field R. We see naive F_2
in figure [5] that computations take much o8 e
longer in Fy both for the naive approach
(green vs blue curbs) and the advanced ap-
proach (red vs orange). A log-log analysis
shows that the exponent of n in the ad- 0z
vanced approach does not increase signifi- 00
cantly in Fy compared to R, which suggest o L » » @ W= @ 7w
that a large part of the difference could be
due to the use of faster C-based numpy. Figure 5: performances in Fy vs R

Conclusion

Summary The point of view of quivers and representations, helped devise a new method
to compute finite (co)limits in the category of finite-dimensional vector spaces. The
strategy of this advanced approach, described in [SHN21], is to remove cycles and parallel
paths to obtain out(in)-trees, which (co)limits are easy to compute. (Co)limits can also
be computed directly, but it involves operations on very large matrices. The advanced
approach, which uses smaller matrices, is thus necessary to compute limits of large quivers.
My main contribution has been to implement this algorithm. It is in practice much
more efficient than the direct computation, especially when the quiver is dense: for real
representations, one can compute limits of (not too sparse) quivers with hundreds of
vertices.

Outlook This dissertation could be continued in several directions:

e The propositions of section [2 could probably be generalised to any (co)complete
category. The general proofs for the simplest propositions are already given in
subsection 2.6, One could write and try to prove a generalised version of the entire
method.

e The scope of the algorithm could also be extended to other category. We do not ex-
pect our algorithm to be easily adaptable to any (co)complete categories. However,
it would be interesting to make our algorithm work for modules over a ring and not
only for fields.

e One could find a practical example, maybe with cellular sheaves, where our algo-
rithm is useful.
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A Annexes

A.1 Quotients of finite-dimensional vector spaces

Cosections involve many quotient computations for finite-dimensional vector spaces.
We will recall here some basic properties of these quotients.

Definition A.1 Let W C V € Vectpin—_pim, we define V/W ={v+W |v eV} and

we equip it with the induced finite-dimensional vector space structure.

A useful trick to compute quotients in Vectg;,_pim is that we only need to look at the
dimensions:

Proposition A.1 Let W C V € Vectpin_pim, we have dim V' / W =dimV — dim W.

Proof.
V/W =W
Let W’ be a complement of Win V. Then ¢ v+ W > my»(v) is an isomorphism
w4+W —u
where my is the projection on W”. O]

Corollary A.1 Let V, V' € Vectpin_pim. We have:
o If W CVand W/ C V' then V@V’/W@W’ = V/W@V’/W’.
o fWEHW C VPV’ then

V@V//W@W’g (V@V//W>/{w’+w | w' € W'}

e Let W CV and ¢ € homyecty, p, (W, V) injective then V /W =V [/ ¢(W)

A.2 Elements of category theory

(Co)sections of a quiver with a representation can be seen in the more general con-
text of category theory. This annex contains the definitions and properties from cat-
egory theory used in this essay especially in sections [I] and [2.6] It is inspired from
[Leil6].

Definition A.2 (category). A category C is the data of
e A collection of objects ob(C)
e For each pair (A, B) of objects a collection of maps home(A, B) from A to B.

e For each A, B,C € ob C a composition map

(9, f) = gof

{ home (B, C) x home(A, B) — home(A, C)
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e For each A € ob C an element identity 14 € hom¢(A, A)
with the following properties

e associativity: for each (f,g,h) € hom¢(A, B) x home (B, C) x home(C, D) where
A,B,C,D € ob C, we have ho(go f) = (hog)o f.

e identity laws: for A, B € ob C and f € hom¢(A, B), we have lgo f = foly = f.

Definition A.3 A functor F' from a category C to another category D is

) obC —obD
e A function { A o F(A) and

hom¢(A, B) — homp(A, B)

e For (A, B) € ob C a function { ! o F(f)

with the two properties
o F(f'of)=F(f)oF(f) for AL AL A7inc

o F(ly) =1pu for AcobC

Definition A.4 Let J a category (with a finite number of objects and maps), a (finite)
diagram in C is a functor D : J — C. We represent a diagram without writing the
identities and the maps obtained by composition. The diagram is said to be commuta-
tive if for each A, B € ob J, card hom¢(D(A), D(B)) < 1; or alternatively, composing
along different paths with the same extremities always give the same map.

A quiver @Q = (V, E) can be associated to a finite diagram D : J — C by:
e V:=0bJ
o £:={[A, B]|3f €homs(A, B)st. f#1sand AASC S B, f=hog}

The definition of finite limits in a general category C can be obtained from definition
by replacing

e "quiver with a representation” by ”diagram in C”
e "finite-dimensional vector spaces” by ”objects of C”
e "linear maps” by "maps in C”.

Important examples includes the ones described in [I.2} products, equalizers, pullbacks.
However, in this more general setting, finite limits may not always exist.

Definition A.5 A category where all (finite) limits exist is said to be complete.

Proposition A.2 A category where all products and equalizer exist is complete.

Let C be a complete category.
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Lemma A.1 In the following diagram in C, if both squares are pullbacks then the large
A, p 2.0
rectangle is also a pullback: lhl ha lh?’

D-2sg - 2.F

Proof.

e The two square being commutative, the large rectangle is commutative:

hzo foo fi =¢gaohyo fi since the right square is a pullback

=gy0g10h since the left square is a pullback

Hence, (A, fa o f1,h1) is a cone of the diagram D — F <« C:

o Let (A’,A’,i; C’,i D) be another cone of D — F + C. (A’,A’,i; C,M E) is
a cone of £ — F < (. Since the right square is a pullback, there is a unique map
A" 3 B such that the following dia-
gram commutes:

But now (A’,a,h’) is a cone of D —
FE < B and there is a unique map

A B A such that o = fi o B and
W = hl 9] 5

Hence f' = fyo fio 8 and b’ = hy o 5. Moreover, if 5 verifies f' = fy0 f1 03" and
h' = hy o 5, by uniqueness of «, f; o ' = « and by uniqueness of 3, §' = .

]

Proposition A.3 (Associativity of pullbacks). Let A, B,C, D, E € ob(C), there is an
isomorphism (A xp C) xp E = A xp (C xp E).

Proof. Let’s apply lemmal[A.T]to the horizontal and vertical rectangles of the following
P——(Cxplt —— FE

| o

diagram made of pullback squares: 4 x5 C s O . p We obtain that

7

! |

A— B
P = Axg(C xpFE) (vertical rectangle) and P = (A x5 C) X p E (horizontal rectangle),
which means A xp (C' xp E) =2 (AxpC) xp E. O

It follows that we can write X ,(A;)ier for a finite set [ and B, A; € ob(C) without
worrying about the order.
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The dual notions - colimits, cocomplete, coproduct, coequalizer, pushforward - can be
defined in a similar fashion.

A.3 Elements of numerical linear algebra

In this annex inspired from [TB97], the methods from numerical linear algebra used in
our algorithm are explained especially SVD and Gaussian elimination.

Proposition A.4 (SVD). Let m,n > 0 and A € C™", then there is U € C™*"™
and V € C™"™ two unitary matrices and X € R™*" a diagonal matrix with entries
01 2 02 2 +*+ 2 Omin(mn) = 0 such that

A=UXV™.

Moreover, if M is a real matrix, U and V are also real.

Proof. Let’s prove it by induction on m. If m = 1, A = (||[A]]2)A*. If m > 1
let 0y = ||A]|2, by compacity, there is u; € C™ and v; € C" of of norm 1 such that
Avy = oyu;. We complete v and v into orthogonal basis U; and V; of respectively C™

and C”. Then, U*AV;, = [ 7 where w € C™ ! and B € Cm-Dx(-1),
1

!
)

" o1 w* o
o= Nl = ewavithe > | (% ) ()

So w = 0. By applying the induction hypothesis to A", A’ = U'Y'V"™ with U’ and V'
unitary and Y’ diagonal with real nonpositive entries in decreasing order. Finally,

1 0 or O 1 0 .
A:Ul(o U/)<01 E/>(0 V*/)‘/l

AN AN

> /of + [[wlf3
2

v~ v~

~
U P %

The proof still holds when A is real and C is replaced everywhere by R. O]

Proposition A.5 Let A € C"™*" with its SVD decomposition A = UXV. Then if r
is the rank of A (and the last nonzero column of ), the columns r + 1,...,n of V
constitutes a basis of the kernel of A.

Proof. The last n — r columns of AV = UY are zeros. O

This methods only works for R or C as it relies on square roots/absolute value of reals.
Its complexity is O(n?*(m + n)). The nullspace obtained has some stability properties as
very small singular values can be considered as 0.

Proposition A.6 (Gaussian elimination and kernel). Let A € C™*". We put the

- ) into column echelon form < — ) where P is invertible.

augmented matrix ( I p
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The nullspace of A is spanned by the columns of P corresponding to zero-columns of

AP.

This method works with any field its complexity is O(n%(m + n)). As explained in
[TB97], when partial pivoting is used this method is stable in practice.

A.4 Directed Erdés—Rényi model

Directed random graphs are used to test our algorithm. This annex contains the definition
of the model alongside an interesting proposition on strong connectedness proved in article

[GPOS).

Definition A.6 (Erdés—Rényi for digraphs). In the directed Erdés—Rényi model with
parameter n, the vertices are 1,...,n and for each i # j the edge (4,7) is chosen
independently with probability p.

Proposition A.7 For any € > 0, asymptotically a directed Erd6s—Rényi graph is

Inn
n

e strongly connected if p > (1 + ¢)

e not strongly connected if p < (1 — €)%

More precisely, if (G,) is a family of directed Erdés-Rényi graphs with parameters
(n, p(n))nen, then lim, P(G,, is strongly connected) is 1 if p(n) > (1 + €)™ and 0 if
p(n) < (1 — )22 for n large enough.

B Python code

The Python code corresponding to the algorithm to compute limits is provided below. It
contains neither the dual algorithm for the cosections space nor the testing functions used
to generate the graphs of the empirical performance analysis. The code is organized in 5
files: a main, 3 files for the 3 steps of the algorithm and a file for low-level functions.

main_simple.py

#linear algebra

import numpy as np

from aux_fun_simple import proj, intersection,null_space
#quiver and matriz in fields

from aux_fun_simple import Field,eye_mat,Quiver
#display

from aux_fun_simple import print_limit

#steps of advanced algo

from arboreal_simple import arboreal_out

from acycli_red_simple import acyclic_red
#graph

import networkx as nx

epsilon=1le-12

## NAIVE APPROACH
def sections_naive(Q):
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field=Q.field

#compute partial dimensions in \sum_v Av

partial_sum_Av=[0]

for i in range(Q.n):
partial_sum_Av.append(partial_sum_Av[-1]+Q.Av[i])

#Initialize Gamma as the total space

Gamma= eye_mat (partial_sum_Av[-1],field)

for i_e,e in enumerate(Q.E):
#build projections
pi_se=proj(partial_sum_Av[e[0]],Q.Av[e[0]],partial_sum_Av[-1],field)
pi_te=proj(partial_sum_Av[e[1]],Q.Av[e[1]],partial_sum_Av[-1],field)
#update Gamma
Gamma = intersection(Gamma,null_space(pi_te-np.matmul(Q.Ae[i_e],pi_se),field),field=field)
return len(Gammal[0])

## ADVANCED APPROACH
def compute_sections(Q,CC_separated=True):
field=Q.field
#if all connected components are computed together
if not(CC_separated):
Q_star,Av_star=acyclic_red(Q)
return arboreal_out(Q_star,True)
#compute the weakly connected components
G=nx.DiGraph()
G.add_nodes_from(range(Q.n))
G.add_edges_from(Q.E)
weak_compos,sub_nodes,sub_edges=[], [], []
ind_inv=[[-1,-1] for _ in range(Q.n)] #reordering
for i_compo,compo in enumerate(nx.weakly_connected_components(G)):
#butld subgraphs
sub_nodes. append (np.array (list (compo)))
sub_edges.append([i_e for i_e,e in enumerate(Q.E) if (e[0] in compo and e[1] in compo)])
#keep track of labels
for i_v,v in enumerate(sub_nodes[-1]):
ind_inv[v]=[i_compo,i_v]
#relabel
renamed_edges=[[ind_inv[Q.E[i] [0]] [1],ind_inv[Q.E[i][1]][1]] for i in sub_edges[-1]]
weak_compos . append (Quiver (len(sub_nodes[-1]) ,renamed_edges,
[Q.Av[x] for x in sub_nodes[-1]],[Q.Ae[x] for x in sub_edges[-1]]
#secttion computation by weakly connected compo
lim,maps=[], []
for Q_c in weak_compos:
Q_star,Av_star=acyclic_red(Q_c) #acyclic reduction
lim_c,maps_c=arboreal_out(Q_star,True) #arboreal reduction
#reconstruction of the maps
for i in range(len(maps_c)):
if maps_c[i] .shape[0]*maps_c[i].shape[1]==0:
maps_c[i]=np.zeros((Q_c.Av[i],1lim_c))
else:
maps_c[i]l=np.dot (Av_star[i], maps_c[il)
lim.append(lim_c)
maps . append (maps_c)
# total limit and maps from the limit and maps of each CC
lim_final=sum(1lim)
maps_final=[]
for v in range(Q.n):
i_compo=ind_inv[v] [0]
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blocks=[np.zeros((Q.Av[v],sum(lim[:i_compo]))), maps[i_compo] [ind_inv[v] [1]]]
maps_final.append(np.concatenate(blocks,axis=1))
return lim_final,maps_final

## TEST
def test_classics():
print ( " " )

print ("pullback")

Q=Quiver(3,[[0,2],[1,2]],[3,2,2], [np.array([[1,0,1],[1,1,0]1]),np.eye(2)],Field('R"'))
print(Q)

print_limit(compute_sections(Q))

print (" "y
print("equalizer")

Q=Quiver(2,[[0,1], (0,111, [3,3], [np.array([[1,0,1],[0,1,0],[0,1,1]]) ,np.array([[1,1,0],[0,1,0], [0
print(Q)

print_limit(compute_sections(Q))

print (" D)
print("different fields")
for field in [Field("Q"),Field("F_2")]:
mat_11_temp=eye_mat(2,field)
mat_11_temp[0] [0]= field.one+field.one+field.one
Q=Quiver(2, [[0,1],[1,11],[2,2], [eye_mat(2,field) ,mat_11_temp],field)
print(Q)
print_limit (compute_sections(Q,field),field)

test_classics()

arboreal_simple.py

#linear algebra

from aux_fun_simple import intersection,proj,null_space,flatten_zero
#quiver and matriz in fields

from aux_fun_simple import E_in_out,shift_vertices,zeros_mat,eye_mat
import numpy as np

## Reordering vertices so that edges are increasing
def swap_int(x,u,v):
if x==u:
return v
if x==v:
return u
return x

def swap_vertices(Q,u,v):
Q.Av[ul,Q.Av[v]=Q.Av[v],Q.Av[u]
Q.E=[[swap_int(e[0] ,u,v),swap_int(e[1],u,v)] for e in Q.E]

def order_vertices(Q):
order=list(range(Q.n))
i_e=0
while i_e<len(Q.E):
cur_edge=Q.E[i_e]
if cur_edge[0]>cur_edge[1]:
swap_vertices(Q,cur_edge[0],cur_edge[1])
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order=[swap_int(x, cur_edge[0], cur_edgel[1]) for x in order]
#print ("swap", cur_edge[0], cur_edge[1],order)
i_e=-1
i_et+=1
return order

## sections of an acyclic quiver
def arboreal_out(Q,maps):
#solve separately the trivial quiver for speed when m<<n
if Q.n==1 and len(Q.E)==0:
if maps:
return Q.Av[0], [np.eye(Q.Av[0])]
return Q.Av[0]
#reorder V to make edges increasing
order=order_vertices(Q)
#add a root
Q=shift_vertices(Q)
order=[x+1 for x in order]

field=Q.field
Phi=[np.array([]) for
phi=[np.array([]) for
E_in,E_out=E_in_out(Q)
#computing minimal and mazimal vertices
V_min,V_max=[], []
for v in range(1,Q.n):
if E_out[v]==[]:
V_max . append (v)
if E_in[v]==[1:
V_min.append(v)
Av_min=[Q.Av([v] for v in V_min]
sum_Av_min=sum(Av_min)
#special case: root of dim O

in range(Q.n)]
in range(Q.n)]

if sum_Av_min==0:
if maps:
return 0, [np.array([]).reshape(Q.Av[i],0) for i in range(1,Q.n)]
else:
return O
# representation of the root
Q.Av[0]=sum_Av_min
Phi[0]= eye_mat(sum_Av_min,field)
phi[0]= eye_mat(sum_Av_min,field)
#maps root-> minimal vertices
sum_Av_min_p=0
for i in range(len(V_min)):
Phi[V_min[i]] = eye_mat(sum_Av_min,field)
phil[V_min[i]l] = proj(sum_Av_min_p,Av_min([i],sum_Av_min,field)
sum_Av_min_p+=Av_min[i]
#computation 1f sections by going down the graph
for v in range(1,Q.n):
for e in E_out[v]:
u=Q.E[e] [1] #current wvertezx
#if u not seen
if len(Phi[u])==0:
Phi [u]=Phi [v]
#dimension 0
if Q.Ae[e] .shape[1]==0:
phi[ul=zeros_mat(Q.Av[u],phi[v].shapel[1],field)
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else:
phil[ul= np.dot(Q.Aelel,philv])
else:
if Q.Aele] .shape[1]==0:#dim 0
equali=phi [u] #difference of functions in equalizer
else:
equali=phi[u]-np.dot(Q.Ae[e],philv])
equali= flatten_zero(equali,field)
if Q.Av[u]'=0:
Phi[u]l=intersection(null_space(equali,field),intersection(Phi[v],Phi[u],field),f
#compute total flow space
result_space = Phi[0]
for v in V_max:
result_space=intersection(result_space,Phi[v],field)
if maps:
#return dim(Av*) and isomorphism field dim(Av*)-> subspace of Av
result_maps=[]
for v in range(0,Q.n-1):
result_maps.append(np.dot (phi[order[v]],result_space))
return result_space.shape[1],result_maps
return len(result_space[0])

acycli_red_simple.py

#linear algebra

from aux_fun_simple import intersection,row_echelon,col_echelon,solve_triangular,null_space
#Quiver and matrices in fields

from aux_fun_simple import Quiver,E_in_out,zeros_mat,eye_mat,is_all_zero_mat

from strongly_connected_simple import SG_to_tree

import numpy as np

import networkx as nx

import copy

epsilon=1le-12

# compute the inverse image of M restricted to Im(M)\cap K
def inverse_image(M,K,field):
#column echelon form
Img_M=col_echelon(M,field)
#eliminate zero columns
if field.descr in ['R','C']:
non_zero_cols=np.where (np.max(np.abs(Img_M) ,axis=0)>epsilon) [0]
else:
non_zero_cols=[i for i,M_col_i in enumerate(list(Img_M.transpose())) if not(is_all_zero_mat
Img_M=Img_M[:,non_zero_cols]
#basis of Im(M)\cap K
Img_inter=intersection(Img_M,K,field)
#solve Mz=y for y in Im(M)\cap K
x=inverse_image_vect (M, Img_inter,field)
ker = null_space(M,field)#add a basis of ker(M)
return np.concatenate((x, ker),axis=1)

#solve Mz=y
def inverse_image_vect(M,y,field):
#empty matriz
if M.shape[1]*M.shape[0]==0:
return np.array([]).reshape(M.shape([1],0)
#column echelon form of the augmented matriz
Augmented_mat,pivots=row_echelon(np.concatenate((M,y) ,axis=1),field)
M_ech=Augmented_mat[:,:len(M[0])]
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def

#no solution
if len(pivots)>0 and pivots[-1]>= np.shape(M) [1]:
return np.array([]) .reshape(np.shape (M) [0],0)
#tranform into square invertible triangular matriz and solve
non_zero_rows = np.array([i for i in range(len(M_ech)) if not(is_all_zero_mat(M_ech[i], field))]
x_part= solve_triangular(M_ech[non_zero_rows] [:,np.array(pivots)],Augmented_mat[non_zero_rows] [:
#reintegrate O rows and mon pivots
x=zeros_mat (len(M[0]),len(x_part[0]),field)
for i_p,p in enumerate(pivots):
x [pl=x_part[i_p]
return x

acyclic_red(Q):

field=Q.field

#find strongly connected components

G=nx.DiGraph()

G.add_nodes_from(range(Q.n))

G.add_edges_from(Q.E)

SG_compo, sub_nodes, sub_edges=[1, [1, []

ind_inv=[[-1,-1] for _ in range(Q.n)]#keep track of the decomposition

for i_compo,compo in enumerate(nx.strongly_connected_components(G)):
sub_nodes . append (np.array(list (compo)))
sub_edges.append([i_e for i_e,e in enumerate(Q.E) if (e[0] in compo and e[1] in compo)])

for i_v,v in enumerate(sub_nodes[-1]):
ind_inv[v]=[i_compo,i_v]
renamed_edges=[[ind_inv[Q.E[i] [0]] [1],ind_inv[Q.E[i] [1]]1[1]] for i in sub_edges[-1]]
SG_compo . append (Quiver (len(sub_nodes[-1]) ,renamed_edges,
[Q.Av[x] for x in sub_nodes[-1]],[Q.Ae[x] for x in sub_edges[-1]]
Q_star=Q
#apply SG_to_tree to each SC component
roots,E_star,Av_star,AE_star=[], [], [eye_mat(k,field) for k in Q.Av],[]
for i_R,R in enumerate(SG_compo) :
K,T,r=SG_to_tree(R,True)
roots.append (sub_nodes[i_R] [r])
E_star.extend([[sub_nodes[i_R] [e[0]],sub_nodes[i_R][e[1]]] for e in T.E])
Av_star[roots[-1]]1=K
AE_star.extend(T.Ae)
#add edges mot in a stronggly connected component
for i_e,e in enumerate(Q.E):
if ind_inv[e[0]][0]!=ind_inv[e[1]][0]:
E_star.append(e)
AE_star.append(Q.Ae[i_e])
#transform Av,Ae into a valid representation Av*,Aex*
Q_star=Quiver(Q.n,E_star,Q.Av,AE_star,field)
E_in,E_out=E_in_out(Q_star)
for i_R,R in enumerate(SG_compo):
stack=[roots[i_R]]
while len(stack)!=0:
v=stack.pop()
for i_e in E_in[v]:
Av_star[Q_star.E[i_e] [0]]=intersection(Av_star[Q_star.E[i_e] [0]],inverse_image (copy.
if not(Q_star.E[i_e][0] in stack):
stack.append(Q_star.E[i_e] [0])
# transform from subspaces of Av to field”d
Av_star_dim=[1len(A[0]) for A in Av_star]
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Ae_star=[inverse_image_vect (Av_star[Q_star.E[i_y][1]], np.dot(y,Av_star[Q_star.E[i_y][0]]),field
for i in range(len(Ae_star)):
if Ae_star[i] .shape[0]*Ae_star[i] .shape[1]==0:
Ae_star[i]=np.zeros((Av_star_dim[Q_star.E[i] [1]],Av_star_dim[Q_star.E[i] [0]]))
Q_star.Av=Av_star_dim
Q_star.Ae=Ae_star
return Q_star,Av_star

strongly_connected_simple.py

import numpy as np

#linear algebra

from aux_fun_simple import intersection,null_space
#(uiver and matrices in fields

from aux_fun_simple import E_in_out,Quiver,eye_mat

#build ear decomposition of a SG quiver

def find_ear_decompo(Q):
E_in,E_out=E_in_out (Q)
v_ear=-1+*np.ones(Q.n,dtype=int) #all wvertices not seen
e_ear=-1*np.ones(len(Q.E) ,dtype=int) # all edges not seen

#find a cycle
start=0
v_ear[start]=0
e_ear[E_out[start] [0]]=0
v= Q.E[ E_out[start][0]][1]
1=[start] #visited vertices
while(v_ear[v] !=0):
1.append(v)
#mark as seen
v_ear [v]=0
e_ear[E_out [v] [0]]=0
#go to next vertex
v= Q.E[ E_out[v][0]]1[1]

r=v#first point of the cycle
#mark as unseen wvertices not in the cycle
for u in 1[:1.index(xr)]:
v_ear[u]=-1
e_ear[E_out [u] [0]]=-1
#build ear decomposition
ear_num=0#last built ear
while(len(np.where(v_ear==-1) [0]) !=0):
#edge outgoing from decompo
e0=None
for i_e,e in enumerate(Q.E):
if v_ear[e[0]]1>=0 and v_ear[e[1]]==-1:
e0=i_e
break
w=Q.E[e0] [1]
#shortest pasth w-> ear_num
distances=(2*Q.n+1)*np.ones(Q.n)
previous_edge=[[] for _ in range(Q.n)]#shortest paths from w to x
d=0#distance to w
distances[w]=d
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previous_edge [w]=e0
e_ear[e0]=ear_num+1
arrived=False
while(not arrived):
for w_cur in np.where(distances==4d) [0]:
for e_cur in E_out[w_cur]:
#1f new vertexr in the ear decompo choose this path
if not(arrived) and v_ear[Q.E[e_cur][1]]'=-1:
arrived=True
#retrieve the path inductively
e_backwards=e_cur
while (v_ear[Q.E[e_backwards] [0]]==-1):
v_ear [Q.E[e_backwards] [0]]=ear_num+1
e_ear [e_backwards]=ear_num+1
e_backwards=previous_edge[Q.E[e_backwards] [0]]
ear_num+=1
break
#continue search
if distances[Q.E[e_cur] [1]]>d+1:
distances[Q.E[e_cur] [1]]=d+1
previous_edge[Q.E[e_cur] [1]]=e_cur

if arrived:
break
if arrived:
break
d+=1
for e in np.where(e_ear==-1) [0]:
e_ear[e]=ear_num+1
ear_num+=1
return r,v_ear,e_ear

#strongly connected quiver to out-tree
def SG_to_tree(Q,only_K):
field=Q.field#retrieve field
#trivial quiver
if len(Q.E)==0:
if only_K:
return eye_mat(Q.Av[0],field),Q,0
return Q
#choose an ear decompostition
r,v_ear,e_ear=find_ear_decompo(Q)
#find terminal edges
ter_edges=[]
non_ter_edges=[]
for i_e,e in enumerate(Q.E):
if e_ear[i_e]l>v_ear[e[1]] or e[1]==r:
ter_edges.append(i_e)
else:
non_ter_edges.append(i_e)

#build out-tree

T=Quiver(Q.n,[Q.E[i_e] for i_e in non_ter_edges],Q.Av,[Q.Ae[i_e] for i_e in non_ter_edges],field
E_in_T,E_out_T=E_in_out(T)

#build paths from root

phi=[[] for _ in range (Q.n)]

philr]=eye_mat(Q.Av[r],field)
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stack=[r]
while not len(stack)==0:
v=stack.pop()
for i_e in E_out_T[v]:
phi[T.E[i_e] [1]]=np.dot(T.Ae[i_e],philv])
stack.append(T.E[i_e] [1])
#compute K
K=eye_mat (Q.Av[r],field)
for epsilon in ter_edges:
K=intersection(K,null_space(phi[Q.E[epsilon] [1]1]-np.dot(Q.Ae[epsilon],phi[Q.E[epsilon] [0]]),
if only_K:
return K,T,r
#return as a quiver
T.Av[r]=len(X[0])
for i_e in E_out_T[r]:
T.Ae[i_el=np.dot(T.Ae[i_e],K)
return T

aux_fun_simple.py

import numpy as np

import scipy.linalg

import copy

from fractions import Fraction

Q_pb=[]

#maximum computation error
epsilon=1e-12

## COMPUTATIONS IN ALL FIELDS

#field F_2
class F_2Q0):
#definition
is_one=False
def __init__(self, is_ome):
self.is_one=is_one
#override operators
def __add__(self,b):
return F_2(self.is_one”b.is_one)
def __sub__(self,b):
return self+b
def __mul__(self,b):
return F_2(self.is_one&b.is_one)
def __truediv__(self,b):
if not(b.is_one):
raise ValueError("Divide by 0")
else:
return self
def __neg__(self):
return self
def __eq__(self,b):
return isinstance(b, F_2) and self.is_one==b.is_one
#display
def __str__(self):
return "cl("+str(int(self.is_one))+")"
def __repr__(self):
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return "cl("+str(int(self.is_one))+")"

#general field definition
class Field:
descr='0"
zero=0.
one=1.
def __init__(self,*args):
# usual fields R, C, F_2,
if len(args)==1:
if args[0] in ['R','C']:
self.descr=args[0]
elif args[0]=='F_2':
self.descr=args[0]
self.zero=F_2(0)
self.one=F_2(1)
elif args[0]=='Q"':
self.descr=args[0]
self.zero=Fraction(0)
self.one=Fraction(1)
else:
raise ValueError("No predefined field "+args[0])
#user-defined fields
else:
self.zero=args[0]
self.one=args[1]
if len(args)==3:
self.descr=args[2]

#Replacing numpy operations i1f the field s not R or C
#np.zeros
def zeros_mat(n,m,field):
if field.descr=='R':
return np.zeros((n,m))
if field.descr=='R':
return np.zeros((n,m),dtype=complex)

return np.array([[field.zero for _ in range(m)]for _ in range(n)]).reshape((n,m))

#np . eye
def eye_mat(n,field):
if field.descr =='R':
return np.eye(n)
if field.descr=='C':
return np.eye(n,dtype=complex)
I=zeros_mat(n,n,field)
for i in range(n):
I[i][i]=field.one
return I

def is_all_zero_mat(M,field):
if field.descr in ['R','C']:
return np.max(np.abs(M))<epsilon
return all([m==field.zero for m in M.flatten()])

def is_all_zero_elem(x,field):

return is_all_zero_mat(up.array([x]),field)
#Remove computation errors
def flatten_zero(U,field):
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if field.descr in ['R','C']:
V=U.flatten()
V[np.where (np.abs (V) <epsilon) [0]]1=0.
return V.reshape(U.shape)

return U

## QUIVER
#definition
class Quiver:
field='R'
def __init__(self, n,edges,rep_spaces,rep_maps,field):
self.n = n #/V/
self .E = edges
self . Av=np.array(rep_spaces,dtype=int) #dimension of A_wv
self.Ae=rep_maps
self.field=field
#display
def __str__(self):
if self.field.descr in ['R','C']:
Ae_rounded=[np.round(ae,3) for ae in self.Ae]
return "n="+str(self.n)+" E="+str(self.E)+" Av="+str(self.Av)+"\n Ae="+str(Ae_rounded)
return "n="+str(self.n)+" E="+str(self.E)+" Av="+str(self.Av)+"\n Ae="+str([self.Ae])
def __repr__(self):
if self.field.descr in ['R','C']:
return "n="+str(self.n)+" E="+str(self.E)+" Av="+str(self.Av)+"\n Ae="+str([np.round(ae,3)
return "n="+str(self.n)+" E="+str(self.E)+" Av="+str(self.Av)+"\n Ae="+str(self.Ae)

#add nmew vertices with order 0,1,...
def shift_vertices(Q,shi=1):
E=[]
for e in Q.E:
E.append([e[0]+1,e[1]+1])
return Quiver(Q.n+1,E,[-1]+1ist(Q.Av),Q.Ae,Q.field)

#sort edges by starting/arriving extremity
def E_in_out(Q):
E_in=[[] for _ in range(Q.n)]
E_out=[[] for _ in range(Q.n)]
for i_e,e in enumerate(Q.E):
E_in[e[1]] .append(i_e)
E_out[e[0]].append(i_e)
return E_in,E_out

## LINEAR ALGEBRA

# Row echelon form (Gaussion pivot)
def row_echelon(M_input,field):
M=copy .deepcopy (M_input)
#empty matriz
if M.shape[0]*M.shape[1]==1:
if is_all_zero_elem([M[0] [0]],field):
return M, [0]
return M, []

pivots=[]

#create one new echelon
def echelonify(next_pivot_row, col):

23



#choose best row to pivot
if field.descr in ['R','C']:
best_row= next_pivot_row+np.argmax(np.abs(M[next_pivot_row:,col]))
else:
non_zero_rows_sub=np.where (M[next_pivot_row:,col] !=field.zero) [0]
if len(non_zero_rows_sub)==0:
best_row=next_pivot_row
else:
best_row=next_pivot_row+non_zero_rows_subl[0]
#swap Tows
if not is_all_zero_elem([M[best_row] [col]],field):
rw=np.copy (M[next_pivot_row])
M[next_pivot_row]=np.copy(M[best_row])
M[best_row]=rw
rw=np.copy (M[next_pivot_row])
pivots.append(col)
else: # the column col 7s null
return next_pivot_row
#echelonify the matriz
for j, row in enumerate(M[(next_pivot_row+1):]1):
M[j+next_pivot_row+1] = row - np.array([ rowl[col] / rwlcoll ] )* rw
return next_pivot_row+1

next_pivot_row=0#nb of pivoted rows +1
for i in range(M.shapel[1]):#column to pivot
if next_pivot_row>=M.shape[0]:#all possible rows pivoted
break
next_pivot_row=echelonify(next_pivot_row, i)
#remove some computation errors
M=flatten_zero(M,field)
return np.array(M),pivots

#put in column echelon form
def col_echelon(M,field):
return np.transpose(row_echelon(np.transpose(M),field) [0])

#compute kernel of M
def null_space(M,field):
# 1f field is R or C: SVD
if field.descr in ['R','C']:
return scipy.linalg.null_space(M,rcond=epsilon)
# otherwise column echelon of the augmanted matriz
M=flatten_zero(M,field)
aug_mat=flatten_zero(col_echelon(np.concatenate([M,eye_mat (M.shape[1],field)]),field),field)
#column of the kernel base
zero_col_top=[is_all_zero_mat(aug_mat[:M.shape[0],i], field) for i in range(M.shape[1])]
return aug_mat[M.shape[0]:,np.array(zero_col_top)]

#intersection of two families U and V by computing the kernel of
#(U)
#(-V)
def intersection(U,V,field):
U=flatten_zero(U,field)
V=flatten_zero(V,field)
M=np.concatenate((U,-V) ,axis=1)
#empty matriz
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if np.shape (M) [0]*np.shape (M) [1]==0:

return np.array([]) .reshape(np.shape(M))

u=null_space(M,field) [:np.shape(U) [1]]
return np.dot(U,u)

# matrixz of a projection from dim tot to dim b
def proj(a,b,tot,field,B=None):
if B==None:

return np.concatenate((zeros_mat(b,a,field),B,zeros_mat(b,tot-a-b,field) ),axis=1)

B=eye_mat (b,field)

# transform a matrixz from row echelon form to diagonal

def ech_

to_diag_row(T_input,field):

T=copy .deepcopy (T_input)
#P_pivots s.t. T*P_pivot diag
pivots=[]

for

i in range(min(T.shape)):

col_piv=i

while col_piv < T.shape[1] and is_all_zero_elem(T[i] [col_piv], field)
col_piv+=1

if col_piv<T.shape[1]:
pivots.append(col_piv)

else:
pivots.append(-1)

for i in range(min(T.shape)):
if pivots[i]!=-1:
T[i]1=T[i]1/T[i] [pivots[i]l]
for i in range(min(T.shape)):
if pivots[i]!=-1:
for i_2 in range(i):
T[i_2]= T[i_2] - np.array([T[i_2] [pivots[i]]/T[i] [pivots[i]11]1)*TI[i]
return T

# transform a matriz from column echelon form to diagonal
def ech_to_diag_col(T_input,field):
return np.transpose(ech_to_diag_row(np.transpose(copy.deepcopy(T_input)),field))

# solve Mz=y with M triangular (square)
def solve_triangular(M,y,field):
if y.shape[1]==0:

return np.array([]).reshape(M.shape[0],0)

if field.descr in ['R','C']:

return scipy.linalg.solve_triangular(M,y)

aug_mat=ech_to_diag_row(np.concatenate([M,y],axis=1),field)
y_ech=aug_mat[:,M.shape[1]:]

for

i in range(M.shape([0]):
y_ech[i]=y_ech[i]/aug_mat [i] [i]

return y_ech

## DISPLAY TOOLS

#display of a limit with its maps
def print_limit(lim_and_maps,field=Field('R')):
lim,maps=1lim_and_maps
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#the limat
print("lim="+field.descr+" " "+str(lim))
#choosing a isomorphic limit with simpler maps (isomorphism given by P_pivot)
maps_prod_dim=[maps[i] .shape[0]*maps[i] .shape[1] for i in range(len(maps))]
i=np.argmax(np.array(maps_prod_dim))
aug_map=np.concatenate([maps[i],eye_mat (maps[i] .shape[1],field)])
P_pivot=ech_to_diag_col(col_echelon(aug_map,field),field) [len(maps[i]):]
for v in range(len(maps)):

print("lim ->",v,"\n",flatten_zero(np.dot(maps[v],P_pivot) ,field))
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