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Non-trivialX in the Jacobian of an infinite family
of curves of genus 2

par Anna ARNTH-JENSEN et E. Victor FLYNN

Résumé. Nous donnons une famille infinie de courbes de genre 2
dont la Jacobienne possède des éléments non triviaux du groupe
de Tate-Shafarevich pour une descente via l’isogénie de Richelot.
Nous le prouvons en effectuant une descente via l’isogénie de Rich-
elot et une 2-descente complète sur la Jacobienne isogène. Nous
donnons également un modèle explicite d’une famille associée de
surfaces qui violent le principe de Hasse.

Abstract. We give an infinite family of curves of genus 2 whose
Jacobians have non-trivial members of the Tate-Shafarevich group
for descent via Richelot isogeny. We prove this by performing a
descent via Richelot isogeny and a complete 2-descent on the isoge-
nous Jacobian. We also give an explicit model of an associated
family of surfaces which violate the Hasse principle.

1. Introduction

Let C : y2 = F (x), where F (x) is a polynomial of degree 5 or 6, denote
a curve of genus 2 over Q and let J denote its Jacobian.

In connection with computing the rank of the finitely generated Mordell-
Weil group J (Q) it is relevant to determine the size of J (Q)/2J (Q). This is
bounded by the size of the Selmer group S(2)(J /Q) which is effectively com-
putable. The size of the 2-part of the Tate-Shafarevich group X(J /Q)[2]
measures the deviation of the Selmer group from J (Q)/2J (Q), since

0→ J (Q)/2J (Q)→ S(2)(J /Q)→X(J /Q)[2]→ 0.

The group S(2)(J /Q) can be determined by means of descent methods.
The method of complete 2-descent [11] makes possible a determination of
the 2-Selmer group S(2)(J /Q) in the case where F (X) has degree 5. In
the case where the equation of C is in sextic form the method of descent
via isogeny [5],[7] often proves useful. More precisely, this method can
be applied if F (x) is of the form F (x) = G1(x)G2(x)G3(x), where each
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Gi(x) ∈ Q[x] is of degree 2. Both methods avoid the use of homogeneous
spaces and so are well suited for explicit computations. Section 2 briefly
reviews the main points of these methods.

No known algorithm for computing X(J /Q)[2] exists. However, it is
sometimes possible to demonstrate non-trivial members of this group; [2]
contains a specific numerical example of a pair of curves of genus 2, C and D,
over Q with Richelot isogenous Jacobians Jac(C) and Jac(D), where com-
plete 2-descents on each Jacobian result in the rank bounds rank(Jac(C)(Q))
≤ 4 and rank(Jac(D)(Q)) = 0, thereby proving the existence of non-trivial
members of X(Jac(C)/Q)[2]. In Section 3 we take this idea of demon-
strating non-trivial members of the Tate-Shafarevich group by playing off
two descents against each other a step further: we give an example where
non-trivial members of the φ-part of the Tate-Shafarevich group of a Jaco-
bian can be demonstrated by performing a 2-descent as well as a descent
via isogeny where φ is a 2-isogeny. Furthermore, our example will be for a
familiy of curves, whereas the Richelot example in [2] is only for a specific
numerical example (there is also a family of examples in [2] using instead
the Brauer-Manin obstruction on a related degree 4 del Pezzo surface, as is
also the case in [3],[10]).

2. Descent methods

First, we outline the method of complete 2-descent [8],[11],[12]; we shall
do this for the quintic case, but note that there are also algorithms described
for the general sextic case, for example, in [4],[9],[14]. We let C : y2 = F (x)
denote a curve of genus 2 defined over Q and assume that deg(F (x)) = 5.
Let J denote its Jacobian. Furthermore, let F (x) = F1(x) · . . . · Fn(x),
n ≤ 5, denote the irreducible factorization of F (x) and let αi denote a root
of Fi(x), 1 ≤ i ≤ n. We define Li := Q(αi). There exists an injective
homomorphism

(2.1) µ′ : J (Q)/2J (Q)→ L∗1/(L
∗
1)2 × . . .× L∗n/(L∗n)2

given by

(2.2) {(x1, y1), (x2, y2)} 7→ [(x1 − α1)(x2 − α1), . . . , (x1 − αn)(x2 − αn)],

where {(x1, y1), (x2, y2)} is a shorthand notation for the divisor class con-
taining (x1, y1) + (x2, y2) − 2∞. We let S denote the finite set of primes
in Q consisting of the prime ∞, the prime 2 and the primes of bad reduc-
tion for J . The image of µ′ is a subgroup of the finite group M generated
by the elements [c1, . . . , cn] with the following property: The field exten-
sions L1(

√
c1) : L1, . . . , Ln(

√
cn) : Ln are ramified only at primes lying over

primes of S. Let p ∈ S and let Qp denote the p-adic numbers. We have a
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commutative diagram

(2.3)
J (Q)/2J (Q)

µ′
→ M

↓ ip ↓ jp
J (Qp)/2J (Qp)

µ′
p→ Mp

where µ′p andMp are the local equivalents of µ′ andM and the maps ip and
jp are induced by the natural injection Q ↪→ Qp. The method now works
as follows: we start with a finite set of elements of J (Q) which we suspect
generate (or form part of a generating set of) J (Q)/2J (Q). We then search
for a set of generators for J (Qp)/2J (Qp). According to [4] (p.73):

(2.4) #J (Qp)/2J (Qp) = #J (Qp)[2]/|2|2p,
which tells us when a complete set of generators has been found. Now,
we can compute j−1

p (imµ′p) which, by the commutativity of (2.3), contains
imµ′. Repeating this process for every p ∈ S we can compute⋂

p∈S
j−1
p (imµ′p) ∼= S(2)(J /Q).

which contains imµ′. If
⋂
p∈S j

−1
p (imµ′p) = imµ′, then J (Q)/2J (Q) has

been completely determined, and thus r = rank(J (Q)), using the fact that
J (Q)/2J (Q) ∼= (Z/2Z)r×J (Q)[2], given that J (Q)[2] is easy to compute.
Otherwise, we are either missing some generators for J (Q)/2J (Q) or there
are non-trivial members ofX(J /Q)[2].

Next, we describe the method of descent via Richelot isogeny [4],[5],[7].
We let C : y2 = F (x) denote a curve of genus 2 defined over Q and we
assume that F (x) = G1(x)G2(x)G3(x), where each Gi(x) = gi2x

2 + gi1x+
gi0 ∈ Q[x], i = 1, 2, 3, has degree 2. We let J denote the Jacobian of C. We
define

Ĉ : ∆y2 = L1(x)L2(x)L3(x),
where Lk(x) := G′k+1(x)Gk+2(x) − Gk+1(x)G′k+2(x), k = 1, 2, 3 (here the
indices should be interpreted modulo 3) and ∆ := det(gij). Letting Ĵ
denote the Jacobian of Ĉ it can be shown that J is isogenous to Ĵ over
Q. More precisely, there exist isogenies defined over Q, ϕ : J → Ĵ and
ϕ̂ : Ĵ → J , such that ϕ̂ ◦ϕ = [2]. For each of these Richelot isogenies, the
kernel is exactly the group consisting of the identity and the three rational
points of order 2 corresponding to the above quadratic factors (G1, G2, G3

or L1, L2, L3). The exact sequence
(2.5)

0→ ker ϕ̂→ Ĵ (Q)/ϕ(J (Q))
ϕ̂→ J (Q)/2J (Q)→ J (Q)/ϕ̂(Ĵ (Q))→ 0

now reduces the problem of determining J (Q)/2J (Q) and the rank of
J (Q) to finding generators for Ĵ (Q)/ϕ(J (Q)) and J (Q)/ϕ̂(Ĵ (Q)) which
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can be performed in a way similar to complete 2-descent: letting bij =
resultant(Gi, Gj), and similarly, b̂ij = resultant(Li, Lj), we define S as
the finite set of rational primes consisting of the prime 2 and the primes
dividing ∆b12b23b31b̂12b̂23b̂31. We can write S = {p1, . . . , pr} and define
Q(S) = {±pe11 · · · per

r | e1, . . . , er = 0, 1}. There exists an injective homo-
morphism

µϕ : Ĵ (Q)/ϕ(J (Q))→ (Q∗/(Q∗)2)×2

given by

{(x1, y1), (x2, y2)} 7→ [L1(x1)L1(x2), L2(x1)L2(x2)].

In fact, imµϕ sits inside the finite group Q(S)×2 and for any rational finite
or infinite prime p we have a commutative diagram

(2.6)
Ĵ (Q)/ϕ(J (Q))

µϕ

→ Q(S)×2

↓ ip ↓ jp
Ĵ (Qp)/ϕ(J (Qp))

µϕ
p→ (Q∗p/(Q∗p)2)×2

where ip and jp are natural maps on the quotient induced by the inclusion
map Q ↪→ Qp and µϕp is the local equivalent of µϕ. Reversing the roles of
J and Ĵ we obtain an injective homomorphism µϕ̂ : J (Q)/ϕ̂(Ĵ (Q)) →
(Q∗/(Q∗)2)×2 and a diagram similar to (2.6). Using the fact [4],[6]

(2.7) #Ĵ (Qp)/ϕ(J (Qp)) ·#J (Qp)/ϕ̂(Ĵ (Qp)) = (4/|2|p)2

to tell us when complete sets of generators for Ĵ (Q)/ϕ(J (Q)) and
J (Q)/ϕ̂(Ĵ (Q)) have been found, we now proceed similarly to the method
of complete 2-descent and compute

(2.8)
⋂
p

j−1
p (imµϕp ) ∼= S(ϕ)(J /Q) and

⋂
p

j−1
p (imµϕ̂p ) ∼= S(ϕ̂)(Ĵ /Q)

which, by the commutativity of (2.6), contain imµϕ and imµϕ̂, respectively.1
The main advantage of descent via isogeny is that of breaking the process

of determining J (Q)/2J (Q) into two easier steps, involving only computa-
tions over Q instead of some larger number field.

3. Family of Jacobians with non-trivialX

We consider the infinite family of curves of genus 2 given by

(3.1) C : y2 = F (x) = q(x2 − 2)(x2 + x)(x2 + 1),

where q is a prime congruent to 13 modulo 24. Unless something else is
explicitly stated we will always assume that q is of this form. We denote
the Jacobian of C by J . The curve whose Jacobian is isogenous to J is

1We note that in (2.8) it is sufficient to intersect over the set of primes p satisfying
p|2∆b12b23b31b̂12b̂23b̂31 or p =∞.
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given by y2 = −3q(−x2+2x+1)(−6qx)(qx2+4qx+2q) which is birationally
equivalent to

(3.2) Ĉ : y2 = (−x2 + 2x+ 1) · 2qx · (x2 + 4x+ 2).

The primes not dividing 2 · disc(F ) are the primes p satisfying p 6∈ {2, 3, q}.
Using the fact that the reduction map is injective on the rational torsion
subgroup for p = 11, 17, in particular, we obtain

Lemma 3.1. Let q be a prime congruent to 5 modulo 8. The torsion sub-
groups, J (Q)tors and Ĵ (Q)tors, of J (Q) and Ĵ (Q) are given by

J (Q)tors = 〈{(
√

2, 0), (−
√

2, 0)}, {(0, 0), (−1, 0)}〉
and

Ĵ (Q)tors = 〈{(1−
√

2, 0), (1 +
√

2, 0)}, {(0, 0),∞}〉.

The curve C in (3.1) is seen to be in the form suitable for descent via
isogeny and so we perform a descent via isogeny on its Jacobian (we have
placed further details on the descent at [1]). Using the notation from the
previous section we find that 2∆b12b23b31b̂12b̂23b̂31 = −28 · 35 · q9, so S =
{2, 3, q}. Furthermore, we have injective homomorphisms

µϕ : Ĵ (Q)/ϕ(J (Q))→ (Q∗/(Q∗)2)×2

given by

{(x1, y1), (x2, y2)} 7→

[
2∏
i=1

(−x2
i + 2xi + 1),

2∏
i=1

2qxi

]
and

µϕ̂ : J (Q)/ϕ̂(Ĵ (Q))→ (Q∗/(Q∗)2)×2

given by

{(x1, y1), (x2, y2)} 7→

[
2∏
i=1

q(x2
i − 2),

2∏
i=1

(x2
i + xi)

]
.

These satisfy

imµϕ, imµϕ̂ ≤ Q(S)×2 = 〈[−1, 1], [1,−1], [2, 1], [1, 2], [3, 1], [1, 3], [q, 1], [1, q]〉.
The generators of the torsion subgroups map as follows:

A1 := {(
√

2, 0), (
√

2, 0)} µ
ϕ̂

7→ [2, 2],

A2 := {(0, 0), (−1, 0)} µ
ϕ̂

7→ [2, 1],

Â1 := {(1−
√

2, 0), (1 +
√

2, 0)} µ
ϕ

7→ [−1, 1],

Â2 := {(0, 0),∞} µ
ϕ

7→ [−1, 2].
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The last image was computed by using the fact that µϕ is a homomorphism
on {(1−

√
2, 0), (1 +

√
2, 0)}+ {(0, 0),∞} = {(−2 +

√
2, 0), (−2−

√
2, 0)}.

Thus,

H := 〈[2, 2], [2, 1]〉 ≤ imµϕ̂ and Ĥ := 〈[−1, 1], [−1, 2]〉 ≤ imµϕ.

At p =∞ we have in (2.6)

ker j∞ = 〈[2, 1], [1, 2], [3, 1], [1, 3], [q, 1], [1, q]〉,

so A1 and A2 are both mapped to [1, 1] by µϕ̂ whereas Â1 and Â2 are both
mapped to [−1, 1]. By (2.7) #Ĵ (R)/ϕ(J (R)) · #J (R)/ϕ̂(Ĵ (R)) = 22 so
we are missing 1 generator. A search yields B := {(2, β), (0, 0)} ∈ J (R),
where β ∈ R∗ and β2 = 22 · 3 · 5 · q, and B 7→ [−1,−1] ∈ (R∗/(R∗)2)×2

by µϕ̂∞. Hence, J (R)/ϕ̂(Ĵ (R)) = 〈B〉 and Ĵ (R)/ϕ(J (R)) = 〈A1〉. The
commutativity of (2.6) implies

imµϕ̂ ≤ 〈ker j∞, H, [−1,−1]〉 = 〈[2, 1], [1, 2], [3, 1], [1, 3], [q, 1], [1, q], [−1,−1]〉
and

imµϕ ≤ 〈ker j∞, Ĥ〉 = 〈[2, 1], [1, 2], [3, 1], [1, 3], [q, 1], [1, q], [−1, 1]〉.
Next, let p = 3. Using {±1,±3} as a set of representatives for Q∗3/(Q∗3)2

we find
ker j3 = 〈[−2, 1], [1,−2], [q, 1], [1, q]〉,

and so the images of A1 and A2 in Q∗3/(Q∗3)2 are independent and the images
of Â1 and Â2 in Q∗3/(Q∗3)2 are independent. By (2.7) #Ĵ (Q3)/ϕ(J (Q3)) ·
#J (Q3)/ϕ̂(Ĵ (Q3)) = 24, so that J (Q3)/ϕ̂(Ĵ (Q3)) = 〈A1,A2〉 and
Ĵ (Q3)/ϕ(J (Q3)) = 〈Â1, Â2〉. From diagram (2.6) we now get

(3.3) imµϕ̂ ≤ 〈ker j3, H〉 = 〈[−2, 1], [1,−2], [q, 1], [1, q], [2, 2], [2, 1]〉
and

(3.4) imµϕ ≤ 〈ker j3, Ĥ〉 = 〈[−2, 1], [1,−2], [q, 1], [1, q], [−1, 1], [−1, 2]〉.
We now let p = q and observe that a set of representatives for Q∗q/(Q∗q)2

is given by {1, 2, q, 2q}. We have

ker jq = 〈[−1, 1], [1,−1], [3, 1], [1, 3]〉,

and so A1
jq◦µϕ̂

7→ [2, 2] and A2
jq◦µϕ̂

7→ [2, 1] while Â1
jq◦µϕ

7→ [1, 1] and Â2
jq◦µϕ

7→
[1, 2]. Since #Ĵ (Qq)/ϕ(J (Qq)) · #J (Qq)/ϕ̂(Ĵ (Qq)) = 24 according to
(2.7), we are missing 1 generator. We suspect that we may choose the
missing generator in J (Qq)/ϕ̂(Ĵ (Qq)), in such a way that it is mapped
to [2, q] ∈ Q∗q/(Q∗q)2 by µϕ̂q . More precisely, by considering the explicit
expression for the homomorphism µϕ̂q it can be proved that there exists
(x, y) ∈ J (Qq) such that J (Qq) 3 {(0, 0), (x, y)} 7→ [2, q] ∈ (Q∗q/(Q∗q)2)×2
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by µϕ̂q . Letting D := {(0, 0), (x, y)} we have J (Qq)/ϕ̂(Ĵ (Qq)) = 〈A1,A2,D〉
and Ĵ (Qq)/ϕ(J (Qq)) = 〈Â2〉. The commutative diagram (2.6) tells us that

imµϕ̂ ≤ 〈ker jq, H, [2, q]〉 = 〈[−1, 1], [1,−1], [3, 1], [1, 3], [2, 2], [2, 1], [2, q]〉
and

imµϕ ≤ 〈ker jq, Ĥ〉 = 〈[−1, 1], [1,−1], [3, 1], [1, 3], [−1, 2]〉.
Finally, we consider p = 2. A set of representatives for Q∗2/(Q∗2)2 is given

by {±1,±2,±3,±6} and
ker j2 = 〈[−3q, 1], [1,−3q]〉,

so j2 ◦ µϕ̂(A1) = [2, 2], j2 ◦ µϕ̂(A2) = [2, 1], j2 ◦ µϕ(Â1) = [−1, 1] and
j2 ◦ µϕ(Â2) = [−1, 2]. Since #Ĵ (Q2)/ϕ(J (Q2)) ·#J (Q2)/ϕ̂(Ĵ (Q2)) = 26

by (2.7), we are missing 2 generators. First, we find E1 := {(5, η1), (0, 0)} ∈
J (Q2), where η1 ∈ Q∗2 and η2

1 = 22 · 3 · 5 · 13 · 23 · q. The existence
of η1 is guaranteed by the fact that 3 · 5 · 13 · 23 · q ≡ 1 (mod 8), since
q ≡ 5 (mod 8). We have E1 7→ [2,−3] ∈ (Q∗2/(Q∗2)2)×2 by µϕ̂2 . Next, we
find E2 := {(1

4 , η2), (0, 0)} ∈ J (Q2), where η2 ∈ Q∗2 and η2
2 = −5·17·31·q

(26)2
.

The existence of η2 is guaranteed by the fact that −5 · 17 · 31 · q ≡ 1
(mod 8), since q ≡ 5 (mod 8). We have E2 7→ [−2,−2] ∈ (Q∗2/(Q∗2)2)×2 by
µϕ̂2 . Hence, J (Q2)/ϕ̂(Ĵ (Q2)) = 〈A1,A2,E1,E2〉 and Ĵ (Q2)/ϕ(J (Q2)) =
〈Â2, Â2〉. Then (2.6) tells us that

imµϕ̂ ≤ 〈ker j2, H, [2,−3], [−2,−2]〉
= 〈[−3q, 1], [1,−3q], [2, 2], [2, 1], [2,−3], [−2,−2]〉

(3.5)

and

(3.6) imµϕ ≤ 〈ker j2, Ĥ〉 = 〈[−3q, 1], [1,−3q], [−1, 1], [−1, 2]〉.
Using (3.3) and (3.5) we obtain imµϕ̂ ≤ 〈[−2,−2], [1, q], [2, 2], [2, 1]〉. Taking
the information at ∞ and q into account does not improve this bound on
imµϕ̂. Thus, H ≤ imµϕ̂ ≤ 〈H, [−2,−2], [1, q]〉, and so #J (Q)/ϕ̂(Ĵ (Q)) ∈
{4, 8, 16}. Similarly, from (3.4) and (3.6) we get imµϕ ≤ Ĥ, and so imµϕ =
Ĥ, that is #Ĵ (Q)/ϕ(J (Q)) = 4. By the exact sequence (2.5) we conclude
that #J (Q)/2J (Q) ∈ {4, 8, 16}, giving a rank bound on J (Q) of 2. We
have thus proved the following lemma:

Lemma 3.2. Let C and Ĉ be as in (3.1) and (3.2), with Jacobians J and
Ĵ and Richelot isogenies ϕ : J → Ĵ and ϕ̂ : Ĵ → J such that ϕ̂ ◦ϕ = [2].
Then

J (Q)/ϕ̂(Ĵ (Q)) ≥ 〈{(
√

2, 0), (−
√

2, 0)}, {(0, 0), (−1, 0)}〉,
having 4 generators at the most, and

Ĵ (Q)/ϕ(J (Q)) = 〈{(1−
√

2, 0), (1 +
√

2, 0)}, {(0, 0),∞}〉.
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This bounds the ranks of J (Q) and Ĵ (Q) by 2.

For the first 10 choices of q ≡ 13 (mod 24), a search for generators
for J (Q) of infinite order does not yield any results and so we suspect
that, for such cases, rank(J (Q)) is in fact 0. We prove that this is the
case by performing a complete 2-descent on J (Q). We have placed further
details of the 2-descent at [1]. First, we observe that since F (x) in (3.1)
has a root in Q we can write the equation of the curve C in the form y2 =
(quintic in x over Q). In fact, using the transformation (x, y) 7→ (−2q

x , −2qy
x3 )

the curve given by (3.1) is seen to be birationally equivalent to the family
of curves given by

(3.7) y2 = W (x) = (x− 2q)(x2 − 2q2)(x2 + 22q2), q ≡ 13 (mod 24).

By a slight abuse of notation we also denote this curve by C and its Jaco-
bian by J . By Lemma 3.1 J (Q)tors ∼= Z/2Z × Z/2Z, and so J (Q)tors =
〈{(2q, 0),∞}, {(q

√
2, 0), (−q

√
2, 0)}〉. In order to prove that the rank of

J (Q) equals 0 it suffices to prove that A1 := {(2q, 0),∞} and A2 :=
{(q
√

2, 0), (−q
√

2, 0)} generate J (Q)/2J (Q). By (2.1) and (2.2) there ex-
ists an injective homomorphism

µ′ : J (Q)/2J (Q)→ Q∗/(Q∗)2 ×Q(
√

2)∗/(Q(
√

2)∗)2 ×Q(i)∗/(Q(i)∗)2

given by

{(x1, y1), (x2, y2)} 7→

 2∏
j=1

(xj − 2q),
2∏
j=1

(xj + q
√

2),
2∏
j=1

(xj + 2qi)

 .
The primes dividing disc(W ) are 2, 3, q, and so, using the notation of the
previous section,

imµ′ ≤M

= 〈[−1, 1, 1], [2, 1, 1], [3, 1, 1], [q, 1, 1], [1,−1, 1], [1, 1 +
√

2, 1], [1,
√

2, 1],

[1, 3, 1], [1, q, 1], [1, 1, i], [1, 1, 1 + i], [1, 1, 3], [1, 1, a+ bi], [1, 1, a− bi]〉

(3.8)

for fixed positive integers a and b satisfying a2 + b2 = q, 2|a and 2 - b. The
generators for the torsion subgroup map as follows:

A1
µ′
7→ [1, q

√
2(1 +

√
2), (a+ bi)(a− bi)(1 + i)i],

A2
µ′
7→ [2, 3q

√
2(1 +

√
2), 3i].

We define

H := 〈[1, q
√

2(1 +
√

2), (a+ bi)(a− bi)(1 + i)i], [2, 3q
√

2(1 +
√

2), 3i]〉.

In view of our previous remark it is sufficient to show that H = imµ′.



Non-trivial X in the Jacobian of an infinite family of curves of genus 2 9

First, consider p =∞. Since there are two embeddings of Q(
√

2)∗ into R∗
we have M∞ ∼= R∗/(R∗)2 × (R∗/(R∗)2)×2 × C∗/(C∗)2. Furthermore,

ker j∞ = 〈[2, 1, 1], [3, 1, 1], [q, 1, 1], [1,
√

2(1 +
√

2), 1], [1, 3, 1], [1, q, 1],

[1, 1, i], [1, 1, 1 + i], [1, 1, 3], [1, 1, a+ bi], [1, 1, a− bi]〉,

and so j∞ ◦ µ′(A1) = [1, [1, 1], 1] and j∞ ◦ µ′(A2) = [1, [1, 1], 1]. Since
#J (R)[2] = 8, (2.4) implies that #J (R)/2J (R) = 2, so we are missing
one generator. We find B := {(0, β),∞} ∈ J (R), where β ∈ R and β2 =
24q5, and B 7→ [−1, [1,−1], 1] by µ′∞. Hence, J (R)/2J (R) = 〈B〉. The
commutativity of (2.3) gives

(3.9) imµ′ ≤ 〈ker j∞, H, [−1,
√

2, 1]〉.

Next, we let p = 3. Sets of representatives for Q3(
√

2)∗/(Q3(
√

2)∗)2 and
Q3(i)∗/(Q3(i)∗)2 are given by {1, 1+

√
2, 3, 3(1+

√
2)} and {1, 1+ i, 3, 3(1+

i)}, respectively. Furthermore

ker j3 = 〈[−2, 1, 1], [q, 1, 1], [1,−1, 1], [1,
√

2, 1], [1, q, 1], [1, 1, i], [1, 1, a+ bi],

[1, 1, a− bi]〉,

and so j3 ◦ µ′(A1) = [1, 1 +
√

2, 1 + i] and j3 ◦ µ′(A2) = [−1, 3(1 +
√

2), 3].
Since #J (Q3)/2J (Q3) = 22 by (2.4), the known members of J (Q)/2J (Q)
generate J (Q3)/2J (Q3), that is J (Q3)/2J (Q3) = 〈A1,A2〉. From (2.3) we
have that

(3.10) imµ′ ≤ 〈ker j3, H〉.

Now, let p = q. A set of representatives for Qq(
√

2)∗/(Qq(
√

2)∗)2 is given
by {1,

√
2, q, q

√
2}. We let α denote the solution to x2 = −1 in Q∗q that

makes 1 + x a square in Q∗q . Then we have 2 embeddings of Q(i)∗ into Q∗q
given by x+ yi 7→ x+ yα and x+ yi 7→ x− yα, and so (Q(i))∗q/((Q(i))∗q)

2

is isomorphic to Q∗q/(Q∗q)2 ×Q∗q/(Q∗q)2. Furthermore

ker jq = 〈[−1, 1, 1], [3, 1, 1], [1,−1, 1], [1, 1 +
√

2, 1], [1, 3, 1], [1, 1, 3]〉,

which implies jq ◦ µ′(A1) = [1, q
√

2, [2q, q]] and jq ◦ µ′(A2) = [2, q
√

2, [2, 2]].
Since #J (Qq)/2J (Qq) = 23 by (2.4), we are missing 1 generator for
J (Qq)/2J (Qq). We find D := {(2αq, 0),∞} ∈ J (Qq), where µ′q(D) =
[q, q
√

2(1 + α
√

2), [2q, 1]] = [q, q
√

2, [2q, 1]], since 1 + α
√

2 is a square in
Qq(
√

2)∗. Hence, J (Qq)/2J (Qq) = 〈A1,A2,D〉. Since there exists t ∈
{a+ bi, a− bi, (a+ bi)i, (a− bi)i} such that M 3 [q, q

√
2, t(1 + i)]

jq7→ µ′q(D),
the commutative diagram (2.3) implies that

(3.11) imµ′ ≤ 〈ker jq, H, [q, q
√

2, t(1 + i)]〉.
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Finally, we let p = 2. We note that 2 is ramified in Q(
√

2). A set
of representatives for Q2(

√
2)∗/(Q2(

√
2)∗)2 is given by {±1,±

√
2,±(1 +√

2),±3,±
√

2(1 +
√

2),±3
√

2,±3(1 +
√

2),±3
√

2(1 +
√

2)}. Also, 2 is ram-
ified in Q(i) and {1, 1+ i, 3, i, a+bi, 3i, 3(1+ i), i(1+ i), 3i(1+ i), (a+bi)(1+
i), 3(a+bi), (a+bi)i, 3i(a+bi), 3(1+i)(a+bi), i(1+i)(a+bi), 3i(1+i)(a+bi)}
is a set of representatives for Q2(i)∗/(Q2(i)∗)2, where a and b are the inte-
gers from (3.8). Furthermore

ker j2 = 〈[−3q, 1, 1], [1,−3q, 1], [1, 1, 3q]〉,
giving j2◦µ′(A1) = [1,−3

√
2(1+

√
2), 3(1+i)i] and j2◦µ′(A2) = [2,−

√
2(1+√

2), 3i]. By (2.4) #J (Q2)/2J (Q2) = 24, so we are missing two generators.
Since W (5) ∈ (Q∗2)2, there exists ε1 ∈ Q∗2 such that ε2

1 = W (5), and so
E1 := {(5, ε1),∞} ∈ J (Q2). In fact, µ′2(E1) = [5 − 2q, 5 + q

√
2, 5 + 2qi],

which equals [3,−3(1 +
√

2), i(a + bi)] if a ≡ 2 (mod 8), b ≡ 1, 3 (mod 8)
or a ≡ 6 (mod 8), b ≡ 5, 7 (mod 8), and equals [3,−3(1 +

√
2), 3i(a + bi)]

if a ≡ 2 (mod 8), b ≡ 5, 7 (mod 8) or a ≡ 6 (mod 8), b ≡ 1, 3 (mod 8).
Next, we observe that W (8)

22 ∈ (Q∗2)2, and so there exists ε2 ∈ Q∗2 such
that ε2

2 = W (8)
22 . Therefore, E2 := {(8, 22ε2)} ∈ J (Q2). In fact, µ′2(E2) =

[8− 2q, 8 + q
√

2, 8 + 2qi] = [−2,−3
√

2, 1] ∈ M2. Hence, J (Q2)/2J (Q2) =
〈A1,A2,E1,E2〉 and by the commutativity of (2.3)

(3.12) imµ′ ≤ 〈ker j2, H, [3,−3(1 +
√

2), z], [−2, 3
√

2, 1]〉,
where z ∈ {i(a+ bi), 3i(a+ bi)}.

Combining (3.9),(3.10),(3.11) and (3.12) we conclude that imµ′ ≤ H, that
is imµ′ = H, and so rank(J (Q)) = 0. The following lemma summarises the
results obtained from the complete 2-descent.

Lemma 3.3. Let C denote the infinite family of curves over Q given by
(3.7) and let J denote its Jacobian. Then

J (Q) = J (Q)tors = 〈{(
√

2, 0), (−
√

2, 0)}, {(0, 0), (−1, 0)}〉.

Since J and Ĵ are isogenous over Q, rank(J (Q)) = rank(Ĵ (Q)). Com-
bining the lemmas 3.2 and 3.3 we obtain the following result:

Proposition 3.1. Let Ĉ be the curve of genus 2 over Q given by

Ĉ : y2 = (−x2 + 2x+ 1) · 2qx · (x2 + 4x+ 2),

where q is a prime congruent to 13 modulo 24, and let Ĵ denote the Jacobian
of Ĉ. Furthermore, let J denote the Jacobian that is isogenous to Ĵ and
let ϕ̂ denote the Richelot isogeny ϕ̂ : Ĵ → J .

A descent via Richelot isogeny bounds the rank of Ĵ (Q) by 2 while a
complete 2-descent on J shows that the rank of Ĵ (Q) is in fact 0, and
so X(Ĵ /Q)[ϕ̂] is non-trivial. Hence, Ĉ is an infinite family of curves of
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genus 2 whose Jacobian has non-trivial Tate-Shafarevich group for descent
via Richelot isogeny.

Remark. The Jacobian J (and hence Ĵ ) can be shown to be simple by a
method described in [4], originating from [13].

Proposition 3.1 immediately implies that X(Ĵ /Q)[2] is non-trivial. In
line with the idea of [2] this fact can, of course, also be proved by performing
a 2-descent on Ĵ , giving a rank bound of 2 on Ĵ (Q).

In view of the fact that Lemma 3.1 holds for the larger family of curves
with q ≡ 5 (mod 8) it is natural to suspect that Proposition 3.1 might also
be correct for this larger family. Letting q ≡ 5 (mod 8), one does, in fact,
obtain a rank bound of 2 from the descent via isogeny but the 2-descent
does not yield a rank bound of 0 on J (Q), and so no non-trivial members
of the Tate-Shafarevich group are demonstrated in this case.

4. Family of surfaces violating the Hasse principle

We first note that (3.1) can be transformed via (x, y) 7→ (1/x, y/x3) to

(4.1) Ċ : y2 = q(1− 2x2)(1 + x)(1 + x2),

with Jacobian J̇ . Recall ([4], p.19) that the coordinates k1 = 1, k2 =
x1 + x2, k3 = x1x2, k4 = (F0(x1, x2)− 2y1y2)/(x1 − x2)2, where

(4.2) F0(x1, x2) = 2f0 + f1(x1 + x2) + 2f2(x1x2) + f3(x1x2)(x1 + x2)
+2f4(x1x2)2 + f5(x1x2)2(x1 + x2) + 2f6(x1x2)3,

satisfy the equation of the Kummer surface. Specialising the Kummer sur-
face equation (see [4], p.19) to our curve Ċ, and for simplicity using the
affine coordinates u2 = k2/k1, u3 = k3/k1, u4 = 1

qk4/k1 gives

(4.3)
u2

4u
2
2 − 4u2

4u3 − 4u4 − 2u4u2 + 4u4u3 + 2u4u2u3

+8u4u
2
3 + 4u4u2u

2
3 + 4u2 + 2u3 + 8u2

2 − 11u2
3

+8u3
2 + 8u2

2u3 − 8u2u
2
3 − 4u3

3 + 4u4
3 + 5 = 0.

Note also, that if we let u7 = (y1 − y2)/(x1 − x2) then

(4.4) u4 =
1
q
u2

7 + u2 + 2u2
2 − 2u2u3 + 2u3

2 + 1.

Given u2, u3, u4, u7 ∈ Q, one recovers {x1, x2} as the roots of x2−u2x+u3,
and can obtain u′7 = (x2y1 − x1y2)/(x1 − x2), from which yi = u7xi − u′7
can be derived.

We know from the previous section that the homogeneous space corre-
sponding to [−2,−2] for imµϕ̂ violates the Hasse principle, as will then
also be the case for J̇ . A model for this homogeneous space, given by 72
equations in P15 (see [5]) would be rather unweildy, so we give here a more
accessible associated surface. To say that {(x1, y1), (x2, y2)} ∈ J̇ (Q) maps



12 Anna Arnth-Jensen, E. Victor Flynn

to [−2,−2] under imµϕ̂ is equivalent to the three additional equations:
(1−2x2

1)(1−2x2
2) = −2, (x1+1)(x2+1) = −2, (x2

1+1)(x2
2+1) = 1, modulo

squares. Any of these is dependent on the other two, so we need only take
(for example) the second and third of these, which can be expressed as:
u3 +u2 + 1 = −2u2

5 and u2
3 +u2

2− 2u3 + 1 = u2
6, for some u5, u6 ∈ Q. What

is nice here is that there is a simple resulting parametrisation of u2, u3, u6 in
terms of u5 and a further parameter, as follows. We express the first equa-
tion as: u3 = −u2− 1− 2u2

5 and substitute this into the second equation to
give:

(4.5) (u2 + 2 + 2u2
5)2 + u2

2 = u2
6.

Using u2 = 0, u6 = 2+2u2
5 as a basepoint, and letting u8 = (u6−2−2u2

5)/u2

(the slope from (0, 2 + 2u2
5) to (u2, u6)) we can express u2, u3 in terms of

the parameters u5, u8, as

(4.6)
ū2(u5, u8) = 4(u2

5+1−u8−u8u2
5)

u2
8−2

, ū3(u5, u8) = 4u8−2+4u8u2
5−u2

8−2u2
5u

2
8

u2
8−2

,

ū6(u5, u8) = 2(−u2
8+2u8+2u8u2

5−u2
5u

2
8−2−2u2

5

u2
8−2

.

We finally obtain a model, given by a single equation in u5, u7, u8 by sub-
stituting (4.4) into (4.3), to eliminate u4, and then replacing u2, u3 with
the parametrisations ū2(u5, u8), ū3(u5, u8), respectively (and multiplying
through by (u2

8−2)8). This family of affine surfaces has no affine Q-rational
point, for any q ≡ 13 (mod 24), since [−2,−2] is not in the image of µϕ̂. It is
not immediately clear that there are affine points everywhere locally, since
the local points on the homogeneous space might not correspond to affine
points on our surface. However, it can easily be checked directly that there
are points everywhere locally, by first checking small primes and primes of
bad reduction, after which one can use Hensel’s lemma, together with the
Hasse-Weil bound on the genus 5 curves obtained by specialising u8.
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