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Abstract

We summarise recent advances in techniques for solving Diophantine problems on

hyperelliptic curves; in particular, those for finding the rank of the Jacobian, and the set

of rational points on the curve.

§0. Introduction

The constructive theory of hyperelliptic curves has been advanced significantly during

the last year. It is intended to give here an indication of the current level of progress, and

an outline of the main methods employed. The emphasis in Sections 1 to 4 will be on the

group of rational points on the Jacobian of a hyperelliptic curve. Section 5 will concern

itself with the use of the Jacobian to help to determine the rational points on the curve

itself.

§1. The group law and formal group on the Jacobian

Let C be a hyperelliptic curve of genus g:

C : Y 2 = F (X), where deg(F ) = 2g + 1 or 2g + 2 and F has non-zero discriminant. (1)

We shall assume that C is defined over Q; that is, the coefficients of F are in Q. By a

divisor of C we shall mean (with slight abuse of notation and uniqueness) an unordered set

of g points on the curve, where multiplicities are permitted. When deg(F ) = 2g + 1, we

include ∞ as a point on C, and denote {∞, . . . ,∞} = {g ·∞} by O. When deg(F ) = 2g+2

and g is even, we must include ∞+ and ∞− (the branches of the singularity at infinity)

as separate points on C, and we take O = {g/2 · ∞+, g/2 · ∞−}. When deg(F ) = 2g + 2

and g is odd, then such an O is not defined over Q – however this technicality need not

concern us here, as our examples will avoid that situation. Given a point P = (x, y) on C,

its flip P = (x,−y). The inverse of a divisor {P1, . . . , Pg} will then be {P1, . . . , Pg}.
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We shall say that three such divisors D1, D2, D3 sum to O if there exists a function

of the form

R(X) · Y − S(X), where deg(R) 6 g/2− 1, and deg(S) 6 3g/2 (2)

which is satisfied by the 3g points contained in the sets D1, D2, D3. We let J = J (C), the

Jacobian of C, denote all such sets of g points; then the above laws give J the structure

of an abelian group, with identity O, which generalises the usual group law on an elliptic

curve (the case g = 1). A divisor D = {P1, . . . Pg} = {(x1, y1), . . . (xg, yg)} in J is rational

if there exist polynomials φ and ψ of degree g, with coefficients in Q, such that:

φ(X) =
n∏
i=1

(X − xi) and yi = ψ(xi), for all i. (3)

The rational divisors form a subgroup of J , denoted J (Q). A divisor D in J is of finite

order (or torsion) if there exists a positive integer N such that ND = O; the smallest

such N is the order of D. It is well known that the subgroup of rational torsion divisors,

Jtors(Q), is finite. It is also well known that J (Q) is finitely generated, and so there exists

a non-negative integer r such that J (Q) ∼= Jtors(Q)×Zr. This integer r is the rank of the

Jacobian. One of main aims of techniques developed during the last five years, has been –

given a hyperelliptic curve – to find a set of generators for J (Q).

As well as being an abelian group, the Jacobian can also be given the structure of

a smooth projective variety. By a theorem of Lefschetz ([15], p.105), we can find an

embedding into P4g−1.

Theorem 1.1. Let C be a hyperelliptic curve of genus g, with coefficients in Q. Then

there is an embedding of J into P4g−1 (which maps J (Q) into P4g−1(Q)) as a smooth

variety of dimension g, with defining equations given by quadratic forms, and the group

law given by a biquadratic map. Further, the Kummer variety, obtained by taking the

quotient of the Jacobian by ±, may be embedded into P2g−1, with the duplication law

given by quartic forms on both the Jacobian and Kummer varieties.

In practice, it is difficult to compute a set of defining equations for the Jacobian, due

to the sheer size of the expressions involved. In the case of genus 2, however, the equations

have been derived explicitly with the help of the computer algebra package Maple (see

[3],[6],[8]).
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Theorem 1.2. Let a = (a0 . . . a15) be the 16 functions given in [8]. Then these provide

an embedding of the Jacobian into P15, with defining equations given by the 72 quadratic

forms given in Appendix A of [6].

When considering local properties of the Jacobian (viewed over Qp) “near” O, it is

convenient to work with a power series description of the group law. It is necessary to

find a basis of local parameters s = (s1, . . . sg), which are expressed in terms of the coordi-

nate functions of the projective embedding of the Jacobian. A set of local parameters must

have the property that they uniquely determine any D ∈ J which is sufficiently close to O.

There exists an associated vector F = (F1, . . .Fg), where each Fi = Fi(s1, . . . sg, t1, . . . tg)

is a power series in 2g variables. Let a,b, c ∈ J (Qp) have local parameters s, t,u, respec-

tively; then, in a neighbourhood of O, we have u = F(s, t). For the genus 2 case, a pair

of local parameters is given by s1 = a1/a0, s2 = a2/a0, where a is as in Theorem 1.2. In

this case, a method for deriving terms of the formal group is described in [6], [8].

In the case when a curve of genus 2 can be written over Q in the form Y 2 = quintic

in X, then the variety describing the Jacobian may be embedded into P8 rather than P15.

The resulting algebra is considerably simpler, both for computing the defining equations

of the Jacobian, and the terms of the formal group. This situation has been considered in

detail in [13].

§2. Rational torsion sequences

In the case of an elliptic curve E over Q, the possible torsion groups Etors(Q) which

can occur have been completely determined by Mazur in [18].

Theorem 2.1. Let E be an elliptic curve defined over Q. Then the torsion subgroup

Etors(Q) is one of the fifteen groups: Z/NZ for N = 1, . . . 10, 12, or Z/2Z × Z/2NZ for

N = 1, . . . 4.

A result which applies to elliptic curves over a number field K has recently been found

by Merel in [21], where it is shown that any prime torsion order p must be bounded by

d3d2 , where d is the degree of K over Q. No result along these lines has been found for

Jacobians of curves of higher genus, and it is a natural question to ask what new torsion

orders can occur in Jtors(Q) as the genus increases.
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In order to derive hyperelliptic curves for which the torsion orders in J (Q) increase

quickly with respect to the genus, the strategy is to choose sequences of curves of genus g

with rational points P1, . . . , Pn, so that n different functions meet the curve only at these

points. If these functions induce n Z[g]-linear conditions given by:

A

 P1
...
Pn

 =

O
...
O

 (4)

where A ∈Mn[Z[g]], then it is immediate (on multiplying both sides on the left by det(A) ·

A−1 ∈Mn[Z[g]]) that

det(A)

 P1
...
Pn

 =

O
...
O

 (5)

so that, for i = 1, . . . , n, det(A) · Pi = O (where, as always, everything is up to linear

equivalence). This provides a divisor of order dividing det(A), which can often be shown

to have order exactly det(A).

For the purpose of deriving quadratic sequences, we require only two such points and

two such functions. We have used this technique in [7] to find the following sequences.

Result 2.2. The 1-parameter space of curves of genus g (t 6= 0):

C : Y 2 = −tXg−r(X − 1)g+r+1 + ψ(X)2

where 0 6 r 6 g − 1, and ψ(X) = Xg+1 − t(X − 1)g −Xg−r(X − 1)r+1 (degree g in X),

has a divisor of positive torsion order dividing: 2g2 +2g+ r+1. In particular, when r = 0,

the divisor D = {(1, 1), (g − 1) · ∞} has exact order 2g2 + 2g + 1.

Result 2.3. In even genus g, there exists Q rational torsion divisors of all orders in the

interval [g2 + 2g+ 1, g2 + 3g+ 1]. Explicitly, the 1-parameter space of curves of genus g (g

even, t 6= 0):

C : Y 2 =
(
ψ(X))2 − 2t(Xg+2 +Xr+1) + t2(X − 1)2

where 0 6 r 6 g, and ψ(X) =
∑g−r+1
i=1 Xr+i = (Xg+2 −Xr+1)/(X − 1), has a divisor of

exact order g2 + 3g + 1− r.

More recently, Leprévost in [16],[17] has improved Result 2.2 to find sequences of the

form: 2g2 + kg + 1, for k = 2, 3, 4.
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§3. Complete 2-descent and descent via isogeny

An intermediary step towards resolving J (Q) is to find J (Q)/2J (Q), which is

known to be finite. For a hyperelliptic curve Y 2 = F (X) defined over Q, let F (X) =

F1(X) . . . Fn(X) be the irreducible factorisation of F (X) over Q and, for each i, let

Ki = Q(θi), where θi is a root of Fi(X). Then, there is a well known [2] finite group

M , which can be given as a subgroup of K∗
1/(K

∗
1 )2 × . . . × K∗

n/(K
∗
n)

2, and an injection

ψ : J (Q)/2J (Q) −→ M . The construction of M and ψ guarantees that J (Q)/2J (Q) is

finite and provides an upper bound for its size, but does not guarantee that J (Q)/2J (Q)

can be found completely. The standard technique is to make use of the commutative

diagram:
J (Q)/2J (Q)

ψ−→ Myip yjp
J (Qp)/2J (Qp)

ψp−→ Mp

(6)

where the bottom row is constructed in the same way as the top row, but with respect to

Qp, the p-adic numbers. The maps ip and jp are natural maps on the quotient induced

by the inclusion map from Q into Qp (note that ip and jp are not injective in general). It

turns out that, for any p, it is straightforward to compute J (Qp), ψp and Mp completely.

The preimage of Mp under jp can then be used to bound the image of ψ. We define the

Selmer group, S, by:

S =
⋂
p

j−1
p

(
im(ψp)

)
.

The group S may be viewed as those members of M which cannot be discarded as potential

members of imψ merely by “congruence” arguments. Clearly imψ 6 S. It may turn out

that imψ = S, in which case the above method determines J (Q)/2J (Q), and hence the

rank of J (Q), completely. The extent to which S fails to determine imψ completely is

described by a portion of a strucure called the Tate-Shafarevich group. The method is

not an algorithm, since there is no known effective procedure for determining the Tate-

Shafarevich group.

The above methodology has long been employed to find ranks of elliptic curves (the

case g = 1). It is only very recently that non-trivial examples have been computed on

Jacobians of curves of higher genus. The first successful method (complete 2-descent) was
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due to Gordon and Grant [12], which applies to curves of genus 2 which split completely

over Q:

Y 2 = (X − a1)(X − a2)(X − a3)(X − a4)(X − a5), ai ∈ Q.

Note that, for a general curve of genus 2, given by Y 2 = F (X), the 2-torsion subgroup of

J is given by O and divisors of the form {(x1, 0), (x2, 0)}, where x1, x2 are distinct roots

of F (X). This gives a 2-torsion group of size 16 in J , when viewed over C. The above

condition imposed by Gordon and Grant guarantees that all points of order 2 in J lie

in J (Q), which simplifies the construction of the finite group M above (which lies inside

products of Q∗/(Q∗)2). For each d ∈ M , they construct homogeneous spaces Jd, which

have the property that d ∈ imψ ⇐⇒ Jd(Q) 6= ∅. For each Jd, one then tries either to

find a rational point, or to find a contradiction in some Qp. Two examples were computed

by this method in [12].

Example 3.1. Let C be the curve y2 = x(x− 1)(x− 2)(x− 5)(x− 6). Then J (Q)/2J (Q)

is generated by the 2-torsion divisors, and the divisor {(3, 6),∞}, which has infinite order.

It follows that J (Q) has rank 1,

Example 3.2. Let C be the curve y2 = x(x− 3)(x− 4)(x− 6)(x− 7). Then J (Q)/2J (Q)

is generated by the 2-torsion divisors, and J (Q) has rank 0.

Note that, in Example 3.1, the rank of J (Q) was deduced from the size of

J (Q)/2J (Q), by first finding the image of Jtors(Q) on J (Q)/2J (Q), and then using

the fact that each independent divisor of infinite order on J (Q) contributes precisely one

to the nuumber generators of J (Q)/2J (Q). Therefore, the rank has been determined,

without any guarantee that the divisors found are actual generators for J (Q). We will

return to this point in Section 4.

A second method was developed by the author in [9], which applies to the more general

class of curves of genus 2 which may be written in the form: C : Y 2 = q1(X)q2(X)q3(X),

where each qi(X) is a quadratic defined over Q. In this case, the 2-torsion group of J (Q)

must have size at least 4, including O and the 3 rational divisors of order 2, each given by

a conjugate pair of roots to qi(X). This group of size 4 can be taken to be the kernel of a

homomorphism (an isogeny of degree 4) to the Jacobian of an associated curve [1].
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Definition 3.3. Let C be the curve of genus 2 defined over Q as:

C : Y 2 = q1(X)q2(X)q3(X) = (f1X2+g1X+h1)(f2X2+g2X+h2)(f3X2+g3X+h3). (7)

For any two polynomials p(X), q(X), let [p, q] denote p′q − pq′. Define Ĉ by:

Ĉ : ∆Y 2 = q̂1(X)q̂2(X)q̂3(X) = [q2, q3][q3, q1][q1, q2], where ∆ =

∣∣∣∣∣∣
h1 g1 f1
h2 g2 f2
h3 g3 f3

∣∣∣∣∣∣ .
Denote bij = resultant(qi, qj), bi = bijbik, b̂ij = resultant(q̂i, q̂j), b̂i = b̂ij b̂ik. Let J , Ĵ

be the Jacobians of C and Ĉ, and let αi denote the point of order 2 in J (Q) corresponding

to qi(X); similarly for α̂i.

It has been shown in [1] that J , Ĵ are isogenous. There exists isogenies: φ : J → Ĵ

with kernel {O, α1, α2, α3} and φ̂ : Ĵ → J with kernel {Ô, α̂1, α̂2, α̂3}, such that φ̂◦φ = [2],

the duplication map on J . As with elliptic curves, there is a natural injection [9] from

Ĵ (Q)/φ(J (Q)) into a known finite group which provides the foundation for descent via

isogeny.

Theorem 3.4. Let C, Ĉ be as in Definition 1.1, and let w ∈ Ĵ (Q). Then there exists a

unique pair (d1, d2) ∈ Q∗/(Q∗)2×Q∗/(Q∗)2 such that for every v ∈ φ−1(w), the sets {v},

{v,v+αi}, {v,v+α1,v+α2,v+α3} are defined over Q(
√
d1,

√
d2), Q(

√
di), Q, respectively

(i = 1, 2, 3, d3 = d1d2). Let ψφ : Ĵ (Q)/φ(J (Q)) 7→ Q∗/(Q∗)2 ×Q∗/(Q∗)2 : w 7→ (d1, d2).

Then ψφ is a well defined injective homomorphism. Let S = {p : p | ∆b1b2b3b̂1b̂2b̂3}∪{2} =

{p1 . . . pr}, and Q(Sφ) = {±pe11 . . . per
r } 6 Q∗/(Q∗)2. Then imψφ 6 Q(S)×Q(S).

The problem of finding Ĵ (Q)/φ(J (Q)) is therefore reduced to that of determining,

for each member of Q(S) × Q(S), whether a preimage exists under ψφ. As before, we

use a commutative diagram similar to equation (6), except with J (Q)/2J (Q) replaced

by Ĵ (Q)/φ(J (Q)), and with Q(S)×Q(S) performing the role of the finite group M . We

again hope that the image of ψφ is completely determined by p-adic considerations. Having

found Ĵ (Q)/φ(J (Q)), we then perform the same process with respect to the dual isogeny

to find J (Q)/φ̂(J (Q)). Then the exact sequence

0 −→ {Ô, α̂1, α̂2, α̂3} −→ Ĵ (Q)/φ(J (Q))
φ̂−→J (Q)/2J (Q) −→ J (Q)/φ̂(Ĵ (Q)) −→ 0
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may be used to give generators for J (Q)/2J (Q), and hence the rank of J (Q) as before.

Descent via isogeny can be viewed as breaking the work of finding J (Q)/2J (Q) into

2 easier pieces. It has the considerable advantage that the computations are performed

over number fields of smaller degree than if a complete 2-descent were attempted. In [9],

12 worked examples were given of the following type.

Example 3.5. Let C, Ĉ be as follows:

C : Y 2 = (X2 + 6X + 7)(X2 + 4X + 1)(X2 + 2X + 3).

Ĉ : Y 2 = (X2 − 2X − 5)(X2 + 2X − 1)(X2 + 6X + 11).
Then J (Q) and Ĵ (Q) have rank 2.

Recent improvements have significantly improved the speed of both methods. For

example, Schaefer [22] has computer the following genus 3 example.

Example 3.6. Let C be the curve:

Y 2 = X(X − 2)(X − 3)(X − 4)(X − 5)(X − 7)(X − 10)

.
Then J (Q) has rank 2.

Inprovements to the technique of descent via isogeny are described in [11], in which

further ranks are computed. So far, the various techniques have computed over 100 ranks,

and it hoped that rank tables will soon be made available by anonymous ftp.

§4. Height functions on the Kummer variety

It was observed in Section 3 that the methods for finding J (Q)/2J (Q) found the rank

of J (Q), but did not provide a way of showing that the divisors generating J (Q)/2J (Q)

also generate J (Q). A possible route from J (Q)/2J (Q) to generators of J (Q) is via a

height function defined on J (Q). We first define a height function on a general abelian

group.

Definition 4.1. Let G be an abelian group. A height function H is a map H : G 7→ R+

satisfying:

(1). There exists a constant C1 such that, for all P,Q ∈ G, H(P + Q)H(P − Q) 6

C1H(P )2H(Q)2.
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(2). There exists a constant C2 such that, for all P ∈ G, H(2P ) > H(P )4/C2.

(3). For any constant C3, the set {P ∈ G : H(P ) 6 C3} is finite.

The constants C1, C2 depend only on the group G and the height function H, and we shall

refer to them as the height constants.

The following property of abelian groups with a height function is proved in [23], p.199.

Lemma 4.2. Let G be an abelian group with height function H, such that G/2G is a

finite set: {Q1, . . . , Qn}, say. Then G is finitely generated. Explicitly, if ε = min{H(P ) :

P ∈ G}, and C ′
1 = max{H(Qi)2 : 1 6 i 6 n} · C1/ε, then G is generated by the finite set:

{P ∈ G : H(P ) 6
√
C ′

1C2} ∪ {Q1, . . . , Qn}.

In general, if G/2G has already been computed, and if there is a height function

on G, then the above Lemma reduces the task of finding generators for G to a finite

computation. This is precisely the situation we have after the techniques for Section 3

have been successfully applied. In principle, therefore, it is sufficient to define a height

function on J (Q). Such a function may be found by first embedding the Jacobian variety

into P4g−1, and the Kummer variety into P2g−1, as in Theorem 1.1., and then taking the

standard height of the resulting point in P2g−1(Q).

Definition 4.3. Let κ : J (Q) −→ P2g−1(Q) be an embedding of the Kummer surface.

For any D ∈ J (Q), let κ(D) = (v0, . . . , v2g−1) ∈ P2g−1(Q). We may choose v0, . . . , vn to

be integers with no common factor. Now define, Hκ(D) = maxi |vi|.

This is the natural generalisation of the usual x-coordinate height function on an

elliptic curve, for which Hκ({(x, y)}) = max(v0, v1), where x = v1/v0, with v0, v1 coprime

integers.

In any genus, it is straightforward to show that Hκ is a height function. In genus 2,

the height constant C1 is easy to compute. However, the constant C2 is more difficult.

In principle, C2 can be found by applying Hilbert’s Nullstellensatz to the non-degenerate

quartics which define the duplication map. In practice, this is not computationally viable

even for curves with small coefficients. An improvement has been found [10], in which the

duplication law on the Kummer variety is factored as:

κ(2D) = W1τW2τW3κ(D),
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where τ : (v0, . . . , v2g−1) 7→ (v2
0 , . . . , v

2
2g−1) and where W1, W2, W3 are linear maps. The

derivation of the equations describing W1, W2, W3 makes use of the isogeny of Defini-

tion 3.3. A vastly smaller value of the constant C2 may then be expressed in terms of the

entries of the matrices for W1, W2, W3.

Example 4.4. Let C be the curve y2 = x(x− 1)(x− 2)(x− 5)(x− 6), as in Example 3.1.

Then J (Q) is generated by the 2-torsion divisors, and the divisor {(3, 6),∞}.

Several other examples have been computed in [10]. However, it should be emphasised

that this approach will become too slow as the size of the coefficients of C increases, and

considerable work needs to be done before there is a viable, widely applicable method for

finding generators for J (Q).

§5. Implementing theorems of Coleman

The following classical result of Chabauty [4] gives a way of deducing information

about a curve from its Jacobian.

Proposition 5.1. Let C be a curve of genus g defined over a number field K, whose

Jacobian has Mordell-Weil rank 6 g−1. Then C has only finitely many K-rational points.

This is a strictly weaker result than Falting’s theorem (which gives the same result

unconditionally); however it has been shown by Coleman [5] that Chabauty’s method –

when applicable – can be used in many situations to give good bounds for the number of

points on a curve. In particular, there are two potential genus 2 applications [5], [14].

Proposition 5.2. Let C be a curve of genus 2 defined over Q, and p > 4 be a prime of

good reduction. If the Jacobian of C has rank at most 1 and C̃ is the reduction of C mod p

then #C(Q) 6 #C̃(Fp) + 2.

Proposition 5.3. Let C be a curve of genus 2 defined over Q with 4 rational branch points

and good reduction at 3, whose Jacobian has rank at most 1. Then #C(Q) 6 6.

If the the rational branch points of the curve in Proposition 0.3 are mapped to

(0, 0), (1, 0), (−1, 0), (1/λ, 0), then there is the following situation for which Coleman’s

method is guaranteed to determine C(Q) completely.
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Proposition 5.4. Let C be the curve of genus 2:

C : Y 2 = X(X2 − 1)(X − 1/λ)(X2 + aX + b)

with λ, a, b ∈ Z. Suppose 32r‖λ , for some r > 0, and 3 does not divide b(1−a+b)(1+a+b),

and that the Jacobian of C has rank at most 1. Then C(Q) contains precisely the points

(0, 0), (1, 0), (−1, 0), (1/λ, 0) and the 2 rational points at infinity.

There is only one non-trivial application of Proposition 5.2 in the literature, which is

the curve already given as Example 3.1, due to Gordon and Grant [14].

Example 5.5. Let C be the curve Y 2 = X(X − 1)(X − 2)(X − 5)(X − 6) defined over Q.

Then #C(Q) = #C̃(F7) + 2 = 10.

It seems unlikely that there will be many direct applications of Proposition 5.2, which

will resolve #C(Q) completely, since one has to be fortunate for the bound #C̃(Fp) + 2

to be attained. However, there have recently been applications of Proposition 5.4 in [11],

such as the following example.

Example 5.6. The Jacobian of the curve: Y 2 = X(X2 − 1)(X − 1
9 )(X2 − 18X + 1) has

rank 1 over Q. Hence, by Proposition 5.4, there are no Q-rational points on the curve

apart from the points (0, 0), (1, 0), (−1, 0), (1/9, 0) and the 2 rational points at infinity.

We also refer the reader to the work of McCallum [19],[20], who makes use of Coleman’s

version of Chabauty’s Theorem to obtain conditional bounds on the number of rational

points on the Fermat curves.

§6. Work in progress

Work currently in progress emphasises enhancements of the techniques described in

Section 3 (computing the rank of J (Q)) and Section 5 (applying the theorems of Chabauty

and Coleman).

The main impediment to a fast and widely applicable implementation of the descent

procedures of Section 3 is the difficulty in explicitly describing generators of the finite

group M into which J (Q)/2J (Q) injects. This is the main step which requires genuine

work in a number field. An example of a key slow step is the following: Given α in the
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ring of integers of a number field K, find all irreducibles which divide α. This type of

problem is straightforward when K has class number 1, but otherwise can quickly become

time consuming. Any progress with this slow step would have a dramatic effect on the

speed at which ranks of Jacobians could be computed.

Techniques for applying Chabauty’s theorem are rapidly being made more flexible

and widely applicable beyond the special cases indicated in Section 5. The formal group of

the Jacobian (mentioned at the end of Section 1) is being used to construct formal power

series, defined over Qp (for some choice of p), which must be satisfied by n, where n is

the number of Q-rational points on the original curve. This power series induces a bound

on n which experimentally appears very sharp. In the 20 examples computed so far, the

bound was attained in 17 cases (finding C(Q) completely), and in the 3 remaining cases,

the bound was only 1 greater than the number of known rational points on the curve.

REFERENCES

[1] Bost, J. B. and Mestre, J.-F. Moyenne arithmético-géometrique et périodes des courbes
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[3] Cassels, J. W. S. Arithmetic of curves of genus 2. Number Theory and Applications

(ed. R.A. Mollin), 27-35. NATO ASI Series C,265. Kluwer Academic Publishers,

1989.

[4] Chabauty C. Sur les points rationels des variétés algébriques dont l’irregularité et
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